1 /*
   2  * Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.experimental.value.ValueType;
  29 import jdk.internal.misc.JavaLangInvokeAccess;
  30 import jdk.internal.misc.SharedSecrets;
  31 import jdk.internal.org.objectweb.asm.AnnotationVisitor;
  32 import jdk.internal.org.objectweb.asm.ClassWriter;
  33 import jdk.internal.org.objectweb.asm.MethodVisitor;
  34 import jdk.internal.reflect.CallerSensitive;
  35 import jdk.internal.reflect.Reflection;
  36 import jdk.internal.vm.annotation.ForceInline;
  37 import jdk.internal.vm.annotation.Stable;
  38 import sun.invoke.empty.Empty;
  39 import sun.invoke.util.ValueConversions;
  40 import sun.invoke.util.VerifyType;
  41 import sun.invoke.util.Wrapper;
  42 import valhalla.shady.MinimalValueTypes_1_0;
  43 
  44 import java.lang.reflect.Array;
  45 import java.util.Arrays;
  46 import java.util.Collections;
  47 import java.util.Iterator;
  48 import java.util.List;
  49 import java.util.Map;
  50 import java.util.function.Function;
  51 import java.util.stream.Stream;
  52 
  53 import static java.lang.invoke.LambdaForm.*;
  54 import static java.lang.invoke.MethodHandleStatics.*;
  55 import static java.lang.invoke.MethodHandles.Lookup.IMPL_LOOKUP;
  56 import static jdk.internal.org.objectweb.asm.Opcodes.*;
  57 
  58 /**
  59  * Trusted implementation code for MethodHandle.
  60  * @author jrose
  61  */
  62 /*non-public*/ abstract class MethodHandleImpl {
  63 
  64     /// Factory methods to create method handles:
  65 
  66     static MethodHandle makeArrayElementAccessor(Class<?> arrayClass, ArrayAccess access) {
  67         if (arrayClass == Object[].class) {
  68             return ArrayAccess.objectAccessor(access);
  69         }
  70         if (!arrayClass.isArray())
  71             throw newIllegalArgumentException("not an array: "+arrayClass);
  72         MethodHandle[] cache = ArrayAccessor.TYPED_ACCESSORS.get(arrayClass);
  73         int cacheIndex = ArrayAccess.cacheIndex(access);
  74         MethodHandle mh = cache[cacheIndex];
  75         if (mh != null)  return mh;
  76         mh = ArrayAccessor.getAccessor(arrayClass, access);
  77         MethodType correctType = ArrayAccessor.correctType(arrayClass, access);
  78         if (mh.type() != correctType) {
  79             assert(mh.type().parameterType(0) == Object[].class);
  80             /* if access == SET */ assert(access != ArrayAccess.SET || mh.type().parameterType(2) == Object.class);
  81             /* if access == GET */ assert(access != ArrayAccess.GET ||
  82                     (mh.type().returnType() == Object.class &&
  83                      correctType.parameterType(0).getComponentType() == correctType.returnType()));
  84             // safe to view non-strictly, because element type follows from array type
  85             mh = mh.viewAsType(correctType, false);
  86         }
  87         mh = makeIntrinsic(mh, ArrayAccess.intrinsic(access));
  88         // Atomically update accessor cache.
  89         synchronized(cache) {
  90             if (cache[cacheIndex] == null) {
  91                 cache[cacheIndex] = mh;
  92             } else {
  93                 // Throw away newly constructed accessor and use cached version.
  94                 mh = cache[cacheIndex];
  95             }
  96         }
  97         return mh;
  98     }
  99 
 100     enum ArrayAccess {
 101         GET, SET, LENGTH;
 102 
 103         // As ArrayAccess and ArrayAccessor have a circular dependency, the ArrayAccess properties cannot be stored in
 104         // final fields.
 105 
 106         static String opName(ArrayAccess a) {
 107             switch (a) {
 108                 case GET: return "getElement";
 109                 case SET: return "setElement";
 110                 case LENGTH: return "length";
 111             }
 112             throw unmatchedArrayAccess(a);
 113         }
 114 
 115         static MethodHandle objectAccessor(ArrayAccess a) {
 116             switch (a) {
 117                 case GET: return ArrayAccessor.OBJECT_ARRAY_GETTER;
 118                 case SET: return ArrayAccessor.OBJECT_ARRAY_SETTER;
 119                 case LENGTH: return ArrayAccessor.OBJECT_ARRAY_LENGTH;
 120             }
 121             throw unmatchedArrayAccess(a);
 122         }
 123 
 124         static int cacheIndex(ArrayAccess a) {
 125             switch (a) {
 126                 case GET: return ArrayAccessor.GETTER_INDEX;
 127                 case SET: return ArrayAccessor.SETTER_INDEX;
 128                 case LENGTH: return ArrayAccessor.LENGTH_INDEX;
 129             }
 130             throw unmatchedArrayAccess(a);
 131         }
 132 
 133         static Intrinsic intrinsic(ArrayAccess a) {
 134             switch (a) {
 135                 case GET: return Intrinsic.ARRAY_LOAD;
 136                 case SET: return Intrinsic.ARRAY_STORE;
 137                 case LENGTH: return Intrinsic.ARRAY_LENGTH;
 138             }
 139             throw unmatchedArrayAccess(a);
 140         }
 141     }
 142 
 143     static InternalError unmatchedArrayAccess(ArrayAccess a) {
 144         return newInternalError("should not reach here (unmatched ArrayAccess: " + a + ")");
 145     }
 146 
 147     static final class ArrayAccessor {
 148         /// Support for array element and length access
 149         static final int GETTER_INDEX = 0, SETTER_INDEX = 1, LENGTH_INDEX = 2, INDEX_LIMIT = 3;
 150         static final ClassValue<MethodHandle[]> TYPED_ACCESSORS
 151                 = new ClassValue<MethodHandle[]>() {
 152                     @Override
 153                     protected MethodHandle[] computeValue(Class<?> type) {
 154                         return new MethodHandle[INDEX_LIMIT];
 155                     }
 156                 };
 157         static final MethodHandle OBJECT_ARRAY_GETTER, OBJECT_ARRAY_SETTER, OBJECT_ARRAY_LENGTH;
 158         static {
 159             MethodHandle[] cache = TYPED_ACCESSORS.get(Object[].class);
 160             cache[GETTER_INDEX] = OBJECT_ARRAY_GETTER = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.GET),    Intrinsic.ARRAY_LOAD);
 161             cache[SETTER_INDEX] = OBJECT_ARRAY_SETTER = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.SET),    Intrinsic.ARRAY_STORE);
 162             cache[LENGTH_INDEX] = OBJECT_ARRAY_LENGTH = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.LENGTH), Intrinsic.ARRAY_LENGTH);
 163 
 164             assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_GETTER.internalMemberName()));
 165             assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_SETTER.internalMemberName()));
 166             assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_LENGTH.internalMemberName()));
 167         }
 168 
 169         static int     getElementI(int[]     a, int i)            { return              a[i]; }
 170         static long    getElementJ(long[]    a, int i)            { return              a[i]; }
 171         static float   getElementF(float[]   a, int i)            { return              a[i]; }
 172         static double  getElementD(double[]  a, int i)            { return              a[i]; }
 173         static boolean getElementZ(boolean[] a, int i)            { return              a[i]; }
 174         static byte    getElementB(byte[]    a, int i)            { return              a[i]; }
 175         static short   getElementS(short[]   a, int i)            { return              a[i]; }
 176         static char    getElementC(char[]    a, int i)            { return              a[i]; }
 177         static Object  getElementL(Object[]  a, int i)            { return              a[i]; }
 178 
 179         static void    setElementI(int[]     a, int i, int     x) {              a[i] = x; }
 180         static void    setElementJ(long[]    a, int i, long    x) {              a[i] = x; }
 181         static void    setElementF(float[]   a, int i, float   x) {              a[i] = x; }
 182         static void    setElementD(double[]  a, int i, double  x) {              a[i] = x; }
 183         static void    setElementZ(boolean[] a, int i, boolean x) {              a[i] = x; }
 184         static void    setElementB(byte[]    a, int i, byte    x) {              a[i] = x; }
 185         static void    setElementS(short[]   a, int i, short   x) {              a[i] = x; }
 186         static void    setElementC(char[]    a, int i, char    x) {              a[i] = x; }
 187         static void    setElementL(Object[]  a, int i, Object  x) {              a[i] = x; }
 188 
 189         static int     lengthI(int[]     a)                       { return a.length; }
 190         static int     lengthJ(long[]    a)                       { return a.length; }
 191         static int     lengthF(float[]   a)                       { return a.length; }
 192         static int     lengthD(double[]  a)                       { return a.length; }
 193         static int     lengthZ(boolean[] a)                       { return a.length; }
 194         static int     lengthB(byte[]    a)                       { return a.length; }
 195         static int     lengthS(short[]   a)                       { return a.length; }
 196         static int     lengthC(char[]    a)                       { return a.length; }
 197         static int     lengthL(Object[]  a)                       { return a.length; }
 198 
 199         static String name(Class<?> arrayClass, ArrayAccess access) {
 200             Class<?> elemClass = arrayClass.getComponentType();
 201             if (elemClass == null)  throw newIllegalArgumentException("not an array", arrayClass);
 202             return ArrayAccess.opName(access) + Wrapper.basicTypeChar(elemClass);
 203         }
 204         static MethodType type(Class<?> arrayClass, ArrayAccess access) {
 205             Class<?> elemClass = arrayClass.getComponentType();
 206             Class<?> arrayArgClass = arrayClass;
 207             if (!elemClass.isPrimitive()) {
 208                 arrayArgClass = Object[].class;
 209                 elemClass = Object.class;
 210             }
 211             switch (access) {
 212                 case GET:    return MethodType.methodType(elemClass,  arrayArgClass, int.class);
 213                 case SET:    return MethodType.methodType(void.class, arrayArgClass, int.class, elemClass);
 214                 case LENGTH: return MethodType.methodType(int.class,  arrayArgClass);
 215             }
 216             throw unmatchedArrayAccess(access);
 217         }
 218         static MethodType correctType(Class<?> arrayClass, ArrayAccess access) {
 219             Class<?> elemClass = arrayClass.getComponentType();
 220             switch (access) {
 221                 case GET:    return MethodType.methodType(elemClass,  arrayClass, int.class);
 222                 case SET:    return MethodType.methodType(void.class, arrayClass, int.class, elemClass);
 223                 case LENGTH: return MethodType.methodType(int.class,  arrayClass);
 224             }
 225             throw unmatchedArrayAccess(access);
 226         }
 227         static MethodHandle getAccessor(Class<?> arrayClass, ArrayAccess access) {
 228             String     name = name(arrayClass, access);
 229             MethodType type = type(arrayClass, access);
 230             try {
 231                 return IMPL_LOOKUP.findStatic(ArrayAccessor.class, name, type);
 232             } catch (ReflectiveOperationException ex) {
 233                 throw uncaughtException(ex);
 234             }
 235         }
 236     }
 237 
 238     /**
 239      * Create a JVM-level adapter method handle to conform the given method
 240      * handle to the similar newType, using only pairwise argument conversions.
 241      * For each argument, convert incoming argument to the exact type needed.
 242      * The argument conversions allowed are casting, boxing and unboxing,
 243      * integral widening or narrowing, and floating point widening or narrowing.
 244      * @param srcType required call type
 245      * @param target original method handle
 246      * @param strict if true, only asType conversions are allowed; if false, explicitCastArguments conversions allowed
 247      * @param monobox if true, unboxing conversions are assumed to be exactly typed (Integer to int only, not long or double)
 248      * @return an adapter to the original handle with the desired new type,
 249      *          or the original target if the types are already identical
 250      *          or null if the adaptation cannot be made
 251      */
 252     static MethodHandle makePairwiseConvert(MethodHandle target, MethodType srcType,
 253                                             boolean strict, boolean monobox) {
 254         MethodType dstType = target.type();
 255         if (srcType == dstType)
 256             return target;
 257         return makePairwiseConvertByEditor(target, srcType, strict, monobox);
 258     }
 259 
 260     private static int countNonNull(Object[] array) {
 261         int count = 0;
 262         for (Object x : array) {
 263             if (x != null)  ++count;
 264         }
 265         return count;
 266     }
 267 
 268     static MethodHandle makePairwiseConvertByEditor(MethodHandle target, MethodType srcType,
 269                                                     boolean strict, boolean monobox) {
 270         Object[] convSpecs = computeValueConversions(srcType, target.type(), strict, monobox);
 271         int convCount = countNonNull(convSpecs);
 272         if (convCount == 0)
 273             return target.viewAsType(srcType, strict);
 274         MethodType basicSrcType = srcType.basicType();
 275         MethodType midType = target.type().basicType();
 276         BoundMethodHandle mh = target.rebind();
 277         // FIXME: Reduce number of bindings when there is more than one Class conversion.
 278         // FIXME: Reduce number of bindings when there are repeated conversions.
 279         for (int i = 0; i < convSpecs.length-1; i++) {
 280             Object convSpec = convSpecs[i];
 281             if (convSpec == null)  continue;
 282             MethodHandle fn;
 283             if (convSpec instanceof Class) {
 284                 fn = getConstantHandle(MH_cast).bindTo(convSpec);
 285             } else {
 286                 fn = (MethodHandle) convSpec;
 287             }
 288             Class<?> newType = basicSrcType.parameterType(i);
 289             if (--convCount == 0)
 290                 midType = srcType;
 291             else
 292                 midType = midType.changeParameterType(i, newType);
 293             LambdaForm form2 = mh.editor().filterArgumentForm(1+i, BasicType.basicType(newType));
 294             mh = mh.copyWithExtendL(midType, form2, fn);
 295             mh = mh.rebind();
 296         }
 297         Object convSpec = convSpecs[convSpecs.length-1];
 298         if (convSpec != null) {
 299             MethodHandle fn;
 300             if (convSpec instanceof Class) {
 301                 if (convSpec == void.class)
 302                     fn = null;
 303                 else
 304                     fn = getConstantHandle(MH_cast).bindTo(convSpec);
 305             } else {
 306                 fn = (MethodHandle) convSpec;
 307             }
 308             Class<?> newType = basicSrcType.returnType();
 309             assert(--convCount == 0);
 310             midType = srcType;
 311             if (fn != null) {
 312                 mh = mh.rebind();  // rebind if too complex
 313                 LambdaForm form2 = mh.editor().filterReturnForm(BasicType.basicType(newType), false);
 314                 mh = mh.copyWithExtendL(midType, form2, fn);
 315             } else {
 316                 LambdaForm form2 = mh.editor().filterReturnForm(BasicType.basicType(newType), true);
 317                 mh = mh.copyWith(midType, form2);
 318             }
 319         }
 320         assert(convCount == 0);
 321         assert(mh.type().equals(srcType));
 322         return mh;
 323     }
 324 
 325     static MethodHandle makePairwiseConvertIndirect(MethodHandle target, MethodType srcType,
 326                                                     boolean strict, boolean monobox) {
 327         assert(target.type().parameterCount() == srcType.parameterCount());
 328         // Calculate extra arguments (temporaries) required in the names array.
 329         Object[] convSpecs = computeValueConversions(srcType, target.type(), strict, monobox);
 330         final int INARG_COUNT = srcType.parameterCount();
 331         int convCount = countNonNull(convSpecs);
 332         boolean retConv = (convSpecs[INARG_COUNT] != null);
 333         boolean retVoid = srcType.returnType() == void.class;
 334         if (retConv && retVoid) {
 335             convCount -= 1;
 336             retConv = false;
 337         }
 338 
 339         final int IN_MH         = 0;
 340         final int INARG_BASE    = 1;
 341         final int INARG_LIMIT   = INARG_BASE + INARG_COUNT;
 342         final int NAME_LIMIT    = INARG_LIMIT + convCount + 1;
 343         final int RETURN_CONV   = (!retConv ? -1         : NAME_LIMIT - 1);
 344         final int OUT_CALL      = (!retConv ? NAME_LIMIT : RETURN_CONV) - 1;
 345         final int RESULT        = (retVoid ? -1 : NAME_LIMIT - 1);
 346 
 347         // Now build a LambdaForm.
 348         MethodType lambdaType = srcType.basicType().invokerType();
 349         Name[] names = arguments(NAME_LIMIT - INARG_LIMIT, lambdaType);
 350 
 351         // Collect the arguments to the outgoing call, maybe with conversions:
 352         final int OUTARG_BASE = 0;  // target MH is Name.function, name Name.arguments[0]
 353         Object[] outArgs = new Object[OUTARG_BASE + INARG_COUNT];
 354 
 355         int nameCursor = INARG_LIMIT;
 356         for (int i = 0; i < INARG_COUNT; i++) {
 357             Object convSpec = convSpecs[i];
 358             if (convSpec == null) {
 359                 // do nothing: difference is trivial
 360                 outArgs[OUTARG_BASE + i] = names[INARG_BASE + i];
 361                 continue;
 362             }
 363 
 364             Name conv;
 365             if (convSpec instanceof Class) {
 366                 Class<?> convClass = (Class<?>) convSpec;
 367                 conv = new Name(getConstantHandle(MH_cast), convClass, names[INARG_BASE + i]);
 368             } else {
 369                 MethodHandle fn = (MethodHandle) convSpec;
 370                 conv = new Name(fn, names[INARG_BASE + i]);
 371             }
 372             assert(names[nameCursor] == null);
 373             names[nameCursor++] = conv;
 374             assert(outArgs[OUTARG_BASE + i] == null);
 375             outArgs[OUTARG_BASE + i] = conv;
 376         }
 377 
 378         // Build argument array for the call.
 379         assert(nameCursor == OUT_CALL);
 380         names[OUT_CALL] = new Name(target, outArgs);
 381 
 382         Object convSpec = convSpecs[INARG_COUNT];
 383         if (!retConv) {
 384             assert(OUT_CALL == names.length-1);
 385         } else {
 386             Name conv;
 387             if (convSpec == void.class) {
 388                 conv = new Name(LambdaForm.constantZero(BasicType.basicType(srcType.returnType())));
 389             } else if (convSpec instanceof Class) {
 390                 Class<?> convClass = (Class<?>) convSpec;
 391                 conv = new Name(getConstantHandle(MH_cast), convClass, names[OUT_CALL]);
 392             } else {
 393                 MethodHandle fn = (MethodHandle) convSpec;
 394                 if (fn.type().parameterCount() == 0)
 395                     conv = new Name(fn);  // don't pass retval to void conversion
 396                 else
 397                     conv = new Name(fn, names[OUT_CALL]);
 398             }
 399             assert(names[RETURN_CONV] == null);
 400             names[RETURN_CONV] = conv;
 401             assert(RETURN_CONV == names.length-1);
 402         }
 403 
 404         LambdaForm form = new LambdaForm(lambdaType.parameterCount(), names, RESULT, Kind.CONVERT);
 405         return SimpleMethodHandle.make(srcType, form);
 406     }
 407 
 408     static Object[] computeValueConversions(MethodType srcType, MethodType dstType,
 409                                             boolean strict, boolean monobox) {
 410         final int INARG_COUNT = srcType.parameterCount();
 411         Object[] convSpecs = new Object[INARG_COUNT+1];
 412         for (int i = 0; i <= INARG_COUNT; i++) {
 413             boolean isRet = (i == INARG_COUNT);
 414             Class<?> src = isRet ? dstType.returnType() : srcType.parameterType(i);
 415             Class<?> dst = isRet ? srcType.returnType() : dstType.parameterType(i);
 416             if (!VerifyType.isNullConversion(src, dst, /*keepInterfaces=*/ strict)) {
 417                 convSpecs[i] = valueConversion(src, dst, strict, monobox);
 418             }
 419         }
 420         return convSpecs;
 421     }
 422     static MethodHandle makePairwiseConvert(MethodHandle target, MethodType srcType,
 423                                             boolean strict) {
 424         return makePairwiseConvert(target, srcType, strict, /*monobox=*/ false);
 425     }
 426 
 427     /**
 428      * Find a conversion function from the given source to the given destination.
 429      * This conversion function will be used as a LF NamedFunction.
 430      * Return a Class object if a simple cast is needed.
 431      * Return void.class if void is involved.
 432      */
 433     static Object valueConversion(Class<?> src, Class<?> dst, boolean strict, boolean monobox) {
 434         assert(!VerifyType.isNullConversion(src, dst, /*keepInterfaces=*/ strict));  // caller responsibility
 435         if (dst == void.class)
 436             return dst;
 437         ValueType<?> srcVT = getValueFor(src);
 438         ValueType<?> dstVT = getValueFor(dst);
 439         MethodHandle fn;
 440         if (src.isPrimitive()) {
 441             if (src == void.class) {
 442                 return void.class;  // caller must recognize this specially
 443             } else if (dst.isPrimitive()) {
 444                 // Examples: int->byte, byte->int, boolean->int (!strict)
 445                 fn = ValueConversions.convertPrimitive(src, dst);
 446             } else {
 447                 // Examples: int->Integer, boolean->Object, float->Number
 448                 Wrapper wsrc = Wrapper.forPrimitiveType(src);
 449                 fn = ValueConversions.boxExact(wsrc);
 450                 assert(fn.type().parameterType(0) == wsrc.primitiveType());
 451                 assert(fn.type().returnType() == wsrc.wrapperType());
 452                 if (!VerifyType.isNullConversion(wsrc.wrapperType(), dst, strict)) {
 453                     // Corner case, such as int->Long, which will probably fail.
 454                     MethodType mt = MethodType.methodType(dst, src);
 455                     if (strict)
 456                         fn = fn.asType(mt);
 457                     else
 458                         fn = MethodHandleImpl.makePairwiseConvert(fn, mt, /*strict=*/ false);
 459                 }
 460             }
 461         } else if (srcVT != null) {
 462             if (srcVT.boxClass().equals(dst) || dst.equals(Object.class)) {
 463                 //box
 464                 fn = srcVT.box();
 465             } else {
 466                 throw new IllegalArgumentException("Cannot box value " + src + " to class " + dst);
 467             }
 468         } else if (dst.isPrimitive()) {
 469             Wrapper wdst = Wrapper.forPrimitiveType(dst);
 470             if (monobox || src == wdst.wrapperType()) {
 471                 // Use a strongly-typed unboxer, if possible.
 472                 fn = ValueConversions.unboxExact(wdst, strict);
 473             } else {
 474                 // Examples:  Object->int, Number->int, Comparable->int, Byte->int
 475                 // must include additional conversions
 476                 // src must be examined at runtime, to detect Byte, Character, etc.
 477                 fn = (strict
 478                         ? ValueConversions.unboxWiden(wdst)
 479                         : ValueConversions.unboxCast(wdst));
 480             }
 481         } else if (dstVT != null) {
 482             if (dstVT.boxClass().equals(src) || src.equals(Object.class)) {
 483                 //unbox
 484                 fn = dstVT.unbox();
 485             } else {
 486                 throw new IllegalArgumentException("Cannot unbox class " + src + " to value " + dst);
 487             }
 488         } else {
 489             // Simple reference conversion.
 490             // Note:  Do not check for a class hierarchy relation
 491             // between src and dst.  In all cases a 'null' argument
 492             // will pass the cast conversion.
 493             return dst;
 494         }
 495         assert(fn.type().parameterCount() <= 1) : "pc"+Arrays.asList(src.getSimpleName(), dst.getSimpleName(), fn);
 496         return fn;
 497     }
 498 
 499     @SuppressWarnings("unchecked")
 500     static <Z> ValueType<Z> getValueFor(Class<Z> c) {
 501         try {
 502             if (MinimalValueTypes_1_0.isValueType(c)) {
 503                 return (ValueType<Z>)ValueType.forClass(MinimalValueTypes_1_0.getValueCapableClass(c));
 504             } else {
 505                 return null;
 506             }
 507         } catch (Throwable ex) {
 508             return null;
 509         }
 510     }
 511 
 512     static MethodHandle makeVarargsCollector(MethodHandle target, Class<?> arrayType) {
 513         MethodType type = target.type();
 514         int last = type.parameterCount() - 1;
 515         if (type.parameterType(last) != arrayType)
 516             target = target.asType(type.changeParameterType(last, arrayType));
 517         target = target.asFixedArity();  // make sure this attribute is turned off
 518         return new AsVarargsCollector(target, arrayType);
 519     }
 520 
 521     private static final class AsVarargsCollector extends DelegatingMethodHandle {
 522         private final MethodHandle target;
 523         private final Class<?> arrayType;
 524         private @Stable MethodHandle asCollectorCache;
 525 
 526         AsVarargsCollector(MethodHandle target, Class<?> arrayType) {
 527             this(target.type(), target, arrayType);
 528         }
 529         AsVarargsCollector(MethodType type, MethodHandle target, Class<?> arrayType) {
 530             super(type, target);
 531             this.target = target;
 532             this.arrayType = arrayType;
 533             this.asCollectorCache = target.asCollector(arrayType, 0);
 534         }
 535 
 536         @Override
 537         public boolean isVarargsCollector() {
 538             return true;
 539         }
 540 
 541         @Override
 542         protected MethodHandle getTarget() {
 543             return target;
 544         }
 545 
 546         @Override
 547         public MethodHandle asFixedArity() {
 548             return target;
 549         }
 550 
 551         @Override
 552         MethodHandle setVarargs(MemberName member) {
 553             if (member.isVarargs())  return this;
 554             return asFixedArity();
 555         }
 556 
 557         @Override
 558         public MethodHandle asTypeUncached(MethodType newType) {
 559             MethodType type = this.type();
 560             int collectArg = type.parameterCount() - 1;
 561             int newArity = newType.parameterCount();
 562             if (newArity == collectArg+1 &&
 563                 type.parameterType(collectArg).isAssignableFrom(newType.parameterType(collectArg))) {
 564                 // if arity and trailing parameter are compatible, do normal thing
 565                 return asTypeCache = asFixedArity().asType(newType);
 566             }
 567             // check cache
 568             MethodHandle acc = asCollectorCache;
 569             if (acc != null && acc.type().parameterCount() == newArity)
 570                 return asTypeCache = acc.asType(newType);
 571             // build and cache a collector
 572             int arrayLength = newArity - collectArg;
 573             MethodHandle collector;
 574             try {
 575                 collector = asFixedArity().asCollector(arrayType, arrayLength);
 576                 assert(collector.type().parameterCount() == newArity) : "newArity="+newArity+" but collector="+collector;
 577             } catch (IllegalArgumentException ex) {
 578                 throw new WrongMethodTypeException("cannot build collector", ex);
 579             }
 580             asCollectorCache = collector;
 581             return asTypeCache = collector.asType(newType);
 582         }
 583 
 584         @Override
 585         boolean viewAsTypeChecks(MethodType newType, boolean strict) {
 586             super.viewAsTypeChecks(newType, true);
 587             if (strict) return true;
 588             // extra assertion for non-strict checks:
 589             assert (type().lastParameterType().getComponentType()
 590                     .isAssignableFrom(
 591                             newType.lastParameterType().getComponentType()))
 592                     : Arrays.asList(this, newType);
 593             return true;
 594         }
 595     }
 596 
 597     /** Factory method:  Spread selected argument. */
 598     static MethodHandle makeSpreadArguments(MethodHandle target,
 599                                             Class<?> spreadArgType, int spreadArgPos, int spreadArgCount) {
 600         MethodType targetType = target.type();
 601 
 602         for (int i = 0; i < spreadArgCount; i++) {
 603             Class<?> arg = VerifyType.spreadArgElementType(spreadArgType, i);
 604             if (arg == null)  arg = Object.class;
 605             targetType = targetType.changeParameterType(spreadArgPos + i, arg);
 606         }
 607         target = target.asType(targetType);
 608 
 609         MethodType srcType = targetType
 610                 .replaceParameterTypes(spreadArgPos, spreadArgPos + spreadArgCount, spreadArgType);
 611         // Now build a LambdaForm.
 612         MethodType lambdaType = srcType.invokerType();
 613         Name[] names = arguments(spreadArgCount + 2, lambdaType);
 614         int nameCursor = lambdaType.parameterCount();
 615         int[] indexes = new int[targetType.parameterCount()];
 616 
 617         for (int i = 0, argIndex = 1; i < targetType.parameterCount() + 1; i++, argIndex++) {
 618             Class<?> src = lambdaType.parameterType(i);
 619             if (i == spreadArgPos) {
 620                 // Spread the array.
 621                 MethodHandle aload = MethodHandles.arrayElementGetter(spreadArgType);
 622                 Name array = names[argIndex];
 623                 names[nameCursor++] = new Name(getFunction(NF_checkSpreadArgument), array, spreadArgCount);
 624                 for (int j = 0; j < spreadArgCount; i++, j++) {
 625                     indexes[i] = nameCursor;
 626                     names[nameCursor++] = new Name(aload, array, j);
 627                 }
 628             } else if (i < indexes.length) {
 629                 indexes[i] = argIndex;
 630             }
 631         }
 632         assert(nameCursor == names.length-1);  // leave room for the final call
 633 
 634         // Build argument array for the call.
 635         Name[] targetArgs = new Name[targetType.parameterCount()];
 636         for (int i = 0; i < targetType.parameterCount(); i++) {
 637             int idx = indexes[i];
 638             targetArgs[i] = names[idx];
 639         }
 640         names[names.length - 1] = new Name(target, (Object[]) targetArgs);
 641 
 642         LambdaForm form = new LambdaForm(lambdaType.parameterCount(), names, Kind.SPREAD);
 643         return SimpleMethodHandle.make(srcType, form);
 644     }
 645 
 646     static void checkSpreadArgument(Object av, int n) {
 647         if (av == null) {
 648             if (n == 0)  return;
 649         } else if (av instanceof Object[]) {
 650             int len = ((Object[])av).length;
 651             if (len == n)  return;
 652         } else {
 653             int len = java.lang.reflect.Array.getLength(av);
 654             if (len == n)  return;
 655         }
 656         // fall through to error:
 657         throw newIllegalArgumentException("array is not of length "+n);
 658     }
 659 
 660     /** Factory method:  Collect or filter selected argument(s). */
 661     static MethodHandle makeCollectArguments(MethodHandle target,
 662                 MethodHandle collector, int collectArgPos, boolean retainOriginalArgs) {
 663         MethodType targetType = target.type();          // (a..., c, [b...])=>r
 664         MethodType collectorType = collector.type();    // (b...)=>c
 665         int collectArgCount = collectorType.parameterCount();
 666         Class<?> collectValType = collectorType.returnType();
 667         int collectValCount = (collectValType == void.class ? 0 : 1);
 668         MethodType srcType = targetType                 // (a..., [b...])=>r
 669                 .dropParameterTypes(collectArgPos, collectArgPos+collectValCount);
 670         if (!retainOriginalArgs) {                      // (a..., b...)=>r
 671             srcType = srcType.insertParameterTypes(collectArgPos, collectorType.parameterArray());
 672         }
 673         // in  arglist: [0: ...keep1 | cpos: collect...  | cpos+cacount: keep2... ]
 674         // out arglist: [0: ...keep1 | cpos: collectVal? | cpos+cvcount: keep2... ]
 675         // out(retain): [0: ...keep1 | cpos: cV? coll... | cpos+cvc+cac: keep2... ]
 676 
 677         // Now build a LambdaForm.
 678         MethodType lambdaType = srcType.invokerType();
 679         Name[] names = arguments(2, lambdaType);
 680         final int collectNamePos = names.length - 2;
 681         final int targetNamePos  = names.length - 1;
 682 
 683         Name[] collectorArgs = Arrays.copyOfRange(names, 1 + collectArgPos, 1 + collectArgPos + collectArgCount);
 684         names[collectNamePos] = new Name(collector, (Object[]) collectorArgs);
 685 
 686         // Build argument array for the target.
 687         // Incoming LF args to copy are: [ (mh) headArgs collectArgs tailArgs ].
 688         // Output argument array is [ headArgs (collectVal)? (collectArgs)? tailArgs ].
 689         Name[] targetArgs = new Name[targetType.parameterCount()];
 690         int inputArgPos  = 1;  // incoming LF args to copy to target
 691         int targetArgPos = 0;  // fill pointer for targetArgs
 692         int chunk = collectArgPos;  // |headArgs|
 693         System.arraycopy(names, inputArgPos, targetArgs, targetArgPos, chunk);
 694         inputArgPos  += chunk;
 695         targetArgPos += chunk;
 696         if (collectValType != void.class) {
 697             targetArgs[targetArgPos++] = names[collectNamePos];
 698         }
 699         chunk = collectArgCount;
 700         if (retainOriginalArgs) {
 701             System.arraycopy(names, inputArgPos, targetArgs, targetArgPos, chunk);
 702             targetArgPos += chunk;   // optionally pass on the collected chunk
 703         }
 704         inputArgPos += chunk;
 705         chunk = targetArgs.length - targetArgPos;  // all the rest
 706         System.arraycopy(names, inputArgPos, targetArgs, targetArgPos, chunk);
 707         assert(inputArgPos + chunk == collectNamePos);  // use of rest of input args also
 708         names[targetNamePos] = new Name(target, (Object[]) targetArgs);
 709 
 710         LambdaForm form = new LambdaForm(lambdaType.parameterCount(), names, Kind.COLLECT);
 711         return SimpleMethodHandle.make(srcType, form);
 712     }
 713 
 714     @LambdaForm.Hidden
 715     static
 716     MethodHandle selectAlternative(boolean testResult, MethodHandle target, MethodHandle fallback) {
 717         if (testResult) {
 718             return target;
 719         } else {
 720             return fallback;
 721         }
 722     }
 723 
 724     // Intrinsified by C2. Counters are used during parsing to calculate branch frequencies.
 725     @LambdaForm.Hidden
 726     @jdk.internal.HotSpotIntrinsicCandidate
 727     static
 728     boolean profileBoolean(boolean result, int[] counters) {
 729         // Profile is int[2] where [0] and [1] correspond to false and true occurrences respectively.
 730         int idx = result ? 1 : 0;
 731         try {
 732             counters[idx] = Math.addExact(counters[idx], 1);
 733         } catch (ArithmeticException e) {
 734             // Avoid continuous overflow by halving the problematic count.
 735             counters[idx] = counters[idx] / 2;
 736         }
 737         return result;
 738     }
 739 
 740     // Intrinsified by C2. Returns true if obj is a compile-time constant.
 741     @LambdaForm.Hidden
 742     @jdk.internal.HotSpotIntrinsicCandidate
 743     static
 744     boolean isCompileConstant(Object obj) {
 745         return false;
 746     }
 747 
 748     static
 749     MethodHandle makeGuardWithTest(MethodHandle test,
 750                                    MethodHandle target,
 751                                    MethodHandle fallback) {
 752         MethodType type = target.type();
 753         assert(test.type().equals(type.changeReturnType(boolean.class)) && fallback.type().equals(type));
 754         MethodType basicType = type.basicType();
 755         LambdaForm form = makeGuardWithTestForm(basicType);
 756         BoundMethodHandle mh;
 757         try {
 758             if (PROFILE_GWT) {
 759                 int[] counts = new int[2];
 760                 mh = (BoundMethodHandle)
 761                         BoundMethodHandle.speciesData_LLLL().constructor().invokeBasic(type, form,
 762                                 (Object) test, (Object) profile(target), (Object) profile(fallback), counts);
 763             } else {
 764                 mh = (BoundMethodHandle)
 765                         BoundMethodHandle.speciesData_LLL().constructor().invokeBasic(type, form,
 766                                 (Object) test, (Object) profile(target), (Object) profile(fallback));
 767             }
 768         } catch (Throwable ex) {
 769             throw uncaughtException(ex);
 770         }
 771         assert(mh.type() == type);
 772         return mh;
 773     }
 774 
 775 
 776     static
 777     MethodHandle profile(MethodHandle target) {
 778         if (DONT_INLINE_THRESHOLD >= 0) {
 779             return makeBlockInliningWrapper(target);
 780         } else {
 781             return target;
 782         }
 783     }
 784 
 785     /**
 786      * Block inlining during JIT-compilation of a target method handle if it hasn't been invoked enough times.
 787      * Corresponding LambdaForm has @DontInline when compiled into bytecode.
 788      */
 789     static
 790     MethodHandle makeBlockInliningWrapper(MethodHandle target) {
 791         LambdaForm lform;
 792         if (DONT_INLINE_THRESHOLD > 0) {
 793             lform = Makers.PRODUCE_BLOCK_INLINING_FORM.apply(target);
 794         } else {
 795             lform = Makers.PRODUCE_REINVOKER_FORM.apply(target);
 796         }
 797         return new CountingWrapper(target, lform,
 798                 Makers.PRODUCE_BLOCK_INLINING_FORM, Makers.PRODUCE_REINVOKER_FORM,
 799                                    DONT_INLINE_THRESHOLD);
 800     }
 801 
 802     private final static class Makers {
 803         /** Constructs reinvoker lambda form which block inlining during JIT-compilation for a particular method handle */
 804         static final Function<MethodHandle, LambdaForm> PRODUCE_BLOCK_INLINING_FORM = new Function<MethodHandle, LambdaForm>() {
 805             @Override
 806             public LambdaForm apply(MethodHandle target) {
 807                 return DelegatingMethodHandle.makeReinvokerForm(target,
 808                                    MethodTypeForm.LF_DELEGATE_BLOCK_INLINING, CountingWrapper.class, false,
 809                                    DelegatingMethodHandle.NF_getTarget, CountingWrapper.NF_maybeStopCounting);
 810             }
 811         };
 812 
 813         /** Constructs simple reinvoker lambda form for a particular method handle */
 814         static final Function<MethodHandle, LambdaForm> PRODUCE_REINVOKER_FORM = new Function<MethodHandle, LambdaForm>() {
 815             @Override
 816             public LambdaForm apply(MethodHandle target) {
 817                 return DelegatingMethodHandle.makeReinvokerForm(target,
 818                         MethodTypeForm.LF_DELEGATE, DelegatingMethodHandle.class, DelegatingMethodHandle.NF_getTarget);
 819             }
 820         };
 821 
 822         /** Maker of type-polymorphic varargs */
 823         static final ClassValue<MethodHandle[]> TYPED_COLLECTORS = new ClassValue<MethodHandle[]>() {
 824             @Override
 825             protected MethodHandle[] computeValue(Class<?> type) {
 826                 return new MethodHandle[MAX_JVM_ARITY + 1];
 827             }
 828         };
 829     }
 830 
 831     /**
 832      * Counting method handle. It has 2 states: counting and non-counting.
 833      * It is in counting state for the first n invocations and then transitions to non-counting state.
 834      * Behavior in counting and non-counting states is determined by lambda forms produced by
 835      * countingFormProducer & nonCountingFormProducer respectively.
 836      */
 837     static class CountingWrapper extends DelegatingMethodHandle {
 838         private final MethodHandle target;
 839         private int count;
 840         private Function<MethodHandle, LambdaForm> countingFormProducer;
 841         private Function<MethodHandle, LambdaForm> nonCountingFormProducer;
 842         private volatile boolean isCounting;
 843 
 844         private CountingWrapper(MethodHandle target, LambdaForm lform,
 845                                 Function<MethodHandle, LambdaForm> countingFromProducer,
 846                                 Function<MethodHandle, LambdaForm> nonCountingFormProducer,
 847                                 int count) {
 848             super(target.type(), lform);
 849             this.target = target;
 850             this.count = count;
 851             this.countingFormProducer = countingFromProducer;
 852             this.nonCountingFormProducer = nonCountingFormProducer;
 853             this.isCounting = (count > 0);
 854         }
 855 
 856         @Hidden
 857         @Override
 858         protected MethodHandle getTarget() {
 859             return target;
 860         }
 861 
 862         @Override
 863         public MethodHandle asTypeUncached(MethodType newType) {
 864             MethodHandle newTarget = target.asType(newType);
 865             MethodHandle wrapper;
 866             if (isCounting) {
 867                 LambdaForm lform;
 868                 lform = countingFormProducer.apply(newTarget);
 869                 wrapper = new CountingWrapper(newTarget, lform, countingFormProducer, nonCountingFormProducer, DONT_INLINE_THRESHOLD);
 870             } else {
 871                 wrapper = newTarget; // no need for a counting wrapper anymore
 872             }
 873             return (asTypeCache = wrapper);
 874         }
 875 
 876         // Customize target if counting happens for too long.
 877         private int invocations = CUSTOMIZE_THRESHOLD;
 878         private void maybeCustomizeTarget() {
 879             int c = invocations;
 880             if (c >= 0) {
 881                 if (c == 1) {
 882                     target.customize();
 883                 }
 884                 invocations = c - 1;
 885             }
 886         }
 887 
 888         boolean countDown() {
 889             int c = count;
 890             maybeCustomizeTarget();
 891             if (c <= 1) {
 892                 // Try to limit number of updates. MethodHandle.updateForm() doesn't guarantee LF update visibility.
 893                 if (isCounting) {
 894                     isCounting = false;
 895                     return true;
 896                 } else {
 897                     return false;
 898                 }
 899             } else {
 900                 count = c - 1;
 901                 return false;
 902             }
 903         }
 904 
 905         @Hidden
 906         static void maybeStopCounting(Object o1) {
 907              CountingWrapper wrapper = (CountingWrapper) o1;
 908              if (wrapper.countDown()) {
 909                  // Reached invocation threshold. Replace counting behavior with a non-counting one.
 910                  LambdaForm lform = wrapper.nonCountingFormProducer.apply(wrapper.target);
 911                  lform.compileToBytecode(); // speed up warmup by avoiding LF interpretation again after transition
 912                  wrapper.updateForm(lform);
 913              }
 914         }
 915 
 916         static final NamedFunction NF_maybeStopCounting;
 917         static {
 918             Class<?> THIS_CLASS = CountingWrapper.class;
 919             try {
 920                 NF_maybeStopCounting = new NamedFunction(THIS_CLASS.getDeclaredMethod("maybeStopCounting", Object.class));
 921             } catch (ReflectiveOperationException ex) {
 922                 throw newInternalError(ex);
 923             }
 924         }
 925     }
 926 
 927     static
 928     LambdaForm makeGuardWithTestForm(MethodType basicType) {
 929         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_GWT);
 930         if (lform != null)  return lform;
 931         final int THIS_MH      = 0;  // the BMH_LLL
 932         final int ARG_BASE     = 1;  // start of incoming arguments
 933         final int ARG_LIMIT    = ARG_BASE + basicType.parameterCount();
 934         int nameCursor = ARG_LIMIT;
 935         final int GET_TEST     = nameCursor++;
 936         final int GET_TARGET   = nameCursor++;
 937         final int GET_FALLBACK = nameCursor++;
 938         final int GET_COUNTERS = PROFILE_GWT ? nameCursor++ : -1;
 939         final int CALL_TEST    = nameCursor++;
 940         final int PROFILE      = (GET_COUNTERS != -1) ? nameCursor++ : -1;
 941         final int TEST         = nameCursor-1; // previous statement: either PROFILE or CALL_TEST
 942         final int SELECT_ALT   = nameCursor++;
 943         final int CALL_TARGET  = nameCursor++;
 944         assert(CALL_TARGET == SELECT_ALT+1);  // must be true to trigger IBG.emitSelectAlternative
 945 
 946         MethodType lambdaType = basicType.invokerType();
 947         Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType);
 948 
 949         BoundMethodHandle.SpeciesData data =
 950                 (GET_COUNTERS != -1) ? BoundMethodHandle.speciesData_LLLL()
 951                                      : BoundMethodHandle.speciesData_LLL();
 952         names[THIS_MH] = names[THIS_MH].withConstraint(data);
 953         names[GET_TEST]     = new Name(data.getterFunction(0), names[THIS_MH]);
 954         names[GET_TARGET]   = new Name(data.getterFunction(1), names[THIS_MH]);
 955         names[GET_FALLBACK] = new Name(data.getterFunction(2), names[THIS_MH]);
 956         if (GET_COUNTERS != -1) {
 957             names[GET_COUNTERS] = new Name(data.getterFunction(3), names[THIS_MH]);
 958         }
 959         Object[] invokeArgs = Arrays.copyOfRange(names, 0, ARG_LIMIT, Object[].class);
 960 
 961         // call test
 962         MethodType testType = basicType.changeReturnType(boolean.class).basicType();
 963         invokeArgs[0] = names[GET_TEST];
 964         names[CALL_TEST] = new Name(testType, invokeArgs);
 965 
 966         // profile branch
 967         if (PROFILE != -1) {
 968             names[PROFILE] = new Name(getFunction(NF_profileBoolean), names[CALL_TEST], names[GET_COUNTERS]);
 969         }
 970         // call selectAlternative
 971         names[SELECT_ALT] = new Name(getConstantHandle(MH_selectAlternative), names[TEST], names[GET_TARGET], names[GET_FALLBACK]);
 972 
 973         // call target or fallback
 974         invokeArgs[0] = names[SELECT_ALT];
 975         names[CALL_TARGET] = new Name(basicType, invokeArgs);
 976 
 977         lform = new LambdaForm(lambdaType.parameterCount(), names, /*forceInline=*/true, Kind.GUARD);
 978 
 979         return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_GWT, lform);
 980     }
 981 
 982     /**
 983      * The LambdaForm shape for catchException combinator is the following:
 984      * <blockquote><pre>{@code
 985      *  guardWithCatch=Lambda(a0:L,a1:L,a2:L)=>{
 986      *    t3:L=BoundMethodHandle$Species_LLLLL.argL0(a0:L);
 987      *    t4:L=BoundMethodHandle$Species_LLLLL.argL1(a0:L);
 988      *    t5:L=BoundMethodHandle$Species_LLLLL.argL2(a0:L);
 989      *    t6:L=BoundMethodHandle$Species_LLLLL.argL3(a0:L);
 990      *    t7:L=BoundMethodHandle$Species_LLLLL.argL4(a0:L);
 991      *    t8:L=MethodHandle.invokeBasic(t6:L,a1:L,a2:L);
 992      *    t9:L=MethodHandleImpl.guardWithCatch(t3:L,t4:L,t5:L,t8:L);
 993      *   t10:I=MethodHandle.invokeBasic(t7:L,t9:L);t10:I}
 994      * }</pre></blockquote>
 995      *
 996      * argL0 and argL2 are target and catcher method handles. argL1 is exception class.
 997      * argL3 and argL4 are auxiliary method handles: argL3 boxes arguments and wraps them into Object[]
 998      * (ValueConversions.array()) and argL4 unboxes result if necessary (ValueConversions.unbox()).
 999      *
1000      * Having t8 and t10 passed outside and not hardcoded into a lambda form allows to share lambda forms
1001      * among catchException combinators with the same basic type.
1002      */
1003     private static LambdaForm makeGuardWithCatchForm(MethodType basicType) {
1004         MethodType lambdaType = basicType.invokerType();
1005 
1006         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_GWC);
1007         if (lform != null) {
1008             return lform;
1009         }
1010         final int THIS_MH      = 0;  // the BMH_LLLLL
1011         final int ARG_BASE     = 1;  // start of incoming arguments
1012         final int ARG_LIMIT    = ARG_BASE + basicType.parameterCount();
1013 
1014         int nameCursor = ARG_LIMIT;
1015         final int GET_TARGET       = nameCursor++;
1016         final int GET_CLASS        = nameCursor++;
1017         final int GET_CATCHER      = nameCursor++;
1018         final int GET_COLLECT_ARGS = nameCursor++;
1019         final int GET_UNBOX_RESULT = nameCursor++;
1020         final int BOXED_ARGS       = nameCursor++;
1021         final int TRY_CATCH        = nameCursor++;
1022         final int UNBOX_RESULT     = nameCursor++;
1023 
1024         Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType);
1025 
1026         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLLL();
1027         names[THIS_MH]          = names[THIS_MH].withConstraint(data);
1028         names[GET_TARGET]       = new Name(data.getterFunction(0), names[THIS_MH]);
1029         names[GET_CLASS]        = new Name(data.getterFunction(1), names[THIS_MH]);
1030         names[GET_CATCHER]      = new Name(data.getterFunction(2), names[THIS_MH]);
1031         names[GET_COLLECT_ARGS] = new Name(data.getterFunction(3), names[THIS_MH]);
1032         names[GET_UNBOX_RESULT] = new Name(data.getterFunction(4), names[THIS_MH]);
1033 
1034         // FIXME: rework argument boxing/result unboxing logic for LF interpretation
1035 
1036         // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...);
1037         MethodType collectArgsType = basicType.changeReturnType(Object.class);
1038         MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
1039         Object[] args = new Object[invokeBasic.type().parameterCount()];
1040         args[0] = names[GET_COLLECT_ARGS];
1041         System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT-ARG_BASE);
1042         names[BOXED_ARGS] = new Name(makeIntrinsic(invokeBasic, Intrinsic.GUARD_WITH_CATCH), args);
1043 
1044         // t_{i+1}:L=MethodHandleImpl.guardWithCatch(target:L,exType:L,catcher:L,t_{i}:L);
1045         Object[] gwcArgs = new Object[] {names[GET_TARGET], names[GET_CLASS], names[GET_CATCHER], names[BOXED_ARGS]};
1046         names[TRY_CATCH] = new Name(getFunction(NF_guardWithCatch), gwcArgs);
1047 
1048         // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L);
1049         MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
1050         Object[] unboxArgs  = new Object[] {names[GET_UNBOX_RESULT], names[TRY_CATCH]};
1051         names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs);
1052 
1053         lform = new LambdaForm(lambdaType.parameterCount(), names, Kind.GUARD_WITH_CATCH);
1054 
1055         return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_GWC, lform);
1056     }
1057 
1058     static
1059     MethodHandle makeGuardWithCatch(MethodHandle target,
1060                                     Class<? extends Throwable> exType,
1061                                     MethodHandle catcher) {
1062         MethodType type = target.type();
1063         LambdaForm form = makeGuardWithCatchForm(type.basicType());
1064 
1065         // Prepare auxiliary method handles used during LambdaForm interpretation.
1066         // Box arguments and wrap them into Object[]: ValueConversions.array().
1067         MethodType varargsType = type.changeReturnType(Object[].class);
1068         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
1069         MethodHandle unboxResult = unboxResultHandle(type.returnType());
1070 
1071         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLLL();
1072         BoundMethodHandle mh;
1073         try {
1074             mh = (BoundMethodHandle) data.constructor().invokeBasic(type, form, (Object) target, (Object) exType,
1075                     (Object) catcher, (Object) collectArgs, (Object) unboxResult);
1076         } catch (Throwable ex) {
1077             throw uncaughtException(ex);
1078         }
1079         assert(mh.type() == type);
1080         return mh;
1081     }
1082 
1083     /**
1084      * Intrinsified during LambdaForm compilation
1085      * (see {@link InvokerBytecodeGenerator#emitGuardWithCatch emitGuardWithCatch}).
1086      */
1087     @LambdaForm.Hidden
1088     static Object guardWithCatch(MethodHandle target, Class<? extends Throwable> exType, MethodHandle catcher,
1089                                  Object... av) throws Throwable {
1090         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
1091         try {
1092             return target.asFixedArity().invokeWithArguments(av);
1093         } catch (Throwable t) {
1094             if (!exType.isInstance(t)) throw t;
1095             return catcher.asFixedArity().invokeWithArguments(prepend(av, t));
1096         }
1097     }
1098 
1099     /** Prepend elements to an array. */
1100     @LambdaForm.Hidden
1101     private static Object[] prepend(Object[] array, Object... elems) {
1102         int nArray = array.length;
1103         int nElems = elems.length;
1104         Object[] newArray = new Object[nArray + nElems];
1105         System.arraycopy(elems, 0, newArray, 0, nElems);
1106         System.arraycopy(array, 0, newArray, nElems, nArray);
1107         return newArray;
1108     }
1109 
1110     static
1111     MethodHandle throwException(MethodType type) {
1112         assert(Throwable.class.isAssignableFrom(type.parameterType(0)));
1113         int arity = type.parameterCount();
1114         if (arity > 1) {
1115             MethodHandle mh = throwException(type.dropParameterTypes(1, arity));
1116             mh = MethodHandles.dropArguments(mh, 1, Arrays.copyOfRange(type.parameterArray(), 1, arity));
1117             return mh;
1118         }
1119         return makePairwiseConvert(getFunction(NF_throwException).resolvedHandle(), type, false, true);
1120     }
1121 
1122     static <T extends Throwable> Empty throwException(T t) throws T { throw t; }
1123 
1124     static MethodHandle[] FAKE_METHOD_HANDLE_INVOKE = new MethodHandle[2];
1125     static MethodHandle fakeMethodHandleInvoke(MemberName method) {
1126         int idx;
1127         assert(method.isMethodHandleInvoke());
1128         switch (method.getName()) {
1129         case "invoke":       idx = 0; break;
1130         case "invokeExact":  idx = 1; break;
1131         default:             throw new InternalError(method.getName());
1132         }
1133         MethodHandle mh = FAKE_METHOD_HANDLE_INVOKE[idx];
1134         if (mh != null)  return mh;
1135         MethodType type = MethodType.methodType(Object.class, UnsupportedOperationException.class,
1136                                                 MethodHandle.class, Object[].class);
1137         mh = throwException(type);
1138         mh = mh.bindTo(new UnsupportedOperationException("cannot reflectively invoke MethodHandle"));
1139         if (!method.getInvocationType().equals(mh.type()))
1140             throw new InternalError(method.toString());
1141         mh = mh.withInternalMemberName(method, false);
1142         mh = mh.withVarargs(true);
1143         assert(method.isVarargs());
1144         FAKE_METHOD_HANDLE_INVOKE[idx] = mh;
1145         return mh;
1146     }
1147     static MethodHandle fakeVarHandleInvoke(MemberName method) {
1148         // TODO caching, is it necessary?
1149         MethodType type = MethodType.methodType(method.getReturnType(), UnsupportedOperationException.class,
1150                                                 VarHandle.class, Object[].class);
1151         MethodHandle mh = throwException(type);
1152         mh = mh.bindTo(new UnsupportedOperationException("cannot reflectively invoke VarHandle"));
1153         if (!method.getInvocationType().equals(mh.type()))
1154             throw new InternalError(method.toString());
1155         mh = mh.withInternalMemberName(method, false);
1156         mh = mh.asVarargsCollector(Object[].class);
1157         assert(method.isVarargs());
1158         return mh;
1159     }
1160 
1161     /**
1162      * Create an alias for the method handle which, when called,
1163      * appears to be called from the same class loader and protection domain
1164      * as hostClass.
1165      * This is an expensive no-op unless the method which is called
1166      * is sensitive to its caller.  A small number of system methods
1167      * are in this category, including Class.forName and Method.invoke.
1168      */
1169     static
1170     MethodHandle bindCaller(MethodHandle mh, Class<?> hostClass) {
1171         return BindCaller.bindCaller(mh, hostClass);
1172     }
1173 
1174     // Put the whole mess into its own nested class.
1175     // That way we can lazily load the code and set up the constants.
1176     private static class BindCaller {
1177         private static MethodType INVOKER_MT = MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1178 
1179         static
1180         MethodHandle bindCaller(MethodHandle mh, Class<?> hostClass) {
1181             // Code in the the boot layer should now be careful while creating method handles or
1182             // functional interface instances created from method references to @CallerSensitive  methods,
1183             // it needs to be ensured the handles or interface instances are kept safe and are not passed
1184             // from the boot layer to untrusted code.
1185             if (hostClass == null
1186                 ||    (hostClass.isArray() ||
1187                        hostClass.isPrimitive() ||
1188                        hostClass.getName().startsWith("java.lang.invoke."))) {
1189                 throw new InternalError();  // does not happen, and should not anyway
1190             }
1191             // For simplicity, convert mh to a varargs-like method.
1192             MethodHandle vamh = prepareForInvoker(mh);
1193             // Cache the result of makeInjectedInvoker once per argument class.
1194             MethodHandle bccInvoker = CV_makeInjectedInvoker.get(hostClass);
1195             return restoreToType(bccInvoker.bindTo(vamh), mh, hostClass);
1196         }
1197 
1198         private static MethodHandle makeInjectedInvoker(Class<?> hostClass) {
1199             try {
1200                 Class<?> invokerClass = UNSAFE.defineAnonymousClass(hostClass, INJECTED_INVOKER_TEMPLATE, null);
1201                 assert checkInjectedInvoker(hostClass, invokerClass);
1202                 return IMPL_LOOKUP.findStatic(invokerClass, "invoke_V", INVOKER_MT);
1203             } catch (ReflectiveOperationException ex) {
1204                 throw uncaughtException(ex);
1205             }
1206         }
1207 
1208         private static ClassValue<MethodHandle> CV_makeInjectedInvoker = new ClassValue<MethodHandle>() {
1209             @Override protected MethodHandle computeValue(Class<?> hostClass) {
1210                 return makeInjectedInvoker(hostClass);
1211             }
1212         };
1213 
1214         // Adapt mh so that it can be called directly from an injected invoker:
1215         private static MethodHandle prepareForInvoker(MethodHandle mh) {
1216             mh = mh.asFixedArity();
1217             MethodType mt = mh.type();
1218             int arity = mt.parameterCount();
1219             MethodHandle vamh = mh.asType(mt.generic());
1220             vamh.internalForm().compileToBytecode();  // eliminate LFI stack frames
1221             vamh = vamh.asSpreader(Object[].class, arity);
1222             vamh.internalForm().compileToBytecode();  // eliminate LFI stack frames
1223             return vamh;
1224         }
1225 
1226         // Undo the adapter effect of prepareForInvoker:
1227         private static MethodHandle restoreToType(MethodHandle vamh,
1228                                                   MethodHandle original,
1229                                                   Class<?> hostClass) {
1230             MethodType type = original.type();
1231             MethodHandle mh = vamh.asCollector(Object[].class, type.parameterCount());
1232             MemberName member = original.internalMemberName();
1233             mh = mh.asType(type);
1234             mh = new WrappedMember(mh, type, member, original.isInvokeSpecial(), hostClass);
1235             return mh;
1236         }
1237 
1238         private static boolean checkInjectedInvoker(Class<?> hostClass, Class<?> invokerClass) {
1239             assert (hostClass.getClassLoader() == invokerClass.getClassLoader()) : hostClass.getName()+" (CL)";
1240             try {
1241                 assert (hostClass.getProtectionDomain() == invokerClass.getProtectionDomain()) : hostClass.getName()+" (PD)";
1242             } catch (SecurityException ex) {
1243                 // Self-check was blocked by security manager. This is OK.
1244             }
1245             try {
1246                 // Test the invoker to ensure that it really injects into the right place.
1247                 MethodHandle invoker = IMPL_LOOKUP.findStatic(invokerClass, "invoke_V", INVOKER_MT);
1248                 MethodHandle vamh = prepareForInvoker(MH_checkCallerClass);
1249                 return (boolean)invoker.invoke(vamh, new Object[]{ invokerClass });
1250             } catch (Throwable ex) {
1251                 throw new InternalError(ex);
1252             }
1253         }
1254 
1255         private static final MethodHandle MH_checkCallerClass;
1256         static {
1257             final Class<?> THIS_CLASS = BindCaller.class;
1258             assert(checkCallerClass(THIS_CLASS));
1259             try {
1260                 MH_checkCallerClass = IMPL_LOOKUP
1261                     .findStatic(THIS_CLASS, "checkCallerClass",
1262                                 MethodType.methodType(boolean.class, Class.class));
1263                 assert((boolean) MH_checkCallerClass.invokeExact(THIS_CLASS));
1264             } catch (Throwable ex) {
1265                 throw new InternalError(ex);
1266             }
1267         }
1268 
1269         @CallerSensitive
1270         @ForceInline // to ensure Reflection.getCallerClass optimization
1271         private static boolean checkCallerClass(Class<?> expected) {
1272             // This method is called via MH_checkCallerClass and so it's correct to ask for the immediate caller here.
1273             Class<?> actual = Reflection.getCallerClass();
1274             if (actual != expected)
1275                 throw new InternalError("found " + actual.getName() + ", expected " + expected.getName());
1276             return true;
1277         }
1278 
1279         private static final byte[] INJECTED_INVOKER_TEMPLATE = generateInvokerTemplate();
1280 
1281         /** Produces byte code for a class that is used as an injected invoker. */
1282         private static byte[] generateInvokerTemplate() {
1283             ClassWriter cw = new ClassWriter(0);
1284 
1285             // private static class InjectedInvoker {
1286             //     @Hidden
1287             //     static Object invoke_V(MethodHandle vamh, Object[] args) throws Throwable {
1288             //        return vamh.invokeExact(args);
1289             //     }
1290             // }
1291             cw.visit(52, ACC_PRIVATE | ACC_SUPER, "InjectedInvoker", null, "java/lang/Object", null);
1292 
1293             MethodVisitor mv = cw.visitMethod(ACC_STATIC, "invoke_V",
1294                           "(Ljava/lang/invoke/MethodHandle;[Ljava/lang/Object;)Ljava/lang/Object;",
1295                           null, null);
1296 
1297             // Suppress invoker method in stack traces.
1298             AnnotationVisitor av0 = mv.visitAnnotation("Ljava/lang/invoke/LambdaForm$Hidden;", true);
1299             av0.visitEnd();
1300 
1301             mv.visitCode();
1302             mv.visitVarInsn(ALOAD, 0);
1303             mv.visitVarInsn(ALOAD, 1);
1304             mv.visitMethodInsn(INVOKEVIRTUAL, "java/lang/invoke/MethodHandle", "invokeExact",
1305                                "([Ljava/lang/Object;)Ljava/lang/Object;", false);
1306             mv.visitInsn(ARETURN);
1307             mv.visitMaxs(2, 2);
1308             mv.visitEnd();
1309 
1310             cw.visitEnd();
1311             return cw.toByteArray();
1312         }
1313     }
1314 
1315     /** This subclass allows a wrapped method handle to be re-associated with an arbitrary member name. */
1316     private static final class WrappedMember extends DelegatingMethodHandle {
1317         private final MethodHandle target;
1318         private final MemberName member;
1319         private final Class<?> callerClass;
1320         private final boolean isInvokeSpecial;
1321 
1322         private WrappedMember(MethodHandle target, MethodType type,
1323                               MemberName member, boolean isInvokeSpecial,
1324                               Class<?> callerClass) {
1325             super(type, target);
1326             this.target = target;
1327             this.member = member;
1328             this.callerClass = callerClass;
1329             this.isInvokeSpecial = isInvokeSpecial;
1330         }
1331 
1332         @Override
1333         MemberName internalMemberName() {
1334             return member;
1335         }
1336         @Override
1337         Class<?> internalCallerClass() {
1338             return callerClass;
1339         }
1340         @Override
1341         boolean isInvokeSpecial() {
1342             return isInvokeSpecial;
1343         }
1344         @Override
1345         protected MethodHandle getTarget() {
1346             return target;
1347         }
1348         @Override
1349         public MethodHandle asTypeUncached(MethodType newType) {
1350             // This MH is an alias for target, except for the MemberName
1351             // Drop the MemberName if there is any conversion.
1352             return asTypeCache = target.asType(newType);
1353         }
1354     }
1355 
1356     static MethodHandle makeWrappedMember(MethodHandle target, MemberName member, boolean isInvokeSpecial) {
1357         if (member.equals(target.internalMemberName()) && isInvokeSpecial == target.isInvokeSpecial())
1358             return target;
1359         return new WrappedMember(target, target.type(), member, isInvokeSpecial, null);
1360     }
1361 
1362     /** Intrinsic IDs */
1363     /*non-public*/
1364     enum Intrinsic {
1365         SELECT_ALTERNATIVE,
1366         GUARD_WITH_CATCH,
1367         TRY_FINALLY,
1368         LOOP,
1369         NEW_ARRAY,
1370         ARRAY_LOAD,
1371         ARRAY_STORE,
1372         ARRAY_LENGTH,
1373         IDENTITY,
1374         ZERO,
1375         NONE // no intrinsic associated
1376     }
1377 
1378     /** Mark arbitrary method handle as intrinsic.
1379      * InvokerBytecodeGenerator uses this info to produce more efficient bytecode shape. */
1380     static final class IntrinsicMethodHandle extends DelegatingMethodHandle {
1381         private final MethodHandle target;
1382         private final Intrinsic intrinsicName;
1383 
1384         IntrinsicMethodHandle(MethodHandle target, Intrinsic intrinsicName) {
1385             super(target.type(), target);
1386             this.target = target;
1387             this.intrinsicName = intrinsicName;
1388         }
1389 
1390         @Override
1391         protected MethodHandle getTarget() {
1392             return target;
1393         }
1394 
1395         @Override
1396         Intrinsic intrinsicName() {
1397             return intrinsicName;
1398         }
1399 
1400         @Override
1401         public MethodHandle asTypeUncached(MethodType newType) {
1402             // This MH is an alias for target, except for the intrinsic name
1403             // Drop the name if there is any conversion.
1404             return asTypeCache = target.asType(newType);
1405         }
1406 
1407         @Override
1408         String internalProperties() {
1409             return super.internalProperties() +
1410                     "\n& Intrinsic="+intrinsicName;
1411         }
1412 
1413         @Override
1414         public MethodHandle asCollector(Class<?> arrayType, int arrayLength) {
1415             if (intrinsicName == Intrinsic.IDENTITY) {
1416                 MethodType resultType = type().asCollectorType(arrayType, type().parameterCount() - 1, arrayLength);
1417                 MethodHandle newArray = MethodHandleImpl.varargsArray(arrayType, arrayLength);
1418                 return newArray.asType(resultType);
1419             }
1420             return super.asCollector(arrayType, arrayLength);
1421         }
1422     }
1423 
1424     static MethodHandle makeIntrinsic(MethodHandle target, Intrinsic intrinsicName) {
1425         if (intrinsicName == target.intrinsicName())
1426             return target;
1427         return new IntrinsicMethodHandle(target, intrinsicName);
1428     }
1429 
1430     static MethodHandle makeIntrinsic(MethodType type, LambdaForm form, Intrinsic intrinsicName) {
1431         return new IntrinsicMethodHandle(SimpleMethodHandle.make(type, form), intrinsicName);
1432     }
1433 
1434     /// Collection of multiple arguments.
1435 
1436     private static MethodHandle findCollector(String name, int nargs, Class<?> rtype, Class<?>... ptypes) {
1437         MethodType type = MethodType.genericMethodType(nargs)
1438                 .changeReturnType(rtype)
1439                 .insertParameterTypes(0, ptypes);
1440         try {
1441             return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, name, type);
1442         } catch (ReflectiveOperationException ex) {
1443             return null;
1444         }
1445     }
1446 
1447     private static final Object[] NO_ARGS_ARRAY = {};
1448     private static Object[] makeArray(Object... args) { return args; }
1449     private static Object[] array() { return NO_ARGS_ARRAY; }
1450     private static Object[] array(Object a0)
1451                 { return makeArray(a0); }
1452     private static Object[] array(Object a0, Object a1)
1453                 { return makeArray(a0, a1); }
1454     private static Object[] array(Object a0, Object a1, Object a2)
1455                 { return makeArray(a0, a1, a2); }
1456     private static Object[] array(Object a0, Object a1, Object a2, Object a3)
1457                 { return makeArray(a0, a1, a2, a3); }
1458     private static Object[] array(Object a0, Object a1, Object a2, Object a3,
1459                                   Object a4)
1460                 { return makeArray(a0, a1, a2, a3, a4); }
1461     private static Object[] array(Object a0, Object a1, Object a2, Object a3,
1462                                   Object a4, Object a5)
1463                 { return makeArray(a0, a1, a2, a3, a4, a5); }
1464     private static Object[] array(Object a0, Object a1, Object a2, Object a3,
1465                                   Object a4, Object a5, Object a6)
1466                 { return makeArray(a0, a1, a2, a3, a4, a5, a6); }
1467     private static Object[] array(Object a0, Object a1, Object a2, Object a3,
1468                                   Object a4, Object a5, Object a6, Object a7)
1469                 { return makeArray(a0, a1, a2, a3, a4, a5, a6, a7); }
1470     private static Object[] array(Object a0, Object a1, Object a2, Object a3,
1471                                   Object a4, Object a5, Object a6, Object a7,
1472                                   Object a8)
1473                 { return makeArray(a0, a1, a2, a3, a4, a5, a6, a7, a8); }
1474     private static Object[] array(Object a0, Object a1, Object a2, Object a3,
1475                                   Object a4, Object a5, Object a6, Object a7,
1476                                   Object a8, Object a9)
1477                 { return makeArray(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9); }
1478 
1479     private static final int ARRAYS_COUNT = 11;
1480     private static final @Stable MethodHandle[] ARRAYS = new MethodHandle[MAX_ARITY + 1];
1481 
1482     // filling versions of the above:
1483     // using Integer len instead of int len and no varargs to avoid bootstrapping problems
1484     private static Object[] fillNewArray(Integer len, Object[] /*not ...*/ args) {
1485         Object[] a = new Object[len];
1486         fillWithArguments(a, 0, args);
1487         return a;
1488     }
1489     private static Object[] fillNewTypedArray(Object[] example, Integer len, Object[] /*not ...*/ args) {
1490         Object[] a = Arrays.copyOf(example, len);
1491         assert(a.getClass() != Object[].class);
1492         fillWithArguments(a, 0, args);
1493         return a;
1494     }
1495     private static void fillWithArguments(Object[] a, int pos, Object... args) {
1496         System.arraycopy(args, 0, a, pos, args.length);
1497     }
1498     // using Integer pos instead of int pos to avoid bootstrapping problems
1499     private static Object[] fillArray(Integer pos, Object[] a, Object a0)
1500                 { fillWithArguments(a, pos, a0); return a; }
1501     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1)
1502                 { fillWithArguments(a, pos, a0, a1); return a; }
1503     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2)
1504                 { fillWithArguments(a, pos, a0, a1, a2); return a; }
1505     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3)
1506                 { fillWithArguments(a, pos, a0, a1, a2, a3); return a; }
1507     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3,
1508                                   Object a4)
1509                 { fillWithArguments(a, pos, a0, a1, a2, a3, a4); return a; }
1510     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3,
1511                                   Object a4, Object a5)
1512                 { fillWithArguments(a, pos, a0, a1, a2, a3, a4, a5); return a; }
1513     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3,
1514                                   Object a4, Object a5, Object a6)
1515                 { fillWithArguments(a, pos, a0, a1, a2, a3, a4, a5, a6); return a; }
1516     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3,
1517                                   Object a4, Object a5, Object a6, Object a7)
1518                 { fillWithArguments(a, pos, a0, a1, a2, a3, a4, a5, a6, a7); return a; }
1519     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3,
1520                                   Object a4, Object a5, Object a6, Object a7,
1521                                   Object a8)
1522                 { fillWithArguments(a, pos, a0, a1, a2, a3, a4, a5, a6, a7, a8); return a; }
1523     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3,
1524                                   Object a4, Object a5, Object a6, Object a7,
1525                                   Object a8, Object a9)
1526                 { fillWithArguments(a, pos, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9); return a; }
1527 
1528     private static final int FILL_ARRAYS_COUNT = 11; // current number of fillArray methods
1529     private static final @Stable MethodHandle[] FILL_ARRAYS = new MethodHandle[FILL_ARRAYS_COUNT];
1530 
1531     private static MethodHandle getFillArray(int count) {
1532         assert (count > 0 && count < FILL_ARRAYS_COUNT);
1533         MethodHandle mh = FILL_ARRAYS[count];
1534         if (mh != null) {
1535             return mh;
1536         }
1537         mh = findCollector("fillArray", count, Object[].class, Integer.class, Object[].class);
1538         FILL_ARRAYS[count] = mh;
1539         return mh;
1540     }
1541 
1542     private static Object copyAsPrimitiveArray(Wrapper w, Object... boxes) {
1543         Object a = w.makeArray(boxes.length);
1544         w.copyArrayUnboxing(boxes, 0, a, 0, boxes.length);
1545         return a;
1546     }
1547 
1548     /** Return a method handle that takes the indicated number of Object
1549      *  arguments and returns an Object array of them, as if for varargs.
1550      */
1551     static MethodHandle varargsArray(int nargs) {
1552         MethodHandle mh = ARRAYS[nargs];
1553         if (mh != null) {
1554             return mh;
1555         }
1556         if (nargs < ARRAYS_COUNT) {
1557             mh = findCollector("array", nargs, Object[].class);
1558         } else {
1559             mh = buildVarargsArray(getConstantHandle(MH_fillNewArray),
1560                     getConstantHandle(MH_arrayIdentity), nargs);
1561         }
1562         assert(assertCorrectArity(mh, nargs));
1563         mh = makeIntrinsic(mh, Intrinsic.NEW_ARRAY);
1564         return ARRAYS[nargs] = mh;
1565     }
1566 
1567     private static boolean assertCorrectArity(MethodHandle mh, int arity) {
1568         assert(mh.type().parameterCount() == arity) : "arity != "+arity+": "+mh;
1569         return true;
1570     }
1571 
1572     // Array identity function (used as getConstantHandle(MH_arrayIdentity)).
1573     static <T> T[] identity(T[] x) {
1574         return x;
1575     }
1576 
1577     private static MethodHandle buildVarargsArray(MethodHandle newArray, MethodHandle finisher, int nargs) {
1578         // Build up the result mh as a sequence of fills like this:
1579         //   finisher(fill(fill(newArrayWA(23,x1..x10),10,x11..x20),20,x21..x23))
1580         // The various fill(_,10*I,___*[J]) are reusable.
1581         int leftLen = Math.min(nargs, LEFT_ARGS);  // absorb some arguments immediately
1582         int rightLen = nargs - leftLen;
1583         MethodHandle leftCollector = newArray.bindTo(nargs);
1584         leftCollector = leftCollector.asCollector(Object[].class, leftLen);
1585         MethodHandle mh = finisher;
1586         if (rightLen > 0) {
1587             MethodHandle rightFiller = fillToRight(LEFT_ARGS + rightLen);
1588             if (mh.equals(getConstantHandle(MH_arrayIdentity)))
1589                 mh = rightFiller;
1590             else
1591                 mh = MethodHandles.collectArguments(mh, 0, rightFiller);
1592         }
1593         if (mh.equals(getConstantHandle(MH_arrayIdentity)))
1594             mh = leftCollector;
1595         else
1596             mh = MethodHandles.collectArguments(mh, 0, leftCollector);
1597         return mh;
1598     }
1599 
1600     private static final int LEFT_ARGS = FILL_ARRAYS_COUNT - 1;
1601     private static final @Stable MethodHandle[] FILL_ARRAY_TO_RIGHT = new MethodHandle[MAX_ARITY + 1];
1602     /** fill_array_to_right(N).invoke(a, argL..arg[N-1])
1603      *  fills a[L]..a[N-1] with corresponding arguments,
1604      *  and then returns a.  The value L is a global constant (LEFT_ARGS).
1605      */
1606     private static MethodHandle fillToRight(int nargs) {
1607         MethodHandle filler = FILL_ARRAY_TO_RIGHT[nargs];
1608         if (filler != null)  return filler;
1609         filler = buildFiller(nargs);
1610         assert(assertCorrectArity(filler, nargs - LEFT_ARGS + 1));
1611         return FILL_ARRAY_TO_RIGHT[nargs] = filler;
1612     }
1613     private static MethodHandle buildFiller(int nargs) {
1614         if (nargs <= LEFT_ARGS)
1615             return getConstantHandle(MH_arrayIdentity);  // no args to fill; return the array unchanged
1616         // we need room for both mh and a in mh.invoke(a, arg*[nargs])
1617         final int CHUNK = LEFT_ARGS;
1618         int rightLen = nargs % CHUNK;
1619         int midLen = nargs - rightLen;
1620         if (rightLen == 0) {
1621             midLen = nargs - (rightLen = CHUNK);
1622             if (FILL_ARRAY_TO_RIGHT[midLen] == null) {
1623                 // build some precursors from left to right
1624                 for (int j = LEFT_ARGS % CHUNK; j < midLen; j += CHUNK)
1625                     if (j > LEFT_ARGS)  fillToRight(j);
1626             }
1627         }
1628         if (midLen < LEFT_ARGS) rightLen = nargs - (midLen = LEFT_ARGS);
1629         assert(rightLen > 0);
1630         MethodHandle midFill = fillToRight(midLen);  // recursive fill
1631         MethodHandle rightFill = getFillArray(rightLen).bindTo(midLen);  // [midLen..nargs-1]
1632         assert(midFill.type().parameterCount()   == 1 + midLen - LEFT_ARGS);
1633         assert(rightFill.type().parameterCount() == 1 + rightLen);
1634 
1635         // Combine the two fills:
1636         //   right(mid(a, x10..x19), x20..x23)
1637         // The final product will look like this:
1638         //   right(mid(newArrayLeft(24, x0..x9), x10..x19), x20..x23)
1639         if (midLen == LEFT_ARGS)
1640             return rightFill;
1641         else
1642             return MethodHandles.collectArguments(rightFill, 0, midFill);
1643     }
1644 
1645     static final int MAX_JVM_ARITY = 255;  // limit imposed by the JVM
1646 
1647     /** Return a method handle that takes the indicated number of
1648      *  typed arguments and returns an array of them.
1649      *  The type argument is the array type.
1650      */
1651     static MethodHandle varargsArray(Class<?> arrayType, int nargs) {
1652         Class<?> elemType = arrayType.getComponentType();
1653         if (elemType == null)  throw new IllegalArgumentException("not an array: "+arrayType);
1654         // FIXME: Need more special casing and caching here.
1655         if (nargs >= MAX_JVM_ARITY/2 - 1) {
1656             int slots = nargs;
1657             final int MAX_ARRAY_SLOTS = MAX_JVM_ARITY - 1;  // 1 for receiver MH
1658             if (slots <= MAX_ARRAY_SLOTS && elemType.isPrimitive())
1659                 slots *= Wrapper.forPrimitiveType(elemType).stackSlots();
1660             if (slots > MAX_ARRAY_SLOTS)
1661                 throw new IllegalArgumentException("too many arguments: "+arrayType.getSimpleName()+", length "+nargs);
1662         }
1663         if (elemType == Object.class)
1664             return varargsArray(nargs);
1665         // other cases:  primitive arrays, subtypes of Object[]
1666         MethodHandle cache[] = Makers.TYPED_COLLECTORS.get(elemType);
1667         MethodHandle mh = nargs < cache.length ? cache[nargs] : null;
1668         if (mh != null)  return mh;
1669         if (nargs == 0) {
1670             Object example = java.lang.reflect.Array.newInstance(arrayType.getComponentType(), 0);
1671             mh = MethodHandles.constant(arrayType, example);
1672         } else if (elemType.isPrimitive()) {
1673             MethodHandle builder = getConstantHandle(MH_fillNewArray);
1674             MethodHandle producer = buildArrayProducer(arrayType);
1675             mh = buildVarargsArray(builder, producer, nargs);
1676         } else {
1677             Class<? extends Object[]> objArrayType = arrayType.asSubclass(Object[].class);
1678             Object[] example = Arrays.copyOf(NO_ARGS_ARRAY, 0, objArrayType);
1679             MethodHandle builder = getConstantHandle(MH_fillNewTypedArray).bindTo(example);
1680             MethodHandle producer = getConstantHandle(MH_arrayIdentity); // must be weakly typed
1681             mh = buildVarargsArray(builder, producer, nargs);
1682         }
1683         mh = mh.asType(MethodType.methodType(arrayType, Collections.<Class<?>>nCopies(nargs, elemType)));
1684         mh = makeIntrinsic(mh, Intrinsic.NEW_ARRAY);
1685         assert(assertCorrectArity(mh, nargs));
1686         if (nargs < cache.length)
1687             cache[nargs] = mh;
1688         return mh;
1689     }
1690 
1691     private static MethodHandle buildArrayProducer(Class<?> arrayType) {
1692         Class<?> elemType = arrayType.getComponentType();
1693         assert(elemType.isPrimitive());
1694         return getConstantHandle(MH_copyAsPrimitiveArray).bindTo(Wrapper.forPrimitiveType(elemType));
1695     }
1696 
1697     /*non-public*/ static void assertSame(Object mh1, Object mh2) {
1698         if (mh1 != mh2) {
1699             String msg = String.format("mh1 != mh2: mh1 = %s (form: %s); mh2 = %s (form: %s)",
1700                     mh1, ((MethodHandle)mh1).form,
1701                     mh2, ((MethodHandle)mh2).form);
1702             throw newInternalError(msg);
1703         }
1704     }
1705 
1706     // Local constant functions:
1707 
1708     /* non-public */
1709     static final byte NF_checkSpreadArgument = 0,
1710             NF_guardWithCatch = 1,
1711             NF_throwException = 2,
1712             NF_tryFinally = 3,
1713             NF_loop = 4,
1714             NF_profileBoolean = 5,
1715             NF_LIMIT = 6;
1716 
1717     private static final @Stable NamedFunction[] NFS = new NamedFunction[NF_LIMIT];
1718 
1719     static NamedFunction getFunction(byte func) {
1720         NamedFunction nf = NFS[func];
1721         if (nf != null) {
1722             return nf;
1723         }
1724         return NFS[func] = createFunction(func);
1725     }
1726 
1727     private static NamedFunction createFunction(byte func) {
1728         try {
1729             switch (func) {
1730                 case NF_checkSpreadArgument:
1731                     return new NamedFunction(MethodHandleImpl.class
1732                             .getDeclaredMethod("checkSpreadArgument", Object.class, int.class));
1733                 case NF_guardWithCatch:
1734                     return new NamedFunction(MethodHandleImpl.class
1735                             .getDeclaredMethod("guardWithCatch", MethodHandle.class, Class.class,
1736                                     MethodHandle.class, Object[].class));
1737                 case NF_tryFinally:
1738                     return new NamedFunction(MethodHandleImpl.class
1739                             .getDeclaredMethod("tryFinally", MethodHandle.class, MethodHandle.class, Object[].class));
1740                 case NF_loop:
1741                     return new NamedFunction(MethodHandleImpl.class
1742                             .getDeclaredMethod("loop", BasicType[].class, LoopClauses.class, Object[].class));
1743                 case NF_throwException:
1744                     return new NamedFunction(MethodHandleImpl.class
1745                             .getDeclaredMethod("throwException", Throwable.class));
1746                 case NF_profileBoolean:
1747                     return new NamedFunction(MethodHandleImpl.class
1748                             .getDeclaredMethod("profileBoolean", boolean.class, int[].class));
1749                 default:
1750                     throw new InternalError("Undefined function: " + func);
1751             }
1752         } catch (ReflectiveOperationException ex) {
1753             throw newInternalError(ex);
1754         }
1755     }
1756 
1757     static {
1758         SharedSecrets.setJavaLangInvokeAccess(new JavaLangInvokeAccess() {
1759             @Override
1760             public Object newMemberName() {
1761                 return new MemberName();
1762             }
1763 
1764             @Override
1765             public String getName(Object mname) {
1766                 MemberName memberName = (MemberName)mname;
1767                 return memberName.getName();
1768             }
1769 
1770             @Override
1771             public boolean isNative(Object mname) {
1772                 MemberName memberName = (MemberName)mname;
1773                 return memberName.isNative();
1774             }
1775 
1776             @Override
1777             public byte[] generateDirectMethodHandleHolderClassBytes(
1778                     String className, MethodType[] methodTypes, int[] types) {
1779                 return GenerateJLIClassesHelper
1780                         .generateDirectMethodHandleHolderClassBytes(
1781                                 className, methodTypes, types);
1782             }
1783 
1784             @Override
1785             public byte[] generateDelegatingMethodHandleHolderClassBytes(
1786                     String className, MethodType[] methodTypes) {
1787                 return GenerateJLIClassesHelper
1788                         .generateDelegatingMethodHandleHolderClassBytes(
1789                                 className, methodTypes);
1790             }
1791 
1792             @Override
1793             public Map.Entry<String, byte[]> generateConcreteBMHClassBytes(
1794                     final String types) {
1795                 return GenerateJLIClassesHelper
1796                         .generateConcreteBMHClassBytes(types);
1797             }
1798 
1799             @Override
1800             public byte[] generateBasicFormsClassBytes(final String className) {
1801                 return GenerateJLIClassesHelper
1802                         .generateBasicFormsClassBytes(className);
1803             }
1804 
1805             @Override
1806             public byte[] generateInvokersHolderClassBytes(final String className,
1807                     MethodType[] methodTypes) {
1808                 return GenerateJLIClassesHelper
1809                         .generateInvokersHolderClassBytes(className, methodTypes);
1810             }
1811         });
1812     }
1813 
1814     /** Result unboxing: ValueConversions.unbox() OR ValueConversions.identity() OR ValueConversions.ignore(). */
1815     private static MethodHandle unboxResultHandle(Class<?> returnType) {
1816         if (returnType.isPrimitive()) {
1817             if (returnType == void.class) {
1818                 return ValueConversions.ignore();
1819             } else {
1820                 Wrapper w = Wrapper.forPrimitiveType(returnType);
1821                 return ValueConversions.unboxExact(w);
1822             }
1823         } else {
1824             return MethodHandles.identity(Object.class);
1825         }
1826     }
1827 
1828     /**
1829      * Assembles a loop method handle from the given handles and type information.
1830      *
1831      * @param tloop the return type of the loop.
1832      * @param targs types of the arguments to be passed to the loop.
1833      * @param init sanitized array of initializers for loop-local variables.
1834      * @param step sanitited array of loop bodies.
1835      * @param pred sanitized array of predicates.
1836      * @param fini sanitized array of loop finalizers.
1837      *
1838      * @return a handle that, when invoked, will execute the loop.
1839      */
1840     static MethodHandle makeLoop(Class<?> tloop, List<Class<?>> targs, List<MethodHandle> init, List<MethodHandle> step,
1841                                  List<MethodHandle> pred, List<MethodHandle> fini) {
1842         MethodType type = MethodType.methodType(tloop, targs);
1843         BasicType[] initClauseTypes =
1844                 init.stream().map(h -> h.type().returnType()).map(BasicType::basicType).toArray(BasicType[]::new);
1845         LambdaForm form = makeLoopForm(type.basicType(), initClauseTypes);
1846 
1847         // Prepare auxiliary method handles used during LambdaForm interpretation.
1848         // Box arguments and wrap them into Object[]: ValueConversions.array().
1849         MethodType varargsType = type.changeReturnType(Object[].class);
1850         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
1851         MethodHandle unboxResult = unboxResultHandle(tloop);
1852 
1853         LoopClauses clauseData =
1854                 new LoopClauses(new MethodHandle[][]{toArray(init), toArray(step), toArray(pred), toArray(fini)});
1855         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLL();
1856         BoundMethodHandle mh;
1857         try {
1858             mh = (BoundMethodHandle) data.constructor().invokeBasic(type, form, (Object) clauseData,
1859                     (Object) collectArgs, (Object) unboxResult);
1860         } catch (Throwable ex) {
1861             throw uncaughtException(ex);
1862         }
1863         assert(mh.type() == type);
1864         return mh;
1865     }
1866 
1867     private static MethodHandle[] toArray(List<MethodHandle> l) {
1868         return l.toArray(new MethodHandle[0]);
1869     }
1870 
1871     /**
1872      * Loops introduce some complexity as they can have additional local state. Hence, LambdaForms for loops are
1873      * generated from a template. The LambdaForm template shape for the loop combinator is as follows (assuming one
1874      * reference parameter passed in {@code a1}, and a reference return type, with the return value represented by
1875      * {@code t12}):
1876      * <blockquote><pre>{@code
1877      *  loop=Lambda(a0:L,a1:L)=>{
1878      *    t2:L=BoundMethodHandle$Species_L3.argL0(a0:L);    // LoopClauses holding init, step, pred, fini handles
1879      *    t3:L=BoundMethodHandle$Species_L3.argL1(a0:L);    // helper handle to box the arguments into an Object[]
1880      *    t4:L=BoundMethodHandle$Species_L3.argL2(a0:L);    // helper handle to unbox the result
1881      *    t5:L=MethodHandle.invokeBasic(t3:L,a1:L);         // box the arguments into an Object[]
1882      *    t6:L=MethodHandleImpl.loop(null,t2:L,t3:L);       // call the loop executor
1883      *    t7:L=MethodHandle.invokeBasic(t4:L,t6:L);t7:L}    // unbox the result; return the result
1884      * }</pre></blockquote>
1885      * <p>
1886      * {@code argL0} is a LoopClauses instance holding, in a 2-dimensional array, the init, step, pred, and fini method
1887      * handles. {@code argL1} and {@code argL2} are auxiliary method handles: {@code argL1} boxes arguments and wraps
1888      * them into {@code Object[]} ({@code ValueConversions.array()}), and {@code argL2} unboxes the result if necessary
1889      * ({@code ValueConversions.unbox()}).
1890      * <p>
1891      * Having {@code t3} and {@code t4} passed in via a BMH and not hardcoded in the lambda form allows to share lambda
1892      * forms among loop combinators with the same basic type.
1893      * <p>
1894      * The above template is instantiated by using the {@link LambdaFormEditor} to replace the {@code null} argument to
1895      * the {@code loop} invocation with the {@code BasicType} array describing the loop clause types. This argument is
1896      * ignored in the loop invoker, but will be extracted and used in {@linkplain InvokerBytecodeGenerator#emitLoop(int)
1897      * bytecode generation}.
1898      */
1899     private static LambdaForm makeLoopForm(MethodType basicType, BasicType[] localVarTypes) {
1900         MethodType lambdaType = basicType.invokerType();
1901 
1902         final int THIS_MH = 0;  // the BMH_LLL
1903         final int ARG_BASE = 1; // start of incoming arguments
1904         final int ARG_LIMIT = ARG_BASE + basicType.parameterCount();
1905 
1906         int nameCursor = ARG_LIMIT;
1907         final int GET_CLAUSE_DATA = nameCursor++;
1908         final int GET_COLLECT_ARGS = nameCursor++;
1909         final int GET_UNBOX_RESULT = nameCursor++;
1910         final int BOXED_ARGS = nameCursor++;
1911         final int LOOP = nameCursor++;
1912         final int UNBOX_RESULT = nameCursor++;
1913 
1914         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_LOOP);
1915         if (lform == null) {
1916             Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType);
1917 
1918             BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLL();
1919             names[THIS_MH] = names[THIS_MH].withConstraint(data);
1920             names[GET_CLAUSE_DATA] = new Name(data.getterFunction(0), names[THIS_MH]);
1921             names[GET_COLLECT_ARGS] = new Name(data.getterFunction(1), names[THIS_MH]);
1922             names[GET_UNBOX_RESULT] = new Name(data.getterFunction(2), names[THIS_MH]);
1923 
1924             // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...);
1925             MethodType collectArgsType = basicType.changeReturnType(Object.class);
1926             MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
1927             Object[] args = new Object[invokeBasic.type().parameterCount()];
1928             args[0] = names[GET_COLLECT_ARGS];
1929             System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT - ARG_BASE);
1930             names[BOXED_ARGS] = new Name(makeIntrinsic(invokeBasic, Intrinsic.LOOP), args);
1931 
1932             // t_{i+1}:L=MethodHandleImpl.loop(localTypes:L,clauses:L,t_{i}:L);
1933             Object[] lArgs =
1934                     new Object[]{null, // placeholder for BasicType[] localTypes - will be added by LambdaFormEditor
1935                             names[GET_CLAUSE_DATA], names[BOXED_ARGS]};
1936             names[LOOP] = new Name(getFunction(NF_loop), lArgs);
1937 
1938             // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L);
1939             MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
1940             Object[] unboxArgs = new Object[]{names[GET_UNBOX_RESULT], names[LOOP]};
1941             names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs);
1942 
1943             lform = basicType.form().setCachedLambdaForm(MethodTypeForm.LF_LOOP,
1944                     new LambdaForm(lambdaType.parameterCount(), names, Kind.LOOP));
1945         }
1946 
1947         // BOXED_ARGS is the index into the names array where the loop idiom starts
1948         return lform.editor().noteLoopLocalTypesForm(BOXED_ARGS, localVarTypes);
1949     }
1950 
1951     static class LoopClauses {
1952         @Stable final MethodHandle[][] clauses;
1953         LoopClauses(MethodHandle[][] clauses) {
1954             assert clauses.length == 4;
1955             this.clauses = clauses;
1956         }
1957         @Override
1958         public String toString() {
1959             StringBuffer sb = new StringBuffer("LoopClauses -- ");
1960             for (int i = 0; i < 4; ++i) {
1961                 if (i > 0) {
1962                     sb.append("       ");
1963                 }
1964                 sb.append('<').append(i).append(">: ");
1965                 MethodHandle[] hs = clauses[i];
1966                 for (int j = 0; j < hs.length; ++j) {
1967                     if (j > 0) {
1968                         sb.append("          ");
1969                     }
1970                     sb.append('*').append(j).append(": ").append(hs[j]).append('\n');
1971                 }
1972             }
1973             sb.append(" --\n");
1974             return sb.toString();
1975         }
1976     }
1977 
1978     /**
1979      * Intrinsified during LambdaForm compilation
1980      * (see {@link InvokerBytecodeGenerator#emitLoop(int)}).
1981      */
1982     @LambdaForm.Hidden
1983     static Object loop(BasicType[] localTypes, LoopClauses clauseData, Object... av) throws Throwable {
1984         final MethodHandle[] init = clauseData.clauses[0];
1985         final MethodHandle[] step = clauseData.clauses[1];
1986         final MethodHandle[] pred = clauseData.clauses[2];
1987         final MethodHandle[] fini = clauseData.clauses[3];
1988         int varSize = (int) Stream.of(init).filter(h -> h.type().returnType() != void.class).count();
1989         int nArgs = init[0].type().parameterCount();
1990         Object[] varsAndArgs = new Object[varSize + nArgs];
1991         for (int i = 0, v = 0; i < init.length; ++i) {
1992             MethodHandle ih = init[i];
1993             if (ih.type().returnType() == void.class) {
1994                 ih.invokeWithArguments(av);
1995             } else {
1996                 varsAndArgs[v++] = ih.invokeWithArguments(av);
1997             }
1998         }
1999         System.arraycopy(av, 0, varsAndArgs, varSize, nArgs);
2000         final int nSteps = step.length;
2001         for (; ; ) {
2002             for (int i = 0, v = 0; i < nSteps; ++i) {
2003                 MethodHandle p = pred[i];
2004                 MethodHandle s = step[i];
2005                 MethodHandle f = fini[i];
2006                 if (s.type().returnType() == void.class) {
2007                     s.invokeWithArguments(varsAndArgs);
2008                 } else {
2009                     varsAndArgs[v++] = s.invokeWithArguments(varsAndArgs);
2010                 }
2011                 if (!(boolean) p.invokeWithArguments(varsAndArgs)) {
2012                     return f.invokeWithArguments(varsAndArgs);
2013                 }
2014             }
2015         }
2016     }
2017 
2018     /**
2019      * This method is bound as the predicate in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle,
2020      * MethodHandle) counting loops}.
2021      *
2022      * @param limit the upper bound of the parameter, statically bound at loop creation time.
2023      * @param counter the counter parameter, passed in during loop execution.
2024      *
2025      * @return whether the counter has reached the limit.
2026      */
2027     static boolean countedLoopPredicate(int limit, int counter) {
2028         return counter < limit;
2029     }
2030 
2031     /**
2032      * This method is bound as the step function in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle,
2033      * MethodHandle) counting loops} to increment the counter.
2034      *
2035      * @param limit the upper bound of the loop counter (ignored).
2036      * @param counter the loop counter.
2037      *
2038      * @return the loop counter incremented by 1.
2039      */
2040     static int countedLoopStep(int limit, int counter) {
2041         return counter + 1;
2042     }
2043 
2044     /**
2045      * This is bound to initialize the loop-local iterator in {@linkplain MethodHandles#iteratedLoop iterating loops}.
2046      *
2047      * @param it the {@link Iterable} over which the loop iterates.
2048      *
2049      * @return an {@link Iterator} over the argument's elements.
2050      */
2051     static Iterator<?> initIterator(Iterable<?> it) {
2052         return it.iterator();
2053     }
2054 
2055     /**
2056      * This method is bound as the predicate in {@linkplain MethodHandles#iteratedLoop iterating loops}.
2057      *
2058      * @param it the iterator to be checked.
2059      *
2060      * @return {@code true} iff there are more elements to iterate over.
2061      */
2062     static boolean iteratePredicate(Iterator<?> it) {
2063         return it.hasNext();
2064     }
2065 
2066     /**
2067      * This method is bound as the step for retrieving the current value from the iterator in {@linkplain
2068      * MethodHandles#iteratedLoop iterating loops}.
2069      *
2070      * @param it the iterator.
2071      *
2072      * @return the next element from the iterator.
2073      */
2074     static Object iterateNext(Iterator<?> it) {
2075         return it.next();
2076     }
2077 
2078     /**
2079      * Makes a {@code try-finally} handle that conforms to the type constraints.
2080      *
2081      * @param target the target to execute in a {@code try-finally} block.
2082      * @param cleanup the cleanup to execute in the {@code finally} block.
2083      * @param rtype the result type of the entire construct.
2084      * @param argTypes the types of the arguments.
2085      *
2086      * @return a handle on the constructed {@code try-finally} block.
2087      */
2088     static MethodHandle makeTryFinally(MethodHandle target, MethodHandle cleanup, Class<?> rtype, List<Class<?>> argTypes) {
2089         MethodType type = MethodType.methodType(rtype, argTypes);
2090         LambdaForm form = makeTryFinallyForm(type.basicType());
2091 
2092         // Prepare auxiliary method handles used during LambdaForm interpretation.
2093         // Box arguments and wrap them into Object[]: ValueConversions.array().
2094         MethodType varargsType = type.changeReturnType(Object[].class);
2095         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
2096         MethodHandle unboxResult = unboxResultHandle(rtype);
2097 
2098         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLL();
2099         BoundMethodHandle mh;
2100         try {
2101             mh = (BoundMethodHandle) data.constructor().invokeBasic(type, form, (Object) target, (Object) cleanup,
2102                     (Object) collectArgs, (Object) unboxResult);
2103         } catch (Throwable ex) {
2104             throw uncaughtException(ex);
2105         }
2106         assert(mh.type() == type);
2107         return mh;
2108     }
2109 
2110     /**
2111      * The LambdaForm shape for the tryFinally combinator is as follows (assuming one reference parameter passed in
2112      * {@code a1}, and a reference return type, with the return value represented by {@code t8}):
2113      * <blockquote><pre>{@code
2114      *  tryFinally=Lambda(a0:L,a1:L)=>{
2115      *    t2:L=BoundMethodHandle$Species_LLLL.argL0(a0:L);  // target method handle
2116      *    t3:L=BoundMethodHandle$Species_LLLL.argL1(a0:L);  // cleanup method handle
2117      *    t4:L=BoundMethodHandle$Species_LLLL.argL2(a0:L);  // helper handle to box the arguments into an Object[]
2118      *    t5:L=BoundMethodHandle$Species_LLLL.argL3(a0:L);  // helper handle to unbox the result
2119      *    t6:L=MethodHandle.invokeBasic(t4:L,a1:L);         // box the arguments into an Object[]
2120      *    t7:L=MethodHandleImpl.tryFinally(t2:L,t3:L,t6:L); // call the tryFinally executor
2121      *    t8:L=MethodHandle.invokeBasic(t5:L,t7:L);t8:L}    // unbox the result; return the result
2122      * }</pre></blockquote>
2123      * <p>
2124      * {@code argL0} and {@code argL1} are the target and cleanup method handles.
2125      * {@code argL2} and {@code argL3} are auxiliary method handles: {@code argL2} boxes arguments and wraps them into
2126      * {@code Object[]} ({@code ValueConversions.array()}), and {@code argL3} unboxes the result if necessary
2127      * ({@code ValueConversions.unbox()}).
2128      * <p>
2129      * Having {@code t4} and {@code t5} passed in via a BMH and not hardcoded in the lambda form allows to share lambda
2130      * forms among tryFinally combinators with the same basic type.
2131      */
2132     private static LambdaForm makeTryFinallyForm(MethodType basicType) {
2133         MethodType lambdaType = basicType.invokerType();
2134 
2135         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_TF);
2136         if (lform != null) {
2137             return lform;
2138         }
2139         final int THIS_MH      = 0;  // the BMH_LLLL
2140         final int ARG_BASE     = 1;  // start of incoming arguments
2141         final int ARG_LIMIT    = ARG_BASE + basicType.parameterCount();
2142 
2143         int nameCursor = ARG_LIMIT;
2144         final int GET_TARGET       = nameCursor++;
2145         final int GET_CLEANUP      = nameCursor++;
2146         final int GET_COLLECT_ARGS = nameCursor++;
2147         final int GET_UNBOX_RESULT = nameCursor++;
2148         final int BOXED_ARGS       = nameCursor++;
2149         final int TRY_FINALLY      = nameCursor++;
2150         final int UNBOX_RESULT     = nameCursor++;
2151 
2152         Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType);
2153 
2154         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLL();
2155         names[THIS_MH]          = names[THIS_MH].withConstraint(data);
2156         names[GET_TARGET]       = new Name(data.getterFunction(0), names[THIS_MH]);
2157         names[GET_CLEANUP]      = new Name(data.getterFunction(1), names[THIS_MH]);
2158         names[GET_COLLECT_ARGS] = new Name(data.getterFunction(2), names[THIS_MH]);
2159         names[GET_UNBOX_RESULT] = new Name(data.getterFunction(3), names[THIS_MH]);
2160 
2161         // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...);
2162         MethodType collectArgsType = basicType.changeReturnType(Object.class);
2163         MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
2164         Object[] args = new Object[invokeBasic.type().parameterCount()];
2165         args[0] = names[GET_COLLECT_ARGS];
2166         System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT-ARG_BASE);
2167         names[BOXED_ARGS] = new Name(makeIntrinsic(invokeBasic, Intrinsic.TRY_FINALLY), args);
2168 
2169         // t_{i+1}:L=MethodHandleImpl.tryFinally(target:L,exType:L,catcher:L,t_{i}:L);
2170         Object[] tfArgs = new Object[] {names[GET_TARGET], names[GET_CLEANUP], names[BOXED_ARGS]};
2171         names[TRY_FINALLY] = new Name(getFunction(NF_tryFinally), tfArgs);
2172 
2173         // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L);
2174         MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
2175         Object[] unboxArgs  = new Object[] {names[GET_UNBOX_RESULT], names[TRY_FINALLY]};
2176         names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs);
2177 
2178         lform = new LambdaForm(lambdaType.parameterCount(), names, Kind.TRY_FINALLY);
2179 
2180         return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_TF, lform);
2181     }
2182 
2183     /**
2184      * Intrinsified during LambdaForm compilation
2185      * (see {@link InvokerBytecodeGenerator#emitTryFinally emitTryFinally}).
2186      */
2187     @LambdaForm.Hidden
2188     static Object tryFinally(MethodHandle target, MethodHandle cleanup, Object... av) throws Throwable {
2189         Throwable t = null;
2190         Object r = null;
2191         try {
2192             r = target.invokeWithArguments(av);
2193         } catch (Throwable thrown) {
2194             t = thrown;
2195             throw t;
2196         } finally {
2197             Object[] args = target.type().returnType() == void.class ? prepend(av, t) : prepend(av, t, r);
2198             r = cleanup.invokeWithArguments(args);
2199         }
2200         return r;
2201     }
2202 
2203     // Indexes into constant method handles:
2204     static final int
2205             MH_cast                  =  0,
2206             MH_selectAlternative     =  1,
2207             MH_copyAsPrimitiveArray  =  2,
2208             MH_fillNewTypedArray     =  3,
2209             MH_fillNewArray          =  4,
2210             MH_arrayIdentity         =  5,
2211             MH_countedLoopPred       =  6,
2212             MH_countedLoopStep       =  7,
2213             MH_initIterator          =  8,
2214             MH_iteratePred           =  9,
2215             MH_iterateNext           = 10,
2216             MH_Array_newInstance     = 11,
2217             MH_LIMIT                 = 12;
2218 
2219     static MethodHandle getConstantHandle(int idx) {
2220         MethodHandle handle = HANDLES[idx];
2221         if (handle != null) {
2222             return handle;
2223         }
2224         return setCachedHandle(idx, makeConstantHandle(idx));
2225     }
2226 
2227     private static synchronized MethodHandle setCachedHandle(int idx, final MethodHandle method) {
2228         // Simulate a CAS, to avoid racy duplication of results.
2229         MethodHandle prev = HANDLES[idx];
2230         if (prev != null) {
2231             return prev;
2232         }
2233         HANDLES[idx] = method;
2234         return method;
2235     }
2236 
2237     // Local constant method handles:
2238     private static final @Stable MethodHandle[] HANDLES = new MethodHandle[MH_LIMIT];
2239 
2240     private static MethodHandle makeConstantHandle(int idx) {
2241         try {
2242             switch (idx) {
2243                 case MH_cast:
2244                     return IMPL_LOOKUP.findVirtual(Class.class, "cast",
2245                             MethodType.methodType(Object.class, Object.class));
2246                 case MH_copyAsPrimitiveArray:
2247                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "copyAsPrimitiveArray",
2248                             MethodType.methodType(Object.class, Wrapper.class, Object[].class));
2249                 case MH_arrayIdentity:
2250                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "identity",
2251                             MethodType.methodType(Object[].class, Object[].class));
2252                 case MH_fillNewArray:
2253                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "fillNewArray",
2254                             MethodType.methodType(Object[].class, Integer.class, Object[].class));
2255                 case MH_fillNewTypedArray:
2256                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "fillNewTypedArray",
2257                             MethodType.methodType(Object[].class, Object[].class, Integer.class, Object[].class));
2258                 case MH_selectAlternative:
2259                     return makeIntrinsic(IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "selectAlternative",
2260                             MethodType.methodType(MethodHandle.class, boolean.class, MethodHandle.class, MethodHandle.class)),
2261                         Intrinsic.SELECT_ALTERNATIVE);
2262                 case MH_countedLoopPred:
2263                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopPredicate",
2264                             MethodType.methodType(boolean.class, int.class, int.class));
2265                 case MH_countedLoopStep:
2266                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopStep",
2267                             MethodType.methodType(int.class, int.class, int.class));
2268                 case MH_initIterator:
2269                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "initIterator",
2270                             MethodType.methodType(Iterator.class, Iterable.class));
2271                 case MH_iteratePred:
2272                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iteratePredicate",
2273                             MethodType.methodType(boolean.class, Iterator.class));
2274                 case MH_iterateNext:
2275                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iterateNext",
2276                             MethodType.methodType(Object.class, Iterator.class));
2277                 case MH_Array_newInstance:
2278                     return IMPL_LOOKUP.findStatic(Array.class, "newInstance",
2279                             MethodType.methodType(Object.class, Class.class, int.class));
2280             }
2281         } catch (ReflectiveOperationException ex) {
2282             throw newInternalError(ex);
2283         }
2284         throw newInternalError("Unknown function index: " + idx);
2285     }
2286 }