1 /*
   2  * Copyright (c) 2012, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.security.ssl;
  27 
  28 import java.util.Arrays;
  29 
  30 /**
  31  * This class represents an SSL/TLS/DTLS message authentication token,
  32  * which encapsulates a sequence number and ensures that attempts to
  33  * delete or reorder messages can be detected.
  34  *
  35  * Each connection state contains a sequence number, which is maintained
  36  * separately for read and write states.
  37  *
  38  * For SSL/TLS protocols, the sequence number MUST be set to zero
  39  * whenever a connection state is made the active state.
  40  *
  41  * DTLS uses an explicit sequence number, rather than an implicit one.
  42  * Sequence numbers are maintained separately for each epoch, with
  43  * each sequence number initially being 0 for each epoch.  The sequence
  44  * number used to compute the DTLS MAC is the 64-bit value formed by
  45  * concatenating the epoch and the sequence number.
  46  *
  47  * Sequence numbers do not wrap.  If an implementation would need to wrap
  48  * a sequence number, it must renegotiate instead.  A sequence number is
  49  * incremented after each record: specifically, the first record transmitted
  50  * under a particular connection state MUST use sequence number 0.
  51  */
  52 class Authenticator {
  53 
  54     // byte array containing the additional authentication information for
  55     // each record
  56     private final byte[] block;
  57 
  58     // the block size of SSL v3.0:
  59     // sequence number + record type + + record length
  60     private static final int BLOCK_SIZE_SSL = 8 + 1 + 2;
  61 
  62     // the block size of TLS v1.0 and later:
  63     // sequence number + record type + protocol version + record length
  64     private static final int BLOCK_SIZE_TLS = 8 + 1 + 2 + 2;
  65 
  66     // the block size of DTLS v1.0 and later:
  67     // epoch + sequence number + record type + protocol version + record length
  68     private static final int BLOCK_SIZE_DTLS = 2 + 6 + 1 + 2 + 2;
  69 
  70     private final boolean isDTLS;
  71 
  72     /**
  73      * Default construct, no message authentication token is initialized.
  74      *
  75      * Note that this construct can only be called for null MAC
  76      */
  77     protected Authenticator(boolean isDTLS) {
  78         if (isDTLS) {
  79             // For DTLS protocols, plaintexts use explicit epoch and
  80             // sequence number in each record.  The first 8 byte of
  81             // the block is initialized for null MAC so that the
  82             // epoch and sequence number can be acquired to generate
  83             // plaintext records.
  84             block = new byte[8];
  85         } else {
  86             block = new byte[0];
  87         }
  88 
  89         this.isDTLS = isDTLS;
  90     }
  91 
  92     /**
  93      * Constructs the message authentication token for the specified
  94      * SSL/TLS protocol.
  95      */
  96     Authenticator(ProtocolVersion protocolVersion) {
  97         if (protocolVersion.isDTLSProtocol()) {
  98             block = new byte[BLOCK_SIZE_DTLS];
  99             block[9] = protocolVersion.major;
 100             block[10] = protocolVersion.minor;
 101 
 102             this.isDTLS = true;
 103         } else if (protocolVersion.v >= ProtocolVersion.TLS10.v) {
 104             block = new byte[BLOCK_SIZE_TLS];
 105             block[9] = protocolVersion.major;
 106             block[10] = protocolVersion.minor;
 107 
 108             this.isDTLS = false;
 109         } else {
 110             block = new byte[BLOCK_SIZE_SSL];
 111 
 112             this.isDTLS = false;
 113         }
 114     }
 115 
 116     /**
 117      * Checks whether the sequence number is close to wrap.
 118      *
 119      * Sequence numbers are of type uint64 and may not exceed 2^64-1.
 120      * Sequence numbers do not wrap. When the sequence number is near
 121      * to wrap, we need to close the connection immediately.
 122      *
 123      * @return true if the sequence number is close to wrap
 124      */
 125     final boolean seqNumOverflow() {
 126         /*
 127          * Conservatively, we don't allow more records to be generated
 128          * when there are only 2^8 sequence numbers left.
 129          */
 130         if (isDTLS) {
 131             return (block.length != 0 &&
 132                 // no epoch bytes, block[0] and block[1]
 133                 block[2] == (byte)0xFF && block[3] == (byte)0xFF &&
 134                 block[4] == (byte)0xFF && block[5] == (byte)0xFF &&
 135                 block[6] == (byte)0xFF);
 136         } else {
 137             return (block.length != 0 &&
 138                 block[0] == (byte)0xFF && block[1] == (byte)0xFF &&
 139                 block[2] == (byte)0xFF && block[3] == (byte)0xFF &&
 140                 block[4] == (byte)0xFF && block[5] == (byte)0xFF &&
 141                 block[6] == (byte)0xFF);
 142         }
 143     }
 144 
 145     /**
 146      * Checks whether the sequence number close to renew.
 147      *
 148      * Sequence numbers are of type uint64 and may not exceed 2^64-1.
 149      * Sequence numbers do not wrap.  If a TLS
 150      * implementation would need to wrap a sequence number, it must
 151      * renegotiate instead.
 152      *
 153      * @return true if the sequence number is huge enough to renew
 154      */
 155     final boolean seqNumIsHuge() {
 156         /*
 157          * Conservatively, we should ask for renegotiation when there are
 158          * only 2^32 sequence numbers left.
 159          */
 160         if (isDTLS) {
 161             return (block.length != 0 &&
 162                 // no epoch bytes, block[0] and block[1]
 163                 block[2] == (byte)0xFF && block[3] == (byte)0xFF);
 164         } else {
 165             return (block.length != 0 &&
 166                 block[0] == (byte)0xFF && block[1] == (byte)0xFF &&
 167                 block[2] == (byte)0xFF && block[3] == (byte)0xFF);
 168         }
 169     }
 170 
 171     /**
 172      * Gets the current sequence number, including the epoch number for
 173      * DTLS protocols.
 174      *
 175      * @return the byte array of the current sequence number
 176      */
 177     final byte[] sequenceNumber() {
 178         return Arrays.copyOf(block, 8);
 179     }
 180 
 181     /**
 182      * Sets the epoch number (only apply to DTLS protocols).
 183      */
 184     final void setEpochNumber(int epoch) {
 185         if (!isDTLS) {
 186             throw new RuntimeException(
 187                 "Epoch numbers apply to DTLS protocols only");
 188         }
 189 
 190         block[0] = (byte)((epoch >> 8) & 0xFF);
 191         block[1] = (byte)(epoch & 0xFF);
 192     }
 193 
 194     /**
 195      * Increase the sequence number.
 196      */
 197     final void increaseSequenceNumber() {
 198         /*
 199          * The sequence number in the block array is a 64-bit
 200          * number stored in big-endian format.
 201          */
 202         int k = 7;
 203         while ((k >= 0) && (++block[k] == 0)) {
 204             k--;
 205         }
 206     }
 207 
 208     /**
 209      * Acquires the current message authentication information with the
 210      * specified record type and fragment length, and then increases the
 211      * sequence number.
 212      *
 213      * @param  type the record type
 214      * @param  length the fragment of the record
 215      * @param  sequence the explicit sequence number of the record
 216      *
 217      * @return the byte array of the current message authentication information
 218      */
 219     final byte[] acquireAuthenticationBytes(
 220             byte type, int length, byte[] sequence) {
 221 
 222         byte[] copy = block.clone();
 223         if (sequence != null) {
 224             if (sequence.length != 8) {
 225                 throw new RuntimeException(
 226                         "Insufficient explicit sequence number bytes");
 227             }
 228 
 229             System.arraycopy(sequence, 0, copy, 0, sequence.length);
 230         }   // Otherwise, use the implicit sequence number.
 231 
 232         if (block.length != 0) {
 233             copy[8] = type;
 234 
 235             copy[copy.length - 2] = (byte)(length >> 8);
 236             copy[copy.length - 1] = (byte)(length);
 237 
 238             if (sequence == null || sequence.length != 0) {
 239                 // Increase the implicit sequence number in the block array.
 240                 increaseSequenceNumber();
 241             }
 242         }
 243 
 244         return copy;
 245     }
 246 
 247     static final long toLong(byte[] recordEnS) {
 248         if (recordEnS != null && recordEnS.length == 8) {
 249             return ((recordEnS[0] & 0xFFL) << 56) |
 250                    ((recordEnS[1] & 0xFFL) << 48) |
 251                    ((recordEnS[2] & 0xFFL) << 40) |
 252                    ((recordEnS[3] & 0xFFL) << 32) |
 253                    ((recordEnS[4] & 0xFFL) << 24) |
 254                    ((recordEnS[5] & 0xFFL) << 16) |
 255                    ((recordEnS[6] & 0xFFL) <<  8) |
 256                     (recordEnS[7] & 0xFFL);
 257         }
 258 
 259         return -1L;
 260     }
 261 }