1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_safepoint.cpp.incl"
  27 
  28 // --------------------------------------------------------------------------------------------------
  29 // Implementation of Safepoint begin/end
  30 
  31 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
  32 volatile int  SafepointSynchronize::_waiting_to_block = 0;
  33 jlong SafepointSynchronize::_last_safepoint = 0;
  34 volatile int SafepointSynchronize::_safepoint_counter = 0;
  35 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
  36 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
  37 static bool timeout_error_printed = false;
  38 
  39 // Roll all threads forward to a safepoint and suspend them all
  40 void SafepointSynchronize::begin() {
  41 
  42   Thread* myThread = Thread::current();
  43   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
  44 
  45   _last_safepoint = os::javaTimeNanos();
  46 
  47 #ifndef SERIALGC
  48   if (UseConcMarkSweepGC) {
  49     // In the future we should investigate whether CMS can use the
  50     // more-general mechanism below.  DLD (01/05).
  51     ConcurrentMarkSweepThread::synchronize(false);
  52   } else if (UseG1GC) {
  53     ConcurrentGCThread::safepoint_synchronize();
  54   }
  55 #endif // SERIALGC
  56 
  57   // By getting the Threads_lock, we assure that no threads are about to start or
  58   // exit. It is released again in SafepointSynchronize::end().
  59   Threads_lock->lock();
  60 
  61   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
  62 
  63   int nof_threads = Threads::number_of_threads();
  64 
  65   if (TraceSafepoint) {
  66     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
  67   }
  68 
  69   RuntimeService::record_safepoint_begin();
  70 
  71   {
  72   MutexLocker mu(Safepoint_lock);
  73 
  74   // Set number of threads to wait for, before we initiate the callbacks
  75   _waiting_to_block = nof_threads;
  76   TryingToBlock     = 0 ;
  77   int still_running = nof_threads;
  78 
  79   // Save the starting time, so that it can be compared to see if this has taken
  80   // too long to complete.
  81   jlong safepoint_limit_time;
  82   timeout_error_printed = false;
  83 
  84   // Begin the process of bringing the system to a safepoint.
  85   // Java threads can be in several different states and are
  86   // stopped by different mechanisms:
  87   //
  88   //  1. Running interpreted
  89   //     The interpeter dispatch table is changed to force it to
  90   //     check for a safepoint condition between bytecodes.
  91   //  2. Running in native code
  92   //     When returning from the native code, a Java thread must check
  93   //     the safepoint _state to see if we must block.  If the
  94   //     VM thread sees a Java thread in native, it does
  95   //     not wait for this thread to block.  The order of the memory
  96   //     writes and reads of both the safepoint state and the Java
  97   //     threads state is critical.  In order to guarantee that the
  98   //     memory writes are serialized with respect to each other,
  99   //     the VM thread issues a memory barrier instruction
 100   //     (on MP systems).  In order to avoid the overhead of issuing
 101   //     a memory barrier for each Java thread making native calls, each Java
 102   //     thread performs a write to a single memory page after changing
 103   //     the thread state.  The VM thread performs a sequence of
 104   //     mprotect OS calls which forces all previous writes from all
 105   //     Java threads to be serialized.  This is done in the
 106   //     os::serialize_thread_states() call.  This has proven to be
 107   //     much more efficient than executing a membar instruction
 108   //     on every call to native code.
 109   //  3. Running compiled Code
 110   //     Compiled code reads a global (Safepoint Polling) page that
 111   //     is set to fault if we are trying to get to a safepoint.
 112   //  4. Blocked
 113   //     A thread which is blocked will not be allowed to return from the
 114   //     block condition until the safepoint operation is complete.
 115   //  5. In VM or Transitioning between states
 116   //     If a Java thread is currently running in the VM or transitioning
 117   //     between states, the safepointing code will wait for the thread to
 118   //     block itself when it attempts transitions to a new state.
 119   //
 120   _state            = _synchronizing;
 121   OrderAccess::fence();
 122 
 123   // Flush all thread states to memory
 124   if (!UseMembar) {
 125     os::serialize_thread_states();
 126   }
 127 
 128   // Make interpreter safepoint aware
 129   Interpreter::notice_safepoints();
 130 
 131   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
 132     // Make polling safepoint aware
 133     guarantee (PageArmed == 0, "invariant") ;
 134     PageArmed = 1 ;
 135     os::make_polling_page_unreadable();
 136   }
 137 
 138   // Consider using active_processor_count() ... but that call is expensive.
 139   int ncpus = os::processor_count() ;
 140 
 141 #ifdef ASSERT
 142   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 143     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 144   }
 145 #endif // ASSERT
 146 
 147   if (SafepointTimeout)
 148     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 149 
 150   // Iterate through all threads until it have been determined how to stop them all at a safepoint
 151   unsigned int iterations = 0;
 152   int steps = 0 ;
 153   while(still_running > 0) {
 154     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 155       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 156       ThreadSafepointState *cur_state = cur->safepoint_state();
 157       if (cur_state->is_running()) {
 158         cur_state->examine_state_of_thread();
 159         if (!cur_state->is_running()) {
 160            still_running--;
 161            // consider adjusting steps downward:
 162            //   steps = 0
 163            //   steps -= NNN
 164            //   steps >>= 1
 165            //   steps = MIN(steps, 2000-100)
 166            //   if (iterations != 0) steps -= NNN
 167         }
 168         if (TraceSafepoint && Verbose) cur_state->print();
 169       }
 170     }
 171 
 172     if ( (PrintSafepointStatistics || (PrintSafepointStatisticsTimeout > 0))
 173          && iterations == 0) {
 174       begin_statistics(nof_threads, still_running);
 175     }
 176 
 177     if (still_running > 0) {
 178       // Check for if it takes to long
 179       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 180         print_safepoint_timeout(_spinning_timeout);
 181       }
 182 
 183       // Spin to avoid context switching.
 184       // There's a tension between allowing the mutators to run (and rendezvous)
 185       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 186       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 187       // spinning by the VM thread on a saturated system can increase rendezvous latency.
 188       // Blocking or yielding incur their own penalties in the form of context switching
 189       // and the resultant loss of $ residency.
 190       //
 191       // Further complicating matters is that yield() does not work as naively expected
 192       // on many platforms -- yield() does not guarantee that any other ready threads
 193       // will run.   As such we revert yield_all() after some number of iterations.
 194       // Yield_all() is implemented as a short unconditional sleep on some platforms.
 195       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 196       // can actually increase the time it takes the VM thread to detect that a system-wide
 197       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 198       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 199       // In that case the mutators will be stalled waiting for the safepoint to complete and the
 200       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 201       // will eventually wake up and detect that all mutators are safe, at which point
 202       // we'll again make progress.
 203       //
 204       // Beware too that that the VMThread typically runs at elevated priority.
 205       // Its default priority is higher than the default mutator priority.
 206       // Obviously, this complicates spinning.
 207       //
 208       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 209       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 210       //
 211       // See the comments in synchronizer.cpp for additional remarks on spinning.
 212       //
 213       // In the future we might:
 214       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
 215       //    This is tricky as the path used by a thread exiting the JVM (say on
 216       //    on JNI call-out) simply stores into its state field.  The burden
 217       //    is placed on the VM thread, which must poll (spin).
 218       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 219       //    we might aggressively scan the stacks of threads that are already safe.
 220       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 221       //    If all the mutators are ONPROC there's no reason to sleep or yield.
 222       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 223       // 5. Check system saturation.  If the system is not fully saturated then
 224       //    simply spin and avoid sleep/yield.
 225       // 6. As still-running mutators rendezvous they could unpark the sleeping
 226       //    VMthread.  This works well for still-running mutators that become
 227       //    safe.  The VMthread must still poll for mutators that call-out.
 228       // 7. Drive the policy on time-since-begin instead of iterations.
 229       // 8. Consider making the spin duration a function of the # of CPUs:
 230       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 231       //    Alternately, instead of counting iterations of the outer loop
 232       //    we could count the # of threads visited in the inner loop, above.
 233       // 9. On windows consider using the return value from SwitchThreadTo()
 234       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 235 
 236       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
 237          guarantee (PageArmed == 0, "invariant") ;
 238          PageArmed = 1 ;
 239          os::make_polling_page_unreadable();
 240       }
 241 
 242       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 243       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 244       ++steps ;
 245       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 246         SpinPause() ;     // MP-Polite spin
 247       } else
 248       if (steps < DeferThrSuspendLoopCount) {
 249         os::NakedYield() ;
 250       } else {
 251         os::yield_all(steps) ;
 252         // Alternately, the VM thread could transiently depress its scheduling priority or
 253         // transiently increase the priority of the tardy mutator(s).
 254       }
 255 
 256       iterations ++ ;
 257     }
 258     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 259   }
 260   assert(still_running == 0, "sanity check");
 261 
 262   if (PrintSafepointStatistics) {
 263     update_statistics_on_spin_end();
 264   }
 265 
 266   // wait until all threads are stopped
 267   while (_waiting_to_block > 0) {
 268     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
 269     if (!SafepointTimeout || timeout_error_printed) {
 270       Safepoint_lock->wait(true);  // true, means with no safepoint checks
 271     } else {
 272       // Compute remaining time
 273       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 274 
 275       // If there is no remaining time, then there is an error
 276       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 277         print_safepoint_timeout(_blocking_timeout);
 278       }
 279     }
 280   }
 281   assert(_waiting_to_block == 0, "sanity check");
 282 
 283 #ifndef PRODUCT
 284   if (SafepointTimeout) {
 285     jlong current_time = os::javaTimeNanos();
 286     if (safepoint_limit_time < current_time) {
 287       tty->print_cr("# SafepointSynchronize: Finished after "
 288                     INT64_FORMAT_W(6) " ms",
 289                     ((current_time - safepoint_limit_time) / MICROUNITS +
 290                      SafepointTimeoutDelay));
 291     }
 292   }
 293 #endif
 294 
 295   assert((_safepoint_counter & 0x1) == 0, "must be even");
 296   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 297   _safepoint_counter ++;
 298 
 299   // Record state
 300   _state = _synchronized;
 301 
 302   OrderAccess::fence();
 303 
 304   if (TraceSafepoint) {
 305     VM_Operation *op = VMThread::vm_operation();
 306     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
 307   }
 308 
 309   RuntimeService::record_safepoint_synchronized();
 310   if (PrintSafepointStatistics) {
 311     update_statistics_on_sync_end(os::javaTimeNanos());
 312   }
 313 
 314   // Call stuff that needs to be run when a safepoint is just about to be completed
 315   do_cleanup_tasks();
 316   }
 317 }
 318 
 319 // Wake up all threads, so they are ready to resume execution after the safepoint
 320 // operation has been carried out
 321 void SafepointSynchronize::end() {
 322 
 323   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 324   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 325   _safepoint_counter ++;
 326   // memory fence isn't required here since an odd _safepoint_counter
 327   // value can do no harm and a fence is issued below anyway.
 328 
 329   DEBUG_ONLY(Thread* myThread = Thread::current();)
 330   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 331 
 332   if (PrintSafepointStatistics) {
 333     end_statistics(os::javaTimeNanos());
 334   }
 335 
 336 #ifdef ASSERT
 337   // A pending_exception cannot be installed during a safepoint.  The threads
 338   // may install an async exception after they come back from a safepoint into
 339   // pending_exception after they unblock.  But that should happen later.
 340   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 341     assert (!(cur->has_pending_exception() &&
 342               cur->safepoint_state()->is_at_poll_safepoint()),
 343             "safepoint installed a pending exception");
 344   }
 345 #endif // ASSERT
 346 
 347   if (PageArmed) {
 348     // Make polling safepoint aware
 349     os::make_polling_page_readable();
 350     PageArmed = 0 ;
 351   }
 352 
 353   // Remove safepoint check from interpreter
 354   Interpreter::ignore_safepoints();
 355 
 356   {
 357     MutexLocker mu(Safepoint_lock);
 358 
 359     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 360 
 361     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 362     // when they get restarted.
 363     _state = _not_synchronized;
 364     OrderAccess::fence();
 365 
 366     if (TraceSafepoint) {
 367        tty->print_cr("Leaving safepoint region");
 368     }
 369 
 370     // Start suspended threads
 371     for(JavaThread *current = Threads::first(); current; current = current->next()) {
 372       // A problem occurring on Solaris is when attempting to restart threads
 373       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 374       // to the next one (since it has been running the longest).  We then have
 375       // to wait for a cpu to become available before we can continue restarting
 376       // threads.
 377       // FIXME: This causes the performance of the VM to degrade when active and with
 378       // large numbers of threads.  Apparently this is due to the synchronous nature
 379       // of suspending threads.
 380       //
 381       // TODO-FIXME: the comments above are vestigial and no longer apply.
 382       // Furthermore, using solaris' schedctl in this particular context confers no benefit
 383       if (VMThreadHintNoPreempt) {
 384         os::hint_no_preempt();
 385       }
 386       ThreadSafepointState* cur_state = current->safepoint_state();
 387       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 388       cur_state->restart();
 389       assert(cur_state->is_running(), "safepoint state has not been reset");
 390     }
 391 
 392     RuntimeService::record_safepoint_end();
 393 
 394     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 395     // blocked in signal_thread_blocked
 396     Threads_lock->unlock();
 397 
 398   }
 399 #ifndef SERIALGC
 400   // If there are any concurrent GC threads resume them.
 401   if (UseConcMarkSweepGC) {
 402     ConcurrentMarkSweepThread::desynchronize(false);
 403   } else if (UseG1GC) {
 404     ConcurrentGCThread::safepoint_desynchronize();
 405   }
 406 #endif // SERIALGC
 407 }
 408 
 409 bool SafepointSynchronize::is_cleanup_needed() {
 410   // Need a safepoint if some inline cache buffers is non-empty
 411   if (!InlineCacheBuffer::is_empty()) return true;
 412   return false;
 413 }
 414 
 415 jlong CounterDecay::_last_timestamp = 0;
 416 
 417 static void do_method(methodOop m) {
 418   m->invocation_counter()->decay();
 419 }
 420 
 421 void CounterDecay::decay() {
 422   _last_timestamp = os::javaTimeMillis();
 423 
 424   // This operation is going to be performed only at the end of a safepoint
 425   // and hence GC's will not be going on, all Java mutators are suspended
 426   // at this point and hence SystemDictionary_lock is also not needed.
 427   assert(SafepointSynchronize::is_at_safepoint(), "can only be executed at a safepoint");
 428   int nclasses = SystemDictionary::number_of_classes();
 429   double classes_per_tick = nclasses * (CounterDecayMinIntervalLength * 1e-3 /
 430                                         CounterHalfLifeTime);
 431   for (int i = 0; i < classes_per_tick; i++) {
 432     klassOop k = SystemDictionary::try_get_next_class();
 433     if (k != NULL && k->klass_part()->oop_is_instance()) {
 434       instanceKlass::cast(k)->methods_do(do_method);
 435     }
 436   }
 437 }
 438 
 439 // Various cleaning tasks that should be done periodically at safepoints
 440 void SafepointSynchronize::do_cleanup_tasks() {
 441   jlong cleanup_time;
 442 
 443   // Update fat-monitor pool, since this is a safepoint.
 444   if (TraceSafepoint) {
 445     cleanup_time = os::javaTimeNanos();
 446   }
 447 
 448   ObjectSynchronizer::deflate_idle_monitors();
 449   InlineCacheBuffer::update_inline_caches();
 450   if(UseCounterDecay && CounterDecay::is_decay_needed()) {
 451     CounterDecay::decay();
 452   }
 453   NMethodSweeper::sweep();
 454 
 455   if (TraceSafepoint) {
 456     tty->print_cr("do_cleanup_tasks takes "INT64_FORMAT_W(6) "ms",
 457                   (os::javaTimeNanos() - cleanup_time) / MICROUNITS);
 458   }
 459 }
 460 
 461 
 462 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 463   switch(state) {
 464   case _thread_in_native:
 465     // native threads are safe if they have no java stack or have walkable stack
 466     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 467 
 468    // blocked threads should have already have walkable stack
 469   case _thread_blocked:
 470     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 471     return true;
 472 
 473   default:
 474     return false;
 475   }
 476 }
 477 
 478 
 479 // -------------------------------------------------------------------------------------------------------
 480 // Implementation of Safepoint callback point
 481 
 482 void SafepointSynchronize::block(JavaThread *thread) {
 483   assert(thread != NULL, "thread must be set");
 484   assert(thread->is_Java_thread(), "not a Java thread");
 485 
 486   // Threads shouldn't block if they are in the middle of printing, but...
 487   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 488 
 489   // Only bail from the block() call if the thread is gone from the
 490   // thread list; starting to exit should still block.
 491   if (thread->is_terminated()) {
 492      // block current thread if we come here from native code when VM is gone
 493      thread->block_if_vm_exited();
 494 
 495      // otherwise do nothing
 496      return;
 497   }
 498 
 499   JavaThreadState state = thread->thread_state();
 500   thread->frame_anchor()->make_walkable(thread);
 501 
 502   // Check that we have a valid thread_state at this point
 503   switch(state) {
 504     case _thread_in_vm_trans:
 505     case _thread_in_Java:        // From compiled code
 506 
 507       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 508       // we pretend we are still in the VM.
 509       thread->set_thread_state(_thread_in_vm);
 510 
 511       if (is_synchronizing()) {
 512          Atomic::inc (&TryingToBlock) ;
 513       }
 514 
 515       // We will always be holding the Safepoint_lock when we are examine the state
 516       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 517       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 518       Safepoint_lock->lock_without_safepoint_check();
 519       if (is_synchronizing()) {
 520         // Decrement the number of threads to wait for and signal vm thread
 521         assert(_waiting_to_block > 0, "sanity check");
 522         _waiting_to_block--;
 523         thread->safepoint_state()->set_has_called_back(true);
 524 
 525         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 526         if (_waiting_to_block == 0) {
 527           Safepoint_lock->notify_all();
 528         }
 529       }
 530 
 531       // We transition the thread to state _thread_blocked here, but
 532       // we can't do our usual check for external suspension and then
 533       // self-suspend after the lock_without_safepoint_check() call
 534       // below because we are often called during transitions while
 535       // we hold different locks. That would leave us suspended while
 536       // holding a resource which results in deadlocks.
 537       thread->set_thread_state(_thread_blocked);
 538       Safepoint_lock->unlock();
 539 
 540       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 541       // the entire safepoint, the threads will all line up here during the safepoint.
 542       Threads_lock->lock_without_safepoint_check();
 543       // restore original state. This is important if the thread comes from compiled code, so it
 544       // will continue to execute with the _thread_in_Java state.
 545       thread->set_thread_state(state);
 546       Threads_lock->unlock();
 547       break;
 548 
 549     case _thread_in_native_trans:
 550     case _thread_blocked_trans:
 551     case _thread_new_trans:
 552       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 553         thread->print_thread_state();
 554         fatal("Deadlock in safepoint code.  "
 555               "Should have called back to the VM before blocking.");
 556       }
 557 
 558       // We transition the thread to state _thread_blocked here, but
 559       // we can't do our usual check for external suspension and then
 560       // self-suspend after the lock_without_safepoint_check() call
 561       // below because we are often called during transitions while
 562       // we hold different locks. That would leave us suspended while
 563       // holding a resource which results in deadlocks.
 564       thread->set_thread_state(_thread_blocked);
 565 
 566       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 567       // the safepoint code might still be waiting for it to block. We need to change the state here,
 568       // so it can see that it is at a safepoint.
 569 
 570       // Block until the safepoint operation is completed.
 571       Threads_lock->lock_without_safepoint_check();
 572 
 573       // Restore state
 574       thread->set_thread_state(state);
 575 
 576       Threads_lock->unlock();
 577       break;
 578 
 579     default:
 580      fatal1("Illegal threadstate encountered: %d", state);
 581   }
 582 
 583   // Check for pending. async. exceptions or suspends - except if the
 584   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 585   // is called last since it grabs a lock and we only want to do that when
 586   // we must.
 587   //
 588   // Note: we never deliver an async exception at a polling point as the
 589   // compiler may not have an exception handler for it. The polling
 590   // code will notice the async and deoptimize and the exception will
 591   // be delivered. (Polling at a return point is ok though). Sure is
 592   // a lot of bother for a deprecated feature...
 593   //
 594   // We don't deliver an async exception if the thread state is
 595   // _thread_in_native_trans so JNI functions won't be called with
 596   // a surprising pending exception. If the thread state is going back to java,
 597   // async exception is checked in check_special_condition_for_native_trans().
 598 
 599   if (state != _thread_blocked_trans &&
 600       state != _thread_in_vm_trans &&
 601       thread->has_special_runtime_exit_condition()) {
 602     thread->handle_special_runtime_exit_condition(
 603       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 604   }
 605 }
 606 
 607 // ------------------------------------------------------------------------------------------------------
 608 // Exception handlers
 609 
 610 #ifndef PRODUCT
 611 #ifdef _LP64
 612 #define PTR_PAD ""
 613 #else
 614 #define PTR_PAD "        "
 615 #endif
 616 
 617 static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
 618   bool is_oop = newptr ? ((oop)newptr)->is_oop() : false;
 619   tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
 620                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
 621                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
 622 }
 623 
 624 static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
 625   bool is_oop = newptr ? ((oop)(intptr_t)newptr)->is_oop() : false;
 626   tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
 627                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
 628                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
 629 }
 630 
 631 #ifdef SPARC
 632 static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
 633 #ifdef _LP64
 634   tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
 635   const int incr = 1;           // Increment to skip a long, in units of intptr_t
 636 #else
 637   tty->print_cr("--------+--address-+------before-----------+-------after----------+");
 638   const int incr = 2;           // Increment to skip a long, in units of intptr_t
 639 #endif
 640   tty->print_cr("---SP---|");
 641   for( int i=0; i<16; i++ ) {
 642     tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
 643   tty->print_cr("--------|");
 644   for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
 645     tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
 646   tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
 647   tty->print_cr("--------|");
 648   tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 649   tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 650   tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 651   tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 652   tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
 653   old_sp += incr; new_sp += incr; was_oops += incr;
 654   // Skip the floats
 655   tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
 656   tty->print_cr("---FP---|");
 657   old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
 658   for( int i2=0; i2<16; i2++ ) {
 659     tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
 660   tty->print_cr("");
 661 }
 662 #endif  // SPARC
 663 #endif  // PRODUCT
 664 
 665 
 666 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 667   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 668   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 669   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 670 
 671   // Uncomment this to get some serious before/after printing of the
 672   // Sparc safepoint-blob frame structure.
 673   /*
 674   intptr_t* sp = thread->last_Java_sp();
 675   intptr_t stack_copy[150];
 676   for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
 677   bool was_oops[150];
 678   for( int i=0; i<150; i++ )
 679     was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
 680   */
 681 
 682   if (ShowSafepointMsgs) {
 683     tty->print("handle_polling_page_exception: ");
 684   }
 685 
 686   if (PrintSafepointStatistics) {
 687     inc_page_trap_count();
 688   }
 689 
 690   ThreadSafepointState* state = thread->safepoint_state();
 691 
 692   state->handle_polling_page_exception();
 693   // print_me(sp,stack_copy,was_oops);
 694 }
 695 
 696 
 697 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 698   if (!timeout_error_printed) {
 699     timeout_error_printed = true;
 700     // Print out the thread infor which didn't reach the safepoint for debugging
 701     // purposes (useful when there are lots of threads in the debugger).
 702     tty->print_cr("");
 703     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 704     if (reason ==  _spinning_timeout) {
 705       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 706     } else if (reason == _blocking_timeout) {
 707       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 708     }
 709 
 710     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 711     ThreadSafepointState *cur_state;
 712     ResourceMark rm;
 713     for(JavaThread *cur_thread = Threads::first(); cur_thread;
 714         cur_thread = cur_thread->next()) {
 715       cur_state = cur_thread->safepoint_state();
 716 
 717       if (cur_thread->thread_state() != _thread_blocked &&
 718           ((reason == _spinning_timeout && cur_state->is_running()) ||
 719            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 720         tty->print("# ");
 721         cur_thread->print();
 722         tty->print_cr("");
 723       }
 724     }
 725     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 726   }
 727 
 728   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 729   // ShowMessageBoxOnError.
 730   if (DieOnSafepointTimeout) {
 731     char msg[1024];
 732     VM_Operation *op = VMThread::vm_operation();
 733     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 734             SafepointTimeoutDelay,
 735             op != NULL ? op->name() : "no vm operation");
 736     fatal(msg);
 737   }
 738 }
 739 
 740 
 741 // -------------------------------------------------------------------------------------------------------
 742 // Implementation of ThreadSafepointState
 743 
 744 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 745   _thread = thread;
 746   _type   = _running;
 747   _has_called_back = false;
 748   _at_poll_safepoint = false;
 749 }
 750 
 751 void ThreadSafepointState::create(JavaThread *thread) {
 752   ThreadSafepointState *state = new ThreadSafepointState(thread);
 753   thread->set_safepoint_state(state);
 754 }
 755 
 756 void ThreadSafepointState::destroy(JavaThread *thread) {
 757   if (thread->safepoint_state()) {
 758     delete(thread->safepoint_state());
 759     thread->set_safepoint_state(NULL);
 760   }
 761 }
 762 
 763 void ThreadSafepointState::examine_state_of_thread() {
 764   assert(is_running(), "better be running or just have hit safepoint poll");
 765 
 766   JavaThreadState state = _thread->thread_state();
 767 
 768   // Check for a thread that is suspended. Note that thread resume tries
 769   // to grab the Threads_lock which we own here, so a thread cannot be
 770   // resumed during safepoint synchronization.
 771 
 772   // We check to see if this thread is suspended without locking to
 773   // avoid deadlocking with a third thread that is waiting for this
 774   // thread to be suspended. The third thread can notice the safepoint
 775   // that we're trying to start at the beginning of its SR_lock->wait()
 776   // call. If that happens, then the third thread will block on the
 777   // safepoint while still holding the underlying SR_lock. We won't be
 778   // able to get the SR_lock and we'll deadlock.
 779   //
 780   // We don't need to grab the SR_lock here for two reasons:
 781   // 1) The suspend flags are both volatile and are set with an
 782   //    Atomic::cmpxchg() call so we should see the suspended
 783   //    state right away.
 784   // 2) We're being called from the safepoint polling loop; if
 785   //    we don't see the suspended state on this iteration, then
 786   //    we'll come around again.
 787   //
 788   bool is_suspended = _thread->is_ext_suspended();
 789   if (is_suspended) {
 790     roll_forward(_at_safepoint);
 791     return;
 792   }
 793 
 794   // Some JavaThread states have an initial safepoint state of
 795   // running, but are actually at a safepoint. We will happily
 796   // agree and update the safepoint state here.
 797   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
 798       roll_forward(_at_safepoint);
 799       return;
 800   }
 801 
 802   if (state == _thread_in_vm) {
 803     roll_forward(_call_back);
 804     return;
 805   }
 806 
 807   // All other thread states will continue to run until they
 808   // transition and self-block in state _blocked
 809   // Safepoint polling in compiled code causes the Java threads to do the same.
 810   // Note: new threads may require a malloc so they must be allowed to finish
 811 
 812   assert(is_running(), "examine_state_of_thread on non-running thread");
 813   return;
 814 }
 815 
 816 // Returns true is thread could not be rolled forward at present position.
 817 void ThreadSafepointState::roll_forward(suspend_type type) {
 818   _type = type;
 819 
 820   switch(_type) {
 821     case _at_safepoint:
 822       SafepointSynchronize::signal_thread_at_safepoint();
 823       break;
 824 
 825     case _call_back:
 826       set_has_called_back(false);
 827       break;
 828 
 829     case _running:
 830     default:
 831       ShouldNotReachHere();
 832   }
 833 }
 834 
 835 void ThreadSafepointState::restart() {
 836   switch(type()) {
 837     case _at_safepoint:
 838     case _call_back:
 839       break;
 840 
 841     case _running:
 842     default:
 843        tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
 844                       _thread, _type);
 845        _thread->print();
 846       ShouldNotReachHere();
 847   }
 848   _type = _running;
 849   set_has_called_back(false);
 850 }
 851 
 852 
 853 void ThreadSafepointState::print_on(outputStream *st) const {
 854   const char *s;
 855 
 856   switch(_type) {
 857     case _running                : s = "_running";              break;
 858     case _at_safepoint           : s = "_at_safepoint";         break;
 859     case _call_back              : s = "_call_back";            break;
 860     default:
 861       ShouldNotReachHere();
 862   }
 863 
 864   st->print_cr("Thread: " INTPTR_FORMAT
 865               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
 866                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
 867                _at_poll_safepoint);
 868 
 869   _thread->print_thread_state_on(st);
 870 }
 871 
 872 
 873 // ---------------------------------------------------------------------------------------------------------------------
 874 
 875 // Block the thread at the safepoint poll or poll return.
 876 void ThreadSafepointState::handle_polling_page_exception() {
 877 
 878   // Check state.  block() will set thread state to thread_in_vm which will
 879   // cause the safepoint state _type to become _call_back.
 880   assert(type() == ThreadSafepointState::_running,
 881          "polling page exception on thread not running state");
 882 
 883   // Step 1: Find the nmethod from the return address
 884   if (ShowSafepointMsgs && Verbose) {
 885     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
 886   }
 887   address real_return_addr = thread()->saved_exception_pc();
 888 
 889   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
 890   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
 891   nmethod* nm = (nmethod*)cb;
 892 
 893   // Find frame of caller
 894   frame stub_fr = thread()->last_frame();
 895   CodeBlob* stub_cb = stub_fr.cb();
 896   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
 897   RegisterMap map(thread(), true);
 898   frame caller_fr = stub_fr.sender(&map);
 899 
 900   // Should only be poll_return or poll
 901   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
 902 
 903   // This is a poll immediately before a return. The exception handling code
 904   // has already had the effect of causing the return to occur, so the execution
 905   // will continue immediately after the call. In addition, the oopmap at the
 906   // return point does not mark the return value as an oop (if it is), so
 907   // it needs a handle here to be updated.
 908   if( nm->is_at_poll_return(real_return_addr) ) {
 909     // See if return type is an oop.
 910     bool return_oop = nm->method()->is_returning_oop();
 911     Handle return_value;
 912     if (return_oop) {
 913       // The oop result has been saved on the stack together with all
 914       // the other registers. In order to preserve it over GCs we need
 915       // to keep it in a handle.
 916       oop result = caller_fr.saved_oop_result(&map);
 917       assert(result == NULL || result->is_oop(), "must be oop");
 918       return_value = Handle(thread(), result);
 919       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 920     }
 921 
 922     // Block the thread
 923     SafepointSynchronize::block(thread());
 924 
 925     // restore oop result, if any
 926     if (return_oop) {
 927       caller_fr.set_saved_oop_result(&map, return_value());
 928     }
 929   }
 930 
 931   // This is a safepoint poll. Verify the return address and block.
 932   else {
 933     set_at_poll_safepoint(true);
 934 
 935     // verify the blob built the "return address" correctly
 936     assert(real_return_addr == caller_fr.pc(), "must match");
 937 
 938     // Block the thread
 939     SafepointSynchronize::block(thread());
 940     set_at_poll_safepoint(false);
 941 
 942     // If we have a pending async exception deoptimize the frame
 943     // as otherwise we may never deliver it.
 944     if (thread()->has_async_condition()) {
 945       ThreadInVMfromJavaNoAsyncException __tiv(thread());
 946       VM_DeoptimizeFrame deopt(thread(), caller_fr.id());
 947       VMThread::execute(&deopt);
 948     }
 949 
 950     // If an exception has been installed we must check for a pending deoptimization
 951     // Deoptimize frame if exception has been thrown.
 952 
 953     if (thread()->has_pending_exception() ) {
 954       RegisterMap map(thread(), true);
 955       frame caller_fr = stub_fr.sender(&map);
 956       if (caller_fr.is_deoptimized_frame()) {
 957         // The exception patch will destroy registers that are still
 958         // live and will be needed during deoptimization. Defer the
 959         // Async exception should have defered the exception until the
 960         // next safepoint which will be detected when we get into
 961         // the interpreter so if we have an exception now things
 962         // are messed up.
 963 
 964         fatal("Exception installed and deoptimization is pending");
 965       }
 966     }
 967   }
 968 }
 969 
 970 
 971 //
 972 //                     Statistics & Instrumentations
 973 //
 974 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
 975 int    SafepointSynchronize::_cur_stat_index = 0;
 976 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
 977 julong SafepointSynchronize::_coalesced_vmop_count = 0;
 978 jlong  SafepointSynchronize::_max_sync_time = 0;
 979 
 980 // last_safepoint_start_time records the start time of last safepoint.
 981 static jlong  last_safepoint_start_time = 0;
 982 static jlong  sync_end_time = 0;
 983 static bool   need_to_track_page_armed_status = false;
 984 static bool   init_done = false;
 985 
 986 void SafepointSynchronize::deferred_initialize_stat() {
 987   if (init_done) return;
 988 
 989   if (PrintSafepointStatisticsCount <= 0) {
 990     fatal("Wrong PrintSafepointStatisticsCount");
 991   }
 992 
 993   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
 994   // be printed right away, in which case, _safepoint_stats will regress to
 995   // a single element array. Otherwise, it is a circular ring buffer with default
 996   // size of PrintSafepointStatisticsCount.
 997   int stats_array_size;
 998   if (PrintSafepointStatisticsTimeout > 0) {
 999     stats_array_size = 1;
1000     PrintSafepointStatistics = true;
1001   } else {
1002     stats_array_size = PrintSafepointStatisticsCount;
1003   }
1004   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1005                                                  * sizeof(SafepointStats));
1006   guarantee(_safepoint_stats != NULL,
1007             "not enough memory for safepoint instrumentation data");
1008 
1009   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
1010     need_to_track_page_armed_status = true;
1011   }
1012 
1013   tty->print("     vmop_name               "
1014              "[threads: total initially_running wait_to_block] ");
1015   tty->print("[time: spin block sync] "
1016              "[vmop_time  time_elapsed] ");
1017 
1018   // no page armed status printed out if it is always armed.
1019   if (need_to_track_page_armed_status) {
1020     tty->print("page_armed ");
1021   }
1022 
1023   tty->print_cr("page_trap_count");
1024 
1025   init_done = true;
1026 }
1027 
1028 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1029   deferred_initialize_stat();
1030 
1031   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1032 
1033   VM_Operation *op = VMThread::vm_operation();
1034   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1035   if (op != NULL) {
1036     _safepoint_reasons[spstat->_vmop_type]++;
1037   }
1038 
1039   spstat->_nof_total_threads = nof_threads;
1040   spstat->_nof_initial_running_threads = nof_running;
1041   spstat->_nof_threads_hit_page_trap = 0;
1042 
1043   // Records the start time of spinning. The real time spent on spinning
1044   // will be adjusted when spin is done. Same trick is applied for time
1045   // spent on waiting for threads to block.
1046   if (nof_running != 0) {
1047     spstat->_time_to_spin = os::javaTimeNanos();
1048   }  else {
1049     spstat->_time_to_spin = 0;
1050   }
1051 
1052   if (last_safepoint_start_time == 0) {
1053     spstat->_time_elapsed_since_last_safepoint = 0;
1054   } else {
1055     spstat->_time_elapsed_since_last_safepoint = _last_safepoint -
1056       last_safepoint_start_time;
1057   }
1058   last_safepoint_start_time = _last_safepoint;
1059 }
1060 
1061 void SafepointSynchronize::update_statistics_on_spin_end() {
1062   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1063 
1064   jlong cur_time = os::javaTimeNanos();
1065 
1066   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1067   if (spstat->_nof_initial_running_threads != 0) {
1068     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1069   }
1070 
1071   if (need_to_track_page_armed_status) {
1072     spstat->_page_armed = (PageArmed == 1);
1073   }
1074 
1075   // Records the start time of waiting for to block. Updated when block is done.
1076   if (_waiting_to_block != 0) {
1077     spstat->_time_to_wait_to_block = cur_time;
1078   } else {
1079     spstat->_time_to_wait_to_block = 0;
1080   }
1081 }
1082 
1083 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1084   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1085 
1086   if (spstat->_nof_threads_wait_to_block != 0) {
1087     spstat->_time_to_wait_to_block = end_time -
1088       spstat->_time_to_wait_to_block;
1089   }
1090 
1091   // Records the end time of sync which will be used to calculate the total
1092   // vm operation time. Again, the real time spending in syncing will be deducted
1093   // from the start of the sync time later when end_statistics is called.
1094   spstat->_time_to_sync = end_time - _last_safepoint;
1095   if (spstat->_time_to_sync > _max_sync_time) {
1096     _max_sync_time = spstat->_time_to_sync;
1097   }
1098   sync_end_time = end_time;
1099 }
1100 
1101 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1102   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1103 
1104   // Update the vm operation time.
1105   spstat->_time_to_exec_vmop = vmop_end_time -  sync_end_time;
1106   // Only the sync time longer than the specified
1107   // PrintSafepointStatisticsTimeout will be printed out right away.
1108   // By default, it is -1 meaning all samples will be put into the list.
1109   if ( PrintSafepointStatisticsTimeout > 0) {
1110     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1111       print_statistics();
1112     }
1113   } else {
1114     // The safepoint statistics will be printed out when the _safepoin_stats
1115     // array fills up.
1116     if (_cur_stat_index != PrintSafepointStatisticsCount - 1) {
1117       _cur_stat_index ++;
1118     } else {
1119       print_statistics();
1120       _cur_stat_index = 0;
1121       tty->print_cr("");
1122     }
1123   }
1124 }
1125 
1126 void SafepointSynchronize::print_statistics() {
1127   int index;
1128   SafepointStats* sstats = _safepoint_stats;
1129 
1130   for (index = 0; index <= _cur_stat_index; index++) {
1131     sstats = &_safepoint_stats[index];
1132     tty->print("%-28s       ["
1133                INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
1134                "]   ",
1135                sstats->_vmop_type == -1 ? "no vm operation" :
1136                VM_Operation::name(sstats->_vmop_type),
1137                sstats->_nof_total_threads,
1138                sstats->_nof_initial_running_threads,
1139                sstats->_nof_threads_wait_to_block);
1140     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1141     tty->print("       ["
1142                INT64_FORMAT_W(6)INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1143                "]     "
1144                "["INT64_FORMAT_W(6)INT64_FORMAT_W(9) "]          ",
1145                sstats->_time_to_spin / MICROUNITS,
1146                sstats->_time_to_wait_to_block / MICROUNITS,
1147                sstats->_time_to_sync / MICROUNITS,
1148                sstats->_time_to_exec_vmop / MICROUNITS,
1149                sstats->_time_elapsed_since_last_safepoint / MICROUNITS);
1150 
1151     if (need_to_track_page_armed_status) {
1152       tty->print(INT32_FORMAT"         ", sstats->_page_armed);
1153     }
1154     tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
1155   }
1156 }
1157 
1158 // This method will be called when VM exits. It will first call
1159 // print_statistics to print out the rest of the sampling.  Then
1160 // it tries to summarize the sampling.
1161 void SafepointSynchronize::print_stat_on_exit() {
1162   if (_safepoint_stats == NULL) return;
1163 
1164   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1165 
1166   // During VM exit, end_statistics may not get called and in that
1167   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1168   // don't print it out.
1169   // Approximate the vm op time.
1170   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1171     os::javaTimeNanos() - sync_end_time;
1172 
1173   if ( PrintSafepointStatisticsTimeout < 0 ||
1174        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1175     print_statistics();
1176   }
1177   tty->print_cr("");
1178 
1179   // Print out polling page sampling status.
1180   if (!need_to_track_page_armed_status) {
1181     if (UseCompilerSafepoints) {
1182       tty->print_cr("Polling page always armed");
1183     }
1184   } else {
1185     tty->print_cr("Defer polling page loop count = %d\n",
1186                  DeferPollingPageLoopCount);
1187   }
1188 
1189   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1190     if (_safepoint_reasons[index] != 0) {
1191       tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
1192                     _safepoint_reasons[index]);
1193     }
1194   }
1195 
1196   tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
1197                 _coalesced_vmop_count);
1198   tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
1199                 _max_sync_time / MICROUNITS);
1200 }
1201 
1202 // ------------------------------------------------------------------------------------------------
1203 // Non-product code
1204 
1205 #ifndef PRODUCT
1206 
1207 void SafepointSynchronize::print_state() {
1208   if (_state == _not_synchronized) {
1209     tty->print_cr("not synchronized");
1210   } else if (_state == _synchronizing || _state == _synchronized) {
1211     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1212                   "synchronized");
1213 
1214     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1215        cur->safepoint_state()->print();
1216     }
1217   }
1218 }
1219 
1220 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1221   if (ShowSafepointMsgs) {
1222     va_list ap;
1223     va_start(ap, format);
1224     tty->vprint_cr(format, ap);
1225     va_end(ap);
1226   }
1227 }
1228 
1229 #endif // !PRODUCT