1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_safepoint.cpp.incl"
  27 
  28 // --------------------------------------------------------------------------------------------------
  29 // Implementation of Safepoint begin/end
  30 
  31 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
  32 volatile int  SafepointSynchronize::_waiting_to_block = 0;
  33 jlong SafepointSynchronize::_last_safepoint = 0;
  34 volatile int SafepointSynchronize::_safepoint_counter = 0;
  35 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
  36 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
  37 static bool timeout_error_printed = false;
  38 
  39 // Roll all threads forward to a safepoint and suspend them all
  40 void SafepointSynchronize::begin() {
  41 
  42   Thread* myThread = Thread::current();
  43   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
  44 
  45   _last_safepoint = os::javaTimeNanos();
  46 
  47 #ifndef SERIALGC
  48   if (UseConcMarkSweepGC) {
  49     // In the future we should investigate whether CMS can use the
  50     // more-general mechanism below.  DLD (01/05).
  51     ConcurrentMarkSweepThread::synchronize(false);
  52   } else if (UseG1GC) {
  53     ConcurrentGCThread::safepoint_synchronize();
  54   }
  55 #endif // SERIALGC
  56 
  57   // By getting the Threads_lock, we assure that no threads are about to start or
  58   // exit. It is released again in SafepointSynchronize::end().
  59   Threads_lock->lock();
  60 
  61   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
  62 
  63   int nof_threads = Threads::number_of_threads();
  64 
  65   if (TraceSafepoint) {
  66     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
  67   }
  68 
  69   RuntimeService::record_safepoint_begin();
  70 
  71   {
  72   MutexLocker mu(Safepoint_lock);
  73 
  74   // Set number of threads to wait for, before we initiate the callbacks
  75   _waiting_to_block = nof_threads;
  76   TryingToBlock     = 0 ;
  77   int still_running = nof_threads;
  78 
  79   // Save the starting time, so that it can be compared to see if this has taken
  80   // too long to complete.
  81   jlong safepoint_limit_time;
  82   timeout_error_printed = false;
  83 
  84   // Begin the process of bringing the system to a safepoint.
  85   // Java threads can be in several different states and are
  86   // stopped by different mechanisms:
  87   //
  88   //  1. Running interpreted
  89   //     The interpeter dispatch table is changed to force it to
  90   //     check for a safepoint condition between bytecodes.
  91   //  2. Running in native code
  92   //     When returning from the native code, a Java thread must check
  93   //     the safepoint _state to see if we must block.  If the
  94   //     VM thread sees a Java thread in native, it does
  95   //     not wait for this thread to block.  The order of the memory
  96   //     writes and reads of both the safepoint state and the Java
  97   //     threads state is critical.  In order to guarantee that the
  98   //     memory writes are serialized with respect to each other,
  99   //     the VM thread issues a memory barrier instruction
 100   //     (on MP systems).  In order to avoid the overhead of issuing
 101   //     a memory barrier for each Java thread making native calls, each Java
 102   //     thread performs a write to a single memory page after changing
 103   //     the thread state.  The VM thread performs a sequence of
 104   //     mprotect OS calls which forces all previous writes from all
 105   //     Java threads to be serialized.  This is done in the
 106   //     os::serialize_thread_states() call.  This has proven to be
 107   //     much more efficient than executing a membar instruction
 108   //     on every call to native code.
 109   //  3. Running compiled Code
 110   //     Compiled code reads a global (Safepoint Polling) page that
 111   //     is set to fault if we are trying to get to a safepoint.
 112   //  4. Blocked
 113   //     A thread which is blocked will not be allowed to return from the
 114   //     block condition until the safepoint operation is complete.
 115   //  5. In VM or Transitioning between states
 116   //     If a Java thread is currently running in the VM or transitioning
 117   //     between states, the safepointing code will wait for the thread to
 118   //     block itself when it attempts transitions to a new state.
 119   //
 120   _state            = _synchronizing;
 121   OrderAccess::fence();
 122 
 123   // Flush all thread states to memory
 124   if (!UseMembar) {
 125     os::serialize_thread_states();
 126   }
 127 
 128   // Make interpreter safepoint aware
 129   Interpreter::notice_safepoints();
 130   
 131   // PrintSafepointStatisticsTimeout can be specified separately. When
 132   // specified, PrintSafepointStatistics will be set to true in
 133   // deferred_initialize_stat method. The initialization has to be done
 134   // early enough to avoid any races. See bug 6880029 for details.
 135   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 136     deferred_initialize_stat();
 137   }
 138   
 139   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
 140     // Make polling safepoint aware
 141     guarantee (PageArmed == 0, "invariant") ;
 142     PageArmed = 1 ;
 143     os::make_polling_page_unreadable();
 144   }
 145 
 146   // Consider using active_processor_count() ... but that call is expensive.
 147   int ncpus = os::processor_count() ;
 148 
 149 #ifdef ASSERT
 150   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 151     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 152   }
 153 #endif // ASSERT
 154 
 155   if (SafepointTimeout)
 156     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 157 
 158   // Iterate through all threads until it have been determined how to stop them all at a safepoint
 159   unsigned int iterations = 0;
 160   int steps = 0 ;
 161   while(still_running > 0) {
 162     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 163       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 164       ThreadSafepointState *cur_state = cur->safepoint_state();
 165       if (cur_state->is_running()) {
 166         cur_state->examine_state_of_thread();
 167         if (!cur_state->is_running()) {
 168            still_running--;
 169            // consider adjusting steps downward:
 170            //   steps = 0
 171            //   steps -= NNN
 172            //   steps >>= 1
 173            //   steps = MIN(steps, 2000-100)
 174            //   if (iterations != 0) steps -= NNN
 175         }
 176         if (TraceSafepoint && Verbose) cur_state->print();
 177       }
 178     }
 179 
 180     if (PrintSafepointStatistics && iterations == 0) {
 181       begin_statistics(nof_threads, still_running);
 182     }
 183 
 184     if (still_running > 0) {
 185       // Check for if it takes to long
 186       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 187         print_safepoint_timeout(_spinning_timeout);
 188       }
 189 
 190       // Spin to avoid context switching.
 191       // There's a tension between allowing the mutators to run (and rendezvous)
 192       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 193       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 194       // spinning by the VM thread on a saturated system can increase rendezvous latency.
 195       // Blocking or yielding incur their own penalties in the form of context switching
 196       // and the resultant loss of $ residency.
 197       //
 198       // Further complicating matters is that yield() does not work as naively expected
 199       // on many platforms -- yield() does not guarantee that any other ready threads
 200       // will run.   As such we revert yield_all() after some number of iterations.
 201       // Yield_all() is implemented as a short unconditional sleep on some platforms.
 202       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 203       // can actually increase the time it takes the VM thread to detect that a system-wide
 204       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 205       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 206       // In that case the mutators will be stalled waiting for the safepoint to complete and the
 207       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 208       // will eventually wake up and detect that all mutators are safe, at which point
 209       // we'll again make progress.
 210       //
 211       // Beware too that that the VMThread typically runs at elevated priority.
 212       // Its default priority is higher than the default mutator priority.
 213       // Obviously, this complicates spinning.
 214       //
 215       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 216       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 217       //
 218       // See the comments in synchronizer.cpp for additional remarks on spinning.
 219       //
 220       // In the future we might:
 221       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
 222       //    This is tricky as the path used by a thread exiting the JVM (say on
 223       //    on JNI call-out) simply stores into its state field.  The burden
 224       //    is placed on the VM thread, which must poll (spin).
 225       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 226       //    we might aggressively scan the stacks of threads that are already safe.
 227       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 228       //    If all the mutators are ONPROC there's no reason to sleep or yield.
 229       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 230       // 5. Check system saturation.  If the system is not fully saturated then
 231       //    simply spin and avoid sleep/yield.
 232       // 6. As still-running mutators rendezvous they could unpark the sleeping
 233       //    VMthread.  This works well for still-running mutators that become
 234       //    safe.  The VMthread must still poll for mutators that call-out.
 235       // 7. Drive the policy on time-since-begin instead of iterations.
 236       // 8. Consider making the spin duration a function of the # of CPUs:
 237       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 238       //    Alternately, instead of counting iterations of the outer loop
 239       //    we could count the # of threads visited in the inner loop, above.
 240       // 9. On windows consider using the return value from SwitchThreadTo()
 241       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 242 
 243       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
 244          guarantee (PageArmed == 0, "invariant") ;
 245          PageArmed = 1 ;
 246          os::make_polling_page_unreadable();
 247       }
 248 
 249       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 250       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 251       ++steps ;
 252       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 253         SpinPause() ;     // MP-Polite spin
 254       } else
 255       if (steps < DeferThrSuspendLoopCount) {
 256         os::NakedYield() ;
 257       } else {
 258         os::yield_all(steps) ;
 259         // Alternately, the VM thread could transiently depress its scheduling priority or
 260         // transiently increase the priority of the tardy mutator(s).
 261       }
 262 
 263       iterations ++ ;
 264     }
 265     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 266   }
 267   assert(still_running == 0, "sanity check");
 268 
 269   if (PrintSafepointStatistics) {
 270     update_statistics_on_spin_end();
 271   }
 272 
 273   // wait until all threads are stopped
 274   while (_waiting_to_block > 0) {
 275     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
 276     if (!SafepointTimeout || timeout_error_printed) {
 277       Safepoint_lock->wait(true);  // true, means with no safepoint checks
 278     } else {
 279       // Compute remaining time
 280       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 281 
 282       // If there is no remaining time, then there is an error
 283       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 284         print_safepoint_timeout(_blocking_timeout);
 285       }
 286     }
 287   }
 288   assert(_waiting_to_block == 0, "sanity check");
 289 
 290 #ifndef PRODUCT
 291   if (SafepointTimeout) {
 292     jlong current_time = os::javaTimeNanos();
 293     if (safepoint_limit_time < current_time) {
 294       tty->print_cr("# SafepointSynchronize: Finished after "
 295                     INT64_FORMAT_W(6) " ms",
 296                     ((current_time - safepoint_limit_time) / MICROUNITS +
 297                      SafepointTimeoutDelay));
 298     }
 299   }
 300 #endif
 301 
 302   assert((_safepoint_counter & 0x1) == 0, "must be even");
 303   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 304   _safepoint_counter ++;
 305 
 306   // Record state
 307   _state = _synchronized;
 308 
 309   OrderAccess::fence();
 310 
 311   if (TraceSafepoint) {
 312     VM_Operation *op = VMThread::vm_operation();
 313     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
 314   }
 315 
 316   RuntimeService::record_safepoint_synchronized();
 317   if (PrintSafepointStatistics) {
 318     update_statistics_on_sync_end(os::javaTimeNanos());
 319   }
 320 
 321   // Call stuff that needs to be run when a safepoint is just about to be completed
 322   do_cleanup_tasks();
 323   }
 324 }
 325 
 326 // Wake up all threads, so they are ready to resume execution after the safepoint
 327 // operation has been carried out
 328 void SafepointSynchronize::end() {
 329 
 330   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 331   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 332   _safepoint_counter ++;
 333   // memory fence isn't required here since an odd _safepoint_counter
 334   // value can do no harm and a fence is issued below anyway.
 335 
 336   DEBUG_ONLY(Thread* myThread = Thread::current();)
 337   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 338 
 339   if (PrintSafepointStatistics) {
 340     end_statistics(os::javaTimeNanos());
 341   }
 342 
 343 #ifdef ASSERT
 344   // A pending_exception cannot be installed during a safepoint.  The threads
 345   // may install an async exception after they come back from a safepoint into
 346   // pending_exception after they unblock.  But that should happen later.
 347   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 348     assert (!(cur->has_pending_exception() &&
 349               cur->safepoint_state()->is_at_poll_safepoint()),
 350             "safepoint installed a pending exception");
 351   }
 352 #endif // ASSERT
 353 
 354   if (PageArmed) {
 355     // Make polling safepoint aware
 356     os::make_polling_page_readable();
 357     PageArmed = 0 ;
 358   }
 359 
 360   // Remove safepoint check from interpreter
 361   Interpreter::ignore_safepoints();
 362 
 363   {
 364     MutexLocker mu(Safepoint_lock);
 365 
 366     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 367 
 368     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 369     // when they get restarted.
 370     _state = _not_synchronized;
 371     OrderAccess::fence();
 372 
 373     if (TraceSafepoint) {
 374        tty->print_cr("Leaving safepoint region");
 375     }
 376 
 377     // Start suspended threads
 378     for(JavaThread *current = Threads::first(); current; current = current->next()) {
 379       // A problem occurring on Solaris is when attempting to restart threads
 380       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 381       // to the next one (since it has been running the longest).  We then have
 382       // to wait for a cpu to become available before we can continue restarting
 383       // threads.
 384       // FIXME: This causes the performance of the VM to degrade when active and with
 385       // large numbers of threads.  Apparently this is due to the synchronous nature
 386       // of suspending threads.
 387       //
 388       // TODO-FIXME: the comments above are vestigial and no longer apply.
 389       // Furthermore, using solaris' schedctl in this particular context confers no benefit
 390       if (VMThreadHintNoPreempt) {
 391         os::hint_no_preempt();
 392       }
 393       ThreadSafepointState* cur_state = current->safepoint_state();
 394       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 395       cur_state->restart();
 396       assert(cur_state->is_running(), "safepoint state has not been reset");
 397     }
 398 
 399     RuntimeService::record_safepoint_end();
 400 
 401     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 402     // blocked in signal_thread_blocked
 403     Threads_lock->unlock();
 404 
 405   }
 406 #ifndef SERIALGC
 407   // If there are any concurrent GC threads resume them.
 408   if (UseConcMarkSweepGC) {
 409     ConcurrentMarkSweepThread::desynchronize(false);
 410   } else if (UseG1GC) {
 411     ConcurrentGCThread::safepoint_desynchronize();
 412   }
 413 #endif // SERIALGC
 414 }
 415 
 416 bool SafepointSynchronize::is_cleanup_needed() {
 417   // Need a safepoint if some inline cache buffers is non-empty
 418   if (!InlineCacheBuffer::is_empty()) return true;
 419   return false;
 420 }
 421 
 422 jlong CounterDecay::_last_timestamp = 0;
 423 
 424 static void do_method(methodOop m) {
 425   m->invocation_counter()->decay();
 426 }
 427 
 428 void CounterDecay::decay() {
 429   _last_timestamp = os::javaTimeMillis();
 430 
 431   // This operation is going to be performed only at the end of a safepoint
 432   // and hence GC's will not be going on, all Java mutators are suspended
 433   // at this point and hence SystemDictionary_lock is also not needed.
 434   assert(SafepointSynchronize::is_at_safepoint(), "can only be executed at a safepoint");
 435   int nclasses = SystemDictionary::number_of_classes();
 436   double classes_per_tick = nclasses * (CounterDecayMinIntervalLength * 1e-3 /
 437                                         CounterHalfLifeTime);
 438   for (int i = 0; i < classes_per_tick; i++) {
 439     klassOop k = SystemDictionary::try_get_next_class();
 440     if (k != NULL && k->klass_part()->oop_is_instance()) {
 441       instanceKlass::cast(k)->methods_do(do_method);
 442     }
 443   }
 444 }
 445 
 446 // Various cleaning tasks that should be done periodically at safepoints
 447 void SafepointSynchronize::do_cleanup_tasks() {
 448   jlong cleanup_time;
 449 
 450   // Update fat-monitor pool, since this is a safepoint.
 451   if (TraceSafepoint) {
 452     cleanup_time = os::javaTimeNanos();
 453   }
 454 
 455   ObjectSynchronizer::deflate_idle_monitors();
 456   InlineCacheBuffer::update_inline_caches();
 457   if(UseCounterDecay && CounterDecay::is_decay_needed()) {
 458     CounterDecay::decay();
 459   }
 460   NMethodSweeper::sweep();
 461 
 462   if (TraceSafepoint) {
 463     tty->print_cr("do_cleanup_tasks takes "INT64_FORMAT_W(6) "ms",
 464                   (os::javaTimeNanos() - cleanup_time) / MICROUNITS);
 465   }
 466 }
 467 
 468 
 469 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 470   switch(state) {
 471   case _thread_in_native:
 472     // native threads are safe if they have no java stack or have walkable stack
 473     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 474 
 475    // blocked threads should have already have walkable stack
 476   case _thread_blocked:
 477     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 478     return true;
 479 
 480   default:
 481     return false;
 482   }
 483 }
 484 
 485 
 486 // -------------------------------------------------------------------------------------------------------
 487 // Implementation of Safepoint callback point
 488 
 489 void SafepointSynchronize::block(JavaThread *thread) {
 490   assert(thread != NULL, "thread must be set");
 491   assert(thread->is_Java_thread(), "not a Java thread");
 492 
 493   // Threads shouldn't block if they are in the middle of printing, but...
 494   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 495 
 496   // Only bail from the block() call if the thread is gone from the
 497   // thread list; starting to exit should still block.
 498   if (thread->is_terminated()) {
 499      // block current thread if we come here from native code when VM is gone
 500      thread->block_if_vm_exited();
 501 
 502      // otherwise do nothing
 503      return;
 504   }
 505 
 506   JavaThreadState state = thread->thread_state();
 507   thread->frame_anchor()->make_walkable(thread);
 508 
 509   // Check that we have a valid thread_state at this point
 510   switch(state) {
 511     case _thread_in_vm_trans:
 512     case _thread_in_Java:        // From compiled code
 513 
 514       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 515       // we pretend we are still in the VM.
 516       thread->set_thread_state(_thread_in_vm);
 517 
 518       if (is_synchronizing()) {
 519          Atomic::inc (&TryingToBlock) ;
 520       }
 521 
 522       // We will always be holding the Safepoint_lock when we are examine the state
 523       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 524       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 525       Safepoint_lock->lock_without_safepoint_check();
 526       if (is_synchronizing()) {
 527         // Decrement the number of threads to wait for and signal vm thread
 528         assert(_waiting_to_block > 0, "sanity check");
 529         _waiting_to_block--;
 530         thread->safepoint_state()->set_has_called_back(true);
 531 
 532         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 533         if (_waiting_to_block == 0) {
 534           Safepoint_lock->notify_all();
 535         }
 536       }
 537 
 538       // We transition the thread to state _thread_blocked here, but
 539       // we can't do our usual check for external suspension and then
 540       // self-suspend after the lock_without_safepoint_check() call
 541       // below because we are often called during transitions while
 542       // we hold different locks. That would leave us suspended while
 543       // holding a resource which results in deadlocks.
 544       thread->set_thread_state(_thread_blocked);
 545       Safepoint_lock->unlock();
 546 
 547       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 548       // the entire safepoint, the threads will all line up here during the safepoint.
 549       Threads_lock->lock_without_safepoint_check();
 550       // restore original state. This is important if the thread comes from compiled code, so it
 551       // will continue to execute with the _thread_in_Java state.
 552       thread->set_thread_state(state);
 553       Threads_lock->unlock();
 554       break;
 555 
 556     case _thread_in_native_trans:
 557     case _thread_blocked_trans:
 558     case _thread_new_trans:
 559       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 560         thread->print_thread_state();
 561         fatal("Deadlock in safepoint code.  "
 562               "Should have called back to the VM before blocking.");
 563       }
 564 
 565       // We transition the thread to state _thread_blocked here, but
 566       // we can't do our usual check for external suspension and then
 567       // self-suspend after the lock_without_safepoint_check() call
 568       // below because we are often called during transitions while
 569       // we hold different locks. That would leave us suspended while
 570       // holding a resource which results in deadlocks.
 571       thread->set_thread_state(_thread_blocked);
 572 
 573       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 574       // the safepoint code might still be waiting for it to block. We need to change the state here,
 575       // so it can see that it is at a safepoint.
 576 
 577       // Block until the safepoint operation is completed.
 578       Threads_lock->lock_without_safepoint_check();
 579 
 580       // Restore state
 581       thread->set_thread_state(state);
 582 
 583       Threads_lock->unlock();
 584       break;
 585 
 586     default:
 587      fatal1("Illegal threadstate encountered: %d", state);
 588   }
 589 
 590   // Check for pending. async. exceptions or suspends - except if the
 591   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 592   // is called last since it grabs a lock and we only want to do that when
 593   // we must.
 594   //
 595   // Note: we never deliver an async exception at a polling point as the
 596   // compiler may not have an exception handler for it. The polling
 597   // code will notice the async and deoptimize and the exception will
 598   // be delivered. (Polling at a return point is ok though). Sure is
 599   // a lot of bother for a deprecated feature...
 600   //
 601   // We don't deliver an async exception if the thread state is
 602   // _thread_in_native_trans so JNI functions won't be called with
 603   // a surprising pending exception. If the thread state is going back to java,
 604   // async exception is checked in check_special_condition_for_native_trans().
 605 
 606   if (state != _thread_blocked_trans &&
 607       state != _thread_in_vm_trans &&
 608       thread->has_special_runtime_exit_condition()) {
 609     thread->handle_special_runtime_exit_condition(
 610       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 611   }
 612 }
 613 
 614 // ------------------------------------------------------------------------------------------------------
 615 // Exception handlers
 616 
 617 #ifndef PRODUCT
 618 #ifdef _LP64
 619 #define PTR_PAD ""
 620 #else
 621 #define PTR_PAD "        "
 622 #endif
 623 
 624 static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
 625   bool is_oop = newptr ? ((oop)newptr)->is_oop() : false;
 626   tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
 627                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
 628                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
 629 }
 630 
 631 static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
 632   bool is_oop = newptr ? ((oop)(intptr_t)newptr)->is_oop() : false;
 633   tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
 634                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
 635                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
 636 }
 637 
 638 #ifdef SPARC
 639 static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
 640 #ifdef _LP64
 641   tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
 642   const int incr = 1;           // Increment to skip a long, in units of intptr_t
 643 #else
 644   tty->print_cr("--------+--address-+------before-----------+-------after----------+");
 645   const int incr = 2;           // Increment to skip a long, in units of intptr_t
 646 #endif
 647   tty->print_cr("---SP---|");
 648   for( int i=0; i<16; i++ ) {
 649     tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
 650   tty->print_cr("--------|");
 651   for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
 652     tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
 653   tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
 654   tty->print_cr("--------|");
 655   tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 656   tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 657   tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 658   tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 659   tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
 660   old_sp += incr; new_sp += incr; was_oops += incr;
 661   // Skip the floats
 662   tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
 663   tty->print_cr("---FP---|");
 664   old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
 665   for( int i2=0; i2<16; i2++ ) {
 666     tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
 667   tty->print_cr("");
 668 }
 669 #endif  // SPARC
 670 #endif  // PRODUCT
 671 
 672 
 673 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 674   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 675   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 676   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 677 
 678   // Uncomment this to get some serious before/after printing of the
 679   // Sparc safepoint-blob frame structure.
 680   /*
 681   intptr_t* sp = thread->last_Java_sp();
 682   intptr_t stack_copy[150];
 683   for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
 684   bool was_oops[150];
 685   for( int i=0; i<150; i++ )
 686     was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
 687   */
 688 
 689   if (ShowSafepointMsgs) {
 690     tty->print("handle_polling_page_exception: ");
 691   }
 692 
 693   if (PrintSafepointStatistics) {
 694     inc_page_trap_count();
 695   }
 696 
 697   ThreadSafepointState* state = thread->safepoint_state();
 698 
 699   state->handle_polling_page_exception();
 700   // print_me(sp,stack_copy,was_oops);
 701 }
 702 
 703 
 704 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 705   if (!timeout_error_printed) {
 706     timeout_error_printed = true;
 707     // Print out the thread infor which didn't reach the safepoint for debugging
 708     // purposes (useful when there are lots of threads in the debugger).
 709     tty->print_cr("");
 710     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 711     if (reason ==  _spinning_timeout) {
 712       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 713     } else if (reason == _blocking_timeout) {
 714       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 715     }
 716 
 717     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 718     ThreadSafepointState *cur_state;
 719     ResourceMark rm;
 720     for(JavaThread *cur_thread = Threads::first(); cur_thread;
 721         cur_thread = cur_thread->next()) {
 722       cur_state = cur_thread->safepoint_state();
 723 
 724       if (cur_thread->thread_state() != _thread_blocked &&
 725           ((reason == _spinning_timeout && cur_state->is_running()) ||
 726            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 727         tty->print("# ");
 728         cur_thread->print();
 729         tty->print_cr("");
 730       }
 731     }
 732     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 733   }
 734 
 735   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 736   // ShowMessageBoxOnError.
 737   if (DieOnSafepointTimeout) {
 738     char msg[1024];
 739     VM_Operation *op = VMThread::vm_operation();
 740     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 741             SafepointTimeoutDelay,
 742             op != NULL ? op->name() : "no vm operation");
 743     fatal(msg);
 744   }
 745 }
 746 
 747 
 748 // -------------------------------------------------------------------------------------------------------
 749 // Implementation of ThreadSafepointState
 750 
 751 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 752   _thread = thread;
 753   _type   = _running;
 754   _has_called_back = false;
 755   _at_poll_safepoint = false;
 756 }
 757 
 758 void ThreadSafepointState::create(JavaThread *thread) {
 759   ThreadSafepointState *state = new ThreadSafepointState(thread);
 760   thread->set_safepoint_state(state);
 761 }
 762 
 763 void ThreadSafepointState::destroy(JavaThread *thread) {
 764   if (thread->safepoint_state()) {
 765     delete(thread->safepoint_state());
 766     thread->set_safepoint_state(NULL);
 767   }
 768 }
 769 
 770 void ThreadSafepointState::examine_state_of_thread() {
 771   assert(is_running(), "better be running or just have hit safepoint poll");
 772 
 773   JavaThreadState state = _thread->thread_state();
 774 
 775   // Check for a thread that is suspended. Note that thread resume tries
 776   // to grab the Threads_lock which we own here, so a thread cannot be
 777   // resumed during safepoint synchronization.
 778 
 779   // We check to see if this thread is suspended without locking to
 780   // avoid deadlocking with a third thread that is waiting for this
 781   // thread to be suspended. The third thread can notice the safepoint
 782   // that we're trying to start at the beginning of its SR_lock->wait()
 783   // call. If that happens, then the third thread will block on the
 784   // safepoint while still holding the underlying SR_lock. We won't be
 785   // able to get the SR_lock and we'll deadlock.
 786   //
 787   // We don't need to grab the SR_lock here for two reasons:
 788   // 1) The suspend flags are both volatile and are set with an
 789   //    Atomic::cmpxchg() call so we should see the suspended
 790   //    state right away.
 791   // 2) We're being called from the safepoint polling loop; if
 792   //    we don't see the suspended state on this iteration, then
 793   //    we'll come around again.
 794   //
 795   bool is_suspended = _thread->is_ext_suspended();
 796   if (is_suspended) {
 797     roll_forward(_at_safepoint);
 798     return;
 799   }
 800 
 801   // Some JavaThread states have an initial safepoint state of
 802   // running, but are actually at a safepoint. We will happily
 803   // agree and update the safepoint state here.
 804   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
 805       roll_forward(_at_safepoint);
 806       return;
 807   }
 808 
 809   if (state == _thread_in_vm) {
 810     roll_forward(_call_back);
 811     return;
 812   }
 813 
 814   // All other thread states will continue to run until they
 815   // transition and self-block in state _blocked
 816   // Safepoint polling in compiled code causes the Java threads to do the same.
 817   // Note: new threads may require a malloc so they must be allowed to finish
 818 
 819   assert(is_running(), "examine_state_of_thread on non-running thread");
 820   return;
 821 }
 822 
 823 // Returns true is thread could not be rolled forward at present position.
 824 void ThreadSafepointState::roll_forward(suspend_type type) {
 825   _type = type;
 826 
 827   switch(_type) {
 828     case _at_safepoint:
 829       SafepointSynchronize::signal_thread_at_safepoint();
 830       break;
 831 
 832     case _call_back:
 833       set_has_called_back(false);
 834       break;
 835 
 836     case _running:
 837     default:
 838       ShouldNotReachHere();
 839   }
 840 }
 841 
 842 void ThreadSafepointState::restart() {
 843   switch(type()) {
 844     case _at_safepoint:
 845     case _call_back:
 846       break;
 847 
 848     case _running:
 849     default:
 850        tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
 851                       _thread, _type);
 852        _thread->print();
 853       ShouldNotReachHere();
 854   }
 855   _type = _running;
 856   set_has_called_back(false);
 857 }
 858 
 859 
 860 void ThreadSafepointState::print_on(outputStream *st) const {
 861   const char *s;
 862 
 863   switch(_type) {
 864     case _running                : s = "_running";              break;
 865     case _at_safepoint           : s = "_at_safepoint";         break;
 866     case _call_back              : s = "_call_back";            break;
 867     default:
 868       ShouldNotReachHere();
 869   }
 870 
 871   st->print_cr("Thread: " INTPTR_FORMAT
 872               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
 873                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
 874                _at_poll_safepoint);
 875 
 876   _thread->print_thread_state_on(st);
 877 }
 878 
 879 
 880 // ---------------------------------------------------------------------------------------------------------------------
 881 
 882 // Block the thread at the safepoint poll or poll return.
 883 void ThreadSafepointState::handle_polling_page_exception() {
 884 
 885   // Check state.  block() will set thread state to thread_in_vm which will
 886   // cause the safepoint state _type to become _call_back.
 887   assert(type() == ThreadSafepointState::_running,
 888          "polling page exception on thread not running state");
 889 
 890   // Step 1: Find the nmethod from the return address
 891   if (ShowSafepointMsgs && Verbose) {
 892     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
 893   }
 894   address real_return_addr = thread()->saved_exception_pc();
 895 
 896   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
 897   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
 898   nmethod* nm = (nmethod*)cb;
 899 
 900   // Find frame of caller
 901   frame stub_fr = thread()->last_frame();
 902   CodeBlob* stub_cb = stub_fr.cb();
 903   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
 904   RegisterMap map(thread(), true);
 905   frame caller_fr = stub_fr.sender(&map);
 906 
 907   // Should only be poll_return or poll
 908   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
 909 
 910   // This is a poll immediately before a return. The exception handling code
 911   // has already had the effect of causing the return to occur, so the execution
 912   // will continue immediately after the call. In addition, the oopmap at the
 913   // return point does not mark the return value as an oop (if it is), so
 914   // it needs a handle here to be updated.
 915   if( nm->is_at_poll_return(real_return_addr) ) {
 916     // See if return type is an oop.
 917     bool return_oop = nm->method()->is_returning_oop();
 918     Handle return_value;
 919     if (return_oop) {
 920       // The oop result has been saved on the stack together with all
 921       // the other registers. In order to preserve it over GCs we need
 922       // to keep it in a handle.
 923       oop result = caller_fr.saved_oop_result(&map);
 924       assert(result == NULL || result->is_oop(), "must be oop");
 925       return_value = Handle(thread(), result);
 926       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 927     }
 928 
 929     // Block the thread
 930     SafepointSynchronize::block(thread());
 931 
 932     // restore oop result, if any
 933     if (return_oop) {
 934       caller_fr.set_saved_oop_result(&map, return_value());
 935     }
 936   }
 937 
 938   // This is a safepoint poll. Verify the return address and block.
 939   else {
 940     set_at_poll_safepoint(true);
 941 
 942     // verify the blob built the "return address" correctly
 943     assert(real_return_addr == caller_fr.pc(), "must match");
 944 
 945     // Block the thread
 946     SafepointSynchronize::block(thread());
 947     set_at_poll_safepoint(false);
 948 
 949     // If we have a pending async exception deoptimize the frame
 950     // as otherwise we may never deliver it.
 951     if (thread()->has_async_condition()) {
 952       ThreadInVMfromJavaNoAsyncException __tiv(thread());
 953       VM_DeoptimizeFrame deopt(thread(), caller_fr.id());
 954       VMThread::execute(&deopt);
 955     }
 956 
 957     // If an exception has been installed we must check for a pending deoptimization
 958     // Deoptimize frame if exception has been thrown.
 959 
 960     if (thread()->has_pending_exception() ) {
 961       RegisterMap map(thread(), true);
 962       frame caller_fr = stub_fr.sender(&map);
 963       if (caller_fr.is_deoptimized_frame()) {
 964         // The exception patch will destroy registers that are still
 965         // live and will be needed during deoptimization. Defer the
 966         // Async exception should have defered the exception until the
 967         // next safepoint which will be detected when we get into
 968         // the interpreter so if we have an exception now things
 969         // are messed up.
 970 
 971         fatal("Exception installed and deoptimization is pending");
 972       }
 973     }
 974   }
 975 }
 976 
 977 
 978 //
 979 //                     Statistics & Instrumentations
 980 //
 981 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
 982 int    SafepointSynchronize::_cur_stat_index = 0;
 983 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
 984 julong SafepointSynchronize::_coalesced_vmop_count = 0;
 985 jlong  SafepointSynchronize::_max_sync_time = 0;
 986 
 987 // last_safepoint_start_time records the start time of last safepoint.
 988 static jlong  last_safepoint_start_time = 0;
 989 static jlong  sync_end_time = 0;
 990 static bool   need_to_track_page_armed_status = false;
 991 static bool   init_done = false;
 992 
 993 void SafepointSynchronize::deferred_initialize_stat() {
 994   if (init_done) return;
 995 
 996   if (PrintSafepointStatisticsCount <= 0) {
 997     fatal("Wrong PrintSafepointStatisticsCount");
 998   }
 999 
1000   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1001   // be printed right away, in which case, _safepoint_stats will regress to
1002   // a single element array. Otherwise, it is a circular ring buffer with default
1003   // size of PrintSafepointStatisticsCount.
1004   int stats_array_size;
1005   if (PrintSafepointStatisticsTimeout > 0) {
1006     stats_array_size = 1;
1007     PrintSafepointStatistics = true;
1008   } else {
1009     stats_array_size = PrintSafepointStatisticsCount;
1010   }
1011   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1012                                                  * sizeof(SafepointStats));
1013   guarantee(_safepoint_stats != NULL,
1014             "not enough memory for safepoint instrumentation data");
1015 
1016   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
1017     need_to_track_page_armed_status = true;
1018   }
1019 
1020   tty->print("     vmop_name               "
1021              "[threads: total initially_running wait_to_block] ");
1022   tty->print("[time: spin block sync] "
1023              "[vmop_time  time_elapsed] ");
1024 
1025   // no page armed status printed out if it is always armed.
1026   if (need_to_track_page_armed_status) {
1027     tty->print("page_armed ");
1028   }
1029 
1030   tty->print_cr("page_trap_count");
1031 
1032   init_done = true;
1033 }
1034 
1035 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1036   assert(init_done, "safepoint statistics array hasn't been initialized");
1037   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1038 
1039   VM_Operation *op = VMThread::vm_operation();
1040   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1041   if (op != NULL) {
1042     _safepoint_reasons[spstat->_vmop_type]++;
1043   }
1044 
1045   spstat->_nof_total_threads = nof_threads;
1046   spstat->_nof_initial_running_threads = nof_running;
1047   spstat->_nof_threads_hit_page_trap = 0;
1048 
1049   // Records the start time of spinning. The real time spent on spinning
1050   // will be adjusted when spin is done. Same trick is applied for time
1051   // spent on waiting for threads to block.
1052   if (nof_running != 0) {
1053     spstat->_time_to_spin = os::javaTimeNanos();
1054   }  else {
1055     spstat->_time_to_spin = 0;
1056   }
1057 
1058   if (last_safepoint_start_time == 0) {
1059     spstat->_time_elapsed_since_last_safepoint = 0;
1060   } else {
1061     spstat->_time_elapsed_since_last_safepoint = _last_safepoint -
1062       last_safepoint_start_time;
1063   }
1064   last_safepoint_start_time = _last_safepoint;
1065 }
1066 
1067 void SafepointSynchronize::update_statistics_on_spin_end() {
1068   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1069 
1070   jlong cur_time = os::javaTimeNanos();
1071 
1072   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1073   if (spstat->_nof_initial_running_threads != 0) {
1074     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1075   }
1076 
1077   if (need_to_track_page_armed_status) {
1078     spstat->_page_armed = (PageArmed == 1);
1079   }
1080 
1081   // Records the start time of waiting for to block. Updated when block is done.
1082   if (_waiting_to_block != 0) {
1083     spstat->_time_to_wait_to_block = cur_time;
1084   } else {
1085     spstat->_time_to_wait_to_block = 0;
1086   }
1087 }
1088 
1089 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1090   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1091 
1092   if (spstat->_nof_threads_wait_to_block != 0) {
1093     spstat->_time_to_wait_to_block = end_time -
1094       spstat->_time_to_wait_to_block;
1095   }
1096 
1097   // Records the end time of sync which will be used to calculate the total
1098   // vm operation time. Again, the real time spending in syncing will be deducted
1099   // from the start of the sync time later when end_statistics is called.
1100   spstat->_time_to_sync = end_time - _last_safepoint;
1101   if (spstat->_time_to_sync > _max_sync_time) {
1102     _max_sync_time = spstat->_time_to_sync;
1103   }
1104   sync_end_time = end_time;
1105 }
1106 
1107 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1108   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1109 
1110   // Update the vm operation time.
1111   spstat->_time_to_exec_vmop = vmop_end_time -  sync_end_time;
1112   // Only the sync time longer than the specified
1113   // PrintSafepointStatisticsTimeout will be printed out right away.
1114   // By default, it is -1 meaning all samples will be put into the list.
1115   if ( PrintSafepointStatisticsTimeout > 0) {
1116     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1117       print_statistics();
1118     }
1119   } else {
1120     // The safepoint statistics will be printed out when the _safepoin_stats
1121     // array fills up.
1122     if (_cur_stat_index != PrintSafepointStatisticsCount - 1) {
1123       _cur_stat_index ++;
1124     } else {
1125       print_statistics();
1126       _cur_stat_index = 0;
1127       tty->print_cr("");
1128     }
1129   }
1130 }
1131 
1132 void SafepointSynchronize::print_statistics() {
1133   int index;
1134   SafepointStats* sstats = _safepoint_stats;
1135 
1136   for (index = 0; index <= _cur_stat_index; index++) {
1137     sstats = &_safepoint_stats[index];
1138     tty->print("%-28s       ["
1139                INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
1140                "]   ",
1141                sstats->_vmop_type == -1 ? "no vm operation" :
1142                VM_Operation::name(sstats->_vmop_type),
1143                sstats->_nof_total_threads,
1144                sstats->_nof_initial_running_threads,
1145                sstats->_nof_threads_wait_to_block);
1146     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1147     tty->print("       ["
1148                INT64_FORMAT_W(6)INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1149                "]     "
1150                "["INT64_FORMAT_W(6)INT64_FORMAT_W(9) "]          ",
1151                sstats->_time_to_spin / MICROUNITS,
1152                sstats->_time_to_wait_to_block / MICROUNITS,
1153                sstats->_time_to_sync / MICROUNITS,
1154                sstats->_time_to_exec_vmop / MICROUNITS,
1155                sstats->_time_elapsed_since_last_safepoint / MICROUNITS);
1156 
1157     if (need_to_track_page_armed_status) {
1158       tty->print(INT32_FORMAT"         ", sstats->_page_armed);
1159     }
1160     tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
1161   }
1162 }
1163 
1164 // This method will be called when VM exits. It will first call
1165 // print_statistics to print out the rest of the sampling.  Then
1166 // it tries to summarize the sampling.
1167 void SafepointSynchronize::print_stat_on_exit() {
1168   if (_safepoint_stats == NULL) return;
1169 
1170   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1171 
1172   // During VM exit, end_statistics may not get called and in that
1173   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1174   // don't print it out.
1175   // Approximate the vm op time.
1176   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1177     os::javaTimeNanos() - sync_end_time;
1178 
1179   if ( PrintSafepointStatisticsTimeout < 0 ||
1180        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1181     print_statistics();
1182   }
1183   tty->print_cr("");
1184 
1185   // Print out polling page sampling status.
1186   if (!need_to_track_page_armed_status) {
1187     if (UseCompilerSafepoints) {
1188       tty->print_cr("Polling page always armed");
1189     }
1190   } else {
1191     tty->print_cr("Defer polling page loop count = %d\n",
1192                  DeferPollingPageLoopCount);
1193   }
1194 
1195   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1196     if (_safepoint_reasons[index] != 0) {
1197       tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
1198                     _safepoint_reasons[index]);
1199     }
1200   }
1201 
1202   tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
1203                 _coalesced_vmop_count);
1204   tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
1205                 _max_sync_time / MICROUNITS);
1206 }
1207 
1208 // ------------------------------------------------------------------------------------------------
1209 // Non-product code
1210 
1211 #ifndef PRODUCT
1212 
1213 void SafepointSynchronize::print_state() {
1214   if (_state == _not_synchronized) {
1215     tty->print_cr("not synchronized");
1216   } else if (_state == _synchronizing || _state == _synchronized) {
1217     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1218                   "synchronized");
1219 
1220     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1221        cur->safepoint_state()->print();
1222     }
1223   }
1224 }
1225 
1226 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1227   if (ShowSafepointMsgs) {
1228     va_list ap;
1229     va_start(ap, format);
1230     tty->vprint_cr(format, ap);
1231     va_end(ap);
1232   }
1233 }
1234 
1235 #endif // !PRODUCT