1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc_interface/collectedHeap.inline.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "memory/cardTableModRefBS.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc_implementation/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  58   _is_lval = false;
  59   _target = target;
  60   switch (rtype) {
  61   case relocInfo::oop_type:
  62   case relocInfo::metadata_type:
  63     // Oops are a special case. Normally they would be their own section
  64     // but in cases like icBuffer they are literals in the code stream that
  65     // we don't have a section for. We use none so that we get a literal address
  66     // which is always patchable.
  67     break;
  68   case relocInfo::external_word_type:
  69     _rspec = external_word_Relocation::spec(target);
  70     break;
  71   case relocInfo::internal_word_type:
  72     _rspec = internal_word_Relocation::spec(target);
  73     break;
  74   case relocInfo::opt_virtual_call_type:
  75     _rspec = opt_virtual_call_Relocation::spec();
  76     break;
  77   case relocInfo::static_call_type:
  78     _rspec = static_call_Relocation::spec();
  79     break;
  80   case relocInfo::runtime_call_type:
  81     _rspec = runtime_call_Relocation::spec();
  82     break;
  83   case relocInfo::poll_type:
  84   case relocInfo::poll_return_type:
  85     _rspec = Relocation::spec_simple(rtype);
  86     break;
  87   case relocInfo::none:
  88     break;
  89   default:
  90     ShouldNotReachHere();
  91     break;
  92   }
  93 }
  94 
  95 // Implementation of Address
  96 
  97 #ifdef _LP64
  98 
  99 Address Address::make_array(ArrayAddress adr) {
 100   // Not implementable on 64bit machines
 101   // Should have been handled higher up the call chain.
 102   ShouldNotReachHere();
 103   return Address();
 104 }
 105 
 106 // exceedingly dangerous constructor
 107 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 108   _base  = noreg;
 109   _index = noreg;
 110   _scale = no_scale;
 111   _disp  = disp;
 112   switch (rtype) {
 113     case relocInfo::external_word_type:
 114       _rspec = external_word_Relocation::spec(loc);
 115       break;
 116     case relocInfo::internal_word_type:
 117       _rspec = internal_word_Relocation::spec(loc);
 118       break;
 119     case relocInfo::runtime_call_type:
 120       // HMM
 121       _rspec = runtime_call_Relocation::spec();
 122       break;
 123     case relocInfo::poll_type:
 124     case relocInfo::poll_return_type:
 125       _rspec = Relocation::spec_simple(rtype);
 126       break;
 127     case relocInfo::none:
 128       break;
 129     default:
 130       ShouldNotReachHere();
 131   }
 132 }
 133 #else // LP64
 134 
 135 Address Address::make_array(ArrayAddress adr) {
 136   AddressLiteral base = adr.base();
 137   Address index = adr.index();
 138   assert(index._disp == 0, "must not have disp"); // maybe it can?
 139   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 140   array._rspec = base._rspec;
 141   return array;
 142 }
 143 
 144 // exceedingly dangerous constructor
 145 Address::Address(address loc, RelocationHolder spec) {
 146   _base  = noreg;
 147   _index = noreg;
 148   _scale = no_scale;
 149   _disp  = (intptr_t) loc;
 150   _rspec = spec;
 151 }
 152 
 153 #endif // _LP64
 154 
 155 
 156 
 157 // Convert the raw encoding form into the form expected by the constructor for
 158 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 159 // that to noreg for the Address constructor.
 160 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 161   RelocationHolder rspec;
 162   if (disp_reloc != relocInfo::none) {
 163     rspec = Relocation::spec_simple(disp_reloc);
 164   }
 165   bool valid_index = index != rsp->encoding();
 166   if (valid_index) {
 167     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 168     madr._rspec = rspec;
 169     return madr;
 170   } else {
 171     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 172     madr._rspec = rspec;
 173     return madr;
 174   }
 175 }
 176 
 177 // Implementation of Assembler
 178 
 179 int AbstractAssembler::code_fill_byte() {
 180   return (u_char)'\xF4'; // hlt
 181 }
 182 
 183 // make this go away someday
 184 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 185   if (rtype == relocInfo::none)
 186         emit_int32(data);
 187   else  emit_data(data, Relocation::spec_simple(rtype), format);
 188 }
 189 
 190 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 191   assert(imm_operand == 0, "default format must be immediate in this file");
 192   assert(inst_mark() != NULL, "must be inside InstructionMark");
 193   if (rspec.type() !=  relocInfo::none) {
 194     #ifdef ASSERT
 195       check_relocation(rspec, format);
 196     #endif
 197     // Do not use AbstractAssembler::relocate, which is not intended for
 198     // embedded words.  Instead, relocate to the enclosing instruction.
 199 
 200     // hack. call32 is too wide for mask so use disp32
 201     if (format == call32_operand)
 202       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 203     else
 204       code_section()->relocate(inst_mark(), rspec, format);
 205   }
 206   emit_int32(data);
 207 }
 208 
 209 static int encode(Register r) {
 210   int enc = r->encoding();
 211   if (enc >= 8) {
 212     enc -= 8;
 213   }
 214   return enc;
 215 }
 216 
 217 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 218   assert(dst->has_byte_register(), "must have byte register");
 219   assert(isByte(op1) && isByte(op2), "wrong opcode");
 220   assert(isByte(imm8), "not a byte");
 221   assert((op1 & 0x01) == 0, "should be 8bit operation");
 222   emit_int8(op1);
 223   emit_int8(op2 | encode(dst));
 224   emit_int8(imm8);
 225 }
 226 
 227 
 228 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 229   assert(isByte(op1) && isByte(op2), "wrong opcode");
 230   assert((op1 & 0x01) == 1, "should be 32bit operation");
 231   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 232   if (is8bit(imm32)) {
 233     emit_int8(op1 | 0x02); // set sign bit
 234     emit_int8(op2 | encode(dst));
 235     emit_int8(imm32 & 0xFF);
 236   } else {
 237     emit_int8(op1);
 238     emit_int8(op2 | encode(dst));
 239     emit_int32(imm32);
 240   }
 241 }
 242 
 243 // Force generation of a 4 byte immediate value even if it fits into 8bit
 244 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 245   assert(isByte(op1) && isByte(op2), "wrong opcode");
 246   assert((op1 & 0x01) == 1, "should be 32bit operation");
 247   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 248   emit_int8(op1);
 249   emit_int8(op2 | encode(dst));
 250   emit_int32(imm32);
 251 }
 252 
 253 // immediate-to-memory forms
 254 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 255   assert((op1 & 0x01) == 1, "should be 32bit operation");
 256   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 257   if (is8bit(imm32)) {
 258     emit_int8(op1 | 0x02); // set sign bit
 259     emit_operand(rm, adr, 1);
 260     emit_int8(imm32 & 0xFF);
 261   } else {
 262     emit_int8(op1);
 263     emit_operand(rm, adr, 4);
 264     emit_int32(imm32);
 265   }
 266 }
 267 
 268 
 269 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 270   assert(isByte(op1) && isByte(op2), "wrong opcode");
 271   emit_int8(op1);
 272   emit_int8(op2 | encode(dst) << 3 | encode(src));
 273 }
 274 
 275 
 276 void Assembler::emit_operand(Register reg, Register base, Register index,
 277                              Address::ScaleFactor scale, int disp,
 278                              RelocationHolder const& rspec,
 279                              int rip_relative_correction) {
 280   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 281 
 282   // Encode the registers as needed in the fields they are used in
 283 
 284   int regenc = encode(reg) << 3;
 285   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 286   int baseenc = base->is_valid() ? encode(base) : 0;
 287 
 288   if (base->is_valid()) {
 289     if (index->is_valid()) {
 290       assert(scale != Address::no_scale, "inconsistent address");
 291       // [base + index*scale + disp]
 292       if (disp == 0 && rtype == relocInfo::none  &&
 293           base != rbp LP64_ONLY(&& base != r13)) {
 294         // [base + index*scale]
 295         // [00 reg 100][ss index base]
 296         assert(index != rsp, "illegal addressing mode");
 297         emit_int8(0x04 | regenc);
 298         emit_int8(scale << 6 | indexenc | baseenc);
 299       } else if (is8bit(disp) && rtype == relocInfo::none) {
 300         // [base + index*scale + imm8]
 301         // [01 reg 100][ss index base] imm8
 302         assert(index != rsp, "illegal addressing mode");
 303         emit_int8(0x44 | regenc);
 304         emit_int8(scale << 6 | indexenc | baseenc);
 305         emit_int8(disp & 0xFF);
 306       } else {
 307         // [base + index*scale + disp32]
 308         // [10 reg 100][ss index base] disp32
 309         assert(index != rsp, "illegal addressing mode");
 310         emit_int8(0x84 | regenc);
 311         emit_int8(scale << 6 | indexenc | baseenc);
 312         emit_data(disp, rspec, disp32_operand);
 313       }
 314     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 315       // [rsp + disp]
 316       if (disp == 0 && rtype == relocInfo::none) {
 317         // [rsp]
 318         // [00 reg 100][00 100 100]
 319         emit_int8(0x04 | regenc);
 320         emit_int8(0x24);
 321       } else if (is8bit(disp) && rtype == relocInfo::none) {
 322         // [rsp + imm8]
 323         // [01 reg 100][00 100 100] disp8
 324         emit_int8(0x44 | regenc);
 325         emit_int8(0x24);
 326         emit_int8(disp & 0xFF);
 327       } else {
 328         // [rsp + imm32]
 329         // [10 reg 100][00 100 100] disp32
 330         emit_int8(0x84 | regenc);
 331         emit_int8(0x24);
 332         emit_data(disp, rspec, disp32_operand);
 333       }
 334     } else {
 335       // [base + disp]
 336       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 337       if (disp == 0 && rtype == relocInfo::none &&
 338           base != rbp LP64_ONLY(&& base != r13)) {
 339         // [base]
 340         // [00 reg base]
 341         emit_int8(0x00 | regenc | baseenc);
 342       } else if (is8bit(disp) && rtype == relocInfo::none) {
 343         // [base + disp8]
 344         // [01 reg base] disp8
 345         emit_int8(0x40 | regenc | baseenc);
 346         emit_int8(disp & 0xFF);
 347       } else {
 348         // [base + disp32]
 349         // [10 reg base] disp32
 350         emit_int8(0x80 | regenc | baseenc);
 351         emit_data(disp, rspec, disp32_operand);
 352       }
 353     }
 354   } else {
 355     if (index->is_valid()) {
 356       assert(scale != Address::no_scale, "inconsistent address");
 357       // [index*scale + disp]
 358       // [00 reg 100][ss index 101] disp32
 359       assert(index != rsp, "illegal addressing mode");
 360       emit_int8(0x04 | regenc);
 361       emit_int8(scale << 6 | indexenc | 0x05);
 362       emit_data(disp, rspec, disp32_operand);
 363     } else if (rtype != relocInfo::none ) {
 364       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 365       // [00 000 101] disp32
 366 
 367       emit_int8(0x05 | regenc);
 368       // Note that the RIP-rel. correction applies to the generated
 369       // disp field, but _not_ to the target address in the rspec.
 370 
 371       // disp was created by converting the target address minus the pc
 372       // at the start of the instruction. That needs more correction here.
 373       // intptr_t disp = target - next_ip;
 374       assert(inst_mark() != NULL, "must be inside InstructionMark");
 375       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 376       int64_t adjusted = disp;
 377       // Do rip-rel adjustment for 64bit
 378       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 379       assert(is_simm32(adjusted),
 380              "must be 32bit offset (RIP relative address)");
 381       emit_data((int32_t) adjusted, rspec, disp32_operand);
 382 
 383     } else {
 384       // 32bit never did this, did everything as the rip-rel/disp code above
 385       // [disp] ABSOLUTE
 386       // [00 reg 100][00 100 101] disp32
 387       emit_int8(0x04 | regenc);
 388       emit_int8(0x25);
 389       emit_data(disp, rspec, disp32_operand);
 390     }
 391   }
 392 }
 393 
 394 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 395                              Address::ScaleFactor scale, int disp,
 396                              RelocationHolder const& rspec) {
 397   emit_operand((Register)reg, base, index, scale, disp, rspec);
 398 }
 399 
 400 // Secret local extension to Assembler::WhichOperand:
 401 #define end_pc_operand (_WhichOperand_limit)
 402 
 403 address Assembler::locate_operand(address inst, WhichOperand which) {
 404   // Decode the given instruction, and return the address of
 405   // an embedded 32-bit operand word.
 406 
 407   // If "which" is disp32_operand, selects the displacement portion
 408   // of an effective address specifier.
 409   // If "which" is imm64_operand, selects the trailing immediate constant.
 410   // If "which" is call32_operand, selects the displacement of a call or jump.
 411   // Caller is responsible for ensuring that there is such an operand,
 412   // and that it is 32/64 bits wide.
 413 
 414   // If "which" is end_pc_operand, find the end of the instruction.
 415 
 416   address ip = inst;
 417   bool is_64bit = false;
 418 
 419   debug_only(bool has_disp32 = false);
 420   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 421 
 422   again_after_prefix:
 423   switch (0xFF & *ip++) {
 424 
 425   // These convenience macros generate groups of "case" labels for the switch.
 426 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 427 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 428              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 429 #define REP16(x) REP8((x)+0): \
 430               case REP8((x)+8)
 431 
 432   case CS_segment:
 433   case SS_segment:
 434   case DS_segment:
 435   case ES_segment:
 436   case FS_segment:
 437   case GS_segment:
 438     // Seems dubious
 439     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 440     assert(ip == inst+1, "only one prefix allowed");
 441     goto again_after_prefix;
 442 
 443   case 0x67:
 444   case REX:
 445   case REX_B:
 446   case REX_X:
 447   case REX_XB:
 448   case REX_R:
 449   case REX_RB:
 450   case REX_RX:
 451   case REX_RXB:
 452     NOT_LP64(assert(false, "64bit prefixes"));
 453     goto again_after_prefix;
 454 
 455   case REX_W:
 456   case REX_WB:
 457   case REX_WX:
 458   case REX_WXB:
 459   case REX_WR:
 460   case REX_WRB:
 461   case REX_WRX:
 462   case REX_WRXB:
 463     NOT_LP64(assert(false, "64bit prefixes"));
 464     is_64bit = true;
 465     goto again_after_prefix;
 466 
 467   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 468   case 0x88: // movb a, r
 469   case 0x89: // movl a, r
 470   case 0x8A: // movb r, a
 471   case 0x8B: // movl r, a
 472   case 0x8F: // popl a
 473     debug_only(has_disp32 = true);
 474     break;
 475 
 476   case 0x68: // pushq #32
 477     if (which == end_pc_operand) {
 478       return ip + 4;
 479     }
 480     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 481     return ip;                  // not produced by emit_operand
 482 
 483   case 0x66: // movw ... (size prefix)
 484     again_after_size_prefix2:
 485     switch (0xFF & *ip++) {
 486     case REX:
 487     case REX_B:
 488     case REX_X:
 489     case REX_XB:
 490     case REX_R:
 491     case REX_RB:
 492     case REX_RX:
 493     case REX_RXB:
 494     case REX_W:
 495     case REX_WB:
 496     case REX_WX:
 497     case REX_WXB:
 498     case REX_WR:
 499     case REX_WRB:
 500     case REX_WRX:
 501     case REX_WRXB:
 502       NOT_LP64(assert(false, "64bit prefix found"));
 503       goto again_after_size_prefix2;
 504     case 0x8B: // movw r, a
 505     case 0x89: // movw a, r
 506       debug_only(has_disp32 = true);
 507       break;
 508     case 0xC7: // movw a, #16
 509       debug_only(has_disp32 = true);
 510       tail_size = 2;  // the imm16
 511       break;
 512     case 0x0F: // several SSE/SSE2 variants
 513       ip--;    // reparse the 0x0F
 514       goto again_after_prefix;
 515     default:
 516       ShouldNotReachHere();
 517     }
 518     break;
 519 
 520   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 521     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 522     // these asserts are somewhat nonsensical
 523 #ifndef _LP64
 524     assert(which == imm_operand || which == disp32_operand,
 525            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 526 #else
 527     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 528            which == narrow_oop_operand && !is_64bit,
 529            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 530 #endif // _LP64
 531     return ip;
 532 
 533   case 0x69: // imul r, a, #32
 534   case 0xC7: // movl a, #32(oop?)
 535     tail_size = 4;
 536     debug_only(has_disp32 = true); // has both kinds of operands!
 537     break;
 538 
 539   case 0x0F: // movx..., etc.
 540     switch (0xFF & *ip++) {
 541     case 0x3A: // pcmpestri
 542       tail_size = 1;
 543     case 0x38: // ptest, pmovzxbw
 544       ip++; // skip opcode
 545       debug_only(has_disp32 = true); // has both kinds of operands!
 546       break;
 547 
 548     case 0x70: // pshufd r, r/a, #8
 549       debug_only(has_disp32 = true); // has both kinds of operands!
 550     case 0x73: // psrldq r, #8
 551       tail_size = 1;
 552       break;
 553 
 554     case 0x12: // movlps
 555     case 0x28: // movaps
 556     case 0x2E: // ucomiss
 557     case 0x2F: // comiss
 558     case 0x54: // andps
 559     case 0x55: // andnps
 560     case 0x56: // orps
 561     case 0x57: // xorps
 562     case 0x6E: // movd
 563     case 0x7E: // movd
 564     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 565       debug_only(has_disp32 = true);
 566       break;
 567 
 568     case 0xAD: // shrd r, a, %cl
 569     case 0xAF: // imul r, a
 570     case 0xBE: // movsbl r, a (movsxb)
 571     case 0xBF: // movswl r, a (movsxw)
 572     case 0xB6: // movzbl r, a (movzxb)
 573     case 0xB7: // movzwl r, a (movzxw)
 574     case REP16(0x40): // cmovl cc, r, a
 575     case 0xB0: // cmpxchgb
 576     case 0xB1: // cmpxchg
 577     case 0xC1: // xaddl
 578     case 0xC7: // cmpxchg8
 579     case REP16(0x90): // setcc a
 580       debug_only(has_disp32 = true);
 581       // fall out of the switch to decode the address
 582       break;
 583 
 584     case 0xC4: // pinsrw r, a, #8
 585       debug_only(has_disp32 = true);
 586     case 0xC5: // pextrw r, r, #8
 587       tail_size = 1;  // the imm8
 588       break;
 589 
 590     case 0xAC: // shrd r, a, #8
 591       debug_only(has_disp32 = true);
 592       tail_size = 1;  // the imm8
 593       break;
 594 
 595     case REP16(0x80): // jcc rdisp32
 596       if (which == end_pc_operand)  return ip + 4;
 597       assert(which == call32_operand, "jcc has no disp32 or imm");
 598       return ip;
 599     default:
 600       ShouldNotReachHere();
 601     }
 602     break;
 603 
 604   case 0x81: // addl a, #32; addl r, #32
 605     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 606     // on 32bit in the case of cmpl, the imm might be an oop
 607     tail_size = 4;
 608     debug_only(has_disp32 = true); // has both kinds of operands!
 609     break;
 610 
 611   case 0x83: // addl a, #8; addl r, #8
 612     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 613     debug_only(has_disp32 = true); // has both kinds of operands!
 614     tail_size = 1;
 615     break;
 616 
 617   case 0x9B:
 618     switch (0xFF & *ip++) {
 619     case 0xD9: // fnstcw a
 620       debug_only(has_disp32 = true);
 621       break;
 622     default:
 623       ShouldNotReachHere();
 624     }
 625     break;
 626 
 627   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 628   case REP4(0x10): // adc...
 629   case REP4(0x20): // and...
 630   case REP4(0x30): // xor...
 631   case REP4(0x08): // or...
 632   case REP4(0x18): // sbb...
 633   case REP4(0x28): // sub...
 634   case 0xF7: // mull a
 635   case 0x8D: // lea r, a
 636   case 0x87: // xchg r, a
 637   case REP4(0x38): // cmp...
 638   case 0x85: // test r, a
 639     debug_only(has_disp32 = true); // has both kinds of operands!
 640     break;
 641 
 642   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 643   case 0xC6: // movb a, #8
 644   case 0x80: // cmpb a, #8
 645   case 0x6B: // imul r, a, #8
 646     debug_only(has_disp32 = true); // has both kinds of operands!
 647     tail_size = 1; // the imm8
 648     break;
 649 
 650   case 0xC4: // VEX_3bytes
 651   case 0xC5: // VEX_2bytes
 652     assert((UseAVX > 0), "shouldn't have VEX prefix");
 653     assert(ip == inst+1, "no prefixes allowed");
 654     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 655     // but they have prefix 0x0F and processed when 0x0F processed above.
 656     //
 657     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 658     // instructions (these instructions are not supported in 64-bit mode).
 659     // To distinguish them bits [7:6] are set in the VEX second byte since
 660     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 661     // those VEX bits REX and vvvv bits are inverted.
 662     //
 663     // Fortunately C2 doesn't generate these instructions so we don't need
 664     // to check for them in product version.
 665 
 666     // Check second byte
 667     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 668 
 669     // First byte
 670     if ((0xFF & *inst) == VEX_3bytes) {
 671       ip++; // third byte
 672       is_64bit = ((VEX_W & *ip) == VEX_W);
 673     }
 674     ip++; // opcode
 675     // To find the end of instruction (which == end_pc_operand).
 676     switch (0xFF & *ip) {
 677     case 0x61: // pcmpestri r, r/a, #8
 678     case 0x70: // pshufd r, r/a, #8
 679     case 0x73: // psrldq r, #8
 680       tail_size = 1;  // the imm8
 681       break;
 682     default:
 683       break;
 684     }
 685     ip++; // skip opcode
 686     debug_only(has_disp32 = true); // has both kinds of operands!
 687     break;
 688 
 689   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 690   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 691   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 692   case 0xDD: // fld_d a; fst_d a; fstp_d a
 693   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 694   case 0xDF: // fild_d a; fistp_d a
 695   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 696   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 697   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 698     debug_only(has_disp32 = true);
 699     break;
 700 
 701   case 0xE8: // call rdisp32
 702   case 0xE9: // jmp  rdisp32
 703     if (which == end_pc_operand)  return ip + 4;
 704     assert(which == call32_operand, "call has no disp32 or imm");
 705     return ip;
 706 
 707   case 0xF0:                    // Lock
 708     assert(os::is_MP(), "only on MP");
 709     goto again_after_prefix;
 710 
 711   case 0xF3:                    // For SSE
 712   case 0xF2:                    // For SSE2
 713     switch (0xFF & *ip++) {
 714     case REX:
 715     case REX_B:
 716     case REX_X:
 717     case REX_XB:
 718     case REX_R:
 719     case REX_RB:
 720     case REX_RX:
 721     case REX_RXB:
 722     case REX_W:
 723     case REX_WB:
 724     case REX_WX:
 725     case REX_WXB:
 726     case REX_WR:
 727     case REX_WRB:
 728     case REX_WRX:
 729     case REX_WRXB:
 730       NOT_LP64(assert(false, "found 64bit prefix"));
 731       ip++;
 732     default:
 733       ip++;
 734     }
 735     debug_only(has_disp32 = true); // has both kinds of operands!
 736     break;
 737 
 738   default:
 739     ShouldNotReachHere();
 740 
 741 #undef REP8
 742 #undef REP16
 743   }
 744 
 745   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 746 #ifdef _LP64
 747   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 748 #else
 749   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 750   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 751 #endif // LP64
 752   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 753 
 754   // parse the output of emit_operand
 755   int op2 = 0xFF & *ip++;
 756   int base = op2 & 0x07;
 757   int op3 = -1;
 758   const int b100 = 4;
 759   const int b101 = 5;
 760   if (base == b100 && (op2 >> 6) != 3) {
 761     op3 = 0xFF & *ip++;
 762     base = op3 & 0x07;   // refetch the base
 763   }
 764   // now ip points at the disp (if any)
 765 
 766   switch (op2 >> 6) {
 767   case 0:
 768     // [00 reg  100][ss index base]
 769     // [00 reg  100][00   100  esp]
 770     // [00 reg base]
 771     // [00 reg  100][ss index  101][disp32]
 772     // [00 reg  101]               [disp32]
 773 
 774     if (base == b101) {
 775       if (which == disp32_operand)
 776         return ip;              // caller wants the disp32
 777       ip += 4;                  // skip the disp32
 778     }
 779     break;
 780 
 781   case 1:
 782     // [01 reg  100][ss index base][disp8]
 783     // [01 reg  100][00   100  esp][disp8]
 784     // [01 reg base]               [disp8]
 785     ip += 1;                    // skip the disp8
 786     break;
 787 
 788   case 2:
 789     // [10 reg  100][ss index base][disp32]
 790     // [10 reg  100][00   100  esp][disp32]
 791     // [10 reg base]               [disp32]
 792     if (which == disp32_operand)
 793       return ip;                // caller wants the disp32
 794     ip += 4;                    // skip the disp32
 795     break;
 796 
 797   case 3:
 798     // [11 reg base]  (not a memory addressing mode)
 799     break;
 800   }
 801 
 802   if (which == end_pc_operand) {
 803     return ip + tail_size;
 804   }
 805 
 806 #ifdef _LP64
 807   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
 808 #else
 809   assert(which == imm_operand, "instruction has only an imm field");
 810 #endif // LP64
 811   return ip;
 812 }
 813 
 814 address Assembler::locate_next_instruction(address inst) {
 815   // Secretly share code with locate_operand:
 816   return locate_operand(inst, end_pc_operand);
 817 }
 818 
 819 
 820 #ifdef ASSERT
 821 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
 822   address inst = inst_mark();
 823   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
 824   address opnd;
 825 
 826   Relocation* r = rspec.reloc();
 827   if (r->type() == relocInfo::none) {
 828     return;
 829   } else if (r->is_call() || format == call32_operand) {
 830     // assert(format == imm32_operand, "cannot specify a nonzero format");
 831     opnd = locate_operand(inst, call32_operand);
 832   } else if (r->is_data()) {
 833     assert(format == imm_operand || format == disp32_operand
 834            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
 835     opnd = locate_operand(inst, (WhichOperand)format);
 836   } else {
 837     assert(format == imm_operand, "cannot specify a format");
 838     return;
 839   }
 840   assert(opnd == pc(), "must put operand where relocs can find it");
 841 }
 842 #endif // ASSERT
 843 
 844 void Assembler::emit_operand32(Register reg, Address adr) {
 845   assert(reg->encoding() < 8, "no extended registers");
 846   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 847   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 848                adr._rspec);
 849 }
 850 
 851 void Assembler::emit_operand(Register reg, Address adr,
 852                              int rip_relative_correction) {
 853   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 854                adr._rspec,
 855                rip_relative_correction);
 856 }
 857 
 858 void Assembler::emit_operand(XMMRegister reg, Address adr) {
 859   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 860                adr._rspec);
 861 }
 862 
 863 // MMX operations
 864 void Assembler::emit_operand(MMXRegister reg, Address adr) {
 865   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 866   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 867 }
 868 
 869 // work around gcc (3.2.1-7a) bug
 870 void Assembler::emit_operand(Address adr, MMXRegister reg) {
 871   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 872   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 873 }
 874 
 875 
 876 void Assembler::emit_farith(int b1, int b2, int i) {
 877   assert(isByte(b1) && isByte(b2), "wrong opcode");
 878   assert(0 <= i &&  i < 8, "illegal stack offset");
 879   emit_int8(b1);
 880   emit_int8(b2 + i);
 881 }
 882 
 883 
 884 // Now the Assembler instructions (identical for 32/64 bits)
 885 
 886 void Assembler::adcl(Address dst, int32_t imm32) {
 887   InstructionMark im(this);
 888   prefix(dst);
 889   emit_arith_operand(0x81, rdx, dst, imm32);
 890 }
 891 
 892 void Assembler::adcl(Address dst, Register src) {
 893   InstructionMark im(this);
 894   prefix(dst, src);
 895   emit_int8(0x11);
 896   emit_operand(src, dst);
 897 }
 898 
 899 void Assembler::adcl(Register dst, int32_t imm32) {
 900   prefix(dst);
 901   emit_arith(0x81, 0xD0, dst, imm32);
 902 }
 903 
 904 void Assembler::adcl(Register dst, Address src) {
 905   InstructionMark im(this);
 906   prefix(src, dst);
 907   emit_int8(0x13);
 908   emit_operand(dst, src);
 909 }
 910 
 911 void Assembler::adcl(Register dst, Register src) {
 912   (void) prefix_and_encode(dst->encoding(), src->encoding());
 913   emit_arith(0x13, 0xC0, dst, src);
 914 }
 915 
 916 void Assembler::addl(Address dst, int32_t imm32) {
 917   InstructionMark im(this);
 918   prefix(dst);
 919   emit_arith_operand(0x81, rax, dst, imm32);
 920 }
 921 
 922 void Assembler::addl(Address dst, Register src) {
 923   InstructionMark im(this);
 924   prefix(dst, src);
 925   emit_int8(0x01);
 926   emit_operand(src, dst);
 927 }
 928 
 929 void Assembler::addl(Register dst, int32_t imm32) {
 930   prefix(dst);
 931   emit_arith(0x81, 0xC0, dst, imm32);
 932 }
 933 
 934 void Assembler::addl(Register dst, Address src) {
 935   InstructionMark im(this);
 936   prefix(src, dst);
 937   emit_int8(0x03);
 938   emit_operand(dst, src);
 939 }
 940 
 941 void Assembler::addl(Register dst, Register src) {
 942   (void) prefix_and_encode(dst->encoding(), src->encoding());
 943   emit_arith(0x03, 0xC0, dst, src);
 944 }
 945 
 946 void Assembler::addr_nop_4() {
 947   assert(UseAddressNop, "no CPU support");
 948   // 4 bytes: NOP DWORD PTR [EAX+0]
 949   emit_int8(0x0F);
 950   emit_int8(0x1F);
 951   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
 952   emit_int8(0);    // 8-bits offset (1 byte)
 953 }
 954 
 955 void Assembler::addr_nop_5() {
 956   assert(UseAddressNop, "no CPU support");
 957   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
 958   emit_int8(0x0F);
 959   emit_int8(0x1F);
 960   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
 961   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 962   emit_int8(0);    // 8-bits offset (1 byte)
 963 }
 964 
 965 void Assembler::addr_nop_7() {
 966   assert(UseAddressNop, "no CPU support");
 967   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
 968   emit_int8(0x0F);
 969   emit_int8(0x1F);
 970   emit_int8((unsigned char)0x80);
 971                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
 972   emit_int32(0);   // 32-bits offset (4 bytes)
 973 }
 974 
 975 void Assembler::addr_nop_8() {
 976   assert(UseAddressNop, "no CPU support");
 977   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
 978   emit_int8(0x0F);
 979   emit_int8(0x1F);
 980   emit_int8((unsigned char)0x84);
 981                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
 982   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 983   emit_int32(0);   // 32-bits offset (4 bytes)
 984 }
 985 
 986 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
 987   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 988   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
 989 }
 990 
 991 void Assembler::addsd(XMMRegister dst, Address src) {
 992   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 993   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
 994 }
 995 
 996 void Assembler::addss(XMMRegister dst, XMMRegister src) {
 997   NOT_LP64(assert(VM_Version::supports_sse(), ""));
 998   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
 999 }
1000 
1001 void Assembler::addss(XMMRegister dst, Address src) {
1002   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1003   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1004 }
1005 
1006 void Assembler::aesdec(XMMRegister dst, Address src) {
1007   assert(VM_Version::supports_aes(), "");
1008   InstructionMark im(this);
1009   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1010   emit_int8((unsigned char)0xDE);
1011   emit_operand(dst, src);
1012 }
1013 
1014 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1015   assert(VM_Version::supports_aes(), "");
1016   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1017   emit_int8((unsigned char)0xDE);
1018   emit_int8(0xC0 | encode);
1019 }
1020 
1021 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1022   assert(VM_Version::supports_aes(), "");
1023   InstructionMark im(this);
1024   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1025   emit_int8((unsigned char)0xDF);
1026   emit_operand(dst, src);
1027 }
1028 
1029 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1030   assert(VM_Version::supports_aes(), "");
1031   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1032   emit_int8((unsigned char)0xDF);
1033   emit_int8((unsigned char)(0xC0 | encode));
1034 }
1035 
1036 void Assembler::aesenc(XMMRegister dst, Address src) {
1037   assert(VM_Version::supports_aes(), "");
1038   InstructionMark im(this);
1039   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1040   emit_int8((unsigned char)0xDC);
1041   emit_operand(dst, src);
1042 }
1043 
1044 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1045   assert(VM_Version::supports_aes(), "");
1046   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1047   emit_int8((unsigned char)0xDC);
1048   emit_int8(0xC0 | encode);
1049 }
1050 
1051 void Assembler::aesenclast(XMMRegister dst, Address src) {
1052   assert(VM_Version::supports_aes(), "");
1053   InstructionMark im(this);
1054   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1055   emit_int8((unsigned char)0xDD);
1056   emit_operand(dst, src);
1057 }
1058 
1059 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1060   assert(VM_Version::supports_aes(), "");
1061   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1062   emit_int8((unsigned char)0xDD);
1063   emit_int8((unsigned char)(0xC0 | encode));
1064 }
1065 
1066 
1067 void Assembler::andl(Address dst, int32_t imm32) {
1068   InstructionMark im(this);
1069   prefix(dst);
1070   emit_int8((unsigned char)0x81);
1071   emit_operand(rsp, dst, 4);
1072   emit_int32(imm32);
1073 }
1074 
1075 void Assembler::andl(Register dst, int32_t imm32) {
1076   prefix(dst);
1077   emit_arith(0x81, 0xE0, dst, imm32);
1078 }
1079 
1080 void Assembler::andl(Register dst, Address src) {
1081   InstructionMark im(this);
1082   prefix(src, dst);
1083   emit_int8(0x23);
1084   emit_operand(dst, src);
1085 }
1086 
1087 void Assembler::andl(Register dst, Register src) {
1088   (void) prefix_and_encode(dst->encoding(), src->encoding());
1089   emit_arith(0x23, 0xC0, dst, src);
1090 }
1091 
1092 void Assembler::andnl(Register dst, Register src1, Register src2) {
1093   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1094   int encode = vex_prefix_0F38_and_encode(dst, src1, src2);
1095   emit_int8((unsigned char)0xF2);
1096   emit_int8((unsigned char)(0xC0 | encode));
1097 }
1098 
1099 void Assembler::andnl(Register dst, Register src1, Address src2) {
1100   InstructionMark im(this);
1101   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1102   vex_prefix_0F38(dst, src1, src2);
1103   emit_int8((unsigned char)0xF2);
1104   emit_operand(dst, src2);
1105 }
1106 
1107 void Assembler::bsfl(Register dst, Register src) {
1108   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1109   emit_int8(0x0F);
1110   emit_int8((unsigned char)0xBC);
1111   emit_int8((unsigned char)(0xC0 | encode));
1112 }
1113 
1114 void Assembler::bsrl(Register dst, Register src) {
1115   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1116   emit_int8(0x0F);
1117   emit_int8((unsigned char)0xBD);
1118   emit_int8((unsigned char)(0xC0 | encode));
1119 }
1120 
1121 void Assembler::bswapl(Register reg) { // bswap
1122   int encode = prefix_and_encode(reg->encoding());
1123   emit_int8(0x0F);
1124   emit_int8((unsigned char)(0xC8 | encode));
1125 }
1126 
1127 void Assembler::blsil(Register dst, Register src) {
1128   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1129   int encode = vex_prefix_0F38_and_encode(rbx, dst, src);
1130   emit_int8((unsigned char)0xF3);
1131   emit_int8((unsigned char)(0xC0 | encode));
1132 }
1133 
1134 void Assembler::blsil(Register dst, Address src) {
1135   InstructionMark im(this);
1136   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1137   vex_prefix_0F38(rbx, dst, src);
1138   emit_int8((unsigned char)0xF3);
1139   emit_operand(rbx, src);
1140 }
1141 
1142 void Assembler::blsmskl(Register dst, Register src) {
1143   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1144   int encode = vex_prefix_0F38_and_encode(rdx, dst, src);
1145   emit_int8((unsigned char)0xF3);
1146   emit_int8((unsigned char)(0xC0 | encode));
1147 }
1148 
1149 void Assembler::blsmskl(Register dst, Address src) {
1150   InstructionMark im(this);
1151   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1152   vex_prefix_0F38(rdx, dst, src);
1153   emit_int8((unsigned char)0xF3);
1154   emit_operand(rdx, src);
1155 }
1156 
1157 void Assembler::blsrl(Register dst, Register src) {
1158   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1159   int encode = vex_prefix_0F38_and_encode(rcx, dst, src);
1160   emit_int8((unsigned char)0xF3);
1161   emit_int8((unsigned char)(0xC0 | encode));
1162 }
1163 
1164 void Assembler::blsrl(Register dst, Address src) {
1165   InstructionMark im(this);
1166   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1167   vex_prefix_0F38(rcx, dst, src);
1168   emit_int8((unsigned char)0xF3);
1169   emit_operand(rcx, src);
1170 }
1171 
1172 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1173   // suspect disp32 is always good
1174   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1175 
1176   if (L.is_bound()) {
1177     const int long_size = 5;
1178     int offs = (int)( target(L) - pc() );
1179     assert(offs <= 0, "assembler error");
1180     InstructionMark im(this);
1181     // 1110 1000 #32-bit disp
1182     emit_int8((unsigned char)0xE8);
1183     emit_data(offs - long_size, rtype, operand);
1184   } else {
1185     InstructionMark im(this);
1186     // 1110 1000 #32-bit disp
1187     L.add_patch_at(code(), locator());
1188 
1189     emit_int8((unsigned char)0xE8);
1190     emit_data(int(0), rtype, operand);
1191   }
1192 }
1193 
1194 void Assembler::call(Register dst) {
1195   int encode = prefix_and_encode(dst->encoding());
1196   emit_int8((unsigned char)0xFF);
1197   emit_int8((unsigned char)(0xD0 | encode));
1198 }
1199 
1200 
1201 void Assembler::call(Address adr) {
1202   InstructionMark im(this);
1203   prefix(adr);
1204   emit_int8((unsigned char)0xFF);
1205   emit_operand(rdx, adr);
1206 }
1207 
1208 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1209   assert(entry != NULL, "call most probably wrong");
1210   InstructionMark im(this);
1211   emit_int8((unsigned char)0xE8);
1212   intptr_t disp = entry - (pc() + sizeof(int32_t));
1213   assert(is_simm32(disp), "must be 32bit offset (call2)");
1214   // Technically, should use call32_operand, but this format is
1215   // implied by the fact that we're emitting a call instruction.
1216 
1217   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1218   emit_data((int) disp, rspec, operand);
1219 }
1220 
1221 void Assembler::cdql() {
1222   emit_int8((unsigned char)0x99);
1223 }
1224 
1225 void Assembler::cld() {
1226   emit_int8((unsigned char)0xFC);
1227 }
1228 
1229 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1230   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1231   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1232   emit_int8(0x0F);
1233   emit_int8(0x40 | cc);
1234   emit_int8((unsigned char)(0xC0 | encode));
1235 }
1236 
1237 
1238 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1239   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1240   prefix(src, dst);
1241   emit_int8(0x0F);
1242   emit_int8(0x40 | cc);
1243   emit_operand(dst, src);
1244 }
1245 
1246 void Assembler::cmpb(Address dst, int imm8) {
1247   InstructionMark im(this);
1248   prefix(dst);
1249   emit_int8((unsigned char)0x80);
1250   emit_operand(rdi, dst, 1);
1251   emit_int8(imm8);
1252 }
1253 
1254 void Assembler::cmpl(Address dst, int32_t imm32) {
1255   InstructionMark im(this);
1256   prefix(dst);
1257   emit_int8((unsigned char)0x81);
1258   emit_operand(rdi, dst, 4);
1259   emit_int32(imm32);
1260 }
1261 
1262 void Assembler::cmpl(Register dst, int32_t imm32) {
1263   prefix(dst);
1264   emit_arith(0x81, 0xF8, dst, imm32);
1265 }
1266 
1267 void Assembler::cmpl(Register dst, Register src) {
1268   (void) prefix_and_encode(dst->encoding(), src->encoding());
1269   emit_arith(0x3B, 0xC0, dst, src);
1270 }
1271 
1272 
1273 void Assembler::cmpl(Register dst, Address  src) {
1274   InstructionMark im(this);
1275   prefix(src, dst);
1276   emit_int8((unsigned char)0x3B);
1277   emit_operand(dst, src);
1278 }
1279 
1280 void Assembler::cmpw(Address dst, int imm16) {
1281   InstructionMark im(this);
1282   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1283   emit_int8(0x66);
1284   emit_int8((unsigned char)0x81);
1285   emit_operand(rdi, dst, 2);
1286   emit_int16(imm16);
1287 }
1288 
1289 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1290 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1291 // The ZF is set if the compared values were equal, and cleared otherwise.
1292 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1293   InstructionMark im(this);
1294   prefix(adr, reg);
1295   emit_int8(0x0F);
1296   emit_int8((unsigned char)0xB1);
1297   emit_operand(reg, adr);
1298 }
1299 
1300 void Assembler::comisd(XMMRegister dst, Address src) {
1301   // NOTE: dbx seems to decode this as comiss even though the
1302   // 0x66 is there. Strangly ucomisd comes out correct
1303   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1304   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1305 }
1306 
1307 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1308   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1309   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1310 }
1311 
1312 void Assembler::comiss(XMMRegister dst, Address src) {
1313   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1314   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
1315 }
1316 
1317 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1318   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1319   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
1320 }
1321 
1322 void Assembler::cpuid() {
1323   emit_int8(0x0F);
1324   emit_int8((unsigned char)0xA2);
1325 }
1326 
1327 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1328   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1329   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
1330 }
1331 
1332 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1333   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1334   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
1335 }
1336 
1337 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1338   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1339   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1340 }
1341 
1342 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1343   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1344   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1345 }
1346 
1347 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1348   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1349   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
1350   emit_int8(0x2A);
1351   emit_int8((unsigned char)(0xC0 | encode));
1352 }
1353 
1354 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1355   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1356   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
1357 }
1358 
1359 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1360   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1361   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
1362   emit_int8(0x2A);
1363   emit_int8((unsigned char)(0xC0 | encode));
1364 }
1365 
1366 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1367   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1368   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
1369 }
1370 
1371 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1372   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1373   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1374 }
1375 
1376 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1377   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1378   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1379 }
1380 
1381 
1382 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1383   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1384   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
1385   emit_int8(0x2C);
1386   emit_int8((unsigned char)(0xC0 | encode));
1387 }
1388 
1389 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1390   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1391   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
1392   emit_int8(0x2C);
1393   emit_int8((unsigned char)(0xC0 | encode));
1394 }
1395 
1396 void Assembler::decl(Address dst) {
1397   // Don't use it directly. Use MacroAssembler::decrement() instead.
1398   InstructionMark im(this);
1399   prefix(dst);
1400   emit_int8((unsigned char)0xFF);
1401   emit_operand(rcx, dst);
1402 }
1403 
1404 void Assembler::divsd(XMMRegister dst, Address src) {
1405   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1406   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1407 }
1408 
1409 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1410   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1411   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1412 }
1413 
1414 void Assembler::divss(XMMRegister dst, Address src) {
1415   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1416   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1417 }
1418 
1419 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1420   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1421   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1422 }
1423 
1424 void Assembler::emms() {
1425   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1426   emit_int8(0x0F);
1427   emit_int8(0x77);
1428 }
1429 
1430 void Assembler::hlt() {
1431   emit_int8((unsigned char)0xF4);
1432 }
1433 
1434 void Assembler::idivl(Register src) {
1435   int encode = prefix_and_encode(src->encoding());
1436   emit_int8((unsigned char)0xF7);
1437   emit_int8((unsigned char)(0xF8 | encode));
1438 }
1439 
1440 void Assembler::divl(Register src) { // Unsigned
1441   int encode = prefix_and_encode(src->encoding());
1442   emit_int8((unsigned char)0xF7);
1443   emit_int8((unsigned char)(0xF0 | encode));
1444 }
1445 
1446 void Assembler::imull(Register dst, Register src) {
1447   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1448   emit_int8(0x0F);
1449   emit_int8((unsigned char)0xAF);
1450   emit_int8((unsigned char)(0xC0 | encode));
1451 }
1452 
1453 
1454 void Assembler::imull(Register dst, Register src, int value) {
1455   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1456   if (is8bit(value)) {
1457     emit_int8(0x6B);
1458     emit_int8((unsigned char)(0xC0 | encode));
1459     emit_int8(value & 0xFF);
1460   } else {
1461     emit_int8(0x69);
1462     emit_int8((unsigned char)(0xC0 | encode));
1463     emit_int32(value);
1464   }
1465 }
1466 
1467 void Assembler::imull(Register dst, Address src) {
1468   InstructionMark im(this);
1469   prefix(src, dst);
1470   emit_int8(0x0F);
1471   emit_int8((unsigned char) 0xAF);
1472   emit_operand(dst, src);
1473 }
1474 
1475 
1476 void Assembler::incl(Address dst) {
1477   // Don't use it directly. Use MacroAssembler::increment() instead.
1478   InstructionMark im(this);
1479   prefix(dst);
1480   emit_int8((unsigned char)0xFF);
1481   emit_operand(rax, dst);
1482 }
1483 
1484 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1485   InstructionMark im(this);
1486   assert((0 <= cc) && (cc < 16), "illegal cc");
1487   if (L.is_bound()) {
1488     address dst = target(L);
1489     assert(dst != NULL, "jcc most probably wrong");
1490 
1491     const int short_size = 2;
1492     const int long_size = 6;
1493     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1494     if (maybe_short && is8bit(offs - short_size)) {
1495       // 0111 tttn #8-bit disp
1496       emit_int8(0x70 | cc);
1497       emit_int8((offs - short_size) & 0xFF);
1498     } else {
1499       // 0000 1111 1000 tttn #32-bit disp
1500       assert(is_simm32(offs - long_size),
1501              "must be 32bit offset (call4)");
1502       emit_int8(0x0F);
1503       emit_int8((unsigned char)(0x80 | cc));
1504       emit_int32(offs - long_size);
1505     }
1506   } else {
1507     // Note: could eliminate cond. jumps to this jump if condition
1508     //       is the same however, seems to be rather unlikely case.
1509     // Note: use jccb() if label to be bound is very close to get
1510     //       an 8-bit displacement
1511     L.add_patch_at(code(), locator());
1512     emit_int8(0x0F);
1513     emit_int8((unsigned char)(0x80 | cc));
1514     emit_int32(0);
1515   }
1516 }
1517 
1518 void Assembler::jccb(Condition cc, Label& L) {
1519   if (L.is_bound()) {
1520     const int short_size = 2;
1521     address entry = target(L);
1522 #ifdef ASSERT
1523     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1524     intptr_t delta = short_branch_delta();
1525     if (delta != 0) {
1526       dist += (dist < 0 ? (-delta) :delta);
1527     }
1528     assert(is8bit(dist), "Dispacement too large for a short jmp");
1529 #endif
1530     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1531     // 0111 tttn #8-bit disp
1532     emit_int8(0x70 | cc);
1533     emit_int8((offs - short_size) & 0xFF);
1534   } else {
1535     InstructionMark im(this);
1536     L.add_patch_at(code(), locator());
1537     emit_int8(0x70 | cc);
1538     emit_int8(0);
1539   }
1540 }
1541 
1542 void Assembler::jmp(Address adr) {
1543   InstructionMark im(this);
1544   prefix(adr);
1545   emit_int8((unsigned char)0xFF);
1546   emit_operand(rsp, adr);
1547 }
1548 
1549 void Assembler::jmp(Label& L, bool maybe_short) {
1550   if (L.is_bound()) {
1551     address entry = target(L);
1552     assert(entry != NULL, "jmp most probably wrong");
1553     InstructionMark im(this);
1554     const int short_size = 2;
1555     const int long_size = 5;
1556     intptr_t offs = entry - pc();
1557     if (maybe_short && is8bit(offs - short_size)) {
1558       emit_int8((unsigned char)0xEB);
1559       emit_int8((offs - short_size) & 0xFF);
1560     } else {
1561       emit_int8((unsigned char)0xE9);
1562       emit_int32(offs - long_size);
1563     }
1564   } else {
1565     // By default, forward jumps are always 32-bit displacements, since
1566     // we can't yet know where the label will be bound.  If you're sure that
1567     // the forward jump will not run beyond 256 bytes, use jmpb to
1568     // force an 8-bit displacement.
1569     InstructionMark im(this);
1570     L.add_patch_at(code(), locator());
1571     emit_int8((unsigned char)0xE9);
1572     emit_int32(0);
1573   }
1574 }
1575 
1576 void Assembler::jmp(Register entry) {
1577   int encode = prefix_and_encode(entry->encoding());
1578   emit_int8((unsigned char)0xFF);
1579   emit_int8((unsigned char)(0xE0 | encode));
1580 }
1581 
1582 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1583   InstructionMark im(this);
1584   emit_int8((unsigned char)0xE9);
1585   assert(dest != NULL, "must have a target");
1586   intptr_t disp = dest - (pc() + sizeof(int32_t));
1587   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1588   emit_data(disp, rspec.reloc(), call32_operand);
1589 }
1590 
1591 void Assembler::jmpb(Label& L) {
1592   if (L.is_bound()) {
1593     const int short_size = 2;
1594     address entry = target(L);
1595     assert(entry != NULL, "jmp most probably wrong");
1596 #ifdef ASSERT
1597     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1598     intptr_t delta = short_branch_delta();
1599     if (delta != 0) {
1600       dist += (dist < 0 ? (-delta) :delta);
1601     }
1602     assert(is8bit(dist), "Dispacement too large for a short jmp");
1603 #endif
1604     intptr_t offs = entry - pc();
1605     emit_int8((unsigned char)0xEB);
1606     emit_int8((offs - short_size) & 0xFF);
1607   } else {
1608     InstructionMark im(this);
1609     L.add_patch_at(code(), locator());
1610     emit_int8((unsigned char)0xEB);
1611     emit_int8(0);
1612   }
1613 }
1614 
1615 void Assembler::ldmxcsr( Address src) {
1616   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1617   InstructionMark im(this);
1618   prefix(src);
1619   emit_int8(0x0F);
1620   emit_int8((unsigned char)0xAE);
1621   emit_operand(as_Register(2), src);
1622 }
1623 
1624 void Assembler::leal(Register dst, Address src) {
1625   InstructionMark im(this);
1626 #ifdef _LP64
1627   emit_int8(0x67); // addr32
1628   prefix(src, dst);
1629 #endif // LP64
1630   emit_int8((unsigned char)0x8D);
1631   emit_operand(dst, src);
1632 }
1633 
1634 void Assembler::lfence() {
1635   emit_int8(0x0F);
1636   emit_int8((unsigned char)0xAE);
1637   emit_int8((unsigned char)0xE8);
1638 }
1639 
1640 void Assembler::lock() {
1641   emit_int8((unsigned char)0xF0);
1642 }
1643 
1644 void Assembler::lzcntl(Register dst, Register src) {
1645   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1646   emit_int8((unsigned char)0xF3);
1647   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1648   emit_int8(0x0F);
1649   emit_int8((unsigned char)0xBD);
1650   emit_int8((unsigned char)(0xC0 | encode));
1651 }
1652 
1653 // Emit mfence instruction
1654 void Assembler::mfence() {
1655   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1656   emit_int8(0x0F);
1657   emit_int8((unsigned char)0xAE);
1658   emit_int8((unsigned char)0xF0);
1659 }
1660 
1661 void Assembler::mov(Register dst, Register src) {
1662   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
1663 }
1664 
1665 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1666   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1667   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
1668 }
1669 
1670 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
1671   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1672   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
1673 }
1674 
1675 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
1676   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1677   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
1678   emit_int8(0x16);
1679   emit_int8((unsigned char)(0xC0 | encode));
1680 }
1681 
1682 void Assembler::movb(Register dst, Address src) {
1683   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
1684   InstructionMark im(this);
1685   prefix(src, dst, true);
1686   emit_int8((unsigned char)0x8A);
1687   emit_operand(dst, src);
1688 }
1689 
1690 
1691 void Assembler::movb(Address dst, int imm8) {
1692   InstructionMark im(this);
1693    prefix(dst);
1694   emit_int8((unsigned char)0xC6);
1695   emit_operand(rax, dst, 1);
1696   emit_int8(imm8);
1697 }
1698 
1699 
1700 void Assembler::movb(Address dst, Register src) {
1701   assert(src->has_byte_register(), "must have byte register");
1702   InstructionMark im(this);
1703   prefix(dst, src, true);
1704   emit_int8((unsigned char)0x88);
1705   emit_operand(src, dst);
1706 }
1707 
1708 void Assembler::movdl(XMMRegister dst, Register src) {
1709   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1710   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
1711   emit_int8(0x6E);
1712   emit_int8((unsigned char)(0xC0 | encode));
1713 }
1714 
1715 void Assembler::movdl(Register dst, XMMRegister src) {
1716   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1717   // swap src/dst to get correct prefix
1718   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
1719   emit_int8(0x7E);
1720   emit_int8((unsigned char)(0xC0 | encode));
1721 }
1722 
1723 void Assembler::movdl(XMMRegister dst, Address src) {
1724   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1725   InstructionMark im(this);
1726   simd_prefix(dst, src, VEX_SIMD_66);
1727   emit_int8(0x6E);
1728   emit_operand(dst, src);
1729 }
1730 
1731 void Assembler::movdl(Address dst, XMMRegister src) {
1732   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1733   InstructionMark im(this);
1734   simd_prefix(dst, src, VEX_SIMD_66);
1735   emit_int8(0x7E);
1736   emit_operand(src, dst);
1737 }
1738 
1739 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
1740   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1741   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
1742 }
1743 
1744 void Assembler::movdqa(XMMRegister dst, Address src) {
1745   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1746   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
1747 }
1748 
1749 void Assembler::movdqu(XMMRegister dst, Address src) {
1750   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1751   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1752 }
1753 
1754 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
1755   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1756   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1757 }
1758 
1759 void Assembler::movdqu(Address dst, XMMRegister src) {
1760   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1761   InstructionMark im(this);
1762   simd_prefix(dst, src, VEX_SIMD_F3);
1763   emit_int8(0x7F);
1764   emit_operand(src, dst);
1765 }
1766 
1767 // Move Unaligned 256bit Vector
1768 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
1769   assert(UseAVX > 0, "");
1770   bool vector256 = true;
1771   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1772   emit_int8(0x6F);
1773   emit_int8((unsigned char)(0xC0 | encode));
1774 }
1775 
1776 void Assembler::vmovdqu(XMMRegister dst, Address src) {
1777   assert(UseAVX > 0, "");
1778   InstructionMark im(this);
1779   bool vector256 = true;
1780   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1781   emit_int8(0x6F);
1782   emit_operand(dst, src);
1783 }
1784 
1785 void Assembler::vmovdqu(Address dst, XMMRegister src) {
1786   assert(UseAVX > 0, "");
1787   InstructionMark im(this);
1788   bool vector256 = true;
1789   // swap src<->dst for encoding
1790   assert(src != xnoreg, "sanity");
1791   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
1792   emit_int8(0x7F);
1793   emit_operand(src, dst);
1794 }
1795 
1796 // Uses zero extension on 64bit
1797 
1798 void Assembler::movl(Register dst, int32_t imm32) {
1799   int encode = prefix_and_encode(dst->encoding());
1800   emit_int8((unsigned char)(0xB8 | encode));
1801   emit_int32(imm32);
1802 }
1803 
1804 void Assembler::movl(Register dst, Register src) {
1805   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1806   emit_int8((unsigned char)0x8B);
1807   emit_int8((unsigned char)(0xC0 | encode));
1808 }
1809 
1810 void Assembler::movl(Register dst, Address src) {
1811   InstructionMark im(this);
1812   prefix(src, dst);
1813   emit_int8((unsigned char)0x8B);
1814   emit_operand(dst, src);
1815 }
1816 
1817 void Assembler::movl(Address dst, int32_t imm32) {
1818   InstructionMark im(this);
1819   prefix(dst);
1820   emit_int8((unsigned char)0xC7);
1821   emit_operand(rax, dst, 4);
1822   emit_int32(imm32);
1823 }
1824 
1825 void Assembler::movl(Address dst, Register src) {
1826   InstructionMark im(this);
1827   prefix(dst, src);
1828   emit_int8((unsigned char)0x89);
1829   emit_operand(src, dst);
1830 }
1831 
1832 // New cpus require to use movsd and movss to avoid partial register stall
1833 // when loading from memory. But for old Opteron use movlpd instead of movsd.
1834 // The selection is done in MacroAssembler::movdbl() and movflt().
1835 void Assembler::movlpd(XMMRegister dst, Address src) {
1836   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1837   emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
1838 }
1839 
1840 void Assembler::movq( MMXRegister dst, Address src ) {
1841   assert( VM_Version::supports_mmx(), "" );
1842   emit_int8(0x0F);
1843   emit_int8(0x6F);
1844   emit_operand(dst, src);
1845 }
1846 
1847 void Assembler::movq( Address dst, MMXRegister src ) {
1848   assert( VM_Version::supports_mmx(), "" );
1849   emit_int8(0x0F);
1850   emit_int8(0x7F);
1851   // workaround gcc (3.2.1-7a) bug
1852   // In that version of gcc with only an emit_operand(MMX, Address)
1853   // gcc will tail jump and try and reverse the parameters completely
1854   // obliterating dst in the process. By having a version available
1855   // that doesn't need to swap the args at the tail jump the bug is
1856   // avoided.
1857   emit_operand(dst, src);
1858 }
1859 
1860 void Assembler::movq(XMMRegister dst, Address src) {
1861   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1862   InstructionMark im(this);
1863   simd_prefix(dst, src, VEX_SIMD_F3);
1864   emit_int8(0x7E);
1865   emit_operand(dst, src);
1866 }
1867 
1868 void Assembler::movq(Address dst, XMMRegister src) {
1869   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1870   InstructionMark im(this);
1871   simd_prefix(dst, src, VEX_SIMD_66);
1872   emit_int8((unsigned char)0xD6);
1873   emit_operand(src, dst);
1874 }
1875 
1876 void Assembler::movsbl(Register dst, Address src) { // movsxb
1877   InstructionMark im(this);
1878   prefix(src, dst);
1879   emit_int8(0x0F);
1880   emit_int8((unsigned char)0xBE);
1881   emit_operand(dst, src);
1882 }
1883 
1884 void Assembler::movsbl(Register dst, Register src) { // movsxb
1885   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1886   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1887   emit_int8(0x0F);
1888   emit_int8((unsigned char)0xBE);
1889   emit_int8((unsigned char)(0xC0 | encode));
1890 }
1891 
1892 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
1893   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1894   emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
1895 }
1896 
1897 void Assembler::movsd(XMMRegister dst, Address src) {
1898   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1899   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
1900 }
1901 
1902 void Assembler::movsd(Address dst, XMMRegister src) {
1903   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1904   InstructionMark im(this);
1905   simd_prefix(dst, src, VEX_SIMD_F2);
1906   emit_int8(0x11);
1907   emit_operand(src, dst);
1908 }
1909 
1910 void Assembler::movss(XMMRegister dst, XMMRegister src) {
1911   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1912   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
1913 }
1914 
1915 void Assembler::movss(XMMRegister dst, Address src) {
1916   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1917   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
1918 }
1919 
1920 void Assembler::movss(Address dst, XMMRegister src) {
1921   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1922   InstructionMark im(this);
1923   simd_prefix(dst, src, VEX_SIMD_F3);
1924   emit_int8(0x11);
1925   emit_operand(src, dst);
1926 }
1927 
1928 void Assembler::movswl(Register dst, Address src) { // movsxw
1929   InstructionMark im(this);
1930   prefix(src, dst);
1931   emit_int8(0x0F);
1932   emit_int8((unsigned char)0xBF);
1933   emit_operand(dst, src);
1934 }
1935 
1936 void Assembler::movswl(Register dst, Register src) { // movsxw
1937   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1938   emit_int8(0x0F);
1939   emit_int8((unsigned char)0xBF);
1940   emit_int8((unsigned char)(0xC0 | encode));
1941 }
1942 
1943 void Assembler::movw(Address dst, int imm16) {
1944   InstructionMark im(this);
1945 
1946   emit_int8(0x66); // switch to 16-bit mode
1947   prefix(dst);
1948   emit_int8((unsigned char)0xC7);
1949   emit_operand(rax, dst, 2);
1950   emit_int16(imm16);
1951 }
1952 
1953 void Assembler::movw(Register dst, Address src) {
1954   InstructionMark im(this);
1955   emit_int8(0x66);
1956   prefix(src, dst);
1957   emit_int8((unsigned char)0x8B);
1958   emit_operand(dst, src);
1959 }
1960 
1961 void Assembler::movw(Address dst, Register src) {
1962   InstructionMark im(this);
1963   emit_int8(0x66);
1964   prefix(dst, src);
1965   emit_int8((unsigned char)0x89);
1966   emit_operand(src, dst);
1967 }
1968 
1969 void Assembler::movzbl(Register dst, Address src) { // movzxb
1970   InstructionMark im(this);
1971   prefix(src, dst);
1972   emit_int8(0x0F);
1973   emit_int8((unsigned char)0xB6);
1974   emit_operand(dst, src);
1975 }
1976 
1977 void Assembler::movzbl(Register dst, Register src) { // movzxb
1978   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1979   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1980   emit_int8(0x0F);
1981   emit_int8((unsigned char)0xB6);
1982   emit_int8(0xC0 | encode);
1983 }
1984 
1985 void Assembler::movzwl(Register dst, Address src) { // movzxw
1986   InstructionMark im(this);
1987   prefix(src, dst);
1988   emit_int8(0x0F);
1989   emit_int8((unsigned char)0xB7);
1990   emit_operand(dst, src);
1991 }
1992 
1993 void Assembler::movzwl(Register dst, Register src) { // movzxw
1994   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1995   emit_int8(0x0F);
1996   emit_int8((unsigned char)0xB7);
1997   emit_int8(0xC0 | encode);
1998 }
1999 
2000 void Assembler::mull(Address src) {
2001   InstructionMark im(this);
2002   prefix(src);
2003   emit_int8((unsigned char)0xF7);
2004   emit_operand(rsp, src);
2005 }
2006 
2007 void Assembler::mull(Register src) {
2008   int encode = prefix_and_encode(src->encoding());
2009   emit_int8((unsigned char)0xF7);
2010   emit_int8((unsigned char)(0xE0 | encode));
2011 }
2012 
2013 void Assembler::mulsd(XMMRegister dst, Address src) {
2014   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2015   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2016 }
2017 
2018 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2019   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2020   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2021 }
2022 
2023 void Assembler::mulss(XMMRegister dst, Address src) {
2024   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2025   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2026 }
2027 
2028 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2029   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2030   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2031 }
2032 
2033 void Assembler::negl(Register dst) {
2034   int encode = prefix_and_encode(dst->encoding());
2035   emit_int8((unsigned char)0xF7);
2036   emit_int8((unsigned char)(0xD8 | encode));
2037 }
2038 
2039 void Assembler::nop(int i) {
2040 #ifdef ASSERT
2041   assert(i > 0, " ");
2042   // The fancy nops aren't currently recognized by debuggers making it a
2043   // pain to disassemble code while debugging. If asserts are on clearly
2044   // speed is not an issue so simply use the single byte traditional nop
2045   // to do alignment.
2046 
2047   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2048   return;
2049 
2050 #endif // ASSERT
2051 
2052   if (UseAddressNop && VM_Version::is_intel()) {
2053     //
2054     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2055     //  1: 0x90
2056     //  2: 0x66 0x90
2057     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2058     //  4: 0x0F 0x1F 0x40 0x00
2059     //  5: 0x0F 0x1F 0x44 0x00 0x00
2060     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2061     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2062     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2063     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2064     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2065     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2066 
2067     // The rest coding is Intel specific - don't use consecutive address nops
2068 
2069     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2070     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2071     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2072     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2073 
2074     while(i >= 15) {
2075       // For Intel don't generate consecutive addess nops (mix with regular nops)
2076       i -= 15;
2077       emit_int8(0x66);   // size prefix
2078       emit_int8(0x66);   // size prefix
2079       emit_int8(0x66);   // size prefix
2080       addr_nop_8();
2081       emit_int8(0x66);   // size prefix
2082       emit_int8(0x66);   // size prefix
2083       emit_int8(0x66);   // size prefix
2084       emit_int8((unsigned char)0x90);
2085                          // nop
2086     }
2087     switch (i) {
2088       case 14:
2089         emit_int8(0x66); // size prefix
2090       case 13:
2091         emit_int8(0x66); // size prefix
2092       case 12:
2093         addr_nop_8();
2094         emit_int8(0x66); // size prefix
2095         emit_int8(0x66); // size prefix
2096         emit_int8(0x66); // size prefix
2097         emit_int8((unsigned char)0x90);
2098                          // nop
2099         break;
2100       case 11:
2101         emit_int8(0x66); // size prefix
2102       case 10:
2103         emit_int8(0x66); // size prefix
2104       case 9:
2105         emit_int8(0x66); // size prefix
2106       case 8:
2107         addr_nop_8();
2108         break;
2109       case 7:
2110         addr_nop_7();
2111         break;
2112       case 6:
2113         emit_int8(0x66); // size prefix
2114       case 5:
2115         addr_nop_5();
2116         break;
2117       case 4:
2118         addr_nop_4();
2119         break;
2120       case 3:
2121         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2122         emit_int8(0x66); // size prefix
2123       case 2:
2124         emit_int8(0x66); // size prefix
2125       case 1:
2126         emit_int8((unsigned char)0x90);
2127                          // nop
2128         break;
2129       default:
2130         assert(i == 0, " ");
2131     }
2132     return;
2133   }
2134   if (UseAddressNop && VM_Version::is_amd()) {
2135     //
2136     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2137     //  1: 0x90
2138     //  2: 0x66 0x90
2139     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2140     //  4: 0x0F 0x1F 0x40 0x00
2141     //  5: 0x0F 0x1F 0x44 0x00 0x00
2142     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2143     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2144     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2145     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2146     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2147     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2148 
2149     // The rest coding is AMD specific - use consecutive address nops
2150 
2151     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2152     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2153     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2154     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2155     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2156     //     Size prefixes (0x66) are added for larger sizes
2157 
2158     while(i >= 22) {
2159       i -= 11;
2160       emit_int8(0x66); // size prefix
2161       emit_int8(0x66); // size prefix
2162       emit_int8(0x66); // size prefix
2163       addr_nop_8();
2164     }
2165     // Generate first nop for size between 21-12
2166     switch (i) {
2167       case 21:
2168         i -= 1;
2169         emit_int8(0x66); // size prefix
2170       case 20:
2171       case 19:
2172         i -= 1;
2173         emit_int8(0x66); // size prefix
2174       case 18:
2175       case 17:
2176         i -= 1;
2177         emit_int8(0x66); // size prefix
2178       case 16:
2179       case 15:
2180         i -= 8;
2181         addr_nop_8();
2182         break;
2183       case 14:
2184       case 13:
2185         i -= 7;
2186         addr_nop_7();
2187         break;
2188       case 12:
2189         i -= 6;
2190         emit_int8(0x66); // size prefix
2191         addr_nop_5();
2192         break;
2193       default:
2194         assert(i < 12, " ");
2195     }
2196 
2197     // Generate second nop for size between 11-1
2198     switch (i) {
2199       case 11:
2200         emit_int8(0x66); // size prefix
2201       case 10:
2202         emit_int8(0x66); // size prefix
2203       case 9:
2204         emit_int8(0x66); // size prefix
2205       case 8:
2206         addr_nop_8();
2207         break;
2208       case 7:
2209         addr_nop_7();
2210         break;
2211       case 6:
2212         emit_int8(0x66); // size prefix
2213       case 5:
2214         addr_nop_5();
2215         break;
2216       case 4:
2217         addr_nop_4();
2218         break;
2219       case 3:
2220         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2221         emit_int8(0x66); // size prefix
2222       case 2:
2223         emit_int8(0x66); // size prefix
2224       case 1:
2225         emit_int8((unsigned char)0x90);
2226                          // nop
2227         break;
2228       default:
2229         assert(i == 0, " ");
2230     }
2231     return;
2232   }
2233 
2234   // Using nops with size prefixes "0x66 0x90".
2235   // From AMD Optimization Guide:
2236   //  1: 0x90
2237   //  2: 0x66 0x90
2238   //  3: 0x66 0x66 0x90
2239   //  4: 0x66 0x66 0x66 0x90
2240   //  5: 0x66 0x66 0x90 0x66 0x90
2241   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2242   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2243   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2244   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2245   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2246   //
2247   while(i > 12) {
2248     i -= 4;
2249     emit_int8(0x66); // size prefix
2250     emit_int8(0x66);
2251     emit_int8(0x66);
2252     emit_int8((unsigned char)0x90);
2253                      // nop
2254   }
2255   // 1 - 12 nops
2256   if(i > 8) {
2257     if(i > 9) {
2258       i -= 1;
2259       emit_int8(0x66);
2260     }
2261     i -= 3;
2262     emit_int8(0x66);
2263     emit_int8(0x66);
2264     emit_int8((unsigned char)0x90);
2265   }
2266   // 1 - 8 nops
2267   if(i > 4) {
2268     if(i > 6) {
2269       i -= 1;
2270       emit_int8(0x66);
2271     }
2272     i -= 3;
2273     emit_int8(0x66);
2274     emit_int8(0x66);
2275     emit_int8((unsigned char)0x90);
2276   }
2277   switch (i) {
2278     case 4:
2279       emit_int8(0x66);
2280     case 3:
2281       emit_int8(0x66);
2282     case 2:
2283       emit_int8(0x66);
2284     case 1:
2285       emit_int8((unsigned char)0x90);
2286       break;
2287     default:
2288       assert(i == 0, " ");
2289   }
2290 }
2291 
2292 void Assembler::notl(Register dst) {
2293   int encode = prefix_and_encode(dst->encoding());
2294   emit_int8((unsigned char)0xF7);
2295   emit_int8((unsigned char)(0xD0 | encode));
2296 }
2297 
2298 void Assembler::orl(Address dst, int32_t imm32) {
2299   InstructionMark im(this);
2300   prefix(dst);
2301   emit_arith_operand(0x81, rcx, dst, imm32);
2302 }
2303 
2304 void Assembler::orl(Register dst, int32_t imm32) {
2305   prefix(dst);
2306   emit_arith(0x81, 0xC8, dst, imm32);
2307 }
2308 
2309 void Assembler::orl(Register dst, Address src) {
2310   InstructionMark im(this);
2311   prefix(src, dst);
2312   emit_int8(0x0B);
2313   emit_operand(dst, src);
2314 }
2315 
2316 void Assembler::orl(Register dst, Register src) {
2317   (void) prefix_and_encode(dst->encoding(), src->encoding());
2318   emit_arith(0x0B, 0xC0, dst, src);
2319 }
2320 
2321 void Assembler::orl(Address dst, Register src) {
2322   InstructionMark im(this);
2323   prefix(dst, src);
2324   emit_int8(0x09);
2325   emit_operand(src, dst);
2326 }
2327 
2328 void Assembler::packuswb(XMMRegister dst, Address src) {
2329   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2330   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2331   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
2332 }
2333 
2334 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2335   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2336   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
2337 }
2338 
2339 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
2340   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
2341   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector256);
2342 }
2343 
2344 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256) {
2345   assert(VM_Version::supports_avx2(), "");
2346   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector256);
2347   emit_int8(0x00);
2348   emit_int8(0xC0 | encode);
2349   emit_int8(imm8);
2350 }
2351 
2352 void Assembler::pause() {
2353   emit_int8((unsigned char)0xF3);
2354   emit_int8((unsigned char)0x90);
2355 }
2356 
2357 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2358   assert(VM_Version::supports_sse4_2(), "");
2359   InstructionMark im(this);
2360   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2361   emit_int8(0x61);
2362   emit_operand(dst, src);
2363   emit_int8(imm8);
2364 }
2365 
2366 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2367   assert(VM_Version::supports_sse4_2(), "");
2368   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2369   emit_int8(0x61);
2370   emit_int8((unsigned char)(0xC0 | encode));
2371   emit_int8(imm8);
2372 }
2373 
2374 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
2375   assert(VM_Version::supports_sse4_1(), "");
2376   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
2377   emit_int8(0x16);
2378   emit_int8((unsigned char)(0xC0 | encode));
2379   emit_int8(imm8);
2380 }
2381 
2382 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
2383   assert(VM_Version::supports_sse4_1(), "");
2384   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
2385   emit_int8(0x16);
2386   emit_int8((unsigned char)(0xC0 | encode));
2387   emit_int8(imm8);
2388 }
2389 
2390 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
2391   assert(VM_Version::supports_sse4_1(), "");
2392   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
2393   emit_int8(0x22);
2394   emit_int8((unsigned char)(0xC0 | encode));
2395   emit_int8(imm8);
2396 }
2397 
2398 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
2399   assert(VM_Version::supports_sse4_1(), "");
2400   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
2401   emit_int8(0x22);
2402   emit_int8((unsigned char)(0xC0 | encode));
2403   emit_int8(imm8);
2404 }
2405 
2406 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
2407   assert(VM_Version::supports_sse4_1(), "");
2408   InstructionMark im(this);
2409   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2410   emit_int8(0x30);
2411   emit_operand(dst, src);
2412 }
2413 
2414 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
2415   assert(VM_Version::supports_sse4_1(), "");
2416   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2417   emit_int8(0x30);
2418   emit_int8((unsigned char)(0xC0 | encode));
2419 }
2420 
2421 // generic
2422 void Assembler::pop(Register dst) {
2423   int encode = prefix_and_encode(dst->encoding());
2424   emit_int8(0x58 | encode);
2425 }
2426 
2427 void Assembler::popcntl(Register dst, Address src) {
2428   assert(VM_Version::supports_popcnt(), "must support");
2429   InstructionMark im(this);
2430   emit_int8((unsigned char)0xF3);
2431   prefix(src, dst);
2432   emit_int8(0x0F);
2433   emit_int8((unsigned char)0xB8);
2434   emit_operand(dst, src);
2435 }
2436 
2437 void Assembler::popcntl(Register dst, Register src) {
2438   assert(VM_Version::supports_popcnt(), "must support");
2439   emit_int8((unsigned char)0xF3);
2440   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2441   emit_int8(0x0F);
2442   emit_int8((unsigned char)0xB8);
2443   emit_int8((unsigned char)(0xC0 | encode));
2444 }
2445 
2446 void Assembler::popf() {
2447   emit_int8((unsigned char)0x9D);
2448 }
2449 
2450 #ifndef _LP64 // no 32bit push/pop on amd64
2451 void Assembler::popl(Address dst) {
2452   // NOTE: this will adjust stack by 8byte on 64bits
2453   InstructionMark im(this);
2454   prefix(dst);
2455   emit_int8((unsigned char)0x8F);
2456   emit_operand(rax, dst);
2457 }
2458 #endif
2459 
2460 void Assembler::prefetch_prefix(Address src) {
2461   prefix(src);
2462   emit_int8(0x0F);
2463 }
2464 
2465 void Assembler::prefetchnta(Address src) {
2466   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2467   InstructionMark im(this);
2468   prefetch_prefix(src);
2469   emit_int8(0x18);
2470   emit_operand(rax, src); // 0, src
2471 }
2472 
2473 void Assembler::prefetchr(Address src) {
2474   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2475   InstructionMark im(this);
2476   prefetch_prefix(src);
2477   emit_int8(0x0D);
2478   emit_operand(rax, src); // 0, src
2479 }
2480 
2481 void Assembler::prefetcht0(Address src) {
2482   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2483   InstructionMark im(this);
2484   prefetch_prefix(src);
2485   emit_int8(0x18);
2486   emit_operand(rcx, src); // 1, src
2487 }
2488 
2489 void Assembler::prefetcht1(Address src) {
2490   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2491   InstructionMark im(this);
2492   prefetch_prefix(src);
2493   emit_int8(0x18);
2494   emit_operand(rdx, src); // 2, src
2495 }
2496 
2497 void Assembler::prefetcht2(Address src) {
2498   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2499   InstructionMark im(this);
2500   prefetch_prefix(src);
2501   emit_int8(0x18);
2502   emit_operand(rbx, src); // 3, src
2503 }
2504 
2505 void Assembler::prefetchw(Address src) {
2506   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2507   InstructionMark im(this);
2508   prefetch_prefix(src);
2509   emit_int8(0x0D);
2510   emit_operand(rcx, src); // 1, src
2511 }
2512 
2513 void Assembler::prefix(Prefix p) {
2514   emit_int8(p);
2515 }
2516 
2517 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
2518   assert(VM_Version::supports_ssse3(), "");
2519   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2520   emit_int8(0x00);
2521   emit_int8((unsigned char)(0xC0 | encode));
2522 }
2523 
2524 void Assembler::pshufb(XMMRegister dst, Address src) {
2525   assert(VM_Version::supports_ssse3(), "");
2526   InstructionMark im(this);
2527   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2528   emit_int8(0x00);
2529   emit_operand(dst, src);
2530 }
2531 
2532 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
2533   assert(isByte(mode), "invalid value");
2534   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2535   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
2536   emit_int8(mode & 0xFF);
2537 
2538 }
2539 
2540 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
2541   assert(isByte(mode), "invalid value");
2542   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2543   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2544   InstructionMark im(this);
2545   simd_prefix(dst, src, VEX_SIMD_66);
2546   emit_int8(0x70);
2547   emit_operand(dst, src);
2548   emit_int8(mode & 0xFF);
2549 }
2550 
2551 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
2552   assert(isByte(mode), "invalid value");
2553   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2554   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
2555   emit_int8(mode & 0xFF);
2556 }
2557 
2558 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
2559   assert(isByte(mode), "invalid value");
2560   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2561   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2562   InstructionMark im(this);
2563   simd_prefix(dst, src, VEX_SIMD_F2);
2564   emit_int8(0x70);
2565   emit_operand(dst, src);
2566   emit_int8(mode & 0xFF);
2567 }
2568 
2569 void Assembler::psrldq(XMMRegister dst, int shift) {
2570   // Shift 128 bit value in xmm register by number of bytes.
2571   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2572   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
2573   emit_int8(0x73);
2574   emit_int8((unsigned char)(0xC0 | encode));
2575   emit_int8(shift);
2576 }
2577 
2578 void Assembler::ptest(XMMRegister dst, Address src) {
2579   assert(VM_Version::supports_sse4_1(), "");
2580   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2581   InstructionMark im(this);
2582   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2583   emit_int8(0x17);
2584   emit_operand(dst, src);
2585 }
2586 
2587 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
2588   assert(VM_Version::supports_sse4_1(), "");
2589   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2590   emit_int8(0x17);
2591   emit_int8((unsigned char)(0xC0 | encode));
2592 }
2593 
2594 void Assembler::vptest(XMMRegister dst, Address src) {
2595   assert(VM_Version::supports_avx(), "");
2596   InstructionMark im(this);
2597   bool vector256 = true;
2598   assert(dst != xnoreg, "sanity");
2599   int dst_enc = dst->encoding();
2600   // swap src<->dst for encoding
2601   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
2602   emit_int8(0x17);
2603   emit_operand(dst, src);
2604 }
2605 
2606 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
2607   assert(VM_Version::supports_avx(), "");
2608   bool vector256 = true;
2609   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
2610   emit_int8(0x17);
2611   emit_int8((unsigned char)(0xC0 | encode));
2612 }
2613 
2614 void Assembler::punpcklbw(XMMRegister dst, Address src) {
2615   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2616   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2617   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
2618 }
2619 
2620 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
2621   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2622   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
2623 }
2624 
2625 void Assembler::punpckldq(XMMRegister dst, Address src) {
2626   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2627   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2628   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
2629 }
2630 
2631 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
2632   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2633   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
2634 }
2635 
2636 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
2637   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2638   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
2639 }
2640 
2641 void Assembler::push(int32_t imm32) {
2642   // in 64bits we push 64bits onto the stack but only
2643   // take a 32bit immediate
2644   emit_int8(0x68);
2645   emit_int32(imm32);
2646 }
2647 
2648 void Assembler::push(Register src) {
2649   int encode = prefix_and_encode(src->encoding());
2650 
2651   emit_int8(0x50 | encode);
2652 }
2653 
2654 void Assembler::pushf() {
2655   emit_int8((unsigned char)0x9C);
2656 }
2657 
2658 #ifndef _LP64 // no 32bit push/pop on amd64
2659 void Assembler::pushl(Address src) {
2660   // Note this will push 64bit on 64bit
2661   InstructionMark im(this);
2662   prefix(src);
2663   emit_int8((unsigned char)0xFF);
2664   emit_operand(rsi, src);
2665 }
2666 #endif
2667 
2668 void Assembler::rcll(Register dst, int imm8) {
2669   assert(isShiftCount(imm8), "illegal shift count");
2670   int encode = prefix_and_encode(dst->encoding());
2671   if (imm8 == 1) {
2672     emit_int8((unsigned char)0xD1);
2673     emit_int8((unsigned char)(0xD0 | encode));
2674   } else {
2675     emit_int8((unsigned char)0xC1);
2676     emit_int8((unsigned char)0xD0 | encode);
2677     emit_int8(imm8);
2678   }
2679 }
2680 
2681 void Assembler::rdtsc() {
2682   emit_int8((unsigned char)0x0F);
2683   emit_int8((unsigned char)0x31);
2684 }
2685 
2686 // copies data from [esi] to [edi] using rcx pointer sized words
2687 // generic
2688 void Assembler::rep_mov() {
2689   emit_int8((unsigned char)0xF3);
2690   // MOVSQ
2691   LP64_ONLY(prefix(REX_W));
2692   emit_int8((unsigned char)0xA5);
2693 }
2694 
2695 // sets rcx bytes with rax, value at [edi]
2696 void Assembler::rep_stosb() {
2697   emit_int8((unsigned char)0xF3); // REP
2698   LP64_ONLY(prefix(REX_W));
2699   emit_int8((unsigned char)0xAA); // STOSB
2700 }
2701 
2702 // sets rcx pointer sized words with rax, value at [edi]
2703 // generic
2704 void Assembler::rep_stos() {
2705   emit_int8((unsigned char)0xF3); // REP
2706   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
2707   emit_int8((unsigned char)0xAB);
2708 }
2709 
2710 // scans rcx pointer sized words at [edi] for occurance of rax,
2711 // generic
2712 void Assembler::repne_scan() { // repne_scan
2713   emit_int8((unsigned char)0xF2);
2714   // SCASQ
2715   LP64_ONLY(prefix(REX_W));
2716   emit_int8((unsigned char)0xAF);
2717 }
2718 
2719 #ifdef _LP64
2720 // scans rcx 4 byte words at [edi] for occurance of rax,
2721 // generic
2722 void Assembler::repne_scanl() { // repne_scan
2723   emit_int8((unsigned char)0xF2);
2724   // SCASL
2725   emit_int8((unsigned char)0xAF);
2726 }
2727 #endif
2728 
2729 void Assembler::ret(int imm16) {
2730   if (imm16 == 0) {
2731     emit_int8((unsigned char)0xC3);
2732   } else {
2733     emit_int8((unsigned char)0xC2);
2734     emit_int16(imm16);
2735   }
2736 }
2737 
2738 void Assembler::sahf() {
2739 #ifdef _LP64
2740   // Not supported in 64bit mode
2741   ShouldNotReachHere();
2742 #endif
2743   emit_int8((unsigned char)0x9E);
2744 }
2745 
2746 void Assembler::sarl(Register dst, int imm8) {
2747   int encode = prefix_and_encode(dst->encoding());
2748   assert(isShiftCount(imm8), "illegal shift count");
2749   if (imm8 == 1) {
2750     emit_int8((unsigned char)0xD1);
2751     emit_int8((unsigned char)(0xF8 | encode));
2752   } else {
2753     emit_int8((unsigned char)0xC1);
2754     emit_int8((unsigned char)(0xF8 | encode));
2755     emit_int8(imm8);
2756   }
2757 }
2758 
2759 void Assembler::sarl(Register dst) {
2760   int encode = prefix_and_encode(dst->encoding());
2761   emit_int8((unsigned char)0xD3);
2762   emit_int8((unsigned char)(0xF8 | encode));
2763 }
2764 
2765 void Assembler::sbbl(Address dst, int32_t imm32) {
2766   InstructionMark im(this);
2767   prefix(dst);
2768   emit_arith_operand(0x81, rbx, dst, imm32);
2769 }
2770 
2771 void Assembler::sbbl(Register dst, int32_t imm32) {
2772   prefix(dst);
2773   emit_arith(0x81, 0xD8, dst, imm32);
2774 }
2775 
2776 
2777 void Assembler::sbbl(Register dst, Address src) {
2778   InstructionMark im(this);
2779   prefix(src, dst);
2780   emit_int8(0x1B);
2781   emit_operand(dst, src);
2782 }
2783 
2784 void Assembler::sbbl(Register dst, Register src) {
2785   (void) prefix_and_encode(dst->encoding(), src->encoding());
2786   emit_arith(0x1B, 0xC0, dst, src);
2787 }
2788 
2789 void Assembler::setb(Condition cc, Register dst) {
2790   assert(0 <= cc && cc < 16, "illegal cc");
2791   int encode = prefix_and_encode(dst->encoding(), true);
2792   emit_int8(0x0F);
2793   emit_int8((unsigned char)0x90 | cc);
2794   emit_int8((unsigned char)(0xC0 | encode));
2795 }
2796 
2797 void Assembler::shll(Register dst, int imm8) {
2798   assert(isShiftCount(imm8), "illegal shift count");
2799   int encode = prefix_and_encode(dst->encoding());
2800   if (imm8 == 1 ) {
2801     emit_int8((unsigned char)0xD1);
2802     emit_int8((unsigned char)(0xE0 | encode));
2803   } else {
2804     emit_int8((unsigned char)0xC1);
2805     emit_int8((unsigned char)(0xE0 | encode));
2806     emit_int8(imm8);
2807   }
2808 }
2809 
2810 void Assembler::shll(Register dst) {
2811   int encode = prefix_and_encode(dst->encoding());
2812   emit_int8((unsigned char)0xD3);
2813   emit_int8((unsigned char)(0xE0 | encode));
2814 }
2815 
2816 void Assembler::shrl(Register dst, int imm8) {
2817   assert(isShiftCount(imm8), "illegal shift count");
2818   int encode = prefix_and_encode(dst->encoding());
2819   emit_int8((unsigned char)0xC1);
2820   emit_int8((unsigned char)(0xE8 | encode));
2821   emit_int8(imm8);
2822 }
2823 
2824 void Assembler::shrl(Register dst) {
2825   int encode = prefix_and_encode(dst->encoding());
2826   emit_int8((unsigned char)0xD3);
2827   emit_int8((unsigned char)(0xE8 | encode));
2828 }
2829 
2830 // copies a single word from [esi] to [edi]
2831 void Assembler::smovl() {
2832   emit_int8((unsigned char)0xA5);
2833 }
2834 
2835 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
2836   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2837   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
2838 }
2839 
2840 void Assembler::sqrtsd(XMMRegister dst, Address src) {
2841   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2842   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
2843 }
2844 
2845 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
2846   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2847   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2848 }
2849 
2850 void Assembler::std() {
2851   emit_int8((unsigned char)0xFD);
2852 }
2853 
2854 void Assembler::sqrtss(XMMRegister dst, Address src) {
2855   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2856   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2857 }
2858 
2859 void Assembler::stmxcsr( Address dst) {
2860   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2861   InstructionMark im(this);
2862   prefix(dst);
2863   emit_int8(0x0F);
2864   emit_int8((unsigned char)0xAE);
2865   emit_operand(as_Register(3), dst);
2866 }
2867 
2868 void Assembler::subl(Address dst, int32_t imm32) {
2869   InstructionMark im(this);
2870   prefix(dst);
2871   emit_arith_operand(0x81, rbp, dst, imm32);
2872 }
2873 
2874 void Assembler::subl(Address dst, Register src) {
2875   InstructionMark im(this);
2876   prefix(dst, src);
2877   emit_int8(0x29);
2878   emit_operand(src, dst);
2879 }
2880 
2881 void Assembler::subl(Register dst, int32_t imm32) {
2882   prefix(dst);
2883   emit_arith(0x81, 0xE8, dst, imm32);
2884 }
2885 
2886 // Force generation of a 4 byte immediate value even if it fits into 8bit
2887 void Assembler::subl_imm32(Register dst, int32_t imm32) {
2888   prefix(dst);
2889   emit_arith_imm32(0x81, 0xE8, dst, imm32);
2890 }
2891 
2892 void Assembler::subl(Register dst, Address src) {
2893   InstructionMark im(this);
2894   prefix(src, dst);
2895   emit_int8(0x2B);
2896   emit_operand(dst, src);
2897 }
2898 
2899 void Assembler::subl(Register dst, Register src) {
2900   (void) prefix_and_encode(dst->encoding(), src->encoding());
2901   emit_arith(0x2B, 0xC0, dst, src);
2902 }
2903 
2904 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
2905   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2906   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
2907 }
2908 
2909 void Assembler::subsd(XMMRegister dst, Address src) {
2910   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2911   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
2912 }
2913 
2914 void Assembler::subss(XMMRegister dst, XMMRegister src) {
2915   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2916   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
2917 }
2918 
2919 void Assembler::subss(XMMRegister dst, Address src) {
2920   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2921   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
2922 }
2923 
2924 void Assembler::testb(Register dst, int imm8) {
2925   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2926   (void) prefix_and_encode(dst->encoding(), true);
2927   emit_arith_b(0xF6, 0xC0, dst, imm8);
2928 }
2929 
2930 void Assembler::testl(Register dst, int32_t imm32) {
2931   // not using emit_arith because test
2932   // doesn't support sign-extension of
2933   // 8bit operands
2934   int encode = dst->encoding();
2935   if (encode == 0) {
2936     emit_int8((unsigned char)0xA9);
2937   } else {
2938     encode = prefix_and_encode(encode);
2939     emit_int8((unsigned char)0xF7);
2940     emit_int8((unsigned char)(0xC0 | encode));
2941   }
2942   emit_int32(imm32);
2943 }
2944 
2945 void Assembler::testl(Register dst, Register src) {
2946   (void) prefix_and_encode(dst->encoding(), src->encoding());
2947   emit_arith(0x85, 0xC0, dst, src);
2948 }
2949 
2950 void Assembler::testl(Register dst, Address  src) {
2951   InstructionMark im(this);
2952   prefix(src, dst);
2953   emit_int8((unsigned char)0x85);
2954   emit_operand(dst, src);
2955 }
2956 
2957 void Assembler::tzcntl(Register dst, Register src) {
2958   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
2959   emit_int8((unsigned char)0xF3);
2960   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2961   emit_int8(0x0F);
2962   emit_int8((unsigned char)0xBC);
2963   emit_int8((unsigned char)0xC0 | encode);
2964 }
2965 
2966 void Assembler::tzcntq(Register dst, Register src) {
2967   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
2968   emit_int8((unsigned char)0xF3);
2969   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
2970   emit_int8(0x0F);
2971   emit_int8((unsigned char)0xBC);
2972   emit_int8((unsigned char)(0xC0 | encode));
2973 }
2974 
2975 void Assembler::ucomisd(XMMRegister dst, Address src) {
2976   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2977   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
2978 }
2979 
2980 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
2981   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2982   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
2983 }
2984 
2985 void Assembler::ucomiss(XMMRegister dst, Address src) {
2986   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2987   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2988 }
2989 
2990 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
2991   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2992   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2993 }
2994 
2995 void Assembler::xabort(int8_t imm8) {
2996   emit_int8((unsigned char)0xC6);
2997   emit_int8((unsigned char)0xF8);
2998   emit_int8((unsigned char)(imm8 & 0xFF));
2999 }
3000 
3001 void Assembler::xaddl(Address dst, Register src) {
3002   InstructionMark im(this);
3003   prefix(dst, src);
3004   emit_int8(0x0F);
3005   emit_int8((unsigned char)0xC1);
3006   emit_operand(src, dst);
3007 }
3008 
3009 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
3010   InstructionMark im(this);
3011   relocate(rtype);
3012   if (abort.is_bound()) {
3013     address entry = target(abort);
3014     assert(entry != NULL, "abort entry NULL");
3015     intptr_t offset = entry - pc();
3016     emit_int8((unsigned char)0xC7);
3017     emit_int8((unsigned char)0xF8);
3018     emit_int32(offset - 6); // 2 opcode + 4 address
3019   } else {
3020     abort.add_patch_at(code(), locator());
3021     emit_int8((unsigned char)0xC7);
3022     emit_int8((unsigned char)0xF8);
3023     emit_int32(0);
3024   }
3025 }
3026 
3027 void Assembler::xchgl(Register dst, Address src) { // xchg
3028   InstructionMark im(this);
3029   prefix(src, dst);
3030   emit_int8((unsigned char)0x87);
3031   emit_operand(dst, src);
3032 }
3033 
3034 void Assembler::xchgl(Register dst, Register src) {
3035   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3036   emit_int8((unsigned char)0x87);
3037   emit_int8((unsigned char)(0xC0 | encode));
3038 }
3039 
3040 void Assembler::xend() {
3041   emit_int8((unsigned char)0x0F);
3042   emit_int8((unsigned char)0x01);
3043   emit_int8((unsigned char)0xD5);
3044 }
3045 
3046 void Assembler::xgetbv() {
3047   emit_int8(0x0F);
3048   emit_int8(0x01);
3049   emit_int8((unsigned char)0xD0);
3050 }
3051 
3052 void Assembler::xorl(Register dst, int32_t imm32) {
3053   prefix(dst);
3054   emit_arith(0x81, 0xF0, dst, imm32);
3055 }
3056 
3057 void Assembler::xorl(Register dst, Address src) {
3058   InstructionMark im(this);
3059   prefix(src, dst);
3060   emit_int8(0x33);
3061   emit_operand(dst, src);
3062 }
3063 
3064 void Assembler::xorl(Register dst, Register src) {
3065   (void) prefix_and_encode(dst->encoding(), src->encoding());
3066   emit_arith(0x33, 0xC0, dst, src);
3067 }
3068 
3069 
3070 // AVX 3-operands scalar float-point arithmetic instructions
3071 
3072 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
3073   assert(VM_Version::supports_avx(), "");
3074   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3075 }
3076 
3077 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3078   assert(VM_Version::supports_avx(), "");
3079   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3080 }
3081 
3082 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
3083   assert(VM_Version::supports_avx(), "");
3084   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3085 }
3086 
3087 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3088   assert(VM_Version::supports_avx(), "");
3089   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3090 }
3091 
3092 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
3093   assert(VM_Version::supports_avx(), "");
3094   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3095 }
3096 
3097 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3098   assert(VM_Version::supports_avx(), "");
3099   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3100 }
3101 
3102 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
3103   assert(VM_Version::supports_avx(), "");
3104   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3105 }
3106 
3107 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3108   assert(VM_Version::supports_avx(), "");
3109   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3110 }
3111 
3112 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
3113   assert(VM_Version::supports_avx(), "");
3114   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3115 }
3116 
3117 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3118   assert(VM_Version::supports_avx(), "");
3119   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3120 }
3121 
3122 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
3123   assert(VM_Version::supports_avx(), "");
3124   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3125 }
3126 
3127 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3128   assert(VM_Version::supports_avx(), "");
3129   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3130 }
3131 
3132 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
3133   assert(VM_Version::supports_avx(), "");
3134   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3135 }
3136 
3137 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3138   assert(VM_Version::supports_avx(), "");
3139   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3140 }
3141 
3142 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
3143   assert(VM_Version::supports_avx(), "");
3144   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3145 }
3146 
3147 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3148   assert(VM_Version::supports_avx(), "");
3149   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3150 }
3151 
3152 //====================VECTOR ARITHMETIC=====================================
3153 
3154 // Float-point vector arithmetic
3155 
3156 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
3157   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3158   emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
3159 }
3160 
3161 void Assembler::addps(XMMRegister dst, XMMRegister src) {
3162   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3163   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
3164 }
3165 
3166 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3167   assert(VM_Version::supports_avx(), "");
3168   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
3169 }
3170 
3171 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3172   assert(VM_Version::supports_avx(), "");
3173   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
3174 }
3175 
3176 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3177   assert(VM_Version::supports_avx(), "");
3178   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
3179 }
3180 
3181 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3182   assert(VM_Version::supports_avx(), "");
3183   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
3184 }
3185 
3186 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
3187   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3188   emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
3189 }
3190 
3191 void Assembler::subps(XMMRegister dst, XMMRegister src) {
3192   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3193   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
3194 }
3195 
3196 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3197   assert(VM_Version::supports_avx(), "");
3198   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
3199 }
3200 
3201 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3202   assert(VM_Version::supports_avx(), "");
3203   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
3204 }
3205 
3206 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3207   assert(VM_Version::supports_avx(), "");
3208   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
3209 }
3210 
3211 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3212   assert(VM_Version::supports_avx(), "");
3213   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
3214 }
3215 
3216 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
3217   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3218   emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
3219 }
3220 
3221 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
3222   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3223   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
3224 }
3225 
3226 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3227   assert(VM_Version::supports_avx(), "");
3228   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
3229 }
3230 
3231 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3232   assert(VM_Version::supports_avx(), "");
3233   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
3234 }
3235 
3236 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3237   assert(VM_Version::supports_avx(), "");
3238   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
3239 }
3240 
3241 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3242   assert(VM_Version::supports_avx(), "");
3243   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
3244 }
3245 
3246 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
3247   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3248   emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
3249 }
3250 
3251 void Assembler::divps(XMMRegister dst, XMMRegister src) {
3252   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3253   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
3254 }
3255 
3256 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3257   assert(VM_Version::supports_avx(), "");
3258   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
3259 }
3260 
3261 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3262   assert(VM_Version::supports_avx(), "");
3263   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
3264 }
3265 
3266 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3267   assert(VM_Version::supports_avx(), "");
3268   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
3269 }
3270 
3271 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3272   assert(VM_Version::supports_avx(), "");
3273   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
3274 }
3275 
3276 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
3277   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3278   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
3279 }
3280 
3281 void Assembler::andps(XMMRegister dst, XMMRegister src) {
3282   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3283   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
3284 }
3285 
3286 void Assembler::andps(XMMRegister dst, Address src) {
3287   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3288   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
3289 }
3290 
3291 void Assembler::andpd(XMMRegister dst, Address src) {
3292   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3293   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
3294 }
3295 
3296 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3297   assert(VM_Version::supports_avx(), "");
3298   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
3299 }
3300 
3301 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3302   assert(VM_Version::supports_avx(), "");
3303   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
3304 }
3305 
3306 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3307   assert(VM_Version::supports_avx(), "");
3308   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
3309 }
3310 
3311 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3312   assert(VM_Version::supports_avx(), "");
3313   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
3314 }
3315 
3316 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
3317   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3318   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
3319 }
3320 
3321 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
3322   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3323   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
3324 }
3325 
3326 void Assembler::xorpd(XMMRegister dst, Address src) {
3327   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3328   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
3329 }
3330 
3331 void Assembler::xorps(XMMRegister dst, Address src) {
3332   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3333   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
3334 }
3335 
3336 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3337   assert(VM_Version::supports_avx(), "");
3338   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
3339 }
3340 
3341 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3342   assert(VM_Version::supports_avx(), "");
3343   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
3344 }
3345 
3346 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3347   assert(VM_Version::supports_avx(), "");
3348   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
3349 }
3350 
3351 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3352   assert(VM_Version::supports_avx(), "");
3353   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
3354 }
3355 
3356 
3357 // Integer vector arithmetic
3358 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
3359   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3360   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
3361 }
3362 
3363 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
3364   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3365   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
3366 }
3367 
3368 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
3369   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3370   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
3371 }
3372 
3373 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
3374   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3375   emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
3376 }
3377 
3378 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3379   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3380   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
3381 }
3382 
3383 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3384   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3385   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
3386 }
3387 
3388 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3389   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3390   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
3391 }
3392 
3393 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3394   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3395   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
3396 }
3397 
3398 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3399   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3400   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
3401 }
3402 
3403 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3404   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3405   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
3406 }
3407 
3408 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3409   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3410   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
3411 }
3412 
3413 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3414   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3415   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
3416 }
3417 
3418 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
3419   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3420   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
3421 }
3422 
3423 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
3424   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3425   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
3426 }
3427 
3428 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
3429   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3430   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
3431 }
3432 
3433 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
3434   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3435   emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
3436 }
3437 
3438 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3439   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3440   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
3441 }
3442 
3443 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3444   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3445   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
3446 }
3447 
3448 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3449   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3450   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
3451 }
3452 
3453 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3454   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3455   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
3456 }
3457 
3458 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3459   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3460   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
3461 }
3462 
3463 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3464   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3465   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
3466 }
3467 
3468 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3469   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3470   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
3471 }
3472 
3473 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3474   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3475   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
3476 }
3477 
3478 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
3479   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3480   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
3481 }
3482 
3483 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
3484   assert(VM_Version::supports_sse4_1(), "");
3485   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
3486   emit_int8(0x40);
3487   emit_int8((unsigned char)(0xC0 | encode));
3488 }
3489 
3490 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3491   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3492   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
3493 }
3494 
3495 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3496   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3497   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
3498   emit_int8(0x40);
3499   emit_int8((unsigned char)(0xC0 | encode));
3500 }
3501 
3502 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3503   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3504   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
3505 }
3506 
3507 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3508   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3509   InstructionMark im(this);
3510   int dst_enc = dst->encoding();
3511   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3512   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
3513   emit_int8(0x40);
3514   emit_operand(dst, src);
3515 }
3516 
3517 // Shift packed integers left by specified number of bits.
3518 void Assembler::psllw(XMMRegister dst, int shift) {
3519   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3520   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
3521   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3522   emit_int8(0x71);
3523   emit_int8((unsigned char)(0xC0 | encode));
3524   emit_int8(shift & 0xFF);
3525 }
3526 
3527 void Assembler::pslld(XMMRegister dst, int shift) {
3528   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3529   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
3530   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3531   emit_int8(0x72);
3532   emit_int8((unsigned char)(0xC0 | encode));
3533   emit_int8(shift & 0xFF);
3534 }
3535 
3536 void Assembler::psllq(XMMRegister dst, int shift) {
3537   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3538   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
3539   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3540   emit_int8(0x73);
3541   emit_int8((unsigned char)(0xC0 | encode));
3542   emit_int8(shift & 0xFF);
3543 }
3544 
3545 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
3546   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3547   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
3548 }
3549 
3550 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
3551   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3552   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
3553 }
3554 
3555 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
3556   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3557   emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
3558 }
3559 
3560 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3561   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3562   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
3563   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
3564   emit_int8(shift & 0xFF);
3565 }
3566 
3567 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3568   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3569   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
3570   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
3571   emit_int8(shift & 0xFF);
3572 }
3573 
3574 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3575   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3576   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
3577   emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
3578   emit_int8(shift & 0xFF);
3579 }
3580 
3581 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3582   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3583   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
3584 }
3585 
3586 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3587   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3588   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
3589 }
3590 
3591 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3592   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3593   emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
3594 }
3595 
3596 // Shift packed integers logically right by specified number of bits.
3597 void Assembler::psrlw(XMMRegister dst, int shift) {
3598   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3599   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
3600   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3601   emit_int8(0x71);
3602   emit_int8((unsigned char)(0xC0 | encode));
3603   emit_int8(shift & 0xFF);
3604 }
3605 
3606 void Assembler::psrld(XMMRegister dst, int shift) {
3607   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3608   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
3609   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3610   emit_int8(0x72);
3611   emit_int8((unsigned char)(0xC0 | encode));
3612   emit_int8(shift & 0xFF);
3613 }
3614 
3615 void Assembler::psrlq(XMMRegister dst, int shift) {
3616   // Do not confuse it with psrldq SSE2 instruction which
3617   // shifts 128 bit value in xmm register by number of bytes.
3618   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3619   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3620   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3621   emit_int8(0x73);
3622   emit_int8((unsigned char)(0xC0 | encode));
3623   emit_int8(shift & 0xFF);
3624 }
3625 
3626 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
3627   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3628   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
3629 }
3630 
3631 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
3632   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3633   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
3634 }
3635 
3636 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
3637   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3638   emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
3639 }
3640 
3641 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3642   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3643   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3644   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
3645   emit_int8(shift & 0xFF);
3646 }
3647 
3648 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3649   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3650   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3651   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
3652   emit_int8(shift & 0xFF);
3653 }
3654 
3655 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3656   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3657   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3658   emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
3659   emit_int8(shift & 0xFF);
3660 }
3661 
3662 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3663   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3664   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
3665 }
3666 
3667 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3668   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3669   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
3670 }
3671 
3672 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3673   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3674   emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
3675 }
3676 
3677 // Shift packed integers arithmetically right by specified number of bits.
3678 void Assembler::psraw(XMMRegister dst, int shift) {
3679   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3680   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3681   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3682   emit_int8(0x71);
3683   emit_int8((unsigned char)(0xC0 | encode));
3684   emit_int8(shift & 0xFF);
3685 }
3686 
3687 void Assembler::psrad(XMMRegister dst, int shift) {
3688   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3689   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
3690   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3691   emit_int8(0x72);
3692   emit_int8((unsigned char)(0xC0 | encode));
3693   emit_int8(shift & 0xFF);
3694 }
3695 
3696 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
3697   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3698   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
3699 }
3700 
3701 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
3702   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3703   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
3704 }
3705 
3706 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3707   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3708   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3709   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
3710   emit_int8(shift & 0xFF);
3711 }
3712 
3713 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3714   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3715   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3716   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
3717   emit_int8(shift & 0xFF);
3718 }
3719 
3720 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3721   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3722   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
3723 }
3724 
3725 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3726   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3727   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
3728 }
3729 
3730 
3731 // AND packed integers
3732 void Assembler::pand(XMMRegister dst, XMMRegister src) {
3733   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3734   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
3735 }
3736 
3737 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3738   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3739   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
3740 }
3741 
3742 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3743   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3744   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
3745 }
3746 
3747 void Assembler::por(XMMRegister dst, XMMRegister src) {
3748   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3749   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
3750 }
3751 
3752 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3753   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3754   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
3755 }
3756 
3757 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3758   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3759   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
3760 }
3761 
3762 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
3763   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3764   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
3765 }
3766 
3767 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3768   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3769   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
3770 }
3771 
3772 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3773   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3774   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
3775 }
3776 
3777 
3778 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3779   assert(VM_Version::supports_avx(), "");
3780   bool vector256 = true;
3781   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3782   emit_int8(0x18);
3783   emit_int8((unsigned char)(0xC0 | encode));
3784   // 0x00 - insert into lower 128 bits
3785   // 0x01 - insert into upper 128 bits
3786   emit_int8(0x01);
3787 }
3788 
3789 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
3790   assert(VM_Version::supports_avx(), "");
3791   InstructionMark im(this);
3792   bool vector256 = true;
3793   assert(dst != xnoreg, "sanity");
3794   int dst_enc = dst->encoding();
3795   // swap src<->dst for encoding
3796   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3797   emit_int8(0x18);
3798   emit_operand(dst, src);
3799   // 0x01 - insert into upper 128 bits
3800   emit_int8(0x01);
3801 }
3802 
3803 void Assembler::vextractf128h(Address dst, XMMRegister src) {
3804   assert(VM_Version::supports_avx(), "");
3805   InstructionMark im(this);
3806   bool vector256 = true;
3807   assert(src != xnoreg, "sanity");
3808   int src_enc = src->encoding();
3809   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3810   emit_int8(0x19);
3811   emit_operand(src, dst);
3812   // 0x01 - extract from upper 128 bits
3813   emit_int8(0x01);
3814 }
3815 
3816 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3817   assert(VM_Version::supports_avx2(), "");
3818   bool vector256 = true;
3819   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3820   emit_int8(0x38);
3821   emit_int8((unsigned char)(0xC0 | encode));
3822   // 0x00 - insert into lower 128 bits
3823   // 0x01 - insert into upper 128 bits
3824   emit_int8(0x01);
3825 }
3826 
3827 void Assembler::vinserti128h(XMMRegister dst, Address src) {
3828   assert(VM_Version::supports_avx2(), "");
3829   InstructionMark im(this);
3830   bool vector256 = true;
3831   assert(dst != xnoreg, "sanity");
3832   int dst_enc = dst->encoding();
3833   // swap src<->dst for encoding
3834   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3835   emit_int8(0x38);
3836   emit_operand(dst, src);
3837   // 0x01 - insert into upper 128 bits
3838   emit_int8(0x01);
3839 }
3840 
3841 void Assembler::vextracti128h(Address dst, XMMRegister src) {
3842   assert(VM_Version::supports_avx2(), "");
3843   InstructionMark im(this);
3844   bool vector256 = true;
3845   assert(src != xnoreg, "sanity");
3846   int src_enc = src->encoding();
3847   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3848   emit_int8(0x39);
3849   emit_operand(src, dst);
3850   // 0x01 - extract from upper 128 bits
3851   emit_int8(0x01);
3852 }
3853 
3854 // duplicate 4-bytes integer data from src into 8 locations in dest
3855 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
3856   assert(VM_Version::supports_avx2(), "");
3857   bool vector256 = true;
3858   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
3859   emit_int8(0x58);
3860   emit_int8((unsigned char)(0xC0 | encode));
3861 }
3862 
3863 // Carry-Less Multiplication Quadword
3864 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
3865   assert(VM_Version::supports_clmul(), "");
3866   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
3867   emit_int8(0x44);
3868   emit_int8((unsigned char)(0xC0 | encode));
3869   emit_int8((unsigned char)mask);
3870 }
3871 
3872 // Carry-Less Multiplication Quadword
3873 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
3874   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
3875   bool vector256 = false;
3876   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3877   emit_int8(0x44);
3878   emit_int8((unsigned char)(0xC0 | encode));
3879   emit_int8((unsigned char)mask);
3880 }
3881 
3882 void Assembler::vzeroupper() {
3883   assert(VM_Version::supports_avx(), "");
3884   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
3885   emit_int8(0x77);
3886 }
3887 
3888 
3889 #ifndef _LP64
3890 // 32bit only pieces of the assembler
3891 
3892 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
3893   // NO PREFIX AS NEVER 64BIT
3894   InstructionMark im(this);
3895   emit_int8((unsigned char)0x81);
3896   emit_int8((unsigned char)(0xF8 | src1->encoding()));
3897   emit_data(imm32, rspec, 0);
3898 }
3899 
3900 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
3901   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
3902   InstructionMark im(this);
3903   emit_int8((unsigned char)0x81);
3904   emit_operand(rdi, src1);
3905   emit_data(imm32, rspec, 0);
3906 }
3907 
3908 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
3909 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
3910 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
3911 void Assembler::cmpxchg8(Address adr) {
3912   InstructionMark im(this);
3913   emit_int8(0x0F);
3914   emit_int8((unsigned char)0xC7);
3915   emit_operand(rcx, adr);
3916 }
3917 
3918 void Assembler::decl(Register dst) {
3919   // Don't use it directly. Use MacroAssembler::decrementl() instead.
3920  emit_int8(0x48 | dst->encoding());
3921 }
3922 
3923 #endif // _LP64
3924 
3925 // 64bit typically doesn't use the x87 but needs to for the trig funcs
3926 
3927 void Assembler::fabs() {
3928   emit_int8((unsigned char)0xD9);
3929   emit_int8((unsigned char)0xE1);
3930 }
3931 
3932 void Assembler::fadd(int i) {
3933   emit_farith(0xD8, 0xC0, i);
3934 }
3935 
3936 void Assembler::fadd_d(Address src) {
3937   InstructionMark im(this);
3938   emit_int8((unsigned char)0xDC);
3939   emit_operand32(rax, src);
3940 }
3941 
3942 void Assembler::fadd_s(Address src) {
3943   InstructionMark im(this);
3944   emit_int8((unsigned char)0xD8);
3945   emit_operand32(rax, src);
3946 }
3947 
3948 void Assembler::fadda(int i) {
3949   emit_farith(0xDC, 0xC0, i);
3950 }
3951 
3952 void Assembler::faddp(int i) {
3953   emit_farith(0xDE, 0xC0, i);
3954 }
3955 
3956 void Assembler::fchs() {
3957   emit_int8((unsigned char)0xD9);
3958   emit_int8((unsigned char)0xE0);
3959 }
3960 
3961 void Assembler::fcom(int i) {
3962   emit_farith(0xD8, 0xD0, i);
3963 }
3964 
3965 void Assembler::fcomp(int i) {
3966   emit_farith(0xD8, 0xD8, i);
3967 }
3968 
3969 void Assembler::fcomp_d(Address src) {
3970   InstructionMark im(this);
3971   emit_int8((unsigned char)0xDC);
3972   emit_operand32(rbx, src);
3973 }
3974 
3975 void Assembler::fcomp_s(Address src) {
3976   InstructionMark im(this);
3977   emit_int8((unsigned char)0xD8);
3978   emit_operand32(rbx, src);
3979 }
3980 
3981 void Assembler::fcompp() {
3982   emit_int8((unsigned char)0xDE);
3983   emit_int8((unsigned char)0xD9);
3984 }
3985 
3986 void Assembler::fcos() {
3987   emit_int8((unsigned char)0xD9);
3988   emit_int8((unsigned char)0xFF);
3989 }
3990 
3991 void Assembler::fdecstp() {
3992   emit_int8((unsigned char)0xD9);
3993   emit_int8((unsigned char)0xF6);
3994 }
3995 
3996 void Assembler::fdiv(int i) {
3997   emit_farith(0xD8, 0xF0, i);
3998 }
3999 
4000 void Assembler::fdiv_d(Address src) {
4001   InstructionMark im(this);
4002   emit_int8((unsigned char)0xDC);
4003   emit_operand32(rsi, src);
4004 }
4005 
4006 void Assembler::fdiv_s(Address src) {
4007   InstructionMark im(this);
4008   emit_int8((unsigned char)0xD8);
4009   emit_operand32(rsi, src);
4010 }
4011 
4012 void Assembler::fdiva(int i) {
4013   emit_farith(0xDC, 0xF8, i);
4014 }
4015 
4016 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
4017 //       is erroneous for some of the floating-point instructions below.
4018 
4019 void Assembler::fdivp(int i) {
4020   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
4021 }
4022 
4023 void Assembler::fdivr(int i) {
4024   emit_farith(0xD8, 0xF8, i);
4025 }
4026 
4027 void Assembler::fdivr_d(Address src) {
4028   InstructionMark im(this);
4029   emit_int8((unsigned char)0xDC);
4030   emit_operand32(rdi, src);
4031 }
4032 
4033 void Assembler::fdivr_s(Address src) {
4034   InstructionMark im(this);
4035   emit_int8((unsigned char)0xD8);
4036   emit_operand32(rdi, src);
4037 }
4038 
4039 void Assembler::fdivra(int i) {
4040   emit_farith(0xDC, 0xF0, i);
4041 }
4042 
4043 void Assembler::fdivrp(int i) {
4044   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
4045 }
4046 
4047 void Assembler::ffree(int i) {
4048   emit_farith(0xDD, 0xC0, i);
4049 }
4050 
4051 void Assembler::fild_d(Address adr) {
4052   InstructionMark im(this);
4053   emit_int8((unsigned char)0xDF);
4054   emit_operand32(rbp, adr);
4055 }
4056 
4057 void Assembler::fild_s(Address adr) {
4058   InstructionMark im(this);
4059   emit_int8((unsigned char)0xDB);
4060   emit_operand32(rax, adr);
4061 }
4062 
4063 void Assembler::fincstp() {
4064   emit_int8((unsigned char)0xD9);
4065   emit_int8((unsigned char)0xF7);
4066 }
4067 
4068 void Assembler::finit() {
4069   emit_int8((unsigned char)0x9B);
4070   emit_int8((unsigned char)0xDB);
4071   emit_int8((unsigned char)0xE3);
4072 }
4073 
4074 void Assembler::fist_s(Address adr) {
4075   InstructionMark im(this);
4076   emit_int8((unsigned char)0xDB);
4077   emit_operand32(rdx, adr);
4078 }
4079 
4080 void Assembler::fistp_d(Address adr) {
4081   InstructionMark im(this);
4082   emit_int8((unsigned char)0xDF);
4083   emit_operand32(rdi, adr);
4084 }
4085 
4086 void Assembler::fistp_s(Address adr) {
4087   InstructionMark im(this);
4088   emit_int8((unsigned char)0xDB);
4089   emit_operand32(rbx, adr);
4090 }
4091 
4092 void Assembler::fld1() {
4093   emit_int8((unsigned char)0xD9);
4094   emit_int8((unsigned char)0xE8);
4095 }
4096 
4097 void Assembler::fld_d(Address adr) {
4098   InstructionMark im(this);
4099   emit_int8((unsigned char)0xDD);
4100   emit_operand32(rax, adr);
4101 }
4102 
4103 void Assembler::fld_s(Address adr) {
4104   InstructionMark im(this);
4105   emit_int8((unsigned char)0xD9);
4106   emit_operand32(rax, adr);
4107 }
4108 
4109 
4110 void Assembler::fld_s(int index) {
4111   emit_farith(0xD9, 0xC0, index);
4112 }
4113 
4114 void Assembler::fld_x(Address adr) {
4115   InstructionMark im(this);
4116   emit_int8((unsigned char)0xDB);
4117   emit_operand32(rbp, adr);
4118 }
4119 
4120 void Assembler::fldcw(Address src) {
4121   InstructionMark im(this);
4122   emit_int8((unsigned char)0xD9);
4123   emit_operand32(rbp, src);
4124 }
4125 
4126 void Assembler::fldenv(Address src) {
4127   InstructionMark im(this);
4128   emit_int8((unsigned char)0xD9);
4129   emit_operand32(rsp, src);
4130 }
4131 
4132 void Assembler::fldlg2() {
4133   emit_int8((unsigned char)0xD9);
4134   emit_int8((unsigned char)0xEC);
4135 }
4136 
4137 void Assembler::fldln2() {
4138   emit_int8((unsigned char)0xD9);
4139   emit_int8((unsigned char)0xED);
4140 }
4141 
4142 void Assembler::fldz() {
4143   emit_int8((unsigned char)0xD9);
4144   emit_int8((unsigned char)0xEE);
4145 }
4146 
4147 void Assembler::flog() {
4148   fldln2();
4149   fxch();
4150   fyl2x();
4151 }
4152 
4153 void Assembler::flog10() {
4154   fldlg2();
4155   fxch();
4156   fyl2x();
4157 }
4158 
4159 void Assembler::fmul(int i) {
4160   emit_farith(0xD8, 0xC8, i);
4161 }
4162 
4163 void Assembler::fmul_d(Address src) {
4164   InstructionMark im(this);
4165   emit_int8((unsigned char)0xDC);
4166   emit_operand32(rcx, src);
4167 }
4168 
4169 void Assembler::fmul_s(Address src) {
4170   InstructionMark im(this);
4171   emit_int8((unsigned char)0xD8);
4172   emit_operand32(rcx, src);
4173 }
4174 
4175 void Assembler::fmula(int i) {
4176   emit_farith(0xDC, 0xC8, i);
4177 }
4178 
4179 void Assembler::fmulp(int i) {
4180   emit_farith(0xDE, 0xC8, i);
4181 }
4182 
4183 void Assembler::fnsave(Address dst) {
4184   InstructionMark im(this);
4185   emit_int8((unsigned char)0xDD);
4186   emit_operand32(rsi, dst);
4187 }
4188 
4189 void Assembler::fnstcw(Address src) {
4190   InstructionMark im(this);
4191   emit_int8((unsigned char)0x9B);
4192   emit_int8((unsigned char)0xD9);
4193   emit_operand32(rdi, src);
4194 }
4195 
4196 void Assembler::fnstsw_ax() {
4197   emit_int8((unsigned char)0xDF);
4198   emit_int8((unsigned char)0xE0);
4199 }
4200 
4201 void Assembler::fprem() {
4202   emit_int8((unsigned char)0xD9);
4203   emit_int8((unsigned char)0xF8);
4204 }
4205 
4206 void Assembler::fprem1() {
4207   emit_int8((unsigned char)0xD9);
4208   emit_int8((unsigned char)0xF5);
4209 }
4210 
4211 void Assembler::frstor(Address src) {
4212   InstructionMark im(this);
4213   emit_int8((unsigned char)0xDD);
4214   emit_operand32(rsp, src);
4215 }
4216 
4217 void Assembler::fsin() {
4218   emit_int8((unsigned char)0xD9);
4219   emit_int8((unsigned char)0xFE);
4220 }
4221 
4222 void Assembler::fsqrt() {
4223   emit_int8((unsigned char)0xD9);
4224   emit_int8((unsigned char)0xFA);
4225 }
4226 
4227 void Assembler::fst_d(Address adr) {
4228   InstructionMark im(this);
4229   emit_int8((unsigned char)0xDD);
4230   emit_operand32(rdx, adr);
4231 }
4232 
4233 void Assembler::fst_s(Address adr) {
4234   InstructionMark im(this);
4235   emit_int8((unsigned char)0xD9);
4236   emit_operand32(rdx, adr);
4237 }
4238 
4239 void Assembler::fstp_d(Address adr) {
4240   InstructionMark im(this);
4241   emit_int8((unsigned char)0xDD);
4242   emit_operand32(rbx, adr);
4243 }
4244 
4245 void Assembler::fstp_d(int index) {
4246   emit_farith(0xDD, 0xD8, index);
4247 }
4248 
4249 void Assembler::fstp_s(Address adr) {
4250   InstructionMark im(this);
4251   emit_int8((unsigned char)0xD9);
4252   emit_operand32(rbx, adr);
4253 }
4254 
4255 void Assembler::fstp_x(Address adr) {
4256   InstructionMark im(this);
4257   emit_int8((unsigned char)0xDB);
4258   emit_operand32(rdi, adr);
4259 }
4260 
4261 void Assembler::fsub(int i) {
4262   emit_farith(0xD8, 0xE0, i);
4263 }
4264 
4265 void Assembler::fsub_d(Address src) {
4266   InstructionMark im(this);
4267   emit_int8((unsigned char)0xDC);
4268   emit_operand32(rsp, src);
4269 }
4270 
4271 void Assembler::fsub_s(Address src) {
4272   InstructionMark im(this);
4273   emit_int8((unsigned char)0xD8);
4274   emit_operand32(rsp, src);
4275 }
4276 
4277 void Assembler::fsuba(int i) {
4278   emit_farith(0xDC, 0xE8, i);
4279 }
4280 
4281 void Assembler::fsubp(int i) {
4282   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
4283 }
4284 
4285 void Assembler::fsubr(int i) {
4286   emit_farith(0xD8, 0xE8, i);
4287 }
4288 
4289 void Assembler::fsubr_d(Address src) {
4290   InstructionMark im(this);
4291   emit_int8((unsigned char)0xDC);
4292   emit_operand32(rbp, src);
4293 }
4294 
4295 void Assembler::fsubr_s(Address src) {
4296   InstructionMark im(this);
4297   emit_int8((unsigned char)0xD8);
4298   emit_operand32(rbp, src);
4299 }
4300 
4301 void Assembler::fsubra(int i) {
4302   emit_farith(0xDC, 0xE0, i);
4303 }
4304 
4305 void Assembler::fsubrp(int i) {
4306   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
4307 }
4308 
4309 void Assembler::ftan() {
4310   emit_int8((unsigned char)0xD9);
4311   emit_int8((unsigned char)0xF2);
4312   emit_int8((unsigned char)0xDD);
4313   emit_int8((unsigned char)0xD8);
4314 }
4315 
4316 void Assembler::ftst() {
4317   emit_int8((unsigned char)0xD9);
4318   emit_int8((unsigned char)0xE4);
4319 }
4320 
4321 void Assembler::fucomi(int i) {
4322   // make sure the instruction is supported (introduced for P6, together with cmov)
4323   guarantee(VM_Version::supports_cmov(), "illegal instruction");
4324   emit_farith(0xDB, 0xE8, i);
4325 }
4326 
4327 void Assembler::fucomip(int i) {
4328   // make sure the instruction is supported (introduced for P6, together with cmov)
4329   guarantee(VM_Version::supports_cmov(), "illegal instruction");
4330   emit_farith(0xDF, 0xE8, i);
4331 }
4332 
4333 void Assembler::fwait() {
4334   emit_int8((unsigned char)0x9B);
4335 }
4336 
4337 void Assembler::fxch(int i) {
4338   emit_farith(0xD9, 0xC8, i);
4339 }
4340 
4341 void Assembler::fyl2x() {
4342   emit_int8((unsigned char)0xD9);
4343   emit_int8((unsigned char)0xF1);
4344 }
4345 
4346 void Assembler::frndint() {
4347   emit_int8((unsigned char)0xD9);
4348   emit_int8((unsigned char)0xFC);
4349 }
4350 
4351 void Assembler::f2xm1() {
4352   emit_int8((unsigned char)0xD9);
4353   emit_int8((unsigned char)0xF0);
4354 }
4355 
4356 void Assembler::fldl2e() {
4357   emit_int8((unsigned char)0xD9);
4358   emit_int8((unsigned char)0xEA);
4359 }
4360 
4361 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
4362 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
4363 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
4364 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
4365 
4366 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
4367 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
4368   if (pre > 0) {
4369     emit_int8(simd_pre[pre]);
4370   }
4371   if (rex_w) {
4372     prefixq(adr, xreg);
4373   } else {
4374     prefix(adr, xreg);
4375   }
4376   if (opc > 0) {
4377     emit_int8(0x0F);
4378     int opc2 = simd_opc[opc];
4379     if (opc2 > 0) {
4380       emit_int8(opc2);
4381     }
4382   }
4383 }
4384 
4385 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
4386   if (pre > 0) {
4387     emit_int8(simd_pre[pre]);
4388   }
4389   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
4390                           prefix_and_encode(dst_enc, src_enc);
4391   if (opc > 0) {
4392     emit_int8(0x0F);
4393     int opc2 = simd_opc[opc];
4394     if (opc2 > 0) {
4395       emit_int8(opc2);
4396     }
4397   }
4398   return encode;
4399 }
4400 
4401 
4402 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
4403   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
4404     prefix(VEX_3bytes);
4405 
4406     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
4407     byte1 = (~byte1) & 0xE0;
4408     byte1 |= opc;
4409     emit_int8(byte1);
4410 
4411     int byte2 = ((~nds_enc) & 0xf) << 3;
4412     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
4413     emit_int8(byte2);
4414   } else {
4415     prefix(VEX_2bytes);
4416 
4417     int byte1 = vex_r ? VEX_R : 0;
4418     byte1 = (~byte1) & 0x80;
4419     byte1 |= ((~nds_enc) & 0xf) << 3;
4420     byte1 |= (vector256 ? 4 : 0) | pre;
4421     emit_int8(byte1);
4422   }
4423 }
4424 
4425 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
4426   bool vex_r = (xreg_enc >= 8);
4427   bool vex_b = adr.base_needs_rex();
4428   bool vex_x = adr.index_needs_rex();
4429   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
4430 }
4431 
4432 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
4433   bool vex_r = (dst_enc >= 8);
4434   bool vex_b = (src_enc >= 8);
4435   bool vex_x = false;
4436   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
4437   return (((dst_enc & 7) << 3) | (src_enc & 7));
4438 }
4439 
4440 
4441 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
4442   if (UseAVX > 0) {
4443     int xreg_enc = xreg->encoding();
4444     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
4445     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
4446   } else {
4447     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
4448     rex_prefix(adr, xreg, pre, opc, rex_w);
4449   }
4450 }
4451 
4452 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
4453   int dst_enc = dst->encoding();
4454   int src_enc = src->encoding();
4455   if (UseAVX > 0) {
4456     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4457     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
4458   } else {
4459     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
4460     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
4461   }
4462 }
4463 
4464 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
4465   InstructionMark im(this);
4466   simd_prefix(dst, dst, src, pre);
4467   emit_int8(opcode);
4468   emit_operand(dst, src);
4469 }
4470 
4471 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
4472   int encode = simd_prefix_and_encode(dst, dst, src, pre);
4473   emit_int8(opcode);
4474   emit_int8((unsigned char)(0xC0 | encode));
4475 }
4476 
4477 // Versions with no second source register (non-destructive source).
4478 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
4479   InstructionMark im(this);
4480   simd_prefix(dst, xnoreg, src, pre);
4481   emit_int8(opcode);
4482   emit_operand(dst, src);
4483 }
4484 
4485 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
4486   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
4487   emit_int8(opcode);
4488   emit_int8((unsigned char)(0xC0 | encode));
4489 }
4490 
4491 // 3-operands AVX instructions
4492 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
4493                                Address src, VexSimdPrefix pre, bool vector256) {
4494   InstructionMark im(this);
4495   vex_prefix(dst, nds, src, pre, vector256);
4496   emit_int8(opcode);
4497   emit_operand(dst, src);
4498 }
4499 
4500 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
4501                                XMMRegister src, VexSimdPrefix pre, bool vector256) {
4502   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
4503   emit_int8(opcode);
4504   emit_int8((unsigned char)(0xC0 | encode));
4505 }
4506 
4507 #ifndef _LP64
4508 
4509 void Assembler::incl(Register dst) {
4510   // Don't use it directly. Use MacroAssembler::incrementl() instead.
4511   emit_int8(0x40 | dst->encoding());
4512 }
4513 
4514 void Assembler::lea(Register dst, Address src) {
4515   leal(dst, src);
4516 }
4517 
4518 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
4519   InstructionMark im(this);
4520   emit_int8((unsigned char)0xC7);
4521   emit_operand(rax, dst);
4522   emit_data((int)imm32, rspec, 0);
4523 }
4524 
4525 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
4526   InstructionMark im(this);
4527   int encode = prefix_and_encode(dst->encoding());
4528   emit_int8((unsigned char)(0xB8 | encode));
4529   emit_data((int)imm32, rspec, 0);
4530 }
4531 
4532 void Assembler::popa() { // 32bit
4533   emit_int8(0x61);
4534 }
4535 
4536 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
4537   InstructionMark im(this);
4538   emit_int8(0x68);
4539   emit_data(imm32, rspec, 0);
4540 }
4541 
4542 void Assembler::pusha() { // 32bit
4543   emit_int8(0x60);
4544 }
4545 
4546 void Assembler::set_byte_if_not_zero(Register dst) {
4547   emit_int8(0x0F);
4548   emit_int8((unsigned char)0x95);
4549   emit_int8((unsigned char)(0xE0 | dst->encoding()));
4550 }
4551 
4552 void Assembler::shldl(Register dst, Register src) {
4553   emit_int8(0x0F);
4554   emit_int8((unsigned char)0xA5);
4555   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
4556 }
4557 
4558 void Assembler::shrdl(Register dst, Register src) {
4559   emit_int8(0x0F);
4560   emit_int8((unsigned char)0xAD);
4561   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
4562 }
4563 
4564 #else // LP64
4565 
4566 void Assembler::set_byte_if_not_zero(Register dst) {
4567   int enc = prefix_and_encode(dst->encoding(), true);
4568   emit_int8(0x0F);
4569   emit_int8((unsigned char)0x95);
4570   emit_int8((unsigned char)(0xE0 | enc));
4571 }
4572 
4573 // 64bit only pieces of the assembler
4574 // This should only be used by 64bit instructions that can use rip-relative
4575 // it cannot be used by instructions that want an immediate value.
4576 
4577 bool Assembler::reachable(AddressLiteral adr) {
4578   int64_t disp;
4579   // None will force a 64bit literal to the code stream. Likely a placeholder
4580   // for something that will be patched later and we need to certain it will
4581   // always be reachable.
4582   if (adr.reloc() == relocInfo::none) {
4583     return false;
4584   }
4585   if (adr.reloc() == relocInfo::internal_word_type) {
4586     // This should be rip relative and easily reachable.
4587     return true;
4588   }
4589   if (adr.reloc() == relocInfo::virtual_call_type ||
4590       adr.reloc() == relocInfo::opt_virtual_call_type ||
4591       adr.reloc() == relocInfo::static_call_type ||
4592       adr.reloc() == relocInfo::static_stub_type ) {
4593     // This should be rip relative within the code cache and easily
4594     // reachable until we get huge code caches. (At which point
4595     // ic code is going to have issues).
4596     return true;
4597   }
4598   if (adr.reloc() != relocInfo::external_word_type &&
4599       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
4600       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
4601       adr.reloc() != relocInfo::runtime_call_type ) {
4602     return false;
4603   }
4604 
4605   // Stress the correction code
4606   if (ForceUnreachable) {
4607     // Must be runtimecall reloc, see if it is in the codecache
4608     // Flipping stuff in the codecache to be unreachable causes issues
4609     // with things like inline caches where the additional instructions
4610     // are not handled.
4611     if (CodeCache::find_blob(adr._target) == NULL) {
4612       return false;
4613     }
4614   }
4615   // For external_word_type/runtime_call_type if it is reachable from where we
4616   // are now (possibly a temp buffer) and where we might end up
4617   // anywhere in the codeCache then we are always reachable.
4618   // This would have to change if we ever save/restore shared code
4619   // to be more pessimistic.
4620   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
4621   if (!is_simm32(disp)) return false;
4622   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
4623   if (!is_simm32(disp)) return false;
4624 
4625   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
4626 
4627   // Because rip relative is a disp + address_of_next_instruction and we
4628   // don't know the value of address_of_next_instruction we apply a fudge factor
4629   // to make sure we will be ok no matter the size of the instruction we get placed into.
4630   // We don't have to fudge the checks above here because they are already worst case.
4631 
4632   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
4633   // + 4 because better safe than sorry.
4634   const int fudge = 12 + 4;
4635   if (disp < 0) {
4636     disp -= fudge;
4637   } else {
4638     disp += fudge;
4639   }
4640   return is_simm32(disp);
4641 }
4642 
4643 // Check if the polling page is not reachable from the code cache using rip-relative
4644 // addressing.
4645 bool Assembler::is_polling_page_far() {
4646   intptr_t addr = (intptr_t)os::get_polling_page();
4647   return ForceUnreachable ||
4648          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
4649          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
4650 }
4651 
4652 void Assembler::emit_data64(jlong data,
4653                             relocInfo::relocType rtype,
4654                             int format) {
4655   if (rtype == relocInfo::none) {
4656     emit_int64(data);
4657   } else {
4658     emit_data64(data, Relocation::spec_simple(rtype), format);
4659   }
4660 }
4661 
4662 void Assembler::emit_data64(jlong data,
4663                             RelocationHolder const& rspec,
4664                             int format) {
4665   assert(imm_operand == 0, "default format must be immediate in this file");
4666   assert(imm_operand == format, "must be immediate");
4667   assert(inst_mark() != NULL, "must be inside InstructionMark");
4668   // Do not use AbstractAssembler::relocate, which is not intended for
4669   // embedded words.  Instead, relocate to the enclosing instruction.
4670   code_section()->relocate(inst_mark(), rspec, format);
4671 #ifdef ASSERT
4672   check_relocation(rspec, format);
4673 #endif
4674   emit_int64(data);
4675 }
4676 
4677 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
4678   if (reg_enc >= 8) {
4679     prefix(REX_B);
4680     reg_enc -= 8;
4681   } else if (byteinst && reg_enc >= 4) {
4682     prefix(REX);
4683   }
4684   return reg_enc;
4685 }
4686 
4687 int Assembler::prefixq_and_encode(int reg_enc) {
4688   if (reg_enc < 8) {
4689     prefix(REX_W);
4690   } else {
4691     prefix(REX_WB);
4692     reg_enc -= 8;
4693   }
4694   return reg_enc;
4695 }
4696 
4697 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
4698   if (dst_enc < 8) {
4699     if (src_enc >= 8) {
4700       prefix(REX_B);
4701       src_enc -= 8;
4702     } else if (byteinst && src_enc >= 4) {
4703       prefix(REX);
4704     }
4705   } else {
4706     if (src_enc < 8) {
4707       prefix(REX_R);
4708     } else {
4709       prefix(REX_RB);
4710       src_enc -= 8;
4711     }
4712     dst_enc -= 8;
4713   }
4714   return dst_enc << 3 | src_enc;
4715 }
4716 
4717 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
4718   if (dst_enc < 8) {
4719     if (src_enc < 8) {
4720       prefix(REX_W);
4721     } else {
4722       prefix(REX_WB);
4723       src_enc -= 8;
4724     }
4725   } else {
4726     if (src_enc < 8) {
4727       prefix(REX_WR);
4728     } else {
4729       prefix(REX_WRB);
4730       src_enc -= 8;
4731     }
4732     dst_enc -= 8;
4733   }
4734   return dst_enc << 3 | src_enc;
4735 }
4736 
4737 void Assembler::prefix(Register reg) {
4738   if (reg->encoding() >= 8) {
4739     prefix(REX_B);
4740   }
4741 }
4742 
4743 void Assembler::prefix(Address adr) {
4744   if (adr.base_needs_rex()) {
4745     if (adr.index_needs_rex()) {
4746       prefix(REX_XB);
4747     } else {
4748       prefix(REX_B);
4749     }
4750   } else {
4751     if (adr.index_needs_rex()) {
4752       prefix(REX_X);
4753     }
4754   }
4755 }
4756 
4757 void Assembler::prefixq(Address adr) {
4758   if (adr.base_needs_rex()) {
4759     if (adr.index_needs_rex()) {
4760       prefix(REX_WXB);
4761     } else {
4762       prefix(REX_WB);
4763     }
4764   } else {
4765     if (adr.index_needs_rex()) {
4766       prefix(REX_WX);
4767     } else {
4768       prefix(REX_W);
4769     }
4770   }
4771 }
4772 
4773 
4774 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
4775   if (reg->encoding() < 8) {
4776     if (adr.base_needs_rex()) {
4777       if (adr.index_needs_rex()) {
4778         prefix(REX_XB);
4779       } else {
4780         prefix(REX_B);
4781       }
4782     } else {
4783       if (adr.index_needs_rex()) {
4784         prefix(REX_X);
4785       } else if (byteinst && reg->encoding() >= 4 ) {
4786         prefix(REX);
4787       }
4788     }
4789   } else {
4790     if (adr.base_needs_rex()) {
4791       if (adr.index_needs_rex()) {
4792         prefix(REX_RXB);
4793       } else {
4794         prefix(REX_RB);
4795       }
4796     } else {
4797       if (adr.index_needs_rex()) {
4798         prefix(REX_RX);
4799       } else {
4800         prefix(REX_R);
4801       }
4802     }
4803   }
4804 }
4805 
4806 void Assembler::prefixq(Address adr, Register src) {
4807   if (src->encoding() < 8) {
4808     if (adr.base_needs_rex()) {
4809       if (adr.index_needs_rex()) {
4810         prefix(REX_WXB);
4811       } else {
4812         prefix(REX_WB);
4813       }
4814     } else {
4815       if (adr.index_needs_rex()) {
4816         prefix(REX_WX);
4817       } else {
4818         prefix(REX_W);
4819       }
4820     }
4821   } else {
4822     if (adr.base_needs_rex()) {
4823       if (adr.index_needs_rex()) {
4824         prefix(REX_WRXB);
4825       } else {
4826         prefix(REX_WRB);
4827       }
4828     } else {
4829       if (adr.index_needs_rex()) {
4830         prefix(REX_WRX);
4831       } else {
4832         prefix(REX_WR);
4833       }
4834     }
4835   }
4836 }
4837 
4838 void Assembler::prefix(Address adr, XMMRegister reg) {
4839   if (reg->encoding() < 8) {
4840     if (adr.base_needs_rex()) {
4841       if (adr.index_needs_rex()) {
4842         prefix(REX_XB);
4843       } else {
4844         prefix(REX_B);
4845       }
4846     } else {
4847       if (adr.index_needs_rex()) {
4848         prefix(REX_X);
4849       }
4850     }
4851   } else {
4852     if (adr.base_needs_rex()) {
4853       if (adr.index_needs_rex()) {
4854         prefix(REX_RXB);
4855       } else {
4856         prefix(REX_RB);
4857       }
4858     } else {
4859       if (adr.index_needs_rex()) {
4860         prefix(REX_RX);
4861       } else {
4862         prefix(REX_R);
4863       }
4864     }
4865   }
4866 }
4867 
4868 void Assembler::prefixq(Address adr, XMMRegister src) {
4869   if (src->encoding() < 8) {
4870     if (adr.base_needs_rex()) {
4871       if (adr.index_needs_rex()) {
4872         prefix(REX_WXB);
4873       } else {
4874         prefix(REX_WB);
4875       }
4876     } else {
4877       if (adr.index_needs_rex()) {
4878         prefix(REX_WX);
4879       } else {
4880         prefix(REX_W);
4881       }
4882     }
4883   } else {
4884     if (adr.base_needs_rex()) {
4885       if (adr.index_needs_rex()) {
4886         prefix(REX_WRXB);
4887       } else {
4888         prefix(REX_WRB);
4889       }
4890     } else {
4891       if (adr.index_needs_rex()) {
4892         prefix(REX_WRX);
4893       } else {
4894         prefix(REX_WR);
4895       }
4896     }
4897   }
4898 }
4899 
4900 void Assembler::adcq(Register dst, int32_t imm32) {
4901   (void) prefixq_and_encode(dst->encoding());
4902   emit_arith(0x81, 0xD0, dst, imm32);
4903 }
4904 
4905 void Assembler::adcq(Register dst, Address src) {
4906   InstructionMark im(this);
4907   prefixq(src, dst);
4908   emit_int8(0x13);
4909   emit_operand(dst, src);
4910 }
4911 
4912 void Assembler::adcq(Register dst, Register src) {
4913   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4914   emit_arith(0x13, 0xC0, dst, src);
4915 }
4916 
4917 void Assembler::addq(Address dst, int32_t imm32) {
4918   InstructionMark im(this);
4919   prefixq(dst);
4920   emit_arith_operand(0x81, rax, dst,imm32);
4921 }
4922 
4923 void Assembler::addq(Address dst, Register src) {
4924   InstructionMark im(this);
4925   prefixq(dst, src);
4926   emit_int8(0x01);
4927   emit_operand(src, dst);
4928 }
4929 
4930 void Assembler::addq(Register dst, int32_t imm32) {
4931   (void) prefixq_and_encode(dst->encoding());
4932   emit_arith(0x81, 0xC0, dst, imm32);
4933 }
4934 
4935 void Assembler::addq(Register dst, Address src) {
4936   InstructionMark im(this);
4937   prefixq(src, dst);
4938   emit_int8(0x03);
4939   emit_operand(dst, src);
4940 }
4941 
4942 void Assembler::addq(Register dst, Register src) {
4943   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4944   emit_arith(0x03, 0xC0, dst, src);
4945 }
4946 
4947 void Assembler::adcxq(Register dst, Register src) {
4948   //assert(VM_Version::supports_adx(), "adx instructions not supported");
4949   emit_int8((unsigned char)0x66);
4950   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4951   emit_int8(0x0F);
4952   emit_int8(0x38);
4953   emit_int8((unsigned char)0xF6);
4954   emit_int8((unsigned char)(0xC0 | encode));
4955 }
4956 
4957 void Assembler::adoxq(Register dst, Register src) {
4958   //assert(VM_Version::supports_adx(), "adx instructions not supported");
4959   emit_int8((unsigned char)0xF3);
4960   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4961   emit_int8(0x0F);
4962   emit_int8(0x38);
4963   emit_int8((unsigned char)0xF6);
4964   emit_int8((unsigned char)(0xC0 | encode));
4965 }
4966 
4967 void Assembler::andq(Address dst, int32_t imm32) {
4968   InstructionMark im(this);
4969   prefixq(dst);
4970   emit_int8((unsigned char)0x81);
4971   emit_operand(rsp, dst, 4);
4972   emit_int32(imm32);
4973 }
4974 
4975 void Assembler::andq(Register dst, int32_t imm32) {
4976   (void) prefixq_and_encode(dst->encoding());
4977   emit_arith(0x81, 0xE0, dst, imm32);
4978 }
4979 
4980 void Assembler::andq(Register dst, Address src) {
4981   InstructionMark im(this);
4982   prefixq(src, dst);
4983   emit_int8(0x23);
4984   emit_operand(dst, src);
4985 }
4986 
4987 void Assembler::andq(Register dst, Register src) {
4988   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4989   emit_arith(0x23, 0xC0, dst, src);
4990 }
4991 
4992 void Assembler::andnq(Register dst, Register src1, Register src2) {
4993   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
4994   int encode = vex_prefix_0F38_and_encode_q(dst, src1, src2);
4995   emit_int8((unsigned char)0xF2);
4996   emit_int8((unsigned char)(0xC0 | encode));
4997 }
4998 
4999 void Assembler::andnq(Register dst, Register src1, Address src2) {
5000   InstructionMark im(this);
5001   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5002   vex_prefix_0F38_q(dst, src1, src2);
5003   emit_int8((unsigned char)0xF2);
5004   emit_operand(dst, src2);
5005 }
5006 
5007 void Assembler::bsfq(Register dst, Register src) {
5008   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5009   emit_int8(0x0F);
5010   emit_int8((unsigned char)0xBC);
5011   emit_int8((unsigned char)(0xC0 | encode));
5012 }
5013 
5014 void Assembler::bsrq(Register dst, Register src) {
5015   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5016   emit_int8(0x0F);
5017   emit_int8((unsigned char)0xBD);
5018   emit_int8((unsigned char)(0xC0 | encode));
5019 }
5020 
5021 void Assembler::bswapq(Register reg) {
5022   int encode = prefixq_and_encode(reg->encoding());
5023   emit_int8(0x0F);
5024   emit_int8((unsigned char)(0xC8 | encode));
5025 }
5026 
5027 void Assembler::blsiq(Register dst, Register src) {
5028   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5029   int encode = vex_prefix_0F38_and_encode_q(rbx, dst, src);
5030   emit_int8((unsigned char)0xF3);
5031   emit_int8((unsigned char)(0xC0 | encode));
5032 }
5033 
5034 void Assembler::blsiq(Register dst, Address src) {
5035   InstructionMark im(this);
5036   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5037   vex_prefix_0F38_q(rbx, dst, src);
5038   emit_int8((unsigned char)0xF3);
5039   emit_operand(rbx, src);
5040 }
5041 
5042 void Assembler::blsmskq(Register dst, Register src) {
5043   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5044   int encode = vex_prefix_0F38_and_encode_q(rdx, dst, src);
5045   emit_int8((unsigned char)0xF3);
5046   emit_int8((unsigned char)(0xC0 | encode));
5047 }
5048 
5049 void Assembler::blsmskq(Register dst, Address src) {
5050   InstructionMark im(this);
5051   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5052   vex_prefix_0F38_q(rdx, dst, src);
5053   emit_int8((unsigned char)0xF3);
5054   emit_operand(rdx, src);
5055 }
5056 
5057 void Assembler::blsrq(Register dst, Register src) {
5058   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5059   int encode = vex_prefix_0F38_and_encode_q(rcx, dst, src);
5060   emit_int8((unsigned char)0xF3);
5061   emit_int8((unsigned char)(0xC0 | encode));
5062 }
5063 
5064 void Assembler::blsrq(Register dst, Address src) {
5065   InstructionMark im(this);
5066   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5067   vex_prefix_0F38_q(rcx, dst, src);
5068   emit_int8((unsigned char)0xF3);
5069   emit_operand(rcx, src);
5070 }
5071 
5072 void Assembler::cdqq() {
5073   prefix(REX_W);
5074   emit_int8((unsigned char)0x99);
5075 }
5076 
5077 void Assembler::clflush(Address adr) {
5078   prefix(adr);
5079   emit_int8(0x0F);
5080   emit_int8((unsigned char)0xAE);
5081   emit_operand(rdi, adr);
5082 }
5083 
5084 void Assembler::cmovq(Condition cc, Register dst, Register src) {
5085   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5086   emit_int8(0x0F);
5087   emit_int8(0x40 | cc);
5088   emit_int8((unsigned char)(0xC0 | encode));
5089 }
5090 
5091 void Assembler::cmovq(Condition cc, Register dst, Address src) {
5092   InstructionMark im(this);
5093   prefixq(src, dst);
5094   emit_int8(0x0F);
5095   emit_int8(0x40 | cc);
5096   emit_operand(dst, src);
5097 }
5098 
5099 void Assembler::cmpq(Address dst, int32_t imm32) {
5100   InstructionMark im(this);
5101   prefixq(dst);
5102   emit_int8((unsigned char)0x81);
5103   emit_operand(rdi, dst, 4);
5104   emit_int32(imm32);
5105 }
5106 
5107 void Assembler::cmpq(Register dst, int32_t imm32) {
5108   (void) prefixq_and_encode(dst->encoding());
5109   emit_arith(0x81, 0xF8, dst, imm32);
5110 }
5111 
5112 void Assembler::cmpq(Address dst, Register src) {
5113   InstructionMark im(this);
5114   prefixq(dst, src);
5115   emit_int8(0x3B);
5116   emit_operand(src, dst);
5117 }
5118 
5119 void Assembler::cmpq(Register dst, Register src) {
5120   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5121   emit_arith(0x3B, 0xC0, dst, src);
5122 }
5123 
5124 void Assembler::cmpq(Register dst, Address  src) {
5125   InstructionMark im(this);
5126   prefixq(src, dst);
5127   emit_int8(0x3B);
5128   emit_operand(dst, src);
5129 }
5130 
5131 void Assembler::cmpxchgq(Register reg, Address adr) {
5132   InstructionMark im(this);
5133   prefixq(adr, reg);
5134   emit_int8(0x0F);
5135   emit_int8((unsigned char)0xB1);
5136   emit_operand(reg, adr);
5137 }
5138 
5139 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
5140   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5141   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
5142   emit_int8(0x2A);
5143   emit_int8((unsigned char)(0xC0 | encode));
5144 }
5145 
5146 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
5147   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5148   InstructionMark im(this);
5149   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
5150   emit_int8(0x2A);
5151   emit_operand(dst, src);
5152 }
5153 
5154 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
5155   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5156   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
5157   emit_int8(0x2A);
5158   emit_int8((unsigned char)(0xC0 | encode));
5159 }
5160 
5161 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
5162   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5163   InstructionMark im(this);
5164   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
5165   emit_int8(0x2A);
5166   emit_operand(dst, src);
5167 }
5168 
5169 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
5170   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5171   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
5172   emit_int8(0x2C);
5173   emit_int8((unsigned char)(0xC0 | encode));
5174 }
5175 
5176 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
5177   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5178   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
5179   emit_int8(0x2C);
5180   emit_int8((unsigned char)(0xC0 | encode));
5181 }
5182 
5183 void Assembler::decl(Register dst) {
5184   // Don't use it directly. Use MacroAssembler::decrementl() instead.
5185   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
5186   int encode = prefix_and_encode(dst->encoding());
5187   emit_int8((unsigned char)0xFF);
5188   emit_int8((unsigned char)(0xC8 | encode));
5189 }
5190 
5191 void Assembler::decq(Register dst) {
5192   // Don't use it directly. Use MacroAssembler::decrementq() instead.
5193   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
5194   int encode = prefixq_and_encode(dst->encoding());
5195   emit_int8((unsigned char)0xFF);
5196   emit_int8(0xC8 | encode);
5197 }
5198 
5199 void Assembler::decq(Address dst) {
5200   // Don't use it directly. Use MacroAssembler::decrementq() instead.
5201   InstructionMark im(this);
5202   prefixq(dst);
5203   emit_int8((unsigned char)0xFF);
5204   emit_operand(rcx, dst);
5205 }
5206 
5207 void Assembler::fxrstor(Address src) {
5208   prefixq(src);
5209   emit_int8(0x0F);
5210   emit_int8((unsigned char)0xAE);
5211   emit_operand(as_Register(1), src);
5212 }
5213 
5214 void Assembler::fxsave(Address dst) {
5215   prefixq(dst);
5216   emit_int8(0x0F);
5217   emit_int8((unsigned char)0xAE);
5218   emit_operand(as_Register(0), dst);
5219 }
5220 
5221 void Assembler::idivq(Register src) {
5222   int encode = prefixq_and_encode(src->encoding());
5223   emit_int8((unsigned char)0xF7);
5224   emit_int8((unsigned char)(0xF8 | encode));
5225 }
5226 
5227 void Assembler::imulq(Register dst, Register src) {
5228   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5229   emit_int8(0x0F);
5230   emit_int8((unsigned char)0xAF);
5231   emit_int8((unsigned char)(0xC0 | encode));
5232 }
5233 
5234 void Assembler::imulq(Register dst, Register src, int value) {
5235   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5236   if (is8bit(value)) {
5237     emit_int8(0x6B);
5238     emit_int8((unsigned char)(0xC0 | encode));
5239     emit_int8(value & 0xFF);
5240   } else {
5241     emit_int8(0x69);
5242     emit_int8((unsigned char)(0xC0 | encode));
5243     emit_int32(value);
5244   }
5245 }
5246 
5247 void Assembler::imulq(Register dst, Address src) {
5248   InstructionMark im(this);
5249   prefixq(src, dst);
5250   emit_int8(0x0F);
5251   emit_int8((unsigned char) 0xAF);
5252   emit_operand(dst, src);
5253 }
5254 
5255 void Assembler::incl(Register dst) {
5256   // Don't use it directly. Use MacroAssembler::incrementl() instead.
5257   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
5258   int encode = prefix_and_encode(dst->encoding());
5259   emit_int8((unsigned char)0xFF);
5260   emit_int8((unsigned char)(0xC0 | encode));
5261 }
5262 
5263 void Assembler::incq(Register dst) {
5264   // Don't use it directly. Use MacroAssembler::incrementq() instead.
5265   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
5266   int encode = prefixq_and_encode(dst->encoding());
5267   emit_int8((unsigned char)0xFF);
5268   emit_int8((unsigned char)(0xC0 | encode));
5269 }
5270 
5271 void Assembler::incq(Address dst) {
5272   // Don't use it directly. Use MacroAssembler::incrementq() instead.
5273   InstructionMark im(this);
5274   prefixq(dst);
5275   emit_int8((unsigned char)0xFF);
5276   emit_operand(rax, dst);
5277 }
5278 
5279 void Assembler::lea(Register dst, Address src) {
5280   leaq(dst, src);
5281 }
5282 
5283 void Assembler::leaq(Register dst, Address src) {
5284   InstructionMark im(this);
5285   prefixq(src, dst);
5286   emit_int8((unsigned char)0x8D);
5287   emit_operand(dst, src);
5288 }
5289 
5290 void Assembler::mov64(Register dst, int64_t imm64) {
5291   InstructionMark im(this);
5292   int encode = prefixq_and_encode(dst->encoding());
5293   emit_int8((unsigned char)(0xB8 | encode));
5294   emit_int64(imm64);
5295 }
5296 
5297 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
5298   InstructionMark im(this);
5299   int encode = prefixq_and_encode(dst->encoding());
5300   emit_int8(0xB8 | encode);
5301   emit_data64(imm64, rspec);
5302 }
5303 
5304 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
5305   InstructionMark im(this);
5306   int encode = prefix_and_encode(dst->encoding());
5307   emit_int8((unsigned char)(0xB8 | encode));
5308   emit_data((int)imm32, rspec, narrow_oop_operand);
5309 }
5310 
5311 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
5312   InstructionMark im(this);
5313   prefix(dst);
5314   emit_int8((unsigned char)0xC7);
5315   emit_operand(rax, dst, 4);
5316   emit_data((int)imm32, rspec, narrow_oop_operand);
5317 }
5318 
5319 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
5320   InstructionMark im(this);
5321   int encode = prefix_and_encode(src1->encoding());
5322   emit_int8((unsigned char)0x81);
5323   emit_int8((unsigned char)(0xF8 | encode));
5324   emit_data((int)imm32, rspec, narrow_oop_operand);
5325 }
5326 
5327 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5328   InstructionMark im(this);
5329   prefix(src1);
5330   emit_int8((unsigned char)0x81);
5331   emit_operand(rax, src1, 4);
5332   emit_data((int)imm32, rspec, narrow_oop_operand);
5333 }
5334 
5335 void Assembler::lzcntq(Register dst, Register src) {
5336   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
5337   emit_int8((unsigned char)0xF3);
5338   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5339   emit_int8(0x0F);
5340   emit_int8((unsigned char)0xBD);
5341   emit_int8((unsigned char)(0xC0 | encode));
5342 }
5343 
5344 void Assembler::movdq(XMMRegister dst, Register src) {
5345   // table D-1 says MMX/SSE2
5346   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5347   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
5348   emit_int8(0x6E);
5349   emit_int8((unsigned char)(0xC0 | encode));
5350 }
5351 
5352 void Assembler::movdq(Register dst, XMMRegister src) {
5353   // table D-1 says MMX/SSE2
5354   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5355   // swap src/dst to get correct prefix
5356   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
5357   emit_int8(0x7E);
5358   emit_int8((unsigned char)(0xC0 | encode));
5359 }
5360 
5361 void Assembler::movq(Register dst, Register src) {
5362   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5363   emit_int8((unsigned char)0x8B);
5364   emit_int8((unsigned char)(0xC0 | encode));
5365 }
5366 
5367 void Assembler::movq(Register dst, Address src) {
5368   InstructionMark im(this);
5369   prefixq(src, dst);
5370   emit_int8((unsigned char)0x8B);
5371   emit_operand(dst, src);
5372 }
5373 
5374 void Assembler::movq(Address dst, Register src) {
5375   InstructionMark im(this);
5376   prefixq(dst, src);
5377   emit_int8((unsigned char)0x89);
5378   emit_operand(src, dst);
5379 }
5380 
5381 void Assembler::movsbq(Register dst, Address src) {
5382   InstructionMark im(this);
5383   prefixq(src, dst);
5384   emit_int8(0x0F);
5385   emit_int8((unsigned char)0xBE);
5386   emit_operand(dst, src);
5387 }
5388 
5389 void Assembler::movsbq(Register dst, Register src) {
5390   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5391   emit_int8(0x0F);
5392   emit_int8((unsigned char)0xBE);
5393   emit_int8((unsigned char)(0xC0 | encode));
5394 }
5395 
5396 void Assembler::movslq(Register dst, int32_t imm32) {
5397   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
5398   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
5399   // as a result we shouldn't use until tested at runtime...
5400   ShouldNotReachHere();
5401   InstructionMark im(this);
5402   int encode = prefixq_and_encode(dst->encoding());
5403   emit_int8((unsigned char)(0xC7 | encode));
5404   emit_int32(imm32);
5405 }
5406 
5407 void Assembler::movslq(Address dst, int32_t imm32) {
5408   assert(is_simm32(imm32), "lost bits");
5409   InstructionMark im(this);
5410   prefixq(dst);
5411   emit_int8((unsigned char)0xC7);
5412   emit_operand(rax, dst, 4);
5413   emit_int32(imm32);
5414 }
5415 
5416 void Assembler::movslq(Register dst, Address src) {
5417   InstructionMark im(this);
5418   prefixq(src, dst);
5419   emit_int8(0x63);
5420   emit_operand(dst, src);
5421 }
5422 
5423 void Assembler::movslq(Register dst, Register src) {
5424   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5425   emit_int8(0x63);
5426   emit_int8((unsigned char)(0xC0 | encode));
5427 }
5428 
5429 void Assembler::movswq(Register dst, Address src) {
5430   InstructionMark im(this);
5431   prefixq(src, dst);
5432   emit_int8(0x0F);
5433   emit_int8((unsigned char)0xBF);
5434   emit_operand(dst, src);
5435 }
5436 
5437 void Assembler::movswq(Register dst, Register src) {
5438   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5439   emit_int8((unsigned char)0x0F);
5440   emit_int8((unsigned char)0xBF);
5441   emit_int8((unsigned char)(0xC0 | encode));
5442 }
5443 
5444 void Assembler::movzbq(Register dst, Address src) {
5445   InstructionMark im(this);
5446   prefixq(src, dst);
5447   emit_int8((unsigned char)0x0F);
5448   emit_int8((unsigned char)0xB6);
5449   emit_operand(dst, src);
5450 }
5451 
5452 void Assembler::movzbq(Register dst, Register src) {
5453   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5454   emit_int8(0x0F);
5455   emit_int8((unsigned char)0xB6);
5456   emit_int8(0xC0 | encode);
5457 }
5458 
5459 void Assembler::movzwq(Register dst, Address src) {
5460   InstructionMark im(this);
5461   prefixq(src, dst);
5462   emit_int8((unsigned char)0x0F);
5463   emit_int8((unsigned char)0xB7);
5464   emit_operand(dst, src);
5465 }
5466 
5467 void Assembler::movzwq(Register dst, Register src) {
5468   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5469   emit_int8((unsigned char)0x0F);
5470   emit_int8((unsigned char)0xB7);
5471   emit_int8((unsigned char)(0xC0 | encode));
5472 }
5473 
5474 void Assembler::mulq(Address src) {
5475   InstructionMark im(this);
5476   prefixq(src);
5477   emit_int8((unsigned char)0xF7);
5478   emit_operand(rsp, src);
5479 }
5480 
5481 void Assembler::mulq(Register src) {
5482   int encode = prefixq_and_encode(src->encoding());
5483   emit_int8((unsigned char)0xF7);
5484   emit_int8((unsigned char)(0xE0 | encode));
5485 }
5486 
5487 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
5488   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
5489   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, true, false);
5490   emit_int8((unsigned char)0xF6);
5491   emit_int8((unsigned char)(0xC0 | encode));
5492 }
5493 
5494 void Assembler::negq(Register dst) {
5495   int encode = prefixq_and_encode(dst->encoding());
5496   emit_int8((unsigned char)0xF7);
5497   emit_int8((unsigned char)(0xD8 | encode));
5498 }
5499 
5500 void Assembler::notq(Register dst) {
5501   int encode = prefixq_and_encode(dst->encoding());
5502   emit_int8((unsigned char)0xF7);
5503   emit_int8((unsigned char)(0xD0 | encode));
5504 }
5505 
5506 void Assembler::orq(Address dst, int32_t imm32) {
5507   InstructionMark im(this);
5508   prefixq(dst);
5509   emit_int8((unsigned char)0x81);
5510   emit_operand(rcx, dst, 4);
5511   emit_int32(imm32);
5512 }
5513 
5514 void Assembler::orq(Register dst, int32_t imm32) {
5515   (void) prefixq_and_encode(dst->encoding());
5516   emit_arith(0x81, 0xC8, dst, imm32);
5517 }
5518 
5519 void Assembler::orq(Register dst, Address src) {
5520   InstructionMark im(this);
5521   prefixq(src, dst);
5522   emit_int8(0x0B);
5523   emit_operand(dst, src);
5524 }
5525 
5526 void Assembler::orq(Register dst, Register src) {
5527   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5528   emit_arith(0x0B, 0xC0, dst, src);
5529 }
5530 
5531 void Assembler::popa() { // 64bit
5532   movq(r15, Address(rsp, 0));
5533   movq(r14, Address(rsp, wordSize));
5534   movq(r13, Address(rsp, 2 * wordSize));
5535   movq(r12, Address(rsp, 3 * wordSize));
5536   movq(r11, Address(rsp, 4 * wordSize));
5537   movq(r10, Address(rsp, 5 * wordSize));
5538   movq(r9,  Address(rsp, 6 * wordSize));
5539   movq(r8,  Address(rsp, 7 * wordSize));
5540   movq(rdi, Address(rsp, 8 * wordSize));
5541   movq(rsi, Address(rsp, 9 * wordSize));
5542   movq(rbp, Address(rsp, 10 * wordSize));
5543   // skip rsp
5544   movq(rbx, Address(rsp, 12 * wordSize));
5545   movq(rdx, Address(rsp, 13 * wordSize));
5546   movq(rcx, Address(rsp, 14 * wordSize));
5547   movq(rax, Address(rsp, 15 * wordSize));
5548 
5549   addq(rsp, 16 * wordSize);
5550 }
5551 
5552 void Assembler::popcntq(Register dst, Address src) {
5553   assert(VM_Version::supports_popcnt(), "must support");
5554   InstructionMark im(this);
5555   emit_int8((unsigned char)0xF3);
5556   prefixq(src, dst);
5557   emit_int8((unsigned char)0x0F);
5558   emit_int8((unsigned char)0xB8);
5559   emit_operand(dst, src);
5560 }
5561 
5562 void Assembler::popcntq(Register dst, Register src) {
5563   assert(VM_Version::supports_popcnt(), "must support");
5564   emit_int8((unsigned char)0xF3);
5565   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5566   emit_int8((unsigned char)0x0F);
5567   emit_int8((unsigned char)0xB8);
5568   emit_int8((unsigned char)(0xC0 | encode));
5569 }
5570 
5571 void Assembler::popq(Address dst) {
5572   InstructionMark im(this);
5573   prefixq(dst);
5574   emit_int8((unsigned char)0x8F);
5575   emit_operand(rax, dst);
5576 }
5577 
5578 void Assembler::pusha() { // 64bit
5579   // we have to store original rsp.  ABI says that 128 bytes
5580   // below rsp are local scratch.
5581   movq(Address(rsp, -5 * wordSize), rsp);
5582 
5583   subq(rsp, 16 * wordSize);
5584 
5585   movq(Address(rsp, 15 * wordSize), rax);
5586   movq(Address(rsp, 14 * wordSize), rcx);
5587   movq(Address(rsp, 13 * wordSize), rdx);
5588   movq(Address(rsp, 12 * wordSize), rbx);
5589   // skip rsp
5590   movq(Address(rsp, 10 * wordSize), rbp);
5591   movq(Address(rsp, 9 * wordSize), rsi);
5592   movq(Address(rsp, 8 * wordSize), rdi);
5593   movq(Address(rsp, 7 * wordSize), r8);
5594   movq(Address(rsp, 6 * wordSize), r9);
5595   movq(Address(rsp, 5 * wordSize), r10);
5596   movq(Address(rsp, 4 * wordSize), r11);
5597   movq(Address(rsp, 3 * wordSize), r12);
5598   movq(Address(rsp, 2 * wordSize), r13);
5599   movq(Address(rsp, wordSize), r14);
5600   movq(Address(rsp, 0), r15);
5601 }
5602 
5603 void Assembler::pushq(Address src) {
5604   InstructionMark im(this);
5605   prefixq(src);
5606   emit_int8((unsigned char)0xFF);
5607   emit_operand(rsi, src);
5608 }
5609 
5610 void Assembler::rclq(Register dst, int imm8) {
5611   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5612   int encode = prefixq_and_encode(dst->encoding());
5613   if (imm8 == 1) {
5614     emit_int8((unsigned char)0xD1);
5615     emit_int8((unsigned char)(0xD0 | encode));
5616   } else {
5617     emit_int8((unsigned char)0xC1);
5618     emit_int8((unsigned char)(0xD0 | encode));
5619     emit_int8(imm8);
5620   }
5621 }
5622 
5623 void Assembler::rcrq(Register dst, int imm8) {
5624   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5625   int encode = prefixq_and_encode(dst->encoding());
5626   if (imm8 == 1) {
5627     emit_int8((unsigned char)0xD1);
5628     emit_int8((unsigned char)(0xD8 | encode));
5629   } else {
5630     emit_int8((unsigned char)0xC1);
5631     emit_int8((unsigned char)(0xD8 | encode));
5632     emit_int8(imm8);
5633   }
5634 }
5635 
5636 void Assembler::rorq(Register dst, int imm8) {
5637   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5638   int encode = prefixq_and_encode(dst->encoding());
5639   if (imm8 == 1) {
5640     emit_int8((unsigned char)0xD1);
5641     emit_int8((unsigned char)(0xC8 | encode));
5642   } else {
5643     emit_int8((unsigned char)0xC1);
5644     emit_int8((unsigned char)(0xc8 | encode));
5645     emit_int8(imm8);
5646   }
5647 }
5648 
5649 void Assembler::rorxq(Register dst, Register src, int imm8) {
5650   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
5651   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, true, false);
5652   emit_int8((unsigned char)0xF0);
5653   emit_int8((unsigned char)(0xC0 | encode));
5654   emit_int8(imm8);
5655 }
5656 
5657 void Assembler::sarq(Register dst, int imm8) {
5658   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5659   int encode = prefixq_and_encode(dst->encoding());
5660   if (imm8 == 1) {
5661     emit_int8((unsigned char)0xD1);
5662     emit_int8((unsigned char)(0xF8 | encode));
5663   } else {
5664     emit_int8((unsigned char)0xC1);
5665     emit_int8((unsigned char)(0xF8 | encode));
5666     emit_int8(imm8);
5667   }
5668 }
5669 
5670 void Assembler::sarq(Register dst) {
5671   int encode = prefixq_and_encode(dst->encoding());
5672   emit_int8((unsigned char)0xD3);
5673   emit_int8((unsigned char)(0xF8 | encode));
5674 }
5675 
5676 void Assembler::sbbq(Address dst, int32_t imm32) {
5677   InstructionMark im(this);
5678   prefixq(dst);
5679   emit_arith_operand(0x81, rbx, dst, imm32);
5680 }
5681 
5682 void Assembler::sbbq(Register dst, int32_t imm32) {
5683   (void) prefixq_and_encode(dst->encoding());
5684   emit_arith(0x81, 0xD8, dst, imm32);
5685 }
5686 
5687 void Assembler::sbbq(Register dst, Address src) {
5688   InstructionMark im(this);
5689   prefixq(src, dst);
5690   emit_int8(0x1B);
5691   emit_operand(dst, src);
5692 }
5693 
5694 void Assembler::sbbq(Register dst, Register src) {
5695   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5696   emit_arith(0x1B, 0xC0, dst, src);
5697 }
5698 
5699 void Assembler::shlq(Register dst, int imm8) {
5700   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5701   int encode = prefixq_and_encode(dst->encoding());
5702   if (imm8 == 1) {
5703     emit_int8((unsigned char)0xD1);
5704     emit_int8((unsigned char)(0xE0 | encode));
5705   } else {
5706     emit_int8((unsigned char)0xC1);
5707     emit_int8((unsigned char)(0xE0 | encode));
5708     emit_int8(imm8);
5709   }
5710 }
5711 
5712 void Assembler::shlq(Register dst) {
5713   int encode = prefixq_and_encode(dst->encoding());
5714   emit_int8((unsigned char)0xD3);
5715   emit_int8((unsigned char)(0xE0 | encode));
5716 }
5717 
5718 void Assembler::shrq(Register dst, int imm8) {
5719   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5720   int encode = prefixq_and_encode(dst->encoding());
5721   emit_int8((unsigned char)0xC1);
5722   emit_int8((unsigned char)(0xE8 | encode));
5723   emit_int8(imm8);
5724 }
5725 
5726 void Assembler::shrq(Register dst) {
5727   int encode = prefixq_and_encode(dst->encoding());
5728   emit_int8((unsigned char)0xD3);
5729   emit_int8(0xE8 | encode);
5730 }
5731 
5732 void Assembler::subq(Address dst, int32_t imm32) {
5733   InstructionMark im(this);
5734   prefixq(dst);
5735   emit_arith_operand(0x81, rbp, dst, imm32);
5736 }
5737 
5738 void Assembler::subq(Address dst, Register src) {
5739   InstructionMark im(this);
5740   prefixq(dst, src);
5741   emit_int8(0x29);
5742   emit_operand(src, dst);
5743 }
5744 
5745 void Assembler::subq(Register dst, int32_t imm32) {
5746   (void) prefixq_and_encode(dst->encoding());
5747   emit_arith(0x81, 0xE8, dst, imm32);
5748 }
5749 
5750 // Force generation of a 4 byte immediate value even if it fits into 8bit
5751 void Assembler::subq_imm32(Register dst, int32_t imm32) {
5752   (void) prefixq_and_encode(dst->encoding());
5753   emit_arith_imm32(0x81, 0xE8, dst, imm32);
5754 }
5755 
5756 void Assembler::subq(Register dst, Address src) {
5757   InstructionMark im(this);
5758   prefixq(src, dst);
5759   emit_int8(0x2B);
5760   emit_operand(dst, src);
5761 }
5762 
5763 void Assembler::subq(Register dst, Register src) {
5764   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5765   emit_arith(0x2B, 0xC0, dst, src);
5766 }
5767 
5768 void Assembler::testq(Register dst, int32_t imm32) {
5769   // not using emit_arith because test
5770   // doesn't support sign-extension of
5771   // 8bit operands
5772   int encode = dst->encoding();
5773   if (encode == 0) {
5774     prefix(REX_W);
5775     emit_int8((unsigned char)0xA9);
5776   } else {
5777     encode = prefixq_and_encode(encode);
5778     emit_int8((unsigned char)0xF7);
5779     emit_int8((unsigned char)(0xC0 | encode));
5780   }
5781   emit_int32(imm32);
5782 }
5783 
5784 void Assembler::testq(Register dst, Register src) {
5785   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5786   emit_arith(0x85, 0xC0, dst, src);
5787 }
5788 
5789 void Assembler::xaddq(Address dst, Register src) {
5790   InstructionMark im(this);
5791   prefixq(dst, src);
5792   emit_int8(0x0F);
5793   emit_int8((unsigned char)0xC1);
5794   emit_operand(src, dst);
5795 }
5796 
5797 void Assembler::xchgq(Register dst, Address src) {
5798   InstructionMark im(this);
5799   prefixq(src, dst);
5800   emit_int8((unsigned char)0x87);
5801   emit_operand(dst, src);
5802 }
5803 
5804 void Assembler::xchgq(Register dst, Register src) {
5805   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5806   emit_int8((unsigned char)0x87);
5807   emit_int8((unsigned char)(0xc0 | encode));
5808 }
5809 
5810 void Assembler::xorq(Register dst, Register src) {
5811   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5812   emit_arith(0x33, 0xC0, dst, src);
5813 }
5814 
5815 void Assembler::xorq(Register dst, Address src) {
5816   InstructionMark im(this);
5817   prefixq(src, dst);
5818   emit_int8(0x33);
5819   emit_operand(dst, src);
5820 }
5821 
5822 #endif // !LP64