1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compilerOracle.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc_implementation/g1/heapRegion.hpp"
  39 #include "gc_interface/collectedHeap.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "memory/barrierSet.hpp"
  44 #include "memory/gcLocker.inline.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "opto/addnode.hpp"
  49 #include "opto/callnode.hpp"
  50 #include "opto/cfgnode.hpp"
  51 #include "opto/connode.hpp"
  52 #include "opto/graphKit.hpp"
  53 #include "opto/machnode.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/memnode.hpp"
  56 #include "opto/mulnode.hpp"
  57 #include "opto/runtime.hpp"
  58 #include "opto/subnode.hpp"
  59 #include "runtime/fprofiler.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/interfaceSupport.hpp"
  62 #include "runtime/javaCalls.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/signature.hpp"
  65 #include "runtime/threadCritical.hpp"
  66 #include "runtime/vframe.hpp"
  67 #include "runtime/vframeArray.hpp"
  68 #include "runtime/vframe_hp.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/preserveException.hpp"
  71 #if defined AD_MD_HPP
  72 # include AD_MD_HPP
  73 #elif defined TARGET_ARCH_MODEL_x86_32
  74 # include "adfiles/ad_x86_32.hpp"
  75 #elif defined TARGET_ARCH_MODEL_x86_64
  76 # include "adfiles/ad_x86_64.hpp"
  77 #elif defined TARGET_ARCH_MODEL_sparc
  78 # include "adfiles/ad_sparc.hpp"
  79 #elif defined TARGET_ARCH_MODEL_zero
  80 # include "adfiles/ad_zero.hpp"
  81 #elif defined TARGET_ARCH_MODEL_ppc_64
  82 # include "adfiles/ad_ppc_64.hpp"
  83 #endif
  84 
  85 
  86 // For debugging purposes:
  87 //  To force FullGCALot inside a runtime function, add the following two lines
  88 //
  89 //  Universe::release_fullgc_alot_dummy();
  90 //  MarkSweep::invoke(0, "Debugging");
  91 //
  92 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  93 
  94 
  95 
  96 
  97 // Compiled code entry points
  98 address OptoRuntime::_new_instance_Java                           = NULL;
  99 address OptoRuntime::_new_array_Java                              = NULL;
 100 address OptoRuntime::_new_array_nozero_Java                       = NULL;
 101 address OptoRuntime::_multianewarray2_Java                        = NULL;
 102 address OptoRuntime::_multianewarray3_Java                        = NULL;
 103 address OptoRuntime::_multianewarray4_Java                        = NULL;
 104 address OptoRuntime::_multianewarray5_Java                        = NULL;
 105 address OptoRuntime::_multianewarrayN_Java                        = NULL;
 106 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
 107 address OptoRuntime::_g1_wb_post_Java                             = NULL;
 108 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 109 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 110 address OptoRuntime::_rethrow_Java                                = NULL;
 111 
 112 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 113 address OptoRuntime::_register_finalizer_Java                     = NULL;
 114 
 115 # ifdef ENABLE_ZAP_DEAD_LOCALS
 116 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 117 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 118 # endif
 119 
 120 ExceptionBlob* OptoRuntime::_exception_blob;
 121 
 122 // This should be called in an assertion at the start of OptoRuntime routines
 123 // which are entered from compiled code (all of them)
 124 #ifdef ASSERT
 125 static bool check_compiled_frame(JavaThread* thread) {
 126   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 127   RegisterMap map(thread, false);
 128   frame caller = thread->last_frame().sender(&map);
 129   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 130   return true;
 131 }
 132 #endif // ASSERT
 133 
 134 
 135 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 136   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 137   if (var == NULL) { return false; }
 138 
 139 bool OptoRuntime::generate(ciEnv* env) {
 140 
 141   generate_exception_blob();
 142 
 143   // Note: tls: Means fetching the return oop out of the thread-local storage
 144   //
 145   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 146   // -------------------------------------------------------------------------------------------------------------------------------
 147   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 148   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 149   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 150   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 151   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 152   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 153   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 154   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 155   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 156   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 157   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 158   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 159 
 160   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 161   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 162 
 163 # ifdef ENABLE_ZAP_DEAD_LOCALS
 164   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 165   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 166 # endif
 167   return true;
 168 }
 169 
 170 #undef gen
 171 
 172 
 173 // Helper method to do generation of RunTimeStub's
 174 address OptoRuntime::generate_stub( ciEnv* env,
 175                                     TypeFunc_generator gen, address C_function,
 176                                     const char *name, int is_fancy_jump,
 177                                     bool pass_tls,
 178                                     bool save_argument_registers,
 179                                     bool return_pc ) {
 180   ResourceMark rm;
 181   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 182   return  C.stub_entry_point();
 183 }
 184 
 185 const char* OptoRuntime::stub_name(address entry) {
 186 #ifndef PRODUCT
 187   CodeBlob* cb = CodeCache::find_blob(entry);
 188   RuntimeStub* rs =(RuntimeStub *)cb;
 189   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 190   return rs->name();
 191 #else
 192   // Fast implementation for product mode (maybe it should be inlined too)
 193   return "runtime stub";
 194 #endif
 195 }
 196 
 197 
 198 //=============================================================================
 199 // Opto compiler runtime routines
 200 //=============================================================================
 201 
 202 
 203 //=============================allocation======================================
 204 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 205 // and try allocation again.
 206 
 207 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 208   // After any safepoint, just before going back to compiled code,
 209   // we inform the GC that we will be doing initializing writes to
 210   // this object in the future without emitting card-marks, so
 211   // GC may take any compensating steps.
 212   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 213 
 214   oop new_obj = thread->vm_result();
 215   if (new_obj == NULL)  return;
 216 
 217   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 218          "compiler must check this first");
 219   // GC may decide to give back a safer copy of new_obj.
 220   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 221   thread->set_vm_result(new_obj);
 222 }
 223 
 224 // object allocation
 225 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 226   JRT_BLOCK;
 227 #ifndef PRODUCT
 228   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 229 #endif
 230   assert(check_compiled_frame(thread), "incorrect caller");
 231 
 232   // These checks are cheap to make and support reflective allocation.
 233   int lh = klass->layout_helper();
 234   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 235     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 236     klass->check_valid_for_instantiation(false, THREAD);
 237     if (!HAS_PENDING_EXCEPTION) {
 238       InstanceKlass::cast(klass)->initialize(THREAD);
 239     }
 240   }
 241 
 242   if (!HAS_PENDING_EXCEPTION) {
 243     // Scavenge and allocate an instance.
 244     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 245     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 246     thread->set_vm_result(result);
 247 
 248     // Pass oops back through thread local storage.  Our apparent type to Java
 249     // is that we return an oop, but we can block on exit from this routine and
 250     // a GC can trash the oop in C's return register.  The generated stub will
 251     // fetch the oop from TLS after any possible GC.
 252   }
 253 
 254   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 255   JRT_BLOCK_END;
 256 
 257   if (GraphKit::use_ReduceInitialCardMarks()) {
 258     // inform GC that we won't do card marks for initializing writes.
 259     new_store_pre_barrier(thread);
 260   }
 261 JRT_END
 262 
 263 
 264 // array allocation
 265 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 266   JRT_BLOCK;
 267 #ifndef PRODUCT
 268   SharedRuntime::_new_array_ctr++;            // new array requires GC
 269 #endif
 270   assert(check_compiled_frame(thread), "incorrect caller");
 271 
 272   // Scavenge and allocate an instance.
 273   oop result;
 274 
 275   if (array_type->oop_is_typeArray()) {
 276     // The oopFactory likes to work with the element type.
 277     // (We could bypass the oopFactory, since it doesn't add much value.)
 278     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 279     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 280   } else {
 281     // Although the oopFactory likes to work with the elem_type,
 282     // the compiler prefers the array_type, since it must already have
 283     // that latter value in hand for the fast path.
 284     Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
 285     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 286     result = oopFactory::new_objArray(elem_type, len, THREAD);
 287   }
 288 
 289   // Pass oops back through thread local storage.  Our apparent type to Java
 290   // is that we return an oop, but we can block on exit from this routine and
 291   // a GC can trash the oop in C's return register.  The generated stub will
 292   // fetch the oop from TLS after any possible GC.
 293   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 294   thread->set_vm_result(result);
 295   JRT_BLOCK_END;
 296 
 297   if (GraphKit::use_ReduceInitialCardMarks()) {
 298     // inform GC that we won't do card marks for initializing writes.
 299     new_store_pre_barrier(thread);
 300   }
 301 JRT_END
 302 
 303 // array allocation without zeroing
 304 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 305   JRT_BLOCK;
 306 #ifndef PRODUCT
 307   SharedRuntime::_new_array_ctr++;            // new array requires GC
 308 #endif
 309   assert(check_compiled_frame(thread), "incorrect caller");
 310 
 311   // Scavenge and allocate an instance.
 312   oop result;
 313 
 314   assert(array_type->oop_is_typeArray(), "should be called only for type array");
 315   // The oopFactory likes to work with the element type.
 316   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 317   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 318 
 319   // Pass oops back through thread local storage.  Our apparent type to Java
 320   // is that we return an oop, but we can block on exit from this routine and
 321   // a GC can trash the oop in C's return register.  The generated stub will
 322   // fetch the oop from TLS after any possible GC.
 323   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 324   thread->set_vm_result(result);
 325   JRT_BLOCK_END;
 326 
 327   if (GraphKit::use_ReduceInitialCardMarks()) {
 328     // inform GC that we won't do card marks for initializing writes.
 329     new_store_pre_barrier(thread);
 330   }
 331 
 332   oop result = thread->vm_result();
 333   if ((len > 0) && (result != NULL) &&
 334       is_deoptimized_caller_frame(thread)) {
 335     // Zero array here if the caller is deoptimized.
 336     int size = ((typeArrayOop)result)->object_size();
 337     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 338     const size_t hs = arrayOopDesc::header_size(elem_type);
 339     // Align to next 8 bytes to avoid trashing arrays's length.
 340     const size_t aligned_hs = align_object_offset(hs);
 341     HeapWord* obj = (HeapWord*)result;
 342     if (aligned_hs > hs) {
 343       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 344     }
 345     // Optimized zeroing.
 346     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 347   }
 348 
 349 JRT_END
 350 
 351 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 352 
 353 // multianewarray for 2 dimensions
 354 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 355 #ifndef PRODUCT
 356   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 357 #endif
 358   assert(check_compiled_frame(thread), "incorrect caller");
 359   assert(elem_type->is_klass(), "not a class");
 360   jint dims[2];
 361   dims[0] = len1;
 362   dims[1] = len2;
 363   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 364   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 365   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 366   thread->set_vm_result(obj);
 367 JRT_END
 368 
 369 // multianewarray for 3 dimensions
 370 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 371 #ifndef PRODUCT
 372   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 373 #endif
 374   assert(check_compiled_frame(thread), "incorrect caller");
 375   assert(elem_type->is_klass(), "not a class");
 376   jint dims[3];
 377   dims[0] = len1;
 378   dims[1] = len2;
 379   dims[2] = len3;
 380   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 381   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 382   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 383   thread->set_vm_result(obj);
 384 JRT_END
 385 
 386 // multianewarray for 4 dimensions
 387 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 388 #ifndef PRODUCT
 389   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 390 #endif
 391   assert(check_compiled_frame(thread), "incorrect caller");
 392   assert(elem_type->is_klass(), "not a class");
 393   jint dims[4];
 394   dims[0] = len1;
 395   dims[1] = len2;
 396   dims[2] = len3;
 397   dims[3] = len4;
 398   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 399   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 400   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 401   thread->set_vm_result(obj);
 402 JRT_END
 403 
 404 // multianewarray for 5 dimensions
 405 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 406 #ifndef PRODUCT
 407   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 408 #endif
 409   assert(check_compiled_frame(thread), "incorrect caller");
 410   assert(elem_type->is_klass(), "not a class");
 411   jint dims[5];
 412   dims[0] = len1;
 413   dims[1] = len2;
 414   dims[2] = len3;
 415   dims[3] = len4;
 416   dims[4] = len5;
 417   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 418   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 419   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 420   thread->set_vm_result(obj);
 421 JRT_END
 422 
 423 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 424   assert(check_compiled_frame(thread), "incorrect caller");
 425   assert(elem_type->is_klass(), "not a class");
 426   assert(oop(dims)->is_typeArray(), "not an array");
 427 
 428   ResourceMark rm;
 429   jint len = dims->length();
 430   assert(len > 0, "Dimensions array should contain data");
 431   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 432   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 433   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 434 
 435   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 436   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 437   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 438   thread->set_vm_result(obj);
 439 JRT_END
 440 
 441 
 442 const TypeFunc *OptoRuntime::new_instance_Type() {
 443   // create input type (domain)
 444   const Type **fields = TypeTuple::fields(1);
 445   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 446   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 447 
 448   // create result type (range)
 449   fields = TypeTuple::fields(1);
 450   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 451 
 452   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 453 
 454   return TypeFunc::make(domain, range);
 455 }
 456 
 457 
 458 const TypeFunc *OptoRuntime::athrow_Type() {
 459   // create input type (domain)
 460   const Type **fields = TypeTuple::fields(1);
 461   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 462   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 463 
 464   // create result type (range)
 465   fields = TypeTuple::fields(0);
 466 
 467   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 468 
 469   return TypeFunc::make(domain, range);
 470 }
 471 
 472 
 473 const TypeFunc *OptoRuntime::new_array_Type() {
 474   // create input type (domain)
 475   const Type **fields = TypeTuple::fields(2);
 476   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 477   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 478   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 479 
 480   // create result type (range)
 481   fields = TypeTuple::fields(1);
 482   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 483 
 484   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 485 
 486   return TypeFunc::make(domain, range);
 487 }
 488 
 489 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 490   // create input type (domain)
 491   const int nargs = ndim + 1;
 492   const Type **fields = TypeTuple::fields(nargs);
 493   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 494   for( int i = 1; i < nargs; i++ )
 495     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 496   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 497 
 498   // create result type (range)
 499   fields = TypeTuple::fields(1);
 500   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 501   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 502 
 503   return TypeFunc::make(domain, range);
 504 }
 505 
 506 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 507   return multianewarray_Type(2);
 508 }
 509 
 510 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 511   return multianewarray_Type(3);
 512 }
 513 
 514 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 515   return multianewarray_Type(4);
 516 }
 517 
 518 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 519   return multianewarray_Type(5);
 520 }
 521 
 522 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 523   // create input type (domain)
 524   const Type **fields = TypeTuple::fields(2);
 525   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 526   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 527   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 528 
 529   // create result type (range)
 530   fields = TypeTuple::fields(1);
 531   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 532   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 533 
 534   return TypeFunc::make(domain, range);
 535 }
 536 
 537 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 538   const Type **fields = TypeTuple::fields(2);
 539   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 540   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 541   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 542 
 543   // create result type (range)
 544   fields = TypeTuple::fields(0);
 545   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 546 
 547   return TypeFunc::make(domain, range);
 548 }
 549 
 550 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 551 
 552   const Type **fields = TypeTuple::fields(2);
 553   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 554   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 555   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 556 
 557   // create result type (range)
 558   fields = TypeTuple::fields(0);
 559   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 560 
 561   return TypeFunc::make(domain, range);
 562 }
 563 
 564 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 565   // create input type (domain)
 566   const Type **fields = TypeTuple::fields(1);
 567   // Symbol* name of class to be loaded
 568   fields[TypeFunc::Parms+0] = TypeInt::INT;
 569   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 570 
 571   // create result type (range)
 572   fields = TypeTuple::fields(0);
 573   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 574 
 575   return TypeFunc::make(domain, range);
 576 }
 577 
 578 # ifdef ENABLE_ZAP_DEAD_LOCALS
 579 // Type used for stub generation for zap_dead_locals.
 580 // No inputs or outputs
 581 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 582   // create input type (domain)
 583   const Type **fields = TypeTuple::fields(0);
 584   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 585 
 586   // create result type (range)
 587   fields = TypeTuple::fields(0);
 588   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 589 
 590   return TypeFunc::make(domain,range);
 591 }
 592 # endif
 593 
 594 
 595 //-----------------------------------------------------------------------------
 596 // Monitor Handling
 597 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 598   // create input type (domain)
 599   const Type **fields = TypeTuple::fields(2);
 600   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 601   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 602   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 603 
 604   // create result type (range)
 605   fields = TypeTuple::fields(0);
 606 
 607   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 608 
 609   return TypeFunc::make(domain,range);
 610 }
 611 
 612 
 613 //-----------------------------------------------------------------------------
 614 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 615   // create input type (domain)
 616   const Type **fields = TypeTuple::fields(2);
 617   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 618   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 619   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 620 
 621   // create result type (range)
 622   fields = TypeTuple::fields(0);
 623 
 624   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 625 
 626   return TypeFunc::make(domain,range);
 627 }
 628 
 629 const TypeFunc* OptoRuntime::flush_windows_Type() {
 630   // create input type (domain)
 631   const Type** fields = TypeTuple::fields(1);
 632   fields[TypeFunc::Parms+0] = NULL; // void
 633   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 634 
 635   // create result type
 636   fields = TypeTuple::fields(1);
 637   fields[TypeFunc::Parms+0] = NULL; // void
 638   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 639 
 640   return TypeFunc::make(domain, range);
 641 }
 642 
 643 const TypeFunc* OptoRuntime::l2f_Type() {
 644   // create input type (domain)
 645   const Type **fields = TypeTuple::fields(2);
 646   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 647   fields[TypeFunc::Parms+1] = Type::HALF;
 648   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 649 
 650   // create result type (range)
 651   fields = TypeTuple::fields(1);
 652   fields[TypeFunc::Parms+0] = Type::FLOAT;
 653   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 654 
 655   return TypeFunc::make(domain, range);
 656 }
 657 
 658 const TypeFunc* OptoRuntime::modf_Type() {
 659   const Type **fields = TypeTuple::fields(2);
 660   fields[TypeFunc::Parms+0] = Type::FLOAT;
 661   fields[TypeFunc::Parms+1] = Type::FLOAT;
 662   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 663 
 664   // create result type (range)
 665   fields = TypeTuple::fields(1);
 666   fields[TypeFunc::Parms+0] = Type::FLOAT;
 667 
 668   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 669 
 670   return TypeFunc::make(domain, range);
 671 }
 672 
 673 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 674   // create input type (domain)
 675   const Type **fields = TypeTuple::fields(2);
 676   // Symbol* name of class to be loaded
 677   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 678   fields[TypeFunc::Parms+1] = Type::HALF;
 679   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 680 
 681   // create result type (range)
 682   fields = TypeTuple::fields(2);
 683   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 684   fields[TypeFunc::Parms+1] = Type::HALF;
 685   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 686 
 687   return TypeFunc::make(domain, range);
 688 }
 689 
 690 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 691   const Type **fields = TypeTuple::fields(4);
 692   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 693   fields[TypeFunc::Parms+1] = Type::HALF;
 694   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 695   fields[TypeFunc::Parms+3] = Type::HALF;
 696   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 697 
 698   // create result type (range)
 699   fields = TypeTuple::fields(2);
 700   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 701   fields[TypeFunc::Parms+1] = Type::HALF;
 702   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 703 
 704   return TypeFunc::make(domain, range);
 705 }
 706 
 707 //-------------- currentTimeMillis, currentTimeNanos, etc
 708 
 709 const TypeFunc* OptoRuntime::void_long_Type() {
 710   // create input type (domain)
 711   const Type **fields = TypeTuple::fields(0);
 712   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 713 
 714   // create result type (range)
 715   fields = TypeTuple::fields(2);
 716   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 717   fields[TypeFunc::Parms+1] = Type::HALF;
 718   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 719 
 720   return TypeFunc::make(domain, range);
 721 }
 722 
 723 // arraycopy stub variations:
 724 enum ArrayCopyType {
 725   ac_fast,                      // void(ptr, ptr, size_t)
 726   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 727   ac_slow,                      // void(ptr, int, ptr, int, int)
 728   ac_generic                    //  int(ptr, int, ptr, int, int)
 729 };
 730 
 731 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 732   // create input type (domain)
 733   int num_args      = (act == ac_fast ? 3 : 5);
 734   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 735   int argcnt = num_args;
 736   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 737   const Type** fields = TypeTuple::fields(argcnt);
 738   int argp = TypeFunc::Parms;
 739   fields[argp++] = TypePtr::NOTNULL;    // src
 740   if (num_size_args == 0) {
 741     fields[argp++] = TypeInt::INT;      // src_pos
 742   }
 743   fields[argp++] = TypePtr::NOTNULL;    // dest
 744   if (num_size_args == 0) {
 745     fields[argp++] = TypeInt::INT;      // dest_pos
 746     fields[argp++] = TypeInt::INT;      // length
 747   }
 748   while (num_size_args-- > 0) {
 749     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 750     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 751   }
 752   if (act == ac_checkcast) {
 753     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 754   }
 755   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 756   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 757 
 758   // create result type if needed
 759   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 760   fields = TypeTuple::fields(1);
 761   if (retcnt == 0)
 762     fields[TypeFunc::Parms+0] = NULL; // void
 763   else
 764     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 765   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 766   return TypeFunc::make(domain, range);
 767 }
 768 
 769 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 770   // This signature is simple:  Two base pointers and a size_t.
 771   return make_arraycopy_Type(ac_fast);
 772 }
 773 
 774 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 775   // An extension of fast_arraycopy_Type which adds type checking.
 776   return make_arraycopy_Type(ac_checkcast);
 777 }
 778 
 779 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 780   // This signature is exactly the same as System.arraycopy.
 781   // There are no intptr_t (int/long) arguments.
 782   return make_arraycopy_Type(ac_slow);
 783 }
 784 
 785 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 786   // This signature is like System.arraycopy, except that it returns status.
 787   return make_arraycopy_Type(ac_generic);
 788 }
 789 
 790 
 791 const TypeFunc* OptoRuntime::array_fill_Type() {
 792   const Type** fields;
 793   int argp = TypeFunc::Parms;
 794   if (CCallingConventionRequiresIntsAsLongs) {
 795   // create input type (domain): pointer, int, size_t
 796     fields = TypeTuple::fields(3 LP64_ONLY( + 2));
 797     fields[argp++] = TypePtr::NOTNULL;
 798     fields[argp++] = TypeLong::LONG;
 799     fields[argp++] = Type::HALF;
 800   } else {
 801     // create input type (domain): pointer, int, size_t
 802     fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 803     fields[argp++] = TypePtr::NOTNULL;
 804     fields[argp++] = TypeInt::INT;
 805   }
 806   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 807   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 808   const TypeTuple *domain = TypeTuple::make(argp, fields);
 809 
 810   // create result type
 811   fields = TypeTuple::fields(1);
 812   fields[TypeFunc::Parms+0] = NULL; // void
 813   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 814 
 815   return TypeFunc::make(domain, range);
 816 }
 817 
 818 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 819 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 820   // create input type (domain)
 821   int num_args      = 3;
 822   if (Matcher::pass_original_key_for_aes()) {
 823     num_args = 4;
 824   }
 825   int argcnt = num_args;
 826   const Type** fields = TypeTuple::fields(argcnt);
 827   int argp = TypeFunc::Parms;
 828   fields[argp++] = TypePtr::NOTNULL;    // src
 829   fields[argp++] = TypePtr::NOTNULL;    // dest
 830   fields[argp++] = TypePtr::NOTNULL;    // k array
 831   if (Matcher::pass_original_key_for_aes()) {
 832     fields[argp++] = TypePtr::NOTNULL;    // original k array
 833   }
 834   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 835   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 836 
 837   // no result type needed
 838   fields = TypeTuple::fields(1);
 839   fields[TypeFunc::Parms+0] = NULL; // void
 840   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 841   return TypeFunc::make(domain, range);
 842 }
 843 
 844 /**
 845  * int updateBytesCRC32(int crc, byte* b, int len)
 846  */
 847 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 848   // create input type (domain)
 849   int num_args = 3;
 850   int argcnt = num_args;
 851   if (CCallingConventionRequiresIntsAsLongs) {
 852     argcnt += 2;
 853   }
 854   const Type** fields = TypeTuple::fields(argcnt);
 855   int argp = TypeFunc::Parms;
 856   if (CCallingConventionRequiresIntsAsLongs) {
 857     fields[argp++] = TypeLong::LONG;   // crc
 858     fields[argp++] = Type::HALF;
 859     fields[argp++] = TypePtr::NOTNULL; // src
 860     fields[argp++] = TypeLong::LONG;   // len
 861     fields[argp++] = Type::HALF;
 862   } else {
 863     fields[argp++] = TypeInt::INT;     // crc
 864     fields[argp++] = TypePtr::NOTNULL; // src
 865     fields[argp++] = TypeInt::INT;     // len
 866   }
 867   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 868   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 869 
 870   // result type needed
 871   fields = TypeTuple::fields(1);
 872   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 873   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 874   return TypeFunc::make(domain, range);
 875 }
 876 
 877 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 878 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 879   // create input type (domain)
 880   int num_args      = 5;
 881   if (Matcher::pass_original_key_for_aes()) {
 882     num_args = 6;
 883   }
 884   int argcnt = num_args;
 885   const Type** fields = TypeTuple::fields(argcnt);
 886   int argp = TypeFunc::Parms;
 887   fields[argp++] = TypePtr::NOTNULL;    // src
 888   fields[argp++] = TypePtr::NOTNULL;    // dest
 889   fields[argp++] = TypePtr::NOTNULL;    // k array
 890   fields[argp++] = TypePtr::NOTNULL;    // r array
 891   fields[argp++] = TypeInt::INT;        // src len
 892   if (Matcher::pass_original_key_for_aes()) {
 893     fields[argp++] = TypePtr::NOTNULL;    // original k array
 894   }
 895   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 896   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 897 
 898   // returning cipher len (int)
 899   fields = TypeTuple::fields(1);
 900   fields[TypeFunc::Parms+0] = TypeInt::INT;
 901   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 902   return TypeFunc::make(domain, range);
 903 }
 904 
 905 /*
 906  * void implCompress(byte[] buf, int ofs)
 907  */
 908 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 909   // create input type (domain)
 910   int num_args = 2;
 911   int argcnt = num_args;
 912   const Type** fields = TypeTuple::fields(argcnt);
 913   int argp = TypeFunc::Parms;
 914   fields[argp++] = TypePtr::NOTNULL; // buf
 915   fields[argp++] = TypePtr::NOTNULL; // state
 916   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 917   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 918 
 919   // no result type needed
 920   fields = TypeTuple::fields(1);
 921   fields[TypeFunc::Parms+0] = NULL; // void
 922   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 923   return TypeFunc::make(domain, range);
 924 }
 925 
 926 /*
 927  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 928  */
 929 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 930   // create input type (domain)
 931   int num_args = 4;
 932   int argcnt = num_args;
 933   if(CCallingConventionRequiresIntsAsLongs) {
 934     argcnt += 2;
 935   }
 936   const Type** fields = TypeTuple::fields(argcnt);
 937   int argp = TypeFunc::Parms;
 938   if(CCallingConventionRequiresIntsAsLongs) {
 939     fields[argp++] = TypePtr::NOTNULL; // buf
 940     fields[argp++] = TypePtr::NOTNULL; // state
 941     fields[argp++] = TypeLong::LONG;   // ofs
 942     fields[argp++] = Type::HALF;
 943     fields[argp++] = TypeLong::LONG;   // limit
 944     fields[argp++] = Type::HALF;
 945   } else {
 946     fields[argp++] = TypePtr::NOTNULL; // buf
 947     fields[argp++] = TypePtr::NOTNULL; // state
 948     fields[argp++] = TypeInt::INT;     // ofs
 949     fields[argp++] = TypeInt::INT;     // limit
 950   }
 951   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 952   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 953 
 954   // returning ofs (int)
 955   fields = TypeTuple::fields(1);
 956   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
 957   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 958   return TypeFunc::make(domain, range);
 959 }
 960 
 961 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
 962   // create input type (domain)
 963   int num_args      = 6;
 964   int argcnt = num_args;
 965   const Type** fields = TypeTuple::fields(argcnt);
 966   int argp = TypeFunc::Parms;
 967   fields[argp++] = TypePtr::NOTNULL;    // x
 968   fields[argp++] = TypeInt::INT;        // xlen
 969   fields[argp++] = TypePtr::NOTNULL;    // y
 970   fields[argp++] = TypeInt::INT;        // ylen
 971   fields[argp++] = TypePtr::NOTNULL;    // z
 972   fields[argp++] = TypeInt::INT;        // zlen
 973   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 974   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 975 
 976   // no result type needed
 977   fields = TypeTuple::fields(1);
 978   fields[TypeFunc::Parms+0] = NULL;
 979   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 980   return TypeFunc::make(domain, range);
 981 }
 982 
 983 const TypeFunc* OptoRuntime::squareToLen_Type() {
 984   // create input type (domain)
 985   int num_args      = 4;
 986   int argcnt = num_args;
 987   const Type** fields = TypeTuple::fields(argcnt);
 988   int argp = TypeFunc::Parms;
 989   fields[argp++] = TypePtr::NOTNULL;    // x
 990   fields[argp++] = TypeInt::INT;        // len
 991   fields[argp++] = TypePtr::NOTNULL;    // z
 992   fields[argp++] = TypeInt::INT;        // zlen
 993   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 994   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 995 
 996   // no result type needed
 997   fields = TypeTuple::fields(1);
 998   fields[TypeFunc::Parms+0] = NULL;
 999   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1000   return TypeFunc::make(domain, range);
1001 }
1002 
1003 // for mulAdd calls, 2 pointers and 3 ints, returning int
1004 const TypeFunc* OptoRuntime::mulAdd_Type() {
1005   // create input type (domain)
1006   int num_args      = 5;
1007   int argcnt = num_args;
1008   const Type** fields = TypeTuple::fields(argcnt);
1009   int argp = TypeFunc::Parms;
1010   fields[argp++] = TypePtr::NOTNULL;    // out
1011   fields[argp++] = TypePtr::NOTNULL;    // in
1012   fields[argp++] = TypeInt::INT;        // offset
1013   fields[argp++] = TypeInt::INT;        // len
1014   fields[argp++] = TypeInt::INT;        // k
1015   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1016   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1017 
1018   // returning carry (int)
1019   fields = TypeTuple::fields(1);
1020   fields[TypeFunc::Parms+0] = TypeInt::INT;
1021   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1022   return TypeFunc::make(domain, range);
1023 }
1024 
1025 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1026   // create input type (domain)
1027   int num_args      = 7;
1028   int argcnt = num_args;
1029   if (CCallingConventionRequiresIntsAsLongs) {
1030     argcnt++;                           // additional placeholder
1031   }
1032   const Type** fields = TypeTuple::fields(argcnt);
1033   int argp = TypeFunc::Parms;
1034   fields[argp++] = TypePtr::NOTNULL;    // a
1035   fields[argp++] = TypePtr::NOTNULL;    // b
1036   fields[argp++] = TypePtr::NOTNULL;    // n
1037   if (CCallingConventionRequiresIntsAsLongs) {
1038     fields[argp++] = TypeLong::LONG;    // len
1039     fields[argp++] = TypeLong::HALF;    // placeholder
1040   } else {
1041     fields[argp++] = TypeInt::INT;      // len
1042   }
1043   fields[argp++] = TypeLong::LONG;      // inv
1044   fields[argp++] = Type::HALF;
1045   fields[argp++] = TypePtr::NOTNULL;    // result
1046   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1047   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1048 
1049   // result type needed
1050   fields = TypeTuple::fields(1);
1051   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1052 
1053   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1054   return TypeFunc::make(domain, range);
1055 }
1056 
1057 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1058   // create input type (domain)
1059   int num_args      = 6;
1060   int argcnt = num_args;
1061   if (CCallingConventionRequiresIntsAsLongs) {
1062     argcnt++;                           // additional placeholder
1063   }
1064   const Type** fields = TypeTuple::fields(argcnt);
1065   int argp = TypeFunc::Parms;
1066   fields[argp++] = TypePtr::NOTNULL;    // a
1067   fields[argp++] = TypePtr::NOTNULL;    // n
1068   if (CCallingConventionRequiresIntsAsLongs) {
1069     fields[argp++] = TypeLong::LONG;    // len
1070     fields[argp++] = TypeLong::HALF;    // placeholder
1071   } else {
1072     fields[argp++] = TypeInt::INT;      // len
1073   }
1074   fields[argp++] = TypeLong::LONG;      // inv
1075   fields[argp++] = Type::HALF;
1076   fields[argp++] = TypePtr::NOTNULL;    // result
1077   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1078   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1079 
1080   // result type needed
1081   fields = TypeTuple::fields(1);
1082   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1083 
1084   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1085   return TypeFunc::make(domain, range);
1086 }
1087 
1088 // GHASH block processing
1089 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1090     int argcnt = 4;
1091 
1092     const Type** fields = TypeTuple::fields(argcnt);
1093     int argp = TypeFunc::Parms;
1094     fields[argp++] = TypePtr::NOTNULL;    // state
1095     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1096     fields[argp++] = TypePtr::NOTNULL;    // data
1097     fields[argp++] = TypeInt::INT;        // blocks
1098     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1099     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1100 
1101     // result type needed
1102     fields = TypeTuple::fields(1);
1103     fields[TypeFunc::Parms+0] = NULL; // void
1104     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1105     return TypeFunc::make(domain, range);
1106 }
1107 
1108 //------------- Interpreter state access for on stack replacement
1109 const TypeFunc* OptoRuntime::osr_end_Type() {
1110   // create input type (domain)
1111   const Type **fields = TypeTuple::fields(1);
1112   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1113   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1114 
1115   // create result type
1116   fields = TypeTuple::fields(1);
1117   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1118   fields[TypeFunc::Parms+0] = NULL; // void
1119   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1120   return TypeFunc::make(domain, range);
1121 }
1122 
1123 //-------------- methodData update helpers
1124 
1125 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1126   // create input type (domain)
1127   const Type **fields = TypeTuple::fields(2);
1128   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1129   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1130   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1131 
1132   // create result type
1133   fields = TypeTuple::fields(1);
1134   fields[TypeFunc::Parms+0] = NULL; // void
1135   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1136   return TypeFunc::make(domain,range);
1137 }
1138 
1139 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1140   if (receiver == NULL) return;
1141   Klass* receiver_klass = receiver->klass();
1142 
1143   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1144   int empty_row = -1;           // free row, if any is encountered
1145 
1146   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1147   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1148     // if (vc->receiver(row) == receiver_klass)
1149     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1150     intptr_t row_recv = *(mdp + receiver_off);
1151     if (row_recv == (intptr_t) receiver_klass) {
1152       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1153       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1154       *(mdp + count_off) += DataLayout::counter_increment;
1155       return;
1156     } else if (row_recv == 0) {
1157       // else if (vc->receiver(row) == NULL)
1158       empty_row = (int) row;
1159     }
1160   }
1161 
1162   if (empty_row != -1) {
1163     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1164     // vc->set_receiver(empty_row, receiver_klass);
1165     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1166     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1167     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1168     *(mdp + count_off) = DataLayout::counter_increment;
1169   } else {
1170     // Receiver did not match any saved receiver and there is no empty row for it.
1171     // Increment total counter to indicate polymorphic case.
1172     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
1173     *count_p += DataLayout::counter_increment;
1174   }
1175 JRT_END
1176 
1177 //-------------------------------------------------------------------------------------
1178 // register policy
1179 
1180 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1181   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1182   switch (register_save_policy[reg]) {
1183     case 'C': return false; //SOC
1184     case 'E': return true ; //SOE
1185     case 'N': return false; //NS
1186     case 'A': return false; //AS
1187   }
1188   ShouldNotReachHere();
1189   return false;
1190 }
1191 
1192 //-----------------------------------------------------------------------
1193 // Exceptions
1194 //
1195 
1196 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
1197 
1198 // The method is an entry that is always called by a C++ method not
1199 // directly from compiled code. Compiled code will call the C++ method following.
1200 // We can't allow async exception to be installed during  exception processing.
1201 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1202 
1203   // Do not confuse exception_oop with pending_exception. The exception_oop
1204   // is only used to pass arguments into the method. Not for general
1205   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1206   // the runtime stubs checks this on exit.
1207   assert(thread->exception_oop() != NULL, "exception oop is found");
1208   address handler_address = NULL;
1209 
1210   Handle exception(thread, thread->exception_oop());
1211   address pc = thread->exception_pc();
1212 
1213   // Clear out the exception oop and pc since looking up an
1214   // exception handler can cause class loading, which might throw an
1215   // exception and those fields are expected to be clear during
1216   // normal bytecode execution.
1217   thread->clear_exception_oop_and_pc();
1218 
1219   if (TraceExceptions) {
1220     trace_exception(exception(), pc, "");
1221   }
1222 
1223   // for AbortVMOnException flag
1224   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
1225 
1226 #ifdef ASSERT
1227   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1228     // should throw an exception here
1229     ShouldNotReachHere();
1230   }
1231 #endif
1232 
1233   // new exception handling: this method is entered only from adapters
1234   // exceptions from compiled java methods are handled in compiled code
1235   // using rethrow node
1236 
1237   nm = CodeCache::find_nmethod(pc);
1238   assert(nm != NULL, "No NMethod found");
1239   if (nm->is_native_method()) {
1240     fatal("Native method should not have path to exception handling");
1241   } else {
1242     // we are switching to old paradigm: search for exception handler in caller_frame
1243     // instead in exception handler of caller_frame.sender()
1244 
1245     if (JvmtiExport::can_post_on_exceptions()) {
1246       // "Full-speed catching" is not necessary here,
1247       // since we're notifying the VM on every catch.
1248       // Force deoptimization and the rest of the lookup
1249       // will be fine.
1250       deoptimize_caller_frame(thread);
1251     }
1252 
1253     // Check the stack guard pages.  If enabled, look for handler in this frame;
1254     // otherwise, forcibly unwind the frame.
1255     //
1256     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1257     bool force_unwind = !thread->reguard_stack();
1258     bool deopting = false;
1259     if (nm->is_deopt_pc(pc)) {
1260       deopting = true;
1261       RegisterMap map(thread, false);
1262       frame deoptee = thread->last_frame().sender(&map);
1263       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1264       // Adjust the pc back to the original throwing pc
1265       pc = deoptee.pc();
1266     }
1267 
1268     // If we are forcing an unwind because of stack overflow then deopt is
1269     // irrelevant since we are throwing the frame away anyway.
1270 
1271     if (deopting && !force_unwind) {
1272       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1273     } else {
1274 
1275       handler_address =
1276         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1277 
1278       if (handler_address == NULL) {
1279         bool recursive_exception = false;
1280         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1281         assert (handler_address != NULL, "must have compiled handler");
1282         // Update the exception cache only when the unwind was not forced
1283         // and there didn't happen another exception during the computation of the
1284         // compiled exception handler. Checking for exception oop equality is not
1285         // sufficient because some exceptions are pre-allocated and reused.
1286         if (!force_unwind && !recursive_exception) {
1287           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1288         }
1289       } else {
1290 #ifdef ASSERT
1291         bool recursive_exception = false;
1292         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1293         assert(recursive_exception || (handler_address == computed_address), err_msg("Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1294                  p2i(handler_address), p2i(computed_address)));
1295 #endif
1296       }
1297     }
1298 
1299     thread->set_exception_pc(pc);
1300     thread->set_exception_handler_pc(handler_address);
1301 
1302     // Check if the exception PC is a MethodHandle call site.
1303     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1304   }
1305 
1306   // Restore correct return pc.  Was saved above.
1307   thread->set_exception_oop(exception());
1308   return handler_address;
1309 
1310 JRT_END
1311 
1312 // We are entering here from exception_blob
1313 // If there is a compiled exception handler in this method, we will continue there;
1314 // otherwise we will unwind the stack and continue at the caller of top frame method
1315 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1316 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1317 // we looked up the handler for has been deoptimized in the meantime. If it has been
1318 // we must not use the handler and instead return the deopt blob.
1319 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1320 //
1321 // We are in Java not VM and in debug mode we have a NoHandleMark
1322 //
1323 #ifndef PRODUCT
1324   SharedRuntime::_find_handler_ctr++;          // find exception handler
1325 #endif
1326   debug_only(NoHandleMark __hm;)
1327   nmethod* nm = NULL;
1328   address handler_address = NULL;
1329   {
1330     // Enter the VM
1331 
1332     ResetNoHandleMark rnhm;
1333     handler_address = handle_exception_C_helper(thread, nm);
1334   }
1335 
1336   // Back in java: Use no oops, DON'T safepoint
1337 
1338   // Now check to see if the handler we are returning is in a now
1339   // deoptimized frame
1340 
1341   if (nm != NULL) {
1342     RegisterMap map(thread, false);
1343     frame caller = thread->last_frame().sender(&map);
1344 #ifdef ASSERT
1345     assert(caller.is_compiled_frame(), "must be");
1346 #endif // ASSERT
1347     if (caller.is_deoptimized_frame()) {
1348       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1349     }
1350   }
1351   return handler_address;
1352 }
1353 
1354 //------------------------------rethrow----------------------------------------
1355 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1356 // is either throwing or rethrowing an exception.  The callee-save registers
1357 // have been restored, synchronized objects have been unlocked and the callee
1358 // stack frame has been removed.  The return address was passed in.
1359 // Exception oop is passed as the 1st argument.  This routine is then called
1360 // from the stub.  On exit, we know where to jump in the caller's code.
1361 // After this C code exits, the stub will pop his frame and end in a jump
1362 // (instead of a return).  We enter the caller's default handler.
1363 //
1364 // This must be JRT_LEAF:
1365 //     - caller will not change its state as we cannot block on exit,
1366 //       therefore raw_exception_handler_for_return_address is all it takes
1367 //       to handle deoptimized blobs
1368 //
1369 // However, there needs to be a safepoint check in the middle!  So compiled
1370 // safepoints are completely watertight.
1371 //
1372 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1373 //
1374 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1375 //
1376 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1377 #ifndef PRODUCT
1378   SharedRuntime::_rethrow_ctr++;               // count rethrows
1379 #endif
1380   assert (exception != NULL, "should have thrown a NULLPointerException");
1381 #ifdef ASSERT
1382   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1383     // should throw an exception here
1384     ShouldNotReachHere();
1385   }
1386 #endif
1387 
1388   thread->set_vm_result(exception);
1389   // Frame not compiled (handles deoptimization blob)
1390   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1391 }
1392 
1393 
1394 const TypeFunc *OptoRuntime::rethrow_Type() {
1395   // create input type (domain)
1396   const Type **fields = TypeTuple::fields(1);
1397   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1398   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1399 
1400   // create result type (range)
1401   fields = TypeTuple::fields(1);
1402   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1403   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1404 
1405   return TypeFunc::make(domain, range);
1406 }
1407 
1408 
1409 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1410   // Deoptimize the caller before continuing, as the compiled
1411   // exception handler table may not be valid.
1412   if (!StressCompiledExceptionHandlers && doit) {
1413     deoptimize_caller_frame(thread);
1414   }
1415 }
1416 
1417 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1418   // Called from within the owner thread, so no need for safepoint
1419   RegisterMap reg_map(thread);
1420   frame stub_frame = thread->last_frame();
1421   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1422   frame caller_frame = stub_frame.sender(&reg_map);
1423 
1424   // Deoptimize the caller frame.
1425   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1426 }
1427 
1428 
1429 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1430   // Called from within the owner thread, so no need for safepoint
1431   RegisterMap reg_map(thread);
1432   frame stub_frame = thread->last_frame();
1433   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1434   frame caller_frame = stub_frame.sender(&reg_map);
1435   return caller_frame.is_deoptimized_frame();
1436 }
1437 
1438 
1439 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1440   // create input type (domain)
1441   const Type **fields = TypeTuple::fields(1);
1442   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1443   // // The JavaThread* is passed to each routine as the last argument
1444   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1445   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1446 
1447   // create result type (range)
1448   fields = TypeTuple::fields(0);
1449 
1450   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1451 
1452   return TypeFunc::make(domain,range);
1453 }
1454 
1455 
1456 //-----------------------------------------------------------------------------
1457 // Dtrace support.  entry and exit probes have the same signature
1458 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1459   // create input type (domain)
1460   const Type **fields = TypeTuple::fields(2);
1461   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1462   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1463   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1464 
1465   // create result type (range)
1466   fields = TypeTuple::fields(0);
1467 
1468   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1469 
1470   return TypeFunc::make(domain,range);
1471 }
1472 
1473 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1474   // create input type (domain)
1475   const Type **fields = TypeTuple::fields(2);
1476   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1477   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1478 
1479   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1480 
1481   // create result type (range)
1482   fields = TypeTuple::fields(0);
1483 
1484   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1485 
1486   return TypeFunc::make(domain,range);
1487 }
1488 
1489 
1490 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1491   assert(obj->is_oop(), "must be a valid oop");
1492   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1493   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1494 JRT_END
1495 
1496 //-----------------------------------------------------------------------------
1497 
1498 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1499 
1500 //
1501 // dump the collected NamedCounters.
1502 //
1503 void OptoRuntime::print_named_counters() {
1504   int total_lock_count = 0;
1505   int eliminated_lock_count = 0;
1506 
1507   NamedCounter* c = _named_counters;
1508   while (c) {
1509     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1510       int count = c->count();
1511       if (count > 0) {
1512         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1513         if (Verbose) {
1514           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1515         }
1516         total_lock_count += count;
1517         if (eliminated) {
1518           eliminated_lock_count += count;
1519         }
1520       }
1521     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1522       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1523       if (blc->nonzero()) {
1524         tty->print_cr("%s", c->name());
1525         blc->print_on(tty);
1526       }
1527 #if INCLUDE_RTM_OPT
1528     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1529       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1530       if (rlc->nonzero()) {
1531         tty->print_cr("%s", c->name());
1532         rlc->print_on(tty);
1533       }
1534 #endif
1535     }
1536     c = c->next();
1537   }
1538   if (total_lock_count > 0) {
1539     tty->print_cr("dynamic locks: %d", total_lock_count);
1540     if (eliminated_lock_count) {
1541       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1542                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1543     }
1544   }
1545 }
1546 
1547 //
1548 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1549 //  name which consists of method@line for the inlining tree.
1550 //
1551 
1552 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1553   int max_depth = youngest_jvms->depth();
1554 
1555   // Visit scopes from youngest to oldest.
1556   bool first = true;
1557   stringStream st;
1558   for (int depth = max_depth; depth >= 1; depth--) {
1559     JVMState* jvms = youngest_jvms->of_depth(depth);
1560     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1561     if (!first) {
1562       st.print(" ");
1563     } else {
1564       first = false;
1565     }
1566     int bci = jvms->bci();
1567     if (bci < 0) bci = 0;
1568     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1569     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1570   }
1571   NamedCounter* c;
1572   if (tag == NamedCounter::BiasedLockingCounter) {
1573     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1574   } else if (tag == NamedCounter::RTMLockingCounter) {
1575     c = new RTMLockingNamedCounter(strdup(st.as_string()));
1576   } else {
1577     c = new NamedCounter(strdup(st.as_string()), tag);
1578   }
1579 
1580   // atomically add the new counter to the head of the list.  We only
1581   // add counters so this is safe.
1582   NamedCounter* head;
1583   do {
1584     c->set_next(NULL);
1585     head = _named_counters;
1586     c->set_next(head);
1587   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1588   return c;
1589 }
1590 
1591 //-----------------------------------------------------------------------------
1592 // Non-product code
1593 #ifndef PRODUCT
1594 
1595 int trace_exception_counter = 0;
1596 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1597   ttyLocker ttyl;
1598   trace_exception_counter++;
1599   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1600   exception_oop->print_value();
1601   tty->print(" in ");
1602   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1603   if (blob->is_nmethod()) {
1604     nmethod* nm = blob->as_nmethod_or_null();
1605     nm->method()->print_value();
1606   } else if (blob->is_runtime_stub()) {
1607     tty->print("<runtime-stub>");
1608   } else {
1609     tty->print("<unknown>");
1610   }
1611   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1612   tty->print_cr("]");
1613 }
1614 
1615 #endif  // PRODUCT
1616 
1617 
1618 # ifdef ENABLE_ZAP_DEAD_LOCALS
1619 // Called from call sites in compiled code with oop maps (actually safepoints)
1620 // Zaps dead locals in first java frame.
1621 // Is entry because may need to lock to generate oop maps
1622 // Currently, only used for compiler frames, but someday may be used
1623 // for interpreter frames, too.
1624 
1625 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1626 
1627 // avoid pointers to member funcs with these helpers
1628 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1629 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1630 
1631 
1632 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1633                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1634   assert(JavaThread::current() == thread, "is this needed?");
1635 
1636   if ( !ZapDeadCompiledLocals )  return;
1637 
1638   bool skip = false;
1639 
1640        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1641   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1642   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1643     warning("starting zapping after skipping");
1644 
1645        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1646   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1647   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1648     warning("about to zap last zap");
1649 
1650   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1651 
1652   if ( skip )  return;
1653 
1654   // find java frame and zap it
1655 
1656   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1657     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1658       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1659       return;
1660     }
1661   }
1662   warning("no frame found to zap in zap_dead_Java_locals_C");
1663 }
1664 
1665 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1666   zap_dead_java_or_native_locals(thread, is_java_frame);
1667 JRT_END
1668 
1669 // The following does not work because for one thing, the
1670 // thread state is wrong; it expects java, but it is native.
1671 // Also, the invariants in a native stub are different and
1672 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1673 // in there.
1674 // So for now, we do not zap in native stubs.
1675 
1676 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1677   zap_dead_java_or_native_locals(thread, is_native_frame);
1678 JRT_END
1679 
1680 # endif