1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc_interface/collectedHeap.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "memory/referencePolicy.hpp"
  31 #include "memory/referenceProcessor.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/java.hpp"
  34 #include "runtime/jniHandles.hpp"
  35 
  36 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  37 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  38 const int        subclasses_of_ref                = REF_PHANTOM - REF_OTHER;
  39 
  40 // List of discovered references.
  41 class DiscoveredList {
  42 public:
  43   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
  44   oop head() const     {
  45      return UseCompressedOops ?  oopDesc::decode_heap_oop(_compressed_head) :
  46                                 _oop_head;
  47   }
  48   HeapWord* adr_head() {
  49     return UseCompressedOops ? (HeapWord*)&_compressed_head :
  50                                (HeapWord*)&_oop_head;
  51   }
  52   void   set_head(oop o) {
  53     if (UseCompressedOops) {
  54       // Must compress the head ptr.
  55       _compressed_head = oopDesc::encode_heap_oop(o);
  56     } else {
  57       _oop_head = o;
  58     }
  59   }
  60   bool   empty() const          { return head() == NULL; }
  61   size_t length()               { return _len; }
  62   void   set_length(size_t len) { _len = len;  }
  63   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
  64   void   dec_length(size_t dec) { _len -= dec; }
  65 private:
  66   // Set value depending on UseCompressedOops. This could be a template class
  67   // but then we have to fix all the instantiations and declarations that use this class.
  68   oop       _oop_head;
  69   narrowOop _compressed_head;
  70   size_t _len;
  71 };
  72 
  73 void referenceProcessor_init() {
  74   ReferenceProcessor::init_statics();
  75 }
  76 
  77 void ReferenceProcessor::init_statics() {
  78   // Initialize the master soft ref clock.
  79   java_lang_ref_SoftReference::set_clock(os::javaTimeMillis());
  80 
  81   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  82   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
  83                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
  84   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  85     vm_exit_during_initialization("Could not allocate reference policy object");
  86   }
  87   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  88             RefDiscoveryPolicy == ReferentBasedDiscovery,
  89             "Unrecongnized RefDiscoveryPolicy");
  90 }
  91 
  92 ReferenceProcessor::ReferenceProcessor(MemRegion span,
  93                                        bool      mt_processing,
  94                                        int       mt_processing_degree,
  95                                        bool      mt_discovery,
  96                                        int       mt_discovery_degree,
  97                                        bool      atomic_discovery,
  98                                        BoolObjectClosure* is_alive_non_header,
  99                                        bool      discovered_list_needs_barrier)  :
 100   _discovering_refs(false),
 101   _enqueuing_is_done(false),
 102   _is_alive_non_header(is_alive_non_header),
 103   _discovered_list_needs_barrier(discovered_list_needs_barrier),
 104   _bs(NULL),
 105   _processing_is_mt(mt_processing),
 106   _next_id(0)
 107 {
 108   _span = span;
 109   _discovery_is_atomic = atomic_discovery;
 110   _discovery_is_mt     = mt_discovery;
 111   _num_q               = MAX2(1, mt_processing_degree);
 112   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
 113   _discoveredSoftRefs  = NEW_C_HEAP_ARRAY(DiscoveredList, _max_num_q * subclasses_of_ref);
 114   if (_discoveredSoftRefs == NULL) {
 115     vm_exit_during_initialization("Could not allocated RefProc Array");
 116   }
 117   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
 118   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
 119   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
 120   // Initialized all entries to NULL
 121   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 122     _discoveredSoftRefs[i].set_head(NULL);
 123     _discoveredSoftRefs[i].set_length(0);
 124   }
 125   // If we do barreirs, cache a copy of the barrier set.
 126   if (discovered_list_needs_barrier) {
 127     _bs = Universe::heap()->barrier_set();
 128   }
 129   setup_policy(false /* default soft ref policy */);
 130 }
 131 
 132 #ifndef PRODUCT
 133 void ReferenceProcessor::verify_no_references_recorded() {
 134   guarantee(!_discovering_refs, "Discovering refs?");
 135   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 136     guarantee(_discoveredSoftRefs[i].empty(),
 137               "Found non-empty discovered list");
 138   }
 139 }
 140 #endif
 141 
 142 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 143   // Should this instead be
 144   // for (int i = 0; i < subclasses_of_ref; i++_ {
 145   //   for (int j = 0; j < _num_q; j++) {
 146   //     int index = i * _max_num_q + j;
 147   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 148     if (UseCompressedOops) {
 149       f->do_oop((narrowOop*)_discoveredSoftRefs[i].adr_head());
 150     } else {
 151       f->do_oop((oop*)_discoveredSoftRefs[i].adr_head());
 152     }
 153   }
 154 }
 155 
 156 void ReferenceProcessor::update_soft_ref_master_clock() {
 157   // Update (advance) the soft ref master clock field. This must be done
 158   // after processing the soft ref list.
 159   jlong now = os::javaTimeMillis();
 160   jlong clock = java_lang_ref_SoftReference::clock();
 161   NOT_PRODUCT(
 162   if (now < clock) {
 163     warning("time warp: %d to %d", clock, now);
 164   }
 165   )
 166   // In product mode, protect ourselves from system time being adjusted
 167   // externally and going backward; see note in the implementation of
 168   // GenCollectedHeap::time_since_last_gc() for the right way to fix
 169   // this uniformly throughout the VM; see bug-id 4741166. XXX
 170   if (now > clock) {
 171     java_lang_ref_SoftReference::set_clock(now);
 172   }
 173   // Else leave clock stalled at its old value until time progresses
 174   // past clock value.
 175 }
 176 
 177 void ReferenceProcessor::process_discovered_references(
 178   BoolObjectClosure*           is_alive,
 179   OopClosure*                  keep_alive,
 180   VoidClosure*                 complete_gc,
 181   AbstractRefProcTaskExecutor* task_executor) {
 182   NOT_PRODUCT(verify_ok_to_handle_reflists());
 183 
 184   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 185   // Stop treating discovered references specially.
 186   disable_discovery();
 187 
 188   bool trace_time = PrintGCDetails && PrintReferenceGC;
 189   // Soft references
 190   {
 191     TraceTime tt("SoftReference", trace_time, false, gclog_or_tty);
 192     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 193                                is_alive, keep_alive, complete_gc, task_executor);
 194   }
 195 
 196   update_soft_ref_master_clock();
 197 
 198   // Weak references
 199   {
 200     TraceTime tt("WeakReference", trace_time, false, gclog_or_tty);
 201     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 202                                is_alive, keep_alive, complete_gc, task_executor);
 203   }
 204 
 205   // Final references
 206   {
 207     TraceTime tt("FinalReference", trace_time, false, gclog_or_tty);
 208     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 209                                is_alive, keep_alive, complete_gc, task_executor);
 210   }
 211 
 212   // Phantom references
 213   {
 214     TraceTime tt("PhantomReference", trace_time, false, gclog_or_tty);
 215     process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
 216                                is_alive, keep_alive, complete_gc, task_executor);
 217   }
 218 
 219   // Weak global JNI references. It would make more sense (semantically) to
 220   // traverse these simultaneously with the regular weak references above, but
 221   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 222   // thus use JNI weak references to circumvent the phantom references and
 223   // resurrect a "post-mortem" object.
 224   {
 225     TraceTime tt("JNI Weak Reference", trace_time, false, gclog_or_tty);
 226     if (task_executor != NULL) {
 227       task_executor->set_single_threaded_mode();
 228     }
 229     process_phaseJNI(is_alive, keep_alive, complete_gc);
 230   }
 231 }
 232 
 233 #ifndef PRODUCT
 234 // Calculate the number of jni handles.
 235 uint ReferenceProcessor::count_jni_refs() {
 236   class AlwaysAliveClosure: public BoolObjectClosure {
 237   public:
 238     virtual bool do_object_b(oop obj) { return true; }
 239     virtual void do_object(oop obj) { assert(false, "Don't call"); }
 240   };
 241 
 242   class CountHandleClosure: public OopClosure {
 243   private:
 244     int _count;
 245   public:
 246     CountHandleClosure(): _count(0) {}
 247     void do_oop(oop* unused)       { _count++; }
 248     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 249     int count() { return _count; }
 250   };
 251   CountHandleClosure global_handle_count;
 252   AlwaysAliveClosure always_alive;
 253   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
 254   return global_handle_count.count();
 255 }
 256 #endif
 257 
 258 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 259                                           OopClosure*        keep_alive,
 260                                           VoidClosure*       complete_gc) {
 261 #ifndef PRODUCT
 262   if (PrintGCDetails && PrintReferenceGC) {
 263     unsigned int count = count_jni_refs();
 264     gclog_or_tty->print(", %u refs", count);
 265   }
 266 #endif
 267   JNIHandles::weak_oops_do(is_alive, keep_alive);
 268   complete_gc->do_void();
 269 }
 270 
 271 
 272 template <class T>
 273 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
 274                                    AbstractRefProcTaskExecutor* task_executor) {
 275 
 276   // Remember old value of pending references list
 277   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
 278   T old_pending_list_value = *pending_list_addr;
 279 
 280   // Enqueue references that are not made active again, and
 281   // clear the decks for the next collection (cycle).
 282   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
 283   // Do the oop-check on pending_list_addr missed in
 284   // enqueue_discovered_reflist. We should probably
 285   // do a raw oop_check so that future such idempotent
 286   // oop_stores relying on the oop-check side-effect
 287   // may be elided automatically and safely without
 288   // affecting correctness.
 289   oop_store(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
 290 
 291   // Stop treating discovered references specially.
 292   ref->disable_discovery();
 293 
 294   // Return true if new pending references were added
 295   return old_pending_list_value != *pending_list_addr;
 296 }
 297 
 298 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
 299   NOT_PRODUCT(verify_ok_to_handle_reflists());
 300   if (UseCompressedOops) {
 301     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
 302   } else {
 303     return enqueue_discovered_ref_helper<oop>(this, task_executor);
 304   }
 305 }
 306 
 307 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
 308                                                     HeapWord* pending_list_addr) {
 309   // Given a list of refs linked through the "discovered" field
 310   // (java.lang.ref.Reference.discovered) chain them through the
 311   // "next" field (java.lang.ref.Reference.next) and prepend
 312   // to the pending list.
 313   if (TraceReferenceGC && PrintGCDetails) {
 314     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
 315                            INTPTR_FORMAT, (address)refs_list.head());
 316   }
 317 
 318   oop obj = NULL;
 319   oop next = refs_list.head();
 320   // Walk down the list, copying the discovered field into
 321   // the next field and clearing it.
 322   while (obj != next) {
 323     obj = next;
 324     assert(obj->is_instanceRef(), "should be reference object");
 325     next = java_lang_ref_Reference::discovered(obj);
 326     if (TraceReferenceGC && PrintGCDetails) {
 327       gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next " INTPTR_FORMAT,
 328                              obj, next);
 329     }
 330     assert(java_lang_ref_Reference::next(obj) == NULL,
 331            "The reference should not be enqueued");
 332     if (next == obj) {  // obj is last
 333       // Swap refs_list into pendling_list_addr and
 334       // set obj's next to what we read from pending_list_addr.
 335       oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 336       // Need oop_check on pending_list_addr above;
 337       // see special oop-check code at the end of
 338       // enqueue_discovered_reflists() further below.
 339       if (old == NULL) {
 340         // obj should be made to point to itself, since
 341         // pending list was empty.
 342         java_lang_ref_Reference::set_next(obj, obj);
 343       } else {
 344         java_lang_ref_Reference::set_next(obj, old);
 345       }
 346     } else {
 347       java_lang_ref_Reference::set_next(obj, next);
 348     }
 349     java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
 350   }
 351 }
 352 
 353 // Parallel enqueue task
 354 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 355 public:
 356   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
 357                      DiscoveredList      discovered_refs[],
 358                      HeapWord*           pending_list_addr,
 359                      int                 n_queues)
 360     : EnqueueTask(ref_processor, discovered_refs,
 361                   pending_list_addr, n_queues)
 362   { }
 363 
 364   virtual void work(unsigned int work_id) {
 365     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
 366     // Simplest first cut: static partitioning.
 367     int index = work_id;
 368     // The increment on "index" must correspond to the maximum number of queues
 369     // (n_queues) with which that ReferenceProcessor was created.  That
 370     // is because of the "clever" way the discovered references lists were
 371     // allocated and are indexed into.
 372     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
 373     for (int j = 0;
 374          j < subclasses_of_ref;
 375          j++, index += _n_queues) {
 376       _ref_processor.enqueue_discovered_reflist(
 377         _refs_lists[index], _pending_list_addr);
 378       _refs_lists[index].set_head(NULL);
 379       _refs_lists[index].set_length(0);
 380     }
 381   }
 382 };
 383 
 384 // Enqueue references that are not made active again
 385 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
 386   AbstractRefProcTaskExecutor* task_executor) {
 387   if (_processing_is_mt && task_executor != NULL) {
 388     // Parallel code
 389     RefProcEnqueueTask tsk(*this, _discoveredSoftRefs,
 390                            pending_list_addr, _max_num_q);
 391     task_executor->execute(tsk);
 392   } else {
 393     // Serial code: call the parent class's implementation
 394     for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 395       enqueue_discovered_reflist(_discoveredSoftRefs[i], pending_list_addr);
 396       _discoveredSoftRefs[i].set_head(NULL);
 397       _discoveredSoftRefs[i].set_length(0);
 398     }
 399   }
 400 }
 401 
 402 // Iterator for the list of discovered references.
 403 class DiscoveredListIterator {
 404 public:
 405   inline DiscoveredListIterator(DiscoveredList&    refs_list,
 406                                 OopClosure*        keep_alive,
 407                                 BoolObjectClosure* is_alive);
 408 
 409   // End Of List.
 410   inline bool has_next() const { return _ref != NULL; }
 411 
 412   // Get oop to the Reference object.
 413   inline oop obj() const { return _ref; }
 414 
 415   // Get oop to the referent object.
 416   inline oop referent() const { return _referent; }
 417 
 418   // Returns true if referent is alive.
 419   inline bool is_referent_alive() const;
 420 
 421   // Loads data for the current reference.
 422   // The "allow_null_referent" argument tells us to allow for the possibility
 423   // of a NULL referent in the discovered Reference object. This typically
 424   // happens in the case of concurrent collectors that may have done the
 425   // discovery concurrently, or interleaved, with mutator execution.
 426   inline void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
 427 
 428   // Move to the next discovered reference.
 429   inline void next();
 430 
 431   // Remove the current reference from the list
 432   inline void remove();
 433 
 434   // Make the Reference object active again.
 435   inline void make_active() { java_lang_ref_Reference::set_next(_ref, NULL); }
 436 
 437   // Make the referent alive.
 438   inline void make_referent_alive() {
 439     if (UseCompressedOops) {
 440       _keep_alive->do_oop((narrowOop*)_referent_addr);
 441     } else {
 442       _keep_alive->do_oop((oop*)_referent_addr);
 443     }
 444   }
 445 
 446   // Update the discovered field.
 447   inline void update_discovered() {
 448     // First _prev_next ref actually points into DiscoveredList (gross).
 449     if (UseCompressedOops) {
 450       if (!oopDesc::is_null(*(narrowOop*)_prev_next)) {
 451         _keep_alive->do_oop((narrowOop*)_prev_next);
 452       }
 453     } else {
 454       if (!oopDesc::is_null(*(oop*)_prev_next)) {
 455         _keep_alive->do_oop((oop*)_prev_next);
 456       }
 457     }
 458   }
 459 
 460   // NULL out referent pointer.
 461   inline void clear_referent() { oop_store_raw(_referent_addr, NULL); }
 462 
 463   // Statistics
 464   NOT_PRODUCT(
 465   inline size_t processed() const { return _processed; }
 466   inline size_t removed() const   { return _removed; }
 467   )
 468 
 469   inline void move_to_next();
 470 
 471 private:
 472   DiscoveredList&    _refs_list;
 473   HeapWord*          _prev_next;
 474   oop                _prev;
 475   oop                _ref;
 476   HeapWord*          _discovered_addr;
 477   oop                _next;
 478   HeapWord*          _referent_addr;
 479   oop                _referent;
 480   OopClosure*        _keep_alive;
 481   BoolObjectClosure* _is_alive;
 482   DEBUG_ONLY(
 483   oop                _first_seen; // cyclic linked list check
 484   )
 485   NOT_PRODUCT(
 486   size_t             _processed;
 487   size_t             _removed;
 488   )
 489 };
 490 
 491 inline DiscoveredListIterator::DiscoveredListIterator(DiscoveredList&    refs_list,
 492                                                       OopClosure*        keep_alive,
 493                                                       BoolObjectClosure* is_alive)
 494   : _refs_list(refs_list),
 495     _prev_next(refs_list.adr_head()),
 496     _prev(NULL),
 497     _ref(refs_list.head()),
 498 #ifdef ASSERT
 499     _first_seen(refs_list.head()),
 500 #endif
 501 #ifndef PRODUCT
 502     _processed(0),
 503     _removed(0),
 504 #endif
 505     _next(NULL),
 506     _keep_alive(keep_alive),
 507     _is_alive(is_alive)
 508 { }
 509 
 510 inline bool DiscoveredListIterator::is_referent_alive() const {
 511   return _is_alive->do_object_b(_referent);
 512 }
 513 
 514 inline void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 515   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 516   oop discovered = java_lang_ref_Reference::discovered(_ref);
 517   assert(_discovered_addr && discovered->is_oop_or_null(),
 518          "discovered field is bad");
 519   _next = discovered;
 520   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 521   _referent = java_lang_ref_Reference::referent(_ref);
 522   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 523          "Wrong oop found in java.lang.Reference object");
 524   assert(allow_null_referent ?
 525              _referent->is_oop_or_null()
 526            : _referent->is_oop(),
 527          "bad referent");
 528 }
 529 
 530 inline void DiscoveredListIterator::next() {
 531   _prev_next = _discovered_addr;
 532   _prev = _ref;
 533   move_to_next();
 534 }
 535 
 536 inline void DiscoveredListIterator::remove() {
 537   assert(_ref->is_oop(), "Dropping a bad reference");
 538   oop_store_raw(_discovered_addr, NULL);
 539 
 540   // First _prev_next ref actually points into DiscoveredList (gross).
 541   oop new_next;
 542   if (_next == _ref) {
 543     // At the end of the list, we should make _prev point to itself.
 544     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 545     // and _prev will be NULL.
 546     new_next = _prev;
 547   } else {
 548     new_next = _next;
 549   }
 550 
 551   if (UseCompressedOops) {
 552     // Remove Reference object from list.
 553     oopDesc::encode_store_heap_oop((narrowOop*)_prev_next, new_next);
 554   } else {
 555     // Remove Reference object from list.
 556     oopDesc::store_heap_oop((oop*)_prev_next, new_next);
 557   }
 558   NOT_PRODUCT(_removed++);
 559   _refs_list.dec_length(1);
 560 }
 561 
 562 inline void DiscoveredListIterator::move_to_next() {
 563   if (_ref == _next) {
 564     // End of the list.
 565     _ref = NULL;
 566   } else {
 567     _ref = _next;
 568   }
 569   assert(_ref != _first_seen, "cyclic ref_list found");
 570   NOT_PRODUCT(_processed++);
 571 }
 572 
 573 // NOTE: process_phase*() are largely similar, and at a high level
 574 // merely iterate over the extant list applying a predicate to
 575 // each of its elements and possibly removing that element from the
 576 // list and applying some further closures to that element.
 577 // We should consider the possibility of replacing these
 578 // process_phase*() methods by abstracting them into
 579 // a single general iterator invocation that receives appropriate
 580 // closures that accomplish this work.
 581 
 582 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 583 // referents are not alive, but that should be kept alive for policy reasons.
 584 // Keep alive the transitive closure of all such referents.
 585 void
 586 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 587                                    ReferencePolicy*   policy,
 588                                    BoolObjectClosure* is_alive,
 589                                    OopClosure*        keep_alive,
 590                                    VoidClosure*       complete_gc) {
 591   assert(policy != NULL, "Must have a non-NULL policy");
 592   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 593   // Decide which softly reachable refs should be kept alive.
 594   while (iter.has_next()) {
 595     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 596     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 597     if (referent_is_dead && !policy->should_clear_reference(iter.obj())) {
 598       if (TraceReferenceGC) {
 599         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 600                                iter.obj(), iter.obj()->blueprint()->internal_name());
 601       }
 602       // Remove Reference object from list
 603       iter.remove();
 604       // Make the Reference object active again
 605       iter.make_active();
 606       // keep the referent around
 607       iter.make_referent_alive();
 608       iter.move_to_next();
 609     } else {
 610       iter.next();
 611     }
 612   }
 613   // Close the reachable set
 614   complete_gc->do_void();
 615   NOT_PRODUCT(
 616     if (PrintGCDetails && TraceReferenceGC) {
 617       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
 618         "discovered Refs by policy  list " INTPTR_FORMAT,
 619         iter.removed(), iter.processed(), (address)refs_list.head());
 620     }
 621   )
 622 }
 623 
 624 // Traverse the list and remove any Refs that are not active, or
 625 // whose referents are either alive or NULL.
 626 void
 627 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 628                              BoolObjectClosure* is_alive,
 629                              OopClosure*        keep_alive) {
 630   assert(discovery_is_atomic(), "Error");
 631   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 632   while (iter.has_next()) {
 633     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 634     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 635     assert(next == NULL, "Should not discover inactive Reference");
 636     if (iter.is_referent_alive()) {
 637       if (TraceReferenceGC) {
 638         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 639                                iter.obj(), iter.obj()->blueprint()->internal_name());
 640       }
 641       // The referent is reachable after all.
 642       // Remove Reference object from list.
 643       iter.remove();
 644       // Update the referent pointer as necessary: Note that this
 645       // should not entail any recursive marking because the
 646       // referent must already have been traversed.
 647       iter.make_referent_alive();
 648       iter.move_to_next();
 649     } else {
 650       iter.next();
 651     }
 652   }
 653   NOT_PRODUCT(
 654     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 655       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 656         "Refs in discovered list " INTPTR_FORMAT,
 657         iter.removed(), iter.processed(), (address)refs_list.head());
 658     }
 659   )
 660 }
 661 
 662 void
 663 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 664                                                   BoolObjectClosure* is_alive,
 665                                                   OopClosure*        keep_alive,
 666                                                   VoidClosure*       complete_gc) {
 667   assert(!discovery_is_atomic(), "Error");
 668   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 669   while (iter.has_next()) {
 670     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 671     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 672     oop next = java_lang_ref_Reference::next(iter.obj());
 673     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 674          next != NULL)) {
 675       assert(next->is_oop_or_null(), "bad next field");
 676       // Remove Reference object from list
 677       iter.remove();
 678       // Trace the cohorts
 679       iter.make_referent_alive();
 680       if (UseCompressedOops) {
 681         keep_alive->do_oop((narrowOop*)next_addr);
 682       } else {
 683         keep_alive->do_oop((oop*)next_addr);
 684       }
 685       iter.move_to_next();
 686     } else {
 687       iter.next();
 688     }
 689   }
 690   // Now close the newly reachable set
 691   complete_gc->do_void();
 692   NOT_PRODUCT(
 693     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 694       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 695         "Refs in discovered list " INTPTR_FORMAT,
 696         iter.removed(), iter.processed(), (address)refs_list.head());
 697     }
 698   )
 699 }
 700 
 701 // Traverse the list and process the referents, by either
 702 // clearing them or keeping them (and their reachable
 703 // closure) alive.
 704 void
 705 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 706                                    bool               clear_referent,
 707                                    BoolObjectClosure* is_alive,
 708                                    OopClosure*        keep_alive,
 709                                    VoidClosure*       complete_gc) {
 710   ResourceMark rm;
 711   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 712   while (iter.has_next()) {
 713     iter.update_discovered();
 714     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 715     if (clear_referent) {
 716       // NULL out referent pointer
 717       iter.clear_referent();
 718     } else {
 719       // keep the referent around
 720       iter.make_referent_alive();
 721     }
 722     if (TraceReferenceGC) {
 723       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 724                              clear_referent ? "cleared " : "",
 725                              iter.obj(), iter.obj()->blueprint()->internal_name());
 726     }
 727     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
 728     iter.next();
 729   }
 730   // Remember to update the next pointer of the last ref.
 731   iter.update_discovered();
 732   // Close the reachable set
 733   complete_gc->do_void();
 734 }
 735 
 736 void
 737 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 738   oop obj = NULL;
 739   oop next = refs_list.head();
 740   while (next != obj) {
 741     obj = next;
 742     next = java_lang_ref_Reference::discovered(obj);
 743     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 744   }
 745   refs_list.set_head(NULL);
 746   refs_list.set_length(0);
 747 }
 748 
 749 void
 750 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
 751   clear_discovered_references(refs_list);
 752 }
 753 
 754 void ReferenceProcessor::abandon_partial_discovery() {
 755   // loop over the lists
 756   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 757     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 758       gclog_or_tty->print_cr("\nAbandoning %s discovered list",
 759                              list_name(i));
 760     }
 761     abandon_partial_discovered_list(_discoveredSoftRefs[i]);
 762   }
 763 }
 764 
 765 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 766 public:
 767   RefProcPhase1Task(ReferenceProcessor& ref_processor,
 768                     DiscoveredList      refs_lists[],
 769                     ReferencePolicy*    policy,
 770                     bool                marks_oops_alive)
 771     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 772       _policy(policy)
 773   { }
 774   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 775                     OopClosure& keep_alive,
 776                     VoidClosure& complete_gc)
 777   {
 778     Thread* thr = Thread::current();
 779     int refs_list_index = ((WorkerThread*)thr)->id();
 780     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
 781                                   &is_alive, &keep_alive, &complete_gc);
 782   }
 783 private:
 784   ReferencePolicy* _policy;
 785 };
 786 
 787 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 788 public:
 789   RefProcPhase2Task(ReferenceProcessor& ref_processor,
 790                     DiscoveredList      refs_lists[],
 791                     bool                marks_oops_alive)
 792     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
 793   { }
 794   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 795                     OopClosure& keep_alive,
 796                     VoidClosure& complete_gc)
 797   {
 798     _ref_processor.process_phase2(_refs_lists[i],
 799                                   &is_alive, &keep_alive, &complete_gc);
 800   }
 801 };
 802 
 803 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 804 public:
 805   RefProcPhase3Task(ReferenceProcessor& ref_processor,
 806                     DiscoveredList      refs_lists[],
 807                     bool                clear_referent,
 808                     bool                marks_oops_alive)
 809     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 810       _clear_referent(clear_referent)
 811   { }
 812   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 813                     OopClosure& keep_alive,
 814                     VoidClosure& complete_gc)
 815   {
 816     // Don't use "refs_list_index" calculated in this way because
 817     // balance_queues() has moved the Ref's into the first n queues.
 818     // Thread* thr = Thread::current();
 819     // int refs_list_index = ((WorkerThread*)thr)->id();
 820     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
 821     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 822                                   &is_alive, &keep_alive, &complete_gc);
 823   }
 824 private:
 825   bool _clear_referent;
 826 };
 827 
 828 // Balances reference queues.
 829 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 830 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 831 // corresponding to the active workers will be processed.
 832 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 833 {
 834   // calculate total length
 835   size_t total_refs = 0;
 836   if (TraceReferenceGC && PrintGCDetails) {
 837     gclog_or_tty->print_cr("\nBalance ref_lists ");
 838   }
 839 
 840   for (int i = 0; i < _max_num_q; ++i) {
 841     total_refs += ref_lists[i].length();
 842     if (TraceReferenceGC && PrintGCDetails) {
 843       gclog_or_tty->print("%d ", ref_lists[i].length());
 844     }
 845   }
 846   if (TraceReferenceGC && PrintGCDetails) {
 847     gclog_or_tty->print_cr(" = %d", total_refs);
 848   }
 849   size_t avg_refs = total_refs / _num_q + 1;
 850   int to_idx = 0;
 851   for (int from_idx = 0; from_idx < _max_num_q; from_idx++) {
 852     bool move_all = false;
 853     if (from_idx >= _num_q) {
 854       move_all = ref_lists[from_idx].length() > 0;
 855     }
 856     while ((ref_lists[from_idx].length() > avg_refs) ||
 857            move_all) {
 858       assert(to_idx < _num_q, "Sanity Check!");
 859       if (ref_lists[to_idx].length() < avg_refs) {
 860         // move superfluous refs
 861         size_t refs_to_move;
 862         // Move all the Ref's if the from queue will not be processed.
 863         if (move_all) {
 864           refs_to_move = MIN2(ref_lists[from_idx].length(),
 865                               avg_refs - ref_lists[to_idx].length());
 866         } else {
 867           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 868                               avg_refs - ref_lists[to_idx].length());
 869         }
 870 
 871         assert(refs_to_move > 0, "otherwise the code below will fail");
 872 
 873         oop move_head = ref_lists[from_idx].head();
 874         oop move_tail = move_head;
 875         oop new_head  = move_head;
 876         // find an element to split the list on
 877         for (size_t j = 0; j < refs_to_move; ++j) {
 878           move_tail = new_head;
 879           new_head = java_lang_ref_Reference::discovered(new_head);
 880         }
 881 
 882         // Add the chain to the to list.
 883         if (ref_lists[to_idx].head() == NULL) {
 884           // to list is empty. Make a loop at the end.
 885           java_lang_ref_Reference::set_discovered(move_tail, move_tail);
 886         } else {
 887           java_lang_ref_Reference::set_discovered(move_tail, ref_lists[to_idx].head());
 888         }
 889         ref_lists[to_idx].set_head(move_head);
 890         ref_lists[to_idx].inc_length(refs_to_move);
 891 
 892         // Remove the chain from the from list.
 893         if (move_tail == new_head) {
 894           // We found the end of the from list.
 895           ref_lists[from_idx].set_head(NULL);
 896         } else {
 897           ref_lists[from_idx].set_head(new_head);
 898         }
 899         ref_lists[from_idx].dec_length(refs_to_move);
 900         if (ref_lists[from_idx].length() == 0) {
 901           break;
 902         }
 903       } else {
 904         to_idx = (to_idx + 1) % _num_q;
 905       }
 906     }
 907   }
 908 #ifdef ASSERT
 909   size_t balanced_total_refs = 0;
 910   for (int i = 0; i < _max_num_q; ++i) {
 911     balanced_total_refs += ref_lists[i].length();
 912     if (TraceReferenceGC && PrintGCDetails) {
 913       gclog_or_tty->print("%d ", ref_lists[i].length());
 914     }
 915   }
 916   if (TraceReferenceGC && PrintGCDetails) {
 917     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
 918     gclog_or_tty->flush();
 919   }
 920   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 921 #endif
 922 }
 923 
 924 void ReferenceProcessor::balance_all_queues() {
 925   balance_queues(_discoveredSoftRefs);
 926   balance_queues(_discoveredWeakRefs);
 927   balance_queues(_discoveredFinalRefs);
 928   balance_queues(_discoveredPhantomRefs);
 929 }
 930 
 931 void
 932 ReferenceProcessor::process_discovered_reflist(
 933   DiscoveredList               refs_lists[],
 934   ReferencePolicy*             policy,
 935   bool                         clear_referent,
 936   BoolObjectClosure*           is_alive,
 937   OopClosure*                  keep_alive,
 938   VoidClosure*                 complete_gc,
 939   AbstractRefProcTaskExecutor* task_executor)
 940 {
 941   bool mt_processing = task_executor != NULL && _processing_is_mt;
 942   // If discovery used MT and a dynamic number of GC threads, then
 943   // the queues must be balanced for correctness if fewer than the
 944   // maximum number of queues were used.  The number of queue used
 945   // during discovery may be different than the number to be used
 946   // for processing so don't depend of _num_q < _max_num_q as part
 947   // of the test.
 948   bool must_balance = _discovery_is_mt;
 949 
 950   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
 951       must_balance) {
 952     balance_queues(refs_lists);
 953   }
 954   if (PrintReferenceGC && PrintGCDetails) {
 955     size_t total = 0;
 956     for (int i = 0; i < _max_num_q; ++i) {
 957       total += refs_lists[i].length();
 958     }
 959     gclog_or_tty->print(", %u refs", total);
 960   }
 961 
 962   // Phase 1 (soft refs only):
 963   // . Traverse the list and remove any SoftReferences whose
 964   //   referents are not alive, but that should be kept alive for
 965   //   policy reasons. Keep alive the transitive closure of all
 966   //   such referents.
 967   if (policy != NULL) {
 968     if (mt_processing) {
 969       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
 970       task_executor->execute(phase1);
 971     } else {
 972       for (int i = 0; i < _max_num_q; i++) {
 973         process_phase1(refs_lists[i], policy,
 974                        is_alive, keep_alive, complete_gc);
 975       }
 976     }
 977   } else { // policy == NULL
 978     assert(refs_lists != _discoveredSoftRefs,
 979            "Policy must be specified for soft references.");
 980   }
 981 
 982   // Phase 2:
 983   // . Traverse the list and remove any refs whose referents are alive.
 984   if (mt_processing) {
 985     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
 986     task_executor->execute(phase2);
 987   } else {
 988     for (int i = 0; i < _max_num_q; i++) {
 989       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 990     }
 991   }
 992 
 993   // Phase 3:
 994   // . Traverse the list and process referents as appropriate.
 995   if (mt_processing) {
 996     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
 997     task_executor->execute(phase3);
 998   } else {
 999     for (int i = 0; i < _max_num_q; i++) {
1000       process_phase3(refs_lists[i], clear_referent,
1001                      is_alive, keep_alive, complete_gc);
1002     }
1003   }
1004 }
1005 
1006 void ReferenceProcessor::clean_up_discovered_references() {
1007   // loop over the lists
1008   // Should this instead be
1009   // for (int i = 0; i < subclasses_of_ref; i++_ {
1010   //   for (int j = 0; j < _num_q; j++) {
1011   //     int index = i * _max_num_q + j;
1012   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
1013     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
1014       gclog_or_tty->print_cr(
1015         "\nScrubbing %s discovered list of Null referents",
1016         list_name(i));
1017     }
1018     clean_up_discovered_reflist(_discoveredSoftRefs[i]);
1019   }
1020 }
1021 
1022 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
1023   assert(!discovery_is_atomic(), "Else why call this method?");
1024   DiscoveredListIterator iter(refs_list, NULL, NULL);
1025   while (iter.has_next()) {
1026     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1027     oop next = java_lang_ref_Reference::next(iter.obj());
1028     assert(next->is_oop_or_null(), "bad next field");
1029     // If referent has been cleared or Reference is not active,
1030     // drop it.
1031     if (iter.referent() == NULL || next != NULL) {
1032       debug_only(
1033         if (PrintGCDetails && TraceReferenceGC) {
1034           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
1035             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
1036             " and referent: " INTPTR_FORMAT,
1037             iter.obj(), next, iter.referent());
1038         }
1039       )
1040       // Remove Reference object from list
1041       iter.remove();
1042       iter.move_to_next();
1043     } else {
1044       iter.next();
1045     }
1046   }
1047   NOT_PRODUCT(
1048     if (PrintGCDetails && TraceReferenceGC) {
1049       gclog_or_tty->print(
1050         " Removed %d Refs with NULL referents out of %d discovered Refs",
1051         iter.removed(), iter.processed());
1052     }
1053   )
1054 }
1055 
1056 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
1057   int id = 0;
1058   // Determine the queue index to use for this object.
1059   if (_discovery_is_mt) {
1060     // During a multi-threaded discovery phase,
1061     // each thread saves to its "own" list.
1062     Thread* thr = Thread::current();
1063     id = thr->as_Worker_thread()->id();
1064   } else {
1065     // single-threaded discovery, we save in round-robin
1066     // fashion to each of the lists.
1067     if (_processing_is_mt) {
1068       id = next_id();
1069     }
1070   }
1071   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
1072 
1073   // Get the discovered queue to which we will add
1074   DiscoveredList* list = NULL;
1075   switch (rt) {
1076     case REF_OTHER:
1077       // Unknown reference type, no special treatment
1078       break;
1079     case REF_SOFT:
1080       list = &_discoveredSoftRefs[id];
1081       break;
1082     case REF_WEAK:
1083       list = &_discoveredWeakRefs[id];
1084       break;
1085     case REF_FINAL:
1086       list = &_discoveredFinalRefs[id];
1087       break;
1088     case REF_PHANTOM:
1089       list = &_discoveredPhantomRefs[id];
1090       break;
1091     case REF_NONE:
1092       // we should not reach here if we are an instanceRefKlass
1093     default:
1094       ShouldNotReachHere();
1095   }
1096   if (TraceReferenceGC && PrintGCDetails) {
1097     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
1098   }
1099   return list;
1100 }
1101 
1102 inline void
1103 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
1104                                               oop             obj,
1105                                               HeapWord*       discovered_addr) {
1106   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
1107   // First we must make sure this object is only enqueued once. CAS in a non null
1108   // discovered_addr.
1109   oop current_head = refs_list.head();
1110   // The last ref must have its discovered field pointing to itself.
1111   oop next_discovered = (current_head != NULL) ? current_head : obj;
1112 
1113   // Note: In the case of G1, this specific pre-barrier is strictly
1114   // not necessary because the only case we are interested in
1115   // here is when *discovered_addr is NULL (see the CAS further below),
1116   // so this will expand to nothing. As a result, we have manually
1117   // elided this out for G1, but left in the test for some future
1118   // collector that might have need for a pre-barrier here.
1119   if (_discovered_list_needs_barrier && !UseG1GC) {
1120     if (UseCompressedOops) {
1121       _bs->write_ref_field_pre((narrowOop*)discovered_addr, next_discovered);
1122     } else {
1123       _bs->write_ref_field_pre((oop*)discovered_addr, next_discovered);
1124     }
1125     guarantee(false, "Need to check non-G1 collector");
1126   }
1127   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
1128                                                     NULL);
1129   if (retest == NULL) {
1130     // This thread just won the right to enqueue the object.
1131     // We have separate lists for enqueueing so no synchronization
1132     // is necessary.
1133     refs_list.set_head(obj);
1134     refs_list.inc_length(1);
1135     if (_discovered_list_needs_barrier) {
1136       _bs->write_ref_field((void*)discovered_addr, next_discovered);
1137     }
1138 
1139     if (TraceReferenceGC) {
1140       gclog_or_tty->print_cr("Enqueued reference (mt) (" INTPTR_FORMAT ": %s)",
1141                              obj, obj->blueprint()->internal_name());
1142     }
1143   } else {
1144     // If retest was non NULL, another thread beat us to it:
1145     // The reference has already been discovered...
1146     if (TraceReferenceGC) {
1147       gclog_or_tty->print_cr("Already enqueued reference (" INTPTR_FORMAT ": %s)",
1148                              obj, obj->blueprint()->internal_name());
1149     }
1150   }
1151 }
1152 
1153 #ifndef PRODUCT
1154 // Non-atomic (i.e. concurrent) discovery might allow us
1155 // to observe j.l.References with NULL referents, being those
1156 // cleared concurrently by mutators during (or after) discovery.
1157 void ReferenceProcessor::verify_referent(oop obj) {
1158   bool da = discovery_is_atomic();
1159   oop referent = java_lang_ref_Reference::referent(obj);
1160   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
1161          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
1162                  INTPTR_FORMAT " during %satomic discovery ",
1163                  (intptr_t)referent, (intptr_t)obj, da ? "" : "non-"));
1164 }
1165 #endif
1166 
1167 // We mention two of several possible choices here:
1168 // #0: if the reference object is not in the "originating generation"
1169 //     (or part of the heap being collected, indicated by our "span"
1170 //     we don't treat it specially (i.e. we scan it as we would
1171 //     a normal oop, treating its references as strong references).
1172 //     This means that references can't be enqueued unless their
1173 //     referent is also in the same span. This is the simplest,
1174 //     most "local" and most conservative approach, albeit one
1175 //     that may cause weak references to be enqueued least promptly.
1176 //     We call this choice the "ReferenceBasedDiscovery" policy.
1177 // #1: the reference object may be in any generation (span), but if
1178 //     the referent is in the generation (span) being currently collected
1179 //     then we can discover the reference object, provided
1180 //     the object has not already been discovered by
1181 //     a different concurrently running collector (as may be the
1182 //     case, for instance, if the reference object is in CMS and
1183 //     the referent in DefNewGeneration), and provided the processing
1184 //     of this reference object by the current collector will
1185 //     appear atomic to every other collector in the system.
1186 //     (Thus, for instance, a concurrent collector may not
1187 //     discover references in other generations even if the
1188 //     referent is in its own generation). This policy may,
1189 //     in certain cases, enqueue references somewhat sooner than
1190 //     might Policy #0 above, but at marginally increased cost
1191 //     and complexity in processing these references.
1192 //     We call this choice the "RefeferentBasedDiscovery" policy.
1193 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1194   // We enqueue references only if we are discovering refs
1195   // (rather than processing discovered refs).
1196   if (!_discovering_refs || !RegisterReferences) {
1197     return false;
1198   }
1199   // We only enqueue active references.
1200   oop next = java_lang_ref_Reference::next(obj);
1201   if (next != NULL) {
1202     return false;
1203   }
1204 
1205   HeapWord* obj_addr = (HeapWord*)obj;
1206   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1207       !_span.contains(obj_addr)) {
1208     // Reference is not in the originating generation;
1209     // don't treat it specially (i.e. we want to scan it as a normal
1210     // object with strong references).
1211     return false;
1212   }
1213 
1214   // We only enqueue references whose referents are not (yet) strongly
1215   // reachable.
1216   if (is_alive_non_header() != NULL) {
1217     verify_referent(obj);
1218     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1219       return false;  // referent is reachable
1220     }
1221   }
1222   if (rt == REF_SOFT) {
1223     // For soft refs we can decide now if these are not
1224     // current candidates for clearing, in which case we
1225     // can mark through them now, rather than delaying that
1226     // to the reference-processing phase. Since all current
1227     // time-stamp policies advance the soft-ref clock only
1228     // at a major collection cycle, this is always currently
1229     // accurate.
1230     if (!_current_soft_ref_policy->should_clear_reference(obj)) {
1231       return false;
1232     }
1233   }
1234 
1235   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1236   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1237   assert(discovered->is_oop_or_null(), "bad discovered field");
1238   if (discovered != NULL) {
1239     // The reference has already been discovered...
1240     if (TraceReferenceGC) {
1241       gclog_or_tty->print_cr("Already enqueued reference (" INTPTR_FORMAT ": %s)",
1242                              obj, obj->blueprint()->internal_name());
1243     }
1244     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1245       // assumes that an object is not processed twice;
1246       // if it's been already discovered it must be on another
1247       // generation's discovered list; so we won't discover it.
1248       return false;
1249     } else {
1250       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1251              "Unrecognized policy");
1252       // Check assumption that an object is not potentially
1253       // discovered twice except by concurrent collectors that potentially
1254       // trace the same Reference object twice.
1255       assert(UseConcMarkSweepGC || UseG1GC,
1256              "Only possible with a concurrent marking collector");
1257       return true;
1258     }
1259   }
1260 
1261   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1262     verify_referent(obj);
1263     // enqueue if and only if either:
1264     // reference is in our span or
1265     // we are an atomic collector and referent is in our span
1266     if (_span.contains(obj_addr) ||
1267         (discovery_is_atomic() &&
1268          _span.contains(java_lang_ref_Reference::referent(obj)))) {
1269       // should_enqueue = true;
1270     } else {
1271       return false;
1272     }
1273   } else {
1274     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1275            _span.contains(obj_addr), "code inconsistency");
1276   }
1277 
1278   // Get the right type of discovered queue head.
1279   DiscoveredList* list = get_discovered_list(rt);
1280   if (list == NULL) {
1281     return false;   // nothing special needs to be done
1282   }
1283 
1284   if (_discovery_is_mt) {
1285     add_to_discovered_list_mt(*list, obj, discovered_addr);
1286   } else {
1287     // If "_discovered_list_needs_barrier", we do write barriers when
1288     // updating the discovered reference list.  Otherwise, we do a raw store
1289     // here: the field will be visited later when processing the discovered
1290     // references.
1291     oop current_head = list->head();
1292     // The last ref must have its discovered field pointing to itself.
1293     oop next_discovered = (current_head != NULL) ? current_head : obj;
1294 
1295     // As in the case further above, since we are over-writing a NULL
1296     // pre-value, we can safely elide the pre-barrier here for the case of G1.
1297     assert(discovered == NULL, "control point invariant");
1298     if (_discovered_list_needs_barrier && !UseG1GC) { // safe to elide for G1
1299       if (UseCompressedOops) {
1300         _bs->write_ref_field_pre((narrowOop*)discovered_addr, next_discovered);
1301       } else {
1302         _bs->write_ref_field_pre((oop*)discovered_addr, next_discovered);
1303       }
1304       guarantee(false, "Need to check non-G1 collector");
1305     }
1306     oop_store_raw(discovered_addr, next_discovered);
1307     if (_discovered_list_needs_barrier) {
1308       _bs->write_ref_field((void*)discovered_addr, next_discovered);
1309     }
1310     list->set_head(obj);
1311     list->inc_length(1);
1312 
1313     if (TraceReferenceGC) {
1314       gclog_or_tty->print_cr("Enqueued reference (" INTPTR_FORMAT ": %s)",
1315                                 obj, obj->blueprint()->internal_name());
1316     }
1317   }
1318   assert(obj->is_oop(), "Enqueued a bad reference");
1319   verify_referent(obj);
1320   return true;
1321 }
1322 
1323 // Preclean the discovered references by removing those
1324 // whose referents are alive, and by marking from those that
1325 // are not active. These lists can be handled here
1326 // in any order and, indeed, concurrently.
1327 void ReferenceProcessor::preclean_discovered_references(
1328   BoolObjectClosure* is_alive,
1329   OopClosure* keep_alive,
1330   VoidClosure* complete_gc,
1331   YieldClosure* yield,
1332   bool should_unload_classes) {
1333 
1334   NOT_PRODUCT(verify_ok_to_handle_reflists());
1335 
1336 #ifdef ASSERT
1337   bool must_remember_klasses = ClassUnloading && !UseConcMarkSweepGC ||
1338                                CMSClassUnloadingEnabled && UseConcMarkSweepGC ||
1339                                ExplicitGCInvokesConcurrentAndUnloadsClasses &&
1340                                  UseConcMarkSweepGC && should_unload_classes;
1341   RememberKlassesChecker mx(must_remember_klasses);
1342 #endif
1343   // Soft references
1344   {
1345     TraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
1346               false, gclog_or_tty);
1347     for (int i = 0; i < _max_num_q; i++) {
1348       if (yield->should_return()) {
1349         return;
1350       }
1351       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1352                                   keep_alive, complete_gc, yield);
1353     }
1354   }
1355 
1356   // Weak references
1357   {
1358     TraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
1359               false, gclog_or_tty);
1360     for (int i = 0; i < _max_num_q; i++) {
1361       if (yield->should_return()) {
1362         return;
1363       }
1364       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1365                                   keep_alive, complete_gc, yield);
1366     }
1367   }
1368 
1369   // Final references
1370   {
1371     TraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
1372               false, gclog_or_tty);
1373     for (int i = 0; i < _max_num_q; i++) {
1374       if (yield->should_return()) {
1375         return;
1376       }
1377       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1378                                   keep_alive, complete_gc, yield);
1379     }
1380   }
1381 
1382   // Phantom references
1383   {
1384     TraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
1385               false, gclog_or_tty);
1386     for (int i = 0; i < _max_num_q; i++) {
1387       if (yield->should_return()) {
1388         return;
1389       }
1390       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1391                                   keep_alive, complete_gc, yield);
1392     }
1393   }
1394 }
1395 
1396 // Walk the given discovered ref list, and remove all reference objects
1397 // whose referents are still alive, whose referents are NULL or which
1398 // are not active (have a non-NULL next field). NOTE: When we are
1399 // thus precleaning the ref lists (which happens single-threaded today),
1400 // we do not disable refs discovery to honour the correct semantics of
1401 // java.lang.Reference. As a result, we need to be careful below
1402 // that ref removal steps interleave safely with ref discovery steps
1403 // (in this thread).
1404 void
1405 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1406                                                 BoolObjectClosure* is_alive,
1407                                                 OopClosure*        keep_alive,
1408                                                 VoidClosure*       complete_gc,
1409                                                 YieldClosure*      yield) {
1410   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1411   while (iter.has_next()) {
1412     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1413     oop obj = iter.obj();
1414     oop next = java_lang_ref_Reference::next(obj);
1415     if (iter.referent() == NULL || iter.is_referent_alive() ||
1416         next != NULL) {
1417       // The referent has been cleared, or is alive, or the Reference is not
1418       // active; we need to trace and mark its cohort.
1419       if (TraceReferenceGC) {
1420         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1421                                iter.obj(), iter.obj()->blueprint()->internal_name());
1422       }
1423       // Remove Reference object from list
1424       iter.remove();
1425       // Keep alive its cohort.
1426       iter.make_referent_alive();
1427       if (UseCompressedOops) {
1428         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1429         keep_alive->do_oop(next_addr);
1430       } else {
1431         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1432         keep_alive->do_oop(next_addr);
1433       }
1434       iter.move_to_next();
1435     } else {
1436       iter.next();
1437     }
1438   }
1439   // Close the reachable set
1440   complete_gc->do_void();
1441 
1442   NOT_PRODUCT(
1443     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
1444       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
1445         "Refs in discovered list " INTPTR_FORMAT,
1446         iter.removed(), iter.processed(), (address)refs_list.head());
1447     }
1448   )
1449 }
1450 
1451 const char* ReferenceProcessor::list_name(int i) {
1452    assert(i >= 0 && i <= _max_num_q * subclasses_of_ref, "Out of bounds index");
1453    int j = i / _max_num_q;
1454    switch (j) {
1455      case 0: return "SoftRef";
1456      case 1: return "WeakRef";
1457      case 2: return "FinalRef";
1458      case 3: return "PhantomRef";
1459    }
1460    ShouldNotReachHere();
1461    return NULL;
1462 }
1463 
1464 #ifndef PRODUCT
1465 void ReferenceProcessor::verify_ok_to_handle_reflists() {
1466   // empty for now
1467 }
1468 #endif
1469 
1470 #ifndef PRODUCT
1471 void ReferenceProcessor::clear_discovered_references() {
1472   guarantee(!_discovering_refs, "Discovering refs?");
1473   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
1474     clear_discovered_references(_discoveredSoftRefs[i]);
1475   }
1476 }
1477 
1478 #endif // PRODUCT