1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc_interface/collectedHeap.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "memory/referencePolicy.hpp"
  31 #include "memory/referenceProcessor.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/java.hpp"
  34 #include "runtime/jniHandles.hpp"
  35 
  36 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  37 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  38 const int        subclasses_of_ref                = REF_PHANTOM - REF_OTHER;
  39 bool             ReferenceProcessor::_pending_list_uses_discovered_field = false;
  40 
  41 // List of discovered references.
  42 class DiscoveredList {
  43 public:
  44   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
  45   oop head() const     {
  46      return UseCompressedOops ?  oopDesc::decode_heap_oop(_compressed_head) :
  47                                 _oop_head;
  48   }
  49   HeapWord* adr_head() {
  50     return UseCompressedOops ? (HeapWord*)&_compressed_head :
  51                                (HeapWord*)&_oop_head;
  52   }
  53   void   set_head(oop o) {
  54     if (UseCompressedOops) {
  55       // Must compress the head ptr.
  56       _compressed_head = oopDesc::encode_heap_oop(o);
  57     } else {
  58       _oop_head = o;
  59     }
  60   }
  61   bool   empty() const          { return head() == NULL; }
  62   size_t length()               { return _len; }
  63   void   set_length(size_t len) { _len = len;  }
  64   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
  65   void   dec_length(size_t dec) { _len -= dec; }
  66 private:
  67   // Set value depending on UseCompressedOops. This could be a template class
  68   // but then we have to fix all the instantiations and declarations that use this class.
  69   oop       _oop_head;
  70   narrowOop _compressed_head;
  71   size_t _len;
  72 };
  73 
  74 void referenceProcessor_init() {
  75   ReferenceProcessor::init_statics();
  76 }
  77 
  78 void ReferenceProcessor::init_statics() {
  79   // Initialize the master soft ref clock.
  80   java_lang_ref_SoftReference::set_clock(os::javaTimeMillis());
  81 
  82   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  83   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
  84                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
  85   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  86     vm_exit_during_initialization("Could not allocate reference policy object");
  87   }
  88   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  89             RefDiscoveryPolicy == ReferentBasedDiscovery,
  90             "Unrecongnized RefDiscoveryPolicy");
  91   _pending_list_uses_discovered_field = JDK_Version::current().pending_list_uses_discovered_field();
  92 }
  93 
  94 ReferenceProcessor::ReferenceProcessor(MemRegion span,
  95                                        bool      mt_processing,
  96                                        int       mt_processing_degree,
  97                                        bool      mt_discovery,
  98                                        int       mt_discovery_degree,
  99                                        bool      atomic_discovery,
 100                                        BoolObjectClosure* is_alive_non_header,
 101                                        bool      discovered_list_needs_barrier)  :
 102   _discovering_refs(false),
 103   _enqueuing_is_done(false),
 104   _is_alive_non_header(is_alive_non_header),
 105   _discovered_list_needs_barrier(discovered_list_needs_barrier),
 106   _bs(NULL),
 107   _processing_is_mt(mt_processing),
 108   _next_id(0)
 109 {
 110   _span = span;
 111   _discovery_is_atomic = atomic_discovery;
 112   _discovery_is_mt     = mt_discovery;
 113   _num_q               = MAX2(1, mt_processing_degree);
 114   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
 115   _discoveredSoftRefs  = NEW_C_HEAP_ARRAY(DiscoveredList, _max_num_q * subclasses_of_ref);
 116   if (_discoveredSoftRefs == NULL) {
 117     vm_exit_during_initialization("Could not allocated RefProc Array");
 118   }
 119   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
 120   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
 121   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
 122   // Initialized all entries to NULL
 123   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 124     _discoveredSoftRefs[i].set_head(NULL);
 125     _discoveredSoftRefs[i].set_length(0);
 126   }
 127   // If we do barreirs, cache a copy of the barrier set.
 128   if (discovered_list_needs_barrier) {
 129     _bs = Universe::heap()->barrier_set();
 130   }
 131   setup_policy(false /* default soft ref policy */);
 132 }
 133 
 134 #ifndef PRODUCT
 135 void ReferenceProcessor::verify_no_references_recorded() {
 136   guarantee(!_discovering_refs, "Discovering refs?");
 137   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 138     guarantee(_discoveredSoftRefs[i].empty(),
 139               "Found non-empty discovered list");
 140   }
 141 }
 142 #endif
 143 
 144 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 145   // Should this instead be
 146   // for (int i = 0; i < subclasses_of_ref; i++_ {
 147   //   for (int j = 0; j < _num_q; j++) {
 148   //     int index = i * _max_num_q + j;
 149   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 150     if (UseCompressedOops) {
 151       f->do_oop((narrowOop*)_discoveredSoftRefs[i].adr_head());
 152     } else {
 153       f->do_oop((oop*)_discoveredSoftRefs[i].adr_head());
 154     }
 155   }
 156 }
 157 
 158 void ReferenceProcessor::update_soft_ref_master_clock() {
 159   // Update (advance) the soft ref master clock field. This must be done
 160   // after processing the soft ref list.
 161   jlong now = os::javaTimeMillis();
 162   jlong clock = java_lang_ref_SoftReference::clock();
 163   NOT_PRODUCT(
 164   if (now < clock) {
 165     warning("time warp: %d to %d", clock, now);
 166   }
 167   )
 168   // In product mode, protect ourselves from system time being adjusted
 169   // externally and going backward; see note in the implementation of
 170   // GenCollectedHeap::time_since_last_gc() for the right way to fix
 171   // this uniformly throughout the VM; see bug-id 4741166. XXX
 172   if (now > clock) {
 173     java_lang_ref_SoftReference::set_clock(now);
 174   }
 175   // Else leave clock stalled at its old value until time progresses
 176   // past clock value.
 177 }
 178 
 179 void ReferenceProcessor::process_discovered_references(
 180   BoolObjectClosure*           is_alive,
 181   OopClosure*                  keep_alive,
 182   VoidClosure*                 complete_gc,
 183   AbstractRefProcTaskExecutor* task_executor) {
 184   NOT_PRODUCT(verify_ok_to_handle_reflists());
 185 
 186   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 187   // Stop treating discovered references specially.
 188   disable_discovery();
 189 
 190   bool trace_time = PrintGCDetails && PrintReferenceGC;
 191   // Soft references
 192   {
 193     TraceTime tt("SoftReference", trace_time, false, gclog_or_tty);
 194     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 195                                is_alive, keep_alive, complete_gc, task_executor);
 196   }
 197 
 198   update_soft_ref_master_clock();
 199 
 200   // Weak references
 201   {
 202     TraceTime tt("WeakReference", trace_time, false, gclog_or_tty);
 203     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 204                                is_alive, keep_alive, complete_gc, task_executor);
 205   }
 206 
 207   // Final references
 208   {
 209     TraceTime tt("FinalReference", trace_time, false, gclog_or_tty);
 210     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 211                                is_alive, keep_alive, complete_gc, task_executor);
 212   }
 213 
 214   // Phantom references
 215   {
 216     TraceTime tt("PhantomReference", trace_time, false, gclog_or_tty);
 217     process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
 218                                is_alive, keep_alive, complete_gc, task_executor);
 219   }
 220 
 221   // Weak global JNI references. It would make more sense (semantically) to
 222   // traverse these simultaneously with the regular weak references above, but
 223   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 224   // thus use JNI weak references to circumvent the phantom references and
 225   // resurrect a "post-mortem" object.
 226   {
 227     TraceTime tt("JNI Weak Reference", trace_time, false, gclog_or_tty);
 228     if (task_executor != NULL) {
 229       task_executor->set_single_threaded_mode();
 230     }
 231     process_phaseJNI(is_alive, keep_alive, complete_gc);
 232   }
 233 }
 234 
 235 #ifndef PRODUCT
 236 // Calculate the number of jni handles.
 237 uint ReferenceProcessor::count_jni_refs() {
 238   class AlwaysAliveClosure: public BoolObjectClosure {
 239   public:
 240     virtual bool do_object_b(oop obj) { return true; }
 241     virtual void do_object(oop obj) { assert(false, "Don't call"); }
 242   };
 243 
 244   class CountHandleClosure: public OopClosure {
 245   private:
 246     int _count;
 247   public:
 248     CountHandleClosure(): _count(0) {}
 249     void do_oop(oop* unused)       { _count++; }
 250     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 251     int count() { return _count; }
 252   };
 253   CountHandleClosure global_handle_count;
 254   AlwaysAliveClosure always_alive;
 255   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
 256   return global_handle_count.count();
 257 }
 258 #endif
 259 
 260 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 261                                           OopClosure*        keep_alive,
 262                                           VoidClosure*       complete_gc) {
 263 #ifndef PRODUCT
 264   if (PrintGCDetails && PrintReferenceGC) {
 265     unsigned int count = count_jni_refs();
 266     gclog_or_tty->print(", %u refs", count);
 267   }
 268 #endif
 269   JNIHandles::weak_oops_do(is_alive, keep_alive);
 270   complete_gc->do_void();
 271 }
 272 
 273 
 274 template <class T>
 275 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
 276                                    AbstractRefProcTaskExecutor* task_executor) {
 277 
 278   // Remember old value of pending references list
 279   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
 280   T old_pending_list_value = *pending_list_addr;
 281 
 282   // Enqueue references that are not made active again, and
 283   // clear the decks for the next collection (cycle).
 284   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
 285   // Do the oop-check on pending_list_addr missed in
 286   // enqueue_discovered_reflist. We should probably
 287   // do a raw oop_check so that future such idempotent
 288   // oop_stores relying on the oop-check side-effect
 289   // may be elided automatically and safely without
 290   // affecting correctness.
 291   oop_store(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
 292 
 293   // Stop treating discovered references specially.
 294   ref->disable_discovery();
 295 
 296   // Return true if new pending references were added
 297   return old_pending_list_value != *pending_list_addr;
 298 }
 299 
 300 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
 301   NOT_PRODUCT(verify_ok_to_handle_reflists());
 302   if (UseCompressedOops) {
 303     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
 304   } else {
 305     return enqueue_discovered_ref_helper<oop>(this, task_executor);
 306   }
 307 }
 308 
 309 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
 310                                                     HeapWord* pending_list_addr) {
 311   // Given a list of refs linked through the "discovered" field
 312   // (java.lang.ref.Reference.discovered), self-loop their "next" field 
 313   // thus distinguishing them from active References, then 
 314   // prepend them to the pending list. 
 315   // BKWRD COMPATIBILITY NOTE: For older JDKs (prior to the fix for 4956777),
 316   // the "next" field is used to chain the pending list, not the discovered
 317   // field.
 318 
 319   if (TraceReferenceGC && PrintGCDetails) {
 320     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
 321                            INTPTR_FORMAT, (address)refs_list.head());
 322   }
 323 
 324   oop obj = NULL;
 325   oop next_d = refs_list.head();
 326   if (pending_list_uses_discovered_field()) { // New behaviour
 327     // Walk down the list, self-looping the next field 
 328     // so that the References are not considered active. 
 329     while (obj != next_d) {
 330       obj = next_d;
 331       assert(obj->is_instanceRef(), "should be reference object");
 332       next_d = java_lang_ref_Reference::discovered(obj);
 333       if (TraceReferenceGC && PrintGCDetails) {
 334         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
 335                                obj, next_d);
 336       }
 337       assert(java_lang_ref_Reference::next(obj) == NULL,
 338              "Reference not active; should not be discovered"); 
 339       // Self-loop next, so as to make Ref not active. 
 340       java_lang_ref_Reference::set_next(obj, obj);
 341       if (next_d == obj) {  // obj is last
 342         // Swap refs_list into pendling_list_addr and
 343         // set obj's discovered to what we read from pending_list_addr.
 344         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 345         // Need oop_check on pending_list_addr above;
 346         // see special oop-check code at the end of
 347         // enqueue_discovered_reflists() further below.
 348         java_lang_ref_Reference::set_discovered(obj, old); // old may be NULL 
 349       }
 350     }
 351   } else { // Old behaviour
 352     // Walk down the list, copying the discovered field into
 353     // the next field and clearing the discovered field.
 354     while (obj != next_d) {
 355       obj = next_d;
 356       assert(obj->is_instanceRef(), "should be reference object");
 357       next_d = java_lang_ref_Reference::discovered(obj);
 358       if (TraceReferenceGC && PrintGCDetails) {
 359         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
 360                                obj, next_d);
 361       }
 362       assert(java_lang_ref_Reference::next(obj) == NULL,
 363              "The reference should not be enqueued");
 364       if (next_d == obj) {  // obj is last
 365         // Swap refs_list into pendling_list_addr and
 366         // set obj's next to what we read from pending_list_addr.
 367         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 368         // Need oop_check on pending_list_addr above;
 369         // see special oop-check code at the end of
 370         // enqueue_discovered_reflists() further below.
 371         if (old == NULL) {
 372           // obj should be made to point to itself, since
 373           // pending list was empty.
 374           java_lang_ref_Reference::set_next(obj, obj);
 375         } else {
 376           java_lang_ref_Reference::set_next(obj, old);
 377         }
 378       } else {
 379         java_lang_ref_Reference::set_next(obj, next_d);
 380       }
 381       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
 382     }
 383   }
 384 }
 385 
 386 // Parallel enqueue task
 387 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 388 public:
 389   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
 390                      DiscoveredList      discovered_refs[],
 391                      HeapWord*           pending_list_addr,
 392                      int                 n_queues)
 393     : EnqueueTask(ref_processor, discovered_refs,
 394                   pending_list_addr, n_queues)
 395   { }
 396 
 397   virtual void work(unsigned int work_id) {
 398     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
 399     // Simplest first cut: static partitioning.
 400     int index = work_id;
 401     // The increment on "index" must correspond to the maximum number of queues
 402     // (n_queues) with which that ReferenceProcessor was created.  That
 403     // is because of the "clever" way the discovered references lists were
 404     // allocated and are indexed into.
 405     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
 406     for (int j = 0;
 407          j < subclasses_of_ref;
 408          j++, index += _n_queues) {
 409       _ref_processor.enqueue_discovered_reflist(
 410         _refs_lists[index], _pending_list_addr);
 411       _refs_lists[index].set_head(NULL);
 412       _refs_lists[index].set_length(0);
 413     }
 414   }
 415 };
 416 
 417 // Enqueue references that are not made active again
 418 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
 419   AbstractRefProcTaskExecutor* task_executor) {
 420   if (_processing_is_mt && task_executor != NULL) {
 421     // Parallel code
 422     RefProcEnqueueTask tsk(*this, _discoveredSoftRefs,
 423                            pending_list_addr, _max_num_q);
 424     task_executor->execute(tsk);
 425   } else {
 426     // Serial code: call the parent class's implementation
 427     for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 428       enqueue_discovered_reflist(_discoveredSoftRefs[i], pending_list_addr);
 429       _discoveredSoftRefs[i].set_head(NULL);
 430       _discoveredSoftRefs[i].set_length(0);
 431     }
 432   }
 433 }
 434 
 435 // Iterator for the list of discovered references.
 436 class DiscoveredListIterator {
 437 public:
 438   inline DiscoveredListIterator(DiscoveredList&    refs_list,
 439                                 OopClosure*        keep_alive,
 440                                 BoolObjectClosure* is_alive);
 441 
 442   // End Of List.
 443   inline bool has_next() const { return _ref != NULL; }
 444 
 445   // Get oop to the Reference object.
 446   inline oop obj() const { return _ref; }
 447 
 448   // Get oop to the referent object.
 449   inline oop referent() const { return _referent; }
 450 
 451   // Returns true if referent is alive.
 452   inline bool is_referent_alive() const;
 453 
 454   // Loads data for the current reference.
 455   // The "allow_null_referent" argument tells us to allow for the possibility
 456   // of a NULL referent in the discovered Reference object. This typically
 457   // happens in the case of concurrent collectors that may have done the
 458   // discovery concurrently, or interleaved, with mutator execution.
 459   inline void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
 460 
 461   // Move to the next discovered reference.
 462   inline void next();
 463 
 464   // Remove the current reference from the list
 465   inline void remove();
 466 
 467   // Make the Reference object active again.
 468   inline void make_active() { java_lang_ref_Reference::set_next(_ref, NULL); }
 469 
 470   // Make the referent alive.
 471   inline void make_referent_alive() {
 472     if (UseCompressedOops) {
 473       _keep_alive->do_oop((narrowOop*)_referent_addr);
 474     } else {
 475       _keep_alive->do_oop((oop*)_referent_addr);
 476     }
 477   }
 478 
 479   // Update the discovered field.
 480   inline void update_discovered() {
 481     // First _prev_next ref actually points into DiscoveredList (gross).
 482     if (UseCompressedOops) {
 483       if (!oopDesc::is_null(*(narrowOop*)_prev_next)) {
 484         _keep_alive->do_oop((narrowOop*)_prev_next);
 485       }
 486     } else {
 487       if (!oopDesc::is_null(*(oop*)_prev_next)) {
 488         _keep_alive->do_oop((oop*)_prev_next);
 489       }
 490     }
 491   }
 492 
 493   // NULL out referent pointer.
 494   inline void clear_referent() { oop_store_raw(_referent_addr, NULL); }
 495 
 496   // Statistics
 497   NOT_PRODUCT(
 498   inline size_t processed() const { return _processed; }
 499   inline size_t removed() const   { return _removed; }
 500   )
 501 
 502   inline void move_to_next();
 503 
 504 private:
 505   DiscoveredList&    _refs_list;
 506   HeapWord*          _prev_next;
 507   oop                _prev;
 508   oop                _ref;
 509   HeapWord*          _discovered_addr;
 510   oop                _next;
 511   HeapWord*          _referent_addr;
 512   oop                _referent;
 513   OopClosure*        _keep_alive;
 514   BoolObjectClosure* _is_alive;
 515   DEBUG_ONLY(
 516   oop                _first_seen; // cyclic linked list check
 517   )
 518   NOT_PRODUCT(
 519   size_t             _processed;
 520   size_t             _removed;
 521   )
 522 };
 523 
 524 inline DiscoveredListIterator::DiscoveredListIterator(DiscoveredList&    refs_list,
 525                                                       OopClosure*        keep_alive,
 526                                                       BoolObjectClosure* is_alive)
 527   : _refs_list(refs_list),
 528     _prev_next(refs_list.adr_head()),
 529     _prev(NULL),
 530     _ref(refs_list.head()),
 531 #ifdef ASSERT
 532     _first_seen(refs_list.head()),
 533 #endif
 534 #ifndef PRODUCT
 535     _processed(0),
 536     _removed(0),
 537 #endif
 538     _next(NULL),
 539     _keep_alive(keep_alive),
 540     _is_alive(is_alive)
 541 { }
 542 
 543 inline bool DiscoveredListIterator::is_referent_alive() const {
 544   return _is_alive->do_object_b(_referent);
 545 }
 546 
 547 inline void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 548   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 549   oop discovered = java_lang_ref_Reference::discovered(_ref);
 550   assert(_discovered_addr && discovered->is_oop_or_null(),
 551          "discovered field is bad");
 552   _next = discovered;
 553   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 554   _referent = java_lang_ref_Reference::referent(_ref);
 555   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 556          "Wrong oop found in java.lang.Reference object");
 557   assert(allow_null_referent ?
 558              _referent->is_oop_or_null()
 559            : _referent->is_oop(),
 560          "bad referent");
 561 }
 562 
 563 inline void DiscoveredListIterator::next() {
 564   _prev_next = _discovered_addr;
 565   _prev = _ref;
 566   move_to_next();
 567 }
 568 
 569 inline void DiscoveredListIterator::remove() {
 570   assert(_ref->is_oop(), "Dropping a bad reference");
 571   oop_store_raw(_discovered_addr, NULL);
 572 
 573   // First _prev_next ref actually points into DiscoveredList (gross).
 574   oop new_next;
 575   if (_next == _ref) {
 576     // At the end of the list, we should make _prev point to itself.
 577     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 578     // and _prev will be NULL.
 579     new_next = _prev;
 580   } else {
 581     new_next = _next;
 582   }
 583 
 584   if (UseCompressedOops) {
 585     // Remove Reference object from list.
 586     oopDesc::encode_store_heap_oop((narrowOop*)_prev_next, new_next);
 587   } else {
 588     // Remove Reference object from list.
 589     oopDesc::store_heap_oop((oop*)_prev_next, new_next);
 590   }
 591   NOT_PRODUCT(_removed++);
 592   _refs_list.dec_length(1);
 593 }
 594 
 595 inline void DiscoveredListIterator::move_to_next() {
 596   if (_ref == _next) {
 597     // End of the list.
 598     _ref = NULL;
 599   } else {
 600     _ref = _next;
 601   }
 602   assert(_ref != _first_seen, "cyclic ref_list found");
 603   NOT_PRODUCT(_processed++);
 604 }
 605 
 606 // NOTE: process_phase*() are largely similar, and at a high level
 607 // merely iterate over the extant list applying a predicate to
 608 // each of its elements and possibly removing that element from the
 609 // list and applying some further closures to that element.
 610 // We should consider the possibility of replacing these
 611 // process_phase*() methods by abstracting them into
 612 // a single general iterator invocation that receives appropriate
 613 // closures that accomplish this work.
 614 
 615 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 616 // referents are not alive, but that should be kept alive for policy reasons.
 617 // Keep alive the transitive closure of all such referents.
 618 void
 619 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 620                                    ReferencePolicy*   policy,
 621                                    BoolObjectClosure* is_alive,
 622                                    OopClosure*        keep_alive,
 623                                    VoidClosure*       complete_gc) {
 624   assert(policy != NULL, "Must have a non-NULL policy");
 625   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 626   // Decide which softly reachable refs should be kept alive.
 627   while (iter.has_next()) {
 628     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 629     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 630     if (referent_is_dead && !policy->should_clear_reference(iter.obj())) {
 631       if (TraceReferenceGC) {
 632         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 633                                iter.obj(), iter.obj()->blueprint()->internal_name());
 634       }
 635       // Remove Reference object from list
 636       iter.remove();
 637       // Make the Reference object active again
 638       iter.make_active();
 639       // keep the referent around
 640       iter.make_referent_alive();
 641       iter.move_to_next();
 642     } else {
 643       iter.next();
 644     }
 645   }
 646   // Close the reachable set
 647   complete_gc->do_void();
 648   NOT_PRODUCT(
 649     if (PrintGCDetails && TraceReferenceGC) {
 650       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
 651         "discovered Refs by policy, from list " INTPTR_FORMAT,
 652         iter.removed(), iter.processed(), (address)refs_list.head());
 653     }
 654   )
 655 }
 656 
 657 // Traverse the list and remove any Refs that are not active, or
 658 // whose referents are either alive or NULL.
 659 void
 660 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 661                              BoolObjectClosure* is_alive,
 662                              OopClosure*        keep_alive) {
 663   assert(discovery_is_atomic(), "Error");
 664   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 665   while (iter.has_next()) {
 666     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 667     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 668     assert(next == NULL, "Should not discover inactive Reference");
 669     if (iter.is_referent_alive()) {
 670       if (TraceReferenceGC) {
 671         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 672                                iter.obj(), iter.obj()->blueprint()->internal_name());
 673       }
 674       // The referent is reachable after all.
 675       // Remove Reference object from list.
 676       iter.remove();
 677       // Update the referent pointer as necessary: Note that this
 678       // should not entail any recursive marking because the
 679       // referent must already have been traversed.
 680       iter.make_referent_alive();
 681       iter.move_to_next();
 682     } else {
 683       iter.next();
 684     }
 685   }
 686   NOT_PRODUCT(
 687     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 688       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 689         "Refs in discovered list " INTPTR_FORMAT,
 690         iter.removed(), iter.processed(), (address)refs_list.head());
 691     }
 692   )
 693 }
 694 
 695 void
 696 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 697                                                   BoolObjectClosure* is_alive,
 698                                                   OopClosure*        keep_alive,
 699                                                   VoidClosure*       complete_gc) {
 700   assert(!discovery_is_atomic(), "Error");
 701   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 702   while (iter.has_next()) {
 703     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 704     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 705     oop next = java_lang_ref_Reference::next(iter.obj());
 706     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 707          next != NULL)) {
 708       assert(next->is_oop_or_null(), "bad next field");
 709       // Remove Reference object from list
 710       iter.remove();
 711       // Trace the cohorts
 712       iter.make_referent_alive();
 713       if (UseCompressedOops) {
 714         keep_alive->do_oop((narrowOop*)next_addr);
 715       } else {
 716         keep_alive->do_oop((oop*)next_addr);
 717       }
 718       iter.move_to_next();
 719     } else {
 720       iter.next();
 721     }
 722   }
 723   // Now close the newly reachable set
 724   complete_gc->do_void();
 725   NOT_PRODUCT(
 726     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 727       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 728         "Refs in discovered list " INTPTR_FORMAT,
 729         iter.removed(), iter.processed(), (address)refs_list.head());
 730     }
 731   )
 732 }
 733 
 734 // Traverse the list and process the referents, by either
 735 // clearing them or keeping them (and their reachable
 736 // closure) alive.
 737 void
 738 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 739                                    bool               clear_referent,
 740                                    BoolObjectClosure* is_alive,
 741                                    OopClosure*        keep_alive,
 742                                    VoidClosure*       complete_gc) {
 743   ResourceMark rm;
 744   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 745   while (iter.has_next()) {
 746     iter.update_discovered();
 747     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 748     if (clear_referent) {
 749       // NULL out referent pointer
 750       iter.clear_referent();
 751     } else {
 752       // keep the referent around
 753       iter.make_referent_alive();
 754     }
 755     if (TraceReferenceGC) {
 756       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 757                              clear_referent ? "cleared " : "",
 758                              iter.obj(), iter.obj()->blueprint()->internal_name());
 759     }
 760     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
 761     iter.next();
 762   }
 763   // Remember to update the next pointer of the last ref.
 764   iter.update_discovered();
 765   // Close the reachable set
 766   complete_gc->do_void();
 767 }
 768 
 769 void
 770 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 771   oop obj = NULL;
 772   oop next = refs_list.head();
 773   while (next != obj) {
 774     obj = next;
 775     next = java_lang_ref_Reference::discovered(obj);
 776     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 777   }
 778   refs_list.set_head(NULL);
 779   refs_list.set_length(0);
 780 }
 781 
 782 void
 783 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
 784   clear_discovered_references(refs_list);
 785 }
 786 
 787 void ReferenceProcessor::abandon_partial_discovery() {
 788   // loop over the lists
 789   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 790     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 791       gclog_or_tty->print_cr("\nAbandoning %s discovered list",
 792                              list_name(i));
 793     }
 794     abandon_partial_discovered_list(_discoveredSoftRefs[i]);
 795   }
 796 }
 797 
 798 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 799 public:
 800   RefProcPhase1Task(ReferenceProcessor& ref_processor,
 801                     DiscoveredList      refs_lists[],
 802                     ReferencePolicy*    policy,
 803                     bool                marks_oops_alive)
 804     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 805       _policy(policy)
 806   { }
 807   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 808                     OopClosure& keep_alive,
 809                     VoidClosure& complete_gc)
 810   {
 811     Thread* thr = Thread::current();
 812     int refs_list_index = ((WorkerThread*)thr)->id();
 813     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
 814                                   &is_alive, &keep_alive, &complete_gc);
 815   }
 816 private:
 817   ReferencePolicy* _policy;
 818 };
 819 
 820 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 821 public:
 822   RefProcPhase2Task(ReferenceProcessor& ref_processor,
 823                     DiscoveredList      refs_lists[],
 824                     bool                marks_oops_alive)
 825     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
 826   { }
 827   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 828                     OopClosure& keep_alive,
 829                     VoidClosure& complete_gc)
 830   {
 831     _ref_processor.process_phase2(_refs_lists[i],
 832                                   &is_alive, &keep_alive, &complete_gc);
 833   }
 834 };
 835 
 836 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 837 public:
 838   RefProcPhase3Task(ReferenceProcessor& ref_processor,
 839                     DiscoveredList      refs_lists[],
 840                     bool                clear_referent,
 841                     bool                marks_oops_alive)
 842     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 843       _clear_referent(clear_referent)
 844   { }
 845   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 846                     OopClosure& keep_alive,
 847                     VoidClosure& complete_gc)
 848   {
 849     // Don't use "refs_list_index" calculated in this way because
 850     // balance_queues() has moved the Ref's into the first n queues.
 851     // Thread* thr = Thread::current();
 852     // int refs_list_index = ((WorkerThread*)thr)->id();
 853     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
 854     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 855                                   &is_alive, &keep_alive, &complete_gc);
 856   }
 857 private:
 858   bool _clear_referent;
 859 };
 860 
 861 // Balances reference queues.
 862 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 863 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 864 // corresponding to the active workers will be processed.
 865 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 866 {
 867   // calculate total length
 868   size_t total_refs = 0;
 869   if (TraceReferenceGC && PrintGCDetails) {
 870     gclog_or_tty->print_cr("\nBalance ref_lists ");
 871   }
 872 
 873   for (int i = 0; i < _max_num_q; ++i) {
 874     total_refs += ref_lists[i].length();
 875     if (TraceReferenceGC && PrintGCDetails) {
 876       gclog_or_tty->print("%d ", ref_lists[i].length());
 877     }
 878   }
 879   if (TraceReferenceGC && PrintGCDetails) {
 880     gclog_or_tty->print_cr(" = %d", total_refs);
 881   }
 882   size_t avg_refs = total_refs / _num_q + 1;
 883   int to_idx = 0;
 884   for (int from_idx = 0; from_idx < _max_num_q; from_idx++) {
 885     bool move_all = false;
 886     if (from_idx >= _num_q) {
 887       move_all = ref_lists[from_idx].length() > 0;
 888     }
 889     while ((ref_lists[from_idx].length() > avg_refs) ||
 890            move_all) {
 891       assert(to_idx < _num_q, "Sanity Check!");
 892       if (ref_lists[to_idx].length() < avg_refs) {
 893         // move superfluous refs
 894         size_t refs_to_move;
 895         // Move all the Ref's if the from queue will not be processed.
 896         if (move_all) {
 897           refs_to_move = MIN2(ref_lists[from_idx].length(),
 898                               avg_refs - ref_lists[to_idx].length());
 899         } else {
 900           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 901                               avg_refs - ref_lists[to_idx].length());
 902         }
 903 
 904         assert(refs_to_move > 0, "otherwise the code below will fail");
 905 
 906         oop move_head = ref_lists[from_idx].head();
 907         oop move_tail = move_head;
 908         oop new_head  = move_head;
 909         // find an element to split the list on
 910         for (size_t j = 0; j < refs_to_move; ++j) {
 911           move_tail = new_head;
 912           new_head = java_lang_ref_Reference::discovered(new_head);
 913         }
 914 
 915         // Add the chain to the to list.
 916         if (ref_lists[to_idx].head() == NULL) {
 917           // to list is empty. Make a loop at the end.
 918           java_lang_ref_Reference::set_discovered(move_tail, move_tail);
 919         } else {
 920           java_lang_ref_Reference::set_discovered(move_tail, ref_lists[to_idx].head());
 921         }
 922         ref_lists[to_idx].set_head(move_head);
 923         ref_lists[to_idx].inc_length(refs_to_move);
 924 
 925         // Remove the chain from the from list.
 926         if (move_tail == new_head) {
 927           // We found the end of the from list.
 928           ref_lists[from_idx].set_head(NULL);
 929         } else {
 930           ref_lists[from_idx].set_head(new_head);
 931         }
 932         ref_lists[from_idx].dec_length(refs_to_move);
 933         if (ref_lists[from_idx].length() == 0) {
 934           break;
 935         }
 936       } else {
 937         to_idx = (to_idx + 1) % _num_q;
 938       }
 939     }
 940   }
 941 #ifdef ASSERT
 942   size_t balanced_total_refs = 0;
 943   for (int i = 0; i < _max_num_q; ++i) {
 944     balanced_total_refs += ref_lists[i].length();
 945     if (TraceReferenceGC && PrintGCDetails) {
 946       gclog_or_tty->print("%d ", ref_lists[i].length());
 947     }
 948   }
 949   if (TraceReferenceGC && PrintGCDetails) {
 950     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
 951     gclog_or_tty->flush();
 952   }
 953   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 954 #endif
 955 }
 956 
 957 void ReferenceProcessor::balance_all_queues() {
 958   balance_queues(_discoveredSoftRefs);
 959   balance_queues(_discoveredWeakRefs);
 960   balance_queues(_discoveredFinalRefs);
 961   balance_queues(_discoveredPhantomRefs);
 962 }
 963 
 964 void
 965 ReferenceProcessor::process_discovered_reflist(
 966   DiscoveredList               refs_lists[],
 967   ReferencePolicy*             policy,
 968   bool                         clear_referent,
 969   BoolObjectClosure*           is_alive,
 970   OopClosure*                  keep_alive,
 971   VoidClosure*                 complete_gc,
 972   AbstractRefProcTaskExecutor* task_executor)
 973 {
 974   bool mt_processing = task_executor != NULL && _processing_is_mt;
 975   // If discovery used MT and a dynamic number of GC threads, then
 976   // the queues must be balanced for correctness if fewer than the
 977   // maximum number of queues were used.  The number of queue used
 978   // during discovery may be different than the number to be used
 979   // for processing so don't depend of _num_q < _max_num_q as part
 980   // of the test.
 981   bool must_balance = _discovery_is_mt;
 982 
 983   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
 984       must_balance) {
 985     balance_queues(refs_lists);
 986   }
 987   if (PrintReferenceGC && PrintGCDetails) {
 988     size_t total = 0;
 989     for (int i = 0; i < _max_num_q; ++i) {
 990       total += refs_lists[i].length();
 991     }
 992     gclog_or_tty->print(", %u refs", total);
 993   }
 994 
 995   // Phase 1 (soft refs only):
 996   // . Traverse the list and remove any SoftReferences whose
 997   //   referents are not alive, but that should be kept alive for
 998   //   policy reasons. Keep alive the transitive closure of all
 999   //   such referents.
1000   if (policy != NULL) {
1001     if (mt_processing) {
1002       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
1003       task_executor->execute(phase1);
1004     } else {
1005       for (int i = 0; i < _max_num_q; i++) {
1006         process_phase1(refs_lists[i], policy,
1007                        is_alive, keep_alive, complete_gc);
1008       }
1009     }
1010   } else { // policy == NULL
1011     assert(refs_lists != _discoveredSoftRefs,
1012            "Policy must be specified for soft references.");
1013   }
1014 
1015   // Phase 2:
1016   // . Traverse the list and remove any refs whose referents are alive.
1017   if (mt_processing) {
1018     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
1019     task_executor->execute(phase2);
1020   } else {
1021     for (int i = 0; i < _max_num_q; i++) {
1022       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
1023     }
1024   }
1025 
1026   // Phase 3:
1027   // . Traverse the list and process referents as appropriate.
1028   if (mt_processing) {
1029     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
1030     task_executor->execute(phase3);
1031   } else {
1032     for (int i = 0; i < _max_num_q; i++) {
1033       process_phase3(refs_lists[i], clear_referent,
1034                      is_alive, keep_alive, complete_gc);
1035     }
1036   }
1037 }
1038 
1039 void ReferenceProcessor::clean_up_discovered_references() {
1040   // loop over the lists
1041   // Should this instead be
1042   // for (int i = 0; i < subclasses_of_ref; i++_ {
1043   //   for (int j = 0; j < _num_q; j++) {
1044   //     int index = i * _max_num_q + j;
1045   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
1046     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
1047       gclog_or_tty->print_cr(
1048         "\nScrubbing %s discovered list of Null referents",
1049         list_name(i));
1050     }
1051     clean_up_discovered_reflist(_discoveredSoftRefs[i]);
1052   }
1053 }
1054 
1055 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
1056   assert(!discovery_is_atomic(), "Else why call this method?");
1057   DiscoveredListIterator iter(refs_list, NULL, NULL);
1058   while (iter.has_next()) {
1059     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1060     oop next = java_lang_ref_Reference::next(iter.obj());
1061     assert(next->is_oop_or_null(), "bad next field");
1062     // If referent has been cleared or Reference is not active,
1063     // drop it.
1064     if (iter.referent() == NULL || next != NULL) {
1065       debug_only(
1066         if (PrintGCDetails && TraceReferenceGC) {
1067           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
1068             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
1069             " and referent: " INTPTR_FORMAT,
1070             iter.obj(), next, iter.referent());
1071         }
1072       )
1073       // Remove Reference object from list
1074       iter.remove();
1075       iter.move_to_next();
1076     } else {
1077       iter.next();
1078     }
1079   }
1080   NOT_PRODUCT(
1081     if (PrintGCDetails && TraceReferenceGC) {
1082       gclog_or_tty->print(
1083         " Removed %d Refs with NULL referents out of %d discovered Refs",
1084         iter.removed(), iter.processed());
1085     }
1086   )
1087 }
1088 
1089 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
1090   int id = 0;
1091   // Determine the queue index to use for this object.
1092   if (_discovery_is_mt) {
1093     // During a multi-threaded discovery phase,
1094     // each thread saves to its "own" list.
1095     Thread* thr = Thread::current();
1096     id = thr->as_Worker_thread()->id();
1097   } else {
1098     // single-threaded discovery, we save in round-robin
1099     // fashion to each of the lists.
1100     if (_processing_is_mt) {
1101       id = next_id();
1102     }
1103   }
1104   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
1105 
1106   // Get the discovered queue to which we will add
1107   DiscoveredList* list = NULL;
1108   switch (rt) {
1109     case REF_OTHER:
1110       // Unknown reference type, no special treatment
1111       break;
1112     case REF_SOFT:
1113       list = &_discoveredSoftRefs[id];
1114       break;
1115     case REF_WEAK:
1116       list = &_discoveredWeakRefs[id];
1117       break;
1118     case REF_FINAL:
1119       list = &_discoveredFinalRefs[id];
1120       break;
1121     case REF_PHANTOM:
1122       list = &_discoveredPhantomRefs[id];
1123       break;
1124     case REF_NONE:
1125       // we should not reach here if we are an instanceRefKlass
1126     default:
1127       ShouldNotReachHere();
1128   }
1129   if (TraceReferenceGC && PrintGCDetails) {
1130     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
1131   }
1132   return list;
1133 }
1134 
1135 inline void
1136 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
1137                                               oop             obj,
1138                                               HeapWord*       discovered_addr) {
1139   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
1140   // First we must make sure this object is only enqueued once. CAS in a non null
1141   // discovered_addr.
1142   oop current_head = refs_list.head();
1143   // The last ref must have its discovered field pointing to itself.
1144   oop next_discovered = (current_head != NULL) ? current_head : obj;
1145 
1146   // Note: In the case of G1, this specific pre-barrier is strictly
1147   // not necessary because the only case we are interested in
1148   // here is when *discovered_addr is NULL (see the CAS further below),
1149   // so this will expand to nothing. As a result, we have manually
1150   // elided this out for G1, but left in the test for some future
1151   // collector that might have need for a pre-barrier here, e.g.:-
1152   // _bs->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
1153   assert(!_discovered_list_needs_barrier || UseG1GC,
1154          "Need to check non-G1 collector: "
1155          "may need a pre-write-barrier for CAS from NULL below");
1156   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
1157                                                     NULL);
1158   if (retest == NULL) {
1159     // This thread just won the right to enqueue the object.
1160     // We have separate lists for enqueueing, so no synchronization
1161     // is necessary.
1162     refs_list.set_head(obj);
1163     refs_list.inc_length(1);
1164     if (_discovered_list_needs_barrier) {
1165       _bs->write_ref_field((void*)discovered_addr, next_discovered);
1166     }
1167 
1168     if (TraceReferenceGC) {
1169       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
1170                              obj, obj->blueprint()->internal_name());
1171     }
1172   } else {
1173     // If retest was non NULL, another thread beat us to it:
1174     // The reference has already been discovered...
1175     if (TraceReferenceGC) {
1176       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
1177                              obj, obj->blueprint()->internal_name());
1178     }
1179   }
1180 }
1181 
1182 #ifndef PRODUCT
1183 // Non-atomic (i.e. concurrent) discovery might allow us
1184 // to observe j.l.References with NULL referents, being those
1185 // cleared concurrently by mutators during (or after) discovery.
1186 void ReferenceProcessor::verify_referent(oop obj) {
1187   bool da = discovery_is_atomic();
1188   oop referent = java_lang_ref_Reference::referent(obj);
1189   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
1190          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
1191                  INTPTR_FORMAT " during %satomic discovery ",
1192                  (intptr_t)referent, (intptr_t)obj, da ? "" : "non-"));
1193 }
1194 #endif
1195 
1196 // We mention two of several possible choices here:
1197 // #0: if the reference object is not in the "originating generation"
1198 //     (or part of the heap being collected, indicated by our "span"
1199 //     we don't treat it specially (i.e. we scan it as we would
1200 //     a normal oop, treating its references as strong references).
1201 //     This means that references can't be discovered unless their
1202 //     referent is also in the same span. This is the simplest,
1203 //     most "local" and most conservative approach, albeit one
1204 //     that may cause weak references to be enqueued least promptly.
1205 //     We call this choice the "ReferenceBasedDiscovery" policy.
1206 // #1: the reference object may be in any generation (span), but if
1207 //     the referent is in the generation (span) being currently collected
1208 //     then we can discover the reference object, provided
1209 //     the object has not already been discovered by
1210 //     a different concurrently running collector (as may be the
1211 //     case, for instance, if the reference object is in CMS and
1212 //     the referent in DefNewGeneration), and provided the processing
1213 //     of this reference object by the current collector will
1214 //     appear atomic to every other collector in the system.
1215 //     (Thus, for instance, a concurrent collector may not
1216 //     discover references in other generations even if the
1217 //     referent is in its own generation). This policy may,
1218 //     in certain cases, enqueue references somewhat sooner than
1219 //     might Policy #0 above, but at marginally increased cost
1220 //     and complexity in processing these references.
1221 //     We call this choice the "RefeferentBasedDiscovery" policy.
1222 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1223   // Make sure we are discovering refs (rather than processing discovered refs).
1224   if (!_discovering_refs || !RegisterReferences) {
1225     return false;
1226   }
1227   // We only discover active references.
1228   oop next = java_lang_ref_Reference::next(obj);
1229   if (next != NULL) {   // Ref is no longer active
1230     return false;
1231   }
1232 
1233   HeapWord* obj_addr = (HeapWord*)obj;
1234   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1235       !_span.contains(obj_addr)) {
1236     // Reference is not in the originating generation;
1237     // don't treat it specially (i.e. we want to scan it as a normal
1238     // object with strong references).
1239     return false;
1240   }
1241 
1242   // We only discover references whose referents are not (yet)
1243   // known to be strongly reachable.
1244   if (is_alive_non_header() != NULL) {
1245     verify_referent(obj);
1246     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1247       return false;  // referent is reachable
1248     }
1249   }
1250   if (rt == REF_SOFT) {
1251     // For soft refs we can decide now if these are not
1252     // current candidates for clearing, in which case we
1253     // can mark through them now, rather than delaying that
1254     // to the reference-processing phase. Since all current
1255     // time-stamp policies advance the soft-ref clock only
1256     // at a major collection cycle, this is always currently
1257     // accurate.
1258     if (!_current_soft_ref_policy->should_clear_reference(obj)) {
1259       return false;
1260     }
1261   }
1262 
1263   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1264   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1265   assert(discovered->is_oop_or_null(), "bad discovered field");
1266   if (discovered != NULL) {
1267     // The reference has already been discovered...
1268     if (TraceReferenceGC) {
1269       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
1270                              obj, obj->blueprint()->internal_name());
1271     }
1272     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1273       // assumes that an object is not processed twice;
1274       // if it's been already discovered it must be on another
1275       // generation's discovered list; so we won't discover it.
1276       return false;
1277     } else {
1278       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1279              "Unrecognized policy");
1280       // Check assumption that an object is not potentially
1281       // discovered twice except by concurrent collectors that potentially
1282       // trace the same Reference object twice.
1283       assert(UseConcMarkSweepGC || UseG1GC,
1284              "Only possible with a concurrent marking collector");
1285       return true;
1286     }
1287   }
1288 
1289   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1290     verify_referent(obj);
1291     // Discover if and only if EITHER:
1292     // .. reference is in our span, OR
1293     // .. we are an atomic collector and referent is in our span
1294     if (_span.contains(obj_addr) ||
1295         (discovery_is_atomic() &&
1296          _span.contains(java_lang_ref_Reference::referent(obj)))) {
1297       // should_enqueue = true;
1298     } else {
1299       return false;
1300     }
1301   } else {
1302     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1303            _span.contains(obj_addr), "code inconsistency");
1304   }
1305 
1306   // Get the right type of discovered queue head.
1307   DiscoveredList* list = get_discovered_list(rt);
1308   if (list == NULL) {
1309     return false;   // nothing special needs to be done
1310   }
1311 
1312   if (_discovery_is_mt) {
1313     add_to_discovered_list_mt(*list, obj, discovered_addr);
1314   } else {
1315     // If "_discovered_list_needs_barrier", we do write barriers when
1316     // updating the discovered reference list.  Otherwise, we do a raw store
1317     // here: the field will be visited later when processing the discovered
1318     // references.
1319     oop current_head = list->head();
1320     // The last ref must have its discovered field pointing to itself.
1321     oop next_discovered = (current_head != NULL) ? current_head : obj;
1322 
1323     // As in the case further above, since we are over-writing a NULL
1324     // pre-value, we can safely elide the pre-barrier here for the case of G1.
1325     // e.g.:- _bs->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
1326     assert(discovered == NULL, "control point invariant");
1327     assert(!_discovered_list_needs_barrier || UseG1GC,
1328            "For non-G1 collector, may need a pre-write-barrier for CAS from NULL below");
1329     oop_store_raw(discovered_addr, next_discovered);
1330     if (_discovered_list_needs_barrier) {
1331       _bs->write_ref_field((void*)discovered_addr, next_discovered);
1332     }
1333     list->set_head(obj);
1334     list->inc_length(1);
1335 
1336     if (TraceReferenceGC) {
1337       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
1338                                 obj, obj->blueprint()->internal_name());
1339     }
1340   }
1341   assert(obj->is_oop(), "Discovered a bad reference");
1342   verify_referent(obj);
1343   return true;
1344 }
1345 
1346 // Preclean the discovered references by removing those
1347 // whose referents are alive, and by marking from those that
1348 // are not active. These lists can be handled here
1349 // in any order and, indeed, concurrently.
1350 void ReferenceProcessor::preclean_discovered_references(
1351   BoolObjectClosure* is_alive,
1352   OopClosure* keep_alive,
1353   VoidClosure* complete_gc,
1354   YieldClosure* yield,
1355   bool should_unload_classes) {
1356 
1357   NOT_PRODUCT(verify_ok_to_handle_reflists());
1358 
1359 #ifdef ASSERT
1360   bool must_remember_klasses = ClassUnloading && !UseConcMarkSweepGC ||
1361                                CMSClassUnloadingEnabled && UseConcMarkSweepGC ||
1362                                ExplicitGCInvokesConcurrentAndUnloadsClasses &&
1363                                  UseConcMarkSweepGC && should_unload_classes;
1364   RememberKlassesChecker mx(must_remember_klasses);
1365 #endif
1366   // Soft references
1367   {
1368     TraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
1369               false, gclog_or_tty);
1370     for (int i = 0; i < _max_num_q; i++) {
1371       if (yield->should_return()) {
1372         return;
1373       }
1374       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1375                                   keep_alive, complete_gc, yield);
1376     }
1377   }
1378 
1379   // Weak references
1380   {
1381     TraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
1382               false, gclog_or_tty);
1383     for (int i = 0; i < _max_num_q; i++) {
1384       if (yield->should_return()) {
1385         return;
1386       }
1387       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1388                                   keep_alive, complete_gc, yield);
1389     }
1390   }
1391 
1392   // Final references
1393   {
1394     TraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
1395               false, gclog_or_tty);
1396     for (int i = 0; i < _max_num_q; i++) {
1397       if (yield->should_return()) {
1398         return;
1399       }
1400       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1401                                   keep_alive, complete_gc, yield);
1402     }
1403   }
1404 
1405   // Phantom references
1406   {
1407     TraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
1408               false, gclog_or_tty);
1409     for (int i = 0; i < _max_num_q; i++) {
1410       if (yield->should_return()) {
1411         return;
1412       }
1413       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1414                                   keep_alive, complete_gc, yield);
1415     }
1416   }
1417 }
1418 
1419 // Walk the given discovered ref list, and remove all reference objects
1420 // whose referents are still alive, whose referents are NULL or which
1421 // are not active (have a non-NULL next field). NOTE: When we are
1422 // thus precleaning the ref lists (which happens single-threaded today),
1423 // we do not disable refs discovery to honour the correct semantics of
1424 // java.lang.Reference. As a result, we need to be careful below
1425 // that ref removal steps interleave safely with ref discovery steps
1426 // (in this thread).
1427 void
1428 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1429                                                 BoolObjectClosure* is_alive,
1430                                                 OopClosure*        keep_alive,
1431                                                 VoidClosure*       complete_gc,
1432                                                 YieldClosure*      yield) {
1433   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1434   while (iter.has_next()) {
1435     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1436     oop obj = iter.obj();
1437     oop next = java_lang_ref_Reference::next(obj);
1438     if (iter.referent() == NULL || iter.is_referent_alive() ||
1439         next != NULL) {
1440       // The referent has been cleared, or is alive, or the Reference is not
1441       // active; we need to trace and mark its cohort.
1442       if (TraceReferenceGC) {
1443         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1444                                iter.obj(), iter.obj()->blueprint()->internal_name());
1445       }
1446       // Remove Reference object from list
1447       iter.remove();
1448       // Keep alive its cohort.
1449       iter.make_referent_alive();
1450       if (UseCompressedOops) {
1451         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1452         keep_alive->do_oop(next_addr);
1453       } else {
1454         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1455         keep_alive->do_oop(next_addr);
1456       }
1457       iter.move_to_next();
1458     } else {
1459       iter.next();
1460     }
1461   }
1462   // Close the reachable set
1463   complete_gc->do_void();
1464 
1465   NOT_PRODUCT(
1466     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
1467       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
1468         "Refs in discovered list " INTPTR_FORMAT,
1469         iter.removed(), iter.processed(), (address)refs_list.head());
1470     }
1471   )
1472 }
1473 
1474 const char* ReferenceProcessor::list_name(int i) {
1475    assert(i >= 0 && i <= _max_num_q * subclasses_of_ref, "Out of bounds index");
1476    int j = i / _max_num_q;
1477    switch (j) {
1478      case 0: return "SoftRef";
1479      case 1: return "WeakRef";
1480      case 2: return "FinalRef";
1481      case 3: return "PhantomRef";
1482    }
1483    ShouldNotReachHere();
1484    return NULL;
1485 }
1486 
1487 #ifndef PRODUCT
1488 void ReferenceProcessor::verify_ok_to_handle_reflists() {
1489   // empty for now
1490 }
1491 #endif
1492 
1493 #ifndef PRODUCT
1494 void ReferenceProcessor::clear_discovered_references() {
1495   guarantee(!_discovering_refs, "Discovering refs?");
1496   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
1497     clear_discovered_references(_discoveredSoftRefs[i]);
1498   }
1499 }
1500 
1501 #endif // PRODUCT