1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
  26 #define SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
  27 
  28 #include "memory/referencePolicy.hpp"
  29 #include "oops/instanceRefKlass.hpp"
  30 
  31 // ReferenceProcessor class encapsulates the per-"collector" processing
  32 // of java.lang.Reference objects for GC. The interface is useful for supporting
  33 // a generational abstraction, in particular when there are multiple
  34 // generations that are being independently collected -- possibly
  35 // concurrently and/or incrementally.  Note, however, that the
  36 // ReferenceProcessor class abstracts away from a generational setting
  37 // by using only a heap interval (called "span" below), thus allowing
  38 // its use in a straightforward manner in a general, non-generational
  39 // setting.
  40 //
  41 // The basic idea is that each ReferenceProcessor object concerns
  42 // itself with ("weak") reference processing in a specific "span"
  43 // of the heap of interest to a specific collector. Currently,
  44 // the span is a convex interval of the heap, but, efficiency
  45 // apart, there seems to be no reason it couldn't be extended
  46 // (with appropriate modifications) to any "non-convex interval".
  47 
  48 // forward references
  49 class ReferencePolicy;
  50 class AbstractRefProcTaskExecutor;
  51 class DiscoveredList;
  52 
  53 class ReferenceProcessor : public CHeapObj {
  54  protected:
  55   MemRegion   _span; // (right-open) interval of heap
  56                      // subject to wkref discovery
  57   bool        _discovering_refs;      // true when discovery enabled
  58   bool        _discovery_is_atomic;   // if discovery is atomic wrt
  59                                       // other collectors in configuration
  60   bool        _discovery_is_mt;       // true if reference discovery is MT.
  61   // If true, setting "next" field of a discovered refs list requires
  62   // write barrier(s).  (Must be true if used in a collector in which
  63   // elements of a discovered list may be moved during discovery: for
  64   // example, a collector like Garbage-First that moves objects during a
  65   // long-term concurrent marking phase that does weak reference
  66   // discovery.)
  67   bool        _discovered_list_needs_barrier;
  68   BarrierSet* _bs;                    // Cached copy of BarrierSet.
  69   bool        _enqueuing_is_done;     // true if all weak references enqueued
  70   bool        _processing_is_mt;      // true during phases when
  71                                       // reference processing is MT.
  72   int         _next_id;               // round-robin mod _num_q counter in
  73                                       // support of work distribution
  74 
  75   // For collectors that do not keep GC marking information
  76   // in the object header, this field holds a closure that
  77   // helps the reference processor determine the reachability
  78   // of an oop (the field is currently initialized to NULL for
  79   // all collectors but the CMS collector).
  80   BoolObjectClosure* _is_alive_non_header;
  81 
  82   // Soft ref clearing policies
  83   // . the default policy
  84   static ReferencePolicy*   _default_soft_ref_policy;
  85   // . the "clear all" policy
  86   static ReferencePolicy*   _always_clear_soft_ref_policy;
  87   // . the current policy below is either one of the above
  88   ReferencePolicy*          _current_soft_ref_policy;
  89 
  90   // The discovered ref lists themselves
  91 
  92   // The active MT'ness degree of the queues below
  93   int             _num_q;
  94   // The maximum MT'ness degree of the queues below
  95   int             _max_num_q;
  96   // Arrays of lists of oops, one per thread
  97   DiscoveredList* _discoveredSoftRefs;
  98   DiscoveredList* _discoveredWeakRefs;
  99   DiscoveredList* _discoveredFinalRefs;
 100   DiscoveredList* _discoveredPhantomRefs;
 101 
 102  public:
 103   int num_q()                            { return _num_q; }
 104   int max_num_q()                        { return _max_num_q; }
 105   void set_active_mt_degree(int v)       { _num_q = v; }
 106   DiscoveredList* discovered_soft_refs() { return _discoveredSoftRefs; }
 107   ReferencePolicy* setup_policy(bool always_clear) {
 108     _current_soft_ref_policy = always_clear ?
 109       _always_clear_soft_ref_policy : _default_soft_ref_policy;
 110     _current_soft_ref_policy->setup();   // snapshot the policy threshold
 111     return _current_soft_ref_policy;
 112   }
 113 
 114  public:
 115   // Process references with a certain reachability level.
 116   void process_discovered_reflist(DiscoveredList               refs_lists[],
 117                                   ReferencePolicy*             policy,
 118                                   bool                         clear_referent,
 119                                   BoolObjectClosure*           is_alive,
 120                                   OopClosure*                  keep_alive,
 121                                   VoidClosure*                 complete_gc,
 122                                   AbstractRefProcTaskExecutor* task_executor);
 123 
 124   void process_phaseJNI(BoolObjectClosure* is_alive,
 125                         OopClosure*        keep_alive,
 126                         VoidClosure*       complete_gc);
 127 
 128   // Work methods used by the method process_discovered_reflist
 129   // Phase1: keep alive all those referents that are otherwise
 130   // dead but which must be kept alive by policy (and their closure).
 131   void process_phase1(DiscoveredList&     refs_list,
 132                       ReferencePolicy*    policy,
 133                       BoolObjectClosure*  is_alive,
 134                       OopClosure*         keep_alive,
 135                       VoidClosure*        complete_gc);
 136   // Phase2: remove all those references whose referents are
 137   // reachable.
 138   inline void process_phase2(DiscoveredList&    refs_list,
 139                              BoolObjectClosure* is_alive,
 140                              OopClosure*        keep_alive,
 141                              VoidClosure*       complete_gc) {
 142     if (discovery_is_atomic()) {
 143       // complete_gc is ignored in this case for this phase
 144       pp2_work(refs_list, is_alive, keep_alive);
 145     } else {
 146       assert(complete_gc != NULL, "Error");
 147       pp2_work_concurrent_discovery(refs_list, is_alive,
 148                                     keep_alive, complete_gc);
 149     }
 150   }
 151   // Work methods in support of process_phase2
 152   void pp2_work(DiscoveredList&    refs_list,
 153                 BoolObjectClosure* is_alive,
 154                 OopClosure*        keep_alive);
 155   void pp2_work_concurrent_discovery(
 156                 DiscoveredList&    refs_list,
 157                 BoolObjectClosure* is_alive,
 158                 OopClosure*        keep_alive,
 159                 VoidClosure*       complete_gc);
 160   // Phase3: process the referents by either clearing them
 161   // or keeping them alive (and their closure)
 162   void process_phase3(DiscoveredList&    refs_list,
 163                       bool               clear_referent,
 164                       BoolObjectClosure* is_alive,
 165                       OopClosure*        keep_alive,
 166                       VoidClosure*       complete_gc);
 167 
 168   // Enqueue references with a certain reachability level
 169   void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr);
 170 
 171   // "Preclean" all the discovered reference lists
 172   // by removing references with strongly reachable referents.
 173   // The first argument is a predicate on an oop that indicates
 174   // its (strong) reachability and the second is a closure that
 175   // may be used to incrementalize or abort the precleaning process.
 176   // The caller is responsible for taking care of potential
 177   // interference with concurrent operations on these lists
 178   // (or predicates involved) by other threads. Currently
 179   // only used by the CMS collector.  should_unload_classes is
 180   // used to aid assertion checking when classes are collected.
 181   void preclean_discovered_references(BoolObjectClosure* is_alive,
 182                                       OopClosure*        keep_alive,
 183                                       VoidClosure*       complete_gc,
 184                                       YieldClosure*      yield,
 185                                       bool               should_unload_classes);
 186 
 187   // Delete entries in the discovered lists that have
 188   // either a null referent or are not active. Such
 189   // Reference objects can result from the clearing
 190   // or enqueueing of Reference objects concurrent
 191   // with their discovery by a (concurrent) collector.
 192   // For a definition of "active" see java.lang.ref.Reference;
 193   // Refs are born active, become inactive when enqueued,
 194   // and never become active again. The state of being
 195   // active is encoded as follows: A Ref is active
 196   // if and only if its "next" field is NULL.
 197   void clean_up_discovered_references();
 198   void clean_up_discovered_reflist(DiscoveredList& refs_list);
 199 
 200   // Returns the name of the discovered reference list
 201   // occupying the i / _num_q slot.
 202   const char* list_name(int i);
 203 
 204   void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
 205 
 206  protected:
 207   // "Preclean" the given discovered reference list
 208   // by removing references with strongly reachable referents.
 209   // Currently used in support of CMS only.
 210   void preclean_discovered_reflist(DiscoveredList&    refs_list,
 211                                    BoolObjectClosure* is_alive,
 212                                    OopClosure*        keep_alive,
 213                                    VoidClosure*       complete_gc,
 214                                    YieldClosure*      yield);
 215 
 216   // round-robin mod _num_q (not: _not_ mode _max_num_q)
 217   int next_id() {
 218     int id = _next_id;
 219     if (++_next_id == _num_q) {
 220       _next_id = 0;
 221     }
 222     return id;
 223   }
 224   DiscoveredList* get_discovered_list(ReferenceType rt);
 225   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
 226                                         HeapWord* discovered_addr);
 227   void verify_ok_to_handle_reflists() PRODUCT_RETURN;
 228 
 229   void clear_discovered_references(DiscoveredList& refs_list);
 230   void abandon_partial_discovered_list(DiscoveredList& refs_list);
 231 
 232   // Calculate the number of jni handles.
 233   unsigned int count_jni_refs();
 234 
 235   // Balances reference queues.
 236   void balance_queues(DiscoveredList ref_lists[]);
 237 
 238   // Update (advance) the soft ref master clock field.
 239   void update_soft_ref_master_clock();
 240 
 241  public:
 242   // constructor
 243   ReferenceProcessor():
 244     _span((HeapWord*)NULL, (HeapWord*)NULL),
 245     _discoveredSoftRefs(NULL),  _discoveredWeakRefs(NULL),
 246     _discoveredFinalRefs(NULL), _discoveredPhantomRefs(NULL),
 247     _discovering_refs(false),
 248     _discovery_is_atomic(true),
 249     _enqueuing_is_done(false),
 250     _discovery_is_mt(false),
 251     _discovered_list_needs_barrier(false),
 252     _bs(NULL),
 253     _is_alive_non_header(NULL),
 254     _num_q(0),
 255     _max_num_q(0),
 256     _processing_is_mt(false),
 257     _next_id(0)
 258   { }
 259 
 260   // Default parameters give you a vanilla reference processor.
 261   ReferenceProcessor(MemRegion span,
 262                      bool mt_processing = false, int mt_processing_degree = 1,
 263                      bool mt_discovery  = false, int mt_discovery_degree  = 1,
 264                      bool atomic_discovery = true,
 265                      BoolObjectClosure* is_alive_non_header = NULL,
 266                      bool discovered_list_needs_barrier = false);
 267 
 268   // RefDiscoveryPolicy values
 269   enum DiscoveryPolicy {
 270     ReferenceBasedDiscovery = 0,
 271     ReferentBasedDiscovery  = 1,
 272     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
 273     DiscoveryPolicyMax      = ReferentBasedDiscovery
 274   };
 275 
 276   static void init_statics();
 277 
 278  public:
 279   // get and set "is_alive_non_header" field
 280   BoolObjectClosure* is_alive_non_header() {
 281     return _is_alive_non_header;
 282   }
 283   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
 284     _is_alive_non_header = is_alive_non_header;
 285   }
 286 
 287   // get and set span
 288   MemRegion span()                   { return _span; }
 289   void      set_span(MemRegion span) { _span = span; }
 290 
 291   // start and stop weak ref discovery
 292   void enable_discovery()   { _discovering_refs = true;  }
 293   void disable_discovery()  { _discovering_refs = false; }
 294   bool discovery_enabled()  { return _discovering_refs;  }
 295 
 296   // whether discovery is atomic wrt other collectors
 297   bool discovery_is_atomic() const { return _discovery_is_atomic; }
 298   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
 299 
 300   // whether discovery is done by multiple threads same-old-timeously
 301   bool discovery_is_mt() const { return _discovery_is_mt; }
 302   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
 303 
 304   // Whether we are in a phase when _processing_ is MT.
 305   bool processing_is_mt() const { return _processing_is_mt; }
 306   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
 307 
 308   // whether all enqueuing of weak references is complete
 309   bool enqueuing_is_done()  { return _enqueuing_is_done; }
 310   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
 311 
 312   // iterate over oops
 313   void weak_oops_do(OopClosure* f);       // weak roots
 314 
 315   // Balance each of the discovered lists.
 316   void balance_all_queues();
 317 
 318   // Discover a Reference object, using appropriate discovery criteria
 319   bool discover_reference(oop obj, ReferenceType rt);
 320 
 321   // Process references found during GC (called by the garbage collector)
 322   void process_discovered_references(BoolObjectClosure*           is_alive,
 323                                      OopClosure*                  keep_alive,
 324                                      VoidClosure*                 complete_gc,
 325                                      AbstractRefProcTaskExecutor* task_executor);
 326 
 327  public:
 328   // Enqueue references at end of GC (called by the garbage collector)
 329   bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
 330 
 331   // If a discovery is in process that is being superceded, abandon it: all
 332   // the discovered lists will be empty, and all the objects on them will
 333   // have NULL discovered fields.  Must be called only at a safepoint.
 334   void abandon_partial_discovery();
 335 
 336   // debugging
 337   void verify_no_references_recorded() PRODUCT_RETURN;
 338   void verify_referent(oop obj)        PRODUCT_RETURN;
 339 
 340   // clear the discovered lists (unlinking each entry).
 341   void clear_discovered_references() PRODUCT_RETURN;
 342 };
 343 
 344 // A utility class to disable reference discovery in
 345 // the scope which contains it, for given ReferenceProcessor.
 346 class NoRefDiscovery: StackObj {
 347  private:
 348   ReferenceProcessor* _rp;
 349   bool _was_discovering_refs;
 350  public:
 351   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
 352     _was_discovering_refs = _rp->discovery_enabled();
 353     if (_was_discovering_refs) {
 354       _rp->disable_discovery();
 355     }
 356   }
 357 
 358   ~NoRefDiscovery() {
 359     if (_was_discovering_refs) {
 360       _rp->enable_discovery();
 361     }
 362   }
 363 };
 364 
 365 
 366 // A utility class to temporarily mutate the span of the
 367 // given ReferenceProcessor in the scope that contains it.
 368 class ReferenceProcessorSpanMutator: StackObj {
 369  private:
 370   ReferenceProcessor* _rp;
 371   MemRegion           _saved_span;
 372 
 373  public:
 374   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
 375                                 MemRegion span):
 376     _rp(rp) {
 377     _saved_span = _rp->span();
 378     _rp->set_span(span);
 379   }
 380 
 381   ~ReferenceProcessorSpanMutator() {
 382     _rp->set_span(_saved_span);
 383   }
 384 };
 385 
 386 // A utility class to temporarily change the MT'ness of
 387 // reference discovery for the given ReferenceProcessor
 388 // in the scope that contains it.
 389 class ReferenceProcessorMTDiscoveryMutator: StackObj {
 390  private:
 391   ReferenceProcessor* _rp;
 392   bool                _saved_mt;
 393 
 394  public:
 395   ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
 396                                        bool mt):
 397     _rp(rp) {
 398     _saved_mt = _rp->discovery_is_mt();
 399     _rp->set_mt_discovery(mt);
 400   }
 401 
 402   ~ReferenceProcessorMTDiscoveryMutator() {
 403     _rp->set_mt_discovery(_saved_mt);
 404   }
 405 };
 406 
 407 
 408 // A utility class to temporarily change the disposition
 409 // of the "is_alive_non_header" closure field of the
 410 // given ReferenceProcessor in the scope that contains it.
 411 class ReferenceProcessorIsAliveMutator: StackObj {
 412  private:
 413   ReferenceProcessor* _rp;
 414   BoolObjectClosure*  _saved_cl;
 415 
 416  public:
 417   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
 418                                    BoolObjectClosure*  cl):
 419     _rp(rp) {
 420     _saved_cl = _rp->is_alive_non_header();
 421     _rp->set_is_alive_non_header(cl);
 422   }
 423 
 424   ~ReferenceProcessorIsAliveMutator() {
 425     _rp->set_is_alive_non_header(_saved_cl);
 426   }
 427 };
 428 
 429 // A utility class to temporarily change the disposition
 430 // of the "discovery_is_atomic" field of the
 431 // given ReferenceProcessor in the scope that contains it.
 432 class ReferenceProcessorAtomicMutator: StackObj {
 433  private:
 434   ReferenceProcessor* _rp;
 435   bool                _saved_atomic_discovery;
 436 
 437  public:
 438   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
 439                                   bool atomic):
 440     _rp(rp) {
 441     _saved_atomic_discovery = _rp->discovery_is_atomic();
 442     _rp->set_atomic_discovery(atomic);
 443   }
 444 
 445   ~ReferenceProcessorAtomicMutator() {
 446     _rp->set_atomic_discovery(_saved_atomic_discovery);
 447   }
 448 };
 449 
 450 
 451 // A utility class to temporarily change the MT processing
 452 // disposition of the given ReferenceProcessor instance
 453 // in the scope that contains it.
 454 class ReferenceProcessorMTProcMutator: StackObj {
 455  private:
 456   ReferenceProcessor* _rp;
 457   bool  _saved_mt;
 458 
 459  public:
 460   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
 461                                   bool mt):
 462     _rp(rp) {
 463     _saved_mt = _rp->processing_is_mt();
 464     _rp->set_mt_processing(mt);
 465   }
 466 
 467   ~ReferenceProcessorMTProcMutator() {
 468     _rp->set_mt_processing(_saved_mt);
 469   }
 470 };
 471 
 472 
 473 // This class is an interface used to implement task execution for the
 474 // reference processing.
 475 class AbstractRefProcTaskExecutor {
 476 public:
 477 
 478   // Abstract tasks to execute.
 479   class ProcessTask;
 480   class EnqueueTask;
 481 
 482   // Executes a task using worker threads.
 483   virtual void execute(ProcessTask& task) = 0;
 484   virtual void execute(EnqueueTask& task) = 0;
 485 
 486   // Switch to single threaded mode.
 487   virtual void set_single_threaded_mode() { };
 488 };
 489 
 490 // Abstract reference processing task to execute.
 491 class AbstractRefProcTaskExecutor::ProcessTask {
 492 protected:
 493   ProcessTask(ReferenceProcessor& ref_processor,
 494               DiscoveredList      refs_lists[],
 495               bool                marks_oops_alive)
 496     : _ref_processor(ref_processor),
 497       _refs_lists(refs_lists),
 498       _marks_oops_alive(marks_oops_alive)
 499   { }
 500 
 501 public:
 502   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
 503                     OopClosure& keep_alive,
 504                     VoidClosure& complete_gc) = 0;
 505 
 506   // Returns true if a task marks some oops as alive.
 507   bool marks_oops_alive() const
 508   { return _marks_oops_alive; }
 509 
 510 protected:
 511   ReferenceProcessor& _ref_processor;
 512   DiscoveredList*     _refs_lists;
 513   const bool          _marks_oops_alive;
 514 };
 515 
 516 // Abstract reference processing task to execute.
 517 class AbstractRefProcTaskExecutor::EnqueueTask {
 518 protected:
 519   EnqueueTask(ReferenceProcessor& ref_processor,
 520               DiscoveredList      refs_lists[],
 521               HeapWord*           pending_list_addr,
 522               int                 n_queues)
 523     : _ref_processor(ref_processor),
 524       _refs_lists(refs_lists),
 525       _pending_list_addr(pending_list_addr),
 526       _n_queues(n_queues)
 527   { }
 528 
 529 public:
 530   virtual void work(unsigned int work_id) = 0;
 531 
 532 protected:
 533   ReferenceProcessor& _ref_processor;
 534   DiscoveredList*     _refs_lists;
 535   HeapWord*           _pending_list_addr;
 536   int                 _n_queues;
 537 };
 538 
 539 #endif // SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP