1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  30 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  37 #include "gc_implementation/parNew/parNewGeneration.hpp"
  38 #include "gc_implementation/shared/collectorCounters.hpp"
  39 #include "gc_implementation/shared/isGCActiveMark.hpp"
  40 #include "gc_interface/collectedHeap.inline.hpp"
  41 #include "memory/cardTableRS.hpp"
  42 #include "memory/collectorPolicy.hpp"
  43 #include "memory/gcLocker.inline.hpp"
  44 #include "memory/genCollectedHeap.hpp"
  45 #include "memory/genMarkSweep.hpp"
  46 #include "memory/genOopClosures.inline.hpp"
  47 #include "memory/iterator.hpp"
  48 #include "memory/referencePolicy.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "prims/jvmtiExport.hpp"
  52 #include "runtime/globals_extension.hpp"
  53 #include "runtime/handles.inline.hpp"
  54 #include "runtime/java.hpp"
  55 #include "runtime/vmThread.hpp"
  56 #include "services/memoryService.hpp"
  57 #include "services/runtimeService.hpp"
  58 
  59 // statics
  60 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  61 bool          CMSCollector::_full_gc_requested          = false;
  62 
  63 //////////////////////////////////////////////////////////////////
  64 // In support of CMS/VM thread synchronization
  65 //////////////////////////////////////////////////////////////////
  66 // We split use of the CGC_lock into 2 "levels".
  67 // The low-level locking is of the usual CGC_lock monitor. We introduce
  68 // a higher level "token" (hereafter "CMS token") built on top of the
  69 // low level monitor (hereafter "CGC lock").
  70 // The token-passing protocol gives priority to the VM thread. The
  71 // CMS-lock doesn't provide any fairness guarantees, but clients
  72 // should ensure that it is only held for very short, bounded
  73 // durations.
  74 //
  75 // When either of the CMS thread or the VM thread is involved in
  76 // collection operations during which it does not want the other
  77 // thread to interfere, it obtains the CMS token.
  78 //
  79 // If either thread tries to get the token while the other has
  80 // it, that thread waits. However, if the VM thread and CMS thread
  81 // both want the token, then the VM thread gets priority while the
  82 // CMS thread waits. This ensures, for instance, that the "concurrent"
  83 // phases of the CMS thread's work do not block out the VM thread
  84 // for long periods of time as the CMS thread continues to hog
  85 // the token. (See bug 4616232).
  86 //
  87 // The baton-passing functions are, however, controlled by the
  88 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
  89 // and here the low-level CMS lock, not the high level token,
  90 // ensures mutual exclusion.
  91 //
  92 // Two important conditions that we have to satisfy:
  93 // 1. if a thread does a low-level wait on the CMS lock, then it
  94 //    relinquishes the CMS token if it were holding that token
  95 //    when it acquired the low-level CMS lock.
  96 // 2. any low-level notifications on the low-level lock
  97 //    should only be sent when a thread has relinquished the token.
  98 //
  99 // In the absence of either property, we'd have potential deadlock.
 100 //
 101 // We protect each of the CMS (concurrent and sequential) phases
 102 // with the CMS _token_, not the CMS _lock_.
 103 //
 104 // The only code protected by CMS lock is the token acquisition code
 105 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 106 // baton-passing code.
 107 //
 108 // Unfortunately, i couldn't come up with a good abstraction to factor and
 109 // hide the naked CGC_lock manipulation in the baton-passing code
 110 // further below. That's something we should try to do. Also, the proof
 111 // of correctness of this 2-level locking scheme is far from obvious,
 112 // and potentially quite slippery. We have an uneasy supsicion, for instance,
 113 // that there may be a theoretical possibility of delay/starvation in the
 114 // low-level lock/wait/notify scheme used for the baton-passing because of
 115 // potential intereference with the priority scheme embodied in the
 116 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 117 // invocation further below and marked with "XXX 20011219YSR".
 118 // Indeed, as we note elsewhere, this may become yet more slippery
 119 // in the presence of multiple CMS and/or multiple VM threads. XXX
 120 
 121 class CMSTokenSync: public StackObj {
 122  private:
 123   bool _is_cms_thread;
 124  public:
 125   CMSTokenSync(bool is_cms_thread):
 126     _is_cms_thread(is_cms_thread) {
 127     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 128            "Incorrect argument to constructor");
 129     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 130   }
 131 
 132   ~CMSTokenSync() {
 133     assert(_is_cms_thread ?
 134              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 135              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 136           "Incorrect state");
 137     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 138   }
 139 };
 140 
 141 // Convenience class that does a CMSTokenSync, and then acquires
 142 // upto three locks.
 143 class CMSTokenSyncWithLocks: public CMSTokenSync {
 144  private:
 145   // Note: locks are acquired in textual declaration order
 146   // and released in the opposite order
 147   MutexLockerEx _locker1, _locker2, _locker3;
 148  public:
 149   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 150                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 151     CMSTokenSync(is_cms_thread),
 152     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 153     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 154     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 155   { }
 156 };
 157 
 158 
 159 // Wrapper class to temporarily disable icms during a foreground cms collection.
 160 class ICMSDisabler: public StackObj {
 161  public:
 162   // The ctor disables icms and wakes up the thread so it notices the change;
 163   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 164   // CMSIncrementalMode.
 165   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 166   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 167 };
 168 
 169 //////////////////////////////////////////////////////////////////
 170 //  Concurrent Mark-Sweep Generation /////////////////////////////
 171 //////////////////////////////////////////////////////////////////
 172 
 173 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 174 
 175 // This struct contains per-thread things necessary to support parallel
 176 // young-gen collection.
 177 class CMSParGCThreadState: public CHeapObj {
 178  public:
 179   CFLS_LAB lab;
 180   PromotionInfo promo;
 181 
 182   // Constructor.
 183   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 184     promo.setSpace(cfls);
 185   }
 186 };
 187 
 188 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 189      ReservedSpace rs, size_t initial_byte_size, int level,
 190      CardTableRS* ct, bool use_adaptive_freelists,
 191      FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
 192   CardGeneration(rs, initial_byte_size, level, ct),
 193   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 194   _debug_collection_type(Concurrent_collection_type)
 195 {
 196   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 197   HeapWord* end    = (HeapWord*) _virtual_space.high();
 198 
 199   _direct_allocated_words = 0;
 200   NOT_PRODUCT(
 201     _numObjectsPromoted = 0;
 202     _numWordsPromoted = 0;
 203     _numObjectsAllocated = 0;
 204     _numWordsAllocated = 0;
 205   )
 206 
 207   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 208                                            use_adaptive_freelists,
 209                                            dictionaryChoice);
 210   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 211   if (_cmsSpace == NULL) {
 212     vm_exit_during_initialization(
 213       "CompactibleFreeListSpace allocation failure");
 214   }
 215   _cmsSpace->_gen = this;
 216 
 217   _gc_stats = new CMSGCStats();
 218 
 219   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 220   // offsets match. The ability to tell free chunks from objects
 221   // depends on this property.
 222   debug_only(
 223     FreeChunk* junk = NULL;
 224     assert(UseCompressedOops ||
 225            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 226            "Offset of FreeChunk::_prev within FreeChunk must match"
 227            "  that of OopDesc::_klass within OopDesc");
 228   )
 229   if (CollectedHeap::use_parallel_gc_threads()) {
 230     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 231     _par_gc_thread_states =
 232       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads);
 233     if (_par_gc_thread_states == NULL) {
 234       vm_exit_during_initialization("Could not allocate par gc structs");
 235     }
 236     for (uint i = 0; i < ParallelGCThreads; i++) {
 237       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 238       if (_par_gc_thread_states[i] == NULL) {
 239         vm_exit_during_initialization("Could not allocate par gc structs");
 240       }
 241     }
 242   } else {
 243     _par_gc_thread_states = NULL;
 244   }
 245   _incremental_collection_failed = false;
 246   // The "dilatation_factor" is the expansion that can occur on
 247   // account of the fact that the minimum object size in the CMS
 248   // generation may be larger than that in, say, a contiguous young
 249   //  generation.
 250   // Ideally, in the calculation below, we'd compute the dilatation
 251   // factor as: MinChunkSize/(promoting_gen's min object size)
 252   // Since we do not have such a general query interface for the
 253   // promoting generation, we'll instead just use the mimimum
 254   // object size (which today is a header's worth of space);
 255   // note that all arithmetic is in units of HeapWords.
 256   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 257   assert(_dilatation_factor >= 1.0, "from previous assert");
 258 }
 259 
 260 
 261 // The field "_initiating_occupancy" represents the occupancy percentage
 262 // at which we trigger a new collection cycle.  Unless explicitly specified
 263 // via CMSInitiating[Perm]OccupancyFraction (argument "io" below), it
 264 // is calculated by:
 265 //
 266 //   Let "f" be MinHeapFreeRatio in
 267 //
 268 //    _intiating_occupancy = 100-f +
 269 //                           f * (CMSTrigger[Perm]Ratio/100)
 270 //   where CMSTrigger[Perm]Ratio is the argument "tr" below.
 271 //
 272 // That is, if we assume the heap is at its desired maximum occupancy at the
 273 // end of a collection, we let CMSTrigger[Perm]Ratio of the (purported) free
 274 // space be allocated before initiating a new collection cycle.
 275 //
 276 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) {
 277   assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments");
 278   if (io >= 0) {
 279     _initiating_occupancy = (double)io / 100.0;
 280   } else {
 281     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 282                              (double)(tr * MinHeapFreeRatio) / 100.0)
 283                             / 100.0;
 284   }
 285 }
 286 
 287 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 288   assert(collector() != NULL, "no collector");
 289   collector()->ref_processor_init();
 290 }
 291 
 292 void CMSCollector::ref_processor_init() {
 293   if (_ref_processor == NULL) {
 294     // Allocate and initialize a reference processor
 295     _ref_processor = ReferenceProcessor::create_ref_processor(
 296         _span,                               // span
 297         _cmsGen->refs_discovery_is_atomic(), // atomic_discovery
 298         _cmsGen->refs_discovery_is_mt(),     // mt_discovery
 299         &_is_alive_closure,
 300         ParallelGCThreads,
 301         ParallelRefProcEnabled);
 302     // Initialize the _ref_processor field of CMSGen
 303     _cmsGen->set_ref_processor(_ref_processor);
 304 
 305     // Allocate a dummy ref processor for perm gen.
 306     ReferenceProcessor* rp2 = new ReferenceProcessor();
 307     if (rp2 == NULL) {
 308       vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
 309     }
 310     _permGen->set_ref_processor(rp2);
 311   }
 312 }
 313 
 314 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
 315   GenCollectedHeap* gch = GenCollectedHeap::heap();
 316   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 317     "Wrong type of heap");
 318   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
 319     gch->gen_policy()->size_policy();
 320   assert(sp->is_gc_cms_adaptive_size_policy(),
 321     "Wrong type of size policy");
 322   return sp;
 323 }
 324 
 325 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
 326   CMSGCAdaptivePolicyCounters* results =
 327     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
 328   assert(
 329     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
 330     "Wrong gc policy counter kind");
 331   return results;
 332 }
 333 
 334 
 335 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 336 
 337   const char* gen_name = "old";
 338 
 339   // Generation Counters - generation 1, 1 subspace
 340   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 341 
 342   _space_counters = new GSpaceCounters(gen_name, 0,
 343                                        _virtual_space.reserved_size(),
 344                                        this, _gen_counters);
 345 }
 346 
 347 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 348   _cms_gen(cms_gen)
 349 {
 350   assert(alpha <= 100, "bad value");
 351   _saved_alpha = alpha;
 352 
 353   // Initialize the alphas to the bootstrap value of 100.
 354   _gc0_alpha = _cms_alpha = 100;
 355 
 356   _cms_begin_time.update();
 357   _cms_end_time.update();
 358 
 359   _gc0_duration = 0.0;
 360   _gc0_period = 0.0;
 361   _gc0_promoted = 0;
 362 
 363   _cms_duration = 0.0;
 364   _cms_period = 0.0;
 365   _cms_allocated = 0;
 366 
 367   _cms_used_at_gc0_begin = 0;
 368   _cms_used_at_gc0_end = 0;
 369   _allow_duty_cycle_reduction = false;
 370   _valid_bits = 0;
 371   _icms_duty_cycle = CMSIncrementalDutyCycle;
 372 }
 373 
 374 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 375   // TBD: CR 6909490
 376   return 1.0;
 377 }
 378 
 379 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 380 }
 381 
 382 // If promotion failure handling is on use
 383 // the padded average size of the promotion for each
 384 // young generation collection.
 385 double CMSStats::time_until_cms_gen_full() const {
 386   size_t cms_free = _cms_gen->cmsSpace()->free();
 387   GenCollectedHeap* gch = GenCollectedHeap::heap();
 388   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 389                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 390   if (cms_free > expected_promotion) {
 391     // Start a cms collection if there isn't enough space to promote
 392     // for the next minor collection.  Use the padded average as
 393     // a safety factor.
 394     cms_free -= expected_promotion;
 395 
 396     // Adjust by the safety factor.
 397     double cms_free_dbl = (double)cms_free;
 398     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 399     // Apply a further correction factor which tries to adjust
 400     // for recent occurance of concurrent mode failures.
 401     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 402     cms_free_dbl = cms_free_dbl * cms_adjustment;
 403 
 404     if (PrintGCDetails && Verbose) {
 405       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 406         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 407         cms_free, expected_promotion);
 408       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 409         cms_free_dbl, cms_consumption_rate() + 1.0);
 410     }
 411     // Add 1 in case the consumption rate goes to zero.
 412     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 413   }
 414   return 0.0;
 415 }
 416 
 417 // Compare the duration of the cms collection to the
 418 // time remaining before the cms generation is empty.
 419 // Note that the time from the start of the cms collection
 420 // to the start of the cms sweep (less than the total
 421 // duration of the cms collection) can be used.  This
 422 // has been tried and some applications experienced
 423 // promotion failures early in execution.  This was
 424 // possibly because the averages were not accurate
 425 // enough at the beginning.
 426 double CMSStats::time_until_cms_start() const {
 427   // We add "gc0_period" to the "work" calculation
 428   // below because this query is done (mostly) at the
 429   // end of a scavenge, so we need to conservatively
 430   // account for that much possible delay
 431   // in the query so as to avoid concurrent mode failures
 432   // due to starting the collection just a wee bit too
 433   // late.
 434   double work = cms_duration() + gc0_period();
 435   double deadline = time_until_cms_gen_full();
 436   // If a concurrent mode failure occurred recently, we want to be
 437   // more conservative and halve our expected time_until_cms_gen_full()
 438   if (work > deadline) {
 439     if (Verbose && PrintGCDetails) {
 440       gclog_or_tty->print(
 441         " CMSCollector: collect because of anticipated promotion "
 442         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 443         gc0_period(), time_until_cms_gen_full());
 444     }
 445     return 0.0;
 446   }
 447   return work - deadline;
 448 }
 449 
 450 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 451 // amount of change to prevent wild oscillation.
 452 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 453                                               unsigned int new_duty_cycle) {
 454   assert(old_duty_cycle <= 100, "bad input value");
 455   assert(new_duty_cycle <= 100, "bad input value");
 456 
 457   // Note:  use subtraction with caution since it may underflow (values are
 458   // unsigned).  Addition is safe since we're in the range 0-100.
 459   unsigned int damped_duty_cycle = new_duty_cycle;
 460   if (new_duty_cycle < old_duty_cycle) {
 461     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 462     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 463       damped_duty_cycle = old_duty_cycle - largest_delta;
 464     }
 465   } else if (new_duty_cycle > old_duty_cycle) {
 466     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 467     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 468       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 469     }
 470   }
 471   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 472 
 473   if (CMSTraceIncrementalPacing) {
 474     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 475                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 476   }
 477   return damped_duty_cycle;
 478 }
 479 
 480 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 481   assert(CMSIncrementalPacing && valid(),
 482          "should be handled in icms_update_duty_cycle()");
 483 
 484   double cms_time_so_far = cms_timer().seconds();
 485   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 486   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 487 
 488   // Avoid division by 0.
 489   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 490   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 491 
 492   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 493   if (new_duty_cycle > _icms_duty_cycle) {
 494     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 495     if (new_duty_cycle > 2) {
 496       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 497                                                 new_duty_cycle);
 498     }
 499   } else if (_allow_duty_cycle_reduction) {
 500     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 501     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 502     // Respect the minimum duty cycle.
 503     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 504     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 505   }
 506 
 507   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 508     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 509   }
 510 
 511   _allow_duty_cycle_reduction = false;
 512   return _icms_duty_cycle;
 513 }
 514 
 515 #ifndef PRODUCT
 516 void CMSStats::print_on(outputStream *st) const {
 517   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 518   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 519                gc0_duration(), gc0_period(), gc0_promoted());
 520   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 521             cms_duration(), cms_duration_per_mb(),
 522             cms_period(), cms_allocated());
 523   st->print(",cms_since_beg=%g,cms_since_end=%g",
 524             cms_time_since_begin(), cms_time_since_end());
 525   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 526             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 527   if (CMSIncrementalMode) {
 528     st->print(",dc=%d", icms_duty_cycle());
 529   }
 530 
 531   if (valid()) {
 532     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 533               promotion_rate(), cms_allocation_rate());
 534     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 535               cms_consumption_rate(), time_until_cms_gen_full());
 536   }
 537   st->print(" ");
 538 }
 539 #endif // #ifndef PRODUCT
 540 
 541 CMSCollector::CollectorState CMSCollector::_collectorState =
 542                              CMSCollector::Idling;
 543 bool CMSCollector::_foregroundGCIsActive = false;
 544 bool CMSCollector::_foregroundGCShouldWait = false;
 545 
 546 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 547                            ConcurrentMarkSweepGeneration* permGen,
 548                            CardTableRS*                   ct,
 549                            ConcurrentMarkSweepPolicy*     cp):
 550   _cmsGen(cmsGen),
 551   _permGen(permGen),
 552   _ct(ct),
 553   _ref_processor(NULL),    // will be set later
 554   _conc_workers(NULL),     // may be set later
 555   _abort_preclean(false),
 556   _start_sampling(false),
 557   _between_prologue_and_epilogue(false),
 558   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 559   _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"),
 560   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 561                  -1 /* lock-free */, "No_lock" /* dummy */),
 562   _modUnionClosure(&_modUnionTable),
 563   _modUnionClosurePar(&_modUnionTable),
 564   // Adjust my span to cover old (cms) gen and perm gen
 565   _span(cmsGen->reserved()._union(permGen->reserved())),
 566   // Construct the is_alive_closure with _span & markBitMap
 567   _is_alive_closure(_span, &_markBitMap),
 568   _restart_addr(NULL),
 569   _overflow_list(NULL),
 570   _stats(cmsGen),
 571   _eden_chunk_array(NULL),     // may be set in ctor body
 572   _eden_chunk_capacity(0),     // -- ditto --
 573   _eden_chunk_index(0),        // -- ditto --
 574   _survivor_plab_array(NULL),  // -- ditto --
 575   _survivor_chunk_array(NULL), // -- ditto --
 576   _survivor_chunk_capacity(0), // -- ditto --
 577   _survivor_chunk_index(0),    // -- ditto --
 578   _ser_pmc_preclean_ovflw(0),
 579   _ser_kac_preclean_ovflw(0),
 580   _ser_pmc_remark_ovflw(0),
 581   _par_pmc_remark_ovflw(0),
 582   _ser_kac_ovflw(0),
 583   _par_kac_ovflw(0),
 584 #ifndef PRODUCT
 585   _num_par_pushes(0),
 586 #endif
 587   _collection_count_start(0),
 588   _verifying(false),
 589   _icms_start_limit(NULL),
 590   _icms_stop_limit(NULL),
 591   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 592   _completed_initialization(false),
 593   _collector_policy(cp),
 594   _should_unload_classes(false),
 595   _concurrent_cycles_since_last_unload(0),
 596   _roots_scanning_options(0),
 597   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 598   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding)
 599 {
 600   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 601     ExplicitGCInvokesConcurrent = true;
 602   }
 603   // Now expand the span and allocate the collection support structures
 604   // (MUT, marking bit map etc.) to cover both generations subject to
 605   // collection.
 606 
 607   // First check that _permGen is adjacent to _cmsGen and above it.
 608   assert(   _cmsGen->reserved().word_size()  > 0
 609          && _permGen->reserved().word_size() > 0,
 610          "generations should not be of zero size");
 611   assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(),
 612          "_cmsGen and _permGen should not overlap");
 613   assert(_cmsGen->reserved().end() == _permGen->reserved().start(),
 614          "_cmsGen->end() different from _permGen->start()");
 615 
 616   // For use by dirty card to oop closures.
 617   _cmsGen->cmsSpace()->set_collector(this);
 618   _permGen->cmsSpace()->set_collector(this);
 619 
 620   // Allocate MUT and marking bit map
 621   {
 622     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 623     if (!_markBitMap.allocate(_span)) {
 624       warning("Failed to allocate CMS Bit Map");
 625       return;
 626     }
 627     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 628   }
 629   {
 630     _modUnionTable.allocate(_span);
 631     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 632   }
 633 
 634   if (!_markStack.allocate(MarkStackSize)) {
 635     warning("Failed to allocate CMS Marking Stack");
 636     return;
 637   }
 638   if (!_revisitStack.allocate(CMSRevisitStackSize)) {
 639     warning("Failed to allocate CMS Revisit Stack");
 640     return;
 641   }
 642 
 643   // Support for multi-threaded concurrent phases
 644   if (CollectedHeap::use_parallel_gc_threads() && CMSConcurrentMTEnabled) {
 645     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 646       // just for now
 647       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 648     }
 649     if (ConcGCThreads > 1) {
 650       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 651                                  ConcGCThreads, true);
 652       if (_conc_workers == NULL) {
 653         warning("GC/CMS: _conc_workers allocation failure: "
 654               "forcing -CMSConcurrentMTEnabled");
 655         CMSConcurrentMTEnabled = false;
 656       } else {
 657         _conc_workers->initialize_workers();
 658       }
 659     } else {
 660       CMSConcurrentMTEnabled = false;
 661     }
 662   }
 663   if (!CMSConcurrentMTEnabled) {
 664     ConcGCThreads = 0;
 665   } else {
 666     // Turn off CMSCleanOnEnter optimization temporarily for
 667     // the MT case where it's not fixed yet; see 6178663.
 668     CMSCleanOnEnter = false;
 669   }
 670   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 671          "Inconsistency");
 672 
 673   // Parallel task queues; these are shared for the
 674   // concurrent and stop-world phases of CMS, but
 675   // are not shared with parallel scavenge (ParNew).
 676   {
 677     uint i;
 678     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 679 
 680     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 681          || ParallelRefProcEnabled)
 682         && num_queues > 0) {
 683       _task_queues = new OopTaskQueueSet(num_queues);
 684       if (_task_queues == NULL) {
 685         warning("task_queues allocation failure.");
 686         return;
 687       }
 688       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues);
 689       if (_hash_seed == NULL) {
 690         warning("_hash_seed array allocation failure");
 691         return;
 692       }
 693 
 694       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 695       for (i = 0; i < num_queues; i++) {
 696         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 697         if (q == NULL) {
 698           warning("work_queue allocation failure.");
 699           return;
 700         }
 701         _task_queues->register_queue(i, q);
 702       }
 703       for (i = 0; i < num_queues; i++) {
 704         _task_queues->queue(i)->initialize();
 705         _hash_seed[i] = 17;  // copied from ParNew
 706       }
 707     }
 708   }
 709 
 710   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 711   _permGen->init_initiating_occupancy(CMSInitiatingPermOccupancyFraction, CMSTriggerPermRatio);
 712 
 713   // Clip CMSBootstrapOccupancy between 0 and 100.
 714   _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy)))
 715                          /(double)100;
 716 
 717   _full_gcs_since_conc_gc = 0;
 718 
 719   // Now tell CMS generations the identity of their collector
 720   ConcurrentMarkSweepGeneration::set_collector(this);
 721 
 722   // Create & start a CMS thread for this CMS collector
 723   _cmsThread = ConcurrentMarkSweepThread::start(this);
 724   assert(cmsThread() != NULL, "CMS Thread should have been created");
 725   assert(cmsThread()->collector() == this,
 726          "CMS Thread should refer to this gen");
 727   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 728 
 729   // Support for parallelizing young gen rescan
 730   GenCollectedHeap* gch = GenCollectedHeap::heap();
 731   _young_gen = gch->prev_gen(_cmsGen);
 732   if (gch->supports_inline_contig_alloc()) {
 733     _top_addr = gch->top_addr();
 734     _end_addr = gch->end_addr();
 735     assert(_young_gen != NULL, "no _young_gen");
 736     _eden_chunk_index = 0;
 737     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 738     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity);
 739     if (_eden_chunk_array == NULL) {
 740       _eden_chunk_capacity = 0;
 741       warning("GC/CMS: _eden_chunk_array allocation failure");
 742     }
 743   }
 744   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 745 
 746   // Support for parallelizing survivor space rescan
 747   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
 748     const size_t max_plab_samples =
 749       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 750 
 751     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads);
 752     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples);
 753     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads);
 754     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 755         || _cursor == NULL) {
 756       warning("Failed to allocate survivor plab/chunk array");
 757       if (_survivor_plab_array  != NULL) {
 758         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
 759         _survivor_plab_array = NULL;
 760       }
 761       if (_survivor_chunk_array != NULL) {
 762         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
 763         _survivor_chunk_array = NULL;
 764       }
 765       if (_cursor != NULL) {
 766         FREE_C_HEAP_ARRAY(size_t, _cursor);
 767         _cursor = NULL;
 768       }
 769     } else {
 770       _survivor_chunk_capacity = 2*max_plab_samples;
 771       for (uint i = 0; i < ParallelGCThreads; i++) {
 772         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples);
 773         if (vec == NULL) {
 774           warning("Failed to allocate survivor plab array");
 775           for (int j = i; j > 0; j--) {
 776             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array());
 777           }
 778           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
 779           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
 780           _survivor_plab_array = NULL;
 781           _survivor_chunk_array = NULL;
 782           _survivor_chunk_capacity = 0;
 783           break;
 784         } else {
 785           ChunkArray* cur =
 786             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 787                                                         max_plab_samples);
 788           assert(cur->end() == 0, "Should be 0");
 789           assert(cur->array() == vec, "Should be vec");
 790           assert(cur->capacity() == max_plab_samples, "Error");
 791         }
 792       }
 793     }
 794   }
 795   assert(   (   _survivor_plab_array  != NULL
 796              && _survivor_chunk_array != NULL)
 797          || (   _survivor_chunk_capacity == 0
 798              && _survivor_chunk_index == 0),
 799          "Error");
 800 
 801   // Choose what strong roots should be scanned depending on verification options
 802   // and perm gen collection mode.
 803   if (!CMSClassUnloadingEnabled) {
 804     // If class unloading is disabled we want to include all classes into the root set.
 805     add_root_scanning_option(SharedHeap::SO_AllClasses);
 806   } else {
 807     add_root_scanning_option(SharedHeap::SO_SystemClasses);
 808   }
 809 
 810   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 811   _gc_counters = new CollectorCounters("CMS", 1);
 812   _completed_initialization = true;
 813   _inter_sweep_timer.start();  // start of time
 814 #ifdef SPARC
 815   // Issue a stern warning, but allow use for experimentation and debugging.
 816   if (VM_Version::is_sun4v() && UseMemSetInBOT) {
 817     assert(!FLAG_IS_DEFAULT(UseMemSetInBOT), "Error");
 818     warning("Experimental flag -XX:+UseMemSetInBOT is known to cause instability"
 819             " on sun4v; please understand that you are using at your own risk!");
 820   }
 821 #endif
 822 }
 823 
 824 const char* ConcurrentMarkSweepGeneration::name() const {
 825   return "concurrent mark-sweep generation";
 826 }
 827 void ConcurrentMarkSweepGeneration::update_counters() {
 828   if (UsePerfData) {
 829     _space_counters->update_all();
 830     _gen_counters->update_all();
 831   }
 832 }
 833 
 834 // this is an optimized version of update_counters(). it takes the
 835 // used value as a parameter rather than computing it.
 836 //
 837 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 838   if (UsePerfData) {
 839     _space_counters->update_used(used);
 840     _space_counters->update_capacity();
 841     _gen_counters->update_all();
 842   }
 843 }
 844 
 845 void ConcurrentMarkSweepGeneration::print() const {
 846   Generation::print();
 847   cmsSpace()->print();
 848 }
 849 
 850 #ifndef PRODUCT
 851 void ConcurrentMarkSweepGeneration::print_statistics() {
 852   cmsSpace()->printFLCensus(0);
 853 }
 854 #endif
 855 
 856 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 857   GenCollectedHeap* gch = GenCollectedHeap::heap();
 858   if (PrintGCDetails) {
 859     if (Verbose) {
 860       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 861         level(), short_name(), s, used(), capacity());
 862     } else {
 863       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 864         level(), short_name(), s, used() / K, capacity() / K);
 865     }
 866   }
 867   if (Verbose) {
 868     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 869               gch->used(), gch->capacity());
 870   } else {
 871     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 872               gch->used() / K, gch->capacity() / K);
 873   }
 874 }
 875 
 876 size_t
 877 ConcurrentMarkSweepGeneration::contiguous_available() const {
 878   // dld proposes an improvement in precision here. If the committed
 879   // part of the space ends in a free block we should add that to
 880   // uncommitted size in the calculation below. Will make this
 881   // change later, staying with the approximation below for the
 882   // time being. -- ysr.
 883   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 884 }
 885 
 886 size_t
 887 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 888   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 889 }
 890 
 891 size_t ConcurrentMarkSweepGeneration::max_available() const {
 892   return free() + _virtual_space.uncommitted_size();
 893 }
 894 
 895 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 896   size_t available = max_available();
 897   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 898   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 899   if (Verbose && PrintGCDetails) {
 900     gclog_or_tty->print_cr(
 901       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 902       "max_promo("SIZE_FORMAT")",
 903       res? "":" not", available, res? ">=":"<",
 904       av_promo, max_promotion_in_bytes);
 905   }
 906   return res;
 907 }
 908 
 909 // At a promotion failure dump information on block layout in heap
 910 // (cms old generation).
 911 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 912   if (CMSDumpAtPromotionFailure) {
 913     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 914   }
 915 }
 916 
 917 CompactibleSpace*
 918 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 919   return _cmsSpace;
 920 }
 921 
 922 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 923   // Clear the promotion information.  These pointers can be adjusted
 924   // along with all the other pointers into the heap but
 925   // compaction is expected to be a rare event with
 926   // a heap using cms so don't do it without seeing the need.
 927   if (CollectedHeap::use_parallel_gc_threads()) {
 928     for (uint i = 0; i < ParallelGCThreads; i++) {
 929       _par_gc_thread_states[i]->promo.reset();
 930     }
 931   }
 932 }
 933 
 934 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 935   blk->do_space(_cmsSpace);
 936 }
 937 
 938 void ConcurrentMarkSweepGeneration::compute_new_size() {
 939   assert_locked_or_safepoint(Heap_lock);
 940 
 941   // If incremental collection failed, we just want to expand
 942   // to the limit.
 943   if (incremental_collection_failed()) {
 944     clear_incremental_collection_failed();
 945     grow_to_reserved();
 946     return;
 947   }
 948 
 949   size_t expand_bytes = 0;
 950   double free_percentage = ((double) free()) / capacity();
 951   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 952   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 953 
 954   // compute expansion delta needed for reaching desired free percentage
 955   if (free_percentage < desired_free_percentage) {
 956     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 957     assert(desired_capacity >= capacity(), "invalid expansion size");
 958     expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 959   }
 960   if (expand_bytes > 0) {
 961     if (PrintGCDetails && Verbose) {
 962       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 963       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 964       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 965       gclog_or_tty->print_cr("  Desired free fraction %f",
 966         desired_free_percentage);
 967       gclog_or_tty->print_cr("  Maximum free fraction %f",
 968         maximum_free_percentage);
 969       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
 970       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 971         desired_capacity/1000);
 972       int prev_level = level() - 1;
 973       if (prev_level >= 0) {
 974         size_t prev_size = 0;
 975         GenCollectedHeap* gch = GenCollectedHeap::heap();
 976         Generation* prev_gen = gch->_gens[prev_level];
 977         prev_size = prev_gen->capacity();
 978           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 979                                  prev_size/1000);
 980       }
 981       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 982         unsafe_max_alloc_nogc()/1000);
 983       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 984         contiguous_available()/1000);
 985       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 986         expand_bytes);
 987     }
 988     // safe if expansion fails
 989     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 990     if (PrintGCDetails && Verbose) {
 991       gclog_or_tty->print_cr("  Expanded free fraction %f",
 992         ((double) free()) / capacity());
 993     }
 994   }
 995 }
 996 
 997 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 998   return cmsSpace()->freelistLock();
 999 }
1000 
1001 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
1002                                                   bool   tlab) {
1003   CMSSynchronousYieldRequest yr;
1004   MutexLockerEx x(freelistLock(),
1005                   Mutex::_no_safepoint_check_flag);
1006   return have_lock_and_allocate(size, tlab);
1007 }
1008 
1009 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
1010                                                   bool   tlab /* ignored */) {
1011   assert_lock_strong(freelistLock());
1012   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1013   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1014   // Allocate the object live (grey) if the background collector has
1015   // started marking. This is necessary because the marker may
1016   // have passed this address and consequently this object will
1017   // not otherwise be greyed and would be incorrectly swept up.
1018   // Note that if this object contains references, the writing
1019   // of those references will dirty the card containing this object
1020   // allowing the object to be blackened (and its references scanned)
1021   // either during a preclean phase or at the final checkpoint.
1022   if (res != NULL) {
1023     // We may block here with an uninitialized object with
1024     // its mark-bit or P-bits not yet set. Such objects need
1025     // to be safely navigable by block_start().
1026     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1027     assert(!((FreeChunk*)res)->isFree(), "Error, block will look free but show wrong size");
1028     collector()->direct_allocated(res, adjustedSize);
1029     _direct_allocated_words += adjustedSize;
1030     // allocation counters
1031     NOT_PRODUCT(
1032       _numObjectsAllocated++;
1033       _numWordsAllocated += (int)adjustedSize;
1034     )
1035   }
1036   return res;
1037 }
1038 
1039 // In the case of direct allocation by mutators in a generation that
1040 // is being concurrently collected, the object must be allocated
1041 // live (grey) if the background collector has started marking.
1042 // This is necessary because the marker may
1043 // have passed this address and consequently this object will
1044 // not otherwise be greyed and would be incorrectly swept up.
1045 // Note that if this object contains references, the writing
1046 // of those references will dirty the card containing this object
1047 // allowing the object to be blackened (and its references scanned)
1048 // either during a preclean phase or at the final checkpoint.
1049 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1050   assert(_markBitMap.covers(start, size), "Out of bounds");
1051   if (_collectorState >= Marking) {
1052     MutexLockerEx y(_markBitMap.lock(),
1053                     Mutex::_no_safepoint_check_flag);
1054     // [see comments preceding SweepClosure::do_blk() below for details]
1055     // 1. need to mark the object as live so it isn't collected
1056     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1057     // 3. need to mark the end of the object so marking, precleaning or sweeping
1058     //    can skip over uninitialized or unparsable objects. An allocated
1059     //    object is considered uninitialized for our purposes as long as
1060     //    its klass word is NULL. (Unparsable objects are those which are
1061     //    initialized in the sense just described, but whose sizes can still
1062     //    not be correctly determined. Note that the class of unparsable objects
1063     //    can only occur in the perm gen. All old gen objects are parsable
1064     //    as soon as they are initialized.)
1065     _markBitMap.mark(start);          // object is live
1066     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1067     _markBitMap.mark(start + size - 1);
1068                                       // mark end of object
1069   }
1070   // check that oop looks uninitialized
1071   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1072 }
1073 
1074 void CMSCollector::promoted(bool par, HeapWord* start,
1075                             bool is_obj_array, size_t obj_size) {
1076   assert(_markBitMap.covers(start), "Out of bounds");
1077   // See comment in direct_allocated() about when objects should
1078   // be allocated live.
1079   if (_collectorState >= Marking) {
1080     // we already hold the marking bit map lock, taken in
1081     // the prologue
1082     if (par) {
1083       _markBitMap.par_mark(start);
1084     } else {
1085       _markBitMap.mark(start);
1086     }
1087     // We don't need to mark the object as uninitialized (as
1088     // in direct_allocated above) because this is being done with the
1089     // world stopped and the object will be initialized by the
1090     // time the marking, precleaning or sweeping get to look at it.
1091     // But see the code for copying objects into the CMS generation,
1092     // where we need to ensure that concurrent readers of the
1093     // block offset table are able to safely navigate a block that
1094     // is in flux from being free to being allocated (and in
1095     // transition while being copied into) and subsequently
1096     // becoming a bona-fide object when the copy/promotion is complete.
1097     assert(SafepointSynchronize::is_at_safepoint(),
1098            "expect promotion only at safepoints");
1099 
1100     if (_collectorState < Sweeping) {
1101       // Mark the appropriate cards in the modUnionTable, so that
1102       // this object gets scanned before the sweep. If this is
1103       // not done, CMS generation references in the object might
1104       // not get marked.
1105       // For the case of arrays, which are otherwise precisely
1106       // marked, we need to dirty the entire array, not just its head.
1107       if (is_obj_array) {
1108         // The [par_]mark_range() method expects mr.end() below to
1109         // be aligned to the granularity of a bit's representation
1110         // in the heap. In the case of the MUT below, that's a
1111         // card size.
1112         MemRegion mr(start,
1113                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1114                         CardTableModRefBS::card_size /* bytes */));
1115         if (par) {
1116           _modUnionTable.par_mark_range(mr);
1117         } else {
1118           _modUnionTable.mark_range(mr);
1119         }
1120       } else {  // not an obj array; we can just mark the head
1121         if (par) {
1122           _modUnionTable.par_mark(start);
1123         } else {
1124           _modUnionTable.mark(start);
1125         }
1126       }
1127     }
1128   }
1129 }
1130 
1131 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1132 {
1133   size_t delta = pointer_delta(addr, space->bottom());
1134   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1135 }
1136 
1137 void CMSCollector::icms_update_allocation_limits()
1138 {
1139   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
1140   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
1141 
1142   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1143   if (CMSTraceIncrementalPacing) {
1144     stats().print();
1145   }
1146 
1147   assert(duty_cycle <= 100, "invalid duty cycle");
1148   if (duty_cycle != 0) {
1149     // The duty_cycle is a percentage between 0 and 100; convert to words and
1150     // then compute the offset from the endpoints of the space.
1151     size_t free_words = eden->free() / HeapWordSize;
1152     double free_words_dbl = (double)free_words;
1153     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1154     size_t offset_words = (free_words - duty_cycle_words) / 2;
1155 
1156     _icms_start_limit = eden->top() + offset_words;
1157     _icms_stop_limit = eden->end() - offset_words;
1158 
1159     // The limits may be adjusted (shifted to the right) by
1160     // CMSIncrementalOffset, to allow the application more mutator time after a
1161     // young gen gc (when all mutators were stopped) and before CMS starts and
1162     // takes away one or more cpus.
1163     if (CMSIncrementalOffset != 0) {
1164       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1165       size_t adjustment = (size_t)adjustment_dbl;
1166       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1167       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1168         _icms_start_limit += adjustment;
1169         _icms_stop_limit = tmp_stop;
1170       }
1171     }
1172   }
1173   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1174     _icms_start_limit = _icms_stop_limit = eden->end();
1175   }
1176 
1177   // Install the new start limit.
1178   eden->set_soft_end(_icms_start_limit);
1179 
1180   if (CMSTraceIncrementalMode) {
1181     gclog_or_tty->print(" icms alloc limits:  "
1182                            PTR_FORMAT "," PTR_FORMAT
1183                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1184                            _icms_start_limit, _icms_stop_limit,
1185                            percent_of_space(eden, _icms_start_limit),
1186                            percent_of_space(eden, _icms_stop_limit));
1187     if (Verbose) {
1188       gclog_or_tty->print("eden:  ");
1189       eden->print_on(gclog_or_tty);
1190     }
1191   }
1192 }
1193 
1194 // Any changes here should try to maintain the invariant
1195 // that if this method is called with _icms_start_limit
1196 // and _icms_stop_limit both NULL, then it should return NULL
1197 // and not notify the icms thread.
1198 HeapWord*
1199 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1200                                        size_t word_size)
1201 {
1202   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1203   // nop.
1204   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1205     if (top <= _icms_start_limit) {
1206       if (CMSTraceIncrementalMode) {
1207         space->print_on(gclog_or_tty);
1208         gclog_or_tty->stamp();
1209         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1210                                ", new limit=" PTR_FORMAT
1211                                " (" SIZE_FORMAT "%%)",
1212                                top, _icms_stop_limit,
1213                                percent_of_space(space, _icms_stop_limit));
1214       }
1215       ConcurrentMarkSweepThread::start_icms();
1216       assert(top < _icms_stop_limit, "Tautology");
1217       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1218         return _icms_stop_limit;
1219       }
1220 
1221       // The allocation will cross both the _start and _stop limits, so do the
1222       // stop notification also and return end().
1223       if (CMSTraceIncrementalMode) {
1224         space->print_on(gclog_or_tty);
1225         gclog_or_tty->stamp();
1226         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1227                                ", new limit=" PTR_FORMAT
1228                                " (" SIZE_FORMAT "%%)",
1229                                top, space->end(),
1230                                percent_of_space(space, space->end()));
1231       }
1232       ConcurrentMarkSweepThread::stop_icms();
1233       return space->end();
1234     }
1235 
1236     if (top <= _icms_stop_limit) {
1237       if (CMSTraceIncrementalMode) {
1238         space->print_on(gclog_or_tty);
1239         gclog_or_tty->stamp();
1240         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1241                                ", new limit=" PTR_FORMAT
1242                                " (" SIZE_FORMAT "%%)",
1243                                top, space->end(),
1244                                percent_of_space(space, space->end()));
1245       }
1246       ConcurrentMarkSweepThread::stop_icms();
1247       return space->end();
1248     }
1249 
1250     if (CMSTraceIncrementalMode) {
1251       space->print_on(gclog_or_tty);
1252       gclog_or_tty->stamp();
1253       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1254                              ", new limit=" PTR_FORMAT,
1255                              top, NULL);
1256     }
1257   }
1258 
1259   return NULL;
1260 }
1261 
1262 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1263   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1264   // allocate, copy and if necessary update promoinfo --
1265   // delegate to underlying space.
1266   assert_lock_strong(freelistLock());
1267 
1268 #ifndef PRODUCT
1269   if (Universe::heap()->promotion_should_fail()) {
1270     return NULL;
1271   }
1272 #endif  // #ifndef PRODUCT
1273 
1274   oop res = _cmsSpace->promote(obj, obj_size);
1275   if (res == NULL) {
1276     // expand and retry
1277     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1278     expand(s*HeapWordSize, MinHeapDeltaBytes,
1279       CMSExpansionCause::_satisfy_promotion);
1280     // Since there's currently no next generation, we don't try to promote
1281     // into a more senior generation.
1282     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1283                                "is made to pass on a possibly failing "
1284                                "promotion to next generation");
1285     res = _cmsSpace->promote(obj, obj_size);
1286   }
1287   if (res != NULL) {
1288     // See comment in allocate() about when objects should
1289     // be allocated live.
1290     assert(obj->is_oop(), "Will dereference klass pointer below");
1291     collector()->promoted(false,           // Not parallel
1292                           (HeapWord*)res, obj->is_objArray(), obj_size);
1293     // promotion counters
1294     NOT_PRODUCT(
1295       _numObjectsPromoted++;
1296       _numWordsPromoted +=
1297         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1298     )
1299   }
1300   return res;
1301 }
1302 
1303 
1304 HeapWord*
1305 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1306                                              HeapWord* top,
1307                                              size_t word_sz)
1308 {
1309   return collector()->allocation_limit_reached(space, top, word_sz);
1310 }
1311 
1312 // IMPORTANT: Notes on object size recognition in CMS.
1313 // ---------------------------------------------------
1314 // A block of storage in the CMS generation is always in
1315 // one of three states. A free block (FREE), an allocated
1316 // object (OBJECT) whose size() method reports the correct size,
1317 // and an intermediate state (TRANSIENT) in which its size cannot
1318 // be accurately determined.
1319 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1320 // -----------------------------------------------------
1321 // FREE:      klass_word & 1 == 1; mark_word holds block size
1322 //
1323 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1324 //            obj->size() computes correct size
1325 //            [Perm Gen objects needs to be "parsable" before they can be navigated]
1326 //
1327 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1328 //
1329 // STATE IDENTIFICATION: (64 bit+COOPS)
1330 // ------------------------------------
1331 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1332 //
1333 // OBJECT:    klass_word installed; klass_word != 0;
1334 //            obj->size() computes correct size
1335 //            [Perm Gen comment above continues to hold]
1336 //
1337 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1338 //
1339 //
1340 // STATE TRANSITION DIAGRAM
1341 //
1342 //        mut / parnew                     mut  /  parnew
1343 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1344 //  ^                                                                   |
1345 //  |------------------------ DEAD <------------------------------------|
1346 //         sweep                            mut
1347 //
1348 // While a block is in TRANSIENT state its size cannot be determined
1349 // so readers will either need to come back later or stall until
1350 // the size can be determined. Note that for the case of direct
1351 // allocation, P-bits, when available, may be used to determine the
1352 // size of an object that may not yet have been initialized.
1353 
1354 // Things to support parallel young-gen collection.
1355 oop
1356 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1357                                            oop old, markOop m,
1358                                            size_t word_sz) {
1359 #ifndef PRODUCT
1360   if (Universe::heap()->promotion_should_fail()) {
1361     return NULL;
1362   }
1363 #endif  // #ifndef PRODUCT
1364 
1365   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1366   PromotionInfo* promoInfo = &ps->promo;
1367   // if we are tracking promotions, then first ensure space for
1368   // promotion (including spooling space for saving header if necessary).
1369   // then allocate and copy, then track promoted info if needed.
1370   // When tracking (see PromotionInfo::track()), the mark word may
1371   // be displaced and in this case restoration of the mark word
1372   // occurs in the (oop_since_save_marks_)iterate phase.
1373   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1374     // Out of space for allocating spooling buffers;
1375     // try expanding and allocating spooling buffers.
1376     if (!expand_and_ensure_spooling_space(promoInfo)) {
1377       return NULL;
1378     }
1379   }
1380   assert(promoInfo->has_spooling_space(), "Control point invariant");
1381   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1382   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1383   if (obj_ptr == NULL) {
1384      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1385      if (obj_ptr == NULL) {
1386        return NULL;
1387      }
1388   }
1389   oop obj = oop(obj_ptr);
1390   OrderAccess::storestore();
1391   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1392   assert(!((FreeChunk*)obj_ptr)->isFree(), "Error, block will look free but show wrong size");
1393   // IMPORTANT: See note on object initialization for CMS above.
1394   // Otherwise, copy the object.  Here we must be careful to insert the
1395   // klass pointer last, since this marks the block as an allocated object.
1396   // Except with compressed oops it's the mark word.
1397   HeapWord* old_ptr = (HeapWord*)old;
1398   // Restore the mark word copied above.
1399   obj->set_mark(m);
1400   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1401   assert(!((FreeChunk*)obj_ptr)->isFree(), "Error, block will look free but show wrong size");
1402   OrderAccess::storestore();
1403 
1404   if (UseCompressedOops) {
1405     // Copy gap missed by (aligned) header size calculation below
1406     obj->set_klass_gap(old->klass_gap());
1407   }
1408   if (word_sz > (size_t)oopDesc::header_size()) {
1409     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1410                                  obj_ptr + oopDesc::header_size(),
1411                                  word_sz - oopDesc::header_size());
1412   }
1413 
1414   // Now we can track the promoted object, if necessary.  We take care
1415   // to delay the transition from uninitialized to full object
1416   // (i.e., insertion of klass pointer) until after, so that it
1417   // atomically becomes a promoted object.
1418   if (promoInfo->tracking()) {
1419     promoInfo->track((PromotedObject*)obj, old->klass());
1420   }
1421   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1422   assert(!((FreeChunk*)obj_ptr)->isFree(), "Error, block will look free but show wrong size");
1423   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1424 
1425   // Finally, install the klass pointer (this should be volatile).
1426   OrderAccess::storestore();
1427   obj->set_klass(old->klass());
1428   // We should now be able to calculate the right size for this object
1429   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1430 
1431   collector()->promoted(true,          // parallel
1432                         obj_ptr, old->is_objArray(), word_sz);
1433 
1434   NOT_PRODUCT(
1435     Atomic::inc_ptr(&_numObjectsPromoted);
1436     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1437   )
1438 
1439   return obj;
1440 }
1441 
1442 void
1443 ConcurrentMarkSweepGeneration::
1444 par_promote_alloc_undo(int thread_num,
1445                        HeapWord* obj, size_t word_sz) {
1446   // CMS does not support promotion undo.
1447   ShouldNotReachHere();
1448 }
1449 
1450 void
1451 ConcurrentMarkSweepGeneration::
1452 par_promote_alloc_done(int thread_num) {
1453   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1454   ps->lab.retire(thread_num);
1455 }
1456 
1457 void
1458 ConcurrentMarkSweepGeneration::
1459 par_oop_since_save_marks_iterate_done(int thread_num) {
1460   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1461   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1462   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1463 }
1464 
1465 // XXXPERM
1466 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1467                                                    size_t size,
1468                                                    bool   tlab)
1469 {
1470   // We allow a STW collection only if a full
1471   // collection was requested.
1472   return full || should_allocate(size, tlab); // FIX ME !!!
1473   // This and promotion failure handling are connected at the
1474   // hip and should be fixed by untying them.
1475 }
1476 
1477 bool CMSCollector::shouldConcurrentCollect() {
1478   if (_full_gc_requested) {
1479     if (Verbose && PrintGCDetails) {
1480       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1481                              " gc request (or gc_locker)");
1482     }
1483     return true;
1484   }
1485 
1486   // For debugging purposes, change the type of collection.
1487   // If the rotation is not on the concurrent collection
1488   // type, don't start a concurrent collection.
1489   NOT_PRODUCT(
1490     if (RotateCMSCollectionTypes &&
1491         (_cmsGen->debug_collection_type() !=
1492           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1493       assert(_cmsGen->debug_collection_type() !=
1494         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1495         "Bad cms collection type");
1496       return false;
1497     }
1498   )
1499 
1500   FreelistLocker x(this);
1501   // ------------------------------------------------------------------
1502   // Print out lots of information which affects the initiation of
1503   // a collection.
1504   if (PrintCMSInitiationStatistics && stats().valid()) {
1505     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1506     gclog_or_tty->stamp();
1507     gclog_or_tty->print_cr("");
1508     stats().print_on(gclog_or_tty);
1509     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1510       stats().time_until_cms_gen_full());
1511     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1512     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1513                            _cmsGen->contiguous_available());
1514     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1515     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1516     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1517     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1518     gclog_or_tty->print_cr("initiatingPermOccupancy=%3.7f", _permGen->initiating_occupancy());
1519   }
1520   // ------------------------------------------------------------------
1521 
1522   // If the estimated time to complete a cms collection (cms_duration())
1523   // is less than the estimated time remaining until the cms generation
1524   // is full, start a collection.
1525   if (!UseCMSInitiatingOccupancyOnly) {
1526     if (stats().valid()) {
1527       if (stats().time_until_cms_start() == 0.0) {
1528         return true;
1529       }
1530     } else {
1531       // We want to conservatively collect somewhat early in order
1532       // to try and "bootstrap" our CMS/promotion statistics;
1533       // this branch will not fire after the first successful CMS
1534       // collection because the stats should then be valid.
1535       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1536         if (Verbose && PrintGCDetails) {
1537           gclog_or_tty->print_cr(
1538             " CMSCollector: collect for bootstrapping statistics:"
1539             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1540             _bootstrap_occupancy);
1541         }
1542         return true;
1543       }
1544     }
1545   }
1546 
1547   // Otherwise, we start a collection cycle if either the perm gen or
1548   // old gen want a collection cycle started. Each may use
1549   // an appropriate criterion for making this decision.
1550   // XXX We need to make sure that the gen expansion
1551   // criterion dovetails well with this. XXX NEED TO FIX THIS
1552   if (_cmsGen->should_concurrent_collect()) {
1553     if (Verbose && PrintGCDetails) {
1554       gclog_or_tty->print_cr("CMS old gen initiated");
1555     }
1556     return true;
1557   }
1558 
1559   // We start a collection if we believe an incremental collection may fail;
1560   // this is not likely to be productive in practice because it's probably too
1561   // late anyway.
1562   GenCollectedHeap* gch = GenCollectedHeap::heap();
1563   assert(gch->collector_policy()->is_two_generation_policy(),
1564          "You may want to check the correctness of the following");
1565   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1566     if (Verbose && PrintGCDetails) {
1567       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1568     }
1569     return true;
1570   }
1571 
1572   if (CMSClassUnloadingEnabled && _permGen->should_concurrent_collect()) {
1573     bool res = update_should_unload_classes();
1574     if (res) {
1575       if (Verbose && PrintGCDetails) {
1576         gclog_or_tty->print_cr("CMS perm gen initiated");
1577       }
1578       return true;
1579     }
1580   }
1581   return false;
1582 }
1583 
1584 // Clear _expansion_cause fields of constituent generations
1585 void CMSCollector::clear_expansion_cause() {
1586   _cmsGen->clear_expansion_cause();
1587   _permGen->clear_expansion_cause();
1588 }
1589 
1590 // We should be conservative in starting a collection cycle.  To
1591 // start too eagerly runs the risk of collecting too often in the
1592 // extreme.  To collect too rarely falls back on full collections,
1593 // which works, even if not optimum in terms of concurrent work.
1594 // As a work around for too eagerly collecting, use the flag
1595 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1596 // giving the user an easily understandable way of controlling the
1597 // collections.
1598 // We want to start a new collection cycle if any of the following
1599 // conditions hold:
1600 // . our current occupancy exceeds the configured initiating occupancy
1601 //   for this generation, or
1602 // . we recently needed to expand this space and have not, since that
1603 //   expansion, done a collection of this generation, or
1604 // . the underlying space believes that it may be a good idea to initiate
1605 //   a concurrent collection (this may be based on criteria such as the
1606 //   following: the space uses linear allocation and linear allocation is
1607 //   going to fail, or there is believed to be excessive fragmentation in
1608 //   the generation, etc... or ...
1609 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1610 //   the case of the old generation, not the perm generation; see CR 6543076):
1611 //   we may be approaching a point at which allocation requests may fail because
1612 //   we will be out of sufficient free space given allocation rate estimates.]
1613 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1614 
1615   assert_lock_strong(freelistLock());
1616   if (occupancy() > initiating_occupancy()) {
1617     if (PrintGCDetails && Verbose) {
1618       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1619         short_name(), occupancy(), initiating_occupancy());
1620     }
1621     return true;
1622   }
1623   if (UseCMSInitiatingOccupancyOnly) {
1624     return false;
1625   }
1626   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1627     if (PrintGCDetails && Verbose) {
1628       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1629         short_name());
1630     }
1631     return true;
1632   }
1633   if (_cmsSpace->should_concurrent_collect()) {
1634     if (PrintGCDetails && Verbose) {
1635       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1636         short_name());
1637     }
1638     return true;
1639   }
1640   return false;
1641 }
1642 
1643 void ConcurrentMarkSweepGeneration::collect(bool   full,
1644                                             bool   clear_all_soft_refs,
1645                                             size_t size,
1646                                             bool   tlab)
1647 {
1648   collector()->collect(full, clear_all_soft_refs, size, tlab);
1649 }
1650 
1651 void CMSCollector::collect(bool   full,
1652                            bool   clear_all_soft_refs,
1653                            size_t size,
1654                            bool   tlab)
1655 {
1656   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1657     // For debugging purposes skip the collection if the state
1658     // is not currently idle
1659     if (TraceCMSState) {
1660       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1661         Thread::current(), full, _collectorState);
1662     }
1663     return;
1664   }
1665 
1666   // The following "if" branch is present for defensive reasons.
1667   // In the current uses of this interface, it can be replaced with:
1668   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1669   // But I am not placing that assert here to allow future
1670   // generality in invoking this interface.
1671   if (GC_locker::is_active()) {
1672     // A consistency test for GC_locker
1673     assert(GC_locker::needs_gc(), "Should have been set already");
1674     // Skip this foreground collection, instead
1675     // expanding the heap if necessary.
1676     // Need the free list locks for the call to free() in compute_new_size()
1677     compute_new_size();
1678     return;
1679   }
1680   acquire_control_and_collect(full, clear_all_soft_refs);
1681   _full_gcs_since_conc_gc++;
1682 
1683 }
1684 
1685 void CMSCollector::request_full_gc(unsigned int full_gc_count) {
1686   GenCollectedHeap* gch = GenCollectedHeap::heap();
1687   unsigned int gc_count = gch->total_full_collections();
1688   if (gc_count == full_gc_count) {
1689     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1690     _full_gc_requested = true;
1691     CGC_lock->notify();   // nudge CMS thread
1692   }
1693 }
1694 
1695 
1696 // The foreground and background collectors need to coordinate in order
1697 // to make sure that they do not mutually interfere with CMS collections.
1698 // When a background collection is active,
1699 // the foreground collector may need to take over (preempt) and
1700 // synchronously complete an ongoing collection. Depending on the
1701 // frequency of the background collections and the heap usage
1702 // of the application, this preemption can be seldom or frequent.
1703 // There are only certain
1704 // points in the background collection that the "collection-baton"
1705 // can be passed to the foreground collector.
1706 //
1707 // The foreground collector will wait for the baton before
1708 // starting any part of the collection.  The foreground collector
1709 // will only wait at one location.
1710 //
1711 // The background collector will yield the baton before starting a new
1712 // phase of the collection (e.g., before initial marking, marking from roots,
1713 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1714 // of the loop which switches the phases. The background collector does some
1715 // of the phases (initial mark, final re-mark) with the world stopped.
1716 // Because of locking involved in stopping the world,
1717 // the foreground collector should not block waiting for the background
1718 // collector when it is doing a stop-the-world phase.  The background
1719 // collector will yield the baton at an additional point just before
1720 // it enters a stop-the-world phase.  Once the world is stopped, the
1721 // background collector checks the phase of the collection.  If the
1722 // phase has not changed, it proceeds with the collection.  If the
1723 // phase has changed, it skips that phase of the collection.  See
1724 // the comments on the use of the Heap_lock in collect_in_background().
1725 //
1726 // Variable used in baton passing.
1727 //   _foregroundGCIsActive - Set to true by the foreground collector when
1728 //      it wants the baton.  The foreground clears it when it has finished
1729 //      the collection.
1730 //   _foregroundGCShouldWait - Set to true by the background collector
1731 //        when it is running.  The foreground collector waits while
1732 //      _foregroundGCShouldWait is true.
1733 //  CGC_lock - monitor used to protect access to the above variables
1734 //      and to notify the foreground and background collectors.
1735 //  _collectorState - current state of the CMS collection.
1736 //
1737 // The foreground collector
1738 //   acquires the CGC_lock
1739 //   sets _foregroundGCIsActive
1740 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1741 //     various locks acquired in preparation for the collection
1742 //     are released so as not to block the background collector
1743 //     that is in the midst of a collection
1744 //   proceeds with the collection
1745 //   clears _foregroundGCIsActive
1746 //   returns
1747 //
1748 // The background collector in a loop iterating on the phases of the
1749 //      collection
1750 //   acquires the CGC_lock
1751 //   sets _foregroundGCShouldWait
1752 //   if _foregroundGCIsActive is set
1753 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1754 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1755 //     and exits the loop.
1756 //   otherwise
1757 //     proceed with that phase of the collection
1758 //     if the phase is a stop-the-world phase,
1759 //       yield the baton once more just before enqueueing
1760 //       the stop-world CMS operation (executed by the VM thread).
1761 //   returns after all phases of the collection are done
1762 //
1763 
1764 void CMSCollector::acquire_control_and_collect(bool full,
1765         bool clear_all_soft_refs) {
1766   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1767   assert(!Thread::current()->is_ConcurrentGC_thread(),
1768          "shouldn't try to acquire control from self!");
1769 
1770   // Start the protocol for acquiring control of the
1771   // collection from the background collector (aka CMS thread).
1772   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1773          "VM thread should have CMS token");
1774   // Remember the possibly interrupted state of an ongoing
1775   // concurrent collection
1776   CollectorState first_state = _collectorState;
1777 
1778   // Signal to a possibly ongoing concurrent collection that
1779   // we want to do a foreground collection.
1780   _foregroundGCIsActive = true;
1781 
1782   // Disable incremental mode during a foreground collection.
1783   ICMSDisabler icms_disabler;
1784 
1785   // release locks and wait for a notify from the background collector
1786   // releasing the locks in only necessary for phases which
1787   // do yields to improve the granularity of the collection.
1788   assert_lock_strong(bitMapLock());
1789   // We need to lock the Free list lock for the space that we are
1790   // currently collecting.
1791   assert(haveFreelistLocks(), "Must be holding free list locks");
1792   bitMapLock()->unlock();
1793   releaseFreelistLocks();
1794   {
1795     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1796     if (_foregroundGCShouldWait) {
1797       // We are going to be waiting for action for the CMS thread;
1798       // it had better not be gone (for instance at shutdown)!
1799       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1800              "CMS thread must be running");
1801       // Wait here until the background collector gives us the go-ahead
1802       ConcurrentMarkSweepThread::clear_CMS_flag(
1803         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1804       // Get a possibly blocked CMS thread going:
1805       //   Note that we set _foregroundGCIsActive true above,
1806       //   without protection of the CGC_lock.
1807       CGC_lock->notify();
1808       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1809              "Possible deadlock");
1810       while (_foregroundGCShouldWait) {
1811         // wait for notification
1812         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1813         // Possibility of delay/starvation here, since CMS token does
1814         // not know to give priority to VM thread? Actually, i think
1815         // there wouldn't be any delay/starvation, but the proof of
1816         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1817       }
1818       ConcurrentMarkSweepThread::set_CMS_flag(
1819         ConcurrentMarkSweepThread::CMS_vm_has_token);
1820     }
1821   }
1822   // The CMS_token is already held.  Get back the other locks.
1823   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1824          "VM thread should have CMS token");
1825   getFreelistLocks();
1826   bitMapLock()->lock_without_safepoint_check();
1827   if (TraceCMSState) {
1828     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1829       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1830     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1831   }
1832 
1833   // Check if we need to do a compaction, or if not, whether
1834   // we need to start the mark-sweep from scratch.
1835   bool should_compact    = false;
1836   bool should_start_over = false;
1837   decide_foreground_collection_type(clear_all_soft_refs,
1838     &should_compact, &should_start_over);
1839 
1840 NOT_PRODUCT(
1841   if (RotateCMSCollectionTypes) {
1842     if (_cmsGen->debug_collection_type() ==
1843         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1844       should_compact = true;
1845     } else if (_cmsGen->debug_collection_type() ==
1846                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1847       should_compact = false;
1848     }
1849   }
1850 )
1851 
1852   if (PrintGCDetails && first_state > Idling) {
1853     GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1854     if (GCCause::is_user_requested_gc(cause) ||
1855         GCCause::is_serviceability_requested_gc(cause)) {
1856       gclog_or_tty->print(" (concurrent mode interrupted)");
1857     } else {
1858       gclog_or_tty->print(" (concurrent mode failure)");
1859     }
1860   }
1861 
1862   if (should_compact) {
1863     // If the collection is being acquired from the background
1864     // collector, there may be references on the discovered
1865     // references lists that have NULL referents (being those
1866     // that were concurrently cleared by a mutator) or
1867     // that are no longer active (having been enqueued concurrently
1868     // by the mutator).
1869     // Scrub the list of those references because Mark-Sweep-Compact
1870     // code assumes referents are not NULL and that all discovered
1871     // Reference objects are active.
1872     ref_processor()->clean_up_discovered_references();
1873 
1874     do_compaction_work(clear_all_soft_refs);
1875 
1876     // Has the GC time limit been exceeded?
1877     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1878     size_t max_eden_size = young_gen->max_capacity() -
1879                            young_gen->to()->capacity() -
1880                            young_gen->from()->capacity();
1881     GenCollectedHeap* gch = GenCollectedHeap::heap();
1882     GCCause::Cause gc_cause = gch->gc_cause();
1883     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1884                                            young_gen->eden()->used(),
1885                                            _cmsGen->max_capacity(),
1886                                            max_eden_size,
1887                                            full,
1888                                            gc_cause,
1889                                            gch->collector_policy());
1890   } else {
1891     do_mark_sweep_work(clear_all_soft_refs, first_state,
1892       should_start_over);
1893   }
1894   // Reset the expansion cause, now that we just completed
1895   // a collection cycle.
1896   clear_expansion_cause();
1897   _foregroundGCIsActive = false;
1898   return;
1899 }
1900 
1901 // Resize the perm generation and the tenured generation
1902 // after obtaining the free list locks for the
1903 // two generations.
1904 void CMSCollector::compute_new_size() {
1905   assert_locked_or_safepoint(Heap_lock);
1906   FreelistLocker z(this);
1907   _permGen->compute_new_size();
1908   _cmsGen->compute_new_size();
1909 }
1910 
1911 // A work method used by foreground collection to determine
1912 // what type of collection (compacting or not, continuing or fresh)
1913 // it should do.
1914 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1915 // and CMSCompactWhenClearAllSoftRefs the default in the future
1916 // and do away with the flags after a suitable period.
1917 void CMSCollector::decide_foreground_collection_type(
1918   bool clear_all_soft_refs, bool* should_compact,
1919   bool* should_start_over) {
1920   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1921   // flag is set, and we have either requested a System.gc() or
1922   // the number of full gc's since the last concurrent cycle
1923   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1924   // or if an incremental collection has failed
1925   GenCollectedHeap* gch = GenCollectedHeap::heap();
1926   assert(gch->collector_policy()->is_two_generation_policy(),
1927          "You may want to check the correctness of the following");
1928   // Inform cms gen if this was due to partial collection failing.
1929   // The CMS gen may use this fact to determine its expansion policy.
1930   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1931     assert(!_cmsGen->incremental_collection_failed(),
1932            "Should have been noticed, reacted to and cleared");
1933     _cmsGen->set_incremental_collection_failed();
1934   }
1935   *should_compact =
1936     UseCMSCompactAtFullCollection &&
1937     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1938      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1939      gch->incremental_collection_will_fail(true /* consult_young */));
1940   *should_start_over = false;
1941   if (clear_all_soft_refs && !*should_compact) {
1942     // We are about to do a last ditch collection attempt
1943     // so it would normally make sense to do a compaction
1944     // to reclaim as much space as possible.
1945     if (CMSCompactWhenClearAllSoftRefs) {
1946       // Default: The rationale is that in this case either
1947       // we are past the final marking phase, in which case
1948       // we'd have to start over, or so little has been done
1949       // that there's little point in saving that work. Compaction
1950       // appears to be the sensible choice in either case.
1951       *should_compact = true;
1952     } else {
1953       // We have been asked to clear all soft refs, but not to
1954       // compact. Make sure that we aren't past the final checkpoint
1955       // phase, for that is where we process soft refs. If we are already
1956       // past that phase, we'll need to redo the refs discovery phase and
1957       // if necessary clear soft refs that weren't previously
1958       // cleared. We do so by remembering the phase in which
1959       // we came in, and if we are past the refs processing
1960       // phase, we'll choose to just redo the mark-sweep
1961       // collection from scratch.
1962       if (_collectorState > FinalMarking) {
1963         // We are past the refs processing phase;
1964         // start over and do a fresh synchronous CMS cycle
1965         _collectorState = Resetting; // skip to reset to start new cycle
1966         reset(false /* == !asynch */);
1967         *should_start_over = true;
1968       } // else we can continue a possibly ongoing current cycle
1969     }
1970   }
1971 }
1972 
1973 // A work method used by the foreground collector to do
1974 // a mark-sweep-compact.
1975 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1976   GenCollectedHeap* gch = GenCollectedHeap::heap();
1977   TraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, gclog_or_tty);
1978   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
1979     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
1980       "collections passed to foreground collector", _full_gcs_since_conc_gc);
1981   }
1982 
1983   // Sample collection interval time and reset for collection pause.
1984   if (UseAdaptiveSizePolicy) {
1985     size_policy()->msc_collection_begin();
1986   }
1987 
1988   // Temporarily widen the span of the weak reference processing to
1989   // the entire heap.
1990   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1991   ReferenceProcessorSpanMutator x(ref_processor(), new_span);
1992 
1993   // Temporarily, clear the "is_alive_non_header" field of the
1994   // reference processor.
1995   ReferenceProcessorIsAliveMutator y(ref_processor(), NULL);
1996 
1997   // Temporarily make reference _processing_ single threaded (non-MT).
1998   ReferenceProcessorMTProcMutator z(ref_processor(), false);
1999 
2000   // Temporarily make refs discovery atomic
2001   ReferenceProcessorAtomicMutator w(ref_processor(), true);
2002 
2003   ref_processor()->set_enqueuing_is_done(false);
2004   ref_processor()->enable_discovery();
2005   ref_processor()->setup_policy(clear_all_soft_refs);
2006   // If an asynchronous collection finishes, the _modUnionTable is
2007   // all clear.  If we are assuming the collection from an asynchronous
2008   // collection, clear the _modUnionTable.
2009   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
2010     "_modUnionTable should be clear if the baton was not passed");
2011   _modUnionTable.clear_all();
2012 
2013   // We must adjust the allocation statistics being maintained
2014   // in the free list space. We do so by reading and clearing
2015   // the sweep timer and updating the block flux rate estimates below.
2016   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
2017   if (_inter_sweep_timer.is_active()) {
2018     _inter_sweep_timer.stop();
2019     // Note that we do not use this sample to update the _inter_sweep_estimate.
2020     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
2021                                             _inter_sweep_estimate.padded_average(),
2022                                             _intra_sweep_estimate.padded_average());
2023   }
2024 
2025   {
2026     TraceCMSMemoryManagerStats();
2027   }
2028   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2029     ref_processor(), clear_all_soft_refs);
2030   #ifdef ASSERT
2031     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2032     size_t free_size = cms_space->free();
2033     assert(free_size ==
2034            pointer_delta(cms_space->end(), cms_space->compaction_top())
2035            * HeapWordSize,
2036       "All the free space should be compacted into one chunk at top");
2037     assert(cms_space->dictionary()->totalChunkSize(
2038                                       debug_only(cms_space->freelistLock())) == 0 ||
2039            cms_space->totalSizeInIndexedFreeLists() == 0,
2040       "All the free space should be in a single chunk");
2041     size_t num = cms_space->totalCount();
2042     assert((free_size == 0 && num == 0) ||
2043            (free_size > 0  && (num == 1 || num == 2)),
2044          "There should be at most 2 free chunks after compaction");
2045   #endif // ASSERT
2046   _collectorState = Resetting;
2047   assert(_restart_addr == NULL,
2048          "Should have been NULL'd before baton was passed");
2049   reset(false /* == !asynch */);
2050   _cmsGen->reset_after_compaction();
2051   _concurrent_cycles_since_last_unload = 0;
2052 
2053   if (verifying() && !should_unload_classes()) {
2054     perm_gen_verify_bit_map()->clear_all();
2055   }
2056 
2057   // Clear any data recorded in the PLAB chunk arrays.
2058   if (_survivor_plab_array != NULL) {
2059     reset_survivor_plab_arrays();
2060   }
2061 
2062   // Adjust the per-size allocation stats for the next epoch.
2063   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2064   // Restart the "inter sweep timer" for the next epoch.
2065   _inter_sweep_timer.reset();
2066   _inter_sweep_timer.start();
2067 
2068   // Sample collection pause time and reset for collection interval.
2069   if (UseAdaptiveSizePolicy) {
2070     size_policy()->msc_collection_end(gch->gc_cause());
2071   }
2072 
2073   // For a mark-sweep-compact, compute_new_size() will be called
2074   // in the heap's do_collection() method.
2075 }
2076 
2077 // A work method used by the foreground collector to do
2078 // a mark-sweep, after taking over from a possibly on-going
2079 // concurrent mark-sweep collection.
2080 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2081   CollectorState first_state, bool should_start_over) {
2082   if (PrintGC && Verbose) {
2083     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2084       "collector with count %d",
2085       _full_gcs_since_conc_gc);
2086   }
2087   switch (_collectorState) {
2088     case Idling:
2089       if (first_state == Idling || should_start_over) {
2090         // The background GC was not active, or should
2091         // restarted from scratch;  start the cycle.
2092         _collectorState = InitialMarking;
2093       }
2094       // If first_state was not Idling, then a background GC
2095       // was in progress and has now finished.  No need to do it
2096       // again.  Leave the state as Idling.
2097       break;
2098     case Precleaning:
2099       // In the foreground case don't do the precleaning since
2100       // it is not done concurrently and there is extra work
2101       // required.
2102       _collectorState = FinalMarking;
2103   }
2104   if (PrintGCDetails &&
2105       (_collectorState > Idling ||
2106        !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) {
2107     gclog_or_tty->print(" (concurrent mode failure)");
2108   }
2109   collect_in_foreground(clear_all_soft_refs);
2110 
2111   // For a mark-sweep, compute_new_size() will be called
2112   // in the heap's do_collection() method.
2113 }
2114 
2115 
2116 void CMSCollector::getFreelistLocks() const {
2117   // Get locks for all free lists in all generations that this
2118   // collector is responsible for
2119   _cmsGen->freelistLock()->lock_without_safepoint_check();
2120   _permGen->freelistLock()->lock_without_safepoint_check();
2121 }
2122 
2123 void CMSCollector::releaseFreelistLocks() const {
2124   // Release locks for all free lists in all generations that this
2125   // collector is responsible for
2126   _cmsGen->freelistLock()->unlock();
2127   _permGen->freelistLock()->unlock();
2128 }
2129 
2130 bool CMSCollector::haveFreelistLocks() const {
2131   // Check locks for all free lists in all generations that this
2132   // collector is responsible for
2133   assert_lock_strong(_cmsGen->freelistLock());
2134   assert_lock_strong(_permGen->freelistLock());
2135   PRODUCT_ONLY(ShouldNotReachHere());
2136   return true;
2137 }
2138 
2139 // A utility class that is used by the CMS collector to
2140 // temporarily "release" the foreground collector from its
2141 // usual obligation to wait for the background collector to
2142 // complete an ongoing phase before proceeding.
2143 class ReleaseForegroundGC: public StackObj {
2144  private:
2145   CMSCollector* _c;
2146  public:
2147   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2148     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2149     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2150     // allow a potentially blocked foreground collector to proceed
2151     _c->_foregroundGCShouldWait = false;
2152     if (_c->_foregroundGCIsActive) {
2153       CGC_lock->notify();
2154     }
2155     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2156            "Possible deadlock");
2157   }
2158 
2159   ~ReleaseForegroundGC() {
2160     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2161     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2162     _c->_foregroundGCShouldWait = true;
2163   }
2164 };
2165 
2166 // There are separate collect_in_background and collect_in_foreground because of
2167 // the different locking requirements of the background collector and the
2168 // foreground collector.  There was originally an attempt to share
2169 // one "collect" method between the background collector and the foreground
2170 // collector but the if-then-else required made it cleaner to have
2171 // separate methods.
2172 void CMSCollector::collect_in_background(bool clear_all_soft_refs) {
2173   assert(Thread::current()->is_ConcurrentGC_thread(),
2174     "A CMS asynchronous collection is only allowed on a CMS thread.");
2175 
2176   GenCollectedHeap* gch = GenCollectedHeap::heap();
2177   {
2178     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2179     MutexLockerEx hl(Heap_lock, safepoint_check);
2180     FreelistLocker fll(this);
2181     MutexLockerEx x(CGC_lock, safepoint_check);
2182     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2183       // The foreground collector is active or we're
2184       // not using asynchronous collections.  Skip this
2185       // background collection.
2186       assert(!_foregroundGCShouldWait, "Should be clear");
2187       return;
2188     } else {
2189       assert(_collectorState == Idling, "Should be idling before start.");
2190       _collectorState = InitialMarking;
2191       // Reset the expansion cause, now that we are about to begin
2192       // a new cycle.
2193       clear_expansion_cause();
2194     }
2195     // Decide if we want to enable class unloading as part of the
2196     // ensuing concurrent GC cycle.
2197     update_should_unload_classes();
2198     _full_gc_requested = false;           // acks all outstanding full gc requests
2199     // Signal that we are about to start a collection
2200     gch->increment_total_full_collections();  // ... starting a collection cycle
2201     _collection_count_start = gch->total_full_collections();
2202   }
2203 
2204   // Used for PrintGC
2205   size_t prev_used;
2206   if (PrintGC && Verbose) {
2207     prev_used = _cmsGen->used(); // XXXPERM
2208   }
2209 
2210   // The change of the collection state is normally done at this level;
2211   // the exceptions are phases that are executed while the world is
2212   // stopped.  For those phases the change of state is done while the
2213   // world is stopped.  For baton passing purposes this allows the
2214   // background collector to finish the phase and change state atomically.
2215   // The foreground collector cannot wait on a phase that is done
2216   // while the world is stopped because the foreground collector already
2217   // has the world stopped and would deadlock.
2218   while (_collectorState != Idling) {
2219     if (TraceCMSState) {
2220       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2221         Thread::current(), _collectorState);
2222     }
2223     // The foreground collector
2224     //   holds the Heap_lock throughout its collection.
2225     //   holds the CMS token (but not the lock)
2226     //     except while it is waiting for the background collector to yield.
2227     //
2228     // The foreground collector should be blocked (not for long)
2229     //   if the background collector is about to start a phase
2230     //   executed with world stopped.  If the background
2231     //   collector has already started such a phase, the
2232     //   foreground collector is blocked waiting for the
2233     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2234     //   are executed in the VM thread.
2235     //
2236     // The locking order is
2237     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2238     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2239     //   CMS token  (claimed in
2240     //                stop_world_and_do() -->
2241     //                  safepoint_synchronize() -->
2242     //                    CMSThread::synchronize())
2243 
2244     {
2245       // Check if the FG collector wants us to yield.
2246       CMSTokenSync x(true); // is cms thread
2247       if (waitForForegroundGC()) {
2248         // We yielded to a foreground GC, nothing more to be
2249         // done this round.
2250         assert(_foregroundGCShouldWait == false, "We set it to false in "
2251                "waitForForegroundGC()");
2252         if (TraceCMSState) {
2253           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2254             " exiting collection CMS state %d",
2255             Thread::current(), _collectorState);
2256         }
2257         return;
2258       } else {
2259         // The background collector can run but check to see if the
2260         // foreground collector has done a collection while the
2261         // background collector was waiting to get the CGC_lock
2262         // above.  If yes, break so that _foregroundGCShouldWait
2263         // is cleared before returning.
2264         if (_collectorState == Idling) {
2265           break;
2266         }
2267       }
2268     }
2269 
2270     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2271       "should be waiting");
2272 
2273     switch (_collectorState) {
2274       case InitialMarking:
2275         {
2276           ReleaseForegroundGC x(this);
2277           stats().record_cms_begin();
2278 
2279           VM_CMS_Initial_Mark initial_mark_op(this);
2280           VMThread::execute(&initial_mark_op);
2281         }
2282         // The collector state may be any legal state at this point
2283         // since the background collector may have yielded to the
2284         // foreground collector.
2285         break;
2286       case Marking:
2287         // initial marking in checkpointRootsInitialWork has been completed
2288         if (markFromRoots(true)) { // we were successful
2289           assert(_collectorState == Precleaning, "Collector state should "
2290             "have changed");
2291         } else {
2292           assert(_foregroundGCIsActive, "Internal state inconsistency");
2293         }
2294         break;
2295       case Precleaning:
2296         if (UseAdaptiveSizePolicy) {
2297           size_policy()->concurrent_precleaning_begin();
2298         }
2299         // marking from roots in markFromRoots has been completed
2300         preclean();
2301         if (UseAdaptiveSizePolicy) {
2302           size_policy()->concurrent_precleaning_end();
2303         }
2304         assert(_collectorState == AbortablePreclean ||
2305                _collectorState == FinalMarking,
2306                "Collector state should have changed");
2307         break;
2308       case AbortablePreclean:
2309         if (UseAdaptiveSizePolicy) {
2310         size_policy()->concurrent_phases_resume();
2311         }
2312         abortable_preclean();
2313         if (UseAdaptiveSizePolicy) {
2314           size_policy()->concurrent_precleaning_end();
2315         }
2316         assert(_collectorState == FinalMarking, "Collector state should "
2317           "have changed");
2318         break;
2319       case FinalMarking:
2320         {
2321           ReleaseForegroundGC x(this);
2322 
2323           VM_CMS_Final_Remark final_remark_op(this);
2324           VMThread::execute(&final_remark_op);
2325         }
2326         assert(_foregroundGCShouldWait, "block post-condition");
2327         break;
2328       case Sweeping:
2329         if (UseAdaptiveSizePolicy) {
2330           size_policy()->concurrent_sweeping_begin();
2331         }
2332         // final marking in checkpointRootsFinal has been completed
2333         sweep(true);
2334         assert(_collectorState == Resizing, "Collector state change "
2335           "to Resizing must be done under the free_list_lock");
2336         _full_gcs_since_conc_gc = 0;
2337 
2338         // Stop the timers for adaptive size policy for the concurrent phases
2339         if (UseAdaptiveSizePolicy) {
2340           size_policy()->concurrent_sweeping_end();
2341           size_policy()->concurrent_phases_end(gch->gc_cause(),
2342                                              gch->prev_gen(_cmsGen)->capacity(),
2343                                              _cmsGen->free());
2344         }
2345 
2346       case Resizing: {
2347         // Sweeping has been completed...
2348         // At this point the background collection has completed.
2349         // Don't move the call to compute_new_size() down
2350         // into code that might be executed if the background
2351         // collection was preempted.
2352         {
2353           ReleaseForegroundGC x(this);   // unblock FG collection
2354           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2355           CMSTokenSync        z(true);   // not strictly needed.
2356           if (_collectorState == Resizing) {
2357             compute_new_size();
2358             _collectorState = Resetting;
2359           } else {
2360             assert(_collectorState == Idling, "The state should only change"
2361                    " because the foreground collector has finished the collection");
2362           }
2363         }
2364         break;
2365       }
2366       case Resetting:
2367         // CMS heap resizing has been completed
2368         reset(true);
2369         assert(_collectorState == Idling, "Collector state should "
2370           "have changed");
2371         stats().record_cms_end();
2372         // Don't move the concurrent_phases_end() and compute_new_size()
2373         // calls to here because a preempted background collection
2374         // has it's state set to "Resetting".
2375         break;
2376       case Idling:
2377       default:
2378         ShouldNotReachHere();
2379         break;
2380     }
2381     if (TraceCMSState) {
2382       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2383         Thread::current(), _collectorState);
2384     }
2385     assert(_foregroundGCShouldWait, "block post-condition");
2386   }
2387 
2388   // Should this be in gc_epilogue?
2389   collector_policy()->counters()->update_counters();
2390 
2391   {
2392     // Clear _foregroundGCShouldWait and, in the event that the
2393     // foreground collector is waiting, notify it, before
2394     // returning.
2395     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2396     _foregroundGCShouldWait = false;
2397     if (_foregroundGCIsActive) {
2398       CGC_lock->notify();
2399     }
2400     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2401            "Possible deadlock");
2402   }
2403   if (TraceCMSState) {
2404     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2405       " exiting collection CMS state %d",
2406       Thread::current(), _collectorState);
2407   }
2408   if (PrintGC && Verbose) {
2409     _cmsGen->print_heap_change(prev_used);
2410   }
2411 }
2412 
2413 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) {
2414   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2415          "Foreground collector should be waiting, not executing");
2416   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2417     "may only be done by the VM Thread with the world stopped");
2418   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2419          "VM thread should have CMS token");
2420 
2421   NOT_PRODUCT(TraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2422     true, gclog_or_tty);)
2423   if (UseAdaptiveSizePolicy) {
2424     size_policy()->ms_collection_begin();
2425   }
2426   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2427 
2428   HandleMark hm;  // Discard invalid handles created during verification
2429 
2430   if (VerifyBeforeGC &&
2431       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2432     Universe::verify(true);
2433   }
2434 
2435   // Snapshot the soft reference policy to be used in this collection cycle.
2436   ref_processor()->setup_policy(clear_all_soft_refs);
2437 
2438   bool init_mark_was_synchronous = false; // until proven otherwise
2439   while (_collectorState != Idling) {
2440     if (TraceCMSState) {
2441       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2442         Thread::current(), _collectorState);
2443     }
2444     switch (_collectorState) {
2445       case InitialMarking:
2446         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2447         checkpointRootsInitial(false);
2448         assert(_collectorState == Marking, "Collector state should have changed"
2449           " within checkpointRootsInitial()");
2450         break;
2451       case Marking:
2452         // initial marking in checkpointRootsInitialWork has been completed
2453         if (VerifyDuringGC &&
2454             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2455           gclog_or_tty->print("Verify before initial mark: ");
2456           Universe::verify(true);
2457         }
2458         {
2459           bool res = markFromRoots(false);
2460           assert(res && _collectorState == FinalMarking, "Collector state should "
2461             "have changed");
2462           break;
2463         }
2464       case FinalMarking:
2465         if (VerifyDuringGC &&
2466             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2467           gclog_or_tty->print("Verify before re-mark: ");
2468           Universe::verify(true);
2469         }
2470         checkpointRootsFinal(false, clear_all_soft_refs,
2471                              init_mark_was_synchronous);
2472         assert(_collectorState == Sweeping, "Collector state should not "
2473           "have changed within checkpointRootsFinal()");
2474         break;
2475       case Sweeping:
2476         // final marking in checkpointRootsFinal has been completed
2477         if (VerifyDuringGC &&
2478             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2479           gclog_or_tty->print("Verify before sweep: ");
2480           Universe::verify(true);
2481         }
2482         sweep(false);
2483         assert(_collectorState == Resizing, "Incorrect state");
2484         break;
2485       case Resizing: {
2486         // Sweeping has been completed; the actual resize in this case
2487         // is done separately; nothing to be done in this state.
2488         _collectorState = Resetting;
2489         break;
2490       }
2491       case Resetting:
2492         // The heap has been resized.
2493         if (VerifyDuringGC &&
2494             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2495           gclog_or_tty->print("Verify before reset: ");
2496           Universe::verify(true);
2497         }
2498         reset(false);
2499         assert(_collectorState == Idling, "Collector state should "
2500           "have changed");
2501         break;
2502       case Precleaning:
2503       case AbortablePreclean:
2504         // Elide the preclean phase
2505         _collectorState = FinalMarking;
2506         break;
2507       default:
2508         ShouldNotReachHere();
2509     }
2510     if (TraceCMSState) {
2511       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2512         Thread::current(), _collectorState);
2513     }
2514   }
2515 
2516   if (UseAdaptiveSizePolicy) {
2517     GenCollectedHeap* gch = GenCollectedHeap::heap();
2518     size_policy()->ms_collection_end(gch->gc_cause());
2519   }
2520 
2521   if (VerifyAfterGC &&
2522       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2523     Universe::verify(true);
2524   }
2525   if (TraceCMSState) {
2526     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2527       " exiting collection CMS state %d",
2528       Thread::current(), _collectorState);
2529   }
2530 }
2531 
2532 bool CMSCollector::waitForForegroundGC() {
2533   bool res = false;
2534   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2535          "CMS thread should have CMS token");
2536   // Block the foreground collector until the
2537   // background collectors decides whether to
2538   // yield.
2539   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2540   _foregroundGCShouldWait = true;
2541   if (_foregroundGCIsActive) {
2542     // The background collector yields to the
2543     // foreground collector and returns a value
2544     // indicating that it has yielded.  The foreground
2545     // collector can proceed.
2546     res = true;
2547     _foregroundGCShouldWait = false;
2548     ConcurrentMarkSweepThread::clear_CMS_flag(
2549       ConcurrentMarkSweepThread::CMS_cms_has_token);
2550     ConcurrentMarkSweepThread::set_CMS_flag(
2551       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2552     // Get a possibly blocked foreground thread going
2553     CGC_lock->notify();
2554     if (TraceCMSState) {
2555       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2556         Thread::current(), _collectorState);
2557     }
2558     while (_foregroundGCIsActive) {
2559       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2560     }
2561     ConcurrentMarkSweepThread::set_CMS_flag(
2562       ConcurrentMarkSweepThread::CMS_cms_has_token);
2563     ConcurrentMarkSweepThread::clear_CMS_flag(
2564       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2565   }
2566   if (TraceCMSState) {
2567     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2568       Thread::current(), _collectorState);
2569   }
2570   return res;
2571 }
2572 
2573 // Because of the need to lock the free lists and other structures in
2574 // the collector, common to all the generations that the collector is
2575 // collecting, we need the gc_prologues of individual CMS generations
2576 // delegate to their collector. It may have been simpler had the
2577 // current infrastructure allowed one to call a prologue on a
2578 // collector. In the absence of that we have the generation's
2579 // prologue delegate to the collector, which delegates back
2580 // some "local" work to a worker method in the individual generations
2581 // that it's responsible for collecting, while itself doing any
2582 // work common to all generations it's responsible for. A similar
2583 // comment applies to the  gc_epilogue()'s.
2584 // The role of the varaible _between_prologue_and_epilogue is to
2585 // enforce the invocation protocol.
2586 void CMSCollector::gc_prologue(bool full) {
2587   // Call gc_prologue_work() for each CMSGen and PermGen that
2588   // we are responsible for.
2589 
2590   // The following locking discipline assumes that we are only called
2591   // when the world is stopped.
2592   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2593 
2594   // The CMSCollector prologue must call the gc_prologues for the
2595   // "generations" (including PermGen if any) that it's responsible
2596   // for.
2597 
2598   assert(   Thread::current()->is_VM_thread()
2599          || (   CMSScavengeBeforeRemark
2600              && Thread::current()->is_ConcurrentGC_thread()),
2601          "Incorrect thread type for prologue execution");
2602 
2603   if (_between_prologue_and_epilogue) {
2604     // We have already been invoked; this is a gc_prologue delegation
2605     // from yet another CMS generation that we are responsible for, just
2606     // ignore it since all relevant work has already been done.
2607     return;
2608   }
2609 
2610   // set a bit saying prologue has been called; cleared in epilogue
2611   _between_prologue_and_epilogue = true;
2612   // Claim locks for common data structures, then call gc_prologue_work()
2613   // for each CMSGen and PermGen that we are responsible for.
2614 
2615   getFreelistLocks();   // gets free list locks on constituent spaces
2616   bitMapLock()->lock_without_safepoint_check();
2617 
2618   // Should call gc_prologue_work() for all cms gens we are responsible for
2619   bool registerClosure =    _collectorState >= Marking
2620                          && _collectorState < Sweeping;
2621   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2622                                                &_modUnionClosurePar
2623                                                : &_modUnionClosure;
2624   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2625   _permGen->gc_prologue_work(full, registerClosure, muc);
2626 
2627   if (!full) {
2628     stats().record_gc0_begin();
2629   }
2630 }
2631 
2632 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2633   // Delegate to CMScollector which knows how to coordinate between
2634   // this and any other CMS generations that it is responsible for
2635   // collecting.
2636   collector()->gc_prologue(full);
2637 }
2638 
2639 // This is a "private" interface for use by this generation's CMSCollector.
2640 // Not to be called directly by any other entity (for instance,
2641 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2642 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2643   bool registerClosure, ModUnionClosure* modUnionClosure) {
2644   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2645   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2646     "Should be NULL");
2647   if (registerClosure) {
2648     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2649   }
2650   cmsSpace()->gc_prologue();
2651   // Clear stat counters
2652   NOT_PRODUCT(
2653     assert(_numObjectsPromoted == 0, "check");
2654     assert(_numWordsPromoted   == 0, "check");
2655     if (Verbose && PrintGC) {
2656       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2657                           SIZE_FORMAT" bytes concurrently",
2658       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2659     }
2660     _numObjectsAllocated = 0;
2661     _numWordsAllocated   = 0;
2662   )
2663 }
2664 
2665 void CMSCollector::gc_epilogue(bool full) {
2666   // The following locking discipline assumes that we are only called
2667   // when the world is stopped.
2668   assert(SafepointSynchronize::is_at_safepoint(),
2669          "world is stopped assumption");
2670 
2671   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2672   // if linear allocation blocks need to be appropriately marked to allow the
2673   // the blocks to be parsable. We also check here whether we need to nudge the
2674   // CMS collector thread to start a new cycle (if it's not already active).
2675   assert(   Thread::current()->is_VM_thread()
2676          || (   CMSScavengeBeforeRemark
2677              && Thread::current()->is_ConcurrentGC_thread()),
2678          "Incorrect thread type for epilogue execution");
2679 
2680   if (!_between_prologue_and_epilogue) {
2681     // We have already been invoked; this is a gc_epilogue delegation
2682     // from yet another CMS generation that we are responsible for, just
2683     // ignore it since all relevant work has already been done.
2684     return;
2685   }
2686   assert(haveFreelistLocks(), "must have freelist locks");
2687   assert_lock_strong(bitMapLock());
2688 
2689   _cmsGen->gc_epilogue_work(full);
2690   _permGen->gc_epilogue_work(full);
2691 
2692   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2693     // in case sampling was not already enabled, enable it
2694     _start_sampling = true;
2695   }
2696   // reset _eden_chunk_array so sampling starts afresh
2697   _eden_chunk_index = 0;
2698 
2699   size_t cms_used   = _cmsGen->cmsSpace()->used();
2700   size_t perm_used  = _permGen->cmsSpace()->used();
2701 
2702   // update performance counters - this uses a special version of
2703   // update_counters() that allows the utilization to be passed as a
2704   // parameter, avoiding multiple calls to used().
2705   //
2706   _cmsGen->update_counters(cms_used);
2707   _permGen->update_counters(perm_used);
2708 
2709   if (CMSIncrementalMode) {
2710     icms_update_allocation_limits();
2711   }
2712 
2713   bitMapLock()->unlock();
2714   releaseFreelistLocks();
2715 
2716   _between_prologue_and_epilogue = false;  // ready for next cycle
2717 }
2718 
2719 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2720   collector()->gc_epilogue(full);
2721 
2722   // Also reset promotion tracking in par gc thread states.
2723   if (CollectedHeap::use_parallel_gc_threads()) {
2724     for (uint i = 0; i < ParallelGCThreads; i++) {
2725       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2726     }
2727   }
2728 }
2729 
2730 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2731   assert(!incremental_collection_failed(), "Should have been cleared");
2732   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2733   cmsSpace()->gc_epilogue();
2734     // Print stat counters
2735   NOT_PRODUCT(
2736     assert(_numObjectsAllocated == 0, "check");
2737     assert(_numWordsAllocated == 0, "check");
2738     if (Verbose && PrintGC) {
2739       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2740                           SIZE_FORMAT" bytes",
2741                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2742     }
2743     _numObjectsPromoted = 0;
2744     _numWordsPromoted   = 0;
2745   )
2746 
2747   if (PrintGC && Verbose) {
2748     // Call down the chain in contiguous_available needs the freelistLock
2749     // so print this out before releasing the freeListLock.
2750     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2751                         contiguous_available());
2752   }
2753 }
2754 
2755 #ifndef PRODUCT
2756 bool CMSCollector::have_cms_token() {
2757   Thread* thr = Thread::current();
2758   if (thr->is_VM_thread()) {
2759     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2760   } else if (thr->is_ConcurrentGC_thread()) {
2761     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2762   } else if (thr->is_GC_task_thread()) {
2763     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2764            ParGCRareEvent_lock->owned_by_self();
2765   }
2766   return false;
2767 }
2768 #endif
2769 
2770 // Check reachability of the given heap address in CMS generation,
2771 // treating all other generations as roots.
2772 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2773   // We could "guarantee" below, rather than assert, but i'll
2774   // leave these as "asserts" so that an adventurous debugger
2775   // could try this in the product build provided some subset of
2776   // the conditions were met, provided they were intersted in the
2777   // results and knew that the computation below wouldn't interfere
2778   // with other concurrent computations mutating the structures
2779   // being read or written.
2780   assert(SafepointSynchronize::is_at_safepoint(),
2781          "Else mutations in object graph will make answer suspect");
2782   assert(have_cms_token(), "Should hold cms token");
2783   assert(haveFreelistLocks(), "must hold free list locks");
2784   assert_lock_strong(bitMapLock());
2785 
2786   // Clear the marking bit map array before starting, but, just
2787   // for kicks, first report if the given address is already marked
2788   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
2789                 _markBitMap.isMarked(addr) ? "" : " not");
2790 
2791   if (verify_after_remark()) {
2792     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2793     bool result = verification_mark_bm()->isMarked(addr);
2794     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
2795                            result ? "IS" : "is NOT");
2796     return result;
2797   } else {
2798     gclog_or_tty->print_cr("Could not compute result");
2799     return false;
2800   }
2801 }
2802 
2803 ////////////////////////////////////////////////////////
2804 // CMS Verification Support
2805 ////////////////////////////////////////////////////////
2806 // Following the remark phase, the following invariant
2807 // should hold -- each object in the CMS heap which is
2808 // marked in markBitMap() should be marked in the verification_mark_bm().
2809 
2810 class VerifyMarkedClosure: public BitMapClosure {
2811   CMSBitMap* _marks;
2812   bool       _failed;
2813 
2814  public:
2815   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2816 
2817   bool do_bit(size_t offset) {
2818     HeapWord* addr = _marks->offsetToHeapWord(offset);
2819     if (!_marks->isMarked(addr)) {
2820       oop(addr)->print_on(gclog_or_tty);
2821       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2822       _failed = true;
2823     }
2824     return true;
2825   }
2826 
2827   bool failed() { return _failed; }
2828 };
2829 
2830 bool CMSCollector::verify_after_remark() {
2831   gclog_or_tty->print(" [Verifying CMS Marking... ");
2832   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2833   static bool init = false;
2834 
2835   assert(SafepointSynchronize::is_at_safepoint(),
2836          "Else mutations in object graph will make answer suspect");
2837   assert(have_cms_token(),
2838          "Else there may be mutual interference in use of "
2839          " verification data structures");
2840   assert(_collectorState > Marking && _collectorState <= Sweeping,
2841          "Else marking info checked here may be obsolete");
2842   assert(haveFreelistLocks(), "must hold free list locks");
2843   assert_lock_strong(bitMapLock());
2844 
2845 
2846   // Allocate marking bit map if not already allocated
2847   if (!init) { // first time
2848     if (!verification_mark_bm()->allocate(_span)) {
2849       return false;
2850     }
2851     init = true;
2852   }
2853 
2854   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2855 
2856   // Turn off refs discovery -- so we will be tracing through refs.
2857   // This is as intended, because by this time
2858   // GC must already have cleared any refs that need to be cleared,
2859   // and traced those that need to be marked; moreover,
2860   // the marking done here is not going to intefere in any
2861   // way with the marking information used by GC.
2862   NoRefDiscovery no_discovery(ref_processor());
2863 
2864   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2865 
2866   // Clear any marks from a previous round
2867   verification_mark_bm()->clear_all();
2868   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2869   verify_work_stacks_empty();
2870 
2871   GenCollectedHeap* gch = GenCollectedHeap::heap();
2872   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2873   // Update the saved marks which may affect the root scans.
2874   gch->save_marks();
2875 
2876   if (CMSRemarkVerifyVariant == 1) {
2877     // In this first variant of verification, we complete
2878     // all marking, then check if the new marks-verctor is
2879     // a subset of the CMS marks-vector.
2880     verify_after_remark_work_1();
2881   } else if (CMSRemarkVerifyVariant == 2) {
2882     // In this second variant of verification, we flag an error
2883     // (i.e. an object reachable in the new marks-vector not reachable
2884     // in the CMS marks-vector) immediately, also indicating the
2885     // identify of an object (A) that references the unmarked object (B) --
2886     // presumably, a mutation to A failed to be picked up by preclean/remark?
2887     verify_after_remark_work_2();
2888   } else {
2889     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
2890             CMSRemarkVerifyVariant);
2891   }
2892   gclog_or_tty->print(" done] ");
2893   return true;
2894 }
2895 
2896 void CMSCollector::verify_after_remark_work_1() {
2897   ResourceMark rm;
2898   HandleMark  hm;
2899   GenCollectedHeap* gch = GenCollectedHeap::heap();
2900 
2901   // Mark from roots one level into CMS
2902   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2903   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2904 
2905   gch->gen_process_strong_roots(_cmsGen->level(),
2906                                 true,   // younger gens are roots
2907                                 true,   // activate StrongRootsScope
2908                                 true,   // collecting perm gen
2909                                 SharedHeap::ScanningOption(roots_scanning_options()),
2910                                 &notOlder,
2911                                 true,   // walk code active on stacks
2912                                 NULL);
2913 
2914   // Now mark from the roots
2915   assert(_revisitStack.isEmpty(), "Should be empty");
2916   MarkFromRootsClosure markFromRootsClosure(this, _span,
2917     verification_mark_bm(), verification_mark_stack(), &_revisitStack,
2918     false /* don't yield */, true /* verifying */);
2919   assert(_restart_addr == NULL, "Expected pre-condition");
2920   verification_mark_bm()->iterate(&markFromRootsClosure);
2921   while (_restart_addr != NULL) {
2922     // Deal with stack overflow: by restarting at the indicated
2923     // address.
2924     HeapWord* ra = _restart_addr;
2925     markFromRootsClosure.reset(ra);
2926     _restart_addr = NULL;
2927     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2928   }
2929   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2930   verify_work_stacks_empty();
2931   // Should reset the revisit stack above, since no class tree
2932   // surgery is forthcoming.
2933   _revisitStack.reset(); // throwing away all contents
2934 
2935   // Marking completed -- now verify that each bit marked in
2936   // verification_mark_bm() is also marked in markBitMap(); flag all
2937   // errors by printing corresponding objects.
2938   VerifyMarkedClosure vcl(markBitMap());
2939   verification_mark_bm()->iterate(&vcl);
2940   if (vcl.failed()) {
2941     gclog_or_tty->print("Verification failed");
2942     Universe::heap()->print_on(gclog_or_tty);
2943     fatal("CMS: failed marking verification after remark");
2944   }
2945 }
2946 
2947 void CMSCollector::verify_after_remark_work_2() {
2948   ResourceMark rm;
2949   HandleMark  hm;
2950   GenCollectedHeap* gch = GenCollectedHeap::heap();
2951 
2952   // Mark from roots one level into CMS
2953   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2954                                      markBitMap());
2955   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2956   gch->gen_process_strong_roots(_cmsGen->level(),
2957                                 true,   // younger gens are roots
2958                                 true,   // activate StrongRootsScope
2959                                 true,   // collecting perm gen
2960                                 SharedHeap::ScanningOption(roots_scanning_options()),
2961                                 &notOlder,
2962                                 true,   // walk code active on stacks
2963                                 NULL);
2964 
2965   // Now mark from the roots
2966   assert(_revisitStack.isEmpty(), "Should be empty");
2967   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2968     verification_mark_bm(), markBitMap(), verification_mark_stack());
2969   assert(_restart_addr == NULL, "Expected pre-condition");
2970   verification_mark_bm()->iterate(&markFromRootsClosure);
2971   while (_restart_addr != NULL) {
2972     // Deal with stack overflow: by restarting at the indicated
2973     // address.
2974     HeapWord* ra = _restart_addr;
2975     markFromRootsClosure.reset(ra);
2976     _restart_addr = NULL;
2977     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2978   }
2979   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2980   verify_work_stacks_empty();
2981   // Should reset the revisit stack above, since no class tree
2982   // surgery is forthcoming.
2983   _revisitStack.reset(); // throwing away all contents
2984 
2985   // Marking completed -- now verify that each bit marked in
2986   // verification_mark_bm() is also marked in markBitMap(); flag all
2987   // errors by printing corresponding objects.
2988   VerifyMarkedClosure vcl(markBitMap());
2989   verification_mark_bm()->iterate(&vcl);
2990   assert(!vcl.failed(), "Else verification above should not have succeeded");
2991 }
2992 
2993 void ConcurrentMarkSweepGeneration::save_marks() {
2994   // delegate to CMS space
2995   cmsSpace()->save_marks();
2996   for (uint i = 0; i < ParallelGCThreads; i++) {
2997     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2998   }
2999 }
3000 
3001 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3002   return cmsSpace()->no_allocs_since_save_marks();
3003 }
3004 
3005 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3006                                                                 \
3007 void ConcurrentMarkSweepGeneration::                            \
3008 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3009   cl->set_generation(this);                                     \
3010   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3011   cl->reset_generation();                                       \
3012   save_marks();                                                 \
3013 }
3014 
3015 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3016 
3017 void
3018 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
3019 {
3020   // Not currently implemented; need to do the following. -- ysr.
3021   // dld -- I think that is used for some sort of allocation profiler.  So it
3022   // really means the objects allocated by the mutator since the last
3023   // GC.  We could potentially implement this cheaply by recording only
3024   // the direct allocations in a side data structure.
3025   //
3026   // I think we probably ought not to be required to support these
3027   // iterations at any arbitrary point; I think there ought to be some
3028   // call to enable/disable allocation profiling in a generation/space,
3029   // and the iterator ought to return the objects allocated in the
3030   // gen/space since the enable call, or the last iterator call (which
3031   // will probably be at a GC.)  That way, for gens like CM&S that would
3032   // require some extra data structure to support this, we only pay the
3033   // cost when it's in use...
3034   cmsSpace()->object_iterate_since_last_GC(blk);
3035 }
3036 
3037 void
3038 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3039   cl->set_generation(this);
3040   younger_refs_in_space_iterate(_cmsSpace, cl);
3041   cl->reset_generation();
3042 }
3043 
3044 void
3045 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) {
3046   if (freelistLock()->owned_by_self()) {
3047     Generation::oop_iterate(mr, cl);
3048   } else {
3049     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3050     Generation::oop_iterate(mr, cl);
3051   }
3052 }
3053 
3054 void
3055 ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) {
3056   if (freelistLock()->owned_by_self()) {
3057     Generation::oop_iterate(cl);
3058   } else {
3059     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3060     Generation::oop_iterate(cl);
3061   }
3062 }
3063 
3064 void
3065 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3066   if (freelistLock()->owned_by_self()) {
3067     Generation::object_iterate(cl);
3068   } else {
3069     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3070     Generation::object_iterate(cl);
3071   }
3072 }
3073 
3074 void
3075 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3076   if (freelistLock()->owned_by_self()) {
3077     Generation::safe_object_iterate(cl);
3078   } else {
3079     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3080     Generation::safe_object_iterate(cl);
3081   }
3082 }
3083 
3084 void
3085 ConcurrentMarkSweepGeneration::pre_adjust_pointers() {
3086 }
3087 
3088 void
3089 ConcurrentMarkSweepGeneration::post_compact() {
3090 }
3091 
3092 void
3093 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3094   // Fix the linear allocation blocks to look like free blocks.
3095 
3096   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3097   // are not called when the heap is verified during universe initialization and
3098   // at vm shutdown.
3099   if (freelistLock()->owned_by_self()) {
3100     cmsSpace()->prepare_for_verify();
3101   } else {
3102     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3103     cmsSpace()->prepare_for_verify();
3104   }
3105 }
3106 
3107 void
3108 ConcurrentMarkSweepGeneration::verify(bool allow_dirty /* ignored */) {
3109   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3110   // are not called when the heap is verified during universe initialization and
3111   // at vm shutdown.
3112   if (freelistLock()->owned_by_self()) {
3113     cmsSpace()->verify(false /* ignored */);
3114   } else {
3115     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3116     cmsSpace()->verify(false /* ignored */);
3117   }
3118 }
3119 
3120 void CMSCollector::verify(bool allow_dirty /* ignored */) {
3121   _cmsGen->verify(allow_dirty);
3122   _permGen->verify(allow_dirty);
3123 }
3124 
3125 #ifndef PRODUCT
3126 bool CMSCollector::overflow_list_is_empty() const {
3127   assert(_num_par_pushes >= 0, "Inconsistency");
3128   if (_overflow_list == NULL) {
3129     assert(_num_par_pushes == 0, "Inconsistency");
3130   }
3131   return _overflow_list == NULL;
3132 }
3133 
3134 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3135 // merely consolidate assertion checks that appear to occur together frequently.
3136 void CMSCollector::verify_work_stacks_empty() const {
3137   assert(_markStack.isEmpty(), "Marking stack should be empty");
3138   assert(overflow_list_is_empty(), "Overflow list should be empty");
3139 }
3140 
3141 void CMSCollector::verify_overflow_empty() const {
3142   assert(overflow_list_is_empty(), "Overflow list should be empty");
3143   assert(no_preserved_marks(), "No preserved marks");
3144 }
3145 #endif // PRODUCT
3146 
3147 // Decide if we want to enable class unloading as part of the
3148 // ensuing concurrent GC cycle. We will collect the perm gen and
3149 // unload classes if it's the case that:
3150 // (1) an explicit gc request has been made and the flag
3151 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3152 // (2) (a) class unloading is enabled at the command line, and
3153 //     (b) (i)   perm gen threshold has been crossed, or
3154 //         (ii)  old gen is getting really full, or
3155 //         (iii) the previous N CMS collections did not collect the
3156 //               perm gen
3157 // NOTE: Provided there is no change in the state of the heap between
3158 // calls to this method, it should have idempotent results. Moreover,
3159 // its results should be monotonically increasing (i.e. going from 0 to 1,
3160 // but not 1 to 0) between successive calls between which the heap was
3161 // not collected. For the implementation below, it must thus rely on
3162 // the property that concurrent_cycles_since_last_unload()
3163 // will not decrease unless a collection cycle happened and that
3164 // _permGen->should_concurrent_collect() and _cmsGen->is_too_full() are
3165 // themselves also monotonic in that sense. See check_monotonicity()
3166 // below.
3167 bool CMSCollector::update_should_unload_classes() {
3168   _should_unload_classes = false;
3169   // Condition 1 above
3170   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3171     _should_unload_classes = true;
3172   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3173     // Disjuncts 2.b.(i,ii,iii) above
3174     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3175                               CMSClassUnloadingMaxInterval)
3176                            || _permGen->should_concurrent_collect()
3177                            || _cmsGen->is_too_full();
3178   }
3179   return _should_unload_classes;
3180 }
3181 
3182 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3183   bool res = should_concurrent_collect();
3184   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3185   return res;
3186 }
3187 
3188 void CMSCollector::setup_cms_unloading_and_verification_state() {
3189   const  bool should_verify =    VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3190                              || VerifyBeforeExit;
3191   const  int  rso           =    SharedHeap::SO_Symbols | SharedHeap::SO_Strings
3192                              |   SharedHeap::SO_CodeCache;
3193 
3194   if (should_unload_classes()) {   // Should unload classes this cycle
3195     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3196     set_verifying(should_verify);    // Set verification state for this cycle
3197     return;                            // Nothing else needs to be done at this time
3198   }
3199 
3200   // Not unloading classes this cycle
3201   assert(!should_unload_classes(), "Inconsitency!");
3202   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3203     // We were not verifying, or we _were_ unloading classes in the last cycle,
3204     // AND some verification options are enabled this cycle; in this case,
3205     // we must make sure that the deadness map is allocated if not already so,
3206     // and cleared (if already allocated previously --
3207     // CMSBitMap::sizeInBits() is used to determine if it's allocated).
3208     if (perm_gen_verify_bit_map()->sizeInBits() == 0) {
3209       if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) {
3210         warning("Failed to allocate permanent generation verification CMS Bit Map;\n"
3211                 "permanent generation verification disabled");
3212         return;  // Note that we leave verification disabled, so we'll retry this
3213                  // allocation next cycle. We _could_ remember this failure
3214                  // and skip further attempts and permanently disable verification
3215                  // attempts if that is considered more desirable.
3216       }
3217       assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()),
3218               "_perm_gen_ver_bit_map inconsistency?");
3219     } else {
3220       perm_gen_verify_bit_map()->clear_all();
3221     }
3222     // Include symbols, strings and code cache elements to prevent their resurrection.
3223     add_root_scanning_option(rso);
3224     set_verifying(true);
3225   } else if (verifying() && !should_verify) {
3226     // We were verifying, but some verification flags got disabled.
3227     set_verifying(false);
3228     // Exclude symbols, strings and code cache elements from root scanning to
3229     // reduce IM and RM pauses.
3230     remove_root_scanning_option(rso);
3231   }
3232 }
3233 
3234 
3235 #ifndef PRODUCT
3236 HeapWord* CMSCollector::block_start(const void* p) const {
3237   const HeapWord* addr = (HeapWord*)p;
3238   if (_span.contains(p)) {
3239     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3240       return _cmsGen->cmsSpace()->block_start(p);
3241     } else {
3242       assert(_permGen->cmsSpace()->is_in_reserved(addr),
3243              "Inconsistent _span?");
3244       return _permGen->cmsSpace()->block_start(p);
3245     }
3246   }
3247   return NULL;
3248 }
3249 #endif
3250 
3251 HeapWord*
3252 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3253                                                    bool   tlab,
3254                                                    bool   parallel) {
3255   CMSSynchronousYieldRequest yr;
3256   assert(!tlab, "Can't deal with TLAB allocation");
3257   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3258   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3259     CMSExpansionCause::_satisfy_allocation);
3260   if (GCExpandToAllocateDelayMillis > 0) {
3261     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3262   }
3263   return have_lock_and_allocate(word_size, tlab);
3264 }
3265 
3266 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3267 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3268 // to CardGeneration and share it...
3269 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3270   return CardGeneration::expand(bytes, expand_bytes);
3271 }
3272 
3273 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3274   CMSExpansionCause::Cause cause)
3275 {
3276 
3277   bool success = expand(bytes, expand_bytes);
3278 
3279   // remember why we expanded; this information is used
3280   // by shouldConcurrentCollect() when making decisions on whether to start
3281   // a new CMS cycle.
3282   if (success) {
3283     set_expansion_cause(cause);
3284     if (PrintGCDetails && Verbose) {
3285       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3286         CMSExpansionCause::to_string(cause));
3287     }
3288   }
3289 }
3290 
3291 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3292   HeapWord* res = NULL;
3293   MutexLocker x(ParGCRareEvent_lock);
3294   while (true) {
3295     // Expansion by some other thread might make alloc OK now:
3296     res = ps->lab.alloc(word_sz);
3297     if (res != NULL) return res;
3298     // If there's not enough expansion space available, give up.
3299     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3300       return NULL;
3301     }
3302     // Otherwise, we try expansion.
3303     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3304       CMSExpansionCause::_allocate_par_lab);
3305     // Now go around the loop and try alloc again;
3306     // A competing par_promote might beat us to the expansion space,
3307     // so we may go around the loop again if promotion fails agaion.
3308     if (GCExpandToAllocateDelayMillis > 0) {
3309       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3310     }
3311   }
3312 }
3313 
3314 
3315 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3316   PromotionInfo* promo) {
3317   MutexLocker x(ParGCRareEvent_lock);
3318   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3319   while (true) {
3320     // Expansion by some other thread might make alloc OK now:
3321     if (promo->ensure_spooling_space()) {
3322       assert(promo->has_spooling_space(),
3323              "Post-condition of successful ensure_spooling_space()");
3324       return true;
3325     }
3326     // If there's not enough expansion space available, give up.
3327     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3328       return false;
3329     }
3330     // Otherwise, we try expansion.
3331     expand(refill_size_bytes, MinHeapDeltaBytes,
3332       CMSExpansionCause::_allocate_par_spooling_space);
3333     // Now go around the loop and try alloc again;
3334     // A competing allocation might beat us to the expansion space,
3335     // so we may go around the loop again if allocation fails again.
3336     if (GCExpandToAllocateDelayMillis > 0) {
3337       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3338     }
3339   }
3340 }
3341 
3342 
3343 
3344 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3345   assert_locked_or_safepoint(Heap_lock);
3346   size_t size = ReservedSpace::page_align_size_down(bytes);
3347   if (size > 0) {
3348     shrink_by(size);
3349   }
3350 }
3351 
3352 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3353   assert_locked_or_safepoint(Heap_lock);
3354   bool result = _virtual_space.expand_by(bytes);
3355   if (result) {
3356     HeapWord* old_end = _cmsSpace->end();
3357     size_t new_word_size =
3358       heap_word_size(_virtual_space.committed_size());
3359     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3360     _bts->resize(new_word_size);  // resize the block offset shared array
3361     Universe::heap()->barrier_set()->resize_covered_region(mr);
3362     // Hmmmm... why doesn't CFLS::set_end verify locking?
3363     // This is quite ugly; FIX ME XXX
3364     _cmsSpace->assert_locked(freelistLock());
3365     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3366 
3367     // update the space and generation capacity counters
3368     if (UsePerfData) {
3369       _space_counters->update_capacity();
3370       _gen_counters->update_all();
3371     }
3372 
3373     if (Verbose && PrintGC) {
3374       size_t new_mem_size = _virtual_space.committed_size();
3375       size_t old_mem_size = new_mem_size - bytes;
3376       gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK",
3377                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3378     }
3379   }
3380   return result;
3381 }
3382 
3383 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3384   assert_locked_or_safepoint(Heap_lock);
3385   bool success = true;
3386   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3387   if (remaining_bytes > 0) {
3388     success = grow_by(remaining_bytes);
3389     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3390   }
3391   return success;
3392 }
3393 
3394 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3395   assert_locked_or_safepoint(Heap_lock);
3396   assert_lock_strong(freelistLock());
3397   // XXX Fix when compaction is implemented.
3398   warning("Shrinking of CMS not yet implemented");
3399   return;
3400 }
3401 
3402 
3403 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3404 // phases.
3405 class CMSPhaseAccounting: public StackObj {
3406  public:
3407   CMSPhaseAccounting(CMSCollector *collector,
3408                      const char *phase,
3409                      bool print_cr = true);
3410   ~CMSPhaseAccounting();
3411 
3412  private:
3413   CMSCollector *_collector;
3414   const char *_phase;
3415   elapsedTimer _wallclock;
3416   bool _print_cr;
3417 
3418  public:
3419   // Not MT-safe; so do not pass around these StackObj's
3420   // where they may be accessed by other threads.
3421   jlong wallclock_millis() {
3422     assert(_wallclock.is_active(), "Wall clock should not stop");
3423     _wallclock.stop();  // to record time
3424     jlong ret = _wallclock.milliseconds();
3425     _wallclock.start(); // restart
3426     return ret;
3427   }
3428 };
3429 
3430 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3431                                        const char *phase,
3432                                        bool print_cr) :
3433   _collector(collector), _phase(phase), _print_cr(print_cr) {
3434 
3435   if (PrintCMSStatistics != 0) {
3436     _collector->resetYields();
3437   }
3438   if (PrintGCDetails && PrintGCTimeStamps) {
3439     gclog_or_tty->date_stamp(PrintGCDateStamps);
3440     gclog_or_tty->stamp();
3441     gclog_or_tty->print_cr(": [%s-concurrent-%s-start]",
3442       _collector->cmsGen()->short_name(), _phase);
3443   }
3444   _collector->resetTimer();
3445   _wallclock.start();
3446   _collector->startTimer();
3447 }
3448 
3449 CMSPhaseAccounting::~CMSPhaseAccounting() {
3450   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3451   _collector->stopTimer();
3452   _wallclock.stop();
3453   if (PrintGCDetails) {
3454     gclog_or_tty->date_stamp(PrintGCDateStamps);
3455     if (PrintGCTimeStamps) {
3456       gclog_or_tty->stamp();
3457       gclog_or_tty->print(": ");
3458     }
3459     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3460                  _collector->cmsGen()->short_name(),
3461                  _phase, _collector->timerValue(), _wallclock.seconds());
3462     if (_print_cr) {
3463       gclog_or_tty->print_cr("");
3464     }
3465     if (PrintCMSStatistics != 0) {
3466       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3467                     _collector->yields());
3468     }
3469   }
3470 }
3471 
3472 // CMS work
3473 
3474 // Checkpoint the roots into this generation from outside
3475 // this generation. [Note this initial checkpoint need only
3476 // be approximate -- we'll do a catch up phase subsequently.]
3477 void CMSCollector::checkpointRootsInitial(bool asynch) {
3478   assert(_collectorState == InitialMarking, "Wrong collector state");
3479   check_correct_thread_executing();
3480   TraceCMSMemoryManagerStats tms(_collectorState);
3481 
3482   ReferenceProcessor* rp = ref_processor();
3483   SpecializationStats::clear();
3484   assert(_restart_addr == NULL, "Control point invariant");
3485   if (asynch) {
3486     // acquire locks for subsequent manipulations
3487     MutexLockerEx x(bitMapLock(),
3488                     Mutex::_no_safepoint_check_flag);
3489     checkpointRootsInitialWork(asynch);
3490     rp->verify_no_references_recorded();
3491     rp->enable_discovery(); // enable ("weak") refs discovery
3492     _collectorState = Marking;
3493   } else {
3494     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3495     // which recognizes if we are a CMS generation, and doesn't try to turn on
3496     // discovery; verify that they aren't meddling.
3497     assert(!rp->discovery_is_atomic(),
3498            "incorrect setting of discovery predicate");
3499     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3500            "ref discovery for this generation kind");
3501     // already have locks
3502     checkpointRootsInitialWork(asynch);
3503     rp->enable_discovery(); // now enable ("weak") refs discovery
3504     _collectorState = Marking;
3505   }
3506   SpecializationStats::print();
3507 }
3508 
3509 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3510   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3511   assert(_collectorState == InitialMarking, "just checking");
3512 
3513   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3514   // precede our marking with a collection of all
3515   // younger generations to keep floating garbage to a minimum.
3516   // XXX: we won't do this for now -- it's an optimization to be done later.
3517 
3518   // already have locks
3519   assert_lock_strong(bitMapLock());
3520   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3521 
3522   // Setup the verification and class unloading state for this
3523   // CMS collection cycle.
3524   setup_cms_unloading_and_verification_state();
3525 
3526   NOT_PRODUCT(TraceTime t("\ncheckpointRootsInitialWork",
3527     PrintGCDetails && Verbose, true, gclog_or_tty);)
3528   if (UseAdaptiveSizePolicy) {
3529     size_policy()->checkpoint_roots_initial_begin();
3530   }
3531 
3532   // Reset all the PLAB chunk arrays if necessary.
3533   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3534     reset_survivor_plab_arrays();
3535   }
3536 
3537   ResourceMark rm;
3538   HandleMark  hm;
3539 
3540   FalseClosure falseClosure;
3541   // In the case of a synchronous collection, we will elide the
3542   // remark step, so it's important to catch all the nmethod oops
3543   // in this step.
3544   // The final 'true' flag to gen_process_strong_roots will ensure this.
3545   // If 'async' is true, we can relax the nmethod tracing.
3546   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3547   GenCollectedHeap* gch = GenCollectedHeap::heap();
3548 
3549   verify_work_stacks_empty();
3550   verify_overflow_empty();
3551 
3552   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3553   // Update the saved marks which may affect the root scans.
3554   gch->save_marks();
3555 
3556   // weak reference processing has not started yet.
3557   ref_processor()->set_enqueuing_is_done(false);
3558 
3559   {
3560     // This is not needed. DEBUG_ONLY(RememberKlassesChecker imx(true);)
3561     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3562     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3563     gch->gen_process_strong_roots(_cmsGen->level(),
3564                                   true,   // younger gens are roots
3565                                   true,   // activate StrongRootsScope
3566                                   true,   // collecting perm gen
3567                                   SharedHeap::ScanningOption(roots_scanning_options()),
3568                                   &notOlder,
3569                                   true,   // walk all of code cache if (so & SO_CodeCache)
3570                                   NULL);
3571   }
3572 
3573   // Clear mod-union table; it will be dirtied in the prologue of
3574   // CMS generation per each younger generation collection.
3575 
3576   assert(_modUnionTable.isAllClear(),
3577        "Was cleared in most recent final checkpoint phase"
3578        " or no bits are set in the gc_prologue before the start of the next "
3579        "subsequent marking phase.");
3580 
3581   // Temporarily disabled, since pre/post-consumption closures don't
3582   // care about precleaned cards
3583   #if 0
3584   {
3585     MemRegion mr = MemRegion((HeapWord*)_virtual_space.low(),
3586                              (HeapWord*)_virtual_space.high());
3587     _ct->ct_bs()->preclean_dirty_cards(mr);
3588   }
3589   #endif
3590 
3591   // Save the end of the used_region of the constituent generations
3592   // to be used to limit the extent of sweep in each generation.
3593   save_sweep_limits();
3594   if (UseAdaptiveSizePolicy) {
3595     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
3596   }
3597   verify_overflow_empty();
3598 }
3599 
3600 bool CMSCollector::markFromRoots(bool asynch) {
3601   // we might be tempted to assert that:
3602   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3603   //        "inconsistent argument?");
3604   // However that wouldn't be right, because it's possible that
3605   // a safepoint is indeed in progress as a younger generation
3606   // stop-the-world GC happens even as we mark in this generation.
3607   assert(_collectorState == Marking, "inconsistent state?");
3608   check_correct_thread_executing();
3609   verify_overflow_empty();
3610 
3611   bool res;
3612   if (asynch) {
3613 
3614     // Start the timers for adaptive size policy for the concurrent phases
3615     // Do it here so that the foreground MS can use the concurrent
3616     // timer since a foreground MS might has the sweep done concurrently
3617     // or STW.
3618     if (UseAdaptiveSizePolicy) {
3619       size_policy()->concurrent_marking_begin();
3620     }
3621 
3622     // Weak ref discovery note: We may be discovering weak
3623     // refs in this generation concurrent (but interleaved) with
3624     // weak ref discovery by a younger generation collector.
3625 
3626     CMSTokenSyncWithLocks ts(true, bitMapLock());
3627     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3628     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3629     res = markFromRootsWork(asynch);
3630     if (res) {
3631       _collectorState = Precleaning;
3632     } else { // We failed and a foreground collection wants to take over
3633       assert(_foregroundGCIsActive, "internal state inconsistency");
3634       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3635       if (PrintGCDetails) {
3636         gclog_or_tty->print_cr("bailing out to foreground collection");
3637       }
3638     }
3639     if (UseAdaptiveSizePolicy) {
3640       size_policy()->concurrent_marking_end();
3641     }
3642   } else {
3643     assert(SafepointSynchronize::is_at_safepoint(),
3644            "inconsistent with asynch == false");
3645     if (UseAdaptiveSizePolicy) {
3646       size_policy()->ms_collection_marking_begin();
3647     }
3648     // already have locks
3649     res = markFromRootsWork(asynch);
3650     _collectorState = FinalMarking;
3651     if (UseAdaptiveSizePolicy) {
3652       GenCollectedHeap* gch = GenCollectedHeap::heap();
3653       size_policy()->ms_collection_marking_end(gch->gc_cause());
3654     }
3655   }
3656   verify_overflow_empty();
3657   return res;
3658 }
3659 
3660 bool CMSCollector::markFromRootsWork(bool asynch) {
3661   // iterate over marked bits in bit map, doing a full scan and mark
3662   // from these roots using the following algorithm:
3663   // . if oop is to the right of the current scan pointer,
3664   //   mark corresponding bit (we'll process it later)
3665   // . else (oop is to left of current scan pointer)
3666   //   push oop on marking stack
3667   // . drain the marking stack
3668 
3669   // Note that when we do a marking step we need to hold the
3670   // bit map lock -- recall that direct allocation (by mutators)
3671   // and promotion (by younger generation collectors) is also
3672   // marking the bit map. [the so-called allocate live policy.]
3673   // Because the implementation of bit map marking is not
3674   // robust wrt simultaneous marking of bits in the same word,
3675   // we need to make sure that there is no such interference
3676   // between concurrent such updates.
3677 
3678   // already have locks
3679   assert_lock_strong(bitMapLock());
3680 
3681   // Clear the revisit stack, just in case there are any
3682   // obsolete contents from a short-circuited previous CMS cycle.
3683   _revisitStack.reset();
3684   verify_work_stacks_empty();
3685   verify_overflow_empty();
3686   assert(_revisitStack.isEmpty(), "tabula rasa");
3687   DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());)
3688   bool result = false;
3689   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3690     result = do_marking_mt(asynch);
3691   } else {
3692     result = do_marking_st(asynch);
3693   }
3694   return result;
3695 }
3696 
3697 // Forward decl
3698 class CMSConcMarkingTask;
3699 
3700 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3701   CMSCollector*       _collector;
3702   CMSConcMarkingTask* _task;
3703  public:
3704   virtual void yield();
3705 
3706   // "n_threads" is the number of threads to be terminated.
3707   // "queue_set" is a set of work queues of other threads.
3708   // "collector" is the CMS collector associated with this task terminator.
3709   // "yield" indicates whether we need the gang as a whole to yield.
3710   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3711     ParallelTaskTerminator(n_threads, queue_set),
3712     _collector(collector) { }
3713 
3714   void set_task(CMSConcMarkingTask* task) {
3715     _task = task;
3716   }
3717 };
3718 
3719 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3720   CMSConcMarkingTask* _task;
3721  public:
3722   bool should_exit_termination();
3723   void set_task(CMSConcMarkingTask* task) {
3724     _task = task;
3725   }
3726 };
3727 
3728 // MT Concurrent Marking Task
3729 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3730   CMSCollector* _collector;
3731   int           _n_workers;                  // requested/desired # workers
3732   bool          _asynch;
3733   bool          _result;
3734   CompactibleFreeListSpace*  _cms_space;
3735   CompactibleFreeListSpace* _perm_space;
3736   char          _pad_front[64];   // padding to ...
3737   HeapWord*     _global_finger;   // ... avoid sharing cache line
3738   char          _pad_back[64];
3739   HeapWord*     _restart_addr;
3740 
3741   //  Exposed here for yielding support
3742   Mutex* const _bit_map_lock;
3743 
3744   // The per thread work queues, available here for stealing
3745   OopTaskQueueSet*  _task_queues;
3746 
3747   // Termination (and yielding) support
3748   CMSConcMarkingTerminator _term;
3749   CMSConcMarkingTerminatorTerminator _term_term;
3750 
3751  public:
3752   CMSConcMarkingTask(CMSCollector* collector,
3753                  CompactibleFreeListSpace* cms_space,
3754                  CompactibleFreeListSpace* perm_space,
3755                  bool asynch,
3756                  YieldingFlexibleWorkGang* workers,
3757                  OopTaskQueueSet* task_queues):
3758     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3759     _collector(collector),
3760     _cms_space(cms_space),
3761     _perm_space(perm_space),
3762     _asynch(asynch), _n_workers(0), _result(true),
3763     _task_queues(task_queues),
3764     _term(_n_workers, task_queues, _collector),
3765     _bit_map_lock(collector->bitMapLock())
3766   {
3767     _requested_size = _n_workers;
3768     _term.set_task(this);
3769     _term_term.set_task(this);
3770     assert(_cms_space->bottom() < _perm_space->bottom(),
3771            "Finger incorrectly initialized below");
3772     _restart_addr = _global_finger = _cms_space->bottom();
3773   }
3774 
3775 
3776   OopTaskQueueSet* task_queues()  { return _task_queues; }
3777 
3778   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3779 
3780   HeapWord** global_finger_addr() { return &_global_finger; }
3781 
3782   CMSConcMarkingTerminator* terminator() { return &_term; }
3783 
3784   virtual void set_for_termination(int active_workers) {
3785     terminator()->reset_for_reuse(active_workers);
3786   }
3787 
3788   void work(int i);
3789   bool should_yield() {
3790     return    ConcurrentMarkSweepThread::should_yield()
3791            && !_collector->foregroundGCIsActive()
3792            && _asynch;
3793   }
3794 
3795   virtual void coordinator_yield();  // stuff done by coordinator
3796   bool result() { return _result; }
3797 
3798   void reset(HeapWord* ra) {
3799     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3800     assert(_global_finger >= _perm_space->end(), "Postcondition of ::work(i)");
3801     assert(ra             <  _perm_space->end(), "ra too large");
3802     _restart_addr = _global_finger = ra;
3803     _term.reset_for_reuse();
3804   }
3805 
3806   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3807                                            OopTaskQueue* work_q);
3808 
3809  private:
3810   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3811   void do_work_steal(int i);
3812   void bump_global_finger(HeapWord* f);
3813 };
3814 
3815 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3816   assert(_task != NULL, "Error");
3817   return _task->yielding();
3818   // Note that we do not need the disjunct || _task->should_yield() above
3819   // because we want terminating threads to yield only if the task
3820   // is already in the midst of yielding, which happens only after at least one
3821   // thread has yielded.
3822 }
3823 
3824 void CMSConcMarkingTerminator::yield() {
3825   if (_task->should_yield()) {
3826     _task->yield();
3827   } else {
3828     ParallelTaskTerminator::yield();
3829   }
3830 }
3831 
3832 ////////////////////////////////////////////////////////////////
3833 // Concurrent Marking Algorithm Sketch
3834 ////////////////////////////////////////////////////////////////
3835 // Until all tasks exhausted (both spaces):
3836 // -- claim next available chunk
3837 // -- bump global finger via CAS
3838 // -- find first object that starts in this chunk
3839 //    and start scanning bitmap from that position
3840 // -- scan marked objects for oops
3841 // -- CAS-mark target, and if successful:
3842 //    . if target oop is above global finger (volatile read)
3843 //      nothing to do
3844 //    . if target oop is in chunk and above local finger
3845 //        then nothing to do
3846 //    . else push on work-queue
3847 // -- Deal with possible overflow issues:
3848 //    . local work-queue overflow causes stuff to be pushed on
3849 //      global (common) overflow queue
3850 //    . always first empty local work queue
3851 //    . then get a batch of oops from global work queue if any
3852 //    . then do work stealing
3853 // -- When all tasks claimed (both spaces)
3854 //    and local work queue empty,
3855 //    then in a loop do:
3856 //    . check global overflow stack; steal a batch of oops and trace
3857 //    . try to steal from other threads oif GOS is empty
3858 //    . if neither is available, offer termination
3859 // -- Terminate and return result
3860 //
3861 void CMSConcMarkingTask::work(int i) {
3862   elapsedTimer _timer;
3863   ResourceMark rm;
3864   HandleMark hm;
3865 
3866   DEBUG_ONLY(_collector->verify_overflow_empty();)
3867 
3868   // Before we begin work, our work queue should be empty
3869   assert(work_queue(i)->size() == 0, "Expected to be empty");
3870   // Scan the bitmap covering _cms_space, tracing through grey objects.
3871   _timer.start();
3872   do_scan_and_mark(i, _cms_space);
3873   _timer.stop();
3874   if (PrintCMSStatistics != 0) {
3875     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3876       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
3877   }
3878 
3879   // ... do the same for the _perm_space
3880   _timer.reset();
3881   _timer.start();
3882   do_scan_and_mark(i, _perm_space);
3883   _timer.stop();
3884   if (PrintCMSStatistics != 0) {
3885     gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec",
3886       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
3887   }
3888 
3889   // ... do work stealing
3890   _timer.reset();
3891   _timer.start();
3892   do_work_steal(i);
3893   _timer.stop();
3894   if (PrintCMSStatistics != 0) {
3895     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3896       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
3897   }
3898   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3899   assert(work_queue(i)->size() == 0, "Should have been emptied");
3900   // Note that under the current task protocol, the
3901   // following assertion is true even of the spaces
3902   // expanded since the completion of the concurrent
3903   // marking. XXX This will likely change under a strict
3904   // ABORT semantics.
3905   assert(_global_finger >  _cms_space->end() &&
3906          _global_finger >= _perm_space->end(),
3907          "All tasks have been completed");
3908   DEBUG_ONLY(_collector->verify_overflow_empty();)
3909 }
3910 
3911 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3912   HeapWord* read = _global_finger;
3913   HeapWord* cur  = read;
3914   while (f > read) {
3915     cur = read;
3916     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3917     if (cur == read) {
3918       // our cas succeeded
3919       assert(_global_finger >= f, "protocol consistency");
3920       break;
3921     }
3922   }
3923 }
3924 
3925 // This is really inefficient, and should be redone by
3926 // using (not yet available) block-read and -write interfaces to the
3927 // stack and the work_queue. XXX FIX ME !!!
3928 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3929                                                       OopTaskQueue* work_q) {
3930   // Fast lock-free check
3931   if (ovflw_stk->length() == 0) {
3932     return false;
3933   }
3934   assert(work_q->size() == 0, "Shouldn't steal");
3935   MutexLockerEx ml(ovflw_stk->par_lock(),
3936                    Mutex::_no_safepoint_check_flag);
3937   // Grab up to 1/4 the size of the work queue
3938   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3939                     (size_t)ParGCDesiredObjsFromOverflowList);
3940   num = MIN2(num, ovflw_stk->length());
3941   for (int i = (int) num; i > 0; i--) {
3942     oop cur = ovflw_stk->pop();
3943     assert(cur != NULL, "Counted wrong?");
3944     work_q->push(cur);
3945   }
3946   return num > 0;
3947 }
3948 
3949 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3950   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3951   int n_tasks = pst->n_tasks();
3952   // We allow that there may be no tasks to do here because
3953   // we are restarting after a stack overflow.
3954   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3955   int nth_task = 0;
3956 
3957   HeapWord* aligned_start = sp->bottom();
3958   if (sp->used_region().contains(_restart_addr)) {
3959     // Align down to a card boundary for the start of 0th task
3960     // for this space.
3961     aligned_start =
3962       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3963                                  CardTableModRefBS::card_size);
3964   }
3965 
3966   size_t chunk_size = sp->marking_task_size();
3967   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3968     // Having claimed the nth task in this space,
3969     // compute the chunk that it corresponds to:
3970     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3971                                aligned_start + (nth_task+1)*chunk_size);
3972     // Try and bump the global finger via a CAS;
3973     // note that we need to do the global finger bump
3974     // _before_ taking the intersection below, because
3975     // the task corresponding to that region will be
3976     // deemed done even if the used_region() expands
3977     // because of allocation -- as it almost certainly will
3978     // during start-up while the threads yield in the
3979     // closure below.
3980     HeapWord* finger = span.end();
3981     bump_global_finger(finger);   // atomically
3982     // There are null tasks here corresponding to chunks
3983     // beyond the "top" address of the space.
3984     span = span.intersection(sp->used_region());
3985     if (!span.is_empty()) {  // Non-null task
3986       HeapWord* prev_obj;
3987       assert(!span.contains(_restart_addr) || nth_task == 0,
3988              "Inconsistency");
3989       if (nth_task == 0) {
3990         // For the 0th task, we'll not need to compute a block_start.
3991         if (span.contains(_restart_addr)) {
3992           // In the case of a restart because of stack overflow,
3993           // we might additionally skip a chunk prefix.
3994           prev_obj = _restart_addr;
3995         } else {
3996           prev_obj = span.start();
3997         }
3998       } else {
3999         // We want to skip the first object because
4000         // the protocol is to scan any object in its entirety
4001         // that _starts_ in this span; a fortiori, any
4002         // object starting in an earlier span is scanned
4003         // as part of an earlier claimed task.
4004         // Below we use the "careful" version of block_start
4005         // so we do not try to navigate uninitialized objects.
4006         prev_obj = sp->block_start_careful(span.start());
4007         // Below we use a variant of block_size that uses the
4008         // Printezis bits to avoid waiting for allocated
4009         // objects to become initialized/parsable.
4010         while (prev_obj < span.start()) {
4011           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
4012           if (sz > 0) {
4013             prev_obj += sz;
4014           } else {
4015             // In this case we may end up doing a bit of redundant
4016             // scanning, but that appears unavoidable, short of
4017             // locking the free list locks; see bug 6324141.
4018             break;
4019           }
4020         }
4021       }
4022       if (prev_obj < span.end()) {
4023         MemRegion my_span = MemRegion(prev_obj, span.end());
4024         // Do the marking work within a non-empty span --
4025         // the last argument to the constructor indicates whether the
4026         // iteration should be incremental with periodic yields.
4027         Par_MarkFromRootsClosure cl(this, _collector, my_span,
4028                                     &_collector->_markBitMap,
4029                                     work_queue(i),
4030                                     &_collector->_markStack,
4031                                     &_collector->_revisitStack,
4032                                     _asynch);
4033         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4034       } // else nothing to do for this task
4035     }   // else nothing to do for this task
4036   }
4037   // We'd be tempted to assert here that since there are no
4038   // more tasks left to claim in this space, the global_finger
4039   // must exceed space->top() and a fortiori space->end(). However,
4040   // that would not quite be correct because the bumping of
4041   // global_finger occurs strictly after the claiming of a task,
4042   // so by the time we reach here the global finger may not yet
4043   // have been bumped up by the thread that claimed the last
4044   // task.
4045   pst->all_tasks_completed();
4046 }
4047 
4048 class Par_ConcMarkingClosure: public Par_KlassRememberingOopClosure {
4049  private:
4050   CMSConcMarkingTask* _task;
4051   MemRegion     _span;
4052   CMSBitMap*    _bit_map;
4053   CMSMarkStack* _overflow_stack;
4054   OopTaskQueue* _work_queue;
4055  protected:
4056   DO_OOP_WORK_DEFN
4057  public:
4058   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4059                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack,
4060                          CMSMarkStack* revisit_stack):
4061     Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
4062     _task(task),
4063     _span(collector->_span),
4064     _work_queue(work_queue),
4065     _bit_map(bit_map),
4066     _overflow_stack(overflow_stack)
4067   { }
4068   virtual void do_oop(oop* p);
4069   virtual void do_oop(narrowOop* p);
4070   void trim_queue(size_t max);
4071   void handle_stack_overflow(HeapWord* lost);
4072   void do_yield_check() {
4073     if (_task->should_yield()) {
4074       _task->yield();
4075     }
4076   }
4077 };
4078 
4079 // Grey object scanning during work stealing phase --
4080 // the salient assumption here is that any references
4081 // that are in these stolen objects being scanned must
4082 // already have been initialized (else they would not have
4083 // been published), so we do not need to check for
4084 // uninitialized objects before pushing here.
4085 void Par_ConcMarkingClosure::do_oop(oop obj) {
4086   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4087   HeapWord* addr = (HeapWord*)obj;
4088   // Check if oop points into the CMS generation
4089   // and is not marked
4090   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4091     // a white object ...
4092     // If we manage to "claim" the object, by being the
4093     // first thread to mark it, then we push it on our
4094     // marking stack
4095     if (_bit_map->par_mark(addr)) {     // ... now grey
4096       // push on work queue (grey set)
4097       bool simulate_overflow = false;
4098       NOT_PRODUCT(
4099         if (CMSMarkStackOverflowALot &&
4100             _collector->simulate_overflow()) {
4101           // simulate a stack overflow
4102           simulate_overflow = true;
4103         }
4104       )
4105       if (simulate_overflow ||
4106           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4107         // stack overflow
4108         if (PrintCMSStatistics != 0) {
4109           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4110                                  SIZE_FORMAT, _overflow_stack->capacity());
4111         }
4112         // We cannot assert that the overflow stack is full because
4113         // it may have been emptied since.
4114         assert(simulate_overflow ||
4115                _work_queue->size() == _work_queue->max_elems(),
4116               "Else push should have succeeded");
4117         handle_stack_overflow(addr);
4118       }
4119     } // Else, some other thread got there first
4120     do_yield_check();
4121   }
4122 }
4123 
4124 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4125 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4126 
4127 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4128   while (_work_queue->size() > max) {
4129     oop new_oop;
4130     if (_work_queue->pop_local(new_oop)) {
4131       assert(new_oop->is_oop(), "Should be an oop");
4132       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4133       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4134       assert(new_oop->is_parsable(), "Should be parsable");
4135       new_oop->oop_iterate(this);  // do_oop() above
4136       do_yield_check();
4137     }
4138   }
4139 }
4140 
4141 // Upon stack overflow, we discard (part of) the stack,
4142 // remembering the least address amongst those discarded
4143 // in CMSCollector's _restart_address.
4144 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4145   // We need to do this under a mutex to prevent other
4146   // workers from interfering with the work done below.
4147   MutexLockerEx ml(_overflow_stack->par_lock(),
4148                    Mutex::_no_safepoint_check_flag);
4149   // Remember the least grey address discarded
4150   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4151   _collector->lower_restart_addr(ra);
4152   _overflow_stack->reset();  // discard stack contents
4153   _overflow_stack->expand(); // expand the stack if possible
4154 }
4155 
4156 
4157 void CMSConcMarkingTask::do_work_steal(int i) {
4158   OopTaskQueue* work_q = work_queue(i);
4159   oop obj_to_scan;
4160   CMSBitMap* bm = &(_collector->_markBitMap);
4161   CMSMarkStack* ovflw = &(_collector->_markStack);
4162   CMSMarkStack* revisit = &(_collector->_revisitStack);
4163   int* seed = _collector->hash_seed(i);
4164   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw, revisit);
4165   while (true) {
4166     cl.trim_queue(0);
4167     assert(work_q->size() == 0, "Should have been emptied above");
4168     if (get_work_from_overflow_stack(ovflw, work_q)) {
4169       // Can't assert below because the work obtained from the
4170       // overflow stack may already have been stolen from us.
4171       // assert(work_q->size() > 0, "Work from overflow stack");
4172       continue;
4173     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4174       assert(obj_to_scan->is_oop(), "Should be an oop");
4175       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4176       obj_to_scan->oop_iterate(&cl);
4177     } else if (terminator()->offer_termination(&_term_term)) {
4178       assert(work_q->size() == 0, "Impossible!");
4179       break;
4180     } else if (yielding() || should_yield()) {
4181       yield();
4182     }
4183   }
4184 }
4185 
4186 // This is run by the CMS (coordinator) thread.
4187 void CMSConcMarkingTask::coordinator_yield() {
4188   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4189          "CMS thread should hold CMS token");
4190   DEBUG_ONLY(RememberKlassesChecker mux(false);)
4191   // First give up the locks, then yield, then re-lock
4192   // We should probably use a constructor/destructor idiom to
4193   // do this unlock/lock or modify the MutexUnlocker class to
4194   // serve our purpose. XXX
4195   assert_lock_strong(_bit_map_lock);
4196   _bit_map_lock->unlock();
4197   ConcurrentMarkSweepThread::desynchronize(true);
4198   ConcurrentMarkSweepThread::acknowledge_yield_request();
4199   _collector->stopTimer();
4200   if (PrintCMSStatistics != 0) {
4201     _collector->incrementYields();
4202   }
4203   _collector->icms_wait();
4204 
4205   // It is possible for whichever thread initiated the yield request
4206   // not to get a chance to wake up and take the bitmap lock between
4207   // this thread releasing it and reacquiring it. So, while the
4208   // should_yield() flag is on, let's sleep for a bit to give the
4209   // other thread a chance to wake up. The limit imposed on the number
4210   // of iterations is defensive, to avoid any unforseen circumstances
4211   // putting us into an infinite loop. Since it's always been this
4212   // (coordinator_yield()) method that was observed to cause the
4213   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4214   // which is by default non-zero. For the other seven methods that
4215   // also perform the yield operation, as are using a different
4216   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4217   // can enable the sleeping for those methods too, if necessary.
4218   // See 6442774.
4219   //
4220   // We really need to reconsider the synchronization between the GC
4221   // thread and the yield-requesting threads in the future and we
4222   // should really use wait/notify, which is the recommended
4223   // way of doing this type of interaction. Additionally, we should
4224   // consolidate the eight methods that do the yield operation and they
4225   // are almost identical into one for better maintenability and
4226   // readability. See 6445193.
4227   //
4228   // Tony 2006.06.29
4229   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4230                    ConcurrentMarkSweepThread::should_yield() &&
4231                    !CMSCollector::foregroundGCIsActive(); ++i) {
4232     os::sleep(Thread::current(), 1, false);
4233     ConcurrentMarkSweepThread::acknowledge_yield_request();
4234   }
4235 
4236   ConcurrentMarkSweepThread::synchronize(true);
4237   _bit_map_lock->lock_without_safepoint_check();
4238   _collector->startTimer();
4239 }
4240 
4241 bool CMSCollector::do_marking_mt(bool asynch) {
4242   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4243   // In the future this would be determined ergonomically, based
4244   // on #cpu's, # active mutator threads (and load), and mutation rate.
4245   int num_workers = ConcGCThreads;
4246 
4247   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4248   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
4249 
4250   CMSConcMarkingTask tsk(this,
4251                          cms_space,
4252                          perm_space,
4253                          asynch,
4254                          conc_workers(),
4255                          task_queues());
4256 
4257   // Since the actual number of workers we get may be different
4258   // from the number we requested above, do we need to do anything different
4259   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4260   // class?? XXX
4261   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4262   perm_space->initialize_sequential_subtasks_for_marking(num_workers);
4263 
4264   // Refs discovery is already non-atomic.
4265   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4266   // Mutate the Refs discovery so it is MT during the
4267   // multi-threaded marking phase.
4268   ReferenceProcessorMTMutator mt(ref_processor(), num_workers > 1);
4269   DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());)
4270   conc_workers()->start_task(&tsk);
4271   while (tsk.yielded()) {
4272     tsk.coordinator_yield();
4273     conc_workers()->continue_task(&tsk);
4274   }
4275   // If the task was aborted, _restart_addr will be non-NULL
4276   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4277   while (_restart_addr != NULL) {
4278     // XXX For now we do not make use of ABORTED state and have not
4279     // yet implemented the right abort semantics (even in the original
4280     // single-threaded CMS case). That needs some more investigation
4281     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4282     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4283     // If _restart_addr is non-NULL, a marking stack overflow
4284     // occurred; we need to do a fresh marking iteration from the
4285     // indicated restart address.
4286     if (_foregroundGCIsActive && asynch) {
4287       // We may be running into repeated stack overflows, having
4288       // reached the limit of the stack size, while making very
4289       // slow forward progress. It may be best to bail out and
4290       // let the foreground collector do its job.
4291       // Clear _restart_addr, so that foreground GC
4292       // works from scratch. This avoids the headache of
4293       // a "rescan" which would otherwise be needed because
4294       // of the dirty mod union table & card table.
4295       _restart_addr = NULL;
4296       return false;
4297     }
4298     // Adjust the task to restart from _restart_addr
4299     tsk.reset(_restart_addr);
4300     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4301                   _restart_addr);
4302     perm_space->initialize_sequential_subtasks_for_marking(num_workers,
4303                   _restart_addr);
4304     _restart_addr = NULL;
4305     // Get the workers going again
4306     conc_workers()->start_task(&tsk);
4307     while (tsk.yielded()) {
4308       tsk.coordinator_yield();
4309       conc_workers()->continue_task(&tsk);
4310     }
4311   }
4312   assert(tsk.completed(), "Inconsistency");
4313   assert(tsk.result() == true, "Inconsistency");
4314   return true;
4315 }
4316 
4317 bool CMSCollector::do_marking_st(bool asynch) {
4318   ResourceMark rm;
4319   HandleMark   hm;
4320 
4321   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4322     &_markStack, &_revisitStack, CMSYield && asynch);
4323   // the last argument to iterate indicates whether the iteration
4324   // should be incremental with periodic yields.
4325   _markBitMap.iterate(&markFromRootsClosure);
4326   // If _restart_addr is non-NULL, a marking stack overflow
4327   // occurred; we need to do a fresh iteration from the
4328   // indicated restart address.
4329   while (_restart_addr != NULL) {
4330     if (_foregroundGCIsActive && asynch) {
4331       // We may be running into repeated stack overflows, having
4332       // reached the limit of the stack size, while making very
4333       // slow forward progress. It may be best to bail out and
4334       // let the foreground collector do its job.
4335       // Clear _restart_addr, so that foreground GC
4336       // works from scratch. This avoids the headache of
4337       // a "rescan" which would otherwise be needed because
4338       // of the dirty mod union table & card table.
4339       _restart_addr = NULL;
4340       return false;  // indicating failure to complete marking
4341     }
4342     // Deal with stack overflow:
4343     // we restart marking from _restart_addr
4344     HeapWord* ra = _restart_addr;
4345     markFromRootsClosure.reset(ra);
4346     _restart_addr = NULL;
4347     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4348   }
4349   return true;
4350 }
4351 
4352 void CMSCollector::preclean() {
4353   check_correct_thread_executing();
4354   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4355   verify_work_stacks_empty();
4356   verify_overflow_empty();
4357   _abort_preclean = false;
4358   if (CMSPrecleaningEnabled) {
4359     // Precleaning is currently not MT but the reference processor
4360     // may be set for MT.  Disable it temporarily here.
4361     ReferenceProcessor* rp = ref_processor();
4362     ReferenceProcessorMTProcMutator z(rp, false);
4363     _eden_chunk_index = 0;
4364     size_t used = get_eden_used();
4365     size_t capacity = get_eden_capacity();
4366     // Don't start sampling unless we will get sufficiently
4367     // many samples.
4368     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4369                 * CMSScheduleRemarkEdenPenetration)) {
4370       _start_sampling = true;
4371     } else {
4372       _start_sampling = false;
4373     }
4374     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4375     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
4376     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4377   }
4378   CMSTokenSync x(true); // is cms thread
4379   if (CMSPrecleaningEnabled) {
4380     sample_eden();
4381     _collectorState = AbortablePreclean;
4382   } else {
4383     _collectorState = FinalMarking;
4384   }
4385   verify_work_stacks_empty();
4386   verify_overflow_empty();
4387 }
4388 
4389 // Try and schedule the remark such that young gen
4390 // occupancy is CMSScheduleRemarkEdenPenetration %.
4391 void CMSCollector::abortable_preclean() {
4392   check_correct_thread_executing();
4393   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4394   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4395 
4396   // If Eden's current occupancy is below this threshold,
4397   // immediately schedule the remark; else preclean
4398   // past the next scavenge in an effort to
4399   // schedule the pause as described avove. By choosing
4400   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4401   // we will never do an actual abortable preclean cycle.
4402   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4403     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4404     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
4405     // We need more smarts in the abortable preclean
4406     // loop below to deal with cases where allocation
4407     // in young gen is very very slow, and our precleaning
4408     // is running a losing race against a horde of
4409     // mutators intent on flooding us with CMS updates
4410     // (dirty cards).
4411     // One, admittedly dumb, strategy is to give up
4412     // after a certain number of abortable precleaning loops
4413     // or after a certain maximum time. We want to make
4414     // this smarter in the next iteration.
4415     // XXX FIX ME!!! YSR
4416     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4417     while (!(should_abort_preclean() ||
4418              ConcurrentMarkSweepThread::should_terminate())) {
4419       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4420       cumworkdone += workdone;
4421       loops++;
4422       // Voluntarily terminate abortable preclean phase if we have
4423       // been at it for too long.
4424       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4425           loops >= CMSMaxAbortablePrecleanLoops) {
4426         if (PrintGCDetails) {
4427           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4428         }
4429         break;
4430       }
4431       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4432         if (PrintGCDetails) {
4433           gclog_or_tty->print(" CMS: abort preclean due to time ");
4434         }
4435         break;
4436       }
4437       // If we are doing little work each iteration, we should
4438       // take a short break.
4439       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4440         // Sleep for some time, waiting for work to accumulate
4441         stopTimer();
4442         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4443         startTimer();
4444         waited++;
4445       }
4446     }
4447     if (PrintCMSStatistics > 0) {
4448       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
4449                           loops, waited, cumworkdone);
4450     }
4451   }
4452   CMSTokenSync x(true); // is cms thread
4453   if (_collectorState != Idling) {
4454     assert(_collectorState == AbortablePreclean,
4455            "Spontaneous state transition?");
4456     _collectorState = FinalMarking;
4457   } // Else, a foreground collection completed this CMS cycle.
4458   return;
4459 }
4460 
4461 // Respond to an Eden sampling opportunity
4462 void CMSCollector::sample_eden() {
4463   // Make sure a young gc cannot sneak in between our
4464   // reading and recording of a sample.
4465   assert(Thread::current()->is_ConcurrentGC_thread(),
4466          "Only the cms thread may collect Eden samples");
4467   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4468          "Should collect samples while holding CMS token");
4469   if (!_start_sampling) {
4470     return;
4471   }
4472   if (_eden_chunk_array) {
4473     if (_eden_chunk_index < _eden_chunk_capacity) {
4474       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4475       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4476              "Unexpected state of Eden");
4477       // We'd like to check that what we just sampled is an oop-start address;
4478       // however, we cannot do that here since the object may not yet have been
4479       // initialized. So we'll instead do the check when we _use_ this sample
4480       // later.
4481       if (_eden_chunk_index == 0 ||
4482           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4483                          _eden_chunk_array[_eden_chunk_index-1])
4484            >= CMSSamplingGrain)) {
4485         _eden_chunk_index++;  // commit sample
4486       }
4487     }
4488   }
4489   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4490     size_t used = get_eden_used();
4491     size_t capacity = get_eden_capacity();
4492     assert(used <= capacity, "Unexpected state of Eden");
4493     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4494       _abort_preclean = true;
4495     }
4496   }
4497 }
4498 
4499 
4500 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4501   assert(_collectorState == Precleaning ||
4502          _collectorState == AbortablePreclean, "incorrect state");
4503   ResourceMark rm;
4504   HandleMark   hm;
4505   // Do one pass of scrubbing the discovered reference lists
4506   // to remove any reference objects with strongly-reachable
4507   // referents.
4508   if (clean_refs) {
4509     ReferenceProcessor* rp = ref_processor();
4510     CMSPrecleanRefsYieldClosure yield_cl(this);
4511     assert(rp->span().equals(_span), "Spans should be equal");
4512     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4513                                    &_markStack, &_revisitStack,
4514                                    true /* preclean */);
4515     CMSDrainMarkingStackClosure complete_trace(this,
4516                                    _span, &_markBitMap, &_markStack,
4517                                    &keep_alive, true /* preclean */);
4518 
4519     // We don't want this step to interfere with a young
4520     // collection because we don't want to take CPU
4521     // or memory bandwidth away from the young GC threads
4522     // (which may be as many as there are CPUs).
4523     // Note that we don't need to protect ourselves from
4524     // interference with mutators because they can't
4525     // manipulate the discovered reference lists nor affect
4526     // the computed reachability of the referents, the
4527     // only properties manipulated by the precleaning
4528     // of these reference lists.
4529     stopTimer();
4530     CMSTokenSyncWithLocks x(true /* is cms thread */,
4531                             bitMapLock());
4532     startTimer();
4533     sample_eden();
4534 
4535     // The following will yield to allow foreground
4536     // collection to proceed promptly. XXX YSR:
4537     // The code in this method may need further
4538     // tweaking for better performance and some restructuring
4539     // for cleaner interfaces.
4540     rp->preclean_discovered_references(
4541           rp->is_alive_non_header(), &keep_alive, &complete_trace,
4542           &yield_cl, should_unload_classes());
4543   }
4544 
4545   if (clean_survivor) {  // preclean the active survivor space(s)
4546     assert(_young_gen->kind() == Generation::DefNew ||
4547            _young_gen->kind() == Generation::ParNew ||
4548            _young_gen->kind() == Generation::ASParNew,
4549          "incorrect type for cast");
4550     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4551     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4552                              &_markBitMap, &_modUnionTable,
4553                              &_markStack, &_revisitStack,
4554                              true /* precleaning phase */);
4555     stopTimer();
4556     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4557                              bitMapLock());
4558     startTimer();
4559     unsigned int before_count =
4560       GenCollectedHeap::heap()->total_collections();
4561     SurvivorSpacePrecleanClosure
4562       sss_cl(this, _span, &_markBitMap, &_markStack,
4563              &pam_cl, before_count, CMSYield);
4564     DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4565     dng->from()->object_iterate_careful(&sss_cl);
4566     dng->to()->object_iterate_careful(&sss_cl);
4567   }
4568   MarkRefsIntoAndScanClosure
4569     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4570              &_markStack, &_revisitStack, this, CMSYield,
4571              true /* precleaning phase */);
4572   // CAUTION: The following closure has persistent state that may need to
4573   // be reset upon a decrease in the sequence of addresses it
4574   // processes.
4575   ScanMarkedObjectsAgainCarefullyClosure
4576     smoac_cl(this, _span,
4577       &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield);
4578 
4579   // Preclean dirty cards in ModUnionTable and CardTable using
4580   // appropriate convergence criterion;
4581   // repeat CMSPrecleanIter times unless we find that
4582   // we are losing.
4583   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4584   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4585          "Bad convergence multiplier");
4586   assert(CMSPrecleanThreshold >= 100,
4587          "Unreasonably low CMSPrecleanThreshold");
4588 
4589   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4590   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4591        numIter < CMSPrecleanIter;
4592        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4593     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4594     if (CMSPermGenPrecleaningEnabled) {
4595       curNumCards  += preclean_mod_union_table(_permGen, &smoac_cl);
4596     }
4597     if (Verbose && PrintGCDetails) {
4598       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
4599     }
4600     // Either there are very few dirty cards, so re-mark
4601     // pause will be small anyway, or our pre-cleaning isn't
4602     // that much faster than the rate at which cards are being
4603     // dirtied, so we might as well stop and re-mark since
4604     // precleaning won't improve our re-mark time by much.
4605     if (curNumCards <= CMSPrecleanThreshold ||
4606         (numIter > 0 &&
4607          (curNumCards * CMSPrecleanDenominator >
4608          lastNumCards * CMSPrecleanNumerator))) {
4609       numIter++;
4610       cumNumCards += curNumCards;
4611       break;
4612     }
4613   }
4614   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4615   if (CMSPermGenPrecleaningEnabled) {
4616     curNumCards += preclean_card_table(_permGen, &smoac_cl);
4617   }
4618   cumNumCards += curNumCards;
4619   if (PrintGCDetails && PrintCMSStatistics != 0) {
4620     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
4621                   curNumCards, cumNumCards, numIter);
4622   }
4623   return cumNumCards;   // as a measure of useful work done
4624 }
4625 
4626 // PRECLEANING NOTES:
4627 // Precleaning involves:
4628 // . reading the bits of the modUnionTable and clearing the set bits.
4629 // . For the cards corresponding to the set bits, we scan the
4630 //   objects on those cards. This means we need the free_list_lock
4631 //   so that we can safely iterate over the CMS space when scanning
4632 //   for oops.
4633 // . When we scan the objects, we'll be both reading and setting
4634 //   marks in the marking bit map, so we'll need the marking bit map.
4635 // . For protecting _collector_state transitions, we take the CGC_lock.
4636 //   Note that any races in the reading of of card table entries by the
4637 //   CMS thread on the one hand and the clearing of those entries by the
4638 //   VM thread or the setting of those entries by the mutator threads on the
4639 //   other are quite benign. However, for efficiency it makes sense to keep
4640 //   the VM thread from racing with the CMS thread while the latter is
4641 //   dirty card info to the modUnionTable. We therefore also use the
4642 //   CGC_lock to protect the reading of the card table and the mod union
4643 //   table by the CM thread.
4644 // . We run concurrently with mutator updates, so scanning
4645 //   needs to be done carefully  -- we should not try to scan
4646 //   potentially uninitialized objects.
4647 //
4648 // Locking strategy: While holding the CGC_lock, we scan over and
4649 // reset a maximal dirty range of the mod union / card tables, then lock
4650 // the free_list_lock and bitmap lock to do a full marking, then
4651 // release these locks; and repeat the cycle. This allows for a
4652 // certain amount of fairness in the sharing of these locks between
4653 // the CMS collector on the one hand, and the VM thread and the
4654 // mutators on the other.
4655 
4656 // NOTE: preclean_mod_union_table() and preclean_card_table()
4657 // further below are largely identical; if you need to modify
4658 // one of these methods, please check the other method too.
4659 
4660 size_t CMSCollector::preclean_mod_union_table(
4661   ConcurrentMarkSweepGeneration* gen,
4662   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4663   verify_work_stacks_empty();
4664   verify_overflow_empty();
4665 
4666   // Turn off checking for this method but turn it back on
4667   // selectively.  There are yield points in this method
4668   // but it is difficult to turn the checking off just around
4669   // the yield points.  It is simpler to selectively turn
4670   // it on.
4671   DEBUG_ONLY(RememberKlassesChecker mux(false);)
4672 
4673   // strategy: starting with the first card, accumulate contiguous
4674   // ranges of dirty cards; clear these cards, then scan the region
4675   // covered by these cards.
4676 
4677   // Since all of the MUT is committed ahead, we can just use
4678   // that, in case the generations expand while we are precleaning.
4679   // It might also be fine to just use the committed part of the
4680   // generation, but we might potentially miss cards when the
4681   // generation is rapidly expanding while we are in the midst
4682   // of precleaning.
4683   HeapWord* startAddr = gen->reserved().start();
4684   HeapWord* endAddr   = gen->reserved().end();
4685 
4686   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4687 
4688   size_t numDirtyCards, cumNumDirtyCards;
4689   HeapWord *nextAddr, *lastAddr;
4690   for (cumNumDirtyCards = numDirtyCards = 0,
4691        nextAddr = lastAddr = startAddr;
4692        nextAddr < endAddr;
4693        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4694 
4695     ResourceMark rm;
4696     HandleMark   hm;
4697 
4698     MemRegion dirtyRegion;
4699     {
4700       stopTimer();
4701       // Potential yield point
4702       CMSTokenSync ts(true);
4703       startTimer();
4704       sample_eden();
4705       // Get dirty region starting at nextOffset (inclusive),
4706       // simultaneously clearing it.
4707       dirtyRegion =
4708         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4709       assert(dirtyRegion.start() >= nextAddr,
4710              "returned region inconsistent?");
4711     }
4712     // Remember where the next search should begin.
4713     // The returned region (if non-empty) is a right open interval,
4714     // so lastOffset is obtained from the right end of that
4715     // interval.
4716     lastAddr = dirtyRegion.end();
4717     // Should do something more transparent and less hacky XXX
4718     numDirtyCards =
4719       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4720 
4721     // We'll scan the cards in the dirty region (with periodic
4722     // yields for foreground GC as needed).
4723     if (!dirtyRegion.is_empty()) {
4724       assert(numDirtyCards > 0, "consistency check");
4725       HeapWord* stop_point = NULL;
4726       stopTimer();
4727       // Potential yield point
4728       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4729                                bitMapLock());
4730       startTimer();
4731       {
4732         verify_work_stacks_empty();
4733         verify_overflow_empty();
4734         sample_eden();
4735         DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4736         stop_point =
4737           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4738       }
4739       if (stop_point != NULL) {
4740         // The careful iteration stopped early either because it found an
4741         // uninitialized object, or because we were in the midst of an
4742         // "abortable preclean", which should now be aborted. Redirty
4743         // the bits corresponding to the partially-scanned or unscanned
4744         // cards. We'll either restart at the next block boundary or
4745         // abort the preclean.
4746         assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) ||
4747                (_collectorState == AbortablePreclean && should_abort_preclean()),
4748                "Unparsable objects should only be in perm gen.");
4749         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4750         if (should_abort_preclean()) {
4751           break; // out of preclean loop
4752         } else {
4753           // Compute the next address at which preclean should pick up;
4754           // might need bitMapLock in order to read P-bits.
4755           lastAddr = next_card_start_after_block(stop_point);
4756         }
4757       }
4758     } else {
4759       assert(lastAddr == endAddr, "consistency check");
4760       assert(numDirtyCards == 0, "consistency check");
4761       break;
4762     }
4763   }
4764   verify_work_stacks_empty();
4765   verify_overflow_empty();
4766   return cumNumDirtyCards;
4767 }
4768 
4769 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4770 // below are largely identical; if you need to modify
4771 // one of these methods, please check the other method too.
4772 
4773 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4774   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4775   // strategy: it's similar to precleamModUnionTable above, in that
4776   // we accumulate contiguous ranges of dirty cards, mark these cards
4777   // precleaned, then scan the region covered by these cards.
4778   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4779   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4780 
4781   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4782 
4783   size_t numDirtyCards, cumNumDirtyCards;
4784   HeapWord *lastAddr, *nextAddr;
4785 
4786   for (cumNumDirtyCards = numDirtyCards = 0,
4787        nextAddr = lastAddr = startAddr;
4788        nextAddr < endAddr;
4789        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4790 
4791     ResourceMark rm;
4792     HandleMark   hm;
4793 
4794     MemRegion dirtyRegion;
4795     {
4796       // See comments in "Precleaning notes" above on why we
4797       // do this locking. XXX Could the locking overheads be
4798       // too high when dirty cards are sparse? [I don't think so.]
4799       stopTimer();
4800       CMSTokenSync x(true); // is cms thread
4801       startTimer();
4802       sample_eden();
4803       // Get and clear dirty region from card table
4804       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4805                                     MemRegion(nextAddr, endAddr),
4806                                     true,
4807                                     CardTableModRefBS::precleaned_card_val());
4808 
4809       assert(dirtyRegion.start() >= nextAddr,
4810              "returned region inconsistent?");
4811     }
4812     lastAddr = dirtyRegion.end();
4813     numDirtyCards =
4814       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4815 
4816     if (!dirtyRegion.is_empty()) {
4817       stopTimer();
4818       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4819       startTimer();
4820       sample_eden();
4821       verify_work_stacks_empty();
4822       verify_overflow_empty();
4823       DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4824       HeapWord* stop_point =
4825         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4826       if (stop_point != NULL) {
4827         // The careful iteration stopped early because it found an
4828         // uninitialized object.  Redirty the bits corresponding to the
4829         // partially-scanned or unscanned cards, and start again at the
4830         // next block boundary.
4831         assert(CMSPermGenPrecleaningEnabled ||
4832                (_collectorState == AbortablePreclean && should_abort_preclean()),
4833                "Unparsable objects should only be in perm gen.");
4834         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4835         if (should_abort_preclean()) {
4836           break; // out of preclean loop
4837         } else {
4838           // Compute the next address at which preclean should pick up.
4839           lastAddr = next_card_start_after_block(stop_point);
4840         }
4841       }
4842     } else {
4843       break;
4844     }
4845   }
4846   verify_work_stacks_empty();
4847   verify_overflow_empty();
4848   return cumNumDirtyCards;
4849 }
4850 
4851 void CMSCollector::checkpointRootsFinal(bool asynch,
4852   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4853   assert(_collectorState == FinalMarking, "incorrect state transition?");
4854   check_correct_thread_executing();
4855   // world is stopped at this checkpoint
4856   assert(SafepointSynchronize::is_at_safepoint(),
4857          "world should be stopped");
4858   TraceCMSMemoryManagerStats tms(_collectorState);
4859   verify_work_stacks_empty();
4860   verify_overflow_empty();
4861 
4862   SpecializationStats::clear();
4863   if (PrintGCDetails) {
4864     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4865                         _young_gen->used() / K,
4866                         _young_gen->capacity() / K);
4867   }
4868   if (asynch) {
4869     if (CMSScavengeBeforeRemark) {
4870       GenCollectedHeap* gch = GenCollectedHeap::heap();
4871       // Temporarily set flag to false, GCH->do_collection will
4872       // expect it to be false and set to true
4873       FlagSetting fl(gch->_is_gc_active, false);
4874       NOT_PRODUCT(TraceTime t("Scavenge-Before-Remark",
4875         PrintGCDetails && Verbose, true, gclog_or_tty);)
4876       int level = _cmsGen->level() - 1;
4877       if (level >= 0) {
4878         gch->do_collection(true,        // full (i.e. force, see below)
4879                            false,       // !clear_all_soft_refs
4880                            0,           // size
4881                            false,       // is_tlab
4882                            level        // max_level
4883                           );
4884       }
4885     }
4886     FreelistLocker x(this);
4887     MutexLockerEx y(bitMapLock(),
4888                     Mutex::_no_safepoint_check_flag);
4889     assert(!init_mark_was_synchronous, "but that's impossible!");
4890     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
4891   } else {
4892     // already have all the locks
4893     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
4894                              init_mark_was_synchronous);
4895   }
4896   verify_work_stacks_empty();
4897   verify_overflow_empty();
4898   SpecializationStats::print();
4899 }
4900 
4901 void CMSCollector::checkpointRootsFinalWork(bool asynch,
4902   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4903 
4904   NOT_PRODUCT(TraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, gclog_or_tty);)
4905 
4906   assert(haveFreelistLocks(), "must have free list locks");
4907   assert_lock_strong(bitMapLock());
4908 
4909   if (UseAdaptiveSizePolicy) {
4910     size_policy()->checkpoint_roots_final_begin();
4911   }
4912 
4913   ResourceMark rm;
4914   HandleMark   hm;
4915 
4916   GenCollectedHeap* gch = GenCollectedHeap::heap();
4917 
4918   if (should_unload_classes()) {
4919     CodeCache::gc_prologue();
4920   }
4921   assert(haveFreelistLocks(), "must have free list locks");
4922   assert_lock_strong(bitMapLock());
4923 
4924   DEBUG_ONLY(RememberKlassesChecker fmx(should_unload_classes());)
4925   if (!init_mark_was_synchronous) {
4926     // We might assume that we need not fill TLAB's when
4927     // CMSScavengeBeforeRemark is set, because we may have just done
4928     // a scavenge which would have filled all TLAB's -- and besides
4929     // Eden would be empty. This however may not always be the case --
4930     // for instance although we asked for a scavenge, it may not have
4931     // happened because of a JNI critical section. We probably need
4932     // a policy for deciding whether we can in that case wait until
4933     // the critical section releases and then do the remark following
4934     // the scavenge, and skip it here. In the absence of that policy,
4935     // or of an indication of whether the scavenge did indeed occur,
4936     // we cannot rely on TLAB's having been filled and must do
4937     // so here just in case a scavenge did not happen.
4938     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4939     // Update the saved marks which may affect the root scans.
4940     gch->save_marks();
4941 
4942     {
4943       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4944 
4945       // Note on the role of the mod union table:
4946       // Since the marker in "markFromRoots" marks concurrently with
4947       // mutators, it is possible for some reachable objects not to have been
4948       // scanned. For instance, an only reference to an object A was
4949       // placed in object B after the marker scanned B. Unless B is rescanned,
4950       // A would be collected. Such updates to references in marked objects
4951       // are detected via the mod union table which is the set of all cards
4952       // dirtied since the first checkpoint in this GC cycle and prior to
4953       // the most recent young generation GC, minus those cleaned up by the
4954       // concurrent precleaning.
4955       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
4956         TraceTime t("Rescan (parallel) ", PrintGCDetails, false, gclog_or_tty);
4957         do_remark_parallel();
4958       } else {
4959         TraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4960                     gclog_or_tty);
4961         do_remark_non_parallel();
4962       }
4963     }
4964   } else {
4965     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
4966     // The initial mark was stop-world, so there's no rescanning to
4967     // do; go straight on to the next step below.
4968   }
4969   verify_work_stacks_empty();
4970   verify_overflow_empty();
4971 
4972   {
4973     NOT_PRODUCT(TraceTime ts("refProcessingWork", PrintGCDetails, false, gclog_or_tty);)
4974     refProcessingWork(asynch, clear_all_soft_refs);
4975   }
4976   verify_work_stacks_empty();
4977   verify_overflow_empty();
4978 
4979   if (should_unload_classes()) {
4980     CodeCache::gc_epilogue();
4981   }
4982   JvmtiExport::gc_epilogue();
4983 
4984   // If we encountered any (marking stack / work queue) overflow
4985   // events during the current CMS cycle, take appropriate
4986   // remedial measures, where possible, so as to try and avoid
4987   // recurrence of that condition.
4988   assert(_markStack.isEmpty(), "No grey objects");
4989   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4990                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4991   if (ser_ovflw > 0) {
4992     if (PrintCMSStatistics != 0) {
4993       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4994         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
4995         ", kac_preclean="SIZE_FORMAT")",
4996         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4997         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4998     }
4999     _markStack.expand();
5000     _ser_pmc_remark_ovflw = 0;
5001     _ser_pmc_preclean_ovflw = 0;
5002     _ser_kac_preclean_ovflw = 0;
5003     _ser_kac_ovflw = 0;
5004   }
5005   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
5006     if (PrintCMSStatistics != 0) {
5007       gclog_or_tty->print_cr("Work queue overflow (benign) "
5008         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
5009         _par_pmc_remark_ovflw, _par_kac_ovflw);
5010     }
5011     _par_pmc_remark_ovflw = 0;
5012     _par_kac_ovflw = 0;
5013   }
5014   if (PrintCMSStatistics != 0) {
5015      if (_markStack._hit_limit > 0) {
5016        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
5017                               _markStack._hit_limit);
5018      }
5019      if (_markStack._failed_double > 0) {
5020        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
5021                               " current capacity "SIZE_FORMAT,
5022                               _markStack._failed_double,
5023                               _markStack.capacity());
5024      }
5025   }
5026   _markStack._hit_limit = 0;
5027   _markStack._failed_double = 0;
5028 
5029   // Check that all the klasses have been checked
5030   assert(_revisitStack.isEmpty(), "Not all klasses revisited");
5031 
5032   if ((VerifyAfterGC || VerifyDuringGC) &&
5033       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5034     verify_after_remark();
5035   }
5036 
5037   // Change under the freelistLocks.
5038   _collectorState = Sweeping;
5039   // Call isAllClear() under bitMapLock
5040   assert(_modUnionTable.isAllClear(), "Should be clear by end of the"
5041     " final marking");
5042   if (UseAdaptiveSizePolicy) {
5043     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
5044   }
5045 }
5046 
5047 // Parallel remark task
5048 class CMSParRemarkTask: public AbstractGangTask {
5049   CMSCollector* _collector;
5050   int           _n_workers;
5051   CompactibleFreeListSpace* _cms_space;
5052   CompactibleFreeListSpace* _perm_space;
5053 
5054   // The per-thread work queues, available here for stealing.
5055   OopTaskQueueSet*       _task_queues;
5056   ParallelTaskTerminator _term;
5057 
5058  public:
5059   CMSParRemarkTask(CMSCollector* collector,
5060                    CompactibleFreeListSpace* cms_space,
5061                    CompactibleFreeListSpace* perm_space,
5062                    int n_workers, FlexibleWorkGang* workers,
5063                    OopTaskQueueSet* task_queues):
5064     AbstractGangTask("Rescan roots and grey objects in parallel"),
5065     _collector(collector),
5066     _cms_space(cms_space), _perm_space(perm_space),
5067     _n_workers(n_workers),
5068     _task_queues(task_queues),
5069     _term(n_workers, task_queues) { }
5070 
5071   OopTaskQueueSet* task_queues() { return _task_queues; }
5072 
5073   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5074 
5075   ParallelTaskTerminator* terminator() { return &_term; }
5076   int n_workers() { return _n_workers; }
5077 
5078   void work(int i);
5079 
5080  private:
5081   // Work method in support of parallel rescan ... of young gen spaces
5082   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
5083                              ContiguousSpace* space,
5084                              HeapWord** chunk_array, size_t chunk_top);
5085 
5086   // ... of  dirty cards in old space
5087   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5088                                   Par_MarkRefsIntoAndScanClosure* cl);
5089 
5090   // ... work stealing for the above
5091   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5092 };
5093 
5094 // work_queue(i) is passed to the closure
5095 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5096 // also is passed to do_dirty_card_rescan_tasks() and to
5097 // do_work_steal() to select the i-th task_queue.
5098 
5099 void CMSParRemarkTask::work(int i) {
5100   elapsedTimer _timer;
5101   ResourceMark rm;
5102   HandleMark   hm;
5103 
5104   // ---------- rescan from roots --------------
5105   _timer.start();
5106   GenCollectedHeap* gch = GenCollectedHeap::heap();
5107   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5108     _collector->_span, _collector->ref_processor(),
5109     &(_collector->_markBitMap),
5110     work_queue(i), &(_collector->_revisitStack));
5111 
5112   // Rescan young gen roots first since these are likely
5113   // coarsely partitioned and may, on that account, constitute
5114   // the critical path; thus, it's best to start off that
5115   // work first.
5116   // ---------- young gen roots --------------
5117   {
5118     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5119     EdenSpace* eden_space = dng->eden();
5120     ContiguousSpace* from_space = dng->from();
5121     ContiguousSpace* to_space   = dng->to();
5122 
5123     HeapWord** eca = _collector->_eden_chunk_array;
5124     size_t     ect = _collector->_eden_chunk_index;
5125     HeapWord** sca = _collector->_survivor_chunk_array;
5126     size_t     sct = _collector->_survivor_chunk_index;
5127 
5128     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5129     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5130 
5131     do_young_space_rescan(i, &par_mrias_cl, to_space, NULL, 0);
5132     do_young_space_rescan(i, &par_mrias_cl, from_space, sca, sct);
5133     do_young_space_rescan(i, &par_mrias_cl, eden_space, eca, ect);
5134 
5135     _timer.stop();
5136     if (PrintCMSStatistics != 0) {
5137       gclog_or_tty->print_cr(
5138         "Finished young gen rescan work in %dth thread: %3.3f sec",
5139         i, _timer.seconds());
5140     }
5141   }
5142 
5143   // ---------- remaining roots --------------
5144   _timer.reset();
5145   _timer.start();
5146   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5147                                 false,     // yg was scanned above
5148                                 false,     // this is parallel code
5149                                 true,      // collecting perm gen
5150                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5151                                 &par_mrias_cl,
5152                                 true,   // walk all of code cache if (so & SO_CodeCache)
5153                                 NULL);
5154   assert(_collector->should_unload_classes()
5155          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
5156          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5157   _timer.stop();
5158   if (PrintCMSStatistics != 0) {
5159     gclog_or_tty->print_cr(
5160       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5161       i, _timer.seconds());
5162   }
5163 
5164   // ---------- rescan dirty cards ------------
5165   _timer.reset();
5166   _timer.start();
5167 
5168   // Do the rescan tasks for each of the two spaces
5169   // (cms_space and perm_space) in turn.
5170   // "i" is passed to select the "i-th" task_queue
5171   do_dirty_card_rescan_tasks(_cms_space, i, &par_mrias_cl);
5172   do_dirty_card_rescan_tasks(_perm_space, i, &par_mrias_cl);
5173   _timer.stop();
5174   if (PrintCMSStatistics != 0) {
5175     gclog_or_tty->print_cr(
5176       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5177       i, _timer.seconds());
5178   }
5179 
5180   // ---------- steal work from other threads ...
5181   // ---------- ... and drain overflow list.
5182   _timer.reset();
5183   _timer.start();
5184   do_work_steal(i, &par_mrias_cl, _collector->hash_seed(i));
5185   _timer.stop();
5186   if (PrintCMSStatistics != 0) {
5187     gclog_or_tty->print_cr(
5188       "Finished work stealing in %dth thread: %3.3f sec",
5189       i, _timer.seconds());
5190   }
5191 }
5192 
5193 // Note that parameter "i" is not used.
5194 void
5195 CMSParRemarkTask::do_young_space_rescan(int i,
5196   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
5197   HeapWord** chunk_array, size_t chunk_top) {
5198   // Until all tasks completed:
5199   // . claim an unclaimed task
5200   // . compute region boundaries corresponding to task claimed
5201   //   using chunk_array
5202   // . par_oop_iterate(cl) over that region
5203 
5204   ResourceMark rm;
5205   HandleMark   hm;
5206 
5207   SequentialSubTasksDone* pst = space->par_seq_tasks();
5208   assert(pst->valid(), "Uninitialized use?");
5209 
5210   int nth_task = 0;
5211   int n_tasks  = pst->n_tasks();
5212 
5213   HeapWord *start, *end;
5214   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5215     // We claimed task # nth_task; compute its boundaries.
5216     if (chunk_top == 0) {  // no samples were taken
5217       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5218       start = space->bottom();
5219       end   = space->top();
5220     } else if (nth_task == 0) {
5221       start = space->bottom();
5222       end   = chunk_array[nth_task];
5223     } else if (nth_task < (jint)chunk_top) {
5224       assert(nth_task >= 1, "Control point invariant");
5225       start = chunk_array[nth_task - 1];
5226       end   = chunk_array[nth_task];
5227     } else {
5228       assert(nth_task == (jint)chunk_top, "Control point invariant");
5229       start = chunk_array[chunk_top - 1];
5230       end   = space->top();
5231     }
5232     MemRegion mr(start, end);
5233     // Verify that mr is in space
5234     assert(mr.is_empty() || space->used_region().contains(mr),
5235            "Should be in space");
5236     // Verify that "start" is an object boundary
5237     assert(mr.is_empty() || oop(mr.start())->is_oop(),
5238            "Should be an oop");
5239     space->par_oop_iterate(mr, cl);
5240   }
5241   pst->all_tasks_completed();
5242 }
5243 
5244 void
5245 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5246   CompactibleFreeListSpace* sp, int i,
5247   Par_MarkRefsIntoAndScanClosure* cl) {
5248   // Until all tasks completed:
5249   // . claim an unclaimed task
5250   // . compute region boundaries corresponding to task claimed
5251   // . transfer dirty bits ct->mut for that region
5252   // . apply rescanclosure to dirty mut bits for that region
5253 
5254   ResourceMark rm;
5255   HandleMark   hm;
5256 
5257   OopTaskQueue* work_q = work_queue(i);
5258   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5259   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5260   // CAUTION: This closure has state that persists across calls to
5261   // the work method dirty_range_iterate_clear() in that it has
5262   // imbedded in it a (subtype of) UpwardsObjectClosure. The
5263   // use of that state in the imbedded UpwardsObjectClosure instance
5264   // assumes that the cards are always iterated (even if in parallel
5265   // by several threads) in monotonically increasing order per each
5266   // thread. This is true of the implementation below which picks
5267   // card ranges (chunks) in monotonically increasing order globally
5268   // and, a-fortiori, in monotonically increasing order per thread
5269   // (the latter order being a subsequence of the former).
5270   // If the work code below is ever reorganized into a more chaotic
5271   // work-partitioning form than the current "sequential tasks"
5272   // paradigm, the use of that persistent state will have to be
5273   // revisited and modified appropriately. See also related
5274   // bug 4756801 work on which should examine this code to make
5275   // sure that the changes there do not run counter to the
5276   // assumptions made here and necessary for correctness and
5277   // efficiency. Note also that this code might yield inefficient
5278   // behaviour in the case of very large objects that span one or
5279   // more work chunks. Such objects would potentially be scanned
5280   // several times redundantly. Work on 4756801 should try and
5281   // address that performance anomaly if at all possible. XXX
5282   MemRegion  full_span  = _collector->_span;
5283   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5284   CMSMarkStack* rs = &(_collector->_revisitStack);   // shared
5285   MarkFromDirtyCardsClosure
5286     greyRescanClosure(_collector, full_span, // entire span of interest
5287                       sp, bm, work_q, rs, cl);
5288 
5289   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5290   assert(pst->valid(), "Uninitialized use?");
5291   int nth_task = 0;
5292   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5293   MemRegion span = sp->used_region();
5294   HeapWord* start_addr = span.start();
5295   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5296                                            alignment);
5297   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5298   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5299          start_addr, "Check alignment");
5300   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5301          chunk_size, "Check alignment");
5302 
5303   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5304     // Having claimed the nth_task, compute corresponding mem-region,
5305     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
5306     // The alignment restriction ensures that we do not need any
5307     // synchronization with other gang-workers while setting or
5308     // clearing bits in thus chunk of the MUT.
5309     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5310                                     start_addr + (nth_task+1)*chunk_size);
5311     // The last chunk's end might be way beyond end of the
5312     // used region. In that case pull back appropriately.
5313     if (this_span.end() > end_addr) {
5314       this_span.set_end(end_addr);
5315       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5316     }
5317     // Iterate over the dirty cards covering this chunk, marking them
5318     // precleaned, and setting the corresponding bits in the mod union
5319     // table. Since we have been careful to partition at Card and MUT-word
5320     // boundaries no synchronization is needed between parallel threads.
5321     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5322                                                  &modUnionClosure);
5323 
5324     // Having transferred these marks into the modUnionTable,
5325     // rescan the marked objects on the dirty cards in the modUnionTable.
5326     // Even if this is at a synchronous collection, the initial marking
5327     // may have been done during an asynchronous collection so there
5328     // may be dirty bits in the mod-union table.
5329     _collector->_modUnionTable.dirty_range_iterate_clear(
5330                   this_span, &greyRescanClosure);
5331     _collector->_modUnionTable.verifyNoOneBitsInRange(
5332                                  this_span.start(),
5333                                  this_span.end());
5334   }
5335   pst->all_tasks_completed();  // declare that i am done
5336 }
5337 
5338 // . see if we can share work_queues with ParNew? XXX
5339 void
5340 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5341                                 int* seed) {
5342   OopTaskQueue* work_q = work_queue(i);
5343   NOT_PRODUCT(int num_steals = 0;)
5344   oop obj_to_scan;
5345   CMSBitMap* bm = &(_collector->_markBitMap);
5346 
5347   while (true) {
5348     // Completely finish any left over work from (an) earlier round(s)
5349     cl->trim_queue(0);
5350     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5351                                          (size_t)ParGCDesiredObjsFromOverflowList);
5352     // Now check if there's any work in the overflow list
5353     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5354     // only affects the number of attempts made to get work from the
5355     // overflow list and does not affect the number of workers.  Just
5356     // pass ParallelGCThreads so this behavior is unchanged.
5357     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5358                                                 work_q,
5359                                                 ParallelGCThreads)) {
5360       // found something in global overflow list;
5361       // not yet ready to go stealing work from others.
5362       // We'd like to assert(work_q->size() != 0, ...)
5363       // because we just took work from the overflow list,
5364       // but of course we can't since all of that could have
5365       // been already stolen from us.
5366       // "He giveth and He taketh away."
5367       continue;
5368     }
5369     // Verify that we have no work before we resort to stealing
5370     assert(work_q->size() == 0, "Have work, shouldn't steal");
5371     // Try to steal from other queues that have work
5372     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5373       NOT_PRODUCT(num_steals++;)
5374       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5375       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5376       // Do scanning work
5377       obj_to_scan->oop_iterate(cl);
5378       // Loop around, finish this work, and try to steal some more
5379     } else if (terminator()->offer_termination()) {
5380         break;  // nirvana from the infinite cycle
5381     }
5382   }
5383   NOT_PRODUCT(
5384     if (PrintCMSStatistics != 0) {
5385       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5386     }
5387   )
5388   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5389          "Else our work is not yet done");
5390 }
5391 
5392 // Return a thread-local PLAB recording array, as appropriate.
5393 void* CMSCollector::get_data_recorder(int thr_num) {
5394   if (_survivor_plab_array != NULL &&
5395       (CMSPLABRecordAlways ||
5396        (_collectorState > Marking && _collectorState < FinalMarking))) {
5397     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5398     ChunkArray* ca = &_survivor_plab_array[thr_num];
5399     ca->reset();   // clear it so that fresh data is recorded
5400     return (void*) ca;
5401   } else {
5402     return NULL;
5403   }
5404 }
5405 
5406 // Reset all the thread-local PLAB recording arrays
5407 void CMSCollector::reset_survivor_plab_arrays() {
5408   for (uint i = 0; i < ParallelGCThreads; i++) {
5409     _survivor_plab_array[i].reset();
5410   }
5411 }
5412 
5413 // Merge the per-thread plab arrays into the global survivor chunk
5414 // array which will provide the partitioning of the survivor space
5415 // for CMS rescan.
5416 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5417                                               int no_of_gc_threads) {
5418   assert(_survivor_plab_array  != NULL, "Error");
5419   assert(_survivor_chunk_array != NULL, "Error");
5420   assert(_collectorState == FinalMarking, "Error");
5421   for (int j = 0; j < no_of_gc_threads; j++) {
5422     _cursor[j] = 0;
5423   }
5424   HeapWord* top = surv->top();
5425   size_t i;
5426   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5427     HeapWord* min_val = top;          // Higher than any PLAB address
5428     uint      min_tid = 0;            // position of min_val this round
5429     for (int j = 0; j < no_of_gc_threads; j++) {
5430       ChunkArray* cur_sca = &_survivor_plab_array[j];
5431       if (_cursor[j] == cur_sca->end()) {
5432         continue;
5433       }
5434       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5435       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5436       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5437       if (cur_val < min_val) {
5438         min_tid = j;
5439         min_val = cur_val;
5440       } else {
5441         assert(cur_val < top, "All recorded addresses should be less");
5442       }
5443     }
5444     // At this point min_val and min_tid are respectively
5445     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5446     // and the thread (j) that witnesses that address.
5447     // We record this address in the _survivor_chunk_array[i]
5448     // and increment _cursor[min_tid] prior to the next round i.
5449     if (min_val == top) {
5450       break;
5451     }
5452     _survivor_chunk_array[i] = min_val;
5453     _cursor[min_tid]++;
5454   }
5455   // We are all done; record the size of the _survivor_chunk_array
5456   _survivor_chunk_index = i; // exclusive: [0, i)
5457   if (PrintCMSStatistics > 0) {
5458     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5459   }
5460   // Verify that we used up all the recorded entries
5461   #ifdef ASSERT
5462     size_t total = 0;
5463     for (int j = 0; j < no_of_gc_threads; j++) {
5464       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5465       total += _cursor[j];
5466     }
5467     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5468     // Check that the merged array is in sorted order
5469     if (total > 0) {
5470       for (size_t i = 0; i < total - 1; i++) {
5471         if (PrintCMSStatistics > 0) {
5472           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5473                               i, _survivor_chunk_array[i]);
5474         }
5475         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5476                "Not sorted");
5477       }
5478     }
5479   #endif // ASSERT
5480 }
5481 
5482 // Set up the space's par_seq_tasks structure for work claiming
5483 // for parallel rescan of young gen.
5484 // See ParRescanTask where this is currently used.
5485 void
5486 CMSCollector::
5487 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5488   assert(n_threads > 0, "Unexpected n_threads argument");
5489   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5490 
5491   // Eden space
5492   {
5493     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5494     assert(!pst->valid(), "Clobbering existing data?");
5495     // Each valid entry in [0, _eden_chunk_index) represents a task.
5496     size_t n_tasks = _eden_chunk_index + 1;
5497     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5498     // Sets the condition for completion of the subtask (how many threads
5499     // need to finish in order to be done).
5500     pst->set_n_threads(n_threads);
5501     pst->set_n_tasks((int)n_tasks);
5502   }
5503 
5504   // Merge the survivor plab arrays into _survivor_chunk_array
5505   if (_survivor_plab_array != NULL) {
5506     merge_survivor_plab_arrays(dng->from(), n_threads);
5507   } else {
5508     assert(_survivor_chunk_index == 0, "Error");
5509   }
5510 
5511   // To space
5512   {
5513     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5514     assert(!pst->valid(), "Clobbering existing data?");
5515     // Sets the condition for completion of the subtask (how many threads
5516     // need to finish in order to be done).
5517     pst->set_n_threads(n_threads);
5518     pst->set_n_tasks(1);
5519     assert(pst->valid(), "Error");
5520   }
5521 
5522   // From space
5523   {
5524     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5525     assert(!pst->valid(), "Clobbering existing data?");
5526     size_t n_tasks = _survivor_chunk_index + 1;
5527     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5528     // Sets the condition for completion of the subtask (how many threads
5529     // need to finish in order to be done).
5530     pst->set_n_threads(n_threads);
5531     pst->set_n_tasks((int)n_tasks);
5532     assert(pst->valid(), "Error");
5533   }
5534 }
5535 
5536 // Parallel version of remark
5537 void CMSCollector::do_remark_parallel() {
5538   GenCollectedHeap* gch = GenCollectedHeap::heap();
5539   FlexibleWorkGang* workers = gch->workers();
5540   assert(workers != NULL, "Need parallel worker threads.");
5541   int n_workers = workers->total_workers();
5542   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5543   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
5544 
5545   CMSParRemarkTask tsk(this,
5546     cms_space, perm_space,
5547     n_workers, workers, task_queues());
5548 
5549   // Set up for parallel process_strong_roots work.
5550   gch->set_par_threads(n_workers);
5551   // We won't be iterating over the cards in the card table updating
5552   // the younger_gen cards, so we shouldn't call the following else
5553   // the verification code as well as subsequent younger_refs_iterate
5554   // code would get confused. XXX
5555   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5556 
5557   // The young gen rescan work will not be done as part of
5558   // process_strong_roots (which currently doesn't knw how to
5559   // parallelize such a scan), but rather will be broken up into
5560   // a set of parallel tasks (via the sampling that the [abortable]
5561   // preclean phase did of EdenSpace, plus the [two] tasks of
5562   // scanning the [two] survivor spaces. Further fine-grain
5563   // parallelization of the scanning of the survivor spaces
5564   // themselves, and of precleaning of the younger gen itself
5565   // is deferred to the future.
5566   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5567 
5568   // The dirty card rescan work is broken up into a "sequence"
5569   // of parallel tasks (per constituent space) that are dynamically
5570   // claimed by the parallel threads.
5571   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5572   perm_space->initialize_sequential_subtasks_for_rescan(n_workers);
5573 
5574   // It turns out that even when we're using 1 thread, doing the work in a
5575   // separate thread causes wide variance in run times.  We can't help this
5576   // in the multi-threaded case, but we special-case n=1 here to get
5577   // repeatable measurements of the 1-thread overhead of the parallel code.
5578   if (n_workers > 1) {
5579     // Make refs discovery MT-safe
5580     ReferenceProcessorMTMutator mt(ref_processor(), true);
5581     GenCollectedHeap::StrongRootsScope srs(gch);
5582     workers->run_task(&tsk);
5583   } else {
5584     GenCollectedHeap::StrongRootsScope srs(gch);
5585     tsk.work(0);
5586   }
5587   gch->set_par_threads(0);  // 0 ==> non-parallel.
5588   // restore, single-threaded for now, any preserved marks
5589   // as a result of work_q overflow
5590   restore_preserved_marks_if_any();
5591 }
5592 
5593 // Non-parallel version of remark
5594 void CMSCollector::do_remark_non_parallel() {
5595   ResourceMark rm;
5596   HandleMark   hm;
5597   GenCollectedHeap* gch = GenCollectedHeap::heap();
5598   MarkRefsIntoAndScanClosure
5599     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
5600              &_markStack, &_revisitStack, this,
5601              false /* should_yield */, false /* not precleaning */);
5602   MarkFromDirtyCardsClosure
5603     markFromDirtyCardsClosure(this, _span,
5604                               NULL,  // space is set further below
5605                               &_markBitMap, &_markStack, &_revisitStack,
5606                               &mrias_cl);
5607   {
5608     TraceTime t("grey object rescan", PrintGCDetails, false, gclog_or_tty);
5609     // Iterate over the dirty cards, setting the corresponding bits in the
5610     // mod union table.
5611     {
5612       ModUnionClosure modUnionClosure(&_modUnionTable);
5613       _ct->ct_bs()->dirty_card_iterate(
5614                       _cmsGen->used_region(),
5615                       &modUnionClosure);
5616       _ct->ct_bs()->dirty_card_iterate(
5617                       _permGen->used_region(),
5618                       &modUnionClosure);
5619     }
5620     // Having transferred these marks into the modUnionTable, we just need
5621     // to rescan the marked objects on the dirty cards in the modUnionTable.
5622     // The initial marking may have been done during an asynchronous
5623     // collection so there may be dirty bits in the mod-union table.
5624     const int alignment =
5625       CardTableModRefBS::card_size * BitsPerWord;
5626     {
5627       // ... First handle dirty cards in CMS gen
5628       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5629       MemRegion ur = _cmsGen->used_region();
5630       HeapWord* lb = ur.start();
5631       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5632       MemRegion cms_span(lb, ub);
5633       _modUnionTable.dirty_range_iterate_clear(cms_span,
5634                                                &markFromDirtyCardsClosure);
5635       verify_work_stacks_empty();
5636       if (PrintCMSStatistics != 0) {
5637         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5638           markFromDirtyCardsClosure.num_dirty_cards());
5639       }
5640     }
5641     {
5642       // .. and then repeat for dirty cards in perm gen
5643       markFromDirtyCardsClosure.set_space(_permGen->cmsSpace());
5644       MemRegion ur = _permGen->used_region();
5645       HeapWord* lb = ur.start();
5646       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5647       MemRegion perm_span(lb, ub);
5648       _modUnionTable.dirty_range_iterate_clear(perm_span,
5649                                                &markFromDirtyCardsClosure);
5650       verify_work_stacks_empty();
5651       if (PrintCMSStatistics != 0) {
5652         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ",
5653           markFromDirtyCardsClosure.num_dirty_cards());
5654       }
5655     }
5656   }
5657   if (VerifyDuringGC &&
5658       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5659     HandleMark hm;  // Discard invalid handles created during verification
5660     Universe::verify(true);
5661   }
5662   {
5663     TraceTime t("root rescan", PrintGCDetails, false, gclog_or_tty);
5664 
5665     verify_work_stacks_empty();
5666 
5667     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5668     GenCollectedHeap::StrongRootsScope srs(gch);
5669     gch->gen_process_strong_roots(_cmsGen->level(),
5670                                   true,  // younger gens as roots
5671                                   false, // use the local StrongRootsScope
5672                                   true,  // collecting perm gen
5673                                   SharedHeap::ScanningOption(roots_scanning_options()),
5674                                   &mrias_cl,
5675                                   true,   // walk code active on stacks
5676                                   NULL);
5677     assert(should_unload_classes()
5678            || (roots_scanning_options() & SharedHeap::SO_CodeCache),
5679            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5680   }
5681   verify_work_stacks_empty();
5682   // Restore evacuated mark words, if any, used for overflow list links
5683   if (!CMSOverflowEarlyRestoration) {
5684     restore_preserved_marks_if_any();
5685   }
5686   verify_overflow_empty();
5687 }
5688 
5689 ////////////////////////////////////////////////////////
5690 // Parallel Reference Processing Task Proxy Class
5691 ////////////////////////////////////////////////////////
5692 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5693   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5694   CMSCollector*          _collector;
5695   CMSBitMap*             _mark_bit_map;
5696   const MemRegion        _span;
5697   ProcessTask&           _task;
5698 
5699 public:
5700   CMSRefProcTaskProxy(ProcessTask&     task,
5701                       CMSCollector*    collector,
5702                       const MemRegion& span,
5703                       CMSBitMap*       mark_bit_map,
5704                       AbstractWorkGang* workers,
5705                       OopTaskQueueSet* task_queues):
5706     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5707       task_queues),
5708     _task(task),
5709     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5710     {
5711       assert(_collector->_span.equals(_span) && !_span.is_empty(),
5712              "Inconsistency in _span");
5713     }
5714 
5715   OopTaskQueueSet* task_queues() { return queues(); }
5716 
5717   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5718 
5719   void do_work_steal(int i,
5720                      CMSParDrainMarkingStackClosure* drain,
5721                      CMSParKeepAliveClosure* keep_alive,
5722                      int* seed);
5723 
5724   virtual void work(int i);
5725 };
5726 
5727 void CMSRefProcTaskProxy::work(int i) {
5728   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5729   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5730                                         _mark_bit_map,
5731                                         &_collector->_revisitStack,
5732                                         work_queue(i));
5733   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5734                                                  _mark_bit_map,
5735                                                  &_collector->_revisitStack,
5736                                                  work_queue(i));
5737   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5738   _task.work(i, is_alive_closure, par_keep_alive, par_drain_stack);
5739   if (_task.marks_oops_alive()) {
5740     do_work_steal(i, &par_drain_stack, &par_keep_alive,
5741                   _collector->hash_seed(i));
5742   }
5743   assert(work_queue(i)->size() == 0, "work_queue should be empty");
5744   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5745 }
5746 
5747 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5748   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5749   EnqueueTask& _task;
5750 
5751 public:
5752   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5753     : AbstractGangTask("Enqueue reference objects in parallel"),
5754       _task(task)
5755   { }
5756 
5757   virtual void work(int i)
5758   {
5759     _task.work(i);
5760   }
5761 };
5762 
5763 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5764   MemRegion span, CMSBitMap* bit_map, CMSMarkStack* revisit_stack,
5765   OopTaskQueue* work_queue):
5766    Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
5767    _span(span),
5768    _bit_map(bit_map),
5769    _work_queue(work_queue),
5770    _mark_and_push(collector, span, bit_map, revisit_stack, work_queue),
5771    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5772                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5773 { }
5774 
5775 // . see if we can share work_queues with ParNew? XXX
5776 void CMSRefProcTaskProxy::do_work_steal(int i,
5777   CMSParDrainMarkingStackClosure* drain,
5778   CMSParKeepAliveClosure* keep_alive,
5779   int* seed) {
5780   OopTaskQueue* work_q = work_queue(i);
5781   NOT_PRODUCT(int num_steals = 0;)
5782   oop obj_to_scan;
5783 
5784   while (true) {
5785     // Completely finish any left over work from (an) earlier round(s)
5786     drain->trim_queue(0);
5787     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5788                                          (size_t)ParGCDesiredObjsFromOverflowList);
5789     // Now check if there's any work in the overflow list
5790     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5791     // only affects the number of attempts made to get work from the
5792     // overflow list and does not affect the number of workers.  Just
5793     // pass ParallelGCThreads so this behavior is unchanged.
5794     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5795                                                 work_q,
5796                                                 ParallelGCThreads)) {
5797       // Found something in global overflow list;
5798       // not yet ready to go stealing work from others.
5799       // We'd like to assert(work_q->size() != 0, ...)
5800       // because we just took work from the overflow list,
5801       // but of course we can't, since all of that might have
5802       // been already stolen from us.
5803       continue;
5804     }
5805     // Verify that we have no work before we resort to stealing
5806     assert(work_q->size() == 0, "Have work, shouldn't steal");
5807     // Try to steal from other queues that have work
5808     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5809       NOT_PRODUCT(num_steals++;)
5810       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5811       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5812       // Do scanning work
5813       obj_to_scan->oop_iterate(keep_alive);
5814       // Loop around, finish this work, and try to steal some more
5815     } else if (terminator()->offer_termination()) {
5816       break;  // nirvana from the infinite cycle
5817     }
5818   }
5819   NOT_PRODUCT(
5820     if (PrintCMSStatistics != 0) {
5821       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5822     }
5823   )
5824 }
5825 
5826 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5827 {
5828   GenCollectedHeap* gch = GenCollectedHeap::heap();
5829   FlexibleWorkGang* workers = gch->workers();
5830   assert(workers != NULL, "Need parallel worker threads.");
5831   CMSRefProcTaskProxy rp_task(task, &_collector,
5832                               _collector.ref_processor()->span(),
5833                               _collector.markBitMap(),
5834                               workers, _collector.task_queues());
5835   workers->run_task(&rp_task);
5836 }
5837 
5838 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5839 {
5840 
5841   GenCollectedHeap* gch = GenCollectedHeap::heap();
5842   FlexibleWorkGang* workers = gch->workers();
5843   assert(workers != NULL, "Need parallel worker threads.");
5844   CMSRefEnqueueTaskProxy enq_task(task);
5845   workers->run_task(&enq_task);
5846 }
5847 
5848 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
5849 
5850   ResourceMark rm;
5851   HandleMark   hm;
5852 
5853   ReferenceProcessor* rp = ref_processor();
5854   assert(rp->span().equals(_span), "Spans should be equal");
5855   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5856   // Process weak references.
5857   rp->setup_policy(clear_all_soft_refs);
5858   verify_work_stacks_empty();
5859 
5860   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5861                                           &_markStack, &_revisitStack,
5862                                           false /* !preclean */);
5863   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5864                                 _span, &_markBitMap, &_markStack,
5865                                 &cmsKeepAliveClosure, false /* !preclean */);
5866   {
5867     TraceTime t("weak refs processing", PrintGCDetails, false, gclog_or_tty);
5868     if (rp->processing_is_mt()) {
5869       // Set the degree of MT here.  If the discovery is done MT, there
5870       // may have been a different number of threads doing the discovery
5871       // and a different number of discovered lists may have Ref objects.
5872       // That is OK as long as the Reference lists are balanced (see
5873       // balance_all_queues() and balance_queues()).
5874 
5875 
5876       rp->set_mt_degree(ParallelGCThreads);
5877       CMSRefProcTaskExecutor task_executor(*this);
5878       rp->process_discovered_references(&_is_alive_closure,
5879                                         &cmsKeepAliveClosure,
5880                                         &cmsDrainMarkingStackClosure,
5881                                         &task_executor);
5882     } else {
5883       rp->process_discovered_references(&_is_alive_closure,
5884                                         &cmsKeepAliveClosure,
5885                                         &cmsDrainMarkingStackClosure,
5886                                         NULL);
5887     }
5888     verify_work_stacks_empty();
5889   }
5890 
5891   if (should_unload_classes()) {
5892     {
5893       TraceTime t("class unloading", PrintGCDetails, false, gclog_or_tty);
5894 
5895       // Follow SystemDictionary roots and unload classes
5896       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5897 
5898       // Follow CodeCache roots and unload any methods marked for unloading
5899       CodeCache::do_unloading(&_is_alive_closure,
5900                               &cmsKeepAliveClosure,
5901                               purged_class);
5902 
5903       cmsDrainMarkingStackClosure.do_void();
5904       verify_work_stacks_empty();
5905 
5906       // Update subklass/sibling/implementor links in KlassKlass descendants
5907       assert(!_revisitStack.isEmpty(), "revisit stack should not be empty");
5908       oop k;
5909       while ((k = _revisitStack.pop()) != NULL) {
5910         ((Klass*)(oopDesc*)k)->follow_weak_klass_links(
5911                        &_is_alive_closure,
5912                        &cmsKeepAliveClosure);
5913       }
5914       assert(!ClassUnloading ||
5915              (_markStack.isEmpty() && overflow_list_is_empty()),
5916              "Should not have found new reachable objects");
5917       assert(_revisitStack.isEmpty(), "revisit stack should have been drained");
5918       cmsDrainMarkingStackClosure.do_void();
5919       verify_work_stacks_empty();
5920     }
5921 
5922     {
5923       TraceTime t("scrub symbol & string tables", PrintGCDetails, false, gclog_or_tty);
5924       // Now clean up stale oops in StringTable
5925       StringTable::unlink(&_is_alive_closure);
5926       // Clean up unreferenced symbols in symbol table.
5927       SymbolTable::unlink();
5928     }
5929   }
5930 
5931   verify_work_stacks_empty();
5932   // Restore any preserved marks as a result of mark stack or
5933   // work queue overflow
5934   restore_preserved_marks_if_any();  // done single-threaded for now
5935 
5936   rp->set_enqueuing_is_done(true);
5937   if (rp->processing_is_mt()) {
5938     rp->balance_all_queues();
5939     CMSRefProcTaskExecutor task_executor(*this);
5940     rp->enqueue_discovered_references(&task_executor);
5941   } else {
5942     rp->enqueue_discovered_references(NULL);
5943   }
5944   rp->verify_no_references_recorded();
5945   assert(!rp->discovery_enabled(), "should have been disabled");
5946 }
5947 
5948 #ifndef PRODUCT
5949 void CMSCollector::check_correct_thread_executing() {
5950   Thread* t = Thread::current();
5951   // Only the VM thread or the CMS thread should be here.
5952   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5953          "Unexpected thread type");
5954   // If this is the vm thread, the foreground process
5955   // should not be waiting.  Note that _foregroundGCIsActive is
5956   // true while the foreground collector is waiting.
5957   if (_foregroundGCShouldWait) {
5958     // We cannot be the VM thread
5959     assert(t->is_ConcurrentGC_thread(),
5960            "Should be CMS thread");
5961   } else {
5962     // We can be the CMS thread only if we are in a stop-world
5963     // phase of CMS collection.
5964     if (t->is_ConcurrentGC_thread()) {
5965       assert(_collectorState == InitialMarking ||
5966              _collectorState == FinalMarking,
5967              "Should be a stop-world phase");
5968       // The CMS thread should be holding the CMS_token.
5969       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5970              "Potential interference with concurrently "
5971              "executing VM thread");
5972     }
5973   }
5974 }
5975 #endif
5976 
5977 void CMSCollector::sweep(bool asynch) {
5978   assert(_collectorState == Sweeping, "just checking");
5979   check_correct_thread_executing();
5980   verify_work_stacks_empty();
5981   verify_overflow_empty();
5982   increment_sweep_count();
5983   TraceCMSMemoryManagerStats tms(_collectorState);
5984 
5985   _inter_sweep_timer.stop();
5986   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5987   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
5988 
5989   // PermGen verification support: If perm gen sweeping is disabled in
5990   // this cycle, we preserve the perm gen object "deadness" information
5991   // in the perm_gen_verify_bit_map. In order to do that we traverse
5992   // all blocks in perm gen and mark all dead objects.
5993   if (verifying() && !should_unload_classes()) {
5994     assert(perm_gen_verify_bit_map()->sizeInBits() != 0,
5995            "Should have already been allocated");
5996     MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(),
5997                                markBitMap(), perm_gen_verify_bit_map());
5998     if (asynch) {
5999       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
6000                                bitMapLock());
6001       _permGen->cmsSpace()->blk_iterate(&mdo);
6002     } else {
6003       // In the case of synchronous sweep, we already have
6004       // the requisite locks/tokens.
6005       _permGen->cmsSpace()->blk_iterate(&mdo);
6006     }
6007   }
6008 
6009   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6010   _intra_sweep_timer.reset();
6011   _intra_sweep_timer.start();
6012   if (asynch) {
6013     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6014     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
6015     // First sweep the old gen then the perm gen
6016     {
6017       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6018                                bitMapLock());
6019       sweepWork(_cmsGen, asynch);
6020     }
6021 
6022     // Now repeat for perm gen
6023     if (should_unload_classes()) {
6024       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
6025                              bitMapLock());
6026       sweepWork(_permGen, asynch);
6027     }
6028 
6029     // Update Universe::_heap_*_at_gc figures.
6030     // We need all the free list locks to make the abstract state
6031     // transition from Sweeping to Resetting. See detailed note
6032     // further below.
6033     {
6034       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6035                                _permGen->freelistLock());
6036       // Update heap occupancy information which is used as
6037       // input to soft ref clearing policy at the next gc.
6038       Universe::update_heap_info_at_gc();
6039       _collectorState = Resizing;
6040     }
6041   } else {
6042     // already have needed locks
6043     sweepWork(_cmsGen,  asynch);
6044 
6045     if (should_unload_classes()) {
6046       sweepWork(_permGen, asynch);
6047     }
6048     // Update heap occupancy information which is used as
6049     // input to soft ref clearing policy at the next gc.
6050     Universe::update_heap_info_at_gc();
6051     _collectorState = Resizing;
6052   }
6053   verify_work_stacks_empty();
6054   verify_overflow_empty();
6055 
6056   _intra_sweep_timer.stop();
6057   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6058 
6059   _inter_sweep_timer.reset();
6060   _inter_sweep_timer.start();
6061 
6062   update_time_of_last_gc(os::javaTimeMillis());
6063 
6064   // NOTE on abstract state transitions:
6065   // Mutators allocate-live and/or mark the mod-union table dirty
6066   // based on the state of the collection.  The former is done in
6067   // the interval [Marking, Sweeping] and the latter in the interval
6068   // [Marking, Sweeping).  Thus the transitions into the Marking state
6069   // and out of the Sweeping state must be synchronously visible
6070   // globally to the mutators.
6071   // The transition into the Marking state happens with the world
6072   // stopped so the mutators will globally see it.  Sweeping is
6073   // done asynchronously by the background collector so the transition
6074   // from the Sweeping state to the Resizing state must be done
6075   // under the freelistLock (as is the check for whether to
6076   // allocate-live and whether to dirty the mod-union table).
6077   assert(_collectorState == Resizing, "Change of collector state to"
6078     " Resizing must be done under the freelistLocks (plural)");
6079 
6080   // Now that sweeping has been completed, we clear
6081   // the incremental_collection_failed flag,
6082   // thus inviting a younger gen collection to promote into
6083   // this generation. If such a promotion may still fail,
6084   // the flag will be set again when a young collection is
6085   // attempted.
6086   GenCollectedHeap* gch = GenCollectedHeap::heap();
6087   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6088   gch->update_full_collections_completed(_collection_count_start);
6089 }
6090 
6091 // FIX ME!!! Looks like this belongs in CFLSpace, with
6092 // CMSGen merely delegating to it.
6093 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6094   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6095   HeapWord*  minAddr        = _cmsSpace->bottom();
6096   HeapWord*  largestAddr    =
6097     (HeapWord*) _cmsSpace->dictionary()->findLargestDict();
6098   if (largestAddr == NULL) {
6099     // The dictionary appears to be empty.  In this case
6100     // try to coalesce at the end of the heap.
6101     largestAddr = _cmsSpace->end();
6102   }
6103   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6104   size_t nearLargestOffset =
6105     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6106   if (PrintFLSStatistics != 0) {
6107     gclog_or_tty->print_cr(
6108       "CMS: Large Block: " PTR_FORMAT ";"
6109       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6110       largestAddr,
6111       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6112   }
6113   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6114 }
6115 
6116 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6117   return addr >= _cmsSpace->nearLargestChunk();
6118 }
6119 
6120 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6121   return _cmsSpace->find_chunk_at_end();
6122 }
6123 
6124 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6125                                                     bool full) {
6126   // The next lower level has been collected.  Gather any statistics
6127   // that are of interest at this point.
6128   if (!full && (current_level + 1) == level()) {
6129     // Gather statistics on the young generation collection.
6130     collector()->stats().record_gc0_end(used());
6131   }
6132 }
6133 
6134 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
6135   GenCollectedHeap* gch = GenCollectedHeap::heap();
6136   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
6137     "Wrong type of heap");
6138   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
6139     gch->gen_policy()->size_policy();
6140   assert(sp->is_gc_cms_adaptive_size_policy(),
6141     "Wrong type of size policy");
6142   return sp;
6143 }
6144 
6145 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6146   if (PrintGCDetails && Verbose) {
6147     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6148   }
6149   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6150   _debug_collection_type =
6151     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6152   if (PrintGCDetails && Verbose) {
6153     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6154   }
6155 }
6156 
6157 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6158   bool asynch) {
6159   // We iterate over the space(s) underlying this generation,
6160   // checking the mark bit map to see if the bits corresponding
6161   // to specific blocks are marked or not. Blocks that are
6162   // marked are live and are not swept up. All remaining blocks
6163   // are swept up, with coalescing on-the-fly as we sweep up
6164   // contiguous free and/or garbage blocks:
6165   // We need to ensure that the sweeper synchronizes with allocators
6166   // and stop-the-world collectors. In particular, the following
6167   // locks are used:
6168   // . CMS token: if this is held, a stop the world collection cannot occur
6169   // . freelistLock: if this is held no allocation can occur from this
6170   //                 generation by another thread
6171   // . bitMapLock: if this is held, no other thread can access or update
6172   //
6173 
6174   // Note that we need to hold the freelistLock if we use
6175   // block iterate below; else the iterator might go awry if
6176   // a mutator (or promotion) causes block contents to change
6177   // (for instance if the allocator divvies up a block).
6178   // If we hold the free list lock, for all practical purposes
6179   // young generation GC's can't occur (they'll usually need to
6180   // promote), so we might as well prevent all young generation
6181   // GC's while we do a sweeping step. For the same reason, we might
6182   // as well take the bit map lock for the entire duration
6183 
6184   // check that we hold the requisite locks
6185   assert(have_cms_token(), "Should hold cms token");
6186   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6187          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6188         "Should possess CMS token to sweep");
6189   assert_lock_strong(gen->freelistLock());
6190   assert_lock_strong(bitMapLock());
6191 
6192   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6193   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6194   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6195                                       _inter_sweep_estimate.padded_average(),
6196                                       _intra_sweep_estimate.padded_average());
6197   gen->setNearLargestChunk();
6198 
6199   {
6200     SweepClosure sweepClosure(this, gen, &_markBitMap,
6201                             CMSYield && asynch);
6202     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6203     // We need to free-up/coalesce garbage/blocks from a
6204     // co-terminal free run. This is done in the SweepClosure
6205     // destructor; so, do not remove this scope, else the
6206     // end-of-sweep-census below will be off by a little bit.
6207   }
6208   gen->cmsSpace()->sweep_completed();
6209   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6210   if (should_unload_classes()) {                // unloaded classes this cycle,
6211     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6212   } else {                                      // did not unload classes,
6213     _concurrent_cycles_since_last_unload++;     // ... increment count
6214   }
6215 }
6216 
6217 // Reset CMS data structures (for now just the marking bit map)
6218 // preparatory for the next cycle.
6219 void CMSCollector::reset(bool asynch) {
6220   GenCollectedHeap* gch = GenCollectedHeap::heap();
6221   CMSAdaptiveSizePolicy* sp = size_policy();
6222   AdaptiveSizePolicyOutput(sp, gch->total_collections());
6223   if (asynch) {
6224     CMSTokenSyncWithLocks ts(true, bitMapLock());
6225 
6226     // If the state is not "Resetting", the foreground  thread
6227     // has done a collection and the resetting.
6228     if (_collectorState != Resetting) {
6229       assert(_collectorState == Idling, "The state should only change"
6230         " because the foreground collector has finished the collection");
6231       return;
6232     }
6233 
6234     // Clear the mark bitmap (no grey objects to start with)
6235     // for the next cycle.
6236     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6237     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
6238 
6239     HeapWord* curAddr = _markBitMap.startWord();
6240     while (curAddr < _markBitMap.endWord()) {
6241       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6242       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6243       _markBitMap.clear_large_range(chunk);
6244       if (ConcurrentMarkSweepThread::should_yield() &&
6245           !foregroundGCIsActive() &&
6246           CMSYield) {
6247         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6248                "CMS thread should hold CMS token");
6249         assert_lock_strong(bitMapLock());
6250         bitMapLock()->unlock();
6251         ConcurrentMarkSweepThread::desynchronize(true);
6252         ConcurrentMarkSweepThread::acknowledge_yield_request();
6253         stopTimer();
6254         if (PrintCMSStatistics != 0) {
6255           incrementYields();
6256         }
6257         icms_wait();
6258 
6259         // See the comment in coordinator_yield()
6260         for (unsigned i = 0; i < CMSYieldSleepCount &&
6261                          ConcurrentMarkSweepThread::should_yield() &&
6262                          !CMSCollector::foregroundGCIsActive(); ++i) {
6263           os::sleep(Thread::current(), 1, false);
6264           ConcurrentMarkSweepThread::acknowledge_yield_request();
6265         }
6266 
6267         ConcurrentMarkSweepThread::synchronize(true);
6268         bitMapLock()->lock_without_safepoint_check();
6269         startTimer();
6270       }
6271       curAddr = chunk.end();
6272     }
6273     // A successful mostly concurrent collection has been done.
6274     // Because only the full (i.e., concurrent mode failure) collections
6275     // are being measured for gc overhead limits, clean the "near" flag
6276     // and count.
6277     sp->reset_gc_overhead_limit_count();
6278     _collectorState = Idling;
6279   } else {
6280     // already have the lock
6281     assert(_collectorState == Resetting, "just checking");
6282     assert_lock_strong(bitMapLock());
6283     _markBitMap.clear_all();
6284     _collectorState = Idling;
6285   }
6286 
6287   // Stop incremental mode after a cycle completes, so that any future cycles
6288   // are triggered by allocation.
6289   stop_icms();
6290 
6291   NOT_PRODUCT(
6292     if (RotateCMSCollectionTypes) {
6293       _cmsGen->rotate_debug_collection_type();
6294     }
6295   )
6296 }
6297 
6298 void CMSCollector::do_CMS_operation(CMS_op_type op) {
6299   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6300   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6301   TraceTime t("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
6302   TraceCollectorStats tcs(counters());
6303 
6304   switch (op) {
6305     case CMS_op_checkpointRootsInitial: {
6306       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6307       checkpointRootsInitial(true);       // asynch
6308       if (PrintGC) {
6309         _cmsGen->printOccupancy("initial-mark");
6310       }
6311       break;
6312     }
6313     case CMS_op_checkpointRootsFinal: {
6314       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6315       checkpointRootsFinal(true,    // asynch
6316                            false,   // !clear_all_soft_refs
6317                            false);  // !init_mark_was_synchronous
6318       if (PrintGC) {
6319         _cmsGen->printOccupancy("remark");
6320       }
6321       break;
6322     }
6323     default:
6324       fatal("No such CMS_op");
6325   }
6326 }
6327 
6328 #ifndef PRODUCT
6329 size_t const CMSCollector::skip_header_HeapWords() {
6330   return FreeChunk::header_size();
6331 }
6332 
6333 // Try and collect here conditions that should hold when
6334 // CMS thread is exiting. The idea is that the foreground GC
6335 // thread should not be blocked if it wants to terminate
6336 // the CMS thread and yet continue to run the VM for a while
6337 // after that.
6338 void CMSCollector::verify_ok_to_terminate() const {
6339   assert(Thread::current()->is_ConcurrentGC_thread(),
6340          "should be called by CMS thread");
6341   assert(!_foregroundGCShouldWait, "should be false");
6342   // We could check here that all the various low-level locks
6343   // are not held by the CMS thread, but that is overkill; see
6344   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6345   // is checked.
6346 }
6347 #endif
6348 
6349 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6350    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6351           "missing Printezis mark?");
6352   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6353   size_t size = pointer_delta(nextOneAddr + 1, addr);
6354   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6355          "alignment problem");
6356   assert(size >= 3, "Necessary for Printezis marks to work");
6357   return size;
6358 }
6359 
6360 // A variant of the above (block_size_using_printezis_bits()) except
6361 // that we return 0 if the P-bits are not yet set.
6362 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6363   if (_markBitMap.isMarked(addr + 1)) {
6364     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6365     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6366     size_t size = pointer_delta(nextOneAddr + 1, addr);
6367     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6368            "alignment problem");
6369     assert(size >= 3, "Necessary for Printezis marks to work");
6370     return size;
6371   }
6372   return 0;
6373 }
6374 
6375 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6376   size_t sz = 0;
6377   oop p = (oop)addr;
6378   if (p->klass_or_null() != NULL && p->is_parsable()) {
6379     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6380   } else {
6381     sz = block_size_using_printezis_bits(addr);
6382   }
6383   assert(sz > 0, "size must be nonzero");
6384   HeapWord* next_block = addr + sz;
6385   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6386                                              CardTableModRefBS::card_size);
6387   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6388          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6389          "must be different cards");
6390   return next_card;
6391 }
6392 
6393 
6394 // CMS Bit Map Wrapper /////////////////////////////////////////
6395 
6396 // Construct a CMS bit map infrastructure, but don't create the
6397 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6398 // further below.
6399 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6400   _bm(),
6401   _shifter(shifter),
6402   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6403 {
6404   _bmStartWord = 0;
6405   _bmWordSize  = 0;
6406 }
6407 
6408 bool CMSBitMap::allocate(MemRegion mr) {
6409   _bmStartWord = mr.start();
6410   _bmWordSize  = mr.word_size();
6411   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6412                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6413   if (!brs.is_reserved()) {
6414     warning("CMS bit map allocation failure");
6415     return false;
6416   }
6417   // For now we'll just commit all of the bit map up fromt.
6418   // Later on we'll try to be more parsimonious with swap.
6419   if (!_virtual_space.initialize(brs, brs.size())) {
6420     warning("CMS bit map backing store failure");
6421     return false;
6422   }
6423   assert(_virtual_space.committed_size() == brs.size(),
6424          "didn't reserve backing store for all of CMS bit map?");
6425   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6426   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6427          _bmWordSize, "inconsistency in bit map sizing");
6428   _bm.set_size(_bmWordSize >> _shifter);
6429 
6430   // bm.clear(); // can we rely on getting zero'd memory? verify below
6431   assert(isAllClear(),
6432          "Expected zero'd memory from ReservedSpace constructor");
6433   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6434          "consistency check");
6435   return true;
6436 }
6437 
6438 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6439   HeapWord *next_addr, *end_addr, *last_addr;
6440   assert_locked();
6441   assert(covers(mr), "out-of-range error");
6442   // XXX assert that start and end are appropriately aligned
6443   for (next_addr = mr.start(), end_addr = mr.end();
6444        next_addr < end_addr; next_addr = last_addr) {
6445     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6446     last_addr = dirty_region.end();
6447     if (!dirty_region.is_empty()) {
6448       cl->do_MemRegion(dirty_region);
6449     } else {
6450       assert(last_addr == end_addr, "program logic");
6451       return;
6452     }
6453   }
6454 }
6455 
6456 #ifndef PRODUCT
6457 void CMSBitMap::assert_locked() const {
6458   CMSLockVerifier::assert_locked(lock());
6459 }
6460 
6461 bool CMSBitMap::covers(MemRegion mr) const {
6462   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6463   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6464          "size inconsistency");
6465   return (mr.start() >= _bmStartWord) &&
6466          (mr.end()   <= endWord());
6467 }
6468 
6469 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6470     return (start >= _bmStartWord && (start + size) <= endWord());
6471 }
6472 
6473 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6474   // verify that there are no 1 bits in the interval [left, right)
6475   FalseBitMapClosure falseBitMapClosure;
6476   iterate(&falseBitMapClosure, left, right);
6477 }
6478 
6479 void CMSBitMap::region_invariant(MemRegion mr)
6480 {
6481   assert_locked();
6482   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6483   assert(!mr.is_empty(), "unexpected empty region");
6484   assert(covers(mr), "mr should be covered by bit map");
6485   // convert address range into offset range
6486   size_t start_ofs = heapWordToOffset(mr.start());
6487   // Make sure that end() is appropriately aligned
6488   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6489                         (1 << (_shifter+LogHeapWordSize))),
6490          "Misaligned mr.end()");
6491   size_t end_ofs   = heapWordToOffset(mr.end());
6492   assert(end_ofs > start_ofs, "Should mark at least one bit");
6493 }
6494 
6495 #endif
6496 
6497 bool CMSMarkStack::allocate(size_t size) {
6498   // allocate a stack of the requisite depth
6499   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6500                    size * sizeof(oop)));
6501   if (!rs.is_reserved()) {
6502     warning("CMSMarkStack allocation failure");
6503     return false;
6504   }
6505   if (!_virtual_space.initialize(rs, rs.size())) {
6506     warning("CMSMarkStack backing store failure");
6507     return false;
6508   }
6509   assert(_virtual_space.committed_size() == rs.size(),
6510          "didn't reserve backing store for all of CMS stack?");
6511   _base = (oop*)(_virtual_space.low());
6512   _index = 0;
6513   _capacity = size;
6514   NOT_PRODUCT(_max_depth = 0);
6515   return true;
6516 }
6517 
6518 // XXX FIX ME !!! In the MT case we come in here holding a
6519 // leaf lock. For printing we need to take a further lock
6520 // which has lower rank. We need to recallibrate the two
6521 // lock-ranks involved in order to be able to rpint the
6522 // messages below. (Or defer the printing to the caller.
6523 // For now we take the expedient path of just disabling the
6524 // messages for the problematic case.)
6525 void CMSMarkStack::expand() {
6526   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6527   if (_capacity == MarkStackSizeMax) {
6528     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6529       // We print a warning message only once per CMS cycle.
6530       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6531     }
6532     return;
6533   }
6534   // Double capacity if possible
6535   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6536   // Do not give up existing stack until we have managed to
6537   // get the double capacity that we desired.
6538   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6539                    new_capacity * sizeof(oop)));
6540   if (rs.is_reserved()) {
6541     // Release the backing store associated with old stack
6542     _virtual_space.release();
6543     // Reinitialize virtual space for new stack
6544     if (!_virtual_space.initialize(rs, rs.size())) {
6545       fatal("Not enough swap for expanded marking stack");
6546     }
6547     _base = (oop*)(_virtual_space.low());
6548     _index = 0;
6549     _capacity = new_capacity;
6550   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6551     // Failed to double capacity, continue;
6552     // we print a detail message only once per CMS cycle.
6553     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6554             SIZE_FORMAT"K",
6555             _capacity / K, new_capacity / K);
6556   }
6557 }
6558 
6559 
6560 // Closures
6561 // XXX: there seems to be a lot of code  duplication here;
6562 // should refactor and consolidate common code.
6563 
6564 // This closure is used to mark refs into the CMS generation in
6565 // the CMS bit map. Called at the first checkpoint. This closure
6566 // assumes that we do not need to re-mark dirty cards; if the CMS
6567 // generation on which this is used is not an oldest (modulo perm gen)
6568 // generation then this will lose younger_gen cards!
6569 
6570 MarkRefsIntoClosure::MarkRefsIntoClosure(
6571   MemRegion span, CMSBitMap* bitMap):
6572     _span(span),
6573     _bitMap(bitMap)
6574 {
6575     assert(_ref_processor == NULL, "deliberately left NULL");
6576     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6577 }
6578 
6579 void MarkRefsIntoClosure::do_oop(oop obj) {
6580   // if p points into _span, then mark corresponding bit in _markBitMap
6581   assert(obj->is_oop(), "expected an oop");
6582   HeapWord* addr = (HeapWord*)obj;
6583   if (_span.contains(addr)) {
6584     // this should be made more efficient
6585     _bitMap->mark(addr);
6586   }
6587 }
6588 
6589 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6590 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6591 
6592 // A variant of the above, used for CMS marking verification.
6593 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6594   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6595     _span(span),
6596     _verification_bm(verification_bm),
6597     _cms_bm(cms_bm)
6598 {
6599     assert(_ref_processor == NULL, "deliberately left NULL");
6600     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6601 }
6602 
6603 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6604   // if p points into _span, then mark corresponding bit in _markBitMap
6605   assert(obj->is_oop(), "expected an oop");
6606   HeapWord* addr = (HeapWord*)obj;
6607   if (_span.contains(addr)) {
6608     _verification_bm->mark(addr);
6609     if (!_cms_bm->isMarked(addr)) {
6610       oop(addr)->print();
6611       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6612       fatal("... aborting");
6613     }
6614   }
6615 }
6616 
6617 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6618 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6619 
6620 //////////////////////////////////////////////////
6621 // MarkRefsIntoAndScanClosure
6622 //////////////////////////////////////////////////
6623 
6624 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6625                                                        ReferenceProcessor* rp,
6626                                                        CMSBitMap* bit_map,
6627                                                        CMSBitMap* mod_union_table,
6628                                                        CMSMarkStack*  mark_stack,
6629                                                        CMSMarkStack*  revisit_stack,
6630                                                        CMSCollector* collector,
6631                                                        bool should_yield,
6632                                                        bool concurrent_precleaning):
6633   _collector(collector),
6634   _span(span),
6635   _bit_map(bit_map),
6636   _mark_stack(mark_stack),
6637   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6638                       mark_stack, revisit_stack, concurrent_precleaning),
6639   _yield(should_yield),
6640   _concurrent_precleaning(concurrent_precleaning),
6641   _freelistLock(NULL)
6642 {
6643   _ref_processor = rp;
6644   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6645 }
6646 
6647 // This closure is used to mark refs into the CMS generation at the
6648 // second (final) checkpoint, and to scan and transitively follow
6649 // the unmarked oops. It is also used during the concurrent precleaning
6650 // phase while scanning objects on dirty cards in the CMS generation.
6651 // The marks are made in the marking bit map and the marking stack is
6652 // used for keeping the (newly) grey objects during the scan.
6653 // The parallel version (Par_...) appears further below.
6654 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6655   if (obj != NULL) {
6656     assert(obj->is_oop(), "expected an oop");
6657     HeapWord* addr = (HeapWord*)obj;
6658     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6659     assert(_collector->overflow_list_is_empty(),
6660            "overflow list should be empty");
6661     if (_span.contains(addr) &&
6662         !_bit_map->isMarked(addr)) {
6663       // mark bit map (object is now grey)
6664       _bit_map->mark(addr);
6665       // push on marking stack (stack should be empty), and drain the
6666       // stack by applying this closure to the oops in the oops popped
6667       // from the stack (i.e. blacken the grey objects)
6668       bool res = _mark_stack->push(obj);
6669       assert(res, "Should have space to push on empty stack");
6670       do {
6671         oop new_oop = _mark_stack->pop();
6672         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6673         assert(new_oop->is_parsable(), "Found unparsable oop");
6674         assert(_bit_map->isMarked((HeapWord*)new_oop),
6675                "only grey objects on this stack");
6676         // iterate over the oops in this oop, marking and pushing
6677         // the ones in CMS heap (i.e. in _span).
6678         new_oop->oop_iterate(&_pushAndMarkClosure);
6679         // check if it's time to yield
6680         do_yield_check();
6681       } while (!_mark_stack->isEmpty() ||
6682                (!_concurrent_precleaning && take_from_overflow_list()));
6683         // if marking stack is empty, and we are not doing this
6684         // during precleaning, then check the overflow list
6685     }
6686     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6687     assert(_collector->overflow_list_is_empty(),
6688            "overflow list was drained above");
6689     // We could restore evacuated mark words, if any, used for
6690     // overflow list links here because the overflow list is
6691     // provably empty here. That would reduce the maximum
6692     // size requirements for preserved_{oop,mark}_stack.
6693     // But we'll just postpone it until we are all done
6694     // so we can just stream through.
6695     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6696       _collector->restore_preserved_marks_if_any();
6697       assert(_collector->no_preserved_marks(), "No preserved marks");
6698     }
6699     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6700            "All preserved marks should have been restored above");
6701   }
6702 }
6703 
6704 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6705 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6706 
6707 void MarkRefsIntoAndScanClosure::do_yield_work() {
6708   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6709          "CMS thread should hold CMS token");
6710   assert_lock_strong(_freelistLock);
6711   assert_lock_strong(_bit_map->lock());
6712   // relinquish the free_list_lock and bitMaplock()
6713   DEBUG_ONLY(RememberKlassesChecker mux(false);)
6714   _bit_map->lock()->unlock();
6715   _freelistLock->unlock();
6716   ConcurrentMarkSweepThread::desynchronize(true);
6717   ConcurrentMarkSweepThread::acknowledge_yield_request();
6718   _collector->stopTimer();
6719   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6720   if (PrintCMSStatistics != 0) {
6721     _collector->incrementYields();
6722   }
6723   _collector->icms_wait();
6724 
6725   // See the comment in coordinator_yield()
6726   for (unsigned i = 0;
6727        i < CMSYieldSleepCount &&
6728        ConcurrentMarkSweepThread::should_yield() &&
6729        !CMSCollector::foregroundGCIsActive();
6730        ++i) {
6731     os::sleep(Thread::current(), 1, false);
6732     ConcurrentMarkSweepThread::acknowledge_yield_request();
6733   }
6734 
6735   ConcurrentMarkSweepThread::synchronize(true);
6736   _freelistLock->lock_without_safepoint_check();
6737   _bit_map->lock()->lock_without_safepoint_check();
6738   _collector->startTimer();
6739 }
6740 
6741 ///////////////////////////////////////////////////////////
6742 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6743 //                                 MarkRefsIntoAndScanClosure
6744 ///////////////////////////////////////////////////////////
6745 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6746   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6747   CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack*  revisit_stack):
6748   _span(span),
6749   _bit_map(bit_map),
6750   _work_queue(work_queue),
6751   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6752                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6753   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue,
6754                           revisit_stack)
6755 {
6756   _ref_processor = rp;
6757   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6758 }
6759 
6760 // This closure is used to mark refs into the CMS generation at the
6761 // second (final) checkpoint, and to scan and transitively follow
6762 // the unmarked oops. The marks are made in the marking bit map and
6763 // the work_queue is used for keeping the (newly) grey objects during
6764 // the scan phase whence they are also available for stealing by parallel
6765 // threads. Since the marking bit map is shared, updates are
6766 // synchronized (via CAS).
6767 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6768   if (obj != NULL) {
6769     // Ignore mark word because this could be an already marked oop
6770     // that may be chained at the end of the overflow list.
6771     assert(obj->is_oop(true), "expected an oop");
6772     HeapWord* addr = (HeapWord*)obj;
6773     if (_span.contains(addr) &&
6774         !_bit_map->isMarked(addr)) {
6775       // mark bit map (object will become grey):
6776       // It is possible for several threads to be
6777       // trying to "claim" this object concurrently;
6778       // the unique thread that succeeds in marking the
6779       // object first will do the subsequent push on
6780       // to the work queue (or overflow list).
6781       if (_bit_map->par_mark(addr)) {
6782         // push on work_queue (which may not be empty), and trim the
6783         // queue to an appropriate length by applying this closure to
6784         // the oops in the oops popped from the stack (i.e. blacken the
6785         // grey objects)
6786         bool res = _work_queue->push(obj);
6787         assert(res, "Low water mark should be less than capacity?");
6788         trim_queue(_low_water_mark);
6789       } // Else, another thread claimed the object
6790     }
6791   }
6792 }
6793 
6794 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6795 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6796 
6797 // This closure is used to rescan the marked objects on the dirty cards
6798 // in the mod union table and the card table proper.
6799 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6800   oop p, MemRegion mr) {
6801 
6802   size_t size = 0;
6803   HeapWord* addr = (HeapWord*)p;
6804   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6805   assert(_span.contains(addr), "we are scanning the CMS generation");
6806   // check if it's time to yield
6807   if (do_yield_check()) {
6808     // We yielded for some foreground stop-world work,
6809     // and we have been asked to abort this ongoing preclean cycle.
6810     return 0;
6811   }
6812   if (_bitMap->isMarked(addr)) {
6813     // it's marked; is it potentially uninitialized?
6814     if (p->klass_or_null() != NULL) {
6815       // If is_conc_safe is false, the object may be undergoing
6816       // change by the VM outside a safepoint.  Don't try to
6817       // scan it, but rather leave it for the remark phase.
6818       if (CMSPermGenPrecleaningEnabled &&
6819           (!p->is_conc_safe() || !p->is_parsable())) {
6820         // Signal precleaning to redirty the card since
6821         // the klass pointer is already installed.
6822         assert(size == 0, "Initial value");
6823       } else {
6824         assert(p->is_parsable(), "must be parsable.");
6825         // an initialized object; ignore mark word in verification below
6826         // since we are running concurrent with mutators
6827         assert(p->is_oop(true), "should be an oop");
6828         if (p->is_objArray()) {
6829           // objArrays are precisely marked; restrict scanning
6830           // to dirty cards only.
6831           size = CompactibleFreeListSpace::adjustObjectSize(
6832                    p->oop_iterate(_scanningClosure, mr));
6833         } else {
6834           // A non-array may have been imprecisely marked; we need
6835           // to scan object in its entirety.
6836           size = CompactibleFreeListSpace::adjustObjectSize(
6837                    p->oop_iterate(_scanningClosure));
6838         }
6839         #ifdef DEBUG
6840           size_t direct_size =
6841             CompactibleFreeListSpace::adjustObjectSize(p->size());
6842           assert(size == direct_size, "Inconsistency in size");
6843           assert(size >= 3, "Necessary for Printezis marks to work");
6844           if (!_bitMap->isMarked(addr+1)) {
6845             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6846           } else {
6847             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6848             assert(_bitMap->isMarked(addr+size-1),
6849                    "inconsistent Printezis mark");
6850           }
6851         #endif // DEBUG
6852       }
6853     } else {
6854       // an unitialized object
6855       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6856       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6857       size = pointer_delta(nextOneAddr + 1, addr);
6858       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6859              "alignment problem");
6860       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6861       // will dirty the card when the klass pointer is installed in the
6862       // object (signalling the completion of initialization).
6863     }
6864   } else {
6865     // Either a not yet marked object or an uninitialized object
6866     if (p->klass_or_null() == NULL || !p->is_parsable()) {
6867       // An uninitialized object, skip to the next card, since
6868       // we may not be able to read its P-bits yet.
6869       assert(size == 0, "Initial value");
6870     } else {
6871       // An object not (yet) reached by marking: we merely need to
6872       // compute its size so as to go look at the next block.
6873       assert(p->is_oop(true), "should be an oop");
6874       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6875     }
6876   }
6877   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6878   return size;
6879 }
6880 
6881 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6882   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6883          "CMS thread should hold CMS token");
6884   assert_lock_strong(_freelistLock);
6885   assert_lock_strong(_bitMap->lock());
6886   DEBUG_ONLY(RememberKlassesChecker mux(false);)
6887   // relinquish the free_list_lock and bitMaplock()
6888   _bitMap->lock()->unlock();
6889   _freelistLock->unlock();
6890   ConcurrentMarkSweepThread::desynchronize(true);
6891   ConcurrentMarkSweepThread::acknowledge_yield_request();
6892   _collector->stopTimer();
6893   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6894   if (PrintCMSStatistics != 0) {
6895     _collector->incrementYields();
6896   }
6897   _collector->icms_wait();
6898 
6899   // See the comment in coordinator_yield()
6900   for (unsigned i = 0; i < CMSYieldSleepCount &&
6901                    ConcurrentMarkSweepThread::should_yield() &&
6902                    !CMSCollector::foregroundGCIsActive(); ++i) {
6903     os::sleep(Thread::current(), 1, false);
6904     ConcurrentMarkSweepThread::acknowledge_yield_request();
6905   }
6906 
6907   ConcurrentMarkSweepThread::synchronize(true);
6908   _freelistLock->lock_without_safepoint_check();
6909   _bitMap->lock()->lock_without_safepoint_check();
6910   _collector->startTimer();
6911 }
6912 
6913 
6914 //////////////////////////////////////////////////////////////////
6915 // SurvivorSpacePrecleanClosure
6916 //////////////////////////////////////////////////////////////////
6917 // This (single-threaded) closure is used to preclean the oops in
6918 // the survivor spaces.
6919 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6920 
6921   HeapWord* addr = (HeapWord*)p;
6922   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6923   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6924   assert(p->klass_or_null() != NULL, "object should be initializd");
6925   assert(p->is_parsable(), "must be parsable.");
6926   // an initialized object; ignore mark word in verification below
6927   // since we are running concurrent with mutators
6928   assert(p->is_oop(true), "should be an oop");
6929   // Note that we do not yield while we iterate over
6930   // the interior oops of p, pushing the relevant ones
6931   // on our marking stack.
6932   size_t size = p->oop_iterate(_scanning_closure);
6933   do_yield_check();
6934   // Observe that below, we do not abandon the preclean
6935   // phase as soon as we should; rather we empty the
6936   // marking stack before returning. This is to satisfy
6937   // some existing assertions. In general, it may be a
6938   // good idea to abort immediately and complete the marking
6939   // from the grey objects at a later time.
6940   while (!_mark_stack->isEmpty()) {
6941     oop new_oop = _mark_stack->pop();
6942     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6943     assert(new_oop->is_parsable(), "Found unparsable oop");
6944     assert(_bit_map->isMarked((HeapWord*)new_oop),
6945            "only grey objects on this stack");
6946     // iterate over the oops in this oop, marking and pushing
6947     // the ones in CMS heap (i.e. in _span).
6948     new_oop->oop_iterate(_scanning_closure);
6949     // check if it's time to yield
6950     do_yield_check();
6951   }
6952   unsigned int after_count =
6953     GenCollectedHeap::heap()->total_collections();
6954   bool abort = (_before_count != after_count) ||
6955                _collector->should_abort_preclean();
6956   return abort ? 0 : size;
6957 }
6958 
6959 void SurvivorSpacePrecleanClosure::do_yield_work() {
6960   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6961          "CMS thread should hold CMS token");
6962   assert_lock_strong(_bit_map->lock());
6963   DEBUG_ONLY(RememberKlassesChecker smx(false);)
6964   // Relinquish the bit map lock
6965   _bit_map->lock()->unlock();
6966   ConcurrentMarkSweepThread::desynchronize(true);
6967   ConcurrentMarkSweepThread::acknowledge_yield_request();
6968   _collector->stopTimer();
6969   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6970   if (PrintCMSStatistics != 0) {
6971     _collector->incrementYields();
6972   }
6973   _collector->icms_wait();
6974 
6975   // See the comment in coordinator_yield()
6976   for (unsigned i = 0; i < CMSYieldSleepCount &&
6977                        ConcurrentMarkSweepThread::should_yield() &&
6978                        !CMSCollector::foregroundGCIsActive(); ++i) {
6979     os::sleep(Thread::current(), 1, false);
6980     ConcurrentMarkSweepThread::acknowledge_yield_request();
6981   }
6982 
6983   ConcurrentMarkSweepThread::synchronize(true);
6984   _bit_map->lock()->lock_without_safepoint_check();
6985   _collector->startTimer();
6986 }
6987 
6988 // This closure is used to rescan the marked objects on the dirty cards
6989 // in the mod union table and the card table proper. In the parallel
6990 // case, although the bitMap is shared, we do a single read so the
6991 // isMarked() query is "safe".
6992 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6993   // Ignore mark word because we are running concurrent with mutators
6994   assert(p->is_oop_or_null(true), "expected an oop or null");
6995   HeapWord* addr = (HeapWord*)p;
6996   assert(_span.contains(addr), "we are scanning the CMS generation");
6997   bool is_obj_array = false;
6998   #ifdef DEBUG
6999     if (!_parallel) {
7000       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7001       assert(_collector->overflow_list_is_empty(),
7002              "overflow list should be empty");
7003 
7004     }
7005   #endif // DEBUG
7006   if (_bit_map->isMarked(addr)) {
7007     // Obj arrays are precisely marked, non-arrays are not;
7008     // so we scan objArrays precisely and non-arrays in their
7009     // entirety.
7010     if (p->is_objArray()) {
7011       is_obj_array = true;
7012       if (_parallel) {
7013         p->oop_iterate(_par_scan_closure, mr);
7014       } else {
7015         p->oop_iterate(_scan_closure, mr);
7016       }
7017     } else {
7018       if (_parallel) {
7019         p->oop_iterate(_par_scan_closure);
7020       } else {
7021         p->oop_iterate(_scan_closure);
7022       }
7023     }
7024   }
7025   #ifdef DEBUG
7026     if (!_parallel) {
7027       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7028       assert(_collector->overflow_list_is_empty(),
7029              "overflow list should be empty");
7030 
7031     }
7032   #endif // DEBUG
7033   return is_obj_array;
7034 }
7035 
7036 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7037                         MemRegion span,
7038                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7039                         CMSMarkStack*  revisitStack,
7040                         bool should_yield, bool verifying):
7041   _collector(collector),
7042   _span(span),
7043   _bitMap(bitMap),
7044   _mut(&collector->_modUnionTable),
7045   _markStack(markStack),
7046   _revisitStack(revisitStack),
7047   _yield(should_yield),
7048   _skipBits(0)
7049 {
7050   assert(_markStack->isEmpty(), "stack should be empty");
7051   _finger = _bitMap->startWord();
7052   _threshold = _finger;
7053   assert(_collector->_restart_addr == NULL, "Sanity check");
7054   assert(_span.contains(_finger), "Out of bounds _finger?");
7055   DEBUG_ONLY(_verifying = verifying;)
7056 }
7057 
7058 void MarkFromRootsClosure::reset(HeapWord* addr) {
7059   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7060   assert(_span.contains(addr), "Out of bounds _finger?");
7061   _finger = addr;
7062   _threshold = (HeapWord*)round_to(
7063                  (intptr_t)_finger, CardTableModRefBS::card_size);
7064 }
7065 
7066 // Should revisit to see if this should be restructured for
7067 // greater efficiency.
7068 bool MarkFromRootsClosure::do_bit(size_t offset) {
7069   if (_skipBits > 0) {
7070     _skipBits--;
7071     return true;
7072   }
7073   // convert offset into a HeapWord*
7074   HeapWord* addr = _bitMap->startWord() + offset;
7075   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7076          "address out of range");
7077   assert(_bitMap->isMarked(addr), "tautology");
7078   if (_bitMap->isMarked(addr+1)) {
7079     // this is an allocated but not yet initialized object
7080     assert(_skipBits == 0, "tautology");
7081     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7082     oop p = oop(addr);
7083     if (p->klass_or_null() == NULL || !p->is_parsable()) {
7084       DEBUG_ONLY(if (!_verifying) {)
7085         // We re-dirty the cards on which this object lies and increase
7086         // the _threshold so that we'll come back to scan this object
7087         // during the preclean or remark phase. (CMSCleanOnEnter)
7088         if (CMSCleanOnEnter) {
7089           size_t sz = _collector->block_size_using_printezis_bits(addr);
7090           HeapWord* end_card_addr   = (HeapWord*)round_to(
7091                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7092           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7093           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7094           // Bump _threshold to end_card_addr; note that
7095           // _threshold cannot possibly exceed end_card_addr, anyhow.
7096           // This prevents future clearing of the card as the scan proceeds
7097           // to the right.
7098           assert(_threshold <= end_card_addr,
7099                  "Because we are just scanning into this object");
7100           if (_threshold < end_card_addr) {
7101             _threshold = end_card_addr;
7102           }
7103           if (p->klass_or_null() != NULL) {
7104             // Redirty the range of cards...
7105             _mut->mark_range(redirty_range);
7106           } // ...else the setting of klass will dirty the card anyway.
7107         }
7108       DEBUG_ONLY(})
7109       return true;
7110     }
7111   }
7112   scanOopsInOop(addr);
7113   return true;
7114 }
7115 
7116 // We take a break if we've been at this for a while,
7117 // so as to avoid monopolizing the locks involved.
7118 void MarkFromRootsClosure::do_yield_work() {
7119   // First give up the locks, then yield, then re-lock
7120   // We should probably use a constructor/destructor idiom to
7121   // do this unlock/lock or modify the MutexUnlocker class to
7122   // serve our purpose. XXX
7123   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7124          "CMS thread should hold CMS token");
7125   assert_lock_strong(_bitMap->lock());
7126   DEBUG_ONLY(RememberKlassesChecker mux(false);)
7127   _bitMap->lock()->unlock();
7128   ConcurrentMarkSweepThread::desynchronize(true);
7129   ConcurrentMarkSweepThread::acknowledge_yield_request();
7130   _collector->stopTimer();
7131   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7132   if (PrintCMSStatistics != 0) {
7133     _collector->incrementYields();
7134   }
7135   _collector->icms_wait();
7136 
7137   // See the comment in coordinator_yield()
7138   for (unsigned i = 0; i < CMSYieldSleepCount &&
7139                        ConcurrentMarkSweepThread::should_yield() &&
7140                        !CMSCollector::foregroundGCIsActive(); ++i) {
7141     os::sleep(Thread::current(), 1, false);
7142     ConcurrentMarkSweepThread::acknowledge_yield_request();
7143   }
7144 
7145   ConcurrentMarkSweepThread::synchronize(true);
7146   _bitMap->lock()->lock_without_safepoint_check();
7147   _collector->startTimer();
7148 }
7149 
7150 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7151   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7152   assert(_markStack->isEmpty(),
7153          "should drain stack to limit stack usage");
7154   // convert ptr to an oop preparatory to scanning
7155   oop obj = oop(ptr);
7156   // Ignore mark word in verification below, since we
7157   // may be running concurrent with mutators.
7158   assert(obj->is_oop(true), "should be an oop");
7159   assert(_finger <= ptr, "_finger runneth ahead");
7160   // advance the finger to right end of this object
7161   _finger = ptr + obj->size();
7162   assert(_finger > ptr, "we just incremented it above");
7163   // On large heaps, it may take us some time to get through
7164   // the marking phase (especially if running iCMS). During
7165   // this time it's possible that a lot of mutations have
7166   // accumulated in the card table and the mod union table --
7167   // these mutation records are redundant until we have
7168   // actually traced into the corresponding card.
7169   // Here, we check whether advancing the finger would make
7170   // us cross into a new card, and if so clear corresponding
7171   // cards in the MUT (preclean them in the card-table in the
7172   // future).
7173 
7174   DEBUG_ONLY(if (!_verifying) {)
7175     // The clean-on-enter optimization is disabled by default,
7176     // until we fix 6178663.
7177     if (CMSCleanOnEnter && (_finger > _threshold)) {
7178       // [_threshold, _finger) represents the interval
7179       // of cards to be cleared  in MUT (or precleaned in card table).
7180       // The set of cards to be cleared is all those that overlap
7181       // with the interval [_threshold, _finger); note that
7182       // _threshold is always kept card-aligned but _finger isn't
7183       // always card-aligned.
7184       HeapWord* old_threshold = _threshold;
7185       assert(old_threshold == (HeapWord*)round_to(
7186               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7187              "_threshold should always be card-aligned");
7188       _threshold = (HeapWord*)round_to(
7189                      (intptr_t)_finger, CardTableModRefBS::card_size);
7190       MemRegion mr(old_threshold, _threshold);
7191       assert(!mr.is_empty(), "Control point invariant");
7192       assert(_span.contains(mr), "Should clear within span");
7193       // XXX When _finger crosses from old gen into perm gen
7194       // we may be doing unnecessary cleaning; do better in the
7195       // future by detecting that condition and clearing fewer
7196       // MUT/CT entries.
7197       _mut->clear_range(mr);
7198     }
7199   DEBUG_ONLY(})
7200   // Note: the finger doesn't advance while we drain
7201   // the stack below.
7202   PushOrMarkClosure pushOrMarkClosure(_collector,
7203                                       _span, _bitMap, _markStack,
7204                                       _revisitStack,
7205                                       _finger, this);
7206   bool res = _markStack->push(obj);
7207   assert(res, "Empty non-zero size stack should have space for single push");
7208   while (!_markStack->isEmpty()) {
7209     oop new_oop = _markStack->pop();
7210     // Skip verifying header mark word below because we are
7211     // running concurrent with mutators.
7212     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7213     // now scan this oop's oops
7214     new_oop->oop_iterate(&pushOrMarkClosure);
7215     do_yield_check();
7216   }
7217   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7218 }
7219 
7220 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7221                        CMSCollector* collector, MemRegion span,
7222                        CMSBitMap* bit_map,
7223                        OopTaskQueue* work_queue,
7224                        CMSMarkStack*  overflow_stack,
7225                        CMSMarkStack*  revisit_stack,
7226                        bool should_yield):
7227   _collector(collector),
7228   _whole_span(collector->_span),
7229   _span(span),
7230   _bit_map(bit_map),
7231   _mut(&collector->_modUnionTable),
7232   _work_queue(work_queue),
7233   _overflow_stack(overflow_stack),
7234   _revisit_stack(revisit_stack),
7235   _yield(should_yield),
7236   _skip_bits(0),
7237   _task(task)
7238 {
7239   assert(_work_queue->size() == 0, "work_queue should be empty");
7240   _finger = span.start();
7241   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7242   assert(_span.contains(_finger), "Out of bounds _finger?");
7243 }
7244 
7245 // Should revisit to see if this should be restructured for
7246 // greater efficiency.
7247 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7248   if (_skip_bits > 0) {
7249     _skip_bits--;
7250     return true;
7251   }
7252   // convert offset into a HeapWord*
7253   HeapWord* addr = _bit_map->startWord() + offset;
7254   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7255          "address out of range");
7256   assert(_bit_map->isMarked(addr), "tautology");
7257   if (_bit_map->isMarked(addr+1)) {
7258     // this is an allocated object that might not yet be initialized
7259     assert(_skip_bits == 0, "tautology");
7260     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7261     oop p = oop(addr);
7262     if (p->klass_or_null() == NULL || !p->is_parsable()) {
7263       // in the case of Clean-on-Enter optimization, redirty card
7264       // and avoid clearing card by increasing  the threshold.
7265       return true;
7266     }
7267   }
7268   scan_oops_in_oop(addr);
7269   return true;
7270 }
7271 
7272 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7273   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7274   // Should we assert that our work queue is empty or
7275   // below some drain limit?
7276   assert(_work_queue->size() == 0,
7277          "should drain stack to limit stack usage");
7278   // convert ptr to an oop preparatory to scanning
7279   oop obj = oop(ptr);
7280   // Ignore mark word in verification below, since we
7281   // may be running concurrent with mutators.
7282   assert(obj->is_oop(true), "should be an oop");
7283   assert(_finger <= ptr, "_finger runneth ahead");
7284   // advance the finger to right end of this object
7285   _finger = ptr + obj->size();
7286   assert(_finger > ptr, "we just incremented it above");
7287   // On large heaps, it may take us some time to get through
7288   // the marking phase (especially if running iCMS). During
7289   // this time it's possible that a lot of mutations have
7290   // accumulated in the card table and the mod union table --
7291   // these mutation records are redundant until we have
7292   // actually traced into the corresponding card.
7293   // Here, we check whether advancing the finger would make
7294   // us cross into a new card, and if so clear corresponding
7295   // cards in the MUT (preclean them in the card-table in the
7296   // future).
7297 
7298   // The clean-on-enter optimization is disabled by default,
7299   // until we fix 6178663.
7300   if (CMSCleanOnEnter && (_finger > _threshold)) {
7301     // [_threshold, _finger) represents the interval
7302     // of cards to be cleared  in MUT (or precleaned in card table).
7303     // The set of cards to be cleared is all those that overlap
7304     // with the interval [_threshold, _finger); note that
7305     // _threshold is always kept card-aligned but _finger isn't
7306     // always card-aligned.
7307     HeapWord* old_threshold = _threshold;
7308     assert(old_threshold == (HeapWord*)round_to(
7309             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7310            "_threshold should always be card-aligned");
7311     _threshold = (HeapWord*)round_to(
7312                    (intptr_t)_finger, CardTableModRefBS::card_size);
7313     MemRegion mr(old_threshold, _threshold);
7314     assert(!mr.is_empty(), "Control point invariant");
7315     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7316     // XXX When _finger crosses from old gen into perm gen
7317     // we may be doing unnecessary cleaning; do better in the
7318     // future by detecting that condition and clearing fewer
7319     // MUT/CT entries.
7320     _mut->clear_range(mr);
7321   }
7322 
7323   // Note: the local finger doesn't advance while we drain
7324   // the stack below, but the global finger sure can and will.
7325   HeapWord** gfa = _task->global_finger_addr();
7326   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7327                                       _span, _bit_map,
7328                                       _work_queue,
7329                                       _overflow_stack,
7330                                       _revisit_stack,
7331                                       _finger,
7332                                       gfa, this);
7333   bool res = _work_queue->push(obj);   // overflow could occur here
7334   assert(res, "Will hold once we use workqueues");
7335   while (true) {
7336     oop new_oop;
7337     if (!_work_queue->pop_local(new_oop)) {
7338       // We emptied our work_queue; check if there's stuff that can
7339       // be gotten from the overflow stack.
7340       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7341             _overflow_stack, _work_queue)) {
7342         do_yield_check();
7343         continue;
7344       } else {  // done
7345         break;
7346       }
7347     }
7348     // Skip verifying header mark word below because we are
7349     // running concurrent with mutators.
7350     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7351     // now scan this oop's oops
7352     new_oop->oop_iterate(&pushOrMarkClosure);
7353     do_yield_check();
7354   }
7355   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7356 }
7357 
7358 // Yield in response to a request from VM Thread or
7359 // from mutators.
7360 void Par_MarkFromRootsClosure::do_yield_work() {
7361   assert(_task != NULL, "sanity");
7362   _task->yield();
7363 }
7364 
7365 // A variant of the above used for verifying CMS marking work.
7366 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7367                         MemRegion span,
7368                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7369                         CMSMarkStack*  mark_stack):
7370   _collector(collector),
7371   _span(span),
7372   _verification_bm(verification_bm),
7373   _cms_bm(cms_bm),
7374   _mark_stack(mark_stack),
7375   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7376                       mark_stack)
7377 {
7378   assert(_mark_stack->isEmpty(), "stack should be empty");
7379   _finger = _verification_bm->startWord();
7380   assert(_collector->_restart_addr == NULL, "Sanity check");
7381   assert(_span.contains(_finger), "Out of bounds _finger?");
7382 }
7383 
7384 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7385   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7386   assert(_span.contains(addr), "Out of bounds _finger?");
7387   _finger = addr;
7388 }
7389 
7390 // Should revisit to see if this should be restructured for
7391 // greater efficiency.
7392 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7393   // convert offset into a HeapWord*
7394   HeapWord* addr = _verification_bm->startWord() + offset;
7395   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7396          "address out of range");
7397   assert(_verification_bm->isMarked(addr), "tautology");
7398   assert(_cms_bm->isMarked(addr), "tautology");
7399 
7400   assert(_mark_stack->isEmpty(),
7401          "should drain stack to limit stack usage");
7402   // convert addr to an oop preparatory to scanning
7403   oop obj = oop(addr);
7404   assert(obj->is_oop(), "should be an oop");
7405   assert(_finger <= addr, "_finger runneth ahead");
7406   // advance the finger to right end of this object
7407   _finger = addr + obj->size();
7408   assert(_finger > addr, "we just incremented it above");
7409   // Note: the finger doesn't advance while we drain
7410   // the stack below.
7411   bool res = _mark_stack->push(obj);
7412   assert(res, "Empty non-zero size stack should have space for single push");
7413   while (!_mark_stack->isEmpty()) {
7414     oop new_oop = _mark_stack->pop();
7415     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7416     // now scan this oop's oops
7417     new_oop->oop_iterate(&_pam_verify_closure);
7418   }
7419   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7420   return true;
7421 }
7422 
7423 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7424   CMSCollector* collector, MemRegion span,
7425   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7426   CMSMarkStack*  mark_stack):
7427   OopClosure(collector->ref_processor()),
7428   _collector(collector),
7429   _span(span),
7430   _verification_bm(verification_bm),
7431   _cms_bm(cms_bm),
7432   _mark_stack(mark_stack)
7433 { }
7434 
7435 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7436 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7437 
7438 // Upon stack overflow, we discard (part of) the stack,
7439 // remembering the least address amongst those discarded
7440 // in CMSCollector's _restart_address.
7441 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7442   // Remember the least grey address discarded
7443   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7444   _collector->lower_restart_addr(ra);
7445   _mark_stack->reset();  // discard stack contents
7446   _mark_stack->expand(); // expand the stack if possible
7447 }
7448 
7449 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7450   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7451   HeapWord* addr = (HeapWord*)obj;
7452   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7453     // Oop lies in _span and isn't yet grey or black
7454     _verification_bm->mark(addr);            // now grey
7455     if (!_cms_bm->isMarked(addr)) {
7456       oop(addr)->print();
7457       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7458                              addr);
7459       fatal("... aborting");
7460     }
7461 
7462     if (!_mark_stack->push(obj)) { // stack overflow
7463       if (PrintCMSStatistics != 0) {
7464         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7465                                SIZE_FORMAT, _mark_stack->capacity());
7466       }
7467       assert(_mark_stack->isFull(), "Else push should have succeeded");
7468       handle_stack_overflow(addr);
7469     }
7470     // anything including and to the right of _finger
7471     // will be scanned as we iterate over the remainder of the
7472     // bit map
7473   }
7474 }
7475 
7476 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7477                      MemRegion span,
7478                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7479                      CMSMarkStack*  revisitStack,
7480                      HeapWord* finger, MarkFromRootsClosure* parent) :
7481   KlassRememberingOopClosure(collector, collector->ref_processor(), revisitStack),
7482   _span(span),
7483   _bitMap(bitMap),
7484   _markStack(markStack),
7485   _finger(finger),
7486   _parent(parent)
7487 { }
7488 
7489 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7490                      MemRegion span,
7491                      CMSBitMap* bit_map,
7492                      OopTaskQueue* work_queue,
7493                      CMSMarkStack*  overflow_stack,
7494                      CMSMarkStack*  revisit_stack,
7495                      HeapWord* finger,
7496                      HeapWord** global_finger_addr,
7497                      Par_MarkFromRootsClosure* parent) :
7498   Par_KlassRememberingOopClosure(collector,
7499                             collector->ref_processor(),
7500                             revisit_stack),
7501   _whole_span(collector->_span),
7502   _span(span),
7503   _bit_map(bit_map),
7504   _work_queue(work_queue),
7505   _overflow_stack(overflow_stack),
7506   _finger(finger),
7507   _global_finger_addr(global_finger_addr),
7508   _parent(parent)
7509 { }
7510 
7511 // Assumes thread-safe access by callers, who are
7512 // responsible for mutual exclusion.
7513 void CMSCollector::lower_restart_addr(HeapWord* low) {
7514   assert(_span.contains(low), "Out of bounds addr");
7515   if (_restart_addr == NULL) {
7516     _restart_addr = low;
7517   } else {
7518     _restart_addr = MIN2(_restart_addr, low);
7519   }
7520 }
7521 
7522 // Upon stack overflow, we discard (part of) the stack,
7523 // remembering the least address amongst those discarded
7524 // in CMSCollector's _restart_address.
7525 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7526   // Remember the least grey address discarded
7527   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7528   _collector->lower_restart_addr(ra);
7529   _markStack->reset();  // discard stack contents
7530   _markStack->expand(); // expand the stack if possible
7531 }
7532 
7533 // Upon stack overflow, we discard (part of) the stack,
7534 // remembering the least address amongst those discarded
7535 // in CMSCollector's _restart_address.
7536 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7537   // We need to do this under a mutex to prevent other
7538   // workers from interfering with the work done below.
7539   MutexLockerEx ml(_overflow_stack->par_lock(),
7540                    Mutex::_no_safepoint_check_flag);
7541   // Remember the least grey address discarded
7542   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7543   _collector->lower_restart_addr(ra);
7544   _overflow_stack->reset();  // discard stack contents
7545   _overflow_stack->expand(); // expand the stack if possible
7546 }
7547 
7548 void PushOrMarkClosure::do_oop(oop obj) {
7549   // Ignore mark word because we are running concurrent with mutators.
7550   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7551   HeapWord* addr = (HeapWord*)obj;
7552   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7553     // Oop lies in _span and isn't yet grey or black
7554     _bitMap->mark(addr);            // now grey
7555     if (addr < _finger) {
7556       // the bit map iteration has already either passed, or
7557       // sampled, this bit in the bit map; we'll need to
7558       // use the marking stack to scan this oop's oops.
7559       bool simulate_overflow = false;
7560       NOT_PRODUCT(
7561         if (CMSMarkStackOverflowALot &&
7562             _collector->simulate_overflow()) {
7563           // simulate a stack overflow
7564           simulate_overflow = true;
7565         }
7566       )
7567       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7568         if (PrintCMSStatistics != 0) {
7569           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7570                                  SIZE_FORMAT, _markStack->capacity());
7571         }
7572         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7573         handle_stack_overflow(addr);
7574       }
7575     }
7576     // anything including and to the right of _finger
7577     // will be scanned as we iterate over the remainder of the
7578     // bit map
7579     do_yield_check();
7580   }
7581 }
7582 
7583 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7584 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7585 
7586 void Par_PushOrMarkClosure::do_oop(oop obj) {
7587   // Ignore mark word because we are running concurrent with mutators.
7588   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7589   HeapWord* addr = (HeapWord*)obj;
7590   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7591     // Oop lies in _span and isn't yet grey or black
7592     // We read the global_finger (volatile read) strictly after marking oop
7593     bool res = _bit_map->par_mark(addr);    // now grey
7594     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7595     // Should we push this marked oop on our stack?
7596     // -- if someone else marked it, nothing to do
7597     // -- if target oop is above global finger nothing to do
7598     // -- if target oop is in chunk and above local finger
7599     //      then nothing to do
7600     // -- else push on work queue
7601     if (   !res       // someone else marked it, they will deal with it
7602         || (addr >= *gfa)  // will be scanned in a later task
7603         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7604       return;
7605     }
7606     // the bit map iteration has already either passed, or
7607     // sampled, this bit in the bit map; we'll need to
7608     // use the marking stack to scan this oop's oops.
7609     bool simulate_overflow = false;
7610     NOT_PRODUCT(
7611       if (CMSMarkStackOverflowALot &&
7612           _collector->simulate_overflow()) {
7613         // simulate a stack overflow
7614         simulate_overflow = true;
7615       }
7616     )
7617     if (simulate_overflow ||
7618         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7619       // stack overflow
7620       if (PrintCMSStatistics != 0) {
7621         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7622                                SIZE_FORMAT, _overflow_stack->capacity());
7623       }
7624       // We cannot assert that the overflow stack is full because
7625       // it may have been emptied since.
7626       assert(simulate_overflow ||
7627              _work_queue->size() == _work_queue->max_elems(),
7628             "Else push should have succeeded");
7629       handle_stack_overflow(addr);
7630     }
7631     do_yield_check();
7632   }
7633 }
7634 
7635 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7636 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7637 
7638 KlassRememberingOopClosure::KlassRememberingOopClosure(CMSCollector* collector,
7639                                              ReferenceProcessor* rp,
7640                                              CMSMarkStack* revisit_stack) :
7641   OopClosure(rp),
7642   _collector(collector),
7643   _revisit_stack(revisit_stack),
7644   _should_remember_klasses(collector->should_unload_classes()) {}
7645 
7646 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7647                                        MemRegion span,
7648                                        ReferenceProcessor* rp,
7649                                        CMSBitMap* bit_map,
7650                                        CMSBitMap* mod_union_table,
7651                                        CMSMarkStack*  mark_stack,
7652                                        CMSMarkStack*  revisit_stack,
7653                                        bool           concurrent_precleaning):
7654   KlassRememberingOopClosure(collector, rp, revisit_stack),
7655   _span(span),
7656   _bit_map(bit_map),
7657   _mod_union_table(mod_union_table),
7658   _mark_stack(mark_stack),
7659   _concurrent_precleaning(concurrent_precleaning)
7660 {
7661   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7662 }
7663 
7664 // Grey object rescan during pre-cleaning and second checkpoint phases --
7665 // the non-parallel version (the parallel version appears further below.)
7666 void PushAndMarkClosure::do_oop(oop obj) {
7667   // Ignore mark word verification. If during concurrent precleaning,
7668   // the object monitor may be locked. If during the checkpoint
7669   // phases, the object may already have been reached by a  different
7670   // path and may be at the end of the global overflow list (so
7671   // the mark word may be NULL).
7672   assert(obj->is_oop_or_null(true /* ignore mark word */),
7673          "expected an oop or NULL");
7674   HeapWord* addr = (HeapWord*)obj;
7675   // Check if oop points into the CMS generation
7676   // and is not marked
7677   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7678     // a white object ...
7679     _bit_map->mark(addr);         // ... now grey
7680     // push on the marking stack (grey set)
7681     bool simulate_overflow = false;
7682     NOT_PRODUCT(
7683       if (CMSMarkStackOverflowALot &&
7684           _collector->simulate_overflow()) {
7685         // simulate a stack overflow
7686         simulate_overflow = true;
7687       }
7688     )
7689     if (simulate_overflow || !_mark_stack->push(obj)) {
7690       if (_concurrent_precleaning) {
7691          // During precleaning we can just dirty the appropriate card(s)
7692          // in the mod union table, thus ensuring that the object remains
7693          // in the grey set  and continue. In the case of object arrays
7694          // we need to dirty all of the cards that the object spans,
7695          // since the rescan of object arrays will be limited to the
7696          // dirty cards.
7697          // Note that no one can be intefering with us in this action
7698          // of dirtying the mod union table, so no locking or atomics
7699          // are required.
7700          if (obj->is_objArray()) {
7701            size_t sz = obj->size();
7702            HeapWord* end_card_addr = (HeapWord*)round_to(
7703                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7704            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7705            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7706            _mod_union_table->mark_range(redirty_range);
7707          } else {
7708            _mod_union_table->mark(addr);
7709          }
7710          _collector->_ser_pmc_preclean_ovflw++;
7711       } else {
7712          // During the remark phase, we need to remember this oop
7713          // in the overflow list.
7714          _collector->push_on_overflow_list(obj);
7715          _collector->_ser_pmc_remark_ovflw++;
7716       }
7717     }
7718   }
7719 }
7720 
7721 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7722                                                MemRegion span,
7723                                                ReferenceProcessor* rp,
7724                                                CMSBitMap* bit_map,
7725                                                OopTaskQueue* work_queue,
7726                                                CMSMarkStack* revisit_stack):
7727   Par_KlassRememberingOopClosure(collector, rp, revisit_stack),
7728   _span(span),
7729   _bit_map(bit_map),
7730   _work_queue(work_queue)
7731 {
7732   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7733 }
7734 
7735 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7736 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7737 
7738 // Grey object rescan during second checkpoint phase --
7739 // the parallel version.
7740 void Par_PushAndMarkClosure::do_oop(oop obj) {
7741   // In the assert below, we ignore the mark word because
7742   // this oop may point to an already visited object that is
7743   // on the overflow stack (in which case the mark word has
7744   // been hijacked for chaining into the overflow stack --
7745   // if this is the last object in the overflow stack then
7746   // its mark word will be NULL). Because this object may
7747   // have been subsequently popped off the global overflow
7748   // stack, and the mark word possibly restored to the prototypical
7749   // value, by the time we get to examined this failing assert in
7750   // the debugger, is_oop_or_null(false) may subsequently start
7751   // to hold.
7752   assert(obj->is_oop_or_null(true),
7753          "expected an oop or NULL");
7754   HeapWord* addr = (HeapWord*)obj;
7755   // Check if oop points into the CMS generation
7756   // and is not marked
7757   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7758     // a white object ...
7759     // If we manage to "claim" the object, by being the
7760     // first thread to mark it, then we push it on our
7761     // marking stack
7762     if (_bit_map->par_mark(addr)) {     // ... now grey
7763       // push on work queue (grey set)
7764       bool simulate_overflow = false;
7765       NOT_PRODUCT(
7766         if (CMSMarkStackOverflowALot &&
7767             _collector->par_simulate_overflow()) {
7768           // simulate a stack overflow
7769           simulate_overflow = true;
7770         }
7771       )
7772       if (simulate_overflow || !_work_queue->push(obj)) {
7773         _collector->par_push_on_overflow_list(obj);
7774         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7775       }
7776     } // Else, some other thread got there first
7777   }
7778 }
7779 
7780 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7781 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7782 
7783 void PushAndMarkClosure::remember_mdo(DataLayout* v) {
7784   // TBD
7785 }
7786 
7787 void Par_PushAndMarkClosure::remember_mdo(DataLayout* v) {
7788   // TBD
7789 }
7790 
7791 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7792   DEBUG_ONLY(RememberKlassesChecker mux(false);)
7793   Mutex* bml = _collector->bitMapLock();
7794   assert_lock_strong(bml);
7795   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7796          "CMS thread should hold CMS token");
7797 
7798   bml->unlock();
7799   ConcurrentMarkSweepThread::desynchronize(true);
7800 
7801   ConcurrentMarkSweepThread::acknowledge_yield_request();
7802 
7803   _collector->stopTimer();
7804   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7805   if (PrintCMSStatistics != 0) {
7806     _collector->incrementYields();
7807   }
7808   _collector->icms_wait();
7809 
7810   // See the comment in coordinator_yield()
7811   for (unsigned i = 0; i < CMSYieldSleepCount &&
7812                        ConcurrentMarkSweepThread::should_yield() &&
7813                        !CMSCollector::foregroundGCIsActive(); ++i) {
7814     os::sleep(Thread::current(), 1, false);
7815     ConcurrentMarkSweepThread::acknowledge_yield_request();
7816   }
7817 
7818   ConcurrentMarkSweepThread::synchronize(true);
7819   bml->lock();
7820 
7821   _collector->startTimer();
7822 }
7823 
7824 bool CMSPrecleanRefsYieldClosure::should_return() {
7825   if (ConcurrentMarkSweepThread::should_yield()) {
7826     do_yield_work();
7827   }
7828   return _collector->foregroundGCIsActive();
7829 }
7830 
7831 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7832   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7833          "mr should be aligned to start at a card boundary");
7834   // We'd like to assert:
7835   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7836   //        "mr should be a range of cards");
7837   // However, that would be too strong in one case -- the last
7838   // partition ends at _unallocated_block which, in general, can be
7839   // an arbitrary boundary, not necessarily card aligned.
7840   if (PrintCMSStatistics != 0) {
7841     _num_dirty_cards +=
7842          mr.word_size()/CardTableModRefBS::card_size_in_words;
7843   }
7844   _space->object_iterate_mem(mr, &_scan_cl);
7845 }
7846 
7847 SweepClosure::SweepClosure(CMSCollector* collector,
7848                            ConcurrentMarkSweepGeneration* g,
7849                            CMSBitMap* bitMap, bool should_yield) :
7850   _collector(collector),
7851   _g(g),
7852   _sp(g->cmsSpace()),
7853   _limit(_sp->sweep_limit()),
7854   _freelistLock(_sp->freelistLock()),
7855   _bitMap(bitMap),
7856   _yield(should_yield),
7857   _inFreeRange(false),           // No free range at beginning of sweep
7858   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7859   _lastFreeRangeCoalesced(false),
7860   _freeFinger(g->used_region().start())
7861 {
7862   NOT_PRODUCT(
7863     _numObjectsFreed = 0;
7864     _numWordsFreed   = 0;
7865     _numObjectsLive = 0;
7866     _numWordsLive = 0;
7867     _numObjectsAlreadyFree = 0;
7868     _numWordsAlreadyFree = 0;
7869     _last_fc = NULL;
7870 
7871     _sp->initializeIndexedFreeListArrayReturnedBytes();
7872     _sp->dictionary()->initializeDictReturnedBytes();
7873   )
7874   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7875          "sweep _limit out of bounds");
7876   if (CMSTraceSweeper) {
7877     gclog_or_tty->print("\n====================\nStarting new sweep\n");
7878   }
7879 }
7880 
7881 // We need this destructor to reclaim any space at the end
7882 // of the space, which do_blk below may not yet have added back to
7883 // the free lists.
7884 SweepClosure::~SweepClosure() {
7885   assert_lock_strong(_freelistLock);
7886   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7887          "sweep _limit out of bounds");
7888   // Flush any remaining coterminal free run as a single
7889   // coalesced chunk to the appropriate free list.
7890   if (inFreeRange()) {
7891     assert(freeFinger() < _limit, "freeFinger points too high");
7892     flush_cur_free_chunk(freeFinger(), pointer_delta(_limit, freeFinger()));
7893     if (CMSTraceSweeper) {
7894       gclog_or_tty->print("Sweep: last chunk: ");
7895       gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") [coalesced:"SIZE_FORMAT"]\n",
7896                           freeFinger(), pointer_delta(_limit, freeFinger()), lastFreeRangeCoalesced());
7897     }
7898   } // else nothing to flush
7899   NOT_PRODUCT(
7900     if (Verbose && PrintGC) {
7901       gclog_or_tty->print("Collected "SIZE_FORMAT" objects, "
7902                           SIZE_FORMAT " bytes",
7903                  _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7904       gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
7905                              SIZE_FORMAT" bytes  "
7906         "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
7907         _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7908         _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7909       size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) *
7910         sizeof(HeapWord);
7911       gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
7912 
7913       if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7914         size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7915         size_t dictReturnedBytes = _sp->dictionary()->sumDictReturnedBytes();
7916         size_t returnedBytes = indexListReturnedBytes + dictReturnedBytes;
7917         gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returnedBytes);
7918         gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
7919           indexListReturnedBytes);
7920         gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
7921           dictReturnedBytes);
7922       }
7923     }
7924   )
7925   // Now, in debug mode, just null out the sweep_limit
7926   NOT_PRODUCT(_sp->clear_sweep_limit();)
7927   if (CMSTraceSweeper) {
7928     gclog_or_tty->print("end of sweep\n================\n");
7929   }
7930 }
7931 
7932 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7933     bool freeRangeInFreeLists) {
7934   if (CMSTraceSweeper) {
7935     gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
7936                freeFinger, freeRangeInFreeLists);
7937   }
7938   assert(!inFreeRange(), "Trampling existing free range");
7939   set_inFreeRange(true);
7940   set_lastFreeRangeCoalesced(false);
7941 
7942   set_freeFinger(freeFinger);
7943   set_freeRangeInFreeLists(freeRangeInFreeLists);
7944   if (CMSTestInFreeList) {
7945     if (freeRangeInFreeLists) {
7946       FreeChunk* fc = (FreeChunk*) freeFinger;
7947       assert(fc->isFree(), "A chunk on the free list should be free.");
7948       assert(fc->size() > 0, "Free range should have a size");
7949       assert(_sp->verifyChunkInFreeLists(fc), "Chunk is not in free lists");
7950     }
7951   }
7952 }
7953 
7954 // Note that the sweeper runs concurrently with mutators. Thus,
7955 // it is possible for direct allocation in this generation to happen
7956 // in the middle of the sweep. Note that the sweeper also coalesces
7957 // contiguous free blocks. Thus, unless the sweeper and the allocator
7958 // synchronize appropriately freshly allocated blocks may get swept up.
7959 // This is accomplished by the sweeper locking the free lists while
7960 // it is sweeping. Thus blocks that are determined to be free are
7961 // indeed free. There is however one additional complication:
7962 // blocks that have been allocated since the final checkpoint and
7963 // mark, will not have been marked and so would be treated as
7964 // unreachable and swept up. To prevent this, the allocator marks
7965 // the bit map when allocating during the sweep phase. This leads,
7966 // however, to a further complication -- objects may have been allocated
7967 // but not yet initialized -- in the sense that the header isn't yet
7968 // installed. The sweeper can not then determine the size of the block
7969 // in order to skip over it. To deal with this case, we use a technique
7970 // (due to Printezis) to encode such uninitialized block sizes in the
7971 // bit map. Since the bit map uses a bit per every HeapWord, but the
7972 // CMS generation has a minimum object size of 3 HeapWords, it follows
7973 // that "normal marks" won't be adjacent in the bit map (there will
7974 // always be at least two 0 bits between successive 1 bits). We make use
7975 // of these "unused" bits to represent uninitialized blocks -- the bit
7976 // corresponding to the start of the uninitialized object and the next
7977 // bit are both set. Finally, a 1 bit marks the end of the object that
7978 // started with the two consecutive 1 bits to indicate its potentially
7979 // uninitialized state.
7980 
7981 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7982   FreeChunk* fc = (FreeChunk*)addr;
7983   size_t res;
7984 
7985   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7986   // than "addr == _limit" because although _limit was a block boundary when
7987   // we started the sweep, it may no longer be one because heap expansion
7988   // may have caused us to coalesce the block ending at the address _limit
7989   // with a newly expanded chunk (this happens when _limit was set to the
7990   // previous _end of the space), so we may have stepped past _limit; see CR 6977970.
7991   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7992     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7993            "sweep _limit out of bounds");
7994     assert(addr < _sp->end(), "addr out of bounds");
7995     // Flush any remaining coterminal free run as a single
7996     // coalesced chunk to the appropriate free list.
7997     if (inFreeRange()) {
7998       assert(freeFinger() < _limit, "finger points too high");
7999       flush_cur_free_chunk(freeFinger(),
8000                            pointer_delta(addr, freeFinger()));
8001       if (CMSTraceSweeper) {
8002         gclog_or_tty->print("Sweep: last chunk: ");
8003         gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") "
8004                    "[coalesced:"SIZE_FORMAT"]\n",
8005                    freeFinger(), pointer_delta(addr, freeFinger()),
8006                    lastFreeRangeCoalesced());
8007       }
8008     }
8009 
8010     // help the iterator loop finish
8011     return pointer_delta(_sp->end(), addr);
8012   }
8013 
8014   assert(addr < _limit, "sweep invariant");
8015   // check if we should yield
8016   do_yield_check(addr);
8017   if (fc->isFree()) {
8018     // Chunk that is already free
8019     res = fc->size();
8020     do_already_free_chunk(fc);
8021     debug_only(_sp->verifyFreeLists());
8022     assert(res == fc->size(), "Don't expect the size to change");
8023     NOT_PRODUCT(
8024       _numObjectsAlreadyFree++;
8025       _numWordsAlreadyFree += res;
8026     )
8027     NOT_PRODUCT(_last_fc = fc;)
8028   } else if (!_bitMap->isMarked(addr)) {
8029     // Chunk is fresh garbage
8030     res = do_garbage_chunk(fc);
8031     debug_only(_sp->verifyFreeLists());
8032     NOT_PRODUCT(
8033       _numObjectsFreed++;
8034       _numWordsFreed += res;
8035     )
8036   } else {
8037     // Chunk that is alive.
8038     res = do_live_chunk(fc);
8039     debug_only(_sp->verifyFreeLists());
8040     NOT_PRODUCT(
8041         _numObjectsLive++;
8042         _numWordsLive += res;
8043     )
8044   }
8045   return res;
8046 }
8047 
8048 // For the smart allocation, record following
8049 //  split deaths - a free chunk is removed from its free list because
8050 //      it is being split into two or more chunks.
8051 //  split birth - a free chunk is being added to its free list because
8052 //      a larger free chunk has been split and resulted in this free chunk.
8053 //  coal death - a free chunk is being removed from its free list because
8054 //      it is being coalesced into a large free chunk.
8055 //  coal birth - a free chunk is being added to its free list because
8056 //      it was created when two or more free chunks where coalesced into
8057 //      this free chunk.
8058 //
8059 // These statistics are used to determine the desired number of free
8060 // chunks of a given size.  The desired number is chosen to be relative
8061 // to the end of a CMS sweep.  The desired number at the end of a sweep
8062 // is the
8063 //      count-at-end-of-previous-sweep (an amount that was enough)
8064 //              - count-at-beginning-of-current-sweep  (the excess)
8065 //              + split-births  (gains in this size during interval)
8066 //              - split-deaths  (demands on this size during interval)
8067 // where the interval is from the end of one sweep to the end of the
8068 // next.
8069 //
8070 // When sweeping the sweeper maintains an accumulated chunk which is
8071 // the chunk that is made up of chunks that have been coalesced.  That
8072 // will be termed the left-hand chunk.  A new chunk of garbage that
8073 // is being considered for coalescing will be referred to as the
8074 // right-hand chunk.
8075 //
8076 // When making a decision on whether to coalesce a right-hand chunk with
8077 // the current left-hand chunk, the current count vs. the desired count
8078 // of the left-hand chunk is considered.  Also if the right-hand chunk
8079 // is near the large chunk at the end of the heap (see
8080 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8081 // left-hand chunk is coalesced.
8082 //
8083 // When making a decision about whether to split a chunk, the desired count
8084 // vs. the current count of the candidate to be split is also considered.
8085 // If the candidate is underpopulated (currently fewer chunks than desired)
8086 // a chunk of an overpopulated (currently more chunks than desired) size may
8087 // be chosen.  The "hint" associated with a free list, if non-null, points
8088 // to a free list which may be overpopulated.
8089 //
8090 
8091 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8092   size_t size = fc->size();
8093   // Chunks that cannot be coalesced are not in the
8094   // free lists.
8095   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8096     assert(_sp->verifyChunkInFreeLists(fc),
8097       "free chunk should be in free lists");
8098   }
8099   // a chunk that is already free, should not have been
8100   // marked in the bit map
8101   HeapWord* addr = (HeapWord*) fc;
8102   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8103   // Verify that the bit map has no bits marked between
8104   // addr and purported end of this block.
8105   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8106 
8107   // Some chunks cannot be coalesced under any circumstances.
8108   // See the definition of cantCoalesce().
8109   if (!fc->cantCoalesce()) {
8110     // This chunk can potentially be coalesced.
8111     if (_sp->adaptive_freelists()) {
8112       // All the work is done in
8113       do_post_free_or_garbage_chunk(fc, size);
8114     } else {  // Not adaptive free lists
8115       // this is a free chunk that can potentially be coalesced by the sweeper;
8116       if (!inFreeRange()) {
8117         // if the next chunk is a free block that can't be coalesced
8118         // it doesn't make sense to remove this chunk from the free lists
8119         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8120         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8121         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8122             nextChunk->isFree()               &&     // ... which is free...
8123             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8124           // nothing to do
8125         } else {
8126           // Potentially the start of a new free range:
8127           // Don't eagerly remove it from the free lists.
8128           // No need to remove it if it will just be put
8129           // back again.  (Also from a pragmatic point of view
8130           // if it is a free block in a region that is beyond
8131           // any allocated blocks, an assertion will fail)
8132           // Remember the start of a free run.
8133           initialize_free_range(addr, true);
8134           // end - can coalesce with next chunk
8135         }
8136       } else {
8137         // the midst of a free range, we are coalescing
8138         debug_only(record_free_block_coalesced(fc);)
8139         if (CMSTraceSweeper) {
8140           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
8141         }
8142         // remove it from the free lists
8143         _sp->removeFreeChunkFromFreeLists(fc);
8144         set_lastFreeRangeCoalesced(true);
8145         // If the chunk is being coalesced and the current free range is
8146         // in the free lists, remove the current free range so that it
8147         // will be returned to the free lists in its entirety - all
8148         // the coalesced pieces included.
8149         if (freeRangeInFreeLists()) {
8150           FreeChunk* ffc = (FreeChunk*) freeFinger();
8151           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8152             "Size of free range is inconsistent with chunk size.");
8153           if (CMSTestInFreeList) {
8154             assert(_sp->verifyChunkInFreeLists(ffc),
8155               "free range is not in free lists");
8156           }
8157           _sp->removeFreeChunkFromFreeLists(ffc);
8158           set_freeRangeInFreeLists(false);
8159         }
8160       }
8161     }
8162   } else {
8163     // Code path common to both original and adaptive free lists.
8164 
8165     // cant coalesce with previous block; this should be treated
8166     // as the end of a free run if any
8167     if (inFreeRange()) {
8168       // we kicked some butt; time to pick up the garbage
8169       assert(freeFinger() < addr, "freeFinger points too high");
8170       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8171     }
8172     // else, nothing to do, just continue
8173   }
8174 }
8175 
8176 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8177   // This is a chunk of garbage.  It is not in any free list.
8178   // Add it to a free list or let it possibly be coalesced into
8179   // a larger chunk.
8180   HeapWord* addr = (HeapWord*) fc;
8181   size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8182 
8183   if (_sp->adaptive_freelists()) {
8184     // Verify that the bit map has no bits marked between
8185     // addr and purported end of just dead object.
8186     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8187 
8188     do_post_free_or_garbage_chunk(fc, size);
8189   } else {
8190     if (!inFreeRange()) {
8191       // start of a new free range
8192       assert(size > 0, "A free range should have a size");
8193       initialize_free_range(addr, false);
8194 
8195     } else {
8196       // this will be swept up when we hit the end of the
8197       // free range
8198       if (CMSTraceSweeper) {
8199         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
8200       }
8201       // If the chunk is being coalesced and the current free range is
8202       // in the free lists, remove the current free range so that it
8203       // will be returned to the free lists in its entirety - all
8204       // the coalesced pieces included.
8205       if (freeRangeInFreeLists()) {
8206         FreeChunk* ffc = (FreeChunk*)freeFinger();
8207         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8208           "Size of free range is inconsistent with chunk size.");
8209         if (CMSTestInFreeList) {
8210           assert(_sp->verifyChunkInFreeLists(ffc),
8211             "free range is not in free lists");
8212         }
8213         _sp->removeFreeChunkFromFreeLists(ffc);
8214         set_freeRangeInFreeLists(false);
8215       }
8216       set_lastFreeRangeCoalesced(true);
8217     }
8218     // this will be swept up when we hit the end of the free range
8219 
8220     // Verify that the bit map has no bits marked between
8221     // addr and purported end of just dead object.
8222     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8223   }
8224   return size;
8225 }
8226 
8227 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8228   HeapWord* addr = (HeapWord*) fc;
8229   // The sweeper has just found a live object. Return any accumulated
8230   // left hand chunk to the free lists.
8231   if (inFreeRange()) {
8232     assert(freeFinger() < addr, "freeFinger points too high");
8233     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8234   }
8235 
8236   // This object is live: we'd normally expect this to be
8237   // an oop, and like to assert the following:
8238   // assert(oop(addr)->is_oop(), "live block should be an oop");
8239   // However, as we commented above, this may be an object whose
8240   // header hasn't yet been initialized.
8241   size_t size;
8242   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8243   if (_bitMap->isMarked(addr + 1)) {
8244     // Determine the size from the bit map, rather than trying to
8245     // compute it from the object header.
8246     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8247     size = pointer_delta(nextOneAddr + 1, addr);
8248     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8249            "alignment problem");
8250 
8251 #ifdef DEBUG
8252       if (oop(addr)->klass_or_null() != NULL &&
8253           (   !_collector->should_unload_classes()
8254            || (oop(addr)->is_parsable()) &&
8255                oop(addr)->is_conc_safe())) {
8256         // Ignore mark word because we are running concurrent with mutators
8257         assert(oop(addr)->is_oop(true), "live block should be an oop");
8258         // is_conc_safe is checked before performing this assertion
8259         // because an object that is not is_conc_safe may yet have
8260         // the return from size() correct.
8261         assert(size ==
8262                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8263                "P-mark and computed size do not agree");
8264       }
8265 #endif
8266 
8267   } else {
8268     // This should be an initialized object that's alive.
8269     assert(oop(addr)->klass_or_null() != NULL &&
8270            (!_collector->should_unload_classes()
8271             || oop(addr)->is_parsable()),
8272            "Should be an initialized object");
8273     // Note that there are objects used during class redefinition
8274     // (e.g., merge_cp in VM_RedefineClasses::merge_cp_and_rewrite()
8275     // which are discarded with their is_conc_safe state still
8276     // false.  These object may be floating garbage so may be
8277     // seen here.  If they are floating garbage their size
8278     // should be attainable from their klass.  Do not that
8279     // is_conc_safe() is true for oop(addr).
8280     // Ignore mark word because we are running concurrent with mutators
8281     assert(oop(addr)->is_oop(true), "live block should be an oop");
8282     // Verify that the bit map has no bits marked between
8283     // addr and purported end of this block.
8284     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8285     assert(size >= 3, "Necessary for Printezis marks to work");
8286     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8287     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8288   }
8289   return size;
8290 }
8291 
8292 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8293                                                  size_t chunkSize) {
8294   // do_post_free_or_garbage_chunk() should only be called in the case
8295   // of the adaptive free list allocator.
8296   bool fcInFreeLists = fc->isFree();
8297   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8298   assert((HeapWord*)fc <= _limit, "sweep invariant");
8299   if (CMSTestInFreeList && fcInFreeLists) {
8300     assert(_sp->verifyChunkInFreeLists(fc), "free chunk is not in free lists");
8301   }
8302 
8303   if (CMSTraceSweeper) {
8304     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
8305   }
8306 
8307   HeapWord* addr = (HeapWord*) fc;
8308 
8309   bool coalesce;
8310   size_t left  = pointer_delta(addr, freeFinger());
8311   size_t right = chunkSize;
8312   switch (FLSCoalescePolicy) {
8313     // numeric value forms a coalition aggressiveness metric
8314     case 0:  { // never coalesce
8315       coalesce = false;
8316       break;
8317     }
8318     case 1: { // coalesce if left & right chunks on overpopulated lists
8319       coalesce = _sp->coalOverPopulated(left) &&
8320                  _sp->coalOverPopulated(right);
8321       break;
8322     }
8323     case 2: { // coalesce if left chunk on overpopulated list (default)
8324       coalesce = _sp->coalOverPopulated(left);
8325       break;
8326     }
8327     case 3: { // coalesce if left OR right chunk on overpopulated list
8328       coalesce = _sp->coalOverPopulated(left) ||
8329                  _sp->coalOverPopulated(right);
8330       break;
8331     }
8332     case 4: { // always coalesce
8333       coalesce = true;
8334       break;
8335     }
8336     default:
8337      ShouldNotReachHere();
8338   }
8339 
8340   // Should the current free range be coalesced?
8341   // If the chunk is in a free range and either we decided to coalesce above
8342   // or the chunk is near the large block at the end of the heap
8343   // (isNearLargestChunk() returns true), then coalesce this chunk.
8344   bool doCoalesce = inFreeRange() &&
8345     (coalesce || _g->isNearLargestChunk((HeapWord*)fc));
8346   if (doCoalesce) {
8347     // Coalesce the current free range on the left with the new
8348     // chunk on the right.  If either is on a free list,
8349     // it must be removed from the list and stashed in the closure.
8350     if (freeRangeInFreeLists()) {
8351       FreeChunk* ffc = (FreeChunk*)freeFinger();
8352       assert(ffc->size() == pointer_delta(addr, freeFinger()),
8353         "Size of free range is inconsistent with chunk size.");
8354       if (CMSTestInFreeList) {
8355         assert(_sp->verifyChunkInFreeLists(ffc),
8356           "Chunk is not in free lists");
8357       }
8358       _sp->coalDeath(ffc->size());
8359       _sp->removeFreeChunkFromFreeLists(ffc);
8360       set_freeRangeInFreeLists(false);
8361     }
8362     if (fcInFreeLists) {
8363       _sp->coalDeath(chunkSize);
8364       assert(fc->size() == chunkSize,
8365         "The chunk has the wrong size or is not in the free lists");
8366       _sp->removeFreeChunkFromFreeLists(fc);
8367     }
8368     set_lastFreeRangeCoalesced(true);
8369   } else {  // not in a free range and/or should not coalesce
8370     // Return the current free range and start a new one.
8371     if (inFreeRange()) {
8372       // In a free range but cannot coalesce with the right hand chunk.
8373       // Put the current free range into the free lists.
8374       flush_cur_free_chunk(freeFinger(),
8375                            pointer_delta(addr, freeFinger()));
8376     }
8377     // Set up for new free range.  Pass along whether the right hand
8378     // chunk is in the free lists.
8379     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8380   }
8381 }
8382 
8383 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8384   assert(inFreeRange(), "Should only be called if currently in a free range.");
8385   assert(size > 0,
8386     "A zero sized chunk cannot be added to the free lists.");
8387   if (!freeRangeInFreeLists()) {
8388     if (CMSTestInFreeList) {
8389       FreeChunk* fc = (FreeChunk*) chunk;
8390       fc->setSize(size);
8391       assert(!_sp->verifyChunkInFreeLists(fc),
8392         "chunk should not be in free lists yet");
8393     }
8394     if (CMSTraceSweeper) {
8395       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
8396                     chunk, size);
8397     }
8398     // A new free range is going to be starting.  The current
8399     // free range has not been added to the free lists yet or
8400     // was removed so add it back.
8401     // If the current free range was coalesced, then the death
8402     // of the free range was recorded.  Record a birth now.
8403     if (lastFreeRangeCoalesced()) {
8404       _sp->coalBirth(size);
8405     }
8406     _sp->addChunkAndRepairOffsetTable(chunk, size,
8407             lastFreeRangeCoalesced());
8408   }
8409   set_inFreeRange(false);
8410   set_freeRangeInFreeLists(false);
8411 }
8412 
8413 // We take a break if we've been at this for a while,
8414 // so as to avoid monopolizing the locks involved.
8415 void SweepClosure::do_yield_work(HeapWord* addr) {
8416   // Return current free chunk being used for coalescing (if any)
8417   // to the appropriate freelist.  After yielding, the next
8418   // free block encountered will start a coalescing range of
8419   // free blocks.  If the next free block is adjacent to the
8420   // chunk just flushed, they will need to wait for the next
8421   // sweep to be coalesced.
8422   if (inFreeRange()) {
8423     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8424   }
8425 
8426   // First give up the locks, then yield, then re-lock.
8427   // We should probably use a constructor/destructor idiom to
8428   // do this unlock/lock or modify the MutexUnlocker class to
8429   // serve our purpose. XXX
8430   assert_lock_strong(_bitMap->lock());
8431   assert_lock_strong(_freelistLock);
8432   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8433          "CMS thread should hold CMS token");
8434   _bitMap->lock()->unlock();
8435   _freelistLock->unlock();
8436   ConcurrentMarkSweepThread::desynchronize(true);
8437   ConcurrentMarkSweepThread::acknowledge_yield_request();
8438   _collector->stopTimer();
8439   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8440   if (PrintCMSStatistics != 0) {
8441     _collector->incrementYields();
8442   }
8443   _collector->icms_wait();
8444 
8445   // See the comment in coordinator_yield()
8446   for (unsigned i = 0; i < CMSYieldSleepCount &&
8447                        ConcurrentMarkSweepThread::should_yield() &&
8448                        !CMSCollector::foregroundGCIsActive(); ++i) {
8449     os::sleep(Thread::current(), 1, false);
8450     ConcurrentMarkSweepThread::acknowledge_yield_request();
8451   }
8452 
8453   ConcurrentMarkSweepThread::synchronize(true);
8454   _freelistLock->lock();
8455   _bitMap->lock()->lock_without_safepoint_check();
8456   _collector->startTimer();
8457 }
8458 
8459 #ifndef PRODUCT
8460 // This is actually very useful in a product build if it can
8461 // be called from the debugger.  Compile it into the product
8462 // as needed.
8463 bool debug_verifyChunkInFreeLists(FreeChunk* fc) {
8464   return debug_cms_space->verifyChunkInFreeLists(fc);
8465 }
8466 
8467 void SweepClosure::record_free_block_coalesced(FreeChunk* fc) const {
8468   if (CMSTraceSweeper) {
8469     gclog_or_tty->print("Sweep:coal_free_blk 0x%x (%d)\n", fc, fc->size());
8470   }
8471 }
8472 #endif
8473 
8474 // CMSIsAliveClosure
8475 bool CMSIsAliveClosure::do_object_b(oop obj) {
8476   HeapWord* addr = (HeapWord*)obj;
8477   return addr != NULL &&
8478          (!_span.contains(addr) || _bit_map->isMarked(addr));
8479 }
8480 
8481 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8482                       MemRegion span,
8483                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8484                       CMSMarkStack* revisit_stack, bool cpc):
8485   KlassRememberingOopClosure(collector, NULL, revisit_stack),
8486   _span(span),
8487   _bit_map(bit_map),
8488   _mark_stack(mark_stack),
8489   _concurrent_precleaning(cpc) {
8490   assert(!_span.is_empty(), "Empty span could spell trouble");
8491 }
8492 
8493 
8494 // CMSKeepAliveClosure: the serial version
8495 void CMSKeepAliveClosure::do_oop(oop obj) {
8496   HeapWord* addr = (HeapWord*)obj;
8497   if (_span.contains(addr) &&
8498       !_bit_map->isMarked(addr)) {
8499     _bit_map->mark(addr);
8500     bool simulate_overflow = false;
8501     NOT_PRODUCT(
8502       if (CMSMarkStackOverflowALot &&
8503           _collector->simulate_overflow()) {
8504         // simulate a stack overflow
8505         simulate_overflow = true;
8506       }
8507     )
8508     if (simulate_overflow || !_mark_stack->push(obj)) {
8509       if (_concurrent_precleaning) {
8510         // We dirty the overflown object and let the remark
8511         // phase deal with it.
8512         assert(_collector->overflow_list_is_empty(), "Error");
8513         // In the case of object arrays, we need to dirty all of
8514         // the cards that the object spans. No locking or atomics
8515         // are needed since no one else can be mutating the mod union
8516         // table.
8517         if (obj->is_objArray()) {
8518           size_t sz = obj->size();
8519           HeapWord* end_card_addr =
8520             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8521           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8522           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8523           _collector->_modUnionTable.mark_range(redirty_range);
8524         } else {
8525           _collector->_modUnionTable.mark(addr);
8526         }
8527         _collector->_ser_kac_preclean_ovflw++;
8528       } else {
8529         _collector->push_on_overflow_list(obj);
8530         _collector->_ser_kac_ovflw++;
8531       }
8532     }
8533   }
8534 }
8535 
8536 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8537 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8538 
8539 // CMSParKeepAliveClosure: a parallel version of the above.
8540 // The work queues are private to each closure (thread),
8541 // but (may be) available for stealing by other threads.
8542 void CMSParKeepAliveClosure::do_oop(oop obj) {
8543   HeapWord* addr = (HeapWord*)obj;
8544   if (_span.contains(addr) &&
8545       !_bit_map->isMarked(addr)) {
8546     // In general, during recursive tracing, several threads
8547     // may be concurrently getting here; the first one to
8548     // "tag" it, claims it.
8549     if (_bit_map->par_mark(addr)) {
8550       bool res = _work_queue->push(obj);
8551       assert(res, "Low water mark should be much less than capacity");
8552       // Do a recursive trim in the hope that this will keep
8553       // stack usage lower, but leave some oops for potential stealers
8554       trim_queue(_low_water_mark);
8555     } // Else, another thread got there first
8556   }
8557 }
8558 
8559 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8560 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8561 
8562 void CMSParKeepAliveClosure::trim_queue(uint max) {
8563   while (_work_queue->size() > max) {
8564     oop new_oop;
8565     if (_work_queue->pop_local(new_oop)) {
8566       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8567       assert(_bit_map->isMarked((HeapWord*)new_oop),
8568              "no white objects on this stack!");
8569       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8570       // iterate over the oops in this oop, marking and pushing
8571       // the ones in CMS heap (i.e. in _span).
8572       new_oop->oop_iterate(&_mark_and_push);
8573     }
8574   }
8575 }
8576 
8577 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8578                                 CMSCollector* collector,
8579                                 MemRegion span, CMSBitMap* bit_map,
8580                                 CMSMarkStack* revisit_stack,
8581                                 OopTaskQueue* work_queue):
8582   Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
8583   _span(span),
8584   _bit_map(bit_map),
8585   _work_queue(work_queue) { }
8586 
8587 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8588   HeapWord* addr = (HeapWord*)obj;
8589   if (_span.contains(addr) &&
8590       !_bit_map->isMarked(addr)) {
8591     if (_bit_map->par_mark(addr)) {
8592       bool simulate_overflow = false;
8593       NOT_PRODUCT(
8594         if (CMSMarkStackOverflowALot &&
8595             _collector->par_simulate_overflow()) {
8596           // simulate a stack overflow
8597           simulate_overflow = true;
8598         }
8599       )
8600       if (simulate_overflow || !_work_queue->push(obj)) {
8601         _collector->par_push_on_overflow_list(obj);
8602         _collector->_par_kac_ovflw++;
8603       }
8604     } // Else another thread got there already
8605   }
8606 }
8607 
8608 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8609 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8610 
8611 //////////////////////////////////////////////////////////////////
8612 //  CMSExpansionCause                /////////////////////////////
8613 //////////////////////////////////////////////////////////////////
8614 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8615   switch (cause) {
8616     case _no_expansion:
8617       return "No expansion";
8618     case _satisfy_free_ratio:
8619       return "Free ratio";
8620     case _satisfy_promotion:
8621       return "Satisfy promotion";
8622     case _satisfy_allocation:
8623       return "allocation";
8624     case _allocate_par_lab:
8625       return "Par LAB";
8626     case _allocate_par_spooling_space:
8627       return "Par Spooling Space";
8628     case _adaptive_size_policy:
8629       return "Ergonomics";
8630     default:
8631       return "unknown";
8632   }
8633 }
8634 
8635 void CMSDrainMarkingStackClosure::do_void() {
8636   // the max number to take from overflow list at a time
8637   const size_t num = _mark_stack->capacity()/4;
8638   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8639          "Overflow list should be NULL during concurrent phases");
8640   while (!_mark_stack->isEmpty() ||
8641          // if stack is empty, check the overflow list
8642          _collector->take_from_overflow_list(num, _mark_stack)) {
8643     oop obj = _mark_stack->pop();
8644     HeapWord* addr = (HeapWord*)obj;
8645     assert(_span.contains(addr), "Should be within span");
8646     assert(_bit_map->isMarked(addr), "Should be marked");
8647     assert(obj->is_oop(), "Should be an oop");
8648     obj->oop_iterate(_keep_alive);
8649   }
8650 }
8651 
8652 void CMSParDrainMarkingStackClosure::do_void() {
8653   // drain queue
8654   trim_queue(0);
8655 }
8656 
8657 // Trim our work_queue so its length is below max at return
8658 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8659   while (_work_queue->size() > max) {
8660     oop new_oop;
8661     if (_work_queue->pop_local(new_oop)) {
8662       assert(new_oop->is_oop(), "Expected an oop");
8663       assert(_bit_map->isMarked((HeapWord*)new_oop),
8664              "no white objects on this stack!");
8665       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8666       // iterate over the oops in this oop, marking and pushing
8667       // the ones in CMS heap (i.e. in _span).
8668       new_oop->oop_iterate(&_mark_and_push);
8669     }
8670   }
8671 }
8672 
8673 ////////////////////////////////////////////////////////////////////
8674 // Support for Marking Stack Overflow list handling and related code
8675 ////////////////////////////////////////////////////////////////////
8676 // Much of the following code is similar in shape and spirit to the
8677 // code used in ParNewGC. We should try and share that code
8678 // as much as possible in the future.
8679 
8680 #ifndef PRODUCT
8681 // Debugging support for CMSStackOverflowALot
8682 
8683 // It's OK to call this multi-threaded;  the worst thing
8684 // that can happen is that we'll get a bunch of closely
8685 // spaced simulated oveflows, but that's OK, in fact
8686 // probably good as it would exercise the overflow code
8687 // under contention.
8688 bool CMSCollector::simulate_overflow() {
8689   if (_overflow_counter-- <= 0) { // just being defensive
8690     _overflow_counter = CMSMarkStackOverflowInterval;
8691     return true;
8692   } else {
8693     return false;
8694   }
8695 }
8696 
8697 bool CMSCollector::par_simulate_overflow() {
8698   return simulate_overflow();
8699 }
8700 #endif
8701 
8702 // Single-threaded
8703 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8704   assert(stack->isEmpty(), "Expected precondition");
8705   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8706   size_t i = num;
8707   oop  cur = _overflow_list;
8708   const markOop proto = markOopDesc::prototype();
8709   NOT_PRODUCT(ssize_t n = 0;)
8710   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8711     next = oop(cur->mark());
8712     cur->set_mark(proto);   // until proven otherwise
8713     assert(cur->is_oop(), "Should be an oop");
8714     bool res = stack->push(cur);
8715     assert(res, "Bit off more than can chew?");
8716     NOT_PRODUCT(n++;)
8717   }
8718   _overflow_list = cur;
8719 #ifndef PRODUCT
8720   assert(_num_par_pushes >= n, "Too many pops?");
8721   _num_par_pushes -=n;
8722 #endif
8723   return !stack->isEmpty();
8724 }
8725 
8726 #define BUSY  (oop(0x1aff1aff))
8727 // (MT-safe) Get a prefix of at most "num" from the list.
8728 // The overflow list is chained through the mark word of
8729 // each object in the list. We fetch the entire list,
8730 // break off a prefix of the right size and return the
8731 // remainder. If other threads try to take objects from
8732 // the overflow list at that time, they will wait for
8733 // some time to see if data becomes available. If (and
8734 // only if) another thread places one or more object(s)
8735 // on the global list before we have returned the suffix
8736 // to the global list, we will walk down our local list
8737 // to find its end and append the global list to
8738 // our suffix before returning it. This suffix walk can
8739 // prove to be expensive (quadratic in the amount of traffic)
8740 // when there are many objects in the overflow list and
8741 // there is much producer-consumer contention on the list.
8742 // *NOTE*: The overflow list manipulation code here and
8743 // in ParNewGeneration:: are very similar in shape,
8744 // except that in the ParNew case we use the old (from/eden)
8745 // copy of the object to thread the list via its klass word.
8746 // Because of the common code, if you make any changes in
8747 // the code below, please check the ParNew version to see if
8748 // similar changes might be needed.
8749 // CR 6797058 has been filed to consolidate the common code.
8750 bool CMSCollector::par_take_from_overflow_list(size_t num,
8751                                                OopTaskQueue* work_q,
8752                                                int no_of_gc_threads) {
8753   assert(work_q->size() == 0, "First empty local work queue");
8754   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8755   if (_overflow_list == NULL) {
8756     return false;
8757   }
8758   // Grab the entire list; we'll put back a suffix
8759   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8760   Thread* tid = Thread::current();
8761   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8762   // set to ParallelGCThreads.
8763   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8764   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8765   // If the list is busy, we spin for a short while,
8766   // sleeping between attempts to get the list.
8767   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8768     os::sleep(tid, sleep_time_millis, false);
8769     if (_overflow_list == NULL) {
8770       // Nothing left to take
8771       return false;
8772     } else if (_overflow_list != BUSY) {
8773       // Try and grab the prefix
8774       prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8775     }
8776   }
8777   // If the list was found to be empty, or we spun long
8778   // enough, we give up and return empty-handed. If we leave
8779   // the list in the BUSY state below, it must be the case that
8780   // some other thread holds the overflow list and will set it
8781   // to a non-BUSY state in the future.
8782   if (prefix == NULL || prefix == BUSY) {
8783      // Nothing to take or waited long enough
8784      if (prefix == NULL) {
8785        // Write back the NULL in case we overwrote it with BUSY above
8786        // and it is still the same value.
8787        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8788      }
8789      return false;
8790   }
8791   assert(prefix != NULL && prefix != BUSY, "Error");
8792   size_t i = num;
8793   oop cur = prefix;
8794   // Walk down the first "num" objects, unless we reach the end.
8795   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8796   if (cur->mark() == NULL) {
8797     // We have "num" or fewer elements in the list, so there
8798     // is nothing to return to the global list.
8799     // Write back the NULL in lieu of the BUSY we wrote
8800     // above, if it is still the same value.
8801     if (_overflow_list == BUSY) {
8802       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8803     }
8804   } else {
8805     // Chop off the suffix and rerturn it to the global list.
8806     assert(cur->mark() != BUSY, "Error");
8807     oop suffix_head = cur->mark(); // suffix will be put back on global list
8808     cur->set_mark(NULL);           // break off suffix
8809     // It's possible that the list is still in the empty(busy) state
8810     // we left it in a short while ago; in that case we may be
8811     // able to place back the suffix without incurring the cost
8812     // of a walk down the list.
8813     oop observed_overflow_list = _overflow_list;
8814     oop cur_overflow_list = observed_overflow_list;
8815     bool attached = false;
8816     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8817       observed_overflow_list =
8818         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8819       if (cur_overflow_list == observed_overflow_list) {
8820         attached = true;
8821         break;
8822       } else cur_overflow_list = observed_overflow_list;
8823     }
8824     if (!attached) {
8825       // Too bad, someone else sneaked in (at least) an element; we'll need
8826       // to do a splice. Find tail of suffix so we can prepend suffix to global
8827       // list.
8828       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8829       oop suffix_tail = cur;
8830       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8831              "Tautology");
8832       observed_overflow_list = _overflow_list;
8833       do {
8834         cur_overflow_list = observed_overflow_list;
8835         if (cur_overflow_list != BUSY) {
8836           // Do the splice ...
8837           suffix_tail->set_mark(markOop(cur_overflow_list));
8838         } else { // cur_overflow_list == BUSY
8839           suffix_tail->set_mark(NULL);
8840         }
8841         // ... and try to place spliced list back on overflow_list ...
8842         observed_overflow_list =
8843           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8844       } while (cur_overflow_list != observed_overflow_list);
8845       // ... until we have succeeded in doing so.
8846     }
8847   }
8848 
8849   // Push the prefix elements on work_q
8850   assert(prefix != NULL, "control point invariant");
8851   const markOop proto = markOopDesc::prototype();
8852   oop next;
8853   NOT_PRODUCT(ssize_t n = 0;)
8854   for (cur = prefix; cur != NULL; cur = next) {
8855     next = oop(cur->mark());
8856     cur->set_mark(proto);   // until proven otherwise
8857     assert(cur->is_oop(), "Should be an oop");
8858     bool res = work_q->push(cur);
8859     assert(res, "Bit off more than we can chew?");
8860     NOT_PRODUCT(n++;)
8861   }
8862 #ifndef PRODUCT
8863   assert(_num_par_pushes >= n, "Too many pops?");
8864   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8865 #endif
8866   return true;
8867 }
8868 
8869 // Single-threaded
8870 void CMSCollector::push_on_overflow_list(oop p) {
8871   NOT_PRODUCT(_num_par_pushes++;)
8872   assert(p->is_oop(), "Not an oop");
8873   preserve_mark_if_necessary(p);
8874   p->set_mark((markOop)_overflow_list);
8875   _overflow_list = p;
8876 }
8877 
8878 // Multi-threaded; use CAS to prepend to overflow list
8879 void CMSCollector::par_push_on_overflow_list(oop p) {
8880   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8881   assert(p->is_oop(), "Not an oop");
8882   par_preserve_mark_if_necessary(p);
8883   oop observed_overflow_list = _overflow_list;
8884   oop cur_overflow_list;
8885   do {
8886     cur_overflow_list = observed_overflow_list;
8887     if (cur_overflow_list != BUSY) {
8888       p->set_mark(markOop(cur_overflow_list));
8889     } else {
8890       p->set_mark(NULL);
8891     }
8892     observed_overflow_list =
8893       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8894   } while (cur_overflow_list != observed_overflow_list);
8895 }
8896 #undef BUSY
8897 
8898 // Single threaded
8899 // General Note on GrowableArray: pushes may silently fail
8900 // because we are (temporarily) out of C-heap for expanding
8901 // the stack. The problem is quite ubiquitous and affects
8902 // a lot of code in the JVM. The prudent thing for GrowableArray
8903 // to do (for now) is to exit with an error. However, that may
8904 // be too draconian in some cases because the caller may be
8905 // able to recover without much harm. For such cases, we
8906 // should probably introduce a "soft_push" method which returns
8907 // an indication of success or failure with the assumption that
8908 // the caller may be able to recover from a failure; code in
8909 // the VM can then be changed, incrementally, to deal with such
8910 // failures where possible, thus, incrementally hardening the VM
8911 // in such low resource situations.
8912 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8913   _preserved_oop_stack.push(p);
8914   _preserved_mark_stack.push(m);
8915   assert(m == p->mark(), "Mark word changed");
8916   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8917          "bijection");
8918 }
8919 
8920 // Single threaded
8921 void CMSCollector::preserve_mark_if_necessary(oop p) {
8922   markOop m = p->mark();
8923   if (m->must_be_preserved(p)) {
8924     preserve_mark_work(p, m);
8925   }
8926 }
8927 
8928 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8929   markOop m = p->mark();
8930   if (m->must_be_preserved(p)) {
8931     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8932     // Even though we read the mark word without holding
8933     // the lock, we are assured that it will not change
8934     // because we "own" this oop, so no other thread can
8935     // be trying to push it on the overflow list; see
8936     // the assertion in preserve_mark_work() that checks
8937     // that m == p->mark().
8938     preserve_mark_work(p, m);
8939   }
8940 }
8941 
8942 // We should be able to do this multi-threaded,
8943 // a chunk of stack being a task (this is
8944 // correct because each oop only ever appears
8945 // once in the overflow list. However, it's
8946 // not very easy to completely overlap this with
8947 // other operations, so will generally not be done
8948 // until all work's been completed. Because we
8949 // expect the preserved oop stack (set) to be small,
8950 // it's probably fine to do this single-threaded.
8951 // We can explore cleverer concurrent/overlapped/parallel
8952 // processing of preserved marks if we feel the
8953 // need for this in the future. Stack overflow should
8954 // be so rare in practice and, when it happens, its
8955 // effect on performance so great that this will
8956 // likely just be in the noise anyway.
8957 void CMSCollector::restore_preserved_marks_if_any() {
8958   assert(SafepointSynchronize::is_at_safepoint(),
8959          "world should be stopped");
8960   assert(Thread::current()->is_ConcurrentGC_thread() ||
8961          Thread::current()->is_VM_thread(),
8962          "should be single-threaded");
8963   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8964          "bijection");
8965 
8966   while (!_preserved_oop_stack.is_empty()) {
8967     oop p = _preserved_oop_stack.pop();
8968     assert(p->is_oop(), "Should be an oop");
8969     assert(_span.contains(p), "oop should be in _span");
8970     assert(p->mark() == markOopDesc::prototype(),
8971            "Set when taken from overflow list");
8972     markOop m = _preserved_mark_stack.pop();
8973     p->set_mark(m);
8974   }
8975   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8976          "stacks were cleared above");
8977 }
8978 
8979 #ifndef PRODUCT
8980 bool CMSCollector::no_preserved_marks() const {
8981   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8982 }
8983 #endif
8984 
8985 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
8986 {
8987   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
8988   CMSAdaptiveSizePolicy* size_policy =
8989     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
8990   assert(size_policy->is_gc_cms_adaptive_size_policy(),
8991     "Wrong type for size policy");
8992   return size_policy;
8993 }
8994 
8995 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
8996                                            size_t desired_promo_size) {
8997   if (cur_promo_size < desired_promo_size) {
8998     size_t expand_bytes = desired_promo_size - cur_promo_size;
8999     if (PrintAdaptiveSizePolicy && Verbose) {
9000       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9001         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
9002         expand_bytes);
9003     }
9004     expand(expand_bytes,
9005            MinHeapDeltaBytes,
9006            CMSExpansionCause::_adaptive_size_policy);
9007   } else if (desired_promo_size < cur_promo_size) {
9008     size_t shrink_bytes = cur_promo_size - desired_promo_size;
9009     if (PrintAdaptiveSizePolicy && Verbose) {
9010       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9011         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
9012         shrink_bytes);
9013     }
9014     shrink(shrink_bytes);
9015   }
9016 }
9017 
9018 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
9019   GenCollectedHeap* gch = GenCollectedHeap::heap();
9020   CMSGCAdaptivePolicyCounters* counters =
9021     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
9022   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
9023     "Wrong kind of counters");
9024   return counters;
9025 }
9026 
9027 
9028 void ASConcurrentMarkSweepGeneration::update_counters() {
9029   if (UsePerfData) {
9030     _space_counters->update_all();
9031     _gen_counters->update_all();
9032     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9033     GenCollectedHeap* gch = GenCollectedHeap::heap();
9034     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9035     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9036       "Wrong gc statistics type");
9037     counters->update_counters(gc_stats_l);
9038   }
9039 }
9040 
9041 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
9042   if (UsePerfData) {
9043     _space_counters->update_used(used);
9044     _space_counters->update_capacity();
9045     _gen_counters->update_all();
9046 
9047     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9048     GenCollectedHeap* gch = GenCollectedHeap::heap();
9049     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9050     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9051       "Wrong gc statistics type");
9052     counters->update_counters(gc_stats_l);
9053   }
9054 }
9055 
9056 // The desired expansion delta is computed so that:
9057 // . desired free percentage or greater is used
9058 void ASConcurrentMarkSweepGeneration::compute_new_size() {
9059   assert_locked_or_safepoint(Heap_lock);
9060 
9061   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9062 
9063   // If incremental collection failed, we just want to expand
9064   // to the limit.
9065   if (incremental_collection_failed()) {
9066     clear_incremental_collection_failed();
9067     grow_to_reserved();
9068     return;
9069   }
9070 
9071   assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
9072 
9073   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
9074     "Wrong type of heap");
9075   int prev_level = level() - 1;
9076   assert(prev_level >= 0, "The cms generation is the lowest generation");
9077   Generation* prev_gen = gch->get_gen(prev_level);
9078   assert(prev_gen->kind() == Generation::ASParNew,
9079     "Wrong type of young generation");
9080   ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
9081   size_t cur_eden = younger_gen->eden()->capacity();
9082   CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
9083   size_t cur_promo = free();
9084   size_policy->compute_tenured_generation_free_space(cur_promo,
9085                                                        max_available(),
9086                                                        cur_eden);
9087   resize(cur_promo, size_policy->promo_size());
9088 
9089   // Record the new size of the space in the cms generation
9090   // that is available for promotions.  This is temporary.
9091   // It should be the desired promo size.
9092   size_policy->avg_cms_promo()->sample(free());
9093   size_policy->avg_old_live()->sample(used());
9094 
9095   if (UsePerfData) {
9096     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9097     counters->update_cms_capacity_counter(capacity());
9098   }
9099 }
9100 
9101 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
9102   assert_locked_or_safepoint(Heap_lock);
9103   assert_lock_strong(freelistLock());
9104   HeapWord* old_end = _cmsSpace->end();
9105   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
9106   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
9107   FreeChunk* chunk_at_end = find_chunk_at_end();
9108   if (chunk_at_end == NULL) {
9109     // No room to shrink
9110     if (PrintGCDetails && Verbose) {
9111       gclog_or_tty->print_cr("No room to shrink: old_end  "
9112         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
9113         " chunk_at_end  " PTR_FORMAT,
9114         old_end, unallocated_start, chunk_at_end);
9115     }
9116     return;
9117   } else {
9118 
9119     // Find the chunk at the end of the space and determine
9120     // how much it can be shrunk.
9121     size_t shrinkable_size_in_bytes = chunk_at_end->size();
9122     size_t aligned_shrinkable_size_in_bytes =
9123       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
9124     assert(unallocated_start <= chunk_at_end->end(),
9125       "Inconsistent chunk at end of space");
9126     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
9127     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
9128 
9129     // Shrink the underlying space
9130     _virtual_space.shrink_by(bytes);
9131     if (PrintGCDetails && Verbose) {
9132       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
9133         " desired_bytes " SIZE_FORMAT
9134         " shrinkable_size_in_bytes " SIZE_FORMAT
9135         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
9136         "  bytes  " SIZE_FORMAT,
9137         desired_bytes, shrinkable_size_in_bytes,
9138         aligned_shrinkable_size_in_bytes, bytes);
9139       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
9140         "  unallocated_start  " SIZE_FORMAT,
9141         old_end, unallocated_start);
9142     }
9143 
9144     // If the space did shrink (shrinking is not guaranteed),
9145     // shrink the chunk at the end by the appropriate amount.
9146     if (((HeapWord*)_virtual_space.high()) < old_end) {
9147       size_t new_word_size =
9148         heap_word_size(_virtual_space.committed_size());
9149 
9150       // Have to remove the chunk from the dictionary because it is changing
9151       // size and might be someplace elsewhere in the dictionary.
9152 
9153       // Get the chunk at end, shrink it, and put it
9154       // back.
9155       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
9156       size_t word_size_change = word_size_before - new_word_size;
9157       size_t chunk_at_end_old_size = chunk_at_end->size();
9158       assert(chunk_at_end_old_size >= word_size_change,
9159         "Shrink is too large");
9160       chunk_at_end->setSize(chunk_at_end_old_size -
9161                           word_size_change);
9162       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
9163         word_size_change);
9164 
9165       _cmsSpace->returnChunkToDictionary(chunk_at_end);
9166 
9167       MemRegion mr(_cmsSpace->bottom(), new_word_size);
9168       _bts->resize(new_word_size);  // resize the block offset shared array
9169       Universe::heap()->barrier_set()->resize_covered_region(mr);
9170       _cmsSpace->assert_locked();
9171       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
9172 
9173       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
9174 
9175       // update the space and generation capacity counters
9176       if (UsePerfData) {
9177         _space_counters->update_capacity();
9178         _gen_counters->update_all();
9179       }
9180 
9181       if (Verbose && PrintGCDetails) {
9182         size_t new_mem_size = _virtual_space.committed_size();
9183         size_t old_mem_size = new_mem_size + bytes;
9184         gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK",
9185                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
9186       }
9187     }
9188 
9189     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
9190       "Inconsistency at end of space");
9191     assert(chunk_at_end->end() == _cmsSpace->end(),
9192       "Shrinking is inconsistent");
9193     return;
9194   }
9195 }
9196 
9197 // Transfer some number of overflown objects to usual marking
9198 // stack. Return true if some objects were transferred.
9199 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9200   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9201                     (size_t)ParGCDesiredObjsFromOverflowList);
9202 
9203   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9204   assert(_collector->overflow_list_is_empty() || res,
9205          "If list is not empty, we should have taken something");
9206   assert(!res || !_mark_stack->isEmpty(),
9207          "If we took something, it should now be on our stack");
9208   return res;
9209 }
9210 
9211 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9212   size_t res = _sp->block_size_no_stall(addr, _collector);
9213   if (_sp->block_is_obj(addr)) {
9214     if (_live_bit_map->isMarked(addr)) {
9215       // It can't have been dead in a previous cycle
9216       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9217     } else {
9218       _dead_bit_map->mark(addr);      // mark the dead object
9219     }
9220   }
9221   // Could be 0, if the block size could not be computed without stalling.
9222   return res;
9223 }
9224 
9225 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase): TraceMemoryManagerStats() {
9226 
9227   switch (phase) {
9228     case CMSCollector::InitialMarking:
9229       initialize(true  /* fullGC */ ,
9230                  true  /* recordGCBeginTime */,
9231                  true  /* recordPreGCUsage */,
9232                  false /* recordPeakUsage */,
9233                  false /* recordPostGCusage */,
9234                  true  /* recordAccumulatedGCTime */,
9235                  false /* recordGCEndTime */,
9236                  false /* countCollection */  );
9237       break;
9238 
9239     case CMSCollector::FinalMarking:
9240       initialize(true  /* fullGC */ ,
9241                  false /* recordGCBeginTime */,
9242                  false /* recordPreGCUsage */,
9243                  false /* recordPeakUsage */,
9244                  false /* recordPostGCusage */,
9245                  true  /* recordAccumulatedGCTime */,
9246                  false /* recordGCEndTime */,
9247                  false /* countCollection */  );
9248       break;
9249 
9250     case CMSCollector::Sweeping:
9251       initialize(true  /* fullGC */ ,
9252                  false /* recordGCBeginTime */,
9253                  false /* recordPreGCUsage */,
9254                  true  /* recordPeakUsage */,
9255                  true  /* recordPostGCusage */,
9256                  false /* recordAccumulatedGCTime */,
9257                  true  /* recordGCEndTime */,
9258                  true  /* countCollection */  );
9259       break;
9260 
9261     default:
9262       ShouldNotReachHere();
9263   }
9264 }
9265 
9266 // when bailing out of cms in concurrent mode failure
9267 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(): TraceMemoryManagerStats() {
9268   initialize(true /* fullGC */ ,
9269              true /* recordGCBeginTime */,
9270              true /* recordPreGCUsage */,
9271              true /* recordPeakUsage */,
9272              true /* recordPostGCusage */,
9273              true /* recordAccumulatedGCTime */,
9274              true /* recordGCEndTime */,
9275              true /* countCollection */ );
9276 }