1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc_interface/collectedHeap.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "memory/referencePolicy.hpp"
  31 #include "memory/referenceProcessor.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/java.hpp"
  34 #include "runtime/jniHandles.hpp"
  35 
  36 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  37 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  38 oop              ReferenceProcessor::_sentinelRef = NULL;
  39 const int        subclasses_of_ref                = REF_PHANTOM - REF_OTHER;
  40 
  41 // List of discovered references.
  42 class DiscoveredList {
  43 public:
  44   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
  45   oop head() const     {
  46      return UseCompressedOops ?  oopDesc::decode_heap_oop_not_null(_compressed_head) :
  47                                 _oop_head;
  48   }
  49   HeapWord* adr_head() {
  50     return UseCompressedOops ? (HeapWord*)&_compressed_head :
  51                                (HeapWord*)&_oop_head;
  52   }
  53   void   set_head(oop o) {
  54     if (UseCompressedOops) {
  55       // Must compress the head ptr.
  56       _compressed_head = oopDesc::encode_heap_oop_not_null(o);
  57     } else {
  58       _oop_head = o;
  59     }
  60   }
  61   bool   empty() const          { return head() == ReferenceProcessor::sentinel_ref(); }
  62   size_t length()               { return _len; }
  63   void   set_length(size_t len) { _len = len;  }
  64   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
  65   void   dec_length(size_t dec) { _len -= dec; }
  66 private:
  67   // Set value depending on UseCompressedOops. This could be a template class
  68   // but then we have to fix all the instantiations and declarations that use this class.
  69   oop       _oop_head;
  70   narrowOop _compressed_head;
  71   size_t _len;
  72 };
  73 
  74 void referenceProcessor_init() {
  75   ReferenceProcessor::init_statics();
  76 }
  77 
  78 void ReferenceProcessor::init_statics() {
  79   assert(_sentinelRef == NULL, "should be initialized precisely once");
  80   EXCEPTION_MARK;
  81   _sentinelRef = instanceKlass::cast(
  82                     SystemDictionary::Reference_klass())->
  83                       allocate_permanent_instance(THREAD);
  84 
  85   // Initialize the master soft ref clock.
  86   java_lang_ref_SoftReference::set_clock(os::javaTimeMillis());
  87 
  88   if (HAS_PENDING_EXCEPTION) {
  89       Handle ex(THREAD, PENDING_EXCEPTION);
  90       vm_exit_during_initialization(ex);
  91   }
  92   assert(_sentinelRef != NULL && _sentinelRef->is_oop(),
  93          "Just constructed it!");
  94   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  95   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
  96                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
  97   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  98     vm_exit_during_initialization("Could not allocate reference policy object");
  99   }
 100   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
 101             RefDiscoveryPolicy == ReferentBasedDiscovery,
 102             "Unrecongnized RefDiscoveryPolicy");
 103 }
 104 
 105 ReferenceProcessor*
 106 ReferenceProcessor::create_ref_processor(MemRegion          span,
 107                                          bool               atomic_discovery,
 108                                          bool               mt_discovery,
 109                                          BoolObjectClosure* is_alive_non_header,
 110                                          int                parallel_gc_threads,
 111                                          bool               mt_processing,
 112                                          bool               dl_needs_barrier) {
 113   int mt_degree = 1;
 114   if (parallel_gc_threads > 1) {
 115     mt_degree = parallel_gc_threads;
 116   }
 117   ReferenceProcessor* rp =
 118     new ReferenceProcessor(span, atomic_discovery,
 119                            mt_discovery, mt_degree,
 120                            mt_processing && (parallel_gc_threads > 0),
 121                            dl_needs_barrier);
 122   if (rp == NULL) {
 123     vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
 124   }
 125   rp->set_is_alive_non_header(is_alive_non_header);
 126   rp->setup_policy(false /* default soft ref policy */);
 127   return rp;
 128 }
 129 
 130 ReferenceProcessor::ReferenceProcessor(MemRegion span,
 131                                        bool      atomic_discovery,
 132                                        bool      mt_discovery,
 133                                        int       mt_degree,
 134                                        bool      mt_processing,
 135                                        bool      discovered_list_needs_barrier)  :
 136   _discovering_refs(false),
 137   _enqueuing_is_done(false),
 138   _is_alive_non_header(NULL),
 139   _discovered_list_needs_barrier(discovered_list_needs_barrier),
 140   _bs(NULL),
 141   _processing_is_mt(mt_processing),
 142   _next_id(0)
 143 {
 144   _span = span;
 145   _discovery_is_atomic = atomic_discovery;
 146   _discovery_is_mt     = mt_discovery;
 147   _num_q               = mt_degree;
 148   _max_num_q           = mt_degree;
 149   _discoveredSoftRefs  = NEW_C_HEAP_ARRAY(DiscoveredList, _max_num_q * subclasses_of_ref);
 150   if (_discoveredSoftRefs == NULL) {
 151     vm_exit_during_initialization("Could not allocated RefProc Array");
 152   }
 153   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
 154   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
 155   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
 156   assert(sentinel_ref() != NULL, "_sentinelRef is NULL");
 157   // Initialized all entries to _sentinelRef
 158   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 159         _discoveredSoftRefs[i].set_head(sentinel_ref());
 160     _discoveredSoftRefs[i].set_length(0);
 161   }
 162   // If we do barreirs, cache a copy of the barrier set.
 163   if (discovered_list_needs_barrier) {
 164     _bs = Universe::heap()->barrier_set();
 165   }
 166 }
 167 
 168 #ifndef PRODUCT
 169 void ReferenceProcessor::verify_no_references_recorded() {
 170   guarantee(!_discovering_refs, "Discovering refs?");
 171   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 172     guarantee(_discoveredSoftRefs[i].empty(),
 173               "Found non-empty discovered list");
 174   }
 175 }
 176 #endif
 177 
 178 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 179   // Should this instead be
 180   // for (int i = 0; i < subclasses_of_ref; i++_ {
 181   //   for (int j = 0; j < _num_q; j++) {
 182   //     int index = i * _max_num_q + j;
 183   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 184     if (UseCompressedOops) {
 185       f->do_oop((narrowOop*)_discoveredSoftRefs[i].adr_head());
 186     } else {
 187       f->do_oop((oop*)_discoveredSoftRefs[i].adr_head());
 188     }
 189   }
 190 }
 191 
 192 void ReferenceProcessor::oops_do(OopClosure* f) {
 193   f->do_oop(adr_sentinel_ref());
 194 }
 195 
 196 void ReferenceProcessor::update_soft_ref_master_clock() {
 197   // Update (advance) the soft ref master clock field. This must be done
 198   // after processing the soft ref list.
 199   jlong now = os::javaTimeMillis();
 200   jlong clock = java_lang_ref_SoftReference::clock();
 201   NOT_PRODUCT(
 202   if (now < clock) {
 203     warning("time warp: %d to %d", clock, now);
 204   }
 205   )
 206   // In product mode, protect ourselves from system time being adjusted
 207   // externally and going backward; see note in the implementation of
 208   // GenCollectedHeap::time_since_last_gc() for the right way to fix
 209   // this uniformly throughout the VM; see bug-id 4741166. XXX
 210   if (now > clock) {
 211     java_lang_ref_SoftReference::set_clock(now);
 212   }
 213   // Else leave clock stalled at its old value until time progresses
 214   // past clock value.
 215 }
 216 
 217 void ReferenceProcessor::process_discovered_references(
 218   BoolObjectClosure*           is_alive,
 219   OopClosure*                  keep_alive,
 220   VoidClosure*                 complete_gc,
 221   AbstractRefProcTaskExecutor* task_executor) {
 222   NOT_PRODUCT(verify_ok_to_handle_reflists());
 223 
 224   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 225   // Stop treating discovered references specially.
 226   disable_discovery();
 227 
 228   bool trace_time = PrintGCDetails && PrintReferenceGC;
 229   // Soft references
 230   {
 231     TraceTime tt("SoftReference", trace_time, false, gclog_or_tty);
 232     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 233                                is_alive, keep_alive, complete_gc, task_executor);
 234   }
 235 
 236   update_soft_ref_master_clock();
 237 
 238   // Weak references
 239   {
 240     TraceTime tt("WeakReference", trace_time, false, gclog_or_tty);
 241     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 242                                is_alive, keep_alive, complete_gc, task_executor);
 243   }
 244 
 245   // Final references
 246   {
 247     TraceTime tt("FinalReference", trace_time, false, gclog_or_tty);
 248     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 249                                is_alive, keep_alive, complete_gc, task_executor);
 250   }
 251 
 252   // Phantom references
 253   {
 254     TraceTime tt("PhantomReference", trace_time, false, gclog_or_tty);
 255     process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
 256                                is_alive, keep_alive, complete_gc, task_executor);
 257   }
 258 
 259   // Weak global JNI references. It would make more sense (semantically) to
 260   // traverse these simultaneously with the regular weak references above, but
 261   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 262   // thus use JNI weak references to circumvent the phantom references and
 263   // resurrect a "post-mortem" object.
 264   {
 265     TraceTime tt("JNI Weak Reference", trace_time, false, gclog_or_tty);
 266     if (task_executor != NULL) {
 267       task_executor->set_single_threaded_mode();
 268     }
 269     process_phaseJNI(is_alive, keep_alive, complete_gc);
 270   }
 271 }
 272 
 273 #ifndef PRODUCT
 274 // Calculate the number of jni handles.
 275 uint ReferenceProcessor::count_jni_refs() {
 276   class AlwaysAliveClosure: public BoolObjectClosure {
 277   public:
 278     virtual bool do_object_b(oop obj) { return true; }
 279     virtual void do_object(oop obj) { assert(false, "Don't call"); }
 280   };
 281 
 282   class CountHandleClosure: public OopClosure {
 283   private:
 284     int _count;
 285   public:
 286     CountHandleClosure(): _count(0) {}
 287     void do_oop(oop* unused)       { _count++; }
 288     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 289     int count() { return _count; }
 290   };
 291   CountHandleClosure global_handle_count;
 292   AlwaysAliveClosure always_alive;
 293   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
 294   return global_handle_count.count();
 295 }
 296 #endif
 297 
 298 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 299                                           OopClosure*        keep_alive,
 300                                           VoidClosure*       complete_gc) {
 301 #ifndef PRODUCT
 302   if (PrintGCDetails && PrintReferenceGC) {
 303     unsigned int count = count_jni_refs();
 304     gclog_or_tty->print(", %u refs", count);
 305   }
 306 #endif
 307   JNIHandles::weak_oops_do(is_alive, keep_alive);
 308   // Finally remember to keep sentinel around
 309   keep_alive->do_oop(adr_sentinel_ref());
 310   complete_gc->do_void();
 311 }
 312 
 313 
 314 template <class T>
 315 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
 316                                    AbstractRefProcTaskExecutor* task_executor) {
 317 
 318   // Remember old value of pending references list
 319   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
 320   T old_pending_list_value = *pending_list_addr;
 321 
 322   // Enqueue references that are not made active again, and
 323   // clear the decks for the next collection (cycle).
 324   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
 325   // Do the oop-check on pending_list_addr missed in
 326   // enqueue_discovered_reflist. We should probably
 327   // do a raw oop_check so that future such idempotent
 328   // oop_stores relying on the oop-check side-effect
 329   // may be elided automatically and safely without
 330   // affecting correctness.
 331   oop_store(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
 332 
 333   // Stop treating discovered references specially.
 334   ref->disable_discovery();
 335 
 336   // Return true if new pending references were added
 337   return old_pending_list_value != *pending_list_addr;
 338 }
 339 
 340 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
 341   NOT_PRODUCT(verify_ok_to_handle_reflists());
 342   if (UseCompressedOops) {
 343     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
 344   } else {
 345     return enqueue_discovered_ref_helper<oop>(this, task_executor);
 346   }
 347 }
 348 
 349 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
 350                                                     HeapWord* pending_list_addr) {
 351   // Given a list of refs linked through the "discovered" field
 352   // (java.lang.ref.Reference.discovered) chain them through the
 353   // "next" field (java.lang.ref.Reference.next) and prepend
 354   // to the pending list.
 355   if (TraceReferenceGC && PrintGCDetails) {
 356     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
 357                            INTPTR_FORMAT, (address)refs_list.head());
 358   }
 359   oop obj = refs_list.head();
 360   // Walk down the list, copying the discovered field into
 361   // the next field and clearing it (except for the last
 362   // non-sentinel object which is treated specially to avoid
 363   // confusion with an active reference).
 364   while (obj != sentinel_ref()) {
 365     assert(obj->is_instanceRef(), "should be reference object");
 366     oop next = java_lang_ref_Reference::discovered(obj);
 367     if (TraceReferenceGC && PrintGCDetails) {
 368       gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next " INTPTR_FORMAT,
 369                              obj, next);
 370     }
 371     assert(java_lang_ref_Reference::next(obj) == NULL,
 372            "The reference should not be enqueued");
 373     if (next == sentinel_ref()) {  // obj is last
 374       // Swap refs_list into pendling_list_addr and
 375       // set obj's next to what we read from pending_list_addr.
 376       oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 377       // Need oop_check on pending_list_addr above;
 378       // see special oop-check code at the end of
 379       // enqueue_discovered_reflists() further below.
 380       if (old == NULL) {
 381         // obj should be made to point to itself, since
 382         // pending list was empty.
 383         java_lang_ref_Reference::set_next(obj, obj);
 384       } else {
 385         java_lang_ref_Reference::set_next(obj, old);
 386       }
 387     } else {
 388       java_lang_ref_Reference::set_next(obj, next);
 389     }
 390     java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
 391     obj = next;
 392   }
 393 }
 394 
 395 // Parallel enqueue task
 396 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 397 public:
 398   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
 399                      DiscoveredList      discovered_refs[],
 400                      HeapWord*           pending_list_addr,
 401                      oop                 sentinel_ref,
 402                      int                 n_queues)
 403     : EnqueueTask(ref_processor, discovered_refs,
 404                   pending_list_addr, sentinel_ref, n_queues)
 405   { }
 406 
 407   virtual void work(unsigned int work_id) {
 408     assert(work_id < (unsigned int)_ref_processor.num_q(), "Index out-of-bounds");
 409     // Simplest first cut: static partitioning.
 410     int index = work_id;
 411     // The increment on "index" must correspond to the maximum number of queues
 412     // (n_queues) with which that ReferenceProcessor was created.  That
 413     // is because of the "clever" way the discovered references lists were
 414     // allocated and are indexed into.  That number is ParallelGCThreads
 415     // currently.  Assert that.
 416     assert(_n_queues == (int) ParallelGCThreads, "Different number not expected");
 417     for (int j = 0;
 418          j < subclasses_of_ref;
 419          j++, index += _n_queues) {
 420       _ref_processor.enqueue_discovered_reflist(
 421         _refs_lists[index], _pending_list_addr);
 422       _refs_lists[index].set_head(_sentinel_ref);
 423       _refs_lists[index].set_length(0);
 424     }
 425   }
 426 };
 427 
 428 // Enqueue references that are not made active again
 429 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
 430   AbstractRefProcTaskExecutor* task_executor) {
 431   if (_processing_is_mt && task_executor != NULL) {
 432     // Parallel code
 433     RefProcEnqueueTask tsk(*this, _discoveredSoftRefs,
 434                            pending_list_addr, sentinel_ref(), _max_num_q);
 435     task_executor->execute(tsk);
 436   } else {
 437     // Serial code: call the parent class's implementation
 438     for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 439       enqueue_discovered_reflist(_discoveredSoftRefs[i], pending_list_addr);
 440       _discoveredSoftRefs[i].set_head(sentinel_ref());
 441       _discoveredSoftRefs[i].set_length(0);
 442     }
 443   }
 444 }
 445 
 446 // Iterator for the list of discovered references.
 447 class DiscoveredListIterator {
 448 public:
 449   inline DiscoveredListIterator(DiscoveredList&    refs_list,
 450                                 OopClosure*        keep_alive,
 451                                 BoolObjectClosure* is_alive);
 452 
 453   // End Of List.
 454   inline bool has_next() const { return _next != ReferenceProcessor::sentinel_ref(); }
 455 
 456   // Get oop to the Reference object.
 457   inline oop obj() const { return _ref; }
 458 
 459   // Get oop to the referent object.
 460   inline oop referent() const { return _referent; }
 461 
 462   // Returns true if referent is alive.
 463   inline bool is_referent_alive() const;
 464 
 465   // Loads data for the current reference.
 466   // The "allow_null_referent" argument tells us to allow for the possibility
 467   // of a NULL referent in the discovered Reference object. This typically
 468   // happens in the case of concurrent collectors that may have done the
 469   // discovery concurrently, or interleaved, with mutator execution.
 470   inline void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
 471 
 472   // Move to the next discovered reference.
 473   inline void next();
 474 
 475   // Remove the current reference from the list
 476   inline void remove();
 477 
 478   // Make the Reference object active again.
 479   inline void make_active() { java_lang_ref_Reference::set_next(_ref, NULL); }
 480 
 481   // Make the referent alive.
 482   inline void make_referent_alive() {
 483     if (UseCompressedOops) {
 484       _keep_alive->do_oop((narrowOop*)_referent_addr);
 485     } else {
 486       _keep_alive->do_oop((oop*)_referent_addr);
 487     }
 488   }
 489 
 490   // Update the discovered field.
 491   inline void update_discovered() {
 492     // First _prev_next ref actually points into DiscoveredList (gross).
 493     if (UseCompressedOops) {
 494       _keep_alive->do_oop((narrowOop*)_prev_next);
 495     } else {
 496       _keep_alive->do_oop((oop*)_prev_next);
 497     }
 498   }
 499 
 500   // NULL out referent pointer.
 501   inline void clear_referent() { oop_store_raw(_referent_addr, NULL); }
 502 
 503   // Statistics
 504   NOT_PRODUCT(
 505   inline size_t processed() const { return _processed; }
 506   inline size_t removed() const   { return _removed; }
 507   )
 508 
 509   inline void move_to_next();
 510 
 511 private:
 512   DiscoveredList&    _refs_list;
 513   HeapWord*          _prev_next;
 514   oop                _ref;
 515   HeapWord*          _discovered_addr;
 516   oop                _next;
 517   HeapWord*          _referent_addr;
 518   oop                _referent;
 519   OopClosure*        _keep_alive;
 520   BoolObjectClosure* _is_alive;
 521   DEBUG_ONLY(
 522   oop                _first_seen; // cyclic linked list check
 523   )
 524   NOT_PRODUCT(
 525   size_t             _processed;
 526   size_t             _removed;
 527   )
 528 };
 529 
 530 inline DiscoveredListIterator::DiscoveredListIterator(DiscoveredList&    refs_list,
 531                                                       OopClosure*        keep_alive,
 532                                                       BoolObjectClosure* is_alive)
 533   : _refs_list(refs_list),
 534     _prev_next(refs_list.adr_head()),
 535     _ref(refs_list.head()),
 536 #ifdef ASSERT
 537     _first_seen(refs_list.head()),
 538 #endif
 539 #ifndef PRODUCT
 540     _processed(0),
 541     _removed(0),
 542 #endif
 543     _next(refs_list.head()),
 544     _keep_alive(keep_alive),
 545     _is_alive(is_alive)
 546 { }
 547 
 548 inline bool DiscoveredListIterator::is_referent_alive() const {
 549   return _is_alive->do_object_b(_referent);
 550 }
 551 
 552 inline void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 553   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 554   oop discovered = java_lang_ref_Reference::discovered(_ref);
 555   assert(_discovered_addr && discovered->is_oop_or_null(),
 556          "discovered field is bad");
 557   _next = discovered;
 558   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 559   _referent = java_lang_ref_Reference::referent(_ref);
 560   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 561          "Wrong oop found in java.lang.Reference object");
 562   assert(allow_null_referent ?
 563              _referent->is_oop_or_null()
 564            : _referent->is_oop(),
 565          "bad referent");
 566 }
 567 
 568 inline void DiscoveredListIterator::next() {
 569   _prev_next = _discovered_addr;
 570   move_to_next();
 571 }
 572 
 573 inline void DiscoveredListIterator::remove() {
 574   assert(_ref->is_oop(), "Dropping a bad reference");
 575   oop_store_raw(_discovered_addr, NULL);
 576   // First _prev_next ref actually points into DiscoveredList (gross).
 577   if (UseCompressedOops) {
 578     // Remove Reference object from list.
 579     oopDesc::encode_store_heap_oop_not_null((narrowOop*)_prev_next, _next);
 580   } else {
 581     // Remove Reference object from list.
 582     oopDesc::store_heap_oop((oop*)_prev_next, _next);
 583   }
 584   NOT_PRODUCT(_removed++);
 585   _refs_list.dec_length(1);
 586 }
 587 
 588 inline void DiscoveredListIterator::move_to_next() {
 589   _ref = _next;
 590   assert(_ref != _first_seen, "cyclic ref_list found");
 591   NOT_PRODUCT(_processed++);
 592 }
 593 
 594 // NOTE: process_phase*() are largely similar, and at a high level
 595 // merely iterate over the extant list applying a predicate to
 596 // each of its elements and possibly removing that element from the
 597 // list and applying some further closures to that element.
 598 // We should consider the possibility of replacing these
 599 // process_phase*() methods by abstracting them into
 600 // a single general iterator invocation that receives appropriate
 601 // closures that accomplish this work.
 602 
 603 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 604 // referents are not alive, but that should be kept alive for policy reasons.
 605 // Keep alive the transitive closure of all such referents.
 606 void
 607 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 608                                    ReferencePolicy*   policy,
 609                                    BoolObjectClosure* is_alive,
 610                                    OopClosure*        keep_alive,
 611                                    VoidClosure*       complete_gc) {
 612   assert(policy != NULL, "Must have a non-NULL policy");
 613   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 614   // Decide which softly reachable refs should be kept alive.
 615   while (iter.has_next()) {
 616     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 617     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 618     if (referent_is_dead && !policy->should_clear_reference(iter.obj())) {
 619       if (TraceReferenceGC) {
 620         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 621                                iter.obj(), iter.obj()->blueprint()->internal_name());
 622       }
 623       // Remove Reference object from list
 624       iter.remove();
 625       // Make the Reference object active again
 626       iter.make_active();
 627       // keep the referent around
 628       iter.make_referent_alive();
 629       iter.move_to_next();
 630     } else {
 631       iter.next();
 632     }
 633   }
 634   // Close the reachable set
 635   complete_gc->do_void();
 636   NOT_PRODUCT(
 637     if (PrintGCDetails && TraceReferenceGC) {
 638       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
 639         "discovered Refs by policy  list " INTPTR_FORMAT,
 640         iter.removed(), iter.processed(), (address)refs_list.head());
 641     }
 642   )
 643 }
 644 
 645 // Traverse the list and remove any Refs that are not active, or
 646 // whose referents are either alive or NULL.
 647 void
 648 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 649                              BoolObjectClosure* is_alive,
 650                              OopClosure*        keep_alive) {
 651   assert(discovery_is_atomic(), "Error");
 652   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 653   while (iter.has_next()) {
 654     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 655     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 656     assert(next == NULL, "Should not discover inactive Reference");
 657     if (iter.is_referent_alive()) {
 658       if (TraceReferenceGC) {
 659         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 660                                iter.obj(), iter.obj()->blueprint()->internal_name());
 661       }
 662       // The referent is reachable after all.
 663       // Remove Reference object from list.
 664       iter.remove();
 665       // Update the referent pointer as necessary: Note that this
 666       // should not entail any recursive marking because the
 667       // referent must already have been traversed.
 668       iter.make_referent_alive();
 669       iter.move_to_next();
 670     } else {
 671       iter.next();
 672     }
 673   }
 674   NOT_PRODUCT(
 675     if (PrintGCDetails && TraceReferenceGC) {
 676       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 677         "Refs in discovered list " INTPTR_FORMAT,
 678         iter.removed(), iter.processed(), (address)refs_list.head());
 679     }
 680   )
 681 }
 682 
 683 void
 684 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 685                                                   BoolObjectClosure* is_alive,
 686                                                   OopClosure*        keep_alive,
 687                                                   VoidClosure*       complete_gc) {
 688   assert(!discovery_is_atomic(), "Error");
 689   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 690   while (iter.has_next()) {
 691     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 692     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 693     oop next = java_lang_ref_Reference::next(iter.obj());
 694     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 695          next != NULL)) {
 696       assert(next->is_oop_or_null(), "bad next field");
 697       // Remove Reference object from list
 698       iter.remove();
 699       // Trace the cohorts
 700       iter.make_referent_alive();
 701       if (UseCompressedOops) {
 702         keep_alive->do_oop((narrowOop*)next_addr);
 703       } else {
 704         keep_alive->do_oop((oop*)next_addr);
 705       }
 706       iter.move_to_next();
 707     } else {
 708       iter.next();
 709     }
 710   }
 711   // Now close the newly reachable set
 712   complete_gc->do_void();
 713   NOT_PRODUCT(
 714     if (PrintGCDetails && TraceReferenceGC) {
 715       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 716         "Refs in discovered list " INTPTR_FORMAT,
 717         iter.removed(), iter.processed(), (address)refs_list.head());
 718     }
 719   )
 720 }
 721 
 722 // Traverse the list and process the referents, by either
 723 // clearing them or keeping them (and their reachable
 724 // closure) alive.
 725 void
 726 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 727                                    bool               clear_referent,
 728                                    BoolObjectClosure* is_alive,
 729                                    OopClosure*        keep_alive,
 730                                    VoidClosure*       complete_gc) {
 731   ResourceMark rm;
 732   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 733   while (iter.has_next()) {
 734     iter.update_discovered();
 735     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 736     if (clear_referent) {
 737       // NULL out referent pointer
 738       iter.clear_referent();
 739     } else {
 740       // keep the referent around
 741       iter.make_referent_alive();
 742     }
 743     if (TraceReferenceGC) {
 744       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 745                              clear_referent ? "cleared " : "",
 746                              iter.obj(), iter.obj()->blueprint()->internal_name());
 747     }
 748     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
 749     iter.next();
 750   }
 751   // Remember to keep sentinel pointer around
 752   iter.update_discovered();
 753   // Close the reachable set
 754   complete_gc->do_void();
 755 }
 756 
 757 void
 758 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
 759   oop obj = refs_list.head();
 760   while (obj != sentinel_ref()) {
 761     oop discovered = java_lang_ref_Reference::discovered(obj);
 762     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 763     obj = discovered;
 764   }
 765   refs_list.set_head(sentinel_ref());
 766   refs_list.set_length(0);
 767 }
 768 
 769 void ReferenceProcessor::abandon_partial_discovery() {
 770   // loop over the lists
 771   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 772     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 773       gclog_or_tty->print_cr("\nAbandoning %s discovered list",
 774                              list_name(i));
 775     }
 776     abandon_partial_discovered_list(_discoveredSoftRefs[i]);
 777   }
 778 }
 779 
 780 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 781 public:
 782   RefProcPhase1Task(ReferenceProcessor& ref_processor,
 783                     DiscoveredList      refs_lists[],
 784                     ReferencePolicy*    policy,
 785                     bool                marks_oops_alive)
 786     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 787       _policy(policy)
 788   { }
 789   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 790                     OopClosure& keep_alive,
 791                     VoidClosure& complete_gc)
 792   {
 793     Thread* thr = Thread::current();
 794     int refs_list_index = ((WorkerThread*)thr)->id();
 795     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
 796                                   &is_alive, &keep_alive, &complete_gc);
 797   }
 798 private:
 799   ReferencePolicy* _policy;
 800 };
 801 
 802 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 803 public:
 804   RefProcPhase2Task(ReferenceProcessor& ref_processor,
 805                     DiscoveredList      refs_lists[],
 806                     bool                marks_oops_alive)
 807     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
 808   { }
 809   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 810                     OopClosure& keep_alive,
 811                     VoidClosure& complete_gc)
 812   {
 813     _ref_processor.process_phase2(_refs_lists[i],
 814                                   &is_alive, &keep_alive, &complete_gc);
 815   }
 816 };
 817 
 818 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 819 public:
 820   RefProcPhase3Task(ReferenceProcessor& ref_processor,
 821                     DiscoveredList      refs_lists[],
 822                     bool                clear_referent,
 823                     bool                marks_oops_alive)
 824     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 825       _clear_referent(clear_referent)
 826   { }
 827   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 828                     OopClosure& keep_alive,
 829                     VoidClosure& complete_gc)
 830   {
 831     // Don't use "refs_list_index" calculated in this way because
 832     // balance_queues() has moved the Ref's into the first n queues.
 833     // Thread* thr = Thread::current();
 834     // int refs_list_index = ((WorkerThread*)thr)->id();
 835     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
 836     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 837                                   &is_alive, &keep_alive, &complete_gc);
 838   }
 839 private:
 840   bool _clear_referent;
 841 };
 842 
 843 // Balances reference queues.
 844 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 845 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 846 // corresponding to the active workers will be processed.
 847 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 848 {
 849   // calculate total length
 850   size_t total_refs = 0;
 851   if (TraceReferenceGC && PrintGCDetails) {
 852     gclog_or_tty->print_cr("\nBalance ref_lists ");
 853   }
 854 
 855   for (int i = 0; i < _max_num_q; ++i) {
 856     total_refs += ref_lists[i].length();
 857     if (TraceReferenceGC && PrintGCDetails) {
 858       gclog_or_tty->print("%d ", ref_lists[i].length());
 859     }
 860   }
 861   if (TraceReferenceGC && PrintGCDetails) {
 862     gclog_or_tty->print_cr(" = %d", total_refs);
 863   }
 864   size_t avg_refs = total_refs / _num_q + 1;
 865   int to_idx = 0;
 866   for (int from_idx = 0; from_idx < _max_num_q; from_idx++) {
 867     bool move_all = false;
 868     if (from_idx >= _num_q) {
 869       move_all = ref_lists[from_idx].length() > 0;
 870     }
 871     while ((ref_lists[from_idx].length() > avg_refs) ||
 872            move_all) {
 873       assert(to_idx < _num_q, "Sanity Check!");
 874       if (ref_lists[to_idx].length() < avg_refs) {
 875         // move superfluous refs
 876         size_t refs_to_move;
 877         // Move all the Ref's if the from queue will not be processed.
 878         if (move_all) {
 879           refs_to_move = MIN2(ref_lists[from_idx].length(),
 880                               avg_refs - ref_lists[to_idx].length());
 881         } else {
 882           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 883                               avg_refs - ref_lists[to_idx].length());
 884         }
 885         oop move_head = ref_lists[from_idx].head();
 886         oop move_tail = move_head;
 887         oop new_head  = move_head;
 888         // find an element to split the list on
 889         for (size_t j = 0; j < refs_to_move; ++j) {
 890           move_tail = new_head;
 891           new_head = java_lang_ref_Reference::discovered(new_head);
 892         }
 893         java_lang_ref_Reference::set_discovered(move_tail, ref_lists[to_idx].head());
 894         ref_lists[to_idx].set_head(move_head);
 895         ref_lists[to_idx].inc_length(refs_to_move);
 896         ref_lists[from_idx].set_head(new_head);
 897         ref_lists[from_idx].dec_length(refs_to_move);
 898         if (ref_lists[from_idx].length() == 0) {
 899           break;
 900         }
 901       } else {
 902         to_idx = (to_idx + 1) % _num_q;
 903       }
 904     }
 905   }
 906 #ifdef ASSERT
 907   size_t balanced_total_refs = 0;
 908   for (int i = 0; i < _max_num_q; ++i) {
 909     balanced_total_refs += ref_lists[i].length();
 910     if (TraceReferenceGC && PrintGCDetails) {
 911       gclog_or_tty->print("%d ", ref_lists[i].length());
 912     }
 913   }
 914   if (TraceReferenceGC && PrintGCDetails) {
 915     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
 916     gclog_or_tty->flush();
 917   }
 918   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 919 #endif
 920 }
 921 
 922 void ReferenceProcessor::balance_all_queues() {
 923   balance_queues(_discoveredSoftRefs);
 924   balance_queues(_discoveredWeakRefs);
 925   balance_queues(_discoveredFinalRefs);
 926   balance_queues(_discoveredPhantomRefs);
 927 }
 928 
 929 void
 930 ReferenceProcessor::process_discovered_reflist(
 931   DiscoveredList               refs_lists[],
 932   ReferencePolicy*             policy,
 933   bool                         clear_referent,
 934   BoolObjectClosure*           is_alive,
 935   OopClosure*                  keep_alive,
 936   VoidClosure*                 complete_gc,
 937   AbstractRefProcTaskExecutor* task_executor)
 938 {
 939   bool mt_processing = task_executor != NULL && _processing_is_mt;
 940   // If discovery used MT and a dynamic number of GC threads, then
 941   // the queues must be balanced for correctness if fewer than the
 942   // maximum number of queues were used.  The number of queue used
 943   // during discovery may be different than the number to be used
 944   // for processing so don't depend of _num_q < _max_num_q as part
 945   // of the test.
 946   bool must_balance = _discovery_is_mt;
 947 
 948   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
 949       must_balance) {
 950     balance_queues(refs_lists);
 951   }
 952   if (PrintReferenceGC && PrintGCDetails) {
 953     size_t total = 0;
 954     for (int i = 0; i < _num_q; ++i) {
 955       total += refs_lists[i].length();
 956     }
 957     gclog_or_tty->print(", %u refs", total);
 958   }
 959 
 960   // Phase 1 (soft refs only):
 961   // . Traverse the list and remove any SoftReferences whose
 962   //   referents are not alive, but that should be kept alive for
 963   //   policy reasons. Keep alive the transitive closure of all
 964   //   such referents.
 965   if (policy != NULL) {
 966     if (mt_processing) {
 967       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
 968       task_executor->execute(phase1);
 969     } else {
 970       for (int i = 0; i < _num_q; i++) {
 971         process_phase1(refs_lists[i], policy,
 972                        is_alive, keep_alive, complete_gc);
 973       }
 974     }
 975   } else { // policy == NULL
 976     assert(refs_lists != _discoveredSoftRefs,
 977            "Policy must be specified for soft references.");
 978   }
 979 
 980   // Phase 2:
 981   // . Traverse the list and remove any refs whose referents are alive.
 982   if (mt_processing) {
 983     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
 984     task_executor->execute(phase2);
 985   } else {
 986     for (int i = 0; i < _num_q; i++) {
 987       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 988     }
 989   }
 990 
 991   // Phase 3:
 992   // . Traverse the list and process referents as appropriate.
 993   if (mt_processing) {
 994     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
 995     task_executor->execute(phase3);
 996   } else {
 997     for (int i = 0; i < _num_q; i++) {
 998       process_phase3(refs_lists[i], clear_referent,
 999                      is_alive, keep_alive, complete_gc);
1000     }
1001   }
1002 }
1003 
1004 void ReferenceProcessor::clean_up_discovered_references() {
1005   // loop over the lists
1006   // Should this instead be
1007   // for (int i = 0; i < subclasses_of_ref; i++_ {
1008   //   for (int j = 0; j < _num_q; j++) {
1009   //     int index = i * _max_num_q + j;
1010   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
1011     if (TraceReferenceGC && PrintGCDetails && ((i % _num_q) == 0)) {
1012       gclog_or_tty->print_cr(
1013         "\nScrubbing %s discovered list of Null referents",
1014         list_name(i));
1015     }
1016     clean_up_discovered_reflist(_discoveredSoftRefs[i]);
1017   }
1018 }
1019 
1020 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
1021   assert(!discovery_is_atomic(), "Else why call this method?");
1022   DiscoveredListIterator iter(refs_list, NULL, NULL);
1023   while (iter.has_next()) {
1024     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1025     oop next = java_lang_ref_Reference::next(iter.obj());
1026     assert(next->is_oop_or_null(), "bad next field");
1027     // If referent has been cleared or Reference is not active,
1028     // drop it.
1029     if (iter.referent() == NULL || next != NULL) {
1030       debug_only(
1031         if (PrintGCDetails && TraceReferenceGC) {
1032           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
1033             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
1034             " and referent: " INTPTR_FORMAT,
1035             iter.obj(), next, iter.referent());
1036         }
1037       )
1038       // Remove Reference object from list
1039       iter.remove();
1040       iter.move_to_next();
1041     } else {
1042       iter.next();
1043     }
1044   }
1045   NOT_PRODUCT(
1046     if (PrintGCDetails && TraceReferenceGC) {
1047       gclog_or_tty->print(
1048         " Removed %d Refs with NULL referents out of %d discovered Refs",
1049         iter.removed(), iter.processed());
1050     }
1051   )
1052 }
1053 
1054 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
1055   int id = 0;
1056   // Determine the queue index to use for this object.
1057   if (_discovery_is_mt) {
1058     // During a multi-threaded discovery phase,
1059     // each thread saves to its "own" list.
1060     Thread* thr = Thread::current();
1061     id = thr->as_Worker_thread()->id();
1062   } else {
1063     // single-threaded discovery, we save in round-robin
1064     // fashion to each of the lists.
1065     if (_processing_is_mt) {
1066       id = next_id();
1067     }
1068   }
1069   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
1070 
1071   // Get the discovered queue to which we will add
1072   DiscoveredList* list = NULL;
1073   switch (rt) {
1074     case REF_OTHER:
1075       // Unknown reference type, no special treatment
1076       break;
1077     case REF_SOFT:
1078       list = &_discoveredSoftRefs[id];
1079       break;
1080     case REF_WEAK:
1081       list = &_discoveredWeakRefs[id];
1082       break;
1083     case REF_FINAL:
1084       list = &_discoveredFinalRefs[id];
1085       break;
1086     case REF_PHANTOM:
1087       list = &_discoveredPhantomRefs[id];
1088       break;
1089     case REF_NONE:
1090       // we should not reach here if we are an instanceRefKlass
1091     default:
1092       ShouldNotReachHere();
1093   }
1094   if (TraceReferenceGC && PrintGCDetails) {
1095     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
1096   }
1097   return list;
1098 }
1099 
1100 inline void
1101 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
1102                                               oop             obj,
1103                                               HeapWord*       discovered_addr) {
1104   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
1105   // First we must make sure this object is only enqueued once. CAS in a non null
1106   // discovered_addr.
1107   oop current_head = refs_list.head();
1108 
1109   // Note: In the case of G1, this specific pre-barrier is strictly
1110   // not necessary because the only case we are interested in
1111   // here is when *discovered_addr is NULL (see the CAS further below),
1112   // so this will expand to nothing. As a result, we have manually
1113   // elided this out for G1, but left in the test for some future
1114   // collector that might have need for a pre-barrier here.
1115   if (_discovered_list_needs_barrier && !UseG1GC) {
1116     if (UseCompressedOops) {
1117       _bs->write_ref_field_pre((narrowOop*)discovered_addr, current_head);
1118     } else {
1119       _bs->write_ref_field_pre((oop*)discovered_addr, current_head);
1120     }
1121     guarantee(false, "Need to check non-G1 collector");
1122   }
1123   oop retest = oopDesc::atomic_compare_exchange_oop(current_head, discovered_addr,
1124                                                     NULL);
1125   if (retest == NULL) {
1126     // This thread just won the right to enqueue the object.
1127     // We have separate lists for enqueueing so no synchronization
1128     // is necessary.
1129     refs_list.set_head(obj);
1130     refs_list.inc_length(1);
1131     if (_discovered_list_needs_barrier) {
1132       _bs->write_ref_field((void*)discovered_addr, current_head);
1133     }
1134 
1135     if (TraceReferenceGC) {
1136       gclog_or_tty->print_cr("Enqueued reference (mt) (" INTPTR_FORMAT ": %s)",
1137                              obj, obj->blueprint()->internal_name());
1138     }
1139   } else {
1140     // If retest was non NULL, another thread beat us to it:
1141     // The reference has already been discovered...
1142     if (TraceReferenceGC) {
1143       gclog_or_tty->print_cr("Already enqueued reference (" INTPTR_FORMAT ": %s)",
1144                              obj, obj->blueprint()->internal_name());
1145     }
1146   }
1147 }
1148 
1149 #ifndef PRODUCT
1150 // Non-atomic (i.e. concurrent) discovery might allow us
1151 // to observe j.l.References with NULL referents, being those
1152 // cleared concurrently by mutators during (or after) discovery.
1153 void ReferenceProcessor::verify_referent(oop obj) {
1154   bool da = discovery_is_atomic();
1155   oop referent = java_lang_ref_Reference::referent(obj);
1156   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
1157          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
1158                  INTPTR_FORMAT " during %satomic discovery ",
1159                  (intptr_t)referent, (intptr_t)obj, da ? "" : "non-"));
1160 }
1161 #endif
1162 
1163 // We mention two of several possible choices here:
1164 // #0: if the reference object is not in the "originating generation"
1165 //     (or part of the heap being collected, indicated by our "span"
1166 //     we don't treat it specially (i.e. we scan it as we would
1167 //     a normal oop, treating its references as strong references).
1168 //     This means that references can't be enqueued unless their
1169 //     referent is also in the same span. This is the simplest,
1170 //     most "local" and most conservative approach, albeit one
1171 //     that may cause weak references to be enqueued least promptly.
1172 //     We call this choice the "ReferenceBasedDiscovery" policy.
1173 // #1: the reference object may be in any generation (span), but if
1174 //     the referent is in the generation (span) being currently collected
1175 //     then we can discover the reference object, provided
1176 //     the object has not already been discovered by
1177 //     a different concurrently running collector (as may be the
1178 //     case, for instance, if the reference object is in CMS and
1179 //     the referent in DefNewGeneration), and provided the processing
1180 //     of this reference object by the current collector will
1181 //     appear atomic to every other collector in the system.
1182 //     (Thus, for instance, a concurrent collector may not
1183 //     discover references in other generations even if the
1184 //     referent is in its own generation). This policy may,
1185 //     in certain cases, enqueue references somewhat sooner than
1186 //     might Policy #0 above, but at marginally increased cost
1187 //     and complexity in processing these references.
1188 //     We call this choice the "RefeferentBasedDiscovery" policy.
1189 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1190   // We enqueue references only if we are discovering refs
1191   // (rather than processing discovered refs).
1192   if (!_discovering_refs || !RegisterReferences) {
1193     return false;
1194   }
1195   // We only enqueue active references.
1196   oop next = java_lang_ref_Reference::next(obj);
1197   if (next != NULL) {
1198     return false;
1199   }
1200 
1201   HeapWord* obj_addr = (HeapWord*)obj;
1202   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1203       !_span.contains(obj_addr)) {
1204     // Reference is not in the originating generation;
1205     // don't treat it specially (i.e. we want to scan it as a normal
1206     // object with strong references).
1207     return false;
1208   }
1209 
1210   // We only enqueue references whose referents are not (yet) strongly
1211   // reachable.
1212   if (is_alive_non_header() != NULL) {
1213     verify_referent(obj);
1214     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1215       return false;  // referent is reachable
1216     }
1217   }
1218   if (rt == REF_SOFT) {
1219     // For soft refs we can decide now if these are not
1220     // current candidates for clearing, in which case we
1221     // can mark through them now, rather than delaying that
1222     // to the reference-processing phase. Since all current
1223     // time-stamp policies advance the soft-ref clock only
1224     // at a major collection cycle, this is always currently
1225     // accurate.
1226     if (!_current_soft_ref_policy->should_clear_reference(obj)) {
1227       return false;
1228     }
1229   }
1230 
1231   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1232   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1233   assert(discovered->is_oop_or_null(), "bad discovered field");
1234   if (discovered != NULL) {
1235     // The reference has already been discovered...
1236     if (TraceReferenceGC) {
1237       gclog_or_tty->print_cr("Already enqueued reference (" INTPTR_FORMAT ": %s)",
1238                              obj, obj->blueprint()->internal_name());
1239     }
1240     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1241       // assumes that an object is not processed twice;
1242       // if it's been already discovered it must be on another
1243       // generation's discovered list; so we won't discover it.
1244       return false;
1245     } else {
1246       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1247              "Unrecognized policy");
1248       // Check assumption that an object is not potentially
1249       // discovered twice except by concurrent collectors that potentially
1250       // trace the same Reference object twice.
1251       assert(UseConcMarkSweepGC || UseG1GC,
1252              "Only possible with a concurrent marking collector");
1253       return true;
1254     }
1255   }
1256 
1257   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1258     verify_referent(obj);
1259     // enqueue if and only if either:
1260     // reference is in our span or
1261     // we are an atomic collector and referent is in our span
1262     if (_span.contains(obj_addr) ||
1263         (discovery_is_atomic() &&
1264          _span.contains(java_lang_ref_Reference::referent(obj)))) {
1265       // should_enqueue = true;
1266     } else {
1267       return false;
1268     }
1269   } else {
1270     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1271            _span.contains(obj_addr), "code inconsistency");
1272   }
1273 
1274   // Get the right type of discovered queue head.
1275   DiscoveredList* list = get_discovered_list(rt);
1276   if (list == NULL) {
1277     return false;   // nothing special needs to be done
1278   }
1279 
1280   if (_discovery_is_mt) {
1281     add_to_discovered_list_mt(*list, obj, discovered_addr);
1282   } else {
1283     // If "_discovered_list_needs_barrier", we do write barriers when
1284     // updating the discovered reference list.  Otherwise, we do a raw store
1285     // here: the field will be visited later when processing the discovered
1286     // references.
1287     oop current_head = list->head();
1288     // As in the case further above, since we are over-writing a NULL
1289     // pre-value, we can safely elide the pre-barrier here for the case of G1.
1290     assert(discovered == NULL, "control point invariant");
1291     if (_discovered_list_needs_barrier && !UseG1GC) { // safe to elide for G1
1292       if (UseCompressedOops) {
1293         _bs->write_ref_field_pre((narrowOop*)discovered_addr, current_head);
1294       } else {
1295         _bs->write_ref_field_pre((oop*)discovered_addr, current_head);
1296       }
1297       guarantee(false, "Need to check non-G1 collector");
1298     }
1299     oop_store_raw(discovered_addr, current_head);
1300     if (_discovered_list_needs_barrier) {
1301       _bs->write_ref_field((void*)discovered_addr, current_head);
1302     }
1303     list->set_head(obj);
1304     list->inc_length(1);
1305 
1306     if (TraceReferenceGC) {
1307       gclog_or_tty->print_cr("Enqueued reference (" INTPTR_FORMAT ": %s)",
1308                                 obj, obj->blueprint()->internal_name());
1309     }
1310   }
1311   assert(obj->is_oop(), "Enqueued a bad reference");
1312   verify_referent(obj);
1313   return true;
1314 }
1315 
1316 // Preclean the discovered references by removing those
1317 // whose referents are alive, and by marking from those that
1318 // are not active. These lists can be handled here
1319 // in any order and, indeed, concurrently.
1320 void ReferenceProcessor::preclean_discovered_references(
1321   BoolObjectClosure* is_alive,
1322   OopClosure* keep_alive,
1323   VoidClosure* complete_gc,
1324   YieldClosure* yield,
1325   bool should_unload_classes) {
1326 
1327   NOT_PRODUCT(verify_ok_to_handle_reflists());
1328 
1329 #ifdef ASSERT
1330   bool must_remember_klasses = ClassUnloading && !UseConcMarkSweepGC ||
1331                                CMSClassUnloadingEnabled && UseConcMarkSweepGC ||
1332                                ExplicitGCInvokesConcurrentAndUnloadsClasses &&
1333                                  UseConcMarkSweepGC && should_unload_classes;
1334   RememberKlassesChecker mx(must_remember_klasses);
1335 #endif
1336   // Soft references
1337   {
1338     TraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
1339               false, gclog_or_tty);
1340     for (int i = 0; i < _max_num_q; i++) {
1341       if (yield->should_return()) {
1342         return;
1343       }
1344       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1345                                   keep_alive, complete_gc, yield);
1346     }
1347   }
1348 
1349   // Weak references
1350   {
1351     TraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
1352               false, gclog_or_tty);
1353     for (int i = 0; i < _num_q; i++) {
1354       if (yield->should_return()) {
1355         return;
1356       }
1357       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1358                                   keep_alive, complete_gc, yield);
1359     }
1360   }
1361 
1362   // Final references
1363   {
1364     TraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
1365               false, gclog_or_tty);
1366     for (int i = 0; i < _num_q; i++) {
1367       if (yield->should_return()) {
1368         return;
1369       }
1370       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1371                                   keep_alive, complete_gc, yield);
1372     }
1373   }
1374 
1375   // Phantom references
1376   {
1377     TraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
1378               false, gclog_or_tty);
1379     for (int i = 0; i < _num_q; i++) {
1380       if (yield->should_return()) {
1381         return;
1382       }
1383       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1384                                   keep_alive, complete_gc, yield);
1385     }
1386   }
1387 }
1388 
1389 // Walk the given discovered ref list, and remove all reference objects
1390 // whose referents are still alive, whose referents are NULL or which
1391 // are not active (have a non-NULL next field). NOTE: When we are
1392 // thus precleaning the ref lists (which happens single-threaded today),
1393 // we do not disable refs discovery to honour the correct semantics of
1394 // java.lang.Reference. As a result, we need to be careful below
1395 // that ref removal steps interleave safely with ref discovery steps
1396 // (in this thread).
1397 void
1398 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1399                                                 BoolObjectClosure* is_alive,
1400                                                 OopClosure*        keep_alive,
1401                                                 VoidClosure*       complete_gc,
1402                                                 YieldClosure*      yield) {
1403   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1404   while (iter.has_next()) {
1405     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1406     oop obj = iter.obj();
1407     oop next = java_lang_ref_Reference::next(obj);
1408     if (iter.referent() == NULL || iter.is_referent_alive() ||
1409         next != NULL) {
1410       // The referent has been cleared, or is alive, or the Reference is not
1411       // active; we need to trace and mark its cohort.
1412       if (TraceReferenceGC) {
1413         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1414                                iter.obj(), iter.obj()->blueprint()->internal_name());
1415       }
1416       // Remove Reference object from list
1417       iter.remove();
1418       // Keep alive its cohort.
1419       iter.make_referent_alive();
1420       if (UseCompressedOops) {
1421         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1422         keep_alive->do_oop(next_addr);
1423       } else {
1424         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1425         keep_alive->do_oop(next_addr);
1426       }
1427       iter.move_to_next();
1428     } else {
1429       iter.next();
1430     }
1431   }
1432   // Close the reachable set
1433   complete_gc->do_void();
1434 
1435   NOT_PRODUCT(
1436     if (PrintGCDetails && PrintReferenceGC) {
1437       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
1438         "Refs in discovered list " INTPTR_FORMAT,
1439         iter.removed(), iter.processed(), (address)refs_list.head());
1440     }
1441   )
1442 }
1443 
1444 const char* ReferenceProcessor::list_name(int i) {
1445    assert(i >= 0 && i <= _max_num_q * subclasses_of_ref, "Out of bounds index");
1446    int j = i / _max_num_q;
1447    switch (j) {
1448      case 0: return "SoftRef";
1449      case 1: return "WeakRef";
1450      case 2: return "FinalRef";
1451      case 3: return "PhantomRef";
1452    }
1453    ShouldNotReachHere();
1454    return NULL;
1455 }
1456 
1457 #ifndef PRODUCT
1458 void ReferenceProcessor::verify_ok_to_handle_reflists() {
1459   // empty for now
1460 }
1461 #endif
1462 
1463 void ReferenceProcessor::verify() {
1464   guarantee(sentinel_ref() != NULL && sentinel_ref()->is_oop(), "Lost _sentinelRef");
1465 }
1466 
1467 #ifndef PRODUCT
1468 void ReferenceProcessor::clear_discovered_references() {
1469   guarantee(!_discovering_refs, "Discovering refs?");
1470   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
1471     oop obj = _discoveredSoftRefs[i].head();
1472     while (obj != sentinel_ref()) {
1473       oop next = java_lang_ref_Reference::discovered(obj);
1474       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
1475       obj = next;
1476     }
1477     _discoveredSoftRefs[i].set_head(sentinel_ref());
1478     _discoveredSoftRefs[i].set_length(0);
1479   }
1480 }
1481 #endif // PRODUCT