1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc_interface/collectedHeap.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "memory/referencePolicy.hpp"
  31 #include "memory/referenceProcessor.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/java.hpp"
  34 #include "runtime/jniHandles.hpp"
  35 
  36 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  37 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  38 oop              ReferenceProcessor::_sentinelRef = NULL;
  39 const int        subclasses_of_ref                = REF_PHANTOM - REF_OTHER;
  40 
  41 // List of discovered references.
  42 class DiscoveredList {
  43 public:
  44   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
  45   oop head() const     {
  46      return UseCompressedOops ?  oopDesc::decode_heap_oop_not_null(_compressed_head) :
  47                                 _oop_head;
  48   }
  49   HeapWord* adr_head() {
  50     return UseCompressedOops ? (HeapWord*)&_compressed_head :
  51                                (HeapWord*)&_oop_head;
  52   }
  53   void   set_head(oop o) {
  54     if (UseCompressedOops) {
  55       // Must compress the head ptr.
  56       _compressed_head = oopDesc::encode_heap_oop_not_null(o);
  57     } else {
  58       _oop_head = o;
  59     }
  60   }
  61   bool   empty() const          { return head() == ReferenceProcessor::sentinel_ref(); }
  62   size_t length()               { return _len; }
  63   void   set_length(size_t len) { _len = len;  }
  64   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
  65   void   dec_length(size_t dec) { _len -= dec; }
  66 private:
  67   // Set value depending on UseCompressedOops. This could be a template class
  68   // but then we have to fix all the instantiations and declarations that use this class.
  69   oop       _oop_head;
  70   narrowOop _compressed_head;
  71   size_t _len;
  72 };
  73 
  74 void referenceProcessor_init() {
  75   ReferenceProcessor::init_statics();
  76 }
  77 
  78 void ReferenceProcessor::init_statics() {
  79   assert(_sentinelRef == NULL, "should be initialized precisely once");
  80   EXCEPTION_MARK;
  81   _sentinelRef = instanceKlass::cast(
  82                     SystemDictionary::Reference_klass())->
  83                       allocate_permanent_instance(THREAD);
  84 
  85   // Initialize the master soft ref clock.
  86   java_lang_ref_SoftReference::set_clock(os::javaTimeMillis());
  87 
  88   if (HAS_PENDING_EXCEPTION) {
  89       Handle ex(THREAD, PENDING_EXCEPTION);
  90       vm_exit_during_initialization(ex);
  91   }
  92   assert(_sentinelRef != NULL && _sentinelRef->is_oop(),
  93          "Just constructed it!");
  94   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  95   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
  96                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
  97   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  98     vm_exit_during_initialization("Could not allocate reference policy object");
  99   }
 100   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
 101             RefDiscoveryPolicy == ReferentBasedDiscovery,
 102             "Unrecongnized RefDiscoveryPolicy");
 103 }
 104 
 105 ReferenceProcessor::ReferenceProcessor(MemRegion span,
 106                                        bool      mt_processing,
 107                                        int       mt_processing_degree,
 108                                        bool      mt_discovery,
 109                                        int       mt_discovery_degree,
 110                                        bool      atomic_discovery,
 111                                        BoolObjectClosure* is_alive_non_header,
 112                                        bool      discovered_list_needs_barrier)  :
 113   _discovering_refs(false),
 114   _enqueuing_is_done(false),
 115   _is_alive_non_header(is_alive_non_header),
 116   _discovered_list_needs_barrier(discovered_list_needs_barrier),
 117   _bs(NULL),
 118   _processing_is_mt(mt_processing),
 119   _next_id(0)
 120 {
 121   _span = span;
 122   _discovery_is_atomic = atomic_discovery;
 123   _discovery_is_mt     = mt_discovery;
 124   _num_q               = MAX2(1, mt_processing_degree);
 125   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
 126   _discoveredSoftRefs  = NEW_C_HEAP_ARRAY(DiscoveredList, _max_num_q * subclasses_of_ref);
 127   if (_discoveredSoftRefs == NULL) {
 128     vm_exit_during_initialization("Could not allocated RefProc Array");
 129   }
 130   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
 131   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
 132   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
 133   assert(sentinel_ref() != NULL, "_sentinelRef is NULL");
 134   // Initialized all entries to _sentinelRef
 135   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 136         _discoveredSoftRefs[i].set_head(sentinel_ref());
 137     _discoveredSoftRefs[i].set_length(0);
 138   }
 139   // If we do barreirs, cache a copy of the barrier set.
 140   if (discovered_list_needs_barrier) {
 141     _bs = Universe::heap()->barrier_set();
 142   }
 143   setup_policy(false /* default soft ref policy */);
 144 }
 145 
 146 #ifndef PRODUCT
 147 void ReferenceProcessor::verify_no_references_recorded() {
 148   guarantee(!_discovering_refs, "Discovering refs?");
 149   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 150     guarantee(_discoveredSoftRefs[i].empty(),
 151               "Found non-empty discovered list");
 152   }
 153 }
 154 #endif
 155 
 156 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 157   // Should this instead be
 158   // for (int i = 0; i < subclasses_of_ref; i++_ {
 159   //   for (int j = 0; j < _num_q; j++) {
 160   //     int index = i * _max_num_q + j;
 161   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 162     if (UseCompressedOops) {
 163       f->do_oop((narrowOop*)_discoveredSoftRefs[i].adr_head());
 164     } else {
 165       f->do_oop((oop*)_discoveredSoftRefs[i].adr_head());
 166     }
 167   }
 168 }
 169 
 170 void ReferenceProcessor::oops_do(OopClosure* f) {
 171   f->do_oop(adr_sentinel_ref());
 172 }
 173 
 174 void ReferenceProcessor::update_soft_ref_master_clock() {
 175   // Update (advance) the soft ref master clock field. This must be done
 176   // after processing the soft ref list.
 177   jlong now = os::javaTimeMillis();
 178   jlong clock = java_lang_ref_SoftReference::clock();
 179   NOT_PRODUCT(
 180   if (now < clock) {
 181     warning("time warp: %d to %d", clock, now);
 182   }
 183   )
 184   // In product mode, protect ourselves from system time being adjusted
 185   // externally and going backward; see note in the implementation of
 186   // GenCollectedHeap::time_since_last_gc() for the right way to fix
 187   // this uniformly throughout the VM; see bug-id 4741166. XXX
 188   if (now > clock) {
 189     java_lang_ref_SoftReference::set_clock(now);
 190   }
 191   // Else leave clock stalled at its old value until time progresses
 192   // past clock value.
 193 }
 194 
 195 void ReferenceProcessor::process_discovered_references(
 196   BoolObjectClosure*           is_alive,
 197   OopClosure*                  keep_alive,
 198   VoidClosure*                 complete_gc,
 199   AbstractRefProcTaskExecutor* task_executor) {
 200   NOT_PRODUCT(verify_ok_to_handle_reflists());
 201 
 202   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 203   // Stop treating discovered references specially.
 204   disable_discovery();
 205 
 206   bool trace_time = PrintGCDetails && PrintReferenceGC;
 207   // Soft references
 208   {
 209     TraceTime tt("SoftReference", trace_time, false, gclog_or_tty);
 210     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 211                                is_alive, keep_alive, complete_gc, task_executor);
 212   }
 213 
 214   update_soft_ref_master_clock();
 215 
 216   // Weak references
 217   {
 218     TraceTime tt("WeakReference", trace_time, false, gclog_or_tty);
 219     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 220                                is_alive, keep_alive, complete_gc, task_executor);
 221   }
 222 
 223   // Final references
 224   {
 225     TraceTime tt("FinalReference", trace_time, false, gclog_or_tty);
 226     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 227                                is_alive, keep_alive, complete_gc, task_executor);
 228   }
 229 
 230   // Phantom references
 231   {
 232     TraceTime tt("PhantomReference", trace_time, false, gclog_or_tty);
 233     process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
 234                                is_alive, keep_alive, complete_gc, task_executor);
 235   }
 236 
 237   // Weak global JNI references. It would make more sense (semantically) to
 238   // traverse these simultaneously with the regular weak references above, but
 239   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 240   // thus use JNI weak references to circumvent the phantom references and
 241   // resurrect a "post-mortem" object.
 242   {
 243     TraceTime tt("JNI Weak Reference", trace_time, false, gclog_or_tty);
 244     if (task_executor != NULL) {
 245       task_executor->set_single_threaded_mode();
 246     }
 247     process_phaseJNI(is_alive, keep_alive, complete_gc);
 248   }
 249 }
 250 
 251 #ifndef PRODUCT
 252 // Calculate the number of jni handles.
 253 uint ReferenceProcessor::count_jni_refs() {
 254   class AlwaysAliveClosure: public BoolObjectClosure {
 255   public:
 256     virtual bool do_object_b(oop obj) { return true; }
 257     virtual void do_object(oop obj) { assert(false, "Don't call"); }
 258   };
 259 
 260   class CountHandleClosure: public OopClosure {
 261   private:
 262     int _count;
 263   public:
 264     CountHandleClosure(): _count(0) {}
 265     void do_oop(oop* unused)       { _count++; }
 266     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 267     int count() { return _count; }
 268   };
 269   CountHandleClosure global_handle_count;
 270   AlwaysAliveClosure always_alive;
 271   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
 272   return global_handle_count.count();
 273 }
 274 #endif
 275 
 276 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 277                                           OopClosure*        keep_alive,
 278                                           VoidClosure*       complete_gc) {
 279 #ifndef PRODUCT
 280   if (PrintGCDetails && PrintReferenceGC) {
 281     unsigned int count = count_jni_refs();
 282     gclog_or_tty->print(", %u refs", count);
 283   }
 284 #endif
 285   JNIHandles::weak_oops_do(is_alive, keep_alive);
 286   // Finally remember to keep sentinel around
 287   keep_alive->do_oop(adr_sentinel_ref());
 288   complete_gc->do_void();
 289 }
 290 
 291 
 292 template <class T>
 293 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
 294                                    AbstractRefProcTaskExecutor* task_executor) {
 295 
 296   // Remember old value of pending references list
 297   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
 298   T old_pending_list_value = *pending_list_addr;
 299 
 300   // Enqueue references that are not made active again, and
 301   // clear the decks for the next collection (cycle).
 302   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
 303   // Do the oop-check on pending_list_addr missed in
 304   // enqueue_discovered_reflist. We should probably
 305   // do a raw oop_check so that future such idempotent
 306   // oop_stores relying on the oop-check side-effect
 307   // may be elided automatically and safely without
 308   // affecting correctness.
 309   oop_store(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
 310 
 311   // Stop treating discovered references specially.
 312   ref->disable_discovery();
 313 
 314   // Return true if new pending references were added
 315   return old_pending_list_value != *pending_list_addr;
 316 }
 317 
 318 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
 319   NOT_PRODUCT(verify_ok_to_handle_reflists());
 320   if (UseCompressedOops) {
 321     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
 322   } else {
 323     return enqueue_discovered_ref_helper<oop>(this, task_executor);
 324   }
 325 }
 326 
 327 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
 328                                                     HeapWord* pending_list_addr) {
 329   // Given a list of refs linked through the "discovered" field
 330   // (java.lang.ref.Reference.discovered) chain them through the
 331   // "next" field (java.lang.ref.Reference.next) and prepend
 332   // to the pending list.
 333   if (TraceReferenceGC && PrintGCDetails) {
 334     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
 335                            INTPTR_FORMAT, (address)refs_list.head());
 336   }
 337   oop obj = refs_list.head();
 338   // Walk down the list, copying the discovered field into
 339   // the next field and clearing it (except for the last
 340   // non-sentinel object which is treated specially to avoid
 341   // confusion with an active reference).
 342   while (obj != sentinel_ref()) {
 343     assert(obj->is_instanceRef(), "should be reference object");
 344     oop next = java_lang_ref_Reference::discovered(obj);
 345     if (TraceReferenceGC && PrintGCDetails) {
 346       gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next " INTPTR_FORMAT,
 347                              obj, next);
 348     }
 349     assert(java_lang_ref_Reference::next(obj) == NULL,
 350            "The reference should not be enqueued");
 351     if (next == sentinel_ref()) {  // obj is last
 352       // Swap refs_list into pendling_list_addr and
 353       // set obj's next to what we read from pending_list_addr.
 354       oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 355       // Need oop_check on pending_list_addr above;
 356       // see special oop-check code at the end of
 357       // enqueue_discovered_reflists() further below.
 358       if (old == NULL) {
 359         // obj should be made to point to itself, since
 360         // pending list was empty.
 361         java_lang_ref_Reference::set_next(obj, obj);
 362       } else {
 363         java_lang_ref_Reference::set_next(obj, old);
 364       }
 365     } else {
 366       java_lang_ref_Reference::set_next(obj, next);
 367     }
 368     java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
 369     obj = next;
 370   }
 371 }
 372 
 373 // Parallel enqueue task
 374 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 375 public:
 376   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
 377                      DiscoveredList      discovered_refs[],
 378                      HeapWord*           pending_list_addr,
 379                      oop                 sentinel_ref,
 380                      int                 n_queues)
 381     : EnqueueTask(ref_processor, discovered_refs,
 382                   pending_list_addr, sentinel_ref, n_queues)
 383   { }
 384 
 385   virtual void work(unsigned int work_id) {
 386     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
 387     // Simplest first cut: static partitioning.
 388     int index = work_id;
 389     // The increment on "index" must correspond to the maximum number of queues
 390     // (n_queues) with which that ReferenceProcessor was created.  That
 391     // is because of the "clever" way the discovered references lists were
 392     // allocated and are indexed into.
 393     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
 394     for (int j = 0;
 395          j < subclasses_of_ref;
 396          j++, index += _n_queues) {
 397       _ref_processor.enqueue_discovered_reflist(
 398         _refs_lists[index], _pending_list_addr);
 399       _refs_lists[index].set_head(_sentinel_ref);
 400       _refs_lists[index].set_length(0);
 401     }
 402   }
 403 };
 404 
 405 // Enqueue references that are not made active again
 406 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
 407   AbstractRefProcTaskExecutor* task_executor) {
 408   if (_processing_is_mt && task_executor != NULL) {
 409     // Parallel code
 410     RefProcEnqueueTask tsk(*this, _discoveredSoftRefs,
 411                            pending_list_addr, sentinel_ref(), _max_num_q);
 412     task_executor->execute(tsk);
 413   } else {
 414     // Serial code: call the parent class's implementation
 415     for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 416       enqueue_discovered_reflist(_discoveredSoftRefs[i], pending_list_addr);
 417       _discoveredSoftRefs[i].set_head(sentinel_ref());
 418       _discoveredSoftRefs[i].set_length(0);
 419     }
 420   }
 421 }
 422 
 423 // Iterator for the list of discovered references.
 424 class DiscoveredListIterator {
 425 public:
 426   inline DiscoveredListIterator(DiscoveredList&    refs_list,
 427                                 OopClosure*        keep_alive,
 428                                 BoolObjectClosure* is_alive);
 429 
 430   // End Of List.
 431   inline bool has_next() const { return _next != ReferenceProcessor::sentinel_ref(); }
 432 
 433   // Get oop to the Reference object.
 434   inline oop obj() const { return _ref; }
 435 
 436   // Get oop to the referent object.
 437   inline oop referent() const { return _referent; }
 438 
 439   // Returns true if referent is alive.
 440   inline bool is_referent_alive() const;
 441 
 442   // Loads data for the current reference.
 443   // The "allow_null_referent" argument tells us to allow for the possibility
 444   // of a NULL referent in the discovered Reference object. This typically
 445   // happens in the case of concurrent collectors that may have done the
 446   // discovery concurrently, or interleaved, with mutator execution.
 447   inline void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
 448 
 449   // Move to the next discovered reference.
 450   inline void next();
 451 
 452   // Remove the current reference from the list
 453   inline void remove();
 454 
 455   // Make the Reference object active again.
 456   inline void make_active() { java_lang_ref_Reference::set_next(_ref, NULL); }
 457 
 458   // Make the referent alive.
 459   inline void make_referent_alive() {
 460     if (UseCompressedOops) {
 461       _keep_alive->do_oop((narrowOop*)_referent_addr);
 462     } else {
 463       _keep_alive->do_oop((oop*)_referent_addr);
 464     }
 465   }
 466 
 467   // Update the discovered field.
 468   inline void update_discovered() {
 469     // First _prev_next ref actually points into DiscoveredList (gross).
 470     if (UseCompressedOops) {
 471       _keep_alive->do_oop((narrowOop*)_prev_next);
 472     } else {
 473       _keep_alive->do_oop((oop*)_prev_next);
 474     }
 475   }
 476 
 477   // NULL out referent pointer.
 478   inline void clear_referent() { oop_store_raw(_referent_addr, NULL); }
 479 
 480   // Statistics
 481   NOT_PRODUCT(
 482   inline size_t processed() const { return _processed; }
 483   inline size_t removed() const   { return _removed; }
 484   )
 485 
 486   inline void move_to_next();
 487 
 488 private:
 489   DiscoveredList&    _refs_list;
 490   HeapWord*          _prev_next;
 491   oop                _ref;
 492   HeapWord*          _discovered_addr;
 493   oop                _next;
 494   HeapWord*          _referent_addr;
 495   oop                _referent;
 496   OopClosure*        _keep_alive;
 497   BoolObjectClosure* _is_alive;
 498   DEBUG_ONLY(
 499   oop                _first_seen; // cyclic linked list check
 500   )
 501   NOT_PRODUCT(
 502   size_t             _processed;
 503   size_t             _removed;
 504   )
 505 };
 506 
 507 inline DiscoveredListIterator::DiscoveredListIterator(DiscoveredList&    refs_list,
 508                                                       OopClosure*        keep_alive,
 509                                                       BoolObjectClosure* is_alive)
 510   : _refs_list(refs_list),
 511     _prev_next(refs_list.adr_head()),
 512     _ref(refs_list.head()),
 513 #ifdef ASSERT
 514     _first_seen(refs_list.head()),
 515 #endif
 516 #ifndef PRODUCT
 517     _processed(0),
 518     _removed(0),
 519 #endif
 520     _next(refs_list.head()),
 521     _keep_alive(keep_alive),
 522     _is_alive(is_alive)
 523 { }
 524 
 525 inline bool DiscoveredListIterator::is_referent_alive() const {
 526   return _is_alive->do_object_b(_referent);
 527 }
 528 
 529 inline void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 530   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 531   oop discovered = java_lang_ref_Reference::discovered(_ref);
 532   assert(_discovered_addr && discovered->is_oop_or_null(),
 533          "discovered field is bad");
 534   _next = discovered;
 535   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 536   _referent = java_lang_ref_Reference::referent(_ref);
 537   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 538          "Wrong oop found in java.lang.Reference object");
 539   assert(allow_null_referent ?
 540              _referent->is_oop_or_null()
 541            : _referent->is_oop(),
 542          "bad referent");
 543 }
 544 
 545 inline void DiscoveredListIterator::next() {
 546   _prev_next = _discovered_addr;
 547   move_to_next();
 548 }
 549 
 550 inline void DiscoveredListIterator::remove() {
 551   assert(_ref->is_oop(), "Dropping a bad reference");
 552   oop_store_raw(_discovered_addr, NULL);
 553   // First _prev_next ref actually points into DiscoveredList (gross).
 554   if (UseCompressedOops) {
 555     // Remove Reference object from list.
 556     oopDesc::encode_store_heap_oop_not_null((narrowOop*)_prev_next, _next);
 557   } else {
 558     // Remove Reference object from list.
 559     oopDesc::store_heap_oop((oop*)_prev_next, _next);
 560   }
 561   NOT_PRODUCT(_removed++);
 562   _refs_list.dec_length(1);
 563 }
 564 
 565 inline void DiscoveredListIterator::move_to_next() {
 566   _ref = _next;
 567   assert(_ref != _first_seen, "cyclic ref_list found");
 568   NOT_PRODUCT(_processed++);
 569 }
 570 
 571 // NOTE: process_phase*() are largely similar, and at a high level
 572 // merely iterate over the extant list applying a predicate to
 573 // each of its elements and possibly removing that element from the
 574 // list and applying some further closures to that element.
 575 // We should consider the possibility of replacing these
 576 // process_phase*() methods by abstracting them into
 577 // a single general iterator invocation that receives appropriate
 578 // closures that accomplish this work.
 579 
 580 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 581 // referents are not alive, but that should be kept alive for policy reasons.
 582 // Keep alive the transitive closure of all such referents.
 583 void
 584 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 585                                    ReferencePolicy*   policy,
 586                                    BoolObjectClosure* is_alive,
 587                                    OopClosure*        keep_alive,
 588                                    VoidClosure*       complete_gc) {
 589   assert(policy != NULL, "Must have a non-NULL policy");
 590   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 591   // Decide which softly reachable refs should be kept alive.
 592   while (iter.has_next()) {
 593     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 594     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 595     if (referent_is_dead && !policy->should_clear_reference(iter.obj())) {
 596       if (TraceReferenceGC) {
 597         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 598                                iter.obj(), iter.obj()->blueprint()->internal_name());
 599       }
 600       // Remove Reference object from list
 601       iter.remove();
 602       // Make the Reference object active again
 603       iter.make_active();
 604       // keep the referent around
 605       iter.make_referent_alive();
 606       iter.move_to_next();
 607     } else {
 608       iter.next();
 609     }
 610   }
 611   // Close the reachable set
 612   complete_gc->do_void();
 613   NOT_PRODUCT(
 614     if (PrintGCDetails && TraceReferenceGC) {
 615       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
 616         "discovered Refs by policy  list " INTPTR_FORMAT,
 617         iter.removed(), iter.processed(), (address)refs_list.head());
 618     }
 619   )
 620 }
 621 
 622 // Traverse the list and remove any Refs that are not active, or
 623 // whose referents are either alive or NULL.
 624 void
 625 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 626                              BoolObjectClosure* is_alive,
 627                              OopClosure*        keep_alive) {
 628   assert(discovery_is_atomic(), "Error");
 629   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 630   while (iter.has_next()) {
 631     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 632     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 633     assert(next == NULL, "Should not discover inactive Reference");
 634     if (iter.is_referent_alive()) {
 635       if (TraceReferenceGC) {
 636         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 637                                iter.obj(), iter.obj()->blueprint()->internal_name());
 638       }
 639       // The referent is reachable after all.
 640       // Remove Reference object from list.
 641       iter.remove();
 642       // Update the referent pointer as necessary: Note that this
 643       // should not entail any recursive marking because the
 644       // referent must already have been traversed.
 645       iter.make_referent_alive();
 646       iter.move_to_next();
 647     } else {
 648       iter.next();
 649     }
 650   }
 651   NOT_PRODUCT(
 652     if (PrintGCDetails && TraceReferenceGC) {
 653       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 654         "Refs in discovered list " INTPTR_FORMAT,
 655         iter.removed(), iter.processed(), (address)refs_list.head());
 656     }
 657   )
 658 }
 659 
 660 void
 661 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 662                                                   BoolObjectClosure* is_alive,
 663                                                   OopClosure*        keep_alive,
 664                                                   VoidClosure*       complete_gc) {
 665   assert(!discovery_is_atomic(), "Error");
 666   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 667   while (iter.has_next()) {
 668     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 669     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 670     oop next = java_lang_ref_Reference::next(iter.obj());
 671     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 672          next != NULL)) {
 673       assert(next->is_oop_or_null(), "bad next field");
 674       // Remove Reference object from list
 675       iter.remove();
 676       // Trace the cohorts
 677       iter.make_referent_alive();
 678       if (UseCompressedOops) {
 679         keep_alive->do_oop((narrowOop*)next_addr);
 680       } else {
 681         keep_alive->do_oop((oop*)next_addr);
 682       }
 683       iter.move_to_next();
 684     } else {
 685       iter.next();
 686     }
 687   }
 688   // Now close the newly reachable set
 689   complete_gc->do_void();
 690   NOT_PRODUCT(
 691     if (PrintGCDetails && TraceReferenceGC) {
 692       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 693         "Refs in discovered list " INTPTR_FORMAT,
 694         iter.removed(), iter.processed(), (address)refs_list.head());
 695     }
 696   )
 697 }
 698 
 699 // Traverse the list and process the referents, by either
 700 // clearing them or keeping them (and their reachable
 701 // closure) alive.
 702 void
 703 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 704                                    bool               clear_referent,
 705                                    BoolObjectClosure* is_alive,
 706                                    OopClosure*        keep_alive,
 707                                    VoidClosure*       complete_gc) {
 708   ResourceMark rm;
 709   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 710   while (iter.has_next()) {
 711     iter.update_discovered();
 712     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 713     if (clear_referent) {
 714       // NULL out referent pointer
 715       iter.clear_referent();
 716     } else {
 717       // keep the referent around
 718       iter.make_referent_alive();
 719     }
 720     if (TraceReferenceGC) {
 721       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 722                              clear_referent ? "cleared " : "",
 723                              iter.obj(), iter.obj()->blueprint()->internal_name());
 724     }
 725     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
 726     iter.next();
 727   }
 728   // Remember to keep sentinel pointer around
 729   iter.update_discovered();
 730   // Close the reachable set
 731   complete_gc->do_void();
 732 }
 733 
 734 void
 735 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
 736   oop obj = refs_list.head();
 737   while (obj != sentinel_ref()) {
 738     oop discovered = java_lang_ref_Reference::discovered(obj);
 739     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 740     obj = discovered;
 741   }
 742   refs_list.set_head(sentinel_ref());
 743   refs_list.set_length(0);
 744 }
 745 
 746 void ReferenceProcessor::abandon_partial_discovery() {
 747   // loop over the lists
 748   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 749     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 750       gclog_or_tty->print_cr("\nAbandoning %s discovered list",
 751                              list_name(i));
 752     }
 753     abandon_partial_discovered_list(_discoveredSoftRefs[i]);
 754   }
 755 }
 756 
 757 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 758 public:
 759   RefProcPhase1Task(ReferenceProcessor& ref_processor,
 760                     DiscoveredList      refs_lists[],
 761                     ReferencePolicy*    policy,
 762                     bool                marks_oops_alive)
 763     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 764       _policy(policy)
 765   { }
 766   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 767                     OopClosure& keep_alive,
 768                     VoidClosure& complete_gc)
 769   {
 770     Thread* thr = Thread::current();
 771     int refs_list_index = ((WorkerThread*)thr)->id();
 772     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
 773                                   &is_alive, &keep_alive, &complete_gc);
 774   }
 775 private:
 776   ReferencePolicy* _policy;
 777 };
 778 
 779 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 780 public:
 781   RefProcPhase2Task(ReferenceProcessor& ref_processor,
 782                     DiscoveredList      refs_lists[],
 783                     bool                marks_oops_alive)
 784     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
 785   { }
 786   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 787                     OopClosure& keep_alive,
 788                     VoidClosure& complete_gc)
 789   {
 790     _ref_processor.process_phase2(_refs_lists[i],
 791                                   &is_alive, &keep_alive, &complete_gc);
 792   }
 793 };
 794 
 795 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 796 public:
 797   RefProcPhase3Task(ReferenceProcessor& ref_processor,
 798                     DiscoveredList      refs_lists[],
 799                     bool                clear_referent,
 800                     bool                marks_oops_alive)
 801     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 802       _clear_referent(clear_referent)
 803   { }
 804   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 805                     OopClosure& keep_alive,
 806                     VoidClosure& complete_gc)
 807   {
 808     // Don't use "refs_list_index" calculated in this way because
 809     // balance_queues() has moved the Ref's into the first n queues.
 810     // Thread* thr = Thread::current();
 811     // int refs_list_index = ((WorkerThread*)thr)->id();
 812     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
 813     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 814                                   &is_alive, &keep_alive, &complete_gc);
 815   }
 816 private:
 817   bool _clear_referent;
 818 };
 819 
 820 // Balances reference queues.
 821 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 822 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 823 // corresponding to the active workers will be processed.
 824 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 825 {
 826   // calculate total length
 827   size_t total_refs = 0;
 828   if (TraceReferenceGC && PrintGCDetails) {
 829     gclog_or_tty->print_cr("\nBalance ref_lists ");
 830   }
 831 
 832   for (int i = 0; i < _max_num_q; ++i) {
 833     total_refs += ref_lists[i].length();
 834     if (TraceReferenceGC && PrintGCDetails) {
 835       gclog_or_tty->print("%d ", ref_lists[i].length());
 836     }
 837   }
 838   if (TraceReferenceGC && PrintGCDetails) {
 839     gclog_or_tty->print_cr(" = %d", total_refs);
 840   }
 841   size_t avg_refs = total_refs / _num_q + 1;
 842   int to_idx = 0;
 843   for (int from_idx = 0; from_idx < _max_num_q; from_idx++) {
 844     bool move_all = false;
 845     if (from_idx >= _num_q) {
 846       move_all = ref_lists[from_idx].length() > 0;
 847     }
 848     while ((ref_lists[from_idx].length() > avg_refs) ||
 849            move_all) {
 850       assert(to_idx < _num_q, "Sanity Check!");
 851       if (ref_lists[to_idx].length() < avg_refs) {
 852         // move superfluous refs
 853         size_t refs_to_move;
 854         // Move all the Ref's if the from queue will not be processed.
 855         if (move_all) {
 856           refs_to_move = MIN2(ref_lists[from_idx].length(),
 857                               avg_refs - ref_lists[to_idx].length());
 858         } else {
 859           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 860                               avg_refs - ref_lists[to_idx].length());
 861         }
 862         oop move_head = ref_lists[from_idx].head();
 863         oop move_tail = move_head;
 864         oop new_head  = move_head;
 865         // find an element to split the list on
 866         for (size_t j = 0; j < refs_to_move; ++j) {
 867           move_tail = new_head;
 868           new_head = java_lang_ref_Reference::discovered(new_head);
 869         }
 870         java_lang_ref_Reference::set_discovered(move_tail, ref_lists[to_idx].head());
 871         ref_lists[to_idx].set_head(move_head);
 872         ref_lists[to_idx].inc_length(refs_to_move);
 873         ref_lists[from_idx].set_head(new_head);
 874         ref_lists[from_idx].dec_length(refs_to_move);
 875         if (ref_lists[from_idx].length() == 0) {
 876           break;
 877         }
 878       } else {
 879         to_idx = (to_idx + 1) % _num_q;
 880       }
 881     }
 882   }
 883 #ifdef ASSERT
 884   size_t balanced_total_refs = 0;
 885   for (int i = 0; i < _max_num_q; ++i) {
 886     balanced_total_refs += ref_lists[i].length();
 887     if (TraceReferenceGC && PrintGCDetails) {
 888       gclog_or_tty->print("%d ", ref_lists[i].length());
 889     }
 890   }
 891   if (TraceReferenceGC && PrintGCDetails) {
 892     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
 893     gclog_or_tty->flush();
 894   }
 895   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 896 #endif
 897 }
 898 
 899 void ReferenceProcessor::balance_all_queues() {
 900   balance_queues(_discoveredSoftRefs);
 901   balance_queues(_discoveredWeakRefs);
 902   balance_queues(_discoveredFinalRefs);
 903   balance_queues(_discoveredPhantomRefs);
 904 }
 905 
 906 void
 907 ReferenceProcessor::process_discovered_reflist(
 908   DiscoveredList               refs_lists[],
 909   ReferencePolicy*             policy,
 910   bool                         clear_referent,
 911   BoolObjectClosure*           is_alive,
 912   OopClosure*                  keep_alive,
 913   VoidClosure*                 complete_gc,
 914   AbstractRefProcTaskExecutor* task_executor)
 915 {
 916   bool mt_processing = task_executor != NULL && _processing_is_mt;
 917   // If discovery used MT and a dynamic number of GC threads, then
 918   // the queues must be balanced for correctness if fewer than the
 919   // maximum number of queues were used.  The number of queue used
 920   // during discovery may be different than the number to be used
 921   // for processing so don't depend of _num_q < _max_num_q as part
 922   // of the test.
 923   bool must_balance = _discovery_is_mt;
 924 
 925   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
 926       must_balance) {
 927     balance_queues(refs_lists);
 928   }
 929   if (PrintReferenceGC && PrintGCDetails) {
 930     size_t total = 0;
 931     for (int i = 0; i < _max_num_q; ++i) {
 932       total += refs_lists[i].length();
 933     }
 934     gclog_or_tty->print(", %u refs", total);
 935   }
 936 
 937   // Phase 1 (soft refs only):
 938   // . Traverse the list and remove any SoftReferences whose
 939   //   referents are not alive, but that should be kept alive for
 940   //   policy reasons. Keep alive the transitive closure of all
 941   //   such referents.
 942   if (policy != NULL) {
 943     if (mt_processing) {
 944       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
 945       task_executor->execute(phase1);
 946     } else {
 947       for (int i = 0; i < _max_num_q; i++) {
 948         process_phase1(refs_lists[i], policy,
 949                        is_alive, keep_alive, complete_gc);
 950       }
 951     }
 952   } else { // policy == NULL
 953     assert(refs_lists != _discoveredSoftRefs,
 954            "Policy must be specified for soft references.");
 955   }
 956 
 957   // Phase 2:
 958   // . Traverse the list and remove any refs whose referents are alive.
 959   if (mt_processing) {
 960     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
 961     task_executor->execute(phase2);
 962   } else {
 963     for (int i = 0; i < _max_num_q; i++) {
 964       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 965     }
 966   }
 967 
 968   // Phase 3:
 969   // . Traverse the list and process referents as appropriate.
 970   if (mt_processing) {
 971     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
 972     task_executor->execute(phase3);
 973   } else {
 974     for (int i = 0; i < _max_num_q; i++) {
 975       process_phase3(refs_lists[i], clear_referent,
 976                      is_alive, keep_alive, complete_gc);
 977     }
 978   }
 979 }
 980 
 981 void ReferenceProcessor::clean_up_discovered_references() {
 982   // loop over the lists
 983   // Should this instead be
 984   // for (int i = 0; i < subclasses_of_ref; i++_ {
 985   //   for (int j = 0; j < _num_q; j++) {
 986   //     int index = i * _max_num_q + j;
 987   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
 988     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 989       gclog_or_tty->print_cr(
 990         "\nScrubbing %s discovered list of Null referents",
 991         list_name(i));
 992     }
 993     clean_up_discovered_reflist(_discoveredSoftRefs[i]);
 994   }
 995 }
 996 
 997 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
 998   assert(!discovery_is_atomic(), "Else why call this method?");
 999   DiscoveredListIterator iter(refs_list, NULL, NULL);
1000   while (iter.has_next()) {
1001     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1002     oop next = java_lang_ref_Reference::next(iter.obj());
1003     assert(next->is_oop_or_null(), "bad next field");
1004     // If referent has been cleared or Reference is not active,
1005     // drop it.
1006     if (iter.referent() == NULL || next != NULL) {
1007       debug_only(
1008         if (PrintGCDetails && TraceReferenceGC) {
1009           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
1010             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
1011             " and referent: " INTPTR_FORMAT,
1012             iter.obj(), next, iter.referent());
1013         }
1014       )
1015       // Remove Reference object from list
1016       iter.remove();
1017       iter.move_to_next();
1018     } else {
1019       iter.next();
1020     }
1021   }
1022   NOT_PRODUCT(
1023     if (PrintGCDetails && TraceReferenceGC) {
1024       gclog_or_tty->print(
1025         " Removed %d Refs with NULL referents out of %d discovered Refs",
1026         iter.removed(), iter.processed());
1027     }
1028   )
1029 }
1030 
1031 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
1032   int id = 0;
1033   // Determine the queue index to use for this object.
1034   if (_discovery_is_mt) {
1035     // During a multi-threaded discovery phase,
1036     // each thread saves to its "own" list.
1037     Thread* thr = Thread::current();
1038     id = thr->as_Worker_thread()->id();
1039   } else {
1040     // single-threaded discovery, we save in round-robin
1041     // fashion to each of the lists.
1042     if (_processing_is_mt) {
1043       id = next_id();
1044     }
1045   }
1046   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
1047 
1048   // Get the discovered queue to which we will add
1049   DiscoveredList* list = NULL;
1050   switch (rt) {
1051     case REF_OTHER:
1052       // Unknown reference type, no special treatment
1053       break;
1054     case REF_SOFT:
1055       list = &_discoveredSoftRefs[id];
1056       break;
1057     case REF_WEAK:
1058       list = &_discoveredWeakRefs[id];
1059       break;
1060     case REF_FINAL:
1061       list = &_discoveredFinalRefs[id];
1062       break;
1063     case REF_PHANTOM:
1064       list = &_discoveredPhantomRefs[id];
1065       break;
1066     case REF_NONE:
1067       // we should not reach here if we are an instanceRefKlass
1068     default:
1069       ShouldNotReachHere();
1070   }
1071   if (TraceReferenceGC && PrintGCDetails) {
1072     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
1073   }
1074   return list;
1075 }
1076 
1077 inline void
1078 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
1079                                               oop             obj,
1080                                               HeapWord*       discovered_addr) {
1081   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
1082   // First we must make sure this object is only enqueued once. CAS in a non null
1083   // discovered_addr.
1084   oop current_head = refs_list.head();
1085 
1086   // Note: In the case of G1, this specific pre-barrier is strictly
1087   // not necessary because the only case we are interested in
1088   // here is when *discovered_addr is NULL (see the CAS further below),
1089   // so this will expand to nothing. As a result, we have manually
1090   // elided this out for G1, but left in the test for some future
1091   // collector that might have need for a pre-barrier here.
1092   if (_discovered_list_needs_barrier && !UseG1GC) {
1093     if (UseCompressedOops) {
1094       _bs->write_ref_field_pre((narrowOop*)discovered_addr, current_head);
1095     } else {
1096       _bs->write_ref_field_pre((oop*)discovered_addr, current_head);
1097     }
1098     guarantee(false, "Need to check non-G1 collector");
1099   }
1100   oop retest = oopDesc::atomic_compare_exchange_oop(current_head, discovered_addr,
1101                                                     NULL);
1102   if (retest == NULL) {
1103     // This thread just won the right to enqueue the object.
1104     // We have separate lists for enqueueing so no synchronization
1105     // is necessary.
1106     refs_list.set_head(obj);
1107     refs_list.inc_length(1);
1108     if (_discovered_list_needs_barrier) {
1109       _bs->write_ref_field((void*)discovered_addr, current_head);
1110     }
1111 
1112     if (TraceReferenceGC) {
1113       gclog_or_tty->print_cr("Enqueued reference (mt) (" INTPTR_FORMAT ": %s)",
1114                              obj, obj->blueprint()->internal_name());
1115     }
1116   } else {
1117     // If retest was non NULL, another thread beat us to it:
1118     // The reference has already been discovered...
1119     if (TraceReferenceGC) {
1120       gclog_or_tty->print_cr("Already enqueued reference (" INTPTR_FORMAT ": %s)",
1121                              obj, obj->blueprint()->internal_name());
1122     }
1123   }
1124 }
1125 
1126 #ifndef PRODUCT
1127 // Non-atomic (i.e. concurrent) discovery might allow us
1128 // to observe j.l.References with NULL referents, being those
1129 // cleared concurrently by mutators during (or after) discovery.
1130 void ReferenceProcessor::verify_referent(oop obj) {
1131   bool da = discovery_is_atomic();
1132   oop referent = java_lang_ref_Reference::referent(obj);
1133   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
1134          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
1135                  INTPTR_FORMAT " during %satomic discovery ",
1136                  (intptr_t)referent, (intptr_t)obj, da ? "" : "non-"));
1137 }
1138 #endif
1139 
1140 // We mention two of several possible choices here:
1141 // #0: if the reference object is not in the "originating generation"
1142 //     (or part of the heap being collected, indicated by our "span"
1143 //     we don't treat it specially (i.e. we scan it as we would
1144 //     a normal oop, treating its references as strong references).
1145 //     This means that references can't be enqueued unless their
1146 //     referent is also in the same span. This is the simplest,
1147 //     most "local" and most conservative approach, albeit one
1148 //     that may cause weak references to be enqueued least promptly.
1149 //     We call this choice the "ReferenceBasedDiscovery" policy.
1150 // #1: the reference object may be in any generation (span), but if
1151 //     the referent is in the generation (span) being currently collected
1152 //     then we can discover the reference object, provided
1153 //     the object has not already been discovered by
1154 //     a different concurrently running collector (as may be the
1155 //     case, for instance, if the reference object is in CMS and
1156 //     the referent in DefNewGeneration), and provided the processing
1157 //     of this reference object by the current collector will
1158 //     appear atomic to every other collector in the system.
1159 //     (Thus, for instance, a concurrent collector may not
1160 //     discover references in other generations even if the
1161 //     referent is in its own generation). This policy may,
1162 //     in certain cases, enqueue references somewhat sooner than
1163 //     might Policy #0 above, but at marginally increased cost
1164 //     and complexity in processing these references.
1165 //     We call this choice the "RefeferentBasedDiscovery" policy.
1166 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1167   // We enqueue references only if we are discovering refs
1168   // (rather than processing discovered refs).
1169   if (!_discovering_refs || !RegisterReferences) {
1170     return false;
1171   }
1172   // We only enqueue active references.
1173   oop next = java_lang_ref_Reference::next(obj);
1174   if (next != NULL) {
1175     return false;
1176   }
1177 
1178   HeapWord* obj_addr = (HeapWord*)obj;
1179   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1180       !_span.contains(obj_addr)) {
1181     // Reference is not in the originating generation;
1182     // don't treat it specially (i.e. we want to scan it as a normal
1183     // object with strong references).
1184     return false;
1185   }
1186 
1187   // We only enqueue references whose referents are not (yet) strongly
1188   // reachable.
1189   if (is_alive_non_header() != NULL) {
1190     verify_referent(obj);
1191     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1192       return false;  // referent is reachable
1193     }
1194   }
1195   if (rt == REF_SOFT) {
1196     // For soft refs we can decide now if these are not
1197     // current candidates for clearing, in which case we
1198     // can mark through them now, rather than delaying that
1199     // to the reference-processing phase. Since all current
1200     // time-stamp policies advance the soft-ref clock only
1201     // at a major collection cycle, this is always currently
1202     // accurate.
1203     if (!_current_soft_ref_policy->should_clear_reference(obj)) {
1204       return false;
1205     }
1206   }
1207 
1208   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1209   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1210   assert(discovered->is_oop_or_null(), "bad discovered field");
1211   if (discovered != NULL) {
1212     // The reference has already been discovered...
1213     if (TraceReferenceGC) {
1214       gclog_or_tty->print_cr("Already enqueued reference (" INTPTR_FORMAT ": %s)",
1215                              obj, obj->blueprint()->internal_name());
1216     }
1217     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1218       // assumes that an object is not processed twice;
1219       // if it's been already discovered it must be on another
1220       // generation's discovered list; so we won't discover it.
1221       return false;
1222     } else {
1223       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1224              "Unrecognized policy");
1225       // Check assumption that an object is not potentially
1226       // discovered twice except by concurrent collectors that potentially
1227       // trace the same Reference object twice.
1228       assert(UseConcMarkSweepGC || UseG1GC,
1229              "Only possible with a concurrent marking collector");
1230       return true;
1231     }
1232   }
1233 
1234   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1235     verify_referent(obj);
1236     // enqueue if and only if either:
1237     // reference is in our span or
1238     // we are an atomic collector and referent is in our span
1239     if (_span.contains(obj_addr) ||
1240         (discovery_is_atomic() &&
1241          _span.contains(java_lang_ref_Reference::referent(obj)))) {
1242       // should_enqueue = true;
1243     } else {
1244       return false;
1245     }
1246   } else {
1247     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1248            _span.contains(obj_addr), "code inconsistency");
1249   }
1250 
1251   // Get the right type of discovered queue head.
1252   DiscoveredList* list = get_discovered_list(rt);
1253   if (list == NULL) {
1254     return false;   // nothing special needs to be done
1255   }
1256 
1257   if (_discovery_is_mt) {
1258     add_to_discovered_list_mt(*list, obj, discovered_addr);
1259   } else {
1260     // If "_discovered_list_needs_barrier", we do write barriers when
1261     // updating the discovered reference list.  Otherwise, we do a raw store
1262     // here: the field will be visited later when processing the discovered
1263     // references.
1264     oop current_head = list->head();
1265     // As in the case further above, since we are over-writing a NULL
1266     // pre-value, we can safely elide the pre-barrier here for the case of G1.
1267     assert(discovered == NULL, "control point invariant");
1268     if (_discovered_list_needs_barrier && !UseG1GC) { // safe to elide for G1
1269       if (UseCompressedOops) {
1270         _bs->write_ref_field_pre((narrowOop*)discovered_addr, current_head);
1271       } else {
1272         _bs->write_ref_field_pre((oop*)discovered_addr, current_head);
1273       }
1274       guarantee(false, "Need to check non-G1 collector");
1275     }
1276     oop_store_raw(discovered_addr, current_head);
1277     if (_discovered_list_needs_barrier) {
1278       _bs->write_ref_field((void*)discovered_addr, current_head);
1279     }
1280     list->set_head(obj);
1281     list->inc_length(1);
1282 
1283     if (TraceReferenceGC) {
1284       gclog_or_tty->print_cr("Enqueued reference (" INTPTR_FORMAT ": %s)",
1285                                 obj, obj->blueprint()->internal_name());
1286     }
1287   }
1288   assert(obj->is_oop(), "Enqueued a bad reference");
1289   verify_referent(obj);
1290   return true;
1291 }
1292 
1293 // Preclean the discovered references by removing those
1294 // whose referents are alive, and by marking from those that
1295 // are not active. These lists can be handled here
1296 // in any order and, indeed, concurrently.
1297 void ReferenceProcessor::preclean_discovered_references(
1298   BoolObjectClosure* is_alive,
1299   OopClosure* keep_alive,
1300   VoidClosure* complete_gc,
1301   YieldClosure* yield,
1302   bool should_unload_classes) {
1303 
1304   NOT_PRODUCT(verify_ok_to_handle_reflists());
1305 
1306 #ifdef ASSERT
1307   bool must_remember_klasses = ClassUnloading && !UseConcMarkSweepGC ||
1308                                CMSClassUnloadingEnabled && UseConcMarkSweepGC ||
1309                                ExplicitGCInvokesConcurrentAndUnloadsClasses &&
1310                                  UseConcMarkSweepGC && should_unload_classes;
1311   RememberKlassesChecker mx(must_remember_klasses);
1312 #endif
1313   // Soft references
1314   {
1315     TraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
1316               false, gclog_or_tty);
1317     for (int i = 0; i < _max_num_q; i++) {
1318       if (yield->should_return()) {
1319         return;
1320       }
1321       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1322                                   keep_alive, complete_gc, yield);
1323     }
1324   }
1325 
1326   // Weak references
1327   {
1328     TraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
1329               false, gclog_or_tty);
1330     for (int i = 0; i < _max_num_q; i++) {
1331       if (yield->should_return()) {
1332         return;
1333       }
1334       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1335                                   keep_alive, complete_gc, yield);
1336     }
1337   }
1338 
1339   // Final references
1340   {
1341     TraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
1342               false, gclog_or_tty);
1343     for (int i = 0; i < _max_num_q; i++) {
1344       if (yield->should_return()) {
1345         return;
1346       }
1347       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1348                                   keep_alive, complete_gc, yield);
1349     }
1350   }
1351 
1352   // Phantom references
1353   {
1354     TraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
1355               false, gclog_or_tty);
1356     for (int i = 0; i < _max_num_q; i++) {
1357       if (yield->should_return()) {
1358         return;
1359       }
1360       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1361                                   keep_alive, complete_gc, yield);
1362     }
1363   }
1364 }
1365 
1366 // Walk the given discovered ref list, and remove all reference objects
1367 // whose referents are still alive, whose referents are NULL or which
1368 // are not active (have a non-NULL next field). NOTE: When we are
1369 // thus precleaning the ref lists (which happens single-threaded today),
1370 // we do not disable refs discovery to honour the correct semantics of
1371 // java.lang.Reference. As a result, we need to be careful below
1372 // that ref removal steps interleave safely with ref discovery steps
1373 // (in this thread).
1374 void
1375 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1376                                                 BoolObjectClosure* is_alive,
1377                                                 OopClosure*        keep_alive,
1378                                                 VoidClosure*       complete_gc,
1379                                                 YieldClosure*      yield) {
1380   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1381   while (iter.has_next()) {
1382     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1383     oop obj = iter.obj();
1384     oop next = java_lang_ref_Reference::next(obj);
1385     if (iter.referent() == NULL || iter.is_referent_alive() ||
1386         next != NULL) {
1387       // The referent has been cleared, or is alive, or the Reference is not
1388       // active; we need to trace and mark its cohort.
1389       if (TraceReferenceGC) {
1390         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1391                                iter.obj(), iter.obj()->blueprint()->internal_name());
1392       }
1393       // Remove Reference object from list
1394       iter.remove();
1395       // Keep alive its cohort.
1396       iter.make_referent_alive();
1397       if (UseCompressedOops) {
1398         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1399         keep_alive->do_oop(next_addr);
1400       } else {
1401         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1402         keep_alive->do_oop(next_addr);
1403       }
1404       iter.move_to_next();
1405     } else {
1406       iter.next();
1407     }
1408   }
1409   // Close the reachable set
1410   complete_gc->do_void();
1411 
1412   NOT_PRODUCT(
1413     if (PrintGCDetails && PrintReferenceGC) {
1414       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
1415         "Refs in discovered list " INTPTR_FORMAT,
1416         iter.removed(), iter.processed(), (address)refs_list.head());
1417     }
1418   )
1419 }
1420 
1421 const char* ReferenceProcessor::list_name(int i) {
1422    assert(i >= 0 && i <= _max_num_q * subclasses_of_ref, "Out of bounds index");
1423    int j = i / _max_num_q;
1424    switch (j) {
1425      case 0: return "SoftRef";
1426      case 1: return "WeakRef";
1427      case 2: return "FinalRef";
1428      case 3: return "PhantomRef";
1429    }
1430    ShouldNotReachHere();
1431    return NULL;
1432 }
1433 
1434 #ifndef PRODUCT
1435 void ReferenceProcessor::verify_ok_to_handle_reflists() {
1436   // empty for now
1437 }
1438 #endif
1439 
1440 void ReferenceProcessor::verify() {
1441   guarantee(sentinel_ref() != NULL && sentinel_ref()->is_oop(), "Lost _sentinelRef");
1442 }
1443 
1444 #ifndef PRODUCT
1445 void ReferenceProcessor::clear_discovered_references() {
1446   guarantee(!_discovering_refs, "Discovering refs?");
1447   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
1448     oop obj = _discoveredSoftRefs[i].head();
1449     while (obj != sentinel_ref()) {
1450       oop next = java_lang_ref_Reference::discovered(obj);
1451       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
1452       obj = next;
1453     }
1454     _discoveredSoftRefs[i].set_head(sentinel_ref());
1455     _discoveredSoftRefs[i].set_length(0);
1456   }
1457 }
1458 #endif // PRODUCT