1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/cms/cmsCollectorPolicy.hpp"
  32 #include "gc/cms/cmsOopClosures.inline.hpp"
  33 #include "gc/cms/compactibleFreeListSpace.hpp"
  34 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc/cms/concurrentMarkSweepThread.hpp"
  36 #include "gc/cms/parNewGeneration.hpp"
  37 #include "gc/cms/vmCMSOperations.hpp"
  38 #include "gc/serial/genMarkSweep.hpp"
  39 #include "gc/serial/tenuredGeneration.hpp"
  40 #include "gc/shared/adaptiveSizePolicy.hpp"
  41 #include "gc/shared/cardGeneration.inline.hpp"
  42 #include "gc/shared/cardTableRS.hpp"
  43 #include "gc/shared/collectedHeap.inline.hpp"
  44 #include "gc/shared/collectorCounters.hpp"
  45 #include "gc/shared/collectorPolicy.hpp"
  46 #include "gc/shared/gcLocker.inline.hpp"
  47 #include "gc/shared/gcPolicyCounters.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.inline.hpp"
  51 #include "gc/shared/genCollectedHeap.hpp"
  52 #include "gc/shared/genOopClosures.inline.hpp"
  53 #include "gc/shared/isGCActiveMark.hpp"
  54 #include "gc/shared/referencePolicy.hpp"
  55 #include "gc/shared/strongRootsScope.hpp"
  56 #include "gc/shared/taskqueue.inline.hpp"
  57 #include "logging/log.hpp"
  58 #include "memory/allocation.hpp"
  59 #include "memory/iterator.inline.hpp"
  60 #include "memory/padded.hpp"
  61 #include "memory/resourceArea.hpp"
  62 #include "oops/oop.inline.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "runtime/atomic.inline.hpp"
  65 #include "runtime/globals_extension.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/java.hpp"
  68 #include "runtime/orderAccess.inline.hpp"
  69 #include "runtime/timer.hpp"
  70 #include "runtime/vmThread.hpp"
  71 #include "services/memoryService.hpp"
  72 #include "services/runtimeService.hpp"
  73 #include "utilities/stack.inline.hpp"
  74 
  75 // statics
  76 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  77 bool CMSCollector::_full_gc_requested = false;
  78 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  79 
  80 //////////////////////////////////////////////////////////////////
  81 // In support of CMS/VM thread synchronization
  82 //////////////////////////////////////////////////////////////////
  83 // We split use of the CGC_lock into 2 "levels".
  84 // The low-level locking is of the usual CGC_lock monitor. We introduce
  85 // a higher level "token" (hereafter "CMS token") built on top of the
  86 // low level monitor (hereafter "CGC lock").
  87 // The token-passing protocol gives priority to the VM thread. The
  88 // CMS-lock doesn't provide any fairness guarantees, but clients
  89 // should ensure that it is only held for very short, bounded
  90 // durations.
  91 //
  92 // When either of the CMS thread or the VM thread is involved in
  93 // collection operations during which it does not want the other
  94 // thread to interfere, it obtains the CMS token.
  95 //
  96 // If either thread tries to get the token while the other has
  97 // it, that thread waits. However, if the VM thread and CMS thread
  98 // both want the token, then the VM thread gets priority while the
  99 // CMS thread waits. This ensures, for instance, that the "concurrent"
 100 // phases of the CMS thread's work do not block out the VM thread
 101 // for long periods of time as the CMS thread continues to hog
 102 // the token. (See bug 4616232).
 103 //
 104 // The baton-passing functions are, however, controlled by the
 105 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 106 // and here the low-level CMS lock, not the high level token,
 107 // ensures mutual exclusion.
 108 //
 109 // Two important conditions that we have to satisfy:
 110 // 1. if a thread does a low-level wait on the CMS lock, then it
 111 //    relinquishes the CMS token if it were holding that token
 112 //    when it acquired the low-level CMS lock.
 113 // 2. any low-level notifications on the low-level lock
 114 //    should only be sent when a thread has relinquished the token.
 115 //
 116 // In the absence of either property, we'd have potential deadlock.
 117 //
 118 // We protect each of the CMS (concurrent and sequential) phases
 119 // with the CMS _token_, not the CMS _lock_.
 120 //
 121 // The only code protected by CMS lock is the token acquisition code
 122 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 123 // baton-passing code.
 124 //
 125 // Unfortunately, i couldn't come up with a good abstraction to factor and
 126 // hide the naked CGC_lock manipulation in the baton-passing code
 127 // further below. That's something we should try to do. Also, the proof
 128 // of correctness of this 2-level locking scheme is far from obvious,
 129 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 130 // that there may be a theoretical possibility of delay/starvation in the
 131 // low-level lock/wait/notify scheme used for the baton-passing because of
 132 // potential interference with the priority scheme embodied in the
 133 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 134 // invocation further below and marked with "XXX 20011219YSR".
 135 // Indeed, as we note elsewhere, this may become yet more slippery
 136 // in the presence of multiple CMS and/or multiple VM threads. XXX
 137 
 138 class CMSTokenSync: public StackObj {
 139  private:
 140   bool _is_cms_thread;
 141  public:
 142   CMSTokenSync(bool is_cms_thread):
 143     _is_cms_thread(is_cms_thread) {
 144     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 145            "Incorrect argument to constructor");
 146     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 147   }
 148 
 149   ~CMSTokenSync() {
 150     assert(_is_cms_thread ?
 151              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 152              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 153           "Incorrect state");
 154     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 155   }
 156 };
 157 
 158 // Convenience class that does a CMSTokenSync, and then acquires
 159 // upto three locks.
 160 class CMSTokenSyncWithLocks: public CMSTokenSync {
 161  private:
 162   // Note: locks are acquired in textual declaration order
 163   // and released in the opposite order
 164   MutexLockerEx _locker1, _locker2, _locker3;
 165  public:
 166   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 167                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 168     CMSTokenSync(is_cms_thread),
 169     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 170     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 171     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 172   { }
 173 };
 174 
 175 
 176 //////////////////////////////////////////////////////////////////
 177 //  Concurrent Mark-Sweep Generation /////////////////////////////
 178 //////////////////////////////////////////////////////////////////
 179 
 180 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 181 
 182 // This struct contains per-thread things necessary to support parallel
 183 // young-gen collection.
 184 class CMSParGCThreadState: public CHeapObj<mtGC> {
 185  public:
 186   CompactibleFreeListSpaceLAB lab;
 187   PromotionInfo promo;
 188 
 189   // Constructor.
 190   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 191     promo.setSpace(cfls);
 192   }
 193 };
 194 
 195 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 196      ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
 197   CardGeneration(rs, initial_byte_size, ct),
 198   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 199   _did_compact(false)
 200 {
 201   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 202   HeapWord* end    = (HeapWord*) _virtual_space.high();
 203 
 204   _direct_allocated_words = 0;
 205   NOT_PRODUCT(
 206     _numObjectsPromoted = 0;
 207     _numWordsPromoted = 0;
 208     _numObjectsAllocated = 0;
 209     _numWordsAllocated = 0;
 210   )
 211 
 212   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
 213   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 214   _cmsSpace->_old_gen = this;
 215 
 216   _gc_stats = new CMSGCStats();
 217 
 218   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 219   // offsets match. The ability to tell free chunks from objects
 220   // depends on this property.
 221   debug_only(
 222     FreeChunk* junk = NULL;
 223     assert(UseCompressedClassPointers ||
 224            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 225            "Offset of FreeChunk::_prev within FreeChunk must match"
 226            "  that of OopDesc::_klass within OopDesc");
 227   )
 228 
 229   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 230   for (uint i = 0; i < ParallelGCThreads; i++) {
 231     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 232   }
 233 
 234   _incremental_collection_failed = false;
 235   // The "dilatation_factor" is the expansion that can occur on
 236   // account of the fact that the minimum object size in the CMS
 237   // generation may be larger than that in, say, a contiguous young
 238   //  generation.
 239   // Ideally, in the calculation below, we'd compute the dilatation
 240   // factor as: MinChunkSize/(promoting_gen's min object size)
 241   // Since we do not have such a general query interface for the
 242   // promoting generation, we'll instead just use the minimum
 243   // object size (which today is a header's worth of space);
 244   // note that all arithmetic is in units of HeapWords.
 245   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 246   assert(_dilatation_factor >= 1.0, "from previous assert");
 247 }
 248 
 249 
 250 // The field "_initiating_occupancy" represents the occupancy percentage
 251 // at which we trigger a new collection cycle.  Unless explicitly specified
 252 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 253 // is calculated by:
 254 //
 255 //   Let "f" be MinHeapFreeRatio in
 256 //
 257 //    _initiating_occupancy = 100-f +
 258 //                           f * (CMSTriggerRatio/100)
 259 //   where CMSTriggerRatio is the argument "tr" below.
 260 //
 261 // That is, if we assume the heap is at its desired maximum occupancy at the
 262 // end of a collection, we let CMSTriggerRatio of the (purported) free
 263 // space be allocated before initiating a new collection cycle.
 264 //
 265 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 266   assert(io <= 100 && tr <= 100, "Check the arguments");
 267   if (io >= 0) {
 268     _initiating_occupancy = (double)io / 100.0;
 269   } else {
 270     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 271                              (double)(tr * MinHeapFreeRatio) / 100.0)
 272                             / 100.0;
 273   }
 274 }
 275 
 276 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 277   assert(collector() != NULL, "no collector");
 278   collector()->ref_processor_init();
 279 }
 280 
 281 void CMSCollector::ref_processor_init() {
 282   if (_ref_processor == NULL) {
 283     // Allocate and initialize a reference processor
 284     _ref_processor =
 285       new ReferenceProcessor(_span,                               // span
 286                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 287                              ParallelGCThreads,                   // mt processing degree
 288                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 289                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 290                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 291                              &_is_alive_closure);                 // closure for liveness info
 292     // Initialize the _ref_processor field of CMSGen
 293     _cmsGen->set_ref_processor(_ref_processor);
 294 
 295   }
 296 }
 297 
 298 AdaptiveSizePolicy* CMSCollector::size_policy() {
 299   GenCollectedHeap* gch = GenCollectedHeap::heap();
 300   return gch->gen_policy()->size_policy();
 301 }
 302 
 303 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 304 
 305   const char* gen_name = "old";
 306   GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
 307   // Generation Counters - generation 1, 1 subspace
 308   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 309       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 310 
 311   _space_counters = new GSpaceCounters(gen_name, 0,
 312                                        _virtual_space.reserved_size(),
 313                                        this, _gen_counters);
 314 }
 315 
 316 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 317   _cms_gen(cms_gen)
 318 {
 319   assert(alpha <= 100, "bad value");
 320   _saved_alpha = alpha;
 321 
 322   // Initialize the alphas to the bootstrap value of 100.
 323   _gc0_alpha = _cms_alpha = 100;
 324 
 325   _cms_begin_time.update();
 326   _cms_end_time.update();
 327 
 328   _gc0_duration = 0.0;
 329   _gc0_period = 0.0;
 330   _gc0_promoted = 0;
 331 
 332   _cms_duration = 0.0;
 333   _cms_period = 0.0;
 334   _cms_allocated = 0;
 335 
 336   _cms_used_at_gc0_begin = 0;
 337   _cms_used_at_gc0_end = 0;
 338   _allow_duty_cycle_reduction = false;
 339   _valid_bits = 0;
 340 }
 341 
 342 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 343   // TBD: CR 6909490
 344   return 1.0;
 345 }
 346 
 347 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 348 }
 349 
 350 // If promotion failure handling is on use
 351 // the padded average size of the promotion for each
 352 // young generation collection.
 353 double CMSStats::time_until_cms_gen_full() const {
 354   size_t cms_free = _cms_gen->cmsSpace()->free();
 355   GenCollectedHeap* gch = GenCollectedHeap::heap();
 356   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 357                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 358   if (cms_free > expected_promotion) {
 359     // Start a cms collection if there isn't enough space to promote
 360     // for the next young collection.  Use the padded average as
 361     // a safety factor.
 362     cms_free -= expected_promotion;
 363 
 364     // Adjust by the safety factor.
 365     double cms_free_dbl = (double)cms_free;
 366     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 367     // Apply a further correction factor which tries to adjust
 368     // for recent occurance of concurrent mode failures.
 369     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 370     cms_free_dbl = cms_free_dbl * cms_adjustment;
 371 
 372     log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 373                   cms_free, expected_promotion);
 374     log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
 375     // Add 1 in case the consumption rate goes to zero.
 376     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 377   }
 378   return 0.0;
 379 }
 380 
 381 // Compare the duration of the cms collection to the
 382 // time remaining before the cms generation is empty.
 383 // Note that the time from the start of the cms collection
 384 // to the start of the cms sweep (less than the total
 385 // duration of the cms collection) can be used.  This
 386 // has been tried and some applications experienced
 387 // promotion failures early in execution.  This was
 388 // possibly because the averages were not accurate
 389 // enough at the beginning.
 390 double CMSStats::time_until_cms_start() const {
 391   // We add "gc0_period" to the "work" calculation
 392   // below because this query is done (mostly) at the
 393   // end of a scavenge, so we need to conservatively
 394   // account for that much possible delay
 395   // in the query so as to avoid concurrent mode failures
 396   // due to starting the collection just a wee bit too
 397   // late.
 398   double work = cms_duration() + gc0_period();
 399   double deadline = time_until_cms_gen_full();
 400   // If a concurrent mode failure occurred recently, we want to be
 401   // more conservative and halve our expected time_until_cms_gen_full()
 402   if (work > deadline) {
 403     log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
 404                           cms_duration(), gc0_period(), time_until_cms_gen_full());
 405     return 0.0;
 406   }
 407   return work - deadline;
 408 }
 409 
 410 #ifndef PRODUCT
 411 void CMSStats::print_on(outputStream *st) const {
 412   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 413   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 414                gc0_duration(), gc0_period(), gc0_promoted());
 415   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 416             cms_duration(), cms_period(), cms_allocated());
 417   st->print(",cms_since_beg=%g,cms_since_end=%g",
 418             cms_time_since_begin(), cms_time_since_end());
 419   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 420             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 421 
 422   if (valid()) {
 423     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 424               promotion_rate(), cms_allocation_rate());
 425     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 426               cms_consumption_rate(), time_until_cms_gen_full());
 427   }
 428   st->print(" ");
 429 }
 430 #endif // #ifndef PRODUCT
 431 
 432 CMSCollector::CollectorState CMSCollector::_collectorState =
 433                              CMSCollector::Idling;
 434 bool CMSCollector::_foregroundGCIsActive = false;
 435 bool CMSCollector::_foregroundGCShouldWait = false;
 436 
 437 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 438                            CardTableRS*                   ct,
 439                            ConcurrentMarkSweepPolicy*     cp):
 440   _cmsGen(cmsGen),
 441   _ct(ct),
 442   _ref_processor(NULL),    // will be set later
 443   _conc_workers(NULL),     // may be set later
 444   _abort_preclean(false),
 445   _start_sampling(false),
 446   _between_prologue_and_epilogue(false),
 447   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 448   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 449                  -1 /* lock-free */, "No_lock" /* dummy */),
 450   _modUnionClosurePar(&_modUnionTable),
 451   // Adjust my span to cover old (cms) gen
 452   _span(cmsGen->reserved()),
 453   // Construct the is_alive_closure with _span & markBitMap
 454   _is_alive_closure(_span, &_markBitMap),
 455   _restart_addr(NULL),
 456   _overflow_list(NULL),
 457   _stats(cmsGen),
 458   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 459                              //verify that this lock should be acquired with safepoint check.
 460                              Monitor::_safepoint_check_sometimes)),
 461   _eden_chunk_array(NULL),     // may be set in ctor body
 462   _eden_chunk_capacity(0),     // -- ditto --
 463   _eden_chunk_index(0),        // -- ditto --
 464   _survivor_plab_array(NULL),  // -- ditto --
 465   _survivor_chunk_array(NULL), // -- ditto --
 466   _survivor_chunk_capacity(0), // -- ditto --
 467   _survivor_chunk_index(0),    // -- ditto --
 468   _ser_pmc_preclean_ovflw(0),
 469   _ser_kac_preclean_ovflw(0),
 470   _ser_pmc_remark_ovflw(0),
 471   _par_pmc_remark_ovflw(0),
 472   _ser_kac_ovflw(0),
 473   _par_kac_ovflw(0),
 474 #ifndef PRODUCT
 475   _num_par_pushes(0),
 476 #endif
 477   _collection_count_start(0),
 478   _verifying(false),
 479   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 480   _completed_initialization(false),
 481   _collector_policy(cp),
 482   _should_unload_classes(CMSClassUnloadingEnabled),
 483   _concurrent_cycles_since_last_unload(0),
 484   _roots_scanning_options(GenCollectedHeap::SO_None),
 485   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 486   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 487   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 488   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 489   _cms_start_registered(false)
 490 {
 491   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 492     ExplicitGCInvokesConcurrent = true;
 493   }
 494   // Now expand the span and allocate the collection support structures
 495   // (MUT, marking bit map etc.) to cover both generations subject to
 496   // collection.
 497 
 498   // For use by dirty card to oop closures.
 499   _cmsGen->cmsSpace()->set_collector(this);
 500 
 501   // Allocate MUT and marking bit map
 502   {
 503     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 504     if (!_markBitMap.allocate(_span)) {
 505       warning("Failed to allocate CMS Bit Map");
 506       return;
 507     }
 508     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 509   }
 510   {
 511     _modUnionTable.allocate(_span);
 512     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 513   }
 514 
 515   if (!_markStack.allocate(MarkStackSize)) {
 516     warning("Failed to allocate CMS Marking Stack");
 517     return;
 518   }
 519 
 520   // Support for multi-threaded concurrent phases
 521   if (CMSConcurrentMTEnabled) {
 522     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 523       // just for now
 524       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 525     }
 526     if (ConcGCThreads > 1) {
 527       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 528                                  ConcGCThreads, true);
 529       if (_conc_workers == NULL) {
 530         warning("GC/CMS: _conc_workers allocation failure: "
 531               "forcing -CMSConcurrentMTEnabled");
 532         CMSConcurrentMTEnabled = false;
 533       } else {
 534         _conc_workers->initialize_workers();
 535       }
 536     } else {
 537       CMSConcurrentMTEnabled = false;
 538     }
 539   }
 540   if (!CMSConcurrentMTEnabled) {
 541     ConcGCThreads = 0;
 542   } else {
 543     // Turn off CMSCleanOnEnter optimization temporarily for
 544     // the MT case where it's not fixed yet; see 6178663.
 545     CMSCleanOnEnter = false;
 546   }
 547   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 548          "Inconsistency");
 549 
 550   // Parallel task queues; these are shared for the
 551   // concurrent and stop-world phases of CMS, but
 552   // are not shared with parallel scavenge (ParNew).
 553   {
 554     uint i;
 555     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 556 
 557     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 558          || ParallelRefProcEnabled)
 559         && num_queues > 0) {
 560       _task_queues = new OopTaskQueueSet(num_queues);
 561       if (_task_queues == NULL) {
 562         warning("task_queues allocation failure.");
 563         return;
 564       }
 565       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 566       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 567       for (i = 0; i < num_queues; i++) {
 568         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 569         if (q == NULL) {
 570           warning("work_queue allocation failure.");
 571           return;
 572         }
 573         _task_queues->register_queue(i, q);
 574       }
 575       for (i = 0; i < num_queues; i++) {
 576         _task_queues->queue(i)->initialize();
 577         _hash_seed[i] = 17;  // copied from ParNew
 578       }
 579     }
 580   }
 581 
 582   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 583 
 584   // Clip CMSBootstrapOccupancy between 0 and 100.
 585   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 586 
 587   // Now tell CMS generations the identity of their collector
 588   ConcurrentMarkSweepGeneration::set_collector(this);
 589 
 590   // Create & start a CMS thread for this CMS collector
 591   _cmsThread = ConcurrentMarkSweepThread::start(this);
 592   assert(cmsThread() != NULL, "CMS Thread should have been created");
 593   assert(cmsThread()->collector() == this,
 594          "CMS Thread should refer to this gen");
 595   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 596 
 597   // Support for parallelizing young gen rescan
 598   GenCollectedHeap* gch = GenCollectedHeap::heap();
 599   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 600   _young_gen = (ParNewGeneration*)gch->young_gen();
 601   if (gch->supports_inline_contig_alloc()) {
 602     _top_addr = gch->top_addr();
 603     _end_addr = gch->end_addr();
 604     assert(_young_gen != NULL, "no _young_gen");
 605     _eden_chunk_index = 0;
 606     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 607     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 608   }
 609 
 610   // Support for parallelizing survivor space rescan
 611   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 612     const size_t max_plab_samples =
 613       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 614 
 615     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 616     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 617     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 618     _survivor_chunk_capacity = max_plab_samples;
 619     for (uint i = 0; i < ParallelGCThreads; i++) {
 620       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 621       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 622       assert(cur->end() == 0, "Should be 0");
 623       assert(cur->array() == vec, "Should be vec");
 624       assert(cur->capacity() == max_plab_samples, "Error");
 625     }
 626   }
 627 
 628   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 629   _gc_counters = new CollectorCounters("CMS stop-the-world full collections", 1);
 630   _cgc_counters = new CollectorCounters("CMS stop-the-world phases", 2);
 631   _completed_initialization = true;
 632   _inter_sweep_timer.start();  // start of time
 633 }
 634 
 635 const char* ConcurrentMarkSweepGeneration::name() const {
 636   return "concurrent mark-sweep generation";
 637 }
 638 void ConcurrentMarkSweepGeneration::update_counters() {
 639   if (UsePerfData) {
 640     _space_counters->update_all();
 641     _gen_counters->update_all();
 642   }
 643 }
 644 
 645 // this is an optimized version of update_counters(). it takes the
 646 // used value as a parameter rather than computing it.
 647 //
 648 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 649   if (UsePerfData) {
 650     _space_counters->update_used(used);
 651     _space_counters->update_capacity();
 652     _gen_counters->update_all();
 653   }
 654 }
 655 
 656 void ConcurrentMarkSweepGeneration::print() const {
 657   Generation::print();
 658   cmsSpace()->print();
 659 }
 660 
 661 #ifndef PRODUCT
 662 void ConcurrentMarkSweepGeneration::print_statistics() {
 663   cmsSpace()->printFLCensus(0);
 664 }
 665 #endif
 666 
 667 size_t
 668 ConcurrentMarkSweepGeneration::contiguous_available() const {
 669   // dld proposes an improvement in precision here. If the committed
 670   // part of the space ends in a free block we should add that to
 671   // uncommitted size in the calculation below. Will make this
 672   // change later, staying with the approximation below for the
 673   // time being. -- ysr.
 674   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 675 }
 676 
 677 size_t
 678 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 679   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 680 }
 681 
 682 size_t ConcurrentMarkSweepGeneration::max_available() const {
 683   return free() + _virtual_space.uncommitted_size();
 684 }
 685 
 686 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 687   size_t available = max_available();
 688   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 689   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 690   log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
 691                            res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
 692   return res;
 693 }
 694 
 695 // At a promotion failure dump information on block layout in heap
 696 // (cms old generation).
 697 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 698   LogHandle(gc, promotion) log;
 699   if (log.is_trace()) {
 700     ResourceMark rm;
 701     cmsSpace()->dump_at_safepoint_with_locks(collector(), log.trace_stream());
 702   }
 703 }
 704 
 705 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 706   // Clear the promotion information.  These pointers can be adjusted
 707   // along with all the other pointers into the heap but
 708   // compaction is expected to be a rare event with
 709   // a heap using cms so don't do it without seeing the need.
 710   for (uint i = 0; i < ParallelGCThreads; i++) {
 711     _par_gc_thread_states[i]->promo.reset();
 712   }
 713 }
 714 
 715 void ConcurrentMarkSweepGeneration::compute_new_size() {
 716   assert_locked_or_safepoint(Heap_lock);
 717 
 718   // If incremental collection failed, we just want to expand
 719   // to the limit.
 720   if (incremental_collection_failed()) {
 721     clear_incremental_collection_failed();
 722     grow_to_reserved();
 723     return;
 724   }
 725 
 726   // The heap has been compacted but not reset yet.
 727   // Any metric such as free() or used() will be incorrect.
 728 
 729   CardGeneration::compute_new_size();
 730 
 731   // Reset again after a possible resizing
 732   if (did_compact()) {
 733     cmsSpace()->reset_after_compaction();
 734   }
 735 }
 736 
 737 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 738   assert_locked_or_safepoint(Heap_lock);
 739 
 740   // If incremental collection failed, we just want to expand
 741   // to the limit.
 742   if (incremental_collection_failed()) {
 743     clear_incremental_collection_failed();
 744     grow_to_reserved();
 745     return;
 746   }
 747 
 748   double free_percentage = ((double) free()) / capacity();
 749   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 750   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 751 
 752   // compute expansion delta needed for reaching desired free percentage
 753   if (free_percentage < desired_free_percentage) {
 754     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 755     assert(desired_capacity >= capacity(), "invalid expansion size");
 756     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 757     LogHandle(gc) log;
 758     if (log.is_trace()) {
 759       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 760       log.trace("From compute_new_size: ");
 761       log.trace("  Free fraction %f", free_percentage);
 762       log.trace("  Desired free fraction %f", desired_free_percentage);
 763       log.trace("  Maximum free fraction %f", maximum_free_percentage);
 764       log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
 765       log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 766       GenCollectedHeap* gch = GenCollectedHeap::heap();
 767       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 768       size_t young_size = gch->young_gen()->capacity();
 769       log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
 770       log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 771       log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 772       log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 773     }
 774     // safe if expansion fails
 775     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 776     log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
 777   } else {
 778     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 779     assert(desired_capacity <= capacity(), "invalid expansion size");
 780     size_t shrink_bytes = capacity() - desired_capacity;
 781     // Don't shrink unless the delta is greater than the minimum shrink we want
 782     if (shrink_bytes >= MinHeapDeltaBytes) {
 783       shrink_free_list_by(shrink_bytes);
 784     }
 785   }
 786 }
 787 
 788 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 789   return cmsSpace()->freelistLock();
 790 }
 791 
 792 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 793   CMSSynchronousYieldRequest yr;
 794   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 795   return have_lock_and_allocate(size, tlab);
 796 }
 797 
 798 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 799                                                                 bool   tlab /* ignored */) {
 800   assert_lock_strong(freelistLock());
 801   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 802   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 803   // Allocate the object live (grey) if the background collector has
 804   // started marking. This is necessary because the marker may
 805   // have passed this address and consequently this object will
 806   // not otherwise be greyed and would be incorrectly swept up.
 807   // Note that if this object contains references, the writing
 808   // of those references will dirty the card containing this object
 809   // allowing the object to be blackened (and its references scanned)
 810   // either during a preclean phase or at the final checkpoint.
 811   if (res != NULL) {
 812     // We may block here with an uninitialized object with
 813     // its mark-bit or P-bits not yet set. Such objects need
 814     // to be safely navigable by block_start().
 815     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 816     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 817     collector()->direct_allocated(res, adjustedSize);
 818     _direct_allocated_words += adjustedSize;
 819     // allocation counters
 820     NOT_PRODUCT(
 821       _numObjectsAllocated++;
 822       _numWordsAllocated += (int)adjustedSize;
 823     )
 824   }
 825   return res;
 826 }
 827 
 828 // In the case of direct allocation by mutators in a generation that
 829 // is being concurrently collected, the object must be allocated
 830 // live (grey) if the background collector has started marking.
 831 // This is necessary because the marker may
 832 // have passed this address and consequently this object will
 833 // not otherwise be greyed and would be incorrectly swept up.
 834 // Note that if this object contains references, the writing
 835 // of those references will dirty the card containing this object
 836 // allowing the object to be blackened (and its references scanned)
 837 // either during a preclean phase or at the final checkpoint.
 838 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 839   assert(_markBitMap.covers(start, size), "Out of bounds");
 840   if (_collectorState >= Marking) {
 841     MutexLockerEx y(_markBitMap.lock(),
 842                     Mutex::_no_safepoint_check_flag);
 843     // [see comments preceding SweepClosure::do_blk() below for details]
 844     //
 845     // Can the P-bits be deleted now?  JJJ
 846     //
 847     // 1. need to mark the object as live so it isn't collected
 848     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 849     // 3. need to mark the end of the object so marking, precleaning or sweeping
 850     //    can skip over uninitialized or unparsable objects. An allocated
 851     //    object is considered uninitialized for our purposes as long as
 852     //    its klass word is NULL.  All old gen objects are parsable
 853     //    as soon as they are initialized.)
 854     _markBitMap.mark(start);          // object is live
 855     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 856     _markBitMap.mark(start + size - 1);
 857                                       // mark end of object
 858   }
 859   // check that oop looks uninitialized
 860   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 861 }
 862 
 863 void CMSCollector::promoted(bool par, HeapWord* start,
 864                             bool is_obj_array, size_t obj_size) {
 865   assert(_markBitMap.covers(start), "Out of bounds");
 866   // See comment in direct_allocated() about when objects should
 867   // be allocated live.
 868   if (_collectorState >= Marking) {
 869     // we already hold the marking bit map lock, taken in
 870     // the prologue
 871     if (par) {
 872       _markBitMap.par_mark(start);
 873     } else {
 874       _markBitMap.mark(start);
 875     }
 876     // We don't need to mark the object as uninitialized (as
 877     // in direct_allocated above) because this is being done with the
 878     // world stopped and the object will be initialized by the
 879     // time the marking, precleaning or sweeping get to look at it.
 880     // But see the code for copying objects into the CMS generation,
 881     // where we need to ensure that concurrent readers of the
 882     // block offset table are able to safely navigate a block that
 883     // is in flux from being free to being allocated (and in
 884     // transition while being copied into) and subsequently
 885     // becoming a bona-fide object when the copy/promotion is complete.
 886     assert(SafepointSynchronize::is_at_safepoint(),
 887            "expect promotion only at safepoints");
 888 
 889     if (_collectorState < Sweeping) {
 890       // Mark the appropriate cards in the modUnionTable, so that
 891       // this object gets scanned before the sweep. If this is
 892       // not done, CMS generation references in the object might
 893       // not get marked.
 894       // For the case of arrays, which are otherwise precisely
 895       // marked, we need to dirty the entire array, not just its head.
 896       if (is_obj_array) {
 897         // The [par_]mark_range() method expects mr.end() below to
 898         // be aligned to the granularity of a bit's representation
 899         // in the heap. In the case of the MUT below, that's a
 900         // card size.
 901         MemRegion mr(start,
 902                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 903                         CardTableModRefBS::card_size /* bytes */));
 904         if (par) {
 905           _modUnionTable.par_mark_range(mr);
 906         } else {
 907           _modUnionTable.mark_range(mr);
 908         }
 909       } else {  // not an obj array; we can just mark the head
 910         if (par) {
 911           _modUnionTable.par_mark(start);
 912         } else {
 913           _modUnionTable.mark(start);
 914         }
 915       }
 916     }
 917   }
 918 }
 919 
 920 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 921   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 922   // allocate, copy and if necessary update promoinfo --
 923   // delegate to underlying space.
 924   assert_lock_strong(freelistLock());
 925 
 926 #ifndef PRODUCT
 927   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 928     return NULL;
 929   }
 930 #endif  // #ifndef PRODUCT
 931 
 932   oop res = _cmsSpace->promote(obj, obj_size);
 933   if (res == NULL) {
 934     // expand and retry
 935     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 936     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 937     // Since this is the old generation, we don't try to promote
 938     // into a more senior generation.
 939     res = _cmsSpace->promote(obj, obj_size);
 940   }
 941   if (res != NULL) {
 942     // See comment in allocate() about when objects should
 943     // be allocated live.
 944     assert(obj->is_oop(), "Will dereference klass pointer below");
 945     collector()->promoted(false,           // Not parallel
 946                           (HeapWord*)res, obj->is_objArray(), obj_size);
 947     // promotion counters
 948     NOT_PRODUCT(
 949       _numObjectsPromoted++;
 950       _numWordsPromoted +=
 951         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 952     )
 953   }
 954   return res;
 955 }
 956 
 957 
 958 // IMPORTANT: Notes on object size recognition in CMS.
 959 // ---------------------------------------------------
 960 // A block of storage in the CMS generation is always in
 961 // one of three states. A free block (FREE), an allocated
 962 // object (OBJECT) whose size() method reports the correct size,
 963 // and an intermediate state (TRANSIENT) in which its size cannot
 964 // be accurately determined.
 965 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
 966 // -----------------------------------------------------
 967 // FREE:      klass_word & 1 == 1; mark_word holds block size
 968 //
 969 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
 970 //            obj->size() computes correct size
 971 //
 972 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 973 //
 974 // STATE IDENTIFICATION: (64 bit+COOPS)
 975 // ------------------------------------
 976 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
 977 //
 978 // OBJECT:    klass_word installed; klass_word != 0;
 979 //            obj->size() computes correct size
 980 //
 981 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 982 //
 983 //
 984 // STATE TRANSITION DIAGRAM
 985 //
 986 //        mut / parnew                     mut  /  parnew
 987 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
 988 //  ^                                                                   |
 989 //  |------------------------ DEAD <------------------------------------|
 990 //         sweep                            mut
 991 //
 992 // While a block is in TRANSIENT state its size cannot be determined
 993 // so readers will either need to come back later or stall until
 994 // the size can be determined. Note that for the case of direct
 995 // allocation, P-bits, when available, may be used to determine the
 996 // size of an object that may not yet have been initialized.
 997 
 998 // Things to support parallel young-gen collection.
 999 oop
1000 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1001                                            oop old, markOop m,
1002                                            size_t word_sz) {
1003 #ifndef PRODUCT
1004   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1005     return NULL;
1006   }
1007 #endif  // #ifndef PRODUCT
1008 
1009   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1010   PromotionInfo* promoInfo = &ps->promo;
1011   // if we are tracking promotions, then first ensure space for
1012   // promotion (including spooling space for saving header if necessary).
1013   // then allocate and copy, then track promoted info if needed.
1014   // When tracking (see PromotionInfo::track()), the mark word may
1015   // be displaced and in this case restoration of the mark word
1016   // occurs in the (oop_since_save_marks_)iterate phase.
1017   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1018     // Out of space for allocating spooling buffers;
1019     // try expanding and allocating spooling buffers.
1020     if (!expand_and_ensure_spooling_space(promoInfo)) {
1021       return NULL;
1022     }
1023   }
1024   assert(promoInfo->has_spooling_space(), "Control point invariant");
1025   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1026   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1027   if (obj_ptr == NULL) {
1028      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1029      if (obj_ptr == NULL) {
1030        return NULL;
1031      }
1032   }
1033   oop obj = oop(obj_ptr);
1034   OrderAccess::storestore();
1035   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1036   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1037   // IMPORTANT: See note on object initialization for CMS above.
1038   // Otherwise, copy the object.  Here we must be careful to insert the
1039   // klass pointer last, since this marks the block as an allocated object.
1040   // Except with compressed oops it's the mark word.
1041   HeapWord* old_ptr = (HeapWord*)old;
1042   // Restore the mark word copied above.
1043   obj->set_mark(m);
1044   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1045   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1046   OrderAccess::storestore();
1047 
1048   if (UseCompressedClassPointers) {
1049     // Copy gap missed by (aligned) header size calculation below
1050     obj->set_klass_gap(old->klass_gap());
1051   }
1052   if (word_sz > (size_t)oopDesc::header_size()) {
1053     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1054                                  obj_ptr + oopDesc::header_size(),
1055                                  word_sz - oopDesc::header_size());
1056   }
1057 
1058   // Now we can track the promoted object, if necessary.  We take care
1059   // to delay the transition from uninitialized to full object
1060   // (i.e., insertion of klass pointer) until after, so that it
1061   // atomically becomes a promoted object.
1062   if (promoInfo->tracking()) {
1063     promoInfo->track((PromotedObject*)obj, old->klass());
1064   }
1065   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1066   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1067   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1068 
1069   // Finally, install the klass pointer (this should be volatile).
1070   OrderAccess::storestore();
1071   obj->set_klass(old->klass());
1072   // We should now be able to calculate the right size for this object
1073   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1074 
1075   collector()->promoted(true,          // parallel
1076                         obj_ptr, old->is_objArray(), word_sz);
1077 
1078   NOT_PRODUCT(
1079     Atomic::inc_ptr(&_numObjectsPromoted);
1080     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1081   )
1082 
1083   return obj;
1084 }
1085 
1086 void
1087 ConcurrentMarkSweepGeneration::
1088 par_promote_alloc_done(int thread_num) {
1089   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1090   ps->lab.retire(thread_num);
1091 }
1092 
1093 void
1094 ConcurrentMarkSweepGeneration::
1095 par_oop_since_save_marks_iterate_done(int thread_num) {
1096   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1097   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1098   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1099 }
1100 
1101 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1102                                                    size_t size,
1103                                                    bool   tlab)
1104 {
1105   // We allow a STW collection only if a full
1106   // collection was requested.
1107   return full || should_allocate(size, tlab); // FIX ME !!!
1108   // This and promotion failure handling are connected at the
1109   // hip and should be fixed by untying them.
1110 }
1111 
1112 bool CMSCollector::shouldConcurrentCollect() {
1113   if (_full_gc_requested) {
1114     log_trace(gc)("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1115     return true;
1116   }
1117 
1118   FreelistLocker x(this);
1119   // ------------------------------------------------------------------
1120   // Print out lots of information which affects the initiation of
1121   // a collection.
1122   LogHandle(gc) log;
1123   if (log.is_trace() && stats().valid()) {
1124     log.trace("CMSCollector shouldConcurrentCollect: ");
1125     ResourceMark rm;
1126     stats().print_on(log.debug_stream());
1127     log.trace("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1128     log.trace("free=" SIZE_FORMAT, _cmsGen->free());
1129     log.trace("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1130     log.trace("promotion_rate=%g", stats().promotion_rate());
1131     log.trace("cms_allocation_rate=%g", stats().cms_allocation_rate());
1132     log.trace("occupancy=%3.7f", _cmsGen->occupancy());
1133     log.trace("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1134     log.trace("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1135     log.trace("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1136     log.trace("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1137   }
1138   // ------------------------------------------------------------------
1139 
1140   // If the estimated time to complete a cms collection (cms_duration())
1141   // is less than the estimated time remaining until the cms generation
1142   // is full, start a collection.
1143   if (!UseCMSInitiatingOccupancyOnly) {
1144     if (stats().valid()) {
1145       if (stats().time_until_cms_start() == 0.0) {
1146         return true;
1147       }
1148     } else {
1149       // We want to conservatively collect somewhat early in order
1150       // to try and "bootstrap" our CMS/promotion statistics;
1151       // this branch will not fire after the first successful CMS
1152       // collection because the stats should then be valid.
1153       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1154         log_trace(gc)(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1155                       _cmsGen->occupancy(), _bootstrap_occupancy);
1156         return true;
1157       }
1158     }
1159   }
1160 
1161   // Otherwise, we start a collection cycle if
1162   // old gen want a collection cycle started. Each may use
1163   // an appropriate criterion for making this decision.
1164   // XXX We need to make sure that the gen expansion
1165   // criterion dovetails well with this. XXX NEED TO FIX THIS
1166   if (_cmsGen->should_concurrent_collect()) {
1167     log_trace(gc)("CMS old gen initiated");
1168     return true;
1169   }
1170 
1171   // We start a collection if we believe an incremental collection may fail;
1172   // this is not likely to be productive in practice because it's probably too
1173   // late anyway.
1174   GenCollectedHeap* gch = GenCollectedHeap::heap();
1175   assert(gch->collector_policy()->is_generation_policy(),
1176          "You may want to check the correctness of the following");
1177   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1178     log_trace(gc)("CMSCollector: collect because incremental collection will fail ");
1179     return true;
1180   }
1181 
1182   if (MetaspaceGC::should_concurrent_collect()) {
1183     log_trace(gc)("CMSCollector: collect for metadata allocation ");
1184     return true;
1185   }
1186 
1187   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1188   if (CMSTriggerInterval >= 0) {
1189     if (CMSTriggerInterval == 0) {
1190       // Trigger always
1191       return true;
1192     }
1193 
1194     // Check the CMS time since begin (we do not check the stats validity
1195     // as we want to be able to trigger the first CMS cycle as well)
1196     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1197       if (stats().valid()) {
1198         log_trace(gc)("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1199                       stats().cms_time_since_begin());
1200       } else {
1201         log_trace(gc)("CMSCollector: collect because of trigger interval (first collection)");
1202       }
1203       return true;
1204     }
1205   }
1206 
1207   return false;
1208 }
1209 
1210 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1211 
1212 // Clear _expansion_cause fields of constituent generations
1213 void CMSCollector::clear_expansion_cause() {
1214   _cmsGen->clear_expansion_cause();
1215 }
1216 
1217 // We should be conservative in starting a collection cycle.  To
1218 // start too eagerly runs the risk of collecting too often in the
1219 // extreme.  To collect too rarely falls back on full collections,
1220 // which works, even if not optimum in terms of concurrent work.
1221 // As a work around for too eagerly collecting, use the flag
1222 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1223 // giving the user an easily understandable way of controlling the
1224 // collections.
1225 // We want to start a new collection cycle if any of the following
1226 // conditions hold:
1227 // . our current occupancy exceeds the configured initiating occupancy
1228 //   for this generation, or
1229 // . we recently needed to expand this space and have not, since that
1230 //   expansion, done a collection of this generation, or
1231 // . the underlying space believes that it may be a good idea to initiate
1232 //   a concurrent collection (this may be based on criteria such as the
1233 //   following: the space uses linear allocation and linear allocation is
1234 //   going to fail, or there is believed to be excessive fragmentation in
1235 //   the generation, etc... or ...
1236 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1237 //   the case of the old generation; see CR 6543076):
1238 //   we may be approaching a point at which allocation requests may fail because
1239 //   we will be out of sufficient free space given allocation rate estimates.]
1240 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1241 
1242   assert_lock_strong(freelistLock());
1243   if (occupancy() > initiating_occupancy()) {
1244     log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1245                   short_name(), occupancy(), initiating_occupancy());
1246     return true;
1247   }
1248   if (UseCMSInitiatingOccupancyOnly) {
1249     return false;
1250   }
1251   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1252     log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1253     return true;
1254   }
1255   return false;
1256 }
1257 
1258 void ConcurrentMarkSweepGeneration::collect(bool   full,
1259                                             bool   clear_all_soft_refs,
1260                                             size_t size,
1261                                             bool   tlab)
1262 {
1263   collector()->collect(full, clear_all_soft_refs, size, tlab);
1264 }
1265 
1266 void CMSCollector::collect(bool   full,
1267                            bool   clear_all_soft_refs,
1268                            size_t size,
1269                            bool   tlab)
1270 {
1271   // The following "if" branch is present for defensive reasons.
1272   // In the current uses of this interface, it can be replaced with:
1273   // assert(!GCLocker.is_active(), "Can't be called otherwise");
1274   // But I am not placing that assert here to allow future
1275   // generality in invoking this interface.
1276   if (GCLocker::is_active()) {
1277     // A consistency test for GCLocker
1278     assert(GCLocker::needs_gc(), "Should have been set already");
1279     // Skip this foreground collection, instead
1280     // expanding the heap if necessary.
1281     // Need the free list locks for the call to free() in compute_new_size()
1282     compute_new_size();
1283     return;
1284   }
1285   acquire_control_and_collect(full, clear_all_soft_refs);
1286 }
1287 
1288 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1289   GenCollectedHeap* gch = GenCollectedHeap::heap();
1290   unsigned int gc_count = gch->total_full_collections();
1291   if (gc_count == full_gc_count) {
1292     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1293     _full_gc_requested = true;
1294     _full_gc_cause = cause;
1295     CGC_lock->notify();   // nudge CMS thread
1296   } else {
1297     assert(gc_count > full_gc_count, "Error: causal loop");
1298   }
1299 }
1300 
1301 bool CMSCollector::is_external_interruption() {
1302   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1303   return GCCause::is_user_requested_gc(cause) ||
1304          GCCause::is_serviceability_requested_gc(cause);
1305 }
1306 
1307 void CMSCollector::report_concurrent_mode_interruption() {
1308   if (is_external_interruption()) {
1309     log_debug(gc)("Concurrent mode interrupted");
1310   } else {
1311     log_debug(gc)("Concurrent mode failure");
1312     _gc_tracer_cm->report_concurrent_mode_failure();
1313   }
1314 }
1315 
1316 
1317 // The foreground and background collectors need to coordinate in order
1318 // to make sure that they do not mutually interfere with CMS collections.
1319 // When a background collection is active,
1320 // the foreground collector may need to take over (preempt) and
1321 // synchronously complete an ongoing collection. Depending on the
1322 // frequency of the background collections and the heap usage
1323 // of the application, this preemption can be seldom or frequent.
1324 // There are only certain
1325 // points in the background collection that the "collection-baton"
1326 // can be passed to the foreground collector.
1327 //
1328 // The foreground collector will wait for the baton before
1329 // starting any part of the collection.  The foreground collector
1330 // will only wait at one location.
1331 //
1332 // The background collector will yield the baton before starting a new
1333 // phase of the collection (e.g., before initial marking, marking from roots,
1334 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1335 // of the loop which switches the phases. The background collector does some
1336 // of the phases (initial mark, final re-mark) with the world stopped.
1337 // Because of locking involved in stopping the world,
1338 // the foreground collector should not block waiting for the background
1339 // collector when it is doing a stop-the-world phase.  The background
1340 // collector will yield the baton at an additional point just before
1341 // it enters a stop-the-world phase.  Once the world is stopped, the
1342 // background collector checks the phase of the collection.  If the
1343 // phase has not changed, it proceeds with the collection.  If the
1344 // phase has changed, it skips that phase of the collection.  See
1345 // the comments on the use of the Heap_lock in collect_in_background().
1346 //
1347 // Variable used in baton passing.
1348 //   _foregroundGCIsActive - Set to true by the foreground collector when
1349 //      it wants the baton.  The foreground clears it when it has finished
1350 //      the collection.
1351 //   _foregroundGCShouldWait - Set to true by the background collector
1352 //        when it is running.  The foreground collector waits while
1353 //      _foregroundGCShouldWait is true.
1354 //  CGC_lock - monitor used to protect access to the above variables
1355 //      and to notify the foreground and background collectors.
1356 //  _collectorState - current state of the CMS collection.
1357 //
1358 // The foreground collector
1359 //   acquires the CGC_lock
1360 //   sets _foregroundGCIsActive
1361 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1362 //     various locks acquired in preparation for the collection
1363 //     are released so as not to block the background collector
1364 //     that is in the midst of a collection
1365 //   proceeds with the collection
1366 //   clears _foregroundGCIsActive
1367 //   returns
1368 //
1369 // The background collector in a loop iterating on the phases of the
1370 //      collection
1371 //   acquires the CGC_lock
1372 //   sets _foregroundGCShouldWait
1373 //   if _foregroundGCIsActive is set
1374 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1375 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1376 //     and exits the loop.
1377 //   otherwise
1378 //     proceed with that phase of the collection
1379 //     if the phase is a stop-the-world phase,
1380 //       yield the baton once more just before enqueueing
1381 //       the stop-world CMS operation (executed by the VM thread).
1382 //   returns after all phases of the collection are done
1383 //
1384 
1385 void CMSCollector::acquire_control_and_collect(bool full,
1386         bool clear_all_soft_refs) {
1387   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1388   assert(!Thread::current()->is_ConcurrentGC_thread(),
1389          "shouldn't try to acquire control from self!");
1390 
1391   // Start the protocol for acquiring control of the
1392   // collection from the background collector (aka CMS thread).
1393   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1394          "VM thread should have CMS token");
1395   // Remember the possibly interrupted state of an ongoing
1396   // concurrent collection
1397   CollectorState first_state = _collectorState;
1398 
1399   // Signal to a possibly ongoing concurrent collection that
1400   // we want to do a foreground collection.
1401   _foregroundGCIsActive = true;
1402 
1403   // release locks and wait for a notify from the background collector
1404   // releasing the locks in only necessary for phases which
1405   // do yields to improve the granularity of the collection.
1406   assert_lock_strong(bitMapLock());
1407   // We need to lock the Free list lock for the space that we are
1408   // currently collecting.
1409   assert(haveFreelistLocks(), "Must be holding free list locks");
1410   bitMapLock()->unlock();
1411   releaseFreelistLocks();
1412   {
1413     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1414     if (_foregroundGCShouldWait) {
1415       // We are going to be waiting for action for the CMS thread;
1416       // it had better not be gone (for instance at shutdown)!
1417       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1418              "CMS thread must be running");
1419       // Wait here until the background collector gives us the go-ahead
1420       ConcurrentMarkSweepThread::clear_CMS_flag(
1421         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1422       // Get a possibly blocked CMS thread going:
1423       //   Note that we set _foregroundGCIsActive true above,
1424       //   without protection of the CGC_lock.
1425       CGC_lock->notify();
1426       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1427              "Possible deadlock");
1428       while (_foregroundGCShouldWait) {
1429         // wait for notification
1430         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1431         // Possibility of delay/starvation here, since CMS token does
1432         // not know to give priority to VM thread? Actually, i think
1433         // there wouldn't be any delay/starvation, but the proof of
1434         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1435       }
1436       ConcurrentMarkSweepThread::set_CMS_flag(
1437         ConcurrentMarkSweepThread::CMS_vm_has_token);
1438     }
1439   }
1440   // The CMS_token is already held.  Get back the other locks.
1441   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1442          "VM thread should have CMS token");
1443   getFreelistLocks();
1444   bitMapLock()->lock_without_safepoint_check();
1445   log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1446                        p2i(Thread::current()), first_state);
1447   log_debug(gc, state)("    gets control with state %d", _collectorState);
1448 
1449   // Inform cms gen if this was due to partial collection failing.
1450   // The CMS gen may use this fact to determine its expansion policy.
1451   GenCollectedHeap* gch = GenCollectedHeap::heap();
1452   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1453     assert(!_cmsGen->incremental_collection_failed(),
1454            "Should have been noticed, reacted to and cleared");
1455     _cmsGen->set_incremental_collection_failed();
1456   }
1457 
1458   if (first_state > Idling) {
1459     report_concurrent_mode_interruption();
1460   }
1461 
1462   set_did_compact(true);
1463 
1464   // If the collection is being acquired from the background
1465   // collector, there may be references on the discovered
1466   // references lists.  Abandon those references, since some
1467   // of them may have become unreachable after concurrent
1468   // discovery; the STW compacting collector will redo discovery
1469   // more precisely, without being subject to floating garbage.
1470   // Leaving otherwise unreachable references in the discovered
1471   // lists would require special handling.
1472   ref_processor()->disable_discovery();
1473   ref_processor()->abandon_partial_discovery();
1474   ref_processor()->verify_no_references_recorded();
1475 
1476   if (first_state > Idling) {
1477     save_heap_summary();
1478   }
1479 
1480   do_compaction_work(clear_all_soft_refs);
1481 
1482   // Has the GC time limit been exceeded?
1483   size_t max_eden_size = _young_gen->max_eden_size();
1484   GCCause::Cause gc_cause = gch->gc_cause();
1485   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1486                                          _young_gen->eden()->used(),
1487                                          _cmsGen->max_capacity(),
1488                                          max_eden_size,
1489                                          full,
1490                                          gc_cause,
1491                                          gch->collector_policy());
1492 
1493   // Reset the expansion cause, now that we just completed
1494   // a collection cycle.
1495   clear_expansion_cause();
1496   _foregroundGCIsActive = false;
1497   return;
1498 }
1499 
1500 // Resize the tenured generation
1501 // after obtaining the free list locks for the
1502 // two generations.
1503 void CMSCollector::compute_new_size() {
1504   assert_locked_or_safepoint(Heap_lock);
1505   FreelistLocker z(this);
1506   MetaspaceGC::compute_new_size();
1507   _cmsGen->compute_new_size_free_list();
1508 }
1509 
1510 // A work method used by the foreground collector to do
1511 // a mark-sweep-compact.
1512 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1513   GenCollectedHeap* gch = GenCollectedHeap::heap();
1514 
1515   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1516   gc_timer->register_gc_start();
1517 
1518   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1519   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1520 
1521   gch->pre_full_gc_dump(gc_timer);
1522 
1523   GCTraceTime(Trace, gc) t("CMS:MSC");
1524 
1525   // Temporarily widen the span of the weak reference processing to
1526   // the entire heap.
1527   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1528   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1529   // Temporarily, clear the "is_alive_non_header" field of the
1530   // reference processor.
1531   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1532   // Temporarily make reference _processing_ single threaded (non-MT).
1533   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1534   // Temporarily make refs discovery atomic
1535   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1536   // Temporarily make reference _discovery_ single threaded (non-MT)
1537   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1538 
1539   ref_processor()->set_enqueuing_is_done(false);
1540   ref_processor()->enable_discovery();
1541   ref_processor()->setup_policy(clear_all_soft_refs);
1542   // If an asynchronous collection finishes, the _modUnionTable is
1543   // all clear.  If we are assuming the collection from an asynchronous
1544   // collection, clear the _modUnionTable.
1545   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1546     "_modUnionTable should be clear if the baton was not passed");
1547   _modUnionTable.clear_all();
1548   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1549     "mod union for klasses should be clear if the baton was passed");
1550   _ct->klass_rem_set()->clear_mod_union();
1551 
1552   // We must adjust the allocation statistics being maintained
1553   // in the free list space. We do so by reading and clearing
1554   // the sweep timer and updating the block flux rate estimates below.
1555   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1556   if (_inter_sweep_timer.is_active()) {
1557     _inter_sweep_timer.stop();
1558     // Note that we do not use this sample to update the _inter_sweep_estimate.
1559     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1560                                             _inter_sweep_estimate.padded_average(),
1561                                             _intra_sweep_estimate.padded_average());
1562   }
1563 
1564   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1565   #ifdef ASSERT
1566     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1567     size_t free_size = cms_space->free();
1568     assert(free_size ==
1569            pointer_delta(cms_space->end(), cms_space->compaction_top())
1570            * HeapWordSize,
1571       "All the free space should be compacted into one chunk at top");
1572     assert(cms_space->dictionary()->total_chunk_size(
1573                                       debug_only(cms_space->freelistLock())) == 0 ||
1574            cms_space->totalSizeInIndexedFreeLists() == 0,
1575       "All the free space should be in a single chunk");
1576     size_t num = cms_space->totalCount();
1577     assert((free_size == 0 && num == 0) ||
1578            (free_size > 0  && (num == 1 || num == 2)),
1579          "There should be at most 2 free chunks after compaction");
1580   #endif // ASSERT
1581   _collectorState = Resetting;
1582   assert(_restart_addr == NULL,
1583          "Should have been NULL'd before baton was passed");
1584   reset_stw();
1585   _cmsGen->reset_after_compaction();
1586   _concurrent_cycles_since_last_unload = 0;
1587 
1588   // Clear any data recorded in the PLAB chunk arrays.
1589   if (_survivor_plab_array != NULL) {
1590     reset_survivor_plab_arrays();
1591   }
1592 
1593   // Adjust the per-size allocation stats for the next epoch.
1594   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1595   // Restart the "inter sweep timer" for the next epoch.
1596   _inter_sweep_timer.reset();
1597   _inter_sweep_timer.start();
1598 
1599   gch->post_full_gc_dump(gc_timer);
1600 
1601   gc_timer->register_gc_end();
1602 
1603   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1604 
1605   // For a mark-sweep-compact, compute_new_size() will be called
1606   // in the heap's do_collection() method.
1607 }
1608 
1609 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1610   LogHandle(gc, heap) log;
1611   if (!log.is_trace()) {
1612     return;
1613   }
1614 
1615   ContiguousSpace* eden_space = _young_gen->eden();
1616   ContiguousSpace* from_space = _young_gen->from();
1617   ContiguousSpace* to_space   = _young_gen->to();
1618   // Eden
1619   if (_eden_chunk_array != NULL) {
1620     log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1621               p2i(eden_space->bottom()), p2i(eden_space->top()),
1622               p2i(eden_space->end()), eden_space->capacity());
1623     log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1624               _eden_chunk_index, _eden_chunk_capacity);
1625     for (size_t i = 0; i < _eden_chunk_index; i++) {
1626       log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1627     }
1628   }
1629   // Survivor
1630   if (_survivor_chunk_array != NULL) {
1631     log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1632               p2i(from_space->bottom()), p2i(from_space->top()),
1633               p2i(from_space->end()), from_space->capacity());
1634     log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1635               _survivor_chunk_index, _survivor_chunk_capacity);
1636     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1637       log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1638     }
1639   }
1640 }
1641 
1642 void CMSCollector::getFreelistLocks() const {
1643   // Get locks for all free lists in all generations that this
1644   // collector is responsible for
1645   _cmsGen->freelistLock()->lock_without_safepoint_check();
1646 }
1647 
1648 void CMSCollector::releaseFreelistLocks() const {
1649   // Release locks for all free lists in all generations that this
1650   // collector is responsible for
1651   _cmsGen->freelistLock()->unlock();
1652 }
1653 
1654 bool CMSCollector::haveFreelistLocks() const {
1655   // Check locks for all free lists in all generations that this
1656   // collector is responsible for
1657   assert_lock_strong(_cmsGen->freelistLock());
1658   PRODUCT_ONLY(ShouldNotReachHere());
1659   return true;
1660 }
1661 
1662 // A utility class that is used by the CMS collector to
1663 // temporarily "release" the foreground collector from its
1664 // usual obligation to wait for the background collector to
1665 // complete an ongoing phase before proceeding.
1666 class ReleaseForegroundGC: public StackObj {
1667  private:
1668   CMSCollector* _c;
1669  public:
1670   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1671     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1672     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1673     // allow a potentially blocked foreground collector to proceed
1674     _c->_foregroundGCShouldWait = false;
1675     if (_c->_foregroundGCIsActive) {
1676       CGC_lock->notify();
1677     }
1678     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1679            "Possible deadlock");
1680   }
1681 
1682   ~ReleaseForegroundGC() {
1683     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1684     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1685     _c->_foregroundGCShouldWait = true;
1686   }
1687 };
1688 
1689 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1690   assert(Thread::current()->is_ConcurrentGC_thread(),
1691     "A CMS asynchronous collection is only allowed on a CMS thread.");
1692 
1693   GenCollectedHeap* gch = GenCollectedHeap::heap();
1694   {
1695     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1696     MutexLockerEx hl(Heap_lock, safepoint_check);
1697     FreelistLocker fll(this);
1698     MutexLockerEx x(CGC_lock, safepoint_check);
1699     if (_foregroundGCIsActive) {
1700       // The foreground collector is. Skip this
1701       // background collection.
1702       assert(!_foregroundGCShouldWait, "Should be clear");
1703       return;
1704     } else {
1705       assert(_collectorState == Idling, "Should be idling before start.");
1706       _collectorState = InitialMarking;
1707       register_gc_start(cause);
1708       // Reset the expansion cause, now that we are about to begin
1709       // a new cycle.
1710       clear_expansion_cause();
1711 
1712       // Clear the MetaspaceGC flag since a concurrent collection
1713       // is starting but also clear it after the collection.
1714       MetaspaceGC::set_should_concurrent_collect(false);
1715     }
1716     // Decide if we want to enable class unloading as part of the
1717     // ensuing concurrent GC cycle.
1718     update_should_unload_classes();
1719     _full_gc_requested = false;           // acks all outstanding full gc requests
1720     _full_gc_cause = GCCause::_no_gc;
1721     // Signal that we are about to start a collection
1722     gch->increment_total_full_collections();  // ... starting a collection cycle
1723     _collection_count_start = gch->total_full_collections();
1724   }
1725 
1726   size_t prev_used = _cmsGen->used();
1727 
1728   // The change of the collection state is normally done at this level;
1729   // the exceptions are phases that are executed while the world is
1730   // stopped.  For those phases the change of state is done while the
1731   // world is stopped.  For baton passing purposes this allows the
1732   // background collector to finish the phase and change state atomically.
1733   // The foreground collector cannot wait on a phase that is done
1734   // while the world is stopped because the foreground collector already
1735   // has the world stopped and would deadlock.
1736   while (_collectorState != Idling) {
1737     log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1738                          p2i(Thread::current()), _collectorState);
1739     // The foreground collector
1740     //   holds the Heap_lock throughout its collection.
1741     //   holds the CMS token (but not the lock)
1742     //     except while it is waiting for the background collector to yield.
1743     //
1744     // The foreground collector should be blocked (not for long)
1745     //   if the background collector is about to start a phase
1746     //   executed with world stopped.  If the background
1747     //   collector has already started such a phase, the
1748     //   foreground collector is blocked waiting for the
1749     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1750     //   are executed in the VM thread.
1751     //
1752     // The locking order is
1753     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1754     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1755     //   CMS token  (claimed in
1756     //                stop_world_and_do() -->
1757     //                  safepoint_synchronize() -->
1758     //                    CMSThread::synchronize())
1759 
1760     {
1761       // Check if the FG collector wants us to yield.
1762       CMSTokenSync x(true); // is cms thread
1763       if (waitForForegroundGC()) {
1764         // We yielded to a foreground GC, nothing more to be
1765         // done this round.
1766         assert(_foregroundGCShouldWait == false, "We set it to false in "
1767                "waitForForegroundGC()");
1768         log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1769                              p2i(Thread::current()), _collectorState);
1770         return;
1771       } else {
1772         // The background collector can run but check to see if the
1773         // foreground collector has done a collection while the
1774         // background collector was waiting to get the CGC_lock
1775         // above.  If yes, break so that _foregroundGCShouldWait
1776         // is cleared before returning.
1777         if (_collectorState == Idling) {
1778           break;
1779         }
1780       }
1781     }
1782 
1783     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1784       "should be waiting");
1785 
1786     switch (_collectorState) {
1787       case InitialMarking:
1788         {
1789           ReleaseForegroundGC x(this);
1790           stats().record_cms_begin();
1791           VM_CMS_Initial_Mark initial_mark_op(this);
1792           VMThread::execute(&initial_mark_op);
1793         }
1794         // The collector state may be any legal state at this point
1795         // since the background collector may have yielded to the
1796         // foreground collector.
1797         break;
1798       case Marking:
1799         // initial marking in checkpointRootsInitialWork has been completed
1800         if (markFromRoots()) { // we were successful
1801           assert(_collectorState == Precleaning, "Collector state should "
1802             "have changed");
1803         } else {
1804           assert(_foregroundGCIsActive, "Internal state inconsistency");
1805         }
1806         break;
1807       case Precleaning:
1808         // marking from roots in markFromRoots has been completed
1809         preclean();
1810         assert(_collectorState == AbortablePreclean ||
1811                _collectorState == FinalMarking,
1812                "Collector state should have changed");
1813         break;
1814       case AbortablePreclean:
1815         abortable_preclean();
1816         assert(_collectorState == FinalMarking, "Collector state should "
1817           "have changed");
1818         break;
1819       case FinalMarking:
1820         {
1821           ReleaseForegroundGC x(this);
1822 
1823           VM_CMS_Final_Remark final_remark_op(this);
1824           VMThread::execute(&final_remark_op);
1825         }
1826         assert(_foregroundGCShouldWait, "block post-condition");
1827         break;
1828       case Sweeping:
1829         // final marking in checkpointRootsFinal has been completed
1830         sweep();
1831         assert(_collectorState == Resizing, "Collector state change "
1832           "to Resizing must be done under the free_list_lock");
1833 
1834       case Resizing: {
1835         // Sweeping has been completed...
1836         // At this point the background collection has completed.
1837         // Don't move the call to compute_new_size() down
1838         // into code that might be executed if the background
1839         // collection was preempted.
1840         {
1841           ReleaseForegroundGC x(this);   // unblock FG collection
1842           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1843           CMSTokenSync        z(true);   // not strictly needed.
1844           if (_collectorState == Resizing) {
1845             compute_new_size();
1846             save_heap_summary();
1847             _collectorState = Resetting;
1848           } else {
1849             assert(_collectorState == Idling, "The state should only change"
1850                    " because the foreground collector has finished the collection");
1851           }
1852         }
1853         break;
1854       }
1855       case Resetting:
1856         // CMS heap resizing has been completed
1857         reset_concurrent();
1858         assert(_collectorState == Idling, "Collector state should "
1859           "have changed");
1860 
1861         MetaspaceGC::set_should_concurrent_collect(false);
1862 
1863         stats().record_cms_end();
1864         // Don't move the concurrent_phases_end() and compute_new_size()
1865         // calls to here because a preempted background collection
1866         // has it's state set to "Resetting".
1867         break;
1868       case Idling:
1869       default:
1870         ShouldNotReachHere();
1871         break;
1872     }
1873     log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1874                          p2i(Thread::current()), _collectorState);
1875     assert(_foregroundGCShouldWait, "block post-condition");
1876   }
1877 
1878   // Should this be in gc_epilogue?
1879   collector_policy()->counters()->update_counters();
1880 
1881   {
1882     // Clear _foregroundGCShouldWait and, in the event that the
1883     // foreground collector is waiting, notify it, before
1884     // returning.
1885     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1886     _foregroundGCShouldWait = false;
1887     if (_foregroundGCIsActive) {
1888       CGC_lock->notify();
1889     }
1890     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1891            "Possible deadlock");
1892   }
1893   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1894                        p2i(Thread::current()), _collectorState);
1895   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1896                      prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1897 }
1898 
1899 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1900   _cms_start_registered = true;
1901   _gc_timer_cm->register_gc_start();
1902   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1903 }
1904 
1905 void CMSCollector::register_gc_end() {
1906   if (_cms_start_registered) {
1907     report_heap_summary(GCWhen::AfterGC);
1908 
1909     _gc_timer_cm->register_gc_end();
1910     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1911     _cms_start_registered = false;
1912   }
1913 }
1914 
1915 void CMSCollector::save_heap_summary() {
1916   GenCollectedHeap* gch = GenCollectedHeap::heap();
1917   _last_heap_summary = gch->create_heap_summary();
1918   _last_metaspace_summary = gch->create_metaspace_summary();
1919 }
1920 
1921 void CMSCollector::report_heap_summary(GCWhen::Type when) {
1922   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1923   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1924 }
1925 
1926 bool CMSCollector::waitForForegroundGC() {
1927   bool res = false;
1928   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1929          "CMS thread should have CMS token");
1930   // Block the foreground collector until the
1931   // background collectors decides whether to
1932   // yield.
1933   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1934   _foregroundGCShouldWait = true;
1935   if (_foregroundGCIsActive) {
1936     // The background collector yields to the
1937     // foreground collector and returns a value
1938     // indicating that it has yielded.  The foreground
1939     // collector can proceed.
1940     res = true;
1941     _foregroundGCShouldWait = false;
1942     ConcurrentMarkSweepThread::clear_CMS_flag(
1943       ConcurrentMarkSweepThread::CMS_cms_has_token);
1944     ConcurrentMarkSweepThread::set_CMS_flag(
1945       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1946     // Get a possibly blocked foreground thread going
1947     CGC_lock->notify();
1948     log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1949                          p2i(Thread::current()), _collectorState);
1950     while (_foregroundGCIsActive) {
1951       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1952     }
1953     ConcurrentMarkSweepThread::set_CMS_flag(
1954       ConcurrentMarkSweepThread::CMS_cms_has_token);
1955     ConcurrentMarkSweepThread::clear_CMS_flag(
1956       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1957   }
1958   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1959                        p2i(Thread::current()), _collectorState);
1960   return res;
1961 }
1962 
1963 // Because of the need to lock the free lists and other structures in
1964 // the collector, common to all the generations that the collector is
1965 // collecting, we need the gc_prologues of individual CMS generations
1966 // delegate to their collector. It may have been simpler had the
1967 // current infrastructure allowed one to call a prologue on a
1968 // collector. In the absence of that we have the generation's
1969 // prologue delegate to the collector, which delegates back
1970 // some "local" work to a worker method in the individual generations
1971 // that it's responsible for collecting, while itself doing any
1972 // work common to all generations it's responsible for. A similar
1973 // comment applies to the  gc_epilogue()'s.
1974 // The role of the variable _between_prologue_and_epilogue is to
1975 // enforce the invocation protocol.
1976 void CMSCollector::gc_prologue(bool full) {
1977   // Call gc_prologue_work() for the CMSGen
1978   // we are responsible for.
1979 
1980   // The following locking discipline assumes that we are only called
1981   // when the world is stopped.
1982   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
1983 
1984   // The CMSCollector prologue must call the gc_prologues for the
1985   // "generations" that it's responsible
1986   // for.
1987 
1988   assert(   Thread::current()->is_VM_thread()
1989          || (   CMSScavengeBeforeRemark
1990              && Thread::current()->is_ConcurrentGC_thread()),
1991          "Incorrect thread type for prologue execution");
1992 
1993   if (_between_prologue_and_epilogue) {
1994     // We have already been invoked; this is a gc_prologue delegation
1995     // from yet another CMS generation that we are responsible for, just
1996     // ignore it since all relevant work has already been done.
1997     return;
1998   }
1999 
2000   // set a bit saying prologue has been called; cleared in epilogue
2001   _between_prologue_and_epilogue = true;
2002   // Claim locks for common data structures, then call gc_prologue_work()
2003   // for each CMSGen.
2004 
2005   getFreelistLocks();   // gets free list locks on constituent spaces
2006   bitMapLock()->lock_without_safepoint_check();
2007 
2008   // Should call gc_prologue_work() for all cms gens we are responsible for
2009   bool duringMarking =    _collectorState >= Marking
2010                          && _collectorState < Sweeping;
2011 
2012   // The young collections clear the modified oops state, which tells if
2013   // there are any modified oops in the class. The remark phase also needs
2014   // that information. Tell the young collection to save the union of all
2015   // modified klasses.
2016   if (duringMarking) {
2017     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2018   }
2019 
2020   bool registerClosure = duringMarking;
2021 
2022   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2023 
2024   if (!full) {
2025     stats().record_gc0_begin();
2026   }
2027 }
2028 
2029 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2030 
2031   _capacity_at_prologue = capacity();
2032   _used_at_prologue = used();
2033 
2034   // Delegate to CMScollector which knows how to coordinate between
2035   // this and any other CMS generations that it is responsible for
2036   // collecting.
2037   collector()->gc_prologue(full);
2038 }
2039 
2040 // This is a "private" interface for use by this generation's CMSCollector.
2041 // Not to be called directly by any other entity (for instance,
2042 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2043 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2044   bool registerClosure, ModUnionClosure* modUnionClosure) {
2045   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2046   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2047     "Should be NULL");
2048   if (registerClosure) {
2049     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2050   }
2051   cmsSpace()->gc_prologue();
2052   // Clear stat counters
2053   NOT_PRODUCT(
2054     assert(_numObjectsPromoted == 0, "check");
2055     assert(_numWordsPromoted   == 0, "check");
2056     log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2057                                  _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2058     _numObjectsAllocated = 0;
2059     _numWordsAllocated   = 0;
2060   )
2061 }
2062 
2063 void CMSCollector::gc_epilogue(bool full) {
2064   // The following locking discipline assumes that we are only called
2065   // when the world is stopped.
2066   assert(SafepointSynchronize::is_at_safepoint(),
2067          "world is stopped assumption");
2068 
2069   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2070   // if linear allocation blocks need to be appropriately marked to allow the
2071   // the blocks to be parsable. We also check here whether we need to nudge the
2072   // CMS collector thread to start a new cycle (if it's not already active).
2073   assert(   Thread::current()->is_VM_thread()
2074          || (   CMSScavengeBeforeRemark
2075              && Thread::current()->is_ConcurrentGC_thread()),
2076          "Incorrect thread type for epilogue execution");
2077 
2078   if (!_between_prologue_and_epilogue) {
2079     // We have already been invoked; this is a gc_epilogue delegation
2080     // from yet another CMS generation that we are responsible for, just
2081     // ignore it since all relevant work has already been done.
2082     return;
2083   }
2084   assert(haveFreelistLocks(), "must have freelist locks");
2085   assert_lock_strong(bitMapLock());
2086 
2087   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2088 
2089   _cmsGen->gc_epilogue_work(full);
2090 
2091   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2092     // in case sampling was not already enabled, enable it
2093     _start_sampling = true;
2094   }
2095   // reset _eden_chunk_array so sampling starts afresh
2096   _eden_chunk_index = 0;
2097 
2098   size_t cms_used   = _cmsGen->cmsSpace()->used();
2099 
2100   // update performance counters - this uses a special version of
2101   // update_counters() that allows the utilization to be passed as a
2102   // parameter, avoiding multiple calls to used().
2103   //
2104   _cmsGen->update_counters(cms_used);
2105 
2106   bitMapLock()->unlock();
2107   releaseFreelistLocks();
2108 
2109   if (!CleanChunkPoolAsync) {
2110     Chunk::clean_chunk_pool();
2111   }
2112 
2113   set_did_compact(false);
2114   _between_prologue_and_epilogue = false;  // ready for next cycle
2115 }
2116 
2117 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2118   collector()->gc_epilogue(full);
2119 
2120   // Also reset promotion tracking in par gc thread states.
2121   for (uint i = 0; i < ParallelGCThreads; i++) {
2122     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2123   }
2124 }
2125 
2126 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2127   assert(!incremental_collection_failed(), "Should have been cleared");
2128   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2129   cmsSpace()->gc_epilogue();
2130     // Print stat counters
2131   NOT_PRODUCT(
2132     assert(_numObjectsAllocated == 0, "check");
2133     assert(_numWordsAllocated == 0, "check");
2134     log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2135                                      _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2136     _numObjectsPromoted = 0;
2137     _numWordsPromoted   = 0;
2138   )
2139 
2140   // Call down the chain in contiguous_available needs the freelistLock
2141   // so print this out before releasing the freeListLock.
2142   log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2143 }
2144 
2145 #ifndef PRODUCT
2146 bool CMSCollector::have_cms_token() {
2147   Thread* thr = Thread::current();
2148   if (thr->is_VM_thread()) {
2149     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2150   } else if (thr->is_ConcurrentGC_thread()) {
2151     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2152   } else if (thr->is_GC_task_thread()) {
2153     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2154            ParGCRareEvent_lock->owned_by_self();
2155   }
2156   return false;
2157 }
2158 
2159 // Check reachability of the given heap address in CMS generation,
2160 // treating all other generations as roots.
2161 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2162   // We could "guarantee" below, rather than assert, but I'll
2163   // leave these as "asserts" so that an adventurous debugger
2164   // could try this in the product build provided some subset of
2165   // the conditions were met, provided they were interested in the
2166   // results and knew that the computation below wouldn't interfere
2167   // with other concurrent computations mutating the structures
2168   // being read or written.
2169   assert(SafepointSynchronize::is_at_safepoint(),
2170          "Else mutations in object graph will make answer suspect");
2171   assert(have_cms_token(), "Should hold cms token");
2172   assert(haveFreelistLocks(), "must hold free list locks");
2173   assert_lock_strong(bitMapLock());
2174 
2175   // Clear the marking bit map array before starting, but, just
2176   // for kicks, first report if the given address is already marked
2177   tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2178                 _markBitMap.isMarked(addr) ? "" : " not");
2179 
2180   if (verify_after_remark()) {
2181     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2182     bool result = verification_mark_bm()->isMarked(addr);
2183     tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2184                   result ? "IS" : "is NOT");
2185     return result;
2186   } else {
2187     tty->print_cr("Could not compute result");
2188     return false;
2189   }
2190 }
2191 #endif
2192 
2193 void
2194 CMSCollector::print_on_error(outputStream* st) {
2195   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2196   if (collector != NULL) {
2197     CMSBitMap* bitmap = &collector->_markBitMap;
2198     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2199     bitmap->print_on_error(st, " Bits: ");
2200 
2201     st->cr();
2202 
2203     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2204     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2205     mut_bitmap->print_on_error(st, " Bits: ");
2206   }
2207 }
2208 
2209 ////////////////////////////////////////////////////////
2210 // CMS Verification Support
2211 ////////////////////////////////////////////////////////
2212 // Following the remark phase, the following invariant
2213 // should hold -- each object in the CMS heap which is
2214 // marked in markBitMap() should be marked in the verification_mark_bm().
2215 
2216 class VerifyMarkedClosure: public BitMapClosure {
2217   CMSBitMap* _marks;
2218   bool       _failed;
2219 
2220  public:
2221   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2222 
2223   bool do_bit(size_t offset) {
2224     HeapWord* addr = _marks->offsetToHeapWord(offset);
2225     if (!_marks->isMarked(addr)) {
2226       LogHandle(gc, verify) log;
2227       ResourceMark rm;
2228       oop(addr)->print_on(log.error_stream());
2229       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2230       _failed = true;
2231     }
2232     return true;
2233   }
2234 
2235   bool failed() { return _failed; }
2236 };
2237 
2238 bool CMSCollector::verify_after_remark() {
2239   GCTraceTime(Info, gc, verify) tm("Verifying CMS Marking.");
2240   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2241   static bool init = false;
2242 
2243   assert(SafepointSynchronize::is_at_safepoint(),
2244          "Else mutations in object graph will make answer suspect");
2245   assert(have_cms_token(),
2246          "Else there may be mutual interference in use of "
2247          " verification data structures");
2248   assert(_collectorState > Marking && _collectorState <= Sweeping,
2249          "Else marking info checked here may be obsolete");
2250   assert(haveFreelistLocks(), "must hold free list locks");
2251   assert_lock_strong(bitMapLock());
2252 
2253 
2254   // Allocate marking bit map if not already allocated
2255   if (!init) { // first time
2256     if (!verification_mark_bm()->allocate(_span)) {
2257       return false;
2258     }
2259     init = true;
2260   }
2261 
2262   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2263 
2264   // Turn off refs discovery -- so we will be tracing through refs.
2265   // This is as intended, because by this time
2266   // GC must already have cleared any refs that need to be cleared,
2267   // and traced those that need to be marked; moreover,
2268   // the marking done here is not going to interfere in any
2269   // way with the marking information used by GC.
2270   NoRefDiscovery no_discovery(ref_processor());
2271 
2272 #if defined(COMPILER2) || INCLUDE_JVMCI
2273   DerivedPointerTableDeactivate dpt_deact;
2274 #endif
2275 
2276   // Clear any marks from a previous round
2277   verification_mark_bm()->clear_all();
2278   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2279   verify_work_stacks_empty();
2280 
2281   GenCollectedHeap* gch = GenCollectedHeap::heap();
2282   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2283   // Update the saved marks which may affect the root scans.
2284   gch->save_marks();
2285 
2286   if (CMSRemarkVerifyVariant == 1) {
2287     // In this first variant of verification, we complete
2288     // all marking, then check if the new marks-vector is
2289     // a subset of the CMS marks-vector.
2290     verify_after_remark_work_1();
2291   } else if (CMSRemarkVerifyVariant == 2) {
2292     // In this second variant of verification, we flag an error
2293     // (i.e. an object reachable in the new marks-vector not reachable
2294     // in the CMS marks-vector) immediately, also indicating the
2295     // identify of an object (A) that references the unmarked object (B) --
2296     // presumably, a mutation to A failed to be picked up by preclean/remark?
2297     verify_after_remark_work_2();
2298   } else {
2299     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2300             CMSRemarkVerifyVariant);
2301   }
2302   return true;
2303 }
2304 
2305 void CMSCollector::verify_after_remark_work_1() {
2306   ResourceMark rm;
2307   HandleMark  hm;
2308   GenCollectedHeap* gch = GenCollectedHeap::heap();
2309 
2310   // Get a clear set of claim bits for the roots processing to work with.
2311   ClassLoaderDataGraph::clear_claimed_marks();
2312 
2313   // Mark from roots one level into CMS
2314   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2315   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2316 
2317   {
2318     StrongRootsScope srs(1);
2319 
2320     gch->gen_process_roots(&srs,
2321                            GenCollectedHeap::OldGen,
2322                            true,   // young gen as roots
2323                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2324                            should_unload_classes(),
2325                            &notOlder,
2326                            NULL,
2327                            NULL);
2328   }
2329 
2330   // Now mark from the roots
2331   MarkFromRootsClosure markFromRootsClosure(this, _span,
2332     verification_mark_bm(), verification_mark_stack(),
2333     false /* don't yield */, true /* verifying */);
2334   assert(_restart_addr == NULL, "Expected pre-condition");
2335   verification_mark_bm()->iterate(&markFromRootsClosure);
2336   while (_restart_addr != NULL) {
2337     // Deal with stack overflow: by restarting at the indicated
2338     // address.
2339     HeapWord* ra = _restart_addr;
2340     markFromRootsClosure.reset(ra);
2341     _restart_addr = NULL;
2342     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2343   }
2344   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2345   verify_work_stacks_empty();
2346 
2347   // Marking completed -- now verify that each bit marked in
2348   // verification_mark_bm() is also marked in markBitMap(); flag all
2349   // errors by printing corresponding objects.
2350   VerifyMarkedClosure vcl(markBitMap());
2351   verification_mark_bm()->iterate(&vcl);
2352   if (vcl.failed()) {
2353     LogHandle(gc, verify) log;
2354     log.error("Failed marking verification after remark");
2355     ResourceMark rm;
2356     gch->print_on(log.error_stream());
2357     fatal("CMS: failed marking verification after remark");
2358   }
2359 }
2360 
2361 class VerifyKlassOopsKlassClosure : public KlassClosure {
2362   class VerifyKlassOopsClosure : public OopClosure {
2363     CMSBitMap* _bitmap;
2364    public:
2365     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2366     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2367     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2368   } _oop_closure;
2369  public:
2370   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2371   void do_klass(Klass* k) {
2372     k->oops_do(&_oop_closure);
2373   }
2374 };
2375 
2376 void CMSCollector::verify_after_remark_work_2() {
2377   ResourceMark rm;
2378   HandleMark  hm;
2379   GenCollectedHeap* gch = GenCollectedHeap::heap();
2380 
2381   // Get a clear set of claim bits for the roots processing to work with.
2382   ClassLoaderDataGraph::clear_claimed_marks();
2383 
2384   // Mark from roots one level into CMS
2385   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2386                                      markBitMap());
2387   CLDToOopClosure cld_closure(&notOlder, true);
2388 
2389   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2390 
2391   {
2392     StrongRootsScope srs(1);
2393 
2394     gch->gen_process_roots(&srs,
2395                            GenCollectedHeap::OldGen,
2396                            true,   // young gen as roots
2397                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2398                            should_unload_classes(),
2399                            &notOlder,
2400                            NULL,
2401                            &cld_closure);
2402   }
2403 
2404   // Now mark from the roots
2405   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2406     verification_mark_bm(), markBitMap(), verification_mark_stack());
2407   assert(_restart_addr == NULL, "Expected pre-condition");
2408   verification_mark_bm()->iterate(&markFromRootsClosure);
2409   while (_restart_addr != NULL) {
2410     // Deal with stack overflow: by restarting at the indicated
2411     // address.
2412     HeapWord* ra = _restart_addr;
2413     markFromRootsClosure.reset(ra);
2414     _restart_addr = NULL;
2415     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2416   }
2417   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2418   verify_work_stacks_empty();
2419 
2420   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2421   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2422 
2423   // Marking completed -- now verify that each bit marked in
2424   // verification_mark_bm() is also marked in markBitMap(); flag all
2425   // errors by printing corresponding objects.
2426   VerifyMarkedClosure vcl(markBitMap());
2427   verification_mark_bm()->iterate(&vcl);
2428   assert(!vcl.failed(), "Else verification above should not have succeeded");
2429 }
2430 
2431 void ConcurrentMarkSweepGeneration::save_marks() {
2432   // delegate to CMS space
2433   cmsSpace()->save_marks();
2434   for (uint i = 0; i < ParallelGCThreads; i++) {
2435     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2436   }
2437 }
2438 
2439 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2440   return cmsSpace()->no_allocs_since_save_marks();
2441 }
2442 
2443 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2444                                                                 \
2445 void ConcurrentMarkSweepGeneration::                            \
2446 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2447   cl->set_generation(this);                                     \
2448   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2449   cl->reset_generation();                                       \
2450   save_marks();                                                 \
2451 }
2452 
2453 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2454 
2455 void
2456 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2457   if (freelistLock()->owned_by_self()) {
2458     Generation::oop_iterate(cl);
2459   } else {
2460     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2461     Generation::oop_iterate(cl);
2462   }
2463 }
2464 
2465 void
2466 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2467   if (freelistLock()->owned_by_self()) {
2468     Generation::object_iterate(cl);
2469   } else {
2470     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2471     Generation::object_iterate(cl);
2472   }
2473 }
2474 
2475 void
2476 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2477   if (freelistLock()->owned_by_self()) {
2478     Generation::safe_object_iterate(cl);
2479   } else {
2480     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2481     Generation::safe_object_iterate(cl);
2482   }
2483 }
2484 
2485 void
2486 ConcurrentMarkSweepGeneration::post_compact() {
2487 }
2488 
2489 void
2490 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2491   // Fix the linear allocation blocks to look like free blocks.
2492 
2493   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2494   // are not called when the heap is verified during universe initialization and
2495   // at vm shutdown.
2496   if (freelistLock()->owned_by_self()) {
2497     cmsSpace()->prepare_for_verify();
2498   } else {
2499     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2500     cmsSpace()->prepare_for_verify();
2501   }
2502 }
2503 
2504 void
2505 ConcurrentMarkSweepGeneration::verify() {
2506   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2507   // are not called when the heap is verified during universe initialization and
2508   // at vm shutdown.
2509   if (freelistLock()->owned_by_self()) {
2510     cmsSpace()->verify();
2511   } else {
2512     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2513     cmsSpace()->verify();
2514   }
2515 }
2516 
2517 void CMSCollector::verify() {
2518   _cmsGen->verify();
2519 }
2520 
2521 #ifndef PRODUCT
2522 bool CMSCollector::overflow_list_is_empty() const {
2523   assert(_num_par_pushes >= 0, "Inconsistency");
2524   if (_overflow_list == NULL) {
2525     assert(_num_par_pushes == 0, "Inconsistency");
2526   }
2527   return _overflow_list == NULL;
2528 }
2529 
2530 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2531 // merely consolidate assertion checks that appear to occur together frequently.
2532 void CMSCollector::verify_work_stacks_empty() const {
2533   assert(_markStack.isEmpty(), "Marking stack should be empty");
2534   assert(overflow_list_is_empty(), "Overflow list should be empty");
2535 }
2536 
2537 void CMSCollector::verify_overflow_empty() const {
2538   assert(overflow_list_is_empty(), "Overflow list should be empty");
2539   assert(no_preserved_marks(), "No preserved marks");
2540 }
2541 #endif // PRODUCT
2542 
2543 // Decide if we want to enable class unloading as part of the
2544 // ensuing concurrent GC cycle. We will collect and
2545 // unload classes if it's the case that:
2546 // (1) an explicit gc request has been made and the flag
2547 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2548 // (2) (a) class unloading is enabled at the command line, and
2549 //     (b) old gen is getting really full
2550 // NOTE: Provided there is no change in the state of the heap between
2551 // calls to this method, it should have idempotent results. Moreover,
2552 // its results should be monotonically increasing (i.e. going from 0 to 1,
2553 // but not 1 to 0) between successive calls between which the heap was
2554 // not collected. For the implementation below, it must thus rely on
2555 // the property that concurrent_cycles_since_last_unload()
2556 // will not decrease unless a collection cycle happened and that
2557 // _cmsGen->is_too_full() are
2558 // themselves also monotonic in that sense. See check_monotonicity()
2559 // below.
2560 void CMSCollector::update_should_unload_classes() {
2561   _should_unload_classes = false;
2562   // Condition 1 above
2563   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2564     _should_unload_classes = true;
2565   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2566     // Disjuncts 2.b.(i,ii,iii) above
2567     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2568                               CMSClassUnloadingMaxInterval)
2569                            || _cmsGen->is_too_full();
2570   }
2571 }
2572 
2573 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2574   bool res = should_concurrent_collect();
2575   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2576   return res;
2577 }
2578 
2579 void CMSCollector::setup_cms_unloading_and_verification_state() {
2580   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2581                              || VerifyBeforeExit;
2582   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2583 
2584   // We set the proper root for this CMS cycle here.
2585   if (should_unload_classes()) {   // Should unload classes this cycle
2586     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2587     set_verifying(should_verify);    // Set verification state for this cycle
2588     return;                            // Nothing else needs to be done at this time
2589   }
2590 
2591   // Not unloading classes this cycle
2592   assert(!should_unload_classes(), "Inconsistency!");
2593 
2594   // If we are not unloading classes then add SO_AllCodeCache to root
2595   // scanning options.
2596   add_root_scanning_option(rso);
2597 
2598   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2599     set_verifying(true);
2600   } else if (verifying() && !should_verify) {
2601     // We were verifying, but some verification flags got disabled.
2602     set_verifying(false);
2603     // Exclude symbols, strings and code cache elements from root scanning to
2604     // reduce IM and RM pauses.
2605     remove_root_scanning_option(rso);
2606   }
2607 }
2608 
2609 
2610 #ifndef PRODUCT
2611 HeapWord* CMSCollector::block_start(const void* p) const {
2612   const HeapWord* addr = (HeapWord*)p;
2613   if (_span.contains(p)) {
2614     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2615       return _cmsGen->cmsSpace()->block_start(p);
2616     }
2617   }
2618   return NULL;
2619 }
2620 #endif
2621 
2622 HeapWord*
2623 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2624                                                    bool   tlab,
2625                                                    bool   parallel) {
2626   CMSSynchronousYieldRequest yr;
2627   assert(!tlab, "Can't deal with TLAB allocation");
2628   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2629   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2630   if (GCExpandToAllocateDelayMillis > 0) {
2631     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2632   }
2633   return have_lock_and_allocate(word_size, tlab);
2634 }
2635 
2636 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2637     size_t bytes,
2638     size_t expand_bytes,
2639     CMSExpansionCause::Cause cause)
2640 {
2641 
2642   bool success = expand(bytes, expand_bytes);
2643 
2644   // remember why we expanded; this information is used
2645   // by shouldConcurrentCollect() when making decisions on whether to start
2646   // a new CMS cycle.
2647   if (success) {
2648     set_expansion_cause(cause);
2649     log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2650   }
2651 }
2652 
2653 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2654   HeapWord* res = NULL;
2655   MutexLocker x(ParGCRareEvent_lock);
2656   while (true) {
2657     // Expansion by some other thread might make alloc OK now:
2658     res = ps->lab.alloc(word_sz);
2659     if (res != NULL) return res;
2660     // If there's not enough expansion space available, give up.
2661     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2662       return NULL;
2663     }
2664     // Otherwise, we try expansion.
2665     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2666     // Now go around the loop and try alloc again;
2667     // A competing par_promote might beat us to the expansion space,
2668     // so we may go around the loop again if promotion fails again.
2669     if (GCExpandToAllocateDelayMillis > 0) {
2670       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2671     }
2672   }
2673 }
2674 
2675 
2676 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2677   PromotionInfo* promo) {
2678   MutexLocker x(ParGCRareEvent_lock);
2679   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2680   while (true) {
2681     // Expansion by some other thread might make alloc OK now:
2682     if (promo->ensure_spooling_space()) {
2683       assert(promo->has_spooling_space(),
2684              "Post-condition of successful ensure_spooling_space()");
2685       return true;
2686     }
2687     // If there's not enough expansion space available, give up.
2688     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2689       return false;
2690     }
2691     // Otherwise, we try expansion.
2692     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2693     // Now go around the loop and try alloc again;
2694     // A competing allocation might beat us to the expansion space,
2695     // so we may go around the loop again if allocation fails again.
2696     if (GCExpandToAllocateDelayMillis > 0) {
2697       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2698     }
2699   }
2700 }
2701 
2702 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2703   // Only shrink if a compaction was done so that all the free space
2704   // in the generation is in a contiguous block at the end.
2705   if (did_compact()) {
2706     CardGeneration::shrink(bytes);
2707   }
2708 }
2709 
2710 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2711   assert_locked_or_safepoint(Heap_lock);
2712 }
2713 
2714 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2715   assert_locked_or_safepoint(Heap_lock);
2716   assert_lock_strong(freelistLock());
2717   log_trace(gc)("Shrinking of CMS not yet implemented");
2718   return;
2719 }
2720 
2721 
2722 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2723 // phases.
2724 class CMSPhaseAccounting: public StackObj {
2725  public:
2726   CMSPhaseAccounting(CMSCollector *collector,
2727                      const char *title);
2728   ~CMSPhaseAccounting();
2729 
2730  private:
2731   CMSCollector *_collector;
2732   const char *_title;
2733   GCTraceConcTime(Info, gc) _trace_time;
2734 
2735  public:
2736   // Not MT-safe; so do not pass around these StackObj's
2737   // where they may be accessed by other threads.
2738   double wallclock_millis() {
2739     return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2740   }
2741 };
2742 
2743 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2744                                        const char *title) :
2745   _collector(collector), _title(title), _trace_time(title) {
2746 
2747   _collector->resetYields();
2748   _collector->resetTimer();
2749   _collector->startTimer();
2750   _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2751 }
2752 
2753 CMSPhaseAccounting::~CMSPhaseAccounting() {
2754   _collector->gc_timer_cm()->register_gc_concurrent_end();
2755   _collector->stopTimer();
2756   log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2757   log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2758 }
2759 
2760 // CMS work
2761 
2762 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2763 class CMSParMarkTask : public AbstractGangTask {
2764  protected:
2765   CMSCollector*     _collector;
2766   uint              _n_workers;
2767   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2768       AbstractGangTask(name),
2769       _collector(collector),
2770       _n_workers(n_workers) {}
2771   // Work method in support of parallel rescan ... of young gen spaces
2772   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2773                              ContiguousSpace* space,
2774                              HeapWord** chunk_array, size_t chunk_top);
2775   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2776 };
2777 
2778 // Parallel initial mark task
2779 class CMSParInitialMarkTask: public CMSParMarkTask {
2780   StrongRootsScope* _strong_roots_scope;
2781  public:
2782   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2783       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2784       _strong_roots_scope(strong_roots_scope) {}
2785   void work(uint worker_id);
2786 };
2787 
2788 // Checkpoint the roots into this generation from outside
2789 // this generation. [Note this initial checkpoint need only
2790 // be approximate -- we'll do a catch up phase subsequently.]
2791 void CMSCollector::checkpointRootsInitial() {
2792   assert(_collectorState == InitialMarking, "Wrong collector state");
2793   check_correct_thread_executing();
2794   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2795 
2796   save_heap_summary();
2797   report_heap_summary(GCWhen::BeforeGC);
2798 
2799   ReferenceProcessor* rp = ref_processor();
2800   assert(_restart_addr == NULL, "Control point invariant");
2801   {
2802     // acquire locks for subsequent manipulations
2803     MutexLockerEx x(bitMapLock(),
2804                     Mutex::_no_safepoint_check_flag);
2805     checkpointRootsInitialWork();
2806     // enable ("weak") refs discovery
2807     rp->enable_discovery();
2808     _collectorState = Marking;
2809   }
2810 }
2811 
2812 void CMSCollector::checkpointRootsInitialWork() {
2813   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2814   assert(_collectorState == InitialMarking, "just checking");
2815 
2816   // Already have locks.
2817   assert_lock_strong(bitMapLock());
2818   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2819 
2820   // Setup the verification and class unloading state for this
2821   // CMS collection cycle.
2822   setup_cms_unloading_and_verification_state();
2823 
2824   GCTraceTime(Trace, gc) ts("checkpointRootsInitialWork", _gc_timer_cm);
2825 
2826   // Reset all the PLAB chunk arrays if necessary.
2827   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2828     reset_survivor_plab_arrays();
2829   }
2830 
2831   ResourceMark rm;
2832   HandleMark  hm;
2833 
2834   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2835   GenCollectedHeap* gch = GenCollectedHeap::heap();
2836 
2837   verify_work_stacks_empty();
2838   verify_overflow_empty();
2839 
2840   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2841   // Update the saved marks which may affect the root scans.
2842   gch->save_marks();
2843 
2844   // weak reference processing has not started yet.
2845   ref_processor()->set_enqueuing_is_done(false);
2846 
2847   // Need to remember all newly created CLDs,
2848   // so that we can guarantee that the remark finds them.
2849   ClassLoaderDataGraph::remember_new_clds(true);
2850 
2851   // Whenever a CLD is found, it will be claimed before proceeding to mark
2852   // the klasses. The claimed marks need to be cleared before marking starts.
2853   ClassLoaderDataGraph::clear_claimed_marks();
2854 
2855   print_eden_and_survivor_chunk_arrays();
2856 
2857   {
2858 #if defined(COMPILER2) || INCLUDE_JVMCI
2859     DerivedPointerTableDeactivate dpt_deact;
2860 #endif
2861     if (CMSParallelInitialMarkEnabled) {
2862       // The parallel version.
2863       WorkGang* workers = gch->workers();
2864       assert(workers != NULL, "Need parallel worker threads.");
2865       uint n_workers = workers->active_workers();
2866 
2867       StrongRootsScope srs(n_workers);
2868 
2869       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2870       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2871       if (n_workers > 1) {
2872         workers->run_task(&tsk);
2873       } else {
2874         tsk.work(0);
2875       }
2876     } else {
2877       // The serial version.
2878       CLDToOopClosure cld_closure(&notOlder, true);
2879       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2880 
2881       StrongRootsScope srs(1);
2882 
2883       gch->gen_process_roots(&srs,
2884                              GenCollectedHeap::OldGen,
2885                              true,   // young gen as roots
2886                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
2887                              should_unload_classes(),
2888                              &notOlder,
2889                              NULL,
2890                              &cld_closure);
2891     }
2892   }
2893 
2894   // Clear mod-union table; it will be dirtied in the prologue of
2895   // CMS generation per each young generation collection.
2896 
2897   assert(_modUnionTable.isAllClear(),
2898        "Was cleared in most recent final checkpoint phase"
2899        " or no bits are set in the gc_prologue before the start of the next "
2900        "subsequent marking phase.");
2901 
2902   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
2903 
2904   // Save the end of the used_region of the constituent generations
2905   // to be used to limit the extent of sweep in each generation.
2906   save_sweep_limits();
2907   verify_overflow_empty();
2908 }
2909 
2910 bool CMSCollector::markFromRoots() {
2911   // we might be tempted to assert that:
2912   // assert(!SafepointSynchronize::is_at_safepoint(),
2913   //        "inconsistent argument?");
2914   // However that wouldn't be right, because it's possible that
2915   // a safepoint is indeed in progress as a young generation
2916   // stop-the-world GC happens even as we mark in this generation.
2917   assert(_collectorState == Marking, "inconsistent state?");
2918   check_correct_thread_executing();
2919   verify_overflow_empty();
2920 
2921   // Weak ref discovery note: We may be discovering weak
2922   // refs in this generation concurrent (but interleaved) with
2923   // weak ref discovery by the young generation collector.
2924 
2925   CMSTokenSyncWithLocks ts(true, bitMapLock());
2926   GCTraceCPUTime tcpu;
2927   CMSPhaseAccounting pa(this, "Concurrent Mark");
2928   bool res = markFromRootsWork();
2929   if (res) {
2930     _collectorState = Precleaning;
2931   } else { // We failed and a foreground collection wants to take over
2932     assert(_foregroundGCIsActive, "internal state inconsistency");
2933     assert(_restart_addr == NULL,  "foreground will restart from scratch");
2934     log_debug(gc)("bailing out to foreground collection");
2935   }
2936   verify_overflow_empty();
2937   return res;
2938 }
2939 
2940 bool CMSCollector::markFromRootsWork() {
2941   // iterate over marked bits in bit map, doing a full scan and mark
2942   // from these roots using the following algorithm:
2943   // . if oop is to the right of the current scan pointer,
2944   //   mark corresponding bit (we'll process it later)
2945   // . else (oop is to left of current scan pointer)
2946   //   push oop on marking stack
2947   // . drain the marking stack
2948 
2949   // Note that when we do a marking step we need to hold the
2950   // bit map lock -- recall that direct allocation (by mutators)
2951   // and promotion (by the young generation collector) is also
2952   // marking the bit map. [the so-called allocate live policy.]
2953   // Because the implementation of bit map marking is not
2954   // robust wrt simultaneous marking of bits in the same word,
2955   // we need to make sure that there is no such interference
2956   // between concurrent such updates.
2957 
2958   // already have locks
2959   assert_lock_strong(bitMapLock());
2960 
2961   verify_work_stacks_empty();
2962   verify_overflow_empty();
2963   bool result = false;
2964   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2965     result = do_marking_mt();
2966   } else {
2967     result = do_marking_st();
2968   }
2969   return result;
2970 }
2971 
2972 // Forward decl
2973 class CMSConcMarkingTask;
2974 
2975 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2976   CMSCollector*       _collector;
2977   CMSConcMarkingTask* _task;
2978  public:
2979   virtual void yield();
2980 
2981   // "n_threads" is the number of threads to be terminated.
2982   // "queue_set" is a set of work queues of other threads.
2983   // "collector" is the CMS collector associated with this task terminator.
2984   // "yield" indicates whether we need the gang as a whole to yield.
2985   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
2986     ParallelTaskTerminator(n_threads, queue_set),
2987     _collector(collector) { }
2988 
2989   void set_task(CMSConcMarkingTask* task) {
2990     _task = task;
2991   }
2992 };
2993 
2994 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
2995   CMSConcMarkingTask* _task;
2996  public:
2997   bool should_exit_termination();
2998   void set_task(CMSConcMarkingTask* task) {
2999     _task = task;
3000   }
3001 };
3002 
3003 // MT Concurrent Marking Task
3004 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3005   CMSCollector* _collector;
3006   uint          _n_workers;       // requested/desired # workers
3007   bool          _result;
3008   CompactibleFreeListSpace*  _cms_space;
3009   char          _pad_front[64];   // padding to ...
3010   HeapWord*     _global_finger;   // ... avoid sharing cache line
3011   char          _pad_back[64];
3012   HeapWord*     _restart_addr;
3013 
3014   //  Exposed here for yielding support
3015   Mutex* const _bit_map_lock;
3016 
3017   // The per thread work queues, available here for stealing
3018   OopTaskQueueSet*  _task_queues;
3019 
3020   // Termination (and yielding) support
3021   CMSConcMarkingTerminator _term;
3022   CMSConcMarkingTerminatorTerminator _term_term;
3023 
3024  public:
3025   CMSConcMarkingTask(CMSCollector* collector,
3026                  CompactibleFreeListSpace* cms_space,
3027                  YieldingFlexibleWorkGang* workers,
3028                  OopTaskQueueSet* task_queues):
3029     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3030     _collector(collector),
3031     _cms_space(cms_space),
3032     _n_workers(0), _result(true),
3033     _task_queues(task_queues),
3034     _term(_n_workers, task_queues, _collector),
3035     _bit_map_lock(collector->bitMapLock())
3036   {
3037     _requested_size = _n_workers;
3038     _term.set_task(this);
3039     _term_term.set_task(this);
3040     _restart_addr = _global_finger = _cms_space->bottom();
3041   }
3042 
3043 
3044   OopTaskQueueSet* task_queues()  { return _task_queues; }
3045 
3046   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3047 
3048   HeapWord** global_finger_addr() { return &_global_finger; }
3049 
3050   CMSConcMarkingTerminator* terminator() { return &_term; }
3051 
3052   virtual void set_for_termination(uint active_workers) {
3053     terminator()->reset_for_reuse(active_workers);
3054   }
3055 
3056   void work(uint worker_id);
3057   bool should_yield() {
3058     return    ConcurrentMarkSweepThread::should_yield()
3059            && !_collector->foregroundGCIsActive();
3060   }
3061 
3062   virtual void coordinator_yield();  // stuff done by coordinator
3063   bool result() { return _result; }
3064 
3065   void reset(HeapWord* ra) {
3066     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3067     _restart_addr = _global_finger = ra;
3068     _term.reset_for_reuse();
3069   }
3070 
3071   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3072                                            OopTaskQueue* work_q);
3073 
3074  private:
3075   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3076   void do_work_steal(int i);
3077   void bump_global_finger(HeapWord* f);
3078 };
3079 
3080 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3081   assert(_task != NULL, "Error");
3082   return _task->yielding();
3083   // Note that we do not need the disjunct || _task->should_yield() above
3084   // because we want terminating threads to yield only if the task
3085   // is already in the midst of yielding, which happens only after at least one
3086   // thread has yielded.
3087 }
3088 
3089 void CMSConcMarkingTerminator::yield() {
3090   if (_task->should_yield()) {
3091     _task->yield();
3092   } else {
3093     ParallelTaskTerminator::yield();
3094   }
3095 }
3096 
3097 ////////////////////////////////////////////////////////////////
3098 // Concurrent Marking Algorithm Sketch
3099 ////////////////////////////////////////////////////////////////
3100 // Until all tasks exhausted (both spaces):
3101 // -- claim next available chunk
3102 // -- bump global finger via CAS
3103 // -- find first object that starts in this chunk
3104 //    and start scanning bitmap from that position
3105 // -- scan marked objects for oops
3106 // -- CAS-mark target, and if successful:
3107 //    . if target oop is above global finger (volatile read)
3108 //      nothing to do
3109 //    . if target oop is in chunk and above local finger
3110 //        then nothing to do
3111 //    . else push on work-queue
3112 // -- Deal with possible overflow issues:
3113 //    . local work-queue overflow causes stuff to be pushed on
3114 //      global (common) overflow queue
3115 //    . always first empty local work queue
3116 //    . then get a batch of oops from global work queue if any
3117 //    . then do work stealing
3118 // -- When all tasks claimed (both spaces)
3119 //    and local work queue empty,
3120 //    then in a loop do:
3121 //    . check global overflow stack; steal a batch of oops and trace
3122 //    . try to steal from other threads oif GOS is empty
3123 //    . if neither is available, offer termination
3124 // -- Terminate and return result
3125 //
3126 void CMSConcMarkingTask::work(uint worker_id) {
3127   elapsedTimer _timer;
3128   ResourceMark rm;
3129   HandleMark hm;
3130 
3131   DEBUG_ONLY(_collector->verify_overflow_empty();)
3132 
3133   // Before we begin work, our work queue should be empty
3134   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3135   // Scan the bitmap covering _cms_space, tracing through grey objects.
3136   _timer.start();
3137   do_scan_and_mark(worker_id, _cms_space);
3138   _timer.stop();
3139   log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3140 
3141   // ... do work stealing
3142   _timer.reset();
3143   _timer.start();
3144   do_work_steal(worker_id);
3145   _timer.stop();
3146   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3147   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3148   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3149   // Note that under the current task protocol, the
3150   // following assertion is true even of the spaces
3151   // expanded since the completion of the concurrent
3152   // marking. XXX This will likely change under a strict
3153   // ABORT semantics.
3154   // After perm removal the comparison was changed to
3155   // greater than or equal to from strictly greater than.
3156   // Before perm removal the highest address sweep would
3157   // have been at the end of perm gen but now is at the
3158   // end of the tenured gen.
3159   assert(_global_finger >=  _cms_space->end(),
3160          "All tasks have been completed");
3161   DEBUG_ONLY(_collector->verify_overflow_empty();)
3162 }
3163 
3164 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3165   HeapWord* read = _global_finger;
3166   HeapWord* cur  = read;
3167   while (f > read) {
3168     cur = read;
3169     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3170     if (cur == read) {
3171       // our cas succeeded
3172       assert(_global_finger >= f, "protocol consistency");
3173       break;
3174     }
3175   }
3176 }
3177 
3178 // This is really inefficient, and should be redone by
3179 // using (not yet available) block-read and -write interfaces to the
3180 // stack and the work_queue. XXX FIX ME !!!
3181 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3182                                                       OopTaskQueue* work_q) {
3183   // Fast lock-free check
3184   if (ovflw_stk->length() == 0) {
3185     return false;
3186   }
3187   assert(work_q->size() == 0, "Shouldn't steal");
3188   MutexLockerEx ml(ovflw_stk->par_lock(),
3189                    Mutex::_no_safepoint_check_flag);
3190   // Grab up to 1/4 the size of the work queue
3191   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3192                     (size_t)ParGCDesiredObjsFromOverflowList);
3193   num = MIN2(num, ovflw_stk->length());
3194   for (int i = (int) num; i > 0; i--) {
3195     oop cur = ovflw_stk->pop();
3196     assert(cur != NULL, "Counted wrong?");
3197     work_q->push(cur);
3198   }
3199   return num > 0;
3200 }
3201 
3202 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3203   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3204   int n_tasks = pst->n_tasks();
3205   // We allow that there may be no tasks to do here because
3206   // we are restarting after a stack overflow.
3207   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3208   uint nth_task = 0;
3209 
3210   HeapWord* aligned_start = sp->bottom();
3211   if (sp->used_region().contains(_restart_addr)) {
3212     // Align down to a card boundary for the start of 0th task
3213     // for this space.
3214     aligned_start =
3215       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3216                                  CardTableModRefBS::card_size);
3217   }
3218 
3219   size_t chunk_size = sp->marking_task_size();
3220   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3221     // Having claimed the nth task in this space,
3222     // compute the chunk that it corresponds to:
3223     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3224                                aligned_start + (nth_task+1)*chunk_size);
3225     // Try and bump the global finger via a CAS;
3226     // note that we need to do the global finger bump
3227     // _before_ taking the intersection below, because
3228     // the task corresponding to that region will be
3229     // deemed done even if the used_region() expands
3230     // because of allocation -- as it almost certainly will
3231     // during start-up while the threads yield in the
3232     // closure below.
3233     HeapWord* finger = span.end();
3234     bump_global_finger(finger);   // atomically
3235     // There are null tasks here corresponding to chunks
3236     // beyond the "top" address of the space.
3237     span = span.intersection(sp->used_region());
3238     if (!span.is_empty()) {  // Non-null task
3239       HeapWord* prev_obj;
3240       assert(!span.contains(_restart_addr) || nth_task == 0,
3241              "Inconsistency");
3242       if (nth_task == 0) {
3243         // For the 0th task, we'll not need to compute a block_start.
3244         if (span.contains(_restart_addr)) {
3245           // In the case of a restart because of stack overflow,
3246           // we might additionally skip a chunk prefix.
3247           prev_obj = _restart_addr;
3248         } else {
3249           prev_obj = span.start();
3250         }
3251       } else {
3252         // We want to skip the first object because
3253         // the protocol is to scan any object in its entirety
3254         // that _starts_ in this span; a fortiori, any
3255         // object starting in an earlier span is scanned
3256         // as part of an earlier claimed task.
3257         // Below we use the "careful" version of block_start
3258         // so we do not try to navigate uninitialized objects.
3259         prev_obj = sp->block_start_careful(span.start());
3260         // Below we use a variant of block_size that uses the
3261         // Printezis bits to avoid waiting for allocated
3262         // objects to become initialized/parsable.
3263         while (prev_obj < span.start()) {
3264           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3265           if (sz > 0) {
3266             prev_obj += sz;
3267           } else {
3268             // In this case we may end up doing a bit of redundant
3269             // scanning, but that appears unavoidable, short of
3270             // locking the free list locks; see bug 6324141.
3271             break;
3272           }
3273         }
3274       }
3275       if (prev_obj < span.end()) {
3276         MemRegion my_span = MemRegion(prev_obj, span.end());
3277         // Do the marking work within a non-empty span --
3278         // the last argument to the constructor indicates whether the
3279         // iteration should be incremental with periodic yields.
3280         ParMarkFromRootsClosure cl(this, _collector, my_span,
3281                                    &_collector->_markBitMap,
3282                                    work_queue(i),
3283                                    &_collector->_markStack);
3284         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3285       } // else nothing to do for this task
3286     }   // else nothing to do for this task
3287   }
3288   // We'd be tempted to assert here that since there are no
3289   // more tasks left to claim in this space, the global_finger
3290   // must exceed space->top() and a fortiori space->end(). However,
3291   // that would not quite be correct because the bumping of
3292   // global_finger occurs strictly after the claiming of a task,
3293   // so by the time we reach here the global finger may not yet
3294   // have been bumped up by the thread that claimed the last
3295   // task.
3296   pst->all_tasks_completed();
3297 }
3298 
3299 class ParConcMarkingClosure: public MetadataAwareOopClosure {
3300  private:
3301   CMSCollector* _collector;
3302   CMSConcMarkingTask* _task;
3303   MemRegion     _span;
3304   CMSBitMap*    _bit_map;
3305   CMSMarkStack* _overflow_stack;
3306   OopTaskQueue* _work_queue;
3307  protected:
3308   DO_OOP_WORK_DEFN
3309  public:
3310   ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3311                         CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3312     MetadataAwareOopClosure(collector->ref_processor()),
3313     _collector(collector),
3314     _task(task),
3315     _span(collector->_span),
3316     _work_queue(work_queue),
3317     _bit_map(bit_map),
3318     _overflow_stack(overflow_stack)
3319   { }
3320   virtual void do_oop(oop* p);
3321   virtual void do_oop(narrowOop* p);
3322 
3323   void trim_queue(size_t max);
3324   void handle_stack_overflow(HeapWord* lost);
3325   void do_yield_check() {
3326     if (_task->should_yield()) {
3327       _task->yield();
3328     }
3329   }
3330 };
3331 
3332 DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3333 
3334 // Grey object scanning during work stealing phase --
3335 // the salient assumption here is that any references
3336 // that are in these stolen objects being scanned must
3337 // already have been initialized (else they would not have
3338 // been published), so we do not need to check for
3339 // uninitialized objects before pushing here.
3340 void ParConcMarkingClosure::do_oop(oop obj) {
3341   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3342   HeapWord* addr = (HeapWord*)obj;
3343   // Check if oop points into the CMS generation
3344   // and is not marked
3345   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3346     // a white object ...
3347     // If we manage to "claim" the object, by being the
3348     // first thread to mark it, then we push it on our
3349     // marking stack
3350     if (_bit_map->par_mark(addr)) {     // ... now grey
3351       // push on work queue (grey set)
3352       bool simulate_overflow = false;
3353       NOT_PRODUCT(
3354         if (CMSMarkStackOverflowALot &&
3355             _collector->simulate_overflow()) {
3356           // simulate a stack overflow
3357           simulate_overflow = true;
3358         }
3359       )
3360       if (simulate_overflow ||
3361           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3362         // stack overflow
3363         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3364         // We cannot assert that the overflow stack is full because
3365         // it may have been emptied since.
3366         assert(simulate_overflow ||
3367                _work_queue->size() == _work_queue->max_elems(),
3368               "Else push should have succeeded");
3369         handle_stack_overflow(addr);
3370       }
3371     } // Else, some other thread got there first
3372     do_yield_check();
3373   }
3374 }
3375 
3376 void ParConcMarkingClosure::do_oop(oop* p)       { ParConcMarkingClosure::do_oop_work(p); }
3377 void ParConcMarkingClosure::do_oop(narrowOop* p) { ParConcMarkingClosure::do_oop_work(p); }
3378 
3379 void ParConcMarkingClosure::trim_queue(size_t max) {
3380   while (_work_queue->size() > max) {
3381     oop new_oop;
3382     if (_work_queue->pop_local(new_oop)) {
3383       assert(new_oop->is_oop(), "Should be an oop");
3384       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3385       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3386       new_oop->oop_iterate(this);  // do_oop() above
3387       do_yield_check();
3388     }
3389   }
3390 }
3391 
3392 // Upon stack overflow, we discard (part of) the stack,
3393 // remembering the least address amongst those discarded
3394 // in CMSCollector's _restart_address.
3395 void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3396   // We need to do this under a mutex to prevent other
3397   // workers from interfering with the work done below.
3398   MutexLockerEx ml(_overflow_stack->par_lock(),
3399                    Mutex::_no_safepoint_check_flag);
3400   // Remember the least grey address discarded
3401   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3402   _collector->lower_restart_addr(ra);
3403   _overflow_stack->reset();  // discard stack contents
3404   _overflow_stack->expand(); // expand the stack if possible
3405 }
3406 
3407 
3408 void CMSConcMarkingTask::do_work_steal(int i) {
3409   OopTaskQueue* work_q = work_queue(i);
3410   oop obj_to_scan;
3411   CMSBitMap* bm = &(_collector->_markBitMap);
3412   CMSMarkStack* ovflw = &(_collector->_markStack);
3413   int* seed = _collector->hash_seed(i);
3414   ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3415   while (true) {
3416     cl.trim_queue(0);
3417     assert(work_q->size() == 0, "Should have been emptied above");
3418     if (get_work_from_overflow_stack(ovflw, work_q)) {
3419       // Can't assert below because the work obtained from the
3420       // overflow stack may already have been stolen from us.
3421       // assert(work_q->size() > 0, "Work from overflow stack");
3422       continue;
3423     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3424       assert(obj_to_scan->is_oop(), "Should be an oop");
3425       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3426       obj_to_scan->oop_iterate(&cl);
3427     } else if (terminator()->offer_termination(&_term_term)) {
3428       assert(work_q->size() == 0, "Impossible!");
3429       break;
3430     } else if (yielding() || should_yield()) {
3431       yield();
3432     }
3433   }
3434 }
3435 
3436 // This is run by the CMS (coordinator) thread.
3437 void CMSConcMarkingTask::coordinator_yield() {
3438   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3439          "CMS thread should hold CMS token");
3440   // First give up the locks, then yield, then re-lock
3441   // We should probably use a constructor/destructor idiom to
3442   // do this unlock/lock or modify the MutexUnlocker class to
3443   // serve our purpose. XXX
3444   assert_lock_strong(_bit_map_lock);
3445   _bit_map_lock->unlock();
3446   ConcurrentMarkSweepThread::desynchronize(true);
3447   _collector->stopTimer();
3448   _collector->incrementYields();
3449 
3450   // It is possible for whichever thread initiated the yield request
3451   // not to get a chance to wake up and take the bitmap lock between
3452   // this thread releasing it and reacquiring it. So, while the
3453   // should_yield() flag is on, let's sleep for a bit to give the
3454   // other thread a chance to wake up. The limit imposed on the number
3455   // of iterations is defensive, to avoid any unforseen circumstances
3456   // putting us into an infinite loop. Since it's always been this
3457   // (coordinator_yield()) method that was observed to cause the
3458   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3459   // which is by default non-zero. For the other seven methods that
3460   // also perform the yield operation, as are using a different
3461   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3462   // can enable the sleeping for those methods too, if necessary.
3463   // See 6442774.
3464   //
3465   // We really need to reconsider the synchronization between the GC
3466   // thread and the yield-requesting threads in the future and we
3467   // should really use wait/notify, which is the recommended
3468   // way of doing this type of interaction. Additionally, we should
3469   // consolidate the eight methods that do the yield operation and they
3470   // are almost identical into one for better maintainability and
3471   // readability. See 6445193.
3472   //
3473   // Tony 2006.06.29
3474   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3475                    ConcurrentMarkSweepThread::should_yield() &&
3476                    !CMSCollector::foregroundGCIsActive(); ++i) {
3477     os::sleep(Thread::current(), 1, false);
3478   }
3479 
3480   ConcurrentMarkSweepThread::synchronize(true);
3481   _bit_map_lock->lock_without_safepoint_check();
3482   _collector->startTimer();
3483 }
3484 
3485 bool CMSCollector::do_marking_mt() {
3486   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3487   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3488                                                                   conc_workers()->active_workers(),
3489                                                                   Threads::number_of_non_daemon_threads());
3490   conc_workers()->set_active_workers(num_workers);
3491 
3492   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3493 
3494   CMSConcMarkingTask tsk(this,
3495                          cms_space,
3496                          conc_workers(),
3497                          task_queues());
3498 
3499   // Since the actual number of workers we get may be different
3500   // from the number we requested above, do we need to do anything different
3501   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3502   // class?? XXX
3503   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3504 
3505   // Refs discovery is already non-atomic.
3506   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3507   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3508   conc_workers()->start_task(&tsk);
3509   while (tsk.yielded()) {
3510     tsk.coordinator_yield();
3511     conc_workers()->continue_task(&tsk);
3512   }
3513   // If the task was aborted, _restart_addr will be non-NULL
3514   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3515   while (_restart_addr != NULL) {
3516     // XXX For now we do not make use of ABORTED state and have not
3517     // yet implemented the right abort semantics (even in the original
3518     // single-threaded CMS case). That needs some more investigation
3519     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3520     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3521     // If _restart_addr is non-NULL, a marking stack overflow
3522     // occurred; we need to do a fresh marking iteration from the
3523     // indicated restart address.
3524     if (_foregroundGCIsActive) {
3525       // We may be running into repeated stack overflows, having
3526       // reached the limit of the stack size, while making very
3527       // slow forward progress. It may be best to bail out and
3528       // let the foreground collector do its job.
3529       // Clear _restart_addr, so that foreground GC
3530       // works from scratch. This avoids the headache of
3531       // a "rescan" which would otherwise be needed because
3532       // of the dirty mod union table & card table.
3533       _restart_addr = NULL;
3534       return false;
3535     }
3536     // Adjust the task to restart from _restart_addr
3537     tsk.reset(_restart_addr);
3538     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3539                   _restart_addr);
3540     _restart_addr = NULL;
3541     // Get the workers going again
3542     conc_workers()->start_task(&tsk);
3543     while (tsk.yielded()) {
3544       tsk.coordinator_yield();
3545       conc_workers()->continue_task(&tsk);
3546     }
3547   }
3548   assert(tsk.completed(), "Inconsistency");
3549   assert(tsk.result() == true, "Inconsistency");
3550   return true;
3551 }
3552 
3553 bool CMSCollector::do_marking_st() {
3554   ResourceMark rm;
3555   HandleMark   hm;
3556 
3557   // Temporarily make refs discovery single threaded (non-MT)
3558   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3559   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3560     &_markStack, CMSYield);
3561   // the last argument to iterate indicates whether the iteration
3562   // should be incremental with periodic yields.
3563   _markBitMap.iterate(&markFromRootsClosure);
3564   // If _restart_addr is non-NULL, a marking stack overflow
3565   // occurred; we need to do a fresh iteration from the
3566   // indicated restart address.
3567   while (_restart_addr != NULL) {
3568     if (_foregroundGCIsActive) {
3569       // We may be running into repeated stack overflows, having
3570       // reached the limit of the stack size, while making very
3571       // slow forward progress. It may be best to bail out and
3572       // let the foreground collector do its job.
3573       // Clear _restart_addr, so that foreground GC
3574       // works from scratch. This avoids the headache of
3575       // a "rescan" which would otherwise be needed because
3576       // of the dirty mod union table & card table.
3577       _restart_addr = NULL;
3578       return false;  // indicating failure to complete marking
3579     }
3580     // Deal with stack overflow:
3581     // we restart marking from _restart_addr
3582     HeapWord* ra = _restart_addr;
3583     markFromRootsClosure.reset(ra);
3584     _restart_addr = NULL;
3585     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3586   }
3587   return true;
3588 }
3589 
3590 void CMSCollector::preclean() {
3591   check_correct_thread_executing();
3592   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3593   verify_work_stacks_empty();
3594   verify_overflow_empty();
3595   _abort_preclean = false;
3596   if (CMSPrecleaningEnabled) {
3597     if (!CMSEdenChunksRecordAlways) {
3598       _eden_chunk_index = 0;
3599     }
3600     size_t used = get_eden_used();
3601     size_t capacity = get_eden_capacity();
3602     // Don't start sampling unless we will get sufficiently
3603     // many samples.
3604     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3605                 * CMSScheduleRemarkEdenPenetration)) {
3606       _start_sampling = true;
3607     } else {
3608       _start_sampling = false;
3609     }
3610     GCTraceCPUTime tcpu;
3611     CMSPhaseAccounting pa(this, "Concurrent Preclean");
3612     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3613   }
3614   CMSTokenSync x(true); // is cms thread
3615   if (CMSPrecleaningEnabled) {
3616     sample_eden();
3617     _collectorState = AbortablePreclean;
3618   } else {
3619     _collectorState = FinalMarking;
3620   }
3621   verify_work_stacks_empty();
3622   verify_overflow_empty();
3623 }
3624 
3625 // Try and schedule the remark such that young gen
3626 // occupancy is CMSScheduleRemarkEdenPenetration %.
3627 void CMSCollector::abortable_preclean() {
3628   check_correct_thread_executing();
3629   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3630   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3631 
3632   // If Eden's current occupancy is below this threshold,
3633   // immediately schedule the remark; else preclean
3634   // past the next scavenge in an effort to
3635   // schedule the pause as described above. By choosing
3636   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3637   // we will never do an actual abortable preclean cycle.
3638   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3639     GCTraceCPUTime tcpu;
3640     CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3641     // We need more smarts in the abortable preclean
3642     // loop below to deal with cases where allocation
3643     // in young gen is very very slow, and our precleaning
3644     // is running a losing race against a horde of
3645     // mutators intent on flooding us with CMS updates
3646     // (dirty cards).
3647     // One, admittedly dumb, strategy is to give up
3648     // after a certain number of abortable precleaning loops
3649     // or after a certain maximum time. We want to make
3650     // this smarter in the next iteration.
3651     // XXX FIX ME!!! YSR
3652     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3653     while (!(should_abort_preclean() ||
3654              ConcurrentMarkSweepThread::should_terminate())) {
3655       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3656       cumworkdone += workdone;
3657       loops++;
3658       // Voluntarily terminate abortable preclean phase if we have
3659       // been at it for too long.
3660       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3661           loops >= CMSMaxAbortablePrecleanLoops) {
3662         log_debug(gc)(" CMS: abort preclean due to loops ");
3663         break;
3664       }
3665       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3666         log_debug(gc)(" CMS: abort preclean due to time ");
3667         break;
3668       }
3669       // If we are doing little work each iteration, we should
3670       // take a short break.
3671       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3672         // Sleep for some time, waiting for work to accumulate
3673         stopTimer();
3674         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3675         startTimer();
3676         waited++;
3677       }
3678     }
3679     log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3680                                loops, waited, cumworkdone);
3681   }
3682   CMSTokenSync x(true); // is cms thread
3683   if (_collectorState != Idling) {
3684     assert(_collectorState == AbortablePreclean,
3685            "Spontaneous state transition?");
3686     _collectorState = FinalMarking;
3687   } // Else, a foreground collection completed this CMS cycle.
3688   return;
3689 }
3690 
3691 // Respond to an Eden sampling opportunity
3692 void CMSCollector::sample_eden() {
3693   // Make sure a young gc cannot sneak in between our
3694   // reading and recording of a sample.
3695   assert(Thread::current()->is_ConcurrentGC_thread(),
3696          "Only the cms thread may collect Eden samples");
3697   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3698          "Should collect samples while holding CMS token");
3699   if (!_start_sampling) {
3700     return;
3701   }
3702   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3703   // is populated by the young generation.
3704   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3705     if (_eden_chunk_index < _eden_chunk_capacity) {
3706       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3707       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3708              "Unexpected state of Eden");
3709       // We'd like to check that what we just sampled is an oop-start address;
3710       // however, we cannot do that here since the object may not yet have been
3711       // initialized. So we'll instead do the check when we _use_ this sample
3712       // later.
3713       if (_eden_chunk_index == 0 ||
3714           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3715                          _eden_chunk_array[_eden_chunk_index-1])
3716            >= CMSSamplingGrain)) {
3717         _eden_chunk_index++;  // commit sample
3718       }
3719     }
3720   }
3721   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3722     size_t used = get_eden_used();
3723     size_t capacity = get_eden_capacity();
3724     assert(used <= capacity, "Unexpected state of Eden");
3725     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3726       _abort_preclean = true;
3727     }
3728   }
3729 }
3730 
3731 
3732 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3733   assert(_collectorState == Precleaning ||
3734          _collectorState == AbortablePreclean, "incorrect state");
3735   ResourceMark rm;
3736   HandleMark   hm;
3737 
3738   // Precleaning is currently not MT but the reference processor
3739   // may be set for MT.  Disable it temporarily here.
3740   ReferenceProcessor* rp = ref_processor();
3741   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3742 
3743   // Do one pass of scrubbing the discovered reference lists
3744   // to remove any reference objects with strongly-reachable
3745   // referents.
3746   if (clean_refs) {
3747     CMSPrecleanRefsYieldClosure yield_cl(this);
3748     assert(rp->span().equals(_span), "Spans should be equal");
3749     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3750                                    &_markStack, true /* preclean */);
3751     CMSDrainMarkingStackClosure complete_trace(this,
3752                                    _span, &_markBitMap, &_markStack,
3753                                    &keep_alive, true /* preclean */);
3754 
3755     // We don't want this step to interfere with a young
3756     // collection because we don't want to take CPU
3757     // or memory bandwidth away from the young GC threads
3758     // (which may be as many as there are CPUs).
3759     // Note that we don't need to protect ourselves from
3760     // interference with mutators because they can't
3761     // manipulate the discovered reference lists nor affect
3762     // the computed reachability of the referents, the
3763     // only properties manipulated by the precleaning
3764     // of these reference lists.
3765     stopTimer();
3766     CMSTokenSyncWithLocks x(true /* is cms thread */,
3767                             bitMapLock());
3768     startTimer();
3769     sample_eden();
3770 
3771     // The following will yield to allow foreground
3772     // collection to proceed promptly. XXX YSR:
3773     // The code in this method may need further
3774     // tweaking for better performance and some restructuring
3775     // for cleaner interfaces.
3776     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3777     rp->preclean_discovered_references(
3778           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3779           gc_timer);
3780   }
3781 
3782   if (clean_survivor) {  // preclean the active survivor space(s)
3783     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3784                              &_markBitMap, &_modUnionTable,
3785                              &_markStack, true /* precleaning phase */);
3786     stopTimer();
3787     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3788                              bitMapLock());
3789     startTimer();
3790     unsigned int before_count =
3791       GenCollectedHeap::heap()->total_collections();
3792     SurvivorSpacePrecleanClosure
3793       sss_cl(this, _span, &_markBitMap, &_markStack,
3794              &pam_cl, before_count, CMSYield);
3795     _young_gen->from()->object_iterate_careful(&sss_cl);
3796     _young_gen->to()->object_iterate_careful(&sss_cl);
3797   }
3798   MarkRefsIntoAndScanClosure
3799     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3800              &_markStack, this, CMSYield,
3801              true /* precleaning phase */);
3802   // CAUTION: The following closure has persistent state that may need to
3803   // be reset upon a decrease in the sequence of addresses it
3804   // processes.
3805   ScanMarkedObjectsAgainCarefullyClosure
3806     smoac_cl(this, _span,
3807       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3808 
3809   // Preclean dirty cards in ModUnionTable and CardTable using
3810   // appropriate convergence criterion;
3811   // repeat CMSPrecleanIter times unless we find that
3812   // we are losing.
3813   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3814   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3815          "Bad convergence multiplier");
3816   assert(CMSPrecleanThreshold >= 100,
3817          "Unreasonably low CMSPrecleanThreshold");
3818 
3819   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3820   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3821        numIter < CMSPrecleanIter;
3822        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3823     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3824     log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3825     // Either there are very few dirty cards, so re-mark
3826     // pause will be small anyway, or our pre-cleaning isn't
3827     // that much faster than the rate at which cards are being
3828     // dirtied, so we might as well stop and re-mark since
3829     // precleaning won't improve our re-mark time by much.
3830     if (curNumCards <= CMSPrecleanThreshold ||
3831         (numIter > 0 &&
3832          (curNumCards * CMSPrecleanDenominator >
3833          lastNumCards * CMSPrecleanNumerator))) {
3834       numIter++;
3835       cumNumCards += curNumCards;
3836       break;
3837     }
3838   }
3839 
3840   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3841 
3842   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3843   cumNumCards += curNumCards;
3844   log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3845                              curNumCards, cumNumCards, numIter);
3846   return cumNumCards;   // as a measure of useful work done
3847 }
3848 
3849 // PRECLEANING NOTES:
3850 // Precleaning involves:
3851 // . reading the bits of the modUnionTable and clearing the set bits.
3852 // . For the cards corresponding to the set bits, we scan the
3853 //   objects on those cards. This means we need the free_list_lock
3854 //   so that we can safely iterate over the CMS space when scanning
3855 //   for oops.
3856 // . When we scan the objects, we'll be both reading and setting
3857 //   marks in the marking bit map, so we'll need the marking bit map.
3858 // . For protecting _collector_state transitions, we take the CGC_lock.
3859 //   Note that any races in the reading of of card table entries by the
3860 //   CMS thread on the one hand and the clearing of those entries by the
3861 //   VM thread or the setting of those entries by the mutator threads on the
3862 //   other are quite benign. However, for efficiency it makes sense to keep
3863 //   the VM thread from racing with the CMS thread while the latter is
3864 //   dirty card info to the modUnionTable. We therefore also use the
3865 //   CGC_lock to protect the reading of the card table and the mod union
3866 //   table by the CM thread.
3867 // . We run concurrently with mutator updates, so scanning
3868 //   needs to be done carefully  -- we should not try to scan
3869 //   potentially uninitialized objects.
3870 //
3871 // Locking strategy: While holding the CGC_lock, we scan over and
3872 // reset a maximal dirty range of the mod union / card tables, then lock
3873 // the free_list_lock and bitmap lock to do a full marking, then
3874 // release these locks; and repeat the cycle. This allows for a
3875 // certain amount of fairness in the sharing of these locks between
3876 // the CMS collector on the one hand, and the VM thread and the
3877 // mutators on the other.
3878 
3879 // NOTE: preclean_mod_union_table() and preclean_card_table()
3880 // further below are largely identical; if you need to modify
3881 // one of these methods, please check the other method too.
3882 
3883 size_t CMSCollector::preclean_mod_union_table(
3884   ConcurrentMarkSweepGeneration* old_gen,
3885   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3886   verify_work_stacks_empty();
3887   verify_overflow_empty();
3888 
3889   // strategy: starting with the first card, accumulate contiguous
3890   // ranges of dirty cards; clear these cards, then scan the region
3891   // covered by these cards.
3892 
3893   // Since all of the MUT is committed ahead, we can just use
3894   // that, in case the generations expand while we are precleaning.
3895   // It might also be fine to just use the committed part of the
3896   // generation, but we might potentially miss cards when the
3897   // generation is rapidly expanding while we are in the midst
3898   // of precleaning.
3899   HeapWord* startAddr = old_gen->reserved().start();
3900   HeapWord* endAddr   = old_gen->reserved().end();
3901 
3902   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3903 
3904   size_t numDirtyCards, cumNumDirtyCards;
3905   HeapWord *nextAddr, *lastAddr;
3906   for (cumNumDirtyCards = numDirtyCards = 0,
3907        nextAddr = lastAddr = startAddr;
3908        nextAddr < endAddr;
3909        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3910 
3911     ResourceMark rm;
3912     HandleMark   hm;
3913 
3914     MemRegion dirtyRegion;
3915     {
3916       stopTimer();
3917       // Potential yield point
3918       CMSTokenSync ts(true);
3919       startTimer();
3920       sample_eden();
3921       // Get dirty region starting at nextOffset (inclusive),
3922       // simultaneously clearing it.
3923       dirtyRegion =
3924         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3925       assert(dirtyRegion.start() >= nextAddr,
3926              "returned region inconsistent?");
3927     }
3928     // Remember where the next search should begin.
3929     // The returned region (if non-empty) is a right open interval,
3930     // so lastOffset is obtained from the right end of that
3931     // interval.
3932     lastAddr = dirtyRegion.end();
3933     // Should do something more transparent and less hacky XXX
3934     numDirtyCards =
3935       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3936 
3937     // We'll scan the cards in the dirty region (with periodic
3938     // yields for foreground GC as needed).
3939     if (!dirtyRegion.is_empty()) {
3940       assert(numDirtyCards > 0, "consistency check");
3941       HeapWord* stop_point = NULL;
3942       stopTimer();
3943       // Potential yield point
3944       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3945                                bitMapLock());
3946       startTimer();
3947       {
3948         verify_work_stacks_empty();
3949         verify_overflow_empty();
3950         sample_eden();
3951         stop_point =
3952           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3953       }
3954       if (stop_point != NULL) {
3955         // The careful iteration stopped early either because it found an
3956         // uninitialized object, or because we were in the midst of an
3957         // "abortable preclean", which should now be aborted. Redirty
3958         // the bits corresponding to the partially-scanned or unscanned
3959         // cards. We'll either restart at the next block boundary or
3960         // abort the preclean.
3961         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3962                "Should only be AbortablePreclean.");
3963         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3964         if (should_abort_preclean()) {
3965           break; // out of preclean loop
3966         } else {
3967           // Compute the next address at which preclean should pick up;
3968           // might need bitMapLock in order to read P-bits.
3969           lastAddr = next_card_start_after_block(stop_point);
3970         }
3971       }
3972     } else {
3973       assert(lastAddr == endAddr, "consistency check");
3974       assert(numDirtyCards == 0, "consistency check");
3975       break;
3976     }
3977   }
3978   verify_work_stacks_empty();
3979   verify_overflow_empty();
3980   return cumNumDirtyCards;
3981 }
3982 
3983 // NOTE: preclean_mod_union_table() above and preclean_card_table()
3984 // below are largely identical; if you need to modify
3985 // one of these methods, please check the other method too.
3986 
3987 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
3988   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3989   // strategy: it's similar to precleamModUnionTable above, in that
3990   // we accumulate contiguous ranges of dirty cards, mark these cards
3991   // precleaned, then scan the region covered by these cards.
3992   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
3993   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
3994 
3995   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3996 
3997   size_t numDirtyCards, cumNumDirtyCards;
3998   HeapWord *lastAddr, *nextAddr;
3999 
4000   for (cumNumDirtyCards = numDirtyCards = 0,
4001        nextAddr = lastAddr = startAddr;
4002        nextAddr < endAddr;
4003        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4004 
4005     ResourceMark rm;
4006     HandleMark   hm;
4007 
4008     MemRegion dirtyRegion;
4009     {
4010       // See comments in "Precleaning notes" above on why we
4011       // do this locking. XXX Could the locking overheads be
4012       // too high when dirty cards are sparse? [I don't think so.]
4013       stopTimer();
4014       CMSTokenSync x(true); // is cms thread
4015       startTimer();
4016       sample_eden();
4017       // Get and clear dirty region from card table
4018       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4019                                     MemRegion(nextAddr, endAddr),
4020                                     true,
4021                                     CardTableModRefBS::precleaned_card_val());
4022 
4023       assert(dirtyRegion.start() >= nextAddr,
4024              "returned region inconsistent?");
4025     }
4026     lastAddr = dirtyRegion.end();
4027     numDirtyCards =
4028       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4029 
4030     if (!dirtyRegion.is_empty()) {
4031       stopTimer();
4032       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4033       startTimer();
4034       sample_eden();
4035       verify_work_stacks_empty();
4036       verify_overflow_empty();
4037       HeapWord* stop_point =
4038         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4039       if (stop_point != NULL) {
4040         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4041                "Should only be AbortablePreclean.");
4042         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4043         if (should_abort_preclean()) {
4044           break; // out of preclean loop
4045         } else {
4046           // Compute the next address at which preclean should pick up.
4047           lastAddr = next_card_start_after_block(stop_point);
4048         }
4049       }
4050     } else {
4051       break;
4052     }
4053   }
4054   verify_work_stacks_empty();
4055   verify_overflow_empty();
4056   return cumNumDirtyCards;
4057 }
4058 
4059 class PrecleanKlassClosure : public KlassClosure {
4060   KlassToOopClosure _cm_klass_closure;
4061  public:
4062   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4063   void do_klass(Klass* k) {
4064     if (k->has_accumulated_modified_oops()) {
4065       k->clear_accumulated_modified_oops();
4066 
4067       _cm_klass_closure.do_klass(k);
4068     }
4069   }
4070 };
4071 
4072 // The freelist lock is needed to prevent asserts, is it really needed?
4073 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4074 
4075   cl->set_freelistLock(freelistLock);
4076 
4077   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4078 
4079   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4080   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4081   PrecleanKlassClosure preclean_klass_closure(cl);
4082   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4083 
4084   verify_work_stacks_empty();
4085   verify_overflow_empty();
4086 }
4087 
4088 void CMSCollector::checkpointRootsFinal() {
4089   assert(_collectorState == FinalMarking, "incorrect state transition?");
4090   check_correct_thread_executing();
4091   // world is stopped at this checkpoint
4092   assert(SafepointSynchronize::is_at_safepoint(),
4093          "world should be stopped");
4094   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4095 
4096   verify_work_stacks_empty();
4097   verify_overflow_empty();
4098 
4099   log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4100                 _young_gen->used() / K, _young_gen->capacity() / K);
4101   {
4102     if (CMSScavengeBeforeRemark) {
4103       GenCollectedHeap* gch = GenCollectedHeap::heap();
4104       // Temporarily set flag to false, GCH->do_collection will
4105       // expect it to be false and set to true
4106       FlagSetting fl(gch->_is_gc_active, false);
4107 
4108       GCTraceTime(Trace, gc) tm("Pause Scavenge Before Remark", _gc_timer_cm);
4109 
4110       gch->do_collection(true,                      // full (i.e. force, see below)
4111                          false,                     // !clear_all_soft_refs
4112                          0,                         // size
4113                          false,                     // is_tlab
4114                          GenCollectedHeap::YoungGen // type
4115         );
4116     }
4117     FreelistLocker x(this);
4118     MutexLockerEx y(bitMapLock(),
4119                     Mutex::_no_safepoint_check_flag);
4120     checkpointRootsFinalWork();
4121   }
4122   verify_work_stacks_empty();
4123   verify_overflow_empty();
4124 }
4125 
4126 void CMSCollector::checkpointRootsFinalWork() {
4127   GCTraceTime(Trace, gc) tm("checkpointRootsFinalWork", _gc_timer_cm);
4128 
4129   assert(haveFreelistLocks(), "must have free list locks");
4130   assert_lock_strong(bitMapLock());
4131 
4132   ResourceMark rm;
4133   HandleMark   hm;
4134 
4135   GenCollectedHeap* gch = GenCollectedHeap::heap();
4136 
4137   if (should_unload_classes()) {
4138     CodeCache::gc_prologue();
4139   }
4140   assert(haveFreelistLocks(), "must have free list locks");
4141   assert_lock_strong(bitMapLock());
4142 
4143   // We might assume that we need not fill TLAB's when
4144   // CMSScavengeBeforeRemark is set, because we may have just done
4145   // a scavenge which would have filled all TLAB's -- and besides
4146   // Eden would be empty. This however may not always be the case --
4147   // for instance although we asked for a scavenge, it may not have
4148   // happened because of a JNI critical section. We probably need
4149   // a policy for deciding whether we can in that case wait until
4150   // the critical section releases and then do the remark following
4151   // the scavenge, and skip it here. In the absence of that policy,
4152   // or of an indication of whether the scavenge did indeed occur,
4153   // we cannot rely on TLAB's having been filled and must do
4154   // so here just in case a scavenge did not happen.
4155   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4156   // Update the saved marks which may affect the root scans.
4157   gch->save_marks();
4158 
4159   print_eden_and_survivor_chunk_arrays();
4160 
4161   {
4162 #if defined(COMPILER2) || INCLUDE_JVMCI
4163     DerivedPointerTableDeactivate dpt_deact;
4164 #endif
4165 
4166     // Note on the role of the mod union table:
4167     // Since the marker in "markFromRoots" marks concurrently with
4168     // mutators, it is possible for some reachable objects not to have been
4169     // scanned. For instance, an only reference to an object A was
4170     // placed in object B after the marker scanned B. Unless B is rescanned,
4171     // A would be collected. Such updates to references in marked objects
4172     // are detected via the mod union table which is the set of all cards
4173     // dirtied since the first checkpoint in this GC cycle and prior to
4174     // the most recent young generation GC, minus those cleaned up by the
4175     // concurrent precleaning.
4176     if (CMSParallelRemarkEnabled) {
4177       GCTraceTime(Debug, gc) t("Rescan (parallel)", _gc_timer_cm);
4178       do_remark_parallel();
4179     } else {
4180       GCTraceTime(Debug, gc) t("Rescan (non-parallel)", _gc_timer_cm);
4181       do_remark_non_parallel();
4182     }
4183   }
4184   verify_work_stacks_empty();
4185   verify_overflow_empty();
4186 
4187   {
4188     GCTraceTime(Trace, gc) ts("refProcessingWork", _gc_timer_cm);
4189     refProcessingWork();
4190   }
4191   verify_work_stacks_empty();
4192   verify_overflow_empty();
4193 
4194   if (should_unload_classes()) {
4195     CodeCache::gc_epilogue();
4196   }
4197   JvmtiExport::gc_epilogue();
4198 
4199   // If we encountered any (marking stack / work queue) overflow
4200   // events during the current CMS cycle, take appropriate
4201   // remedial measures, where possible, so as to try and avoid
4202   // recurrence of that condition.
4203   assert(_markStack.isEmpty(), "No grey objects");
4204   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4205                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4206   if (ser_ovflw > 0) {
4207     log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4208                          _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4209     _markStack.expand();
4210     _ser_pmc_remark_ovflw = 0;
4211     _ser_pmc_preclean_ovflw = 0;
4212     _ser_kac_preclean_ovflw = 0;
4213     _ser_kac_ovflw = 0;
4214   }
4215   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4216      log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4217                           _par_pmc_remark_ovflw, _par_kac_ovflw);
4218      _par_pmc_remark_ovflw = 0;
4219     _par_kac_ovflw = 0;
4220   }
4221    if (_markStack._hit_limit > 0) {
4222      log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4223                           _markStack._hit_limit);
4224    }
4225    if (_markStack._failed_double > 0) {
4226      log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4227                           _markStack._failed_double, _markStack.capacity());
4228    }
4229   _markStack._hit_limit = 0;
4230   _markStack._failed_double = 0;
4231 
4232   if ((VerifyAfterGC || VerifyDuringGC) &&
4233       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4234     verify_after_remark();
4235   }
4236 
4237   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4238 
4239   // Change under the freelistLocks.
4240   _collectorState = Sweeping;
4241   // Call isAllClear() under bitMapLock
4242   assert(_modUnionTable.isAllClear(),
4243       "Should be clear by end of the final marking");
4244   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4245       "Should be clear by end of the final marking");
4246 }
4247 
4248 void CMSParInitialMarkTask::work(uint worker_id) {
4249   elapsedTimer _timer;
4250   ResourceMark rm;
4251   HandleMark   hm;
4252 
4253   // ---------- scan from roots --------------
4254   _timer.start();
4255   GenCollectedHeap* gch = GenCollectedHeap::heap();
4256   ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4257 
4258   // ---------- young gen roots --------------
4259   {
4260     work_on_young_gen_roots(worker_id, &par_mri_cl);
4261     _timer.stop();
4262     log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4263   }
4264 
4265   // ---------- remaining roots --------------
4266   _timer.reset();
4267   _timer.start();
4268 
4269   CLDToOopClosure cld_closure(&par_mri_cl, true);
4270 
4271   gch->gen_process_roots(_strong_roots_scope,
4272                          GenCollectedHeap::OldGen,
4273                          false,     // yg was scanned above
4274                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4275                          _collector->should_unload_classes(),
4276                          &par_mri_cl,
4277                          NULL,
4278                          &cld_closure);
4279   assert(_collector->should_unload_classes()
4280          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4281          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4282   _timer.stop();
4283   log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4284 }
4285 
4286 // Parallel remark task
4287 class CMSParRemarkTask: public CMSParMarkTask {
4288   CompactibleFreeListSpace* _cms_space;
4289 
4290   // The per-thread work queues, available here for stealing.
4291   OopTaskQueueSet*       _task_queues;
4292   ParallelTaskTerminator _term;
4293   StrongRootsScope*      _strong_roots_scope;
4294 
4295  public:
4296   // A value of 0 passed to n_workers will cause the number of
4297   // workers to be taken from the active workers in the work gang.
4298   CMSParRemarkTask(CMSCollector* collector,
4299                    CompactibleFreeListSpace* cms_space,
4300                    uint n_workers, WorkGang* workers,
4301                    OopTaskQueueSet* task_queues,
4302                    StrongRootsScope* strong_roots_scope):
4303     CMSParMarkTask("Rescan roots and grey objects in parallel",
4304                    collector, n_workers),
4305     _cms_space(cms_space),
4306     _task_queues(task_queues),
4307     _term(n_workers, task_queues),
4308     _strong_roots_scope(strong_roots_scope) { }
4309 
4310   OopTaskQueueSet* task_queues() { return _task_queues; }
4311 
4312   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4313 
4314   ParallelTaskTerminator* terminator() { return &_term; }
4315   uint n_workers() { return _n_workers; }
4316 
4317   void work(uint worker_id);
4318 
4319  private:
4320   // ... of  dirty cards in old space
4321   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4322                                   ParMarkRefsIntoAndScanClosure* cl);
4323 
4324   // ... work stealing for the above
4325   void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl, int* seed);
4326 };
4327 
4328 class RemarkKlassClosure : public KlassClosure {
4329   KlassToOopClosure _cm_klass_closure;
4330  public:
4331   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4332   void do_klass(Klass* k) {
4333     // Check if we have modified any oops in the Klass during the concurrent marking.
4334     if (k->has_accumulated_modified_oops()) {
4335       k->clear_accumulated_modified_oops();
4336 
4337       // We could have transfered the current modified marks to the accumulated marks,
4338       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4339     } else if (k->has_modified_oops()) {
4340       // Don't clear anything, this info is needed by the next young collection.
4341     } else {
4342       // No modified oops in the Klass.
4343       return;
4344     }
4345 
4346     // The klass has modified fields, need to scan the klass.
4347     _cm_klass_closure.do_klass(k);
4348   }
4349 };
4350 
4351 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4352   ParNewGeneration* young_gen = _collector->_young_gen;
4353   ContiguousSpace* eden_space = young_gen->eden();
4354   ContiguousSpace* from_space = young_gen->from();
4355   ContiguousSpace* to_space   = young_gen->to();
4356 
4357   HeapWord** eca = _collector->_eden_chunk_array;
4358   size_t     ect = _collector->_eden_chunk_index;
4359   HeapWord** sca = _collector->_survivor_chunk_array;
4360   size_t     sct = _collector->_survivor_chunk_index;
4361 
4362   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4363   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4364 
4365   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4366   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4367   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4368 }
4369 
4370 // work_queue(i) is passed to the closure
4371 // ParMarkRefsIntoAndScanClosure.  The "i" parameter
4372 // also is passed to do_dirty_card_rescan_tasks() and to
4373 // do_work_steal() to select the i-th task_queue.
4374 
4375 void CMSParRemarkTask::work(uint worker_id) {
4376   elapsedTimer _timer;
4377   ResourceMark rm;
4378   HandleMark   hm;
4379 
4380   // ---------- rescan from roots --------------
4381   _timer.start();
4382   GenCollectedHeap* gch = GenCollectedHeap::heap();
4383   ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4384     _collector->_span, _collector->ref_processor(),
4385     &(_collector->_markBitMap),
4386     work_queue(worker_id));
4387 
4388   // Rescan young gen roots first since these are likely
4389   // coarsely partitioned and may, on that account, constitute
4390   // the critical path; thus, it's best to start off that
4391   // work first.
4392   // ---------- young gen roots --------------
4393   {
4394     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4395     _timer.stop();
4396     log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4397   }
4398 
4399   // ---------- remaining roots --------------
4400   _timer.reset();
4401   _timer.start();
4402   gch->gen_process_roots(_strong_roots_scope,
4403                          GenCollectedHeap::OldGen,
4404                          false,     // yg was scanned above
4405                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4406                          _collector->should_unload_classes(),
4407                          &par_mrias_cl,
4408                          NULL,
4409                          NULL);     // The dirty klasses will be handled below
4410 
4411   assert(_collector->should_unload_classes()
4412          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4413          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4414   _timer.stop();
4415   log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4416 
4417   // ---------- unhandled CLD scanning ----------
4418   if (worker_id == 0) { // Single threaded at the moment.
4419     _timer.reset();
4420     _timer.start();
4421 
4422     // Scan all new class loader data objects and new dependencies that were
4423     // introduced during concurrent marking.
4424     ResourceMark rm;
4425     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4426     for (int i = 0; i < array->length(); i++) {
4427       par_mrias_cl.do_cld_nv(array->at(i));
4428     }
4429 
4430     // We don't need to keep track of new CLDs anymore.
4431     ClassLoaderDataGraph::remember_new_clds(false);
4432 
4433     _timer.stop();
4434     log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4435   }
4436 
4437   // ---------- dirty klass scanning ----------
4438   if (worker_id == 0) { // Single threaded at the moment.
4439     _timer.reset();
4440     _timer.start();
4441 
4442     // Scan all classes that was dirtied during the concurrent marking phase.
4443     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4444     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4445 
4446     _timer.stop();
4447     log_trace(gc, task)("Finished dirty klass scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4448   }
4449 
4450   // We might have added oops to ClassLoaderData::_handles during the
4451   // concurrent marking phase. These oops point to newly allocated objects
4452   // that are guaranteed to be kept alive. Either by the direct allocation
4453   // code, or when the young collector processes the roots. Hence,
4454   // we don't have to revisit the _handles block during the remark phase.
4455 
4456   // ---------- rescan dirty cards ------------
4457   _timer.reset();
4458   _timer.start();
4459 
4460   // Do the rescan tasks for each of the two spaces
4461   // (cms_space) in turn.
4462   // "worker_id" is passed to select the task_queue for "worker_id"
4463   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4464   _timer.stop();
4465   log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4466 
4467   // ---------- steal work from other threads ...
4468   // ---------- ... and drain overflow list.
4469   _timer.reset();
4470   _timer.start();
4471   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4472   _timer.stop();
4473   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4474 }
4475 
4476 // Note that parameter "i" is not used.
4477 void
4478 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4479   OopsInGenClosure* cl, ContiguousSpace* space,
4480   HeapWord** chunk_array, size_t chunk_top) {
4481   // Until all tasks completed:
4482   // . claim an unclaimed task
4483   // . compute region boundaries corresponding to task claimed
4484   //   using chunk_array
4485   // . par_oop_iterate(cl) over that region
4486 
4487   ResourceMark rm;
4488   HandleMark   hm;
4489 
4490   SequentialSubTasksDone* pst = space->par_seq_tasks();
4491 
4492   uint nth_task = 0;
4493   uint n_tasks  = pst->n_tasks();
4494 
4495   if (n_tasks > 0) {
4496     assert(pst->valid(), "Uninitialized use?");
4497     HeapWord *start, *end;
4498     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4499       // We claimed task # nth_task; compute its boundaries.
4500       if (chunk_top == 0) {  // no samples were taken
4501         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4502         start = space->bottom();
4503         end   = space->top();
4504       } else if (nth_task == 0) {
4505         start = space->bottom();
4506         end   = chunk_array[nth_task];
4507       } else if (nth_task < (uint)chunk_top) {
4508         assert(nth_task >= 1, "Control point invariant");
4509         start = chunk_array[nth_task - 1];
4510         end   = chunk_array[nth_task];
4511       } else {
4512         assert(nth_task == (uint)chunk_top, "Control point invariant");
4513         start = chunk_array[chunk_top - 1];
4514         end   = space->top();
4515       }
4516       MemRegion mr(start, end);
4517       // Verify that mr is in space
4518       assert(mr.is_empty() || space->used_region().contains(mr),
4519              "Should be in space");
4520       // Verify that "start" is an object boundary
4521       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4522              "Should be an oop");
4523       space->par_oop_iterate(mr, cl);
4524     }
4525     pst->all_tasks_completed();
4526   }
4527 }
4528 
4529 void
4530 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4531   CompactibleFreeListSpace* sp, int i,
4532   ParMarkRefsIntoAndScanClosure* cl) {
4533   // Until all tasks completed:
4534   // . claim an unclaimed task
4535   // . compute region boundaries corresponding to task claimed
4536   // . transfer dirty bits ct->mut for that region
4537   // . apply rescanclosure to dirty mut bits for that region
4538 
4539   ResourceMark rm;
4540   HandleMark   hm;
4541 
4542   OopTaskQueue* work_q = work_queue(i);
4543   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4544   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4545   // CAUTION: This closure has state that persists across calls to
4546   // the work method dirty_range_iterate_clear() in that it has
4547   // embedded in it a (subtype of) UpwardsObjectClosure. The
4548   // use of that state in the embedded UpwardsObjectClosure instance
4549   // assumes that the cards are always iterated (even if in parallel
4550   // by several threads) in monotonically increasing order per each
4551   // thread. This is true of the implementation below which picks
4552   // card ranges (chunks) in monotonically increasing order globally
4553   // and, a-fortiori, in monotonically increasing order per thread
4554   // (the latter order being a subsequence of the former).
4555   // If the work code below is ever reorganized into a more chaotic
4556   // work-partitioning form than the current "sequential tasks"
4557   // paradigm, the use of that persistent state will have to be
4558   // revisited and modified appropriately. See also related
4559   // bug 4756801 work on which should examine this code to make
4560   // sure that the changes there do not run counter to the
4561   // assumptions made here and necessary for correctness and
4562   // efficiency. Note also that this code might yield inefficient
4563   // behavior in the case of very large objects that span one or
4564   // more work chunks. Such objects would potentially be scanned
4565   // several times redundantly. Work on 4756801 should try and
4566   // address that performance anomaly if at all possible. XXX
4567   MemRegion  full_span  = _collector->_span;
4568   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4569   MarkFromDirtyCardsClosure
4570     greyRescanClosure(_collector, full_span, // entire span of interest
4571                       sp, bm, work_q, cl);
4572 
4573   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4574   assert(pst->valid(), "Uninitialized use?");
4575   uint nth_task = 0;
4576   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4577   MemRegion span = sp->used_region();
4578   HeapWord* start_addr = span.start();
4579   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4580                                            alignment);
4581   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4582   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4583          start_addr, "Check alignment");
4584   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4585          chunk_size, "Check alignment");
4586 
4587   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4588     // Having claimed the nth_task, compute corresponding mem-region,
4589     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4590     // The alignment restriction ensures that we do not need any
4591     // synchronization with other gang-workers while setting or
4592     // clearing bits in thus chunk of the MUT.
4593     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4594                                     start_addr + (nth_task+1)*chunk_size);
4595     // The last chunk's end might be way beyond end of the
4596     // used region. In that case pull back appropriately.
4597     if (this_span.end() > end_addr) {
4598       this_span.set_end(end_addr);
4599       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4600     }
4601     // Iterate over the dirty cards covering this chunk, marking them
4602     // precleaned, and setting the corresponding bits in the mod union
4603     // table. Since we have been careful to partition at Card and MUT-word
4604     // boundaries no synchronization is needed between parallel threads.
4605     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4606                                                  &modUnionClosure);
4607 
4608     // Having transferred these marks into the modUnionTable,
4609     // rescan the marked objects on the dirty cards in the modUnionTable.
4610     // Even if this is at a synchronous collection, the initial marking
4611     // may have been done during an asynchronous collection so there
4612     // may be dirty bits in the mod-union table.
4613     _collector->_modUnionTable.dirty_range_iterate_clear(
4614                   this_span, &greyRescanClosure);
4615     _collector->_modUnionTable.verifyNoOneBitsInRange(
4616                                  this_span.start(),
4617                                  this_span.end());
4618   }
4619   pst->all_tasks_completed();  // declare that i am done
4620 }
4621 
4622 // . see if we can share work_queues with ParNew? XXX
4623 void
4624 CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl,
4625                                 int* seed) {
4626   OopTaskQueue* work_q = work_queue(i);
4627   NOT_PRODUCT(int num_steals = 0;)
4628   oop obj_to_scan;
4629   CMSBitMap* bm = &(_collector->_markBitMap);
4630 
4631   while (true) {
4632     // Completely finish any left over work from (an) earlier round(s)
4633     cl->trim_queue(0);
4634     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4635                                          (size_t)ParGCDesiredObjsFromOverflowList);
4636     // Now check if there's any work in the overflow list
4637     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4638     // only affects the number of attempts made to get work from the
4639     // overflow list and does not affect the number of workers.  Just
4640     // pass ParallelGCThreads so this behavior is unchanged.
4641     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4642                                                 work_q,
4643                                                 ParallelGCThreads)) {
4644       // found something in global overflow list;
4645       // not yet ready to go stealing work from others.
4646       // We'd like to assert(work_q->size() != 0, ...)
4647       // because we just took work from the overflow list,
4648       // but of course we can't since all of that could have
4649       // been already stolen from us.
4650       // "He giveth and He taketh away."
4651       continue;
4652     }
4653     // Verify that we have no work before we resort to stealing
4654     assert(work_q->size() == 0, "Have work, shouldn't steal");
4655     // Try to steal from other queues that have work
4656     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4657       NOT_PRODUCT(num_steals++;)
4658       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4659       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4660       // Do scanning work
4661       obj_to_scan->oop_iterate(cl);
4662       // Loop around, finish this work, and try to steal some more
4663     } else if (terminator()->offer_termination()) {
4664         break;  // nirvana from the infinite cycle
4665     }
4666   }
4667   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4668   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4669          "Else our work is not yet done");
4670 }
4671 
4672 // Record object boundaries in _eden_chunk_array by sampling the eden
4673 // top in the slow-path eden object allocation code path and record
4674 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4675 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4676 // sampling in sample_eden() that activates during the part of the
4677 // preclean phase.
4678 void CMSCollector::sample_eden_chunk() {
4679   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4680     if (_eden_chunk_lock->try_lock()) {
4681       // Record a sample. This is the critical section. The contents
4682       // of the _eden_chunk_array have to be non-decreasing in the
4683       // address order.
4684       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4685       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4686              "Unexpected state of Eden");
4687       if (_eden_chunk_index == 0 ||
4688           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4689            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4690                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4691         _eden_chunk_index++;  // commit sample
4692       }
4693       _eden_chunk_lock->unlock();
4694     }
4695   }
4696 }
4697 
4698 // Return a thread-local PLAB recording array, as appropriate.
4699 void* CMSCollector::get_data_recorder(int thr_num) {
4700   if (_survivor_plab_array != NULL &&
4701       (CMSPLABRecordAlways ||
4702        (_collectorState > Marking && _collectorState < FinalMarking))) {
4703     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4704     ChunkArray* ca = &_survivor_plab_array[thr_num];
4705     ca->reset();   // clear it so that fresh data is recorded
4706     return (void*) ca;
4707   } else {
4708     return NULL;
4709   }
4710 }
4711 
4712 // Reset all the thread-local PLAB recording arrays
4713 void CMSCollector::reset_survivor_plab_arrays() {
4714   for (uint i = 0; i < ParallelGCThreads; i++) {
4715     _survivor_plab_array[i].reset();
4716   }
4717 }
4718 
4719 // Merge the per-thread plab arrays into the global survivor chunk
4720 // array which will provide the partitioning of the survivor space
4721 // for CMS initial scan and rescan.
4722 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4723                                               int no_of_gc_threads) {
4724   assert(_survivor_plab_array  != NULL, "Error");
4725   assert(_survivor_chunk_array != NULL, "Error");
4726   assert(_collectorState == FinalMarking ||
4727          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4728   for (int j = 0; j < no_of_gc_threads; j++) {
4729     _cursor[j] = 0;
4730   }
4731   HeapWord* top = surv->top();
4732   size_t i;
4733   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4734     HeapWord* min_val = top;          // Higher than any PLAB address
4735     uint      min_tid = 0;            // position of min_val this round
4736     for (int j = 0; j < no_of_gc_threads; j++) {
4737       ChunkArray* cur_sca = &_survivor_plab_array[j];
4738       if (_cursor[j] == cur_sca->end()) {
4739         continue;
4740       }
4741       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4742       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4743       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4744       if (cur_val < min_val) {
4745         min_tid = j;
4746         min_val = cur_val;
4747       } else {
4748         assert(cur_val < top, "All recorded addresses should be less");
4749       }
4750     }
4751     // At this point min_val and min_tid are respectively
4752     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4753     // and the thread (j) that witnesses that address.
4754     // We record this address in the _survivor_chunk_array[i]
4755     // and increment _cursor[min_tid] prior to the next round i.
4756     if (min_val == top) {
4757       break;
4758     }
4759     _survivor_chunk_array[i] = min_val;
4760     _cursor[min_tid]++;
4761   }
4762   // We are all done; record the size of the _survivor_chunk_array
4763   _survivor_chunk_index = i; // exclusive: [0, i)
4764   log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4765   // Verify that we used up all the recorded entries
4766   #ifdef ASSERT
4767     size_t total = 0;
4768     for (int j = 0; j < no_of_gc_threads; j++) {
4769       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4770       total += _cursor[j];
4771     }
4772     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4773     // Check that the merged array is in sorted order
4774     if (total > 0) {
4775       for (size_t i = 0; i < total - 1; i++) {
4776         log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4777                                      i, p2i(_survivor_chunk_array[i]));
4778         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4779                "Not sorted");
4780       }
4781     }
4782   #endif // ASSERT
4783 }
4784 
4785 // Set up the space's par_seq_tasks structure for work claiming
4786 // for parallel initial scan and rescan of young gen.
4787 // See ParRescanTask where this is currently used.
4788 void
4789 CMSCollector::
4790 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4791   assert(n_threads > 0, "Unexpected n_threads argument");
4792 
4793   // Eden space
4794   if (!_young_gen->eden()->is_empty()) {
4795     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4796     assert(!pst->valid(), "Clobbering existing data?");
4797     // Each valid entry in [0, _eden_chunk_index) represents a task.
4798     size_t n_tasks = _eden_chunk_index + 1;
4799     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4800     // Sets the condition for completion of the subtask (how many threads
4801     // need to finish in order to be done).
4802     pst->set_n_threads(n_threads);
4803     pst->set_n_tasks((int)n_tasks);
4804   }
4805 
4806   // Merge the survivor plab arrays into _survivor_chunk_array
4807   if (_survivor_plab_array != NULL) {
4808     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4809   } else {
4810     assert(_survivor_chunk_index == 0, "Error");
4811   }
4812 
4813   // To space
4814   {
4815     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4816     assert(!pst->valid(), "Clobbering existing data?");
4817     // Sets the condition for completion of the subtask (how many threads
4818     // need to finish in order to be done).
4819     pst->set_n_threads(n_threads);
4820     pst->set_n_tasks(1);
4821     assert(pst->valid(), "Error");
4822   }
4823 
4824   // From space
4825   {
4826     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4827     assert(!pst->valid(), "Clobbering existing data?");
4828     size_t n_tasks = _survivor_chunk_index + 1;
4829     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4830     // Sets the condition for completion of the subtask (how many threads
4831     // need to finish in order to be done).
4832     pst->set_n_threads(n_threads);
4833     pst->set_n_tasks((int)n_tasks);
4834     assert(pst->valid(), "Error");
4835   }
4836 }
4837 
4838 // Parallel version of remark
4839 void CMSCollector::do_remark_parallel() {
4840   GenCollectedHeap* gch = GenCollectedHeap::heap();
4841   WorkGang* workers = gch->workers();
4842   assert(workers != NULL, "Need parallel worker threads.");
4843   // Choose to use the number of GC workers most recently set
4844   // into "active_workers".
4845   uint n_workers = workers->active_workers();
4846 
4847   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4848 
4849   StrongRootsScope srs(n_workers);
4850 
4851   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4852 
4853   // We won't be iterating over the cards in the card table updating
4854   // the younger_gen cards, so we shouldn't call the following else
4855   // the verification code as well as subsequent younger_refs_iterate
4856   // code would get confused. XXX
4857   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4858 
4859   // The young gen rescan work will not be done as part of
4860   // process_roots (which currently doesn't know how to
4861   // parallelize such a scan), but rather will be broken up into
4862   // a set of parallel tasks (via the sampling that the [abortable]
4863   // preclean phase did of eden, plus the [two] tasks of
4864   // scanning the [two] survivor spaces. Further fine-grain
4865   // parallelization of the scanning of the survivor spaces
4866   // themselves, and of precleaning of the young gen itself
4867   // is deferred to the future.
4868   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4869 
4870   // The dirty card rescan work is broken up into a "sequence"
4871   // of parallel tasks (per constituent space) that are dynamically
4872   // claimed by the parallel threads.
4873   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4874 
4875   // It turns out that even when we're using 1 thread, doing the work in a
4876   // separate thread causes wide variance in run times.  We can't help this
4877   // in the multi-threaded case, but we special-case n=1 here to get
4878   // repeatable measurements of the 1-thread overhead of the parallel code.
4879   if (n_workers > 1) {
4880     // Make refs discovery MT-safe, if it isn't already: it may not
4881     // necessarily be so, since it's possible that we are doing
4882     // ST marking.
4883     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4884     workers->run_task(&tsk);
4885   } else {
4886     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4887     tsk.work(0);
4888   }
4889 
4890   // restore, single-threaded for now, any preserved marks
4891   // as a result of work_q overflow
4892   restore_preserved_marks_if_any();
4893 }
4894 
4895 // Non-parallel version of remark
4896 void CMSCollector::do_remark_non_parallel() {
4897   ResourceMark rm;
4898   HandleMark   hm;
4899   GenCollectedHeap* gch = GenCollectedHeap::heap();
4900   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4901 
4902   MarkRefsIntoAndScanClosure
4903     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4904              &_markStack, this,
4905              false /* should_yield */, false /* not precleaning */);
4906   MarkFromDirtyCardsClosure
4907     markFromDirtyCardsClosure(this, _span,
4908                               NULL,  // space is set further below
4909                               &_markBitMap, &_markStack, &mrias_cl);
4910   {
4911     GCTraceTime(Trace, gc) t("Grey Object Rescan", _gc_timer_cm);
4912     // Iterate over the dirty cards, setting the corresponding bits in the
4913     // mod union table.
4914     {
4915       ModUnionClosure modUnionClosure(&_modUnionTable);
4916       _ct->ct_bs()->dirty_card_iterate(
4917                       _cmsGen->used_region(),
4918                       &modUnionClosure);
4919     }
4920     // Having transferred these marks into the modUnionTable, we just need
4921     // to rescan the marked objects on the dirty cards in the modUnionTable.
4922     // The initial marking may have been done during an asynchronous
4923     // collection so there may be dirty bits in the mod-union table.
4924     const int alignment =
4925       CardTableModRefBS::card_size * BitsPerWord;
4926     {
4927       // ... First handle dirty cards in CMS gen
4928       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4929       MemRegion ur = _cmsGen->used_region();
4930       HeapWord* lb = ur.start();
4931       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
4932       MemRegion cms_span(lb, ub);
4933       _modUnionTable.dirty_range_iterate_clear(cms_span,
4934                                                &markFromDirtyCardsClosure);
4935       verify_work_stacks_empty();
4936       log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4937     }
4938   }
4939   if (VerifyDuringGC &&
4940       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4941     HandleMark hm;  // Discard invalid handles created during verification
4942     Universe::verify();
4943   }
4944   {
4945     GCTraceTime(Trace, gc) t("Root Rescan", _gc_timer_cm);
4946 
4947     verify_work_stacks_empty();
4948 
4949     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4950     StrongRootsScope srs(1);
4951 
4952     gch->gen_process_roots(&srs,
4953                            GenCollectedHeap::OldGen,
4954                            true,  // young gen as roots
4955                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
4956                            should_unload_classes(),
4957                            &mrias_cl,
4958                            NULL,
4959                            NULL); // The dirty klasses will be handled below
4960 
4961     assert(should_unload_classes()
4962            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4963            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4964   }
4965 
4966   {
4967     GCTraceTime(Trace, gc) t("Visit Unhandled CLDs", _gc_timer_cm);
4968 
4969     verify_work_stacks_empty();
4970 
4971     // Scan all class loader data objects that might have been introduced
4972     // during concurrent marking.
4973     ResourceMark rm;
4974     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4975     for (int i = 0; i < array->length(); i++) {
4976       mrias_cl.do_cld_nv(array->at(i));
4977     }
4978 
4979     // We don't need to keep track of new CLDs anymore.
4980     ClassLoaderDataGraph::remember_new_clds(false);
4981 
4982     verify_work_stacks_empty();
4983   }
4984 
4985   {
4986     GCTraceTime(Trace, gc) t("Dirty Klass Scan", _gc_timer_cm);
4987 
4988     verify_work_stacks_empty();
4989 
4990     RemarkKlassClosure remark_klass_closure(&mrias_cl);
4991     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4992 
4993     verify_work_stacks_empty();
4994   }
4995 
4996   // We might have added oops to ClassLoaderData::_handles during the
4997   // concurrent marking phase. These oops point to newly allocated objects
4998   // that are guaranteed to be kept alive. Either by the direct allocation
4999   // code, or when the young collector processes the roots. Hence,
5000   // we don't have to revisit the _handles block during the remark phase.
5001 
5002   verify_work_stacks_empty();
5003   // Restore evacuated mark words, if any, used for overflow list links
5004   restore_preserved_marks_if_any();
5005 
5006   verify_overflow_empty();
5007 }
5008 
5009 ////////////////////////////////////////////////////////
5010 // Parallel Reference Processing Task Proxy Class
5011 ////////////////////////////////////////////////////////
5012 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5013   OopTaskQueueSet*       _queues;
5014   ParallelTaskTerminator _terminator;
5015  public:
5016   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5017     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5018   ParallelTaskTerminator* terminator() { return &_terminator; }
5019   OopTaskQueueSet* queues() { return _queues; }
5020 };
5021 
5022 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5023   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5024   CMSCollector*          _collector;
5025   CMSBitMap*             _mark_bit_map;
5026   const MemRegion        _span;
5027   ProcessTask&           _task;
5028 
5029 public:
5030   CMSRefProcTaskProxy(ProcessTask&     task,
5031                       CMSCollector*    collector,
5032                       const MemRegion& span,
5033                       CMSBitMap*       mark_bit_map,
5034                       AbstractWorkGang* workers,
5035                       OopTaskQueueSet* task_queues):
5036     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5037       task_queues,
5038       workers->active_workers()),
5039     _task(task),
5040     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5041   {
5042     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5043            "Inconsistency in _span");
5044   }
5045 
5046   OopTaskQueueSet* task_queues() { return queues(); }
5047 
5048   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5049 
5050   void do_work_steal(int i,
5051                      CMSParDrainMarkingStackClosure* drain,
5052                      CMSParKeepAliveClosure* keep_alive,
5053                      int* seed);
5054 
5055   virtual void work(uint worker_id);
5056 };
5057 
5058 void CMSRefProcTaskProxy::work(uint worker_id) {
5059   ResourceMark rm;
5060   HandleMark hm;
5061   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5062   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5063                                         _mark_bit_map,
5064                                         work_queue(worker_id));
5065   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5066                                                  _mark_bit_map,
5067                                                  work_queue(worker_id));
5068   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5069   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5070   if (_task.marks_oops_alive()) {
5071     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5072                   _collector->hash_seed(worker_id));
5073   }
5074   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5075   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5076 }
5077 
5078 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5079   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5080   EnqueueTask& _task;
5081 
5082 public:
5083   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5084     : AbstractGangTask("Enqueue reference objects in parallel"),
5085       _task(task)
5086   { }
5087 
5088   virtual void work(uint worker_id)
5089   {
5090     _task.work(worker_id);
5091   }
5092 };
5093 
5094 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5095   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5096    _span(span),
5097    _bit_map(bit_map),
5098    _work_queue(work_queue),
5099    _mark_and_push(collector, span, bit_map, work_queue),
5100    _low_water_mark(MIN2((work_queue->max_elems()/4),
5101                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5102 { }
5103 
5104 // . see if we can share work_queues with ParNew? XXX
5105 void CMSRefProcTaskProxy::do_work_steal(int i,
5106   CMSParDrainMarkingStackClosure* drain,
5107   CMSParKeepAliveClosure* keep_alive,
5108   int* seed) {
5109   OopTaskQueue* work_q = work_queue(i);
5110   NOT_PRODUCT(int num_steals = 0;)
5111   oop obj_to_scan;
5112 
5113   while (true) {
5114     // Completely finish any left over work from (an) earlier round(s)
5115     drain->trim_queue(0);
5116     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5117                                          (size_t)ParGCDesiredObjsFromOverflowList);
5118     // Now check if there's any work in the overflow list
5119     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5120     // only affects the number of attempts made to get work from the
5121     // overflow list and does not affect the number of workers.  Just
5122     // pass ParallelGCThreads so this behavior is unchanged.
5123     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5124                                                 work_q,
5125                                                 ParallelGCThreads)) {
5126       // Found something in global overflow list;
5127       // not yet ready to go stealing work from others.
5128       // We'd like to assert(work_q->size() != 0, ...)
5129       // because we just took work from the overflow list,
5130       // but of course we can't, since all of that might have
5131       // been already stolen from us.
5132       continue;
5133     }
5134     // Verify that we have no work before we resort to stealing
5135     assert(work_q->size() == 0, "Have work, shouldn't steal");
5136     // Try to steal from other queues that have work
5137     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5138       NOT_PRODUCT(num_steals++;)
5139       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5140       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5141       // Do scanning work
5142       obj_to_scan->oop_iterate(keep_alive);
5143       // Loop around, finish this work, and try to steal some more
5144     } else if (terminator()->offer_termination()) {
5145       break;  // nirvana from the infinite cycle
5146     }
5147   }
5148   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5149 }
5150 
5151 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5152 {
5153   GenCollectedHeap* gch = GenCollectedHeap::heap();
5154   WorkGang* workers = gch->workers();
5155   assert(workers != NULL, "Need parallel worker threads.");
5156   CMSRefProcTaskProxy rp_task(task, &_collector,
5157                               _collector.ref_processor()->span(),
5158                               _collector.markBitMap(),
5159                               workers, _collector.task_queues());
5160   workers->run_task(&rp_task);
5161 }
5162 
5163 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5164 {
5165 
5166   GenCollectedHeap* gch = GenCollectedHeap::heap();
5167   WorkGang* workers = gch->workers();
5168   assert(workers != NULL, "Need parallel worker threads.");
5169   CMSRefEnqueueTaskProxy enq_task(task);
5170   workers->run_task(&enq_task);
5171 }
5172 
5173 void CMSCollector::refProcessingWork() {
5174   ResourceMark rm;
5175   HandleMark   hm;
5176 
5177   ReferenceProcessor* rp = ref_processor();
5178   assert(rp->span().equals(_span), "Spans should be equal");
5179   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5180   // Process weak references.
5181   rp->setup_policy(false);
5182   verify_work_stacks_empty();
5183 
5184   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5185                                           &_markStack, false /* !preclean */);
5186   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5187                                 _span, &_markBitMap, &_markStack,
5188                                 &cmsKeepAliveClosure, false /* !preclean */);
5189   {
5190     GCTraceTime(Debug, gc) t("Weak Refs Processing", _gc_timer_cm);
5191 
5192     ReferenceProcessorStats stats;
5193     if (rp->processing_is_mt()) {
5194       // Set the degree of MT here.  If the discovery is done MT, there
5195       // may have been a different number of threads doing the discovery
5196       // and a different number of discovered lists may have Ref objects.
5197       // That is OK as long as the Reference lists are balanced (see
5198       // balance_all_queues() and balance_queues()).
5199       GenCollectedHeap* gch = GenCollectedHeap::heap();
5200       uint active_workers = ParallelGCThreads;
5201       WorkGang* workers = gch->workers();
5202       if (workers != NULL) {
5203         active_workers = workers->active_workers();
5204         // The expectation is that active_workers will have already
5205         // been set to a reasonable value.  If it has not been set,
5206         // investigate.
5207         assert(active_workers > 0, "Should have been set during scavenge");
5208       }
5209       rp->set_active_mt_degree(active_workers);
5210       CMSRefProcTaskExecutor task_executor(*this);
5211       stats = rp->process_discovered_references(&_is_alive_closure,
5212                                         &cmsKeepAliveClosure,
5213                                         &cmsDrainMarkingStackClosure,
5214                                         &task_executor,
5215                                         _gc_timer_cm);
5216     } else {
5217       stats = rp->process_discovered_references(&_is_alive_closure,
5218                                         &cmsKeepAliveClosure,
5219                                         &cmsDrainMarkingStackClosure,
5220                                         NULL,
5221                                         _gc_timer_cm);
5222     }
5223     _gc_tracer_cm->report_gc_reference_stats(stats);
5224 
5225   }
5226 
5227   // This is the point where the entire marking should have completed.
5228   verify_work_stacks_empty();
5229 
5230   if (should_unload_classes()) {
5231     {
5232       GCTraceTime(Debug, gc) t("Class Unloading", _gc_timer_cm);
5233 
5234       // Unload classes and purge the SystemDictionary.
5235       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5236 
5237       // Unload nmethods.
5238       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5239 
5240       // Prune dead klasses from subklass/sibling/implementor lists.
5241       Klass::clean_weak_klass_links(&_is_alive_closure);
5242     }
5243 
5244     {
5245       GCTraceTime(Debug, gc) t("Scrub Symbol Table", _gc_timer_cm);
5246       // Clean up unreferenced symbols in symbol table.
5247       SymbolTable::unlink();
5248     }
5249 
5250     {
5251       GCTraceTime(Debug, gc) t("Scrub String Table", _gc_timer_cm);
5252       // Delete entries for dead interned strings.
5253       StringTable::unlink(&_is_alive_closure);
5254     }
5255   }
5256 
5257 
5258   // Restore any preserved marks as a result of mark stack or
5259   // work queue overflow
5260   restore_preserved_marks_if_any();  // done single-threaded for now
5261 
5262   rp->set_enqueuing_is_done(true);
5263   if (rp->processing_is_mt()) {
5264     rp->balance_all_queues();
5265     CMSRefProcTaskExecutor task_executor(*this);
5266     rp->enqueue_discovered_references(&task_executor);
5267   } else {
5268     rp->enqueue_discovered_references(NULL);
5269   }
5270   rp->verify_no_references_recorded();
5271   assert(!rp->discovery_enabled(), "should have been disabled");
5272 }
5273 
5274 #ifndef PRODUCT
5275 void CMSCollector::check_correct_thread_executing() {
5276   Thread* t = Thread::current();
5277   // Only the VM thread or the CMS thread should be here.
5278   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5279          "Unexpected thread type");
5280   // If this is the vm thread, the foreground process
5281   // should not be waiting.  Note that _foregroundGCIsActive is
5282   // true while the foreground collector is waiting.
5283   if (_foregroundGCShouldWait) {
5284     // We cannot be the VM thread
5285     assert(t->is_ConcurrentGC_thread(),
5286            "Should be CMS thread");
5287   } else {
5288     // We can be the CMS thread only if we are in a stop-world
5289     // phase of CMS collection.
5290     if (t->is_ConcurrentGC_thread()) {
5291       assert(_collectorState == InitialMarking ||
5292              _collectorState == FinalMarking,
5293              "Should be a stop-world phase");
5294       // The CMS thread should be holding the CMS_token.
5295       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5296              "Potential interference with concurrently "
5297              "executing VM thread");
5298     }
5299   }
5300 }
5301 #endif
5302 
5303 void CMSCollector::sweep() {
5304   assert(_collectorState == Sweeping, "just checking");
5305   check_correct_thread_executing();
5306   verify_work_stacks_empty();
5307   verify_overflow_empty();
5308   increment_sweep_count();
5309   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5310 
5311   _inter_sweep_timer.stop();
5312   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5313 
5314   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5315   _intra_sweep_timer.reset();
5316   _intra_sweep_timer.start();
5317   {
5318     GCTraceCPUTime tcpu;
5319     CMSPhaseAccounting pa(this, "Concurrent Sweep");
5320     // First sweep the old gen
5321     {
5322       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5323                                bitMapLock());
5324       sweepWork(_cmsGen);
5325     }
5326 
5327     // Update Universe::_heap_*_at_gc figures.
5328     // We need all the free list locks to make the abstract state
5329     // transition from Sweeping to Resetting. See detailed note
5330     // further below.
5331     {
5332       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5333       // Update heap occupancy information which is used as
5334       // input to soft ref clearing policy at the next gc.
5335       Universe::update_heap_info_at_gc();
5336       _collectorState = Resizing;
5337     }
5338   }
5339   verify_work_stacks_empty();
5340   verify_overflow_empty();
5341 
5342   if (should_unload_classes()) {
5343     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5344     // requires that the virtual spaces are stable and not deleted.
5345     ClassLoaderDataGraph::set_should_purge(true);
5346   }
5347 
5348   _intra_sweep_timer.stop();
5349   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5350 
5351   _inter_sweep_timer.reset();
5352   _inter_sweep_timer.start();
5353 
5354   // We need to use a monotonically non-decreasing time in ms
5355   // or we will see time-warp warnings and os::javaTimeMillis()
5356   // does not guarantee monotonicity.
5357   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5358   update_time_of_last_gc(now);
5359 
5360   // NOTE on abstract state transitions:
5361   // Mutators allocate-live and/or mark the mod-union table dirty
5362   // based on the state of the collection.  The former is done in
5363   // the interval [Marking, Sweeping] and the latter in the interval
5364   // [Marking, Sweeping).  Thus the transitions into the Marking state
5365   // and out of the Sweeping state must be synchronously visible
5366   // globally to the mutators.
5367   // The transition into the Marking state happens with the world
5368   // stopped so the mutators will globally see it.  Sweeping is
5369   // done asynchronously by the background collector so the transition
5370   // from the Sweeping state to the Resizing state must be done
5371   // under the freelistLock (as is the check for whether to
5372   // allocate-live and whether to dirty the mod-union table).
5373   assert(_collectorState == Resizing, "Change of collector state to"
5374     " Resizing must be done under the freelistLocks (plural)");
5375 
5376   // Now that sweeping has been completed, we clear
5377   // the incremental_collection_failed flag,
5378   // thus inviting a younger gen collection to promote into
5379   // this generation. If such a promotion may still fail,
5380   // the flag will be set again when a young collection is
5381   // attempted.
5382   GenCollectedHeap* gch = GenCollectedHeap::heap();
5383   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5384   gch->update_full_collections_completed(_collection_count_start);
5385 }
5386 
5387 // FIX ME!!! Looks like this belongs in CFLSpace, with
5388 // CMSGen merely delegating to it.
5389 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5390   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5391   HeapWord*  minAddr        = _cmsSpace->bottom();
5392   HeapWord*  largestAddr    =
5393     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5394   if (largestAddr == NULL) {
5395     // The dictionary appears to be empty.  In this case
5396     // try to coalesce at the end of the heap.
5397     largestAddr = _cmsSpace->end();
5398   }
5399   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5400   size_t nearLargestOffset =
5401     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5402   log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5403                           p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5404   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5405 }
5406 
5407 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5408   return addr >= _cmsSpace->nearLargestChunk();
5409 }
5410 
5411 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5412   return _cmsSpace->find_chunk_at_end();
5413 }
5414 
5415 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5416                                                     bool full) {
5417   // If the young generation has been collected, gather any statistics
5418   // that are of interest at this point.
5419   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5420   if (!full && current_is_young) {
5421     // Gather statistics on the young generation collection.
5422     collector()->stats().record_gc0_end(used());
5423   }
5424 }
5425 
5426 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5427   // We iterate over the space(s) underlying this generation,
5428   // checking the mark bit map to see if the bits corresponding
5429   // to specific blocks are marked or not. Blocks that are
5430   // marked are live and are not swept up. All remaining blocks
5431   // are swept up, with coalescing on-the-fly as we sweep up
5432   // contiguous free and/or garbage blocks:
5433   // We need to ensure that the sweeper synchronizes with allocators
5434   // and stop-the-world collectors. In particular, the following
5435   // locks are used:
5436   // . CMS token: if this is held, a stop the world collection cannot occur
5437   // . freelistLock: if this is held no allocation can occur from this
5438   //                 generation by another thread
5439   // . bitMapLock: if this is held, no other thread can access or update
5440   //
5441 
5442   // Note that we need to hold the freelistLock if we use
5443   // block iterate below; else the iterator might go awry if
5444   // a mutator (or promotion) causes block contents to change
5445   // (for instance if the allocator divvies up a block).
5446   // If we hold the free list lock, for all practical purposes
5447   // young generation GC's can't occur (they'll usually need to
5448   // promote), so we might as well prevent all young generation
5449   // GC's while we do a sweeping step. For the same reason, we might
5450   // as well take the bit map lock for the entire duration
5451 
5452   // check that we hold the requisite locks
5453   assert(have_cms_token(), "Should hold cms token");
5454   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5455   assert_lock_strong(old_gen->freelistLock());
5456   assert_lock_strong(bitMapLock());
5457 
5458   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5459   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5460   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5461                                           _inter_sweep_estimate.padded_average(),
5462                                           _intra_sweep_estimate.padded_average());
5463   old_gen->setNearLargestChunk();
5464 
5465   {
5466     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5467     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5468     // We need to free-up/coalesce garbage/blocks from a
5469     // co-terminal free run. This is done in the SweepClosure
5470     // destructor; so, do not remove this scope, else the
5471     // end-of-sweep-census below will be off by a little bit.
5472   }
5473   old_gen->cmsSpace()->sweep_completed();
5474   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5475   if (should_unload_classes()) {                // unloaded classes this cycle,
5476     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5477   } else {                                      // did not unload classes,
5478     _concurrent_cycles_since_last_unload++;     // ... increment count
5479   }
5480 }
5481 
5482 // Reset CMS data structures (for now just the marking bit map)
5483 // preparatory for the next cycle.
5484 void CMSCollector::reset_concurrent() {
5485   CMSTokenSyncWithLocks ts(true, bitMapLock());
5486 
5487   // If the state is not "Resetting", the foreground  thread
5488   // has done a collection and the resetting.
5489   if (_collectorState != Resetting) {
5490     assert(_collectorState == Idling, "The state should only change"
5491       " because the foreground collector has finished the collection");
5492     return;
5493   }
5494 
5495   {
5496     // Clear the mark bitmap (no grey objects to start with)
5497     // for the next cycle.
5498     GCTraceCPUTime tcpu;
5499     CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5500 
5501     HeapWord* curAddr = _markBitMap.startWord();
5502     while (curAddr < _markBitMap.endWord()) {
5503       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5504       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5505       _markBitMap.clear_large_range(chunk);
5506       if (ConcurrentMarkSweepThread::should_yield() &&
5507           !foregroundGCIsActive() &&
5508           CMSYield) {
5509         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5510                "CMS thread should hold CMS token");
5511         assert_lock_strong(bitMapLock());
5512         bitMapLock()->unlock();
5513         ConcurrentMarkSweepThread::desynchronize(true);
5514         stopTimer();
5515         incrementYields();
5516 
5517         // See the comment in coordinator_yield()
5518         for (unsigned i = 0; i < CMSYieldSleepCount &&
5519                          ConcurrentMarkSweepThread::should_yield() &&
5520                          !CMSCollector::foregroundGCIsActive(); ++i) {
5521           os::sleep(Thread::current(), 1, false);
5522         }
5523 
5524         ConcurrentMarkSweepThread::synchronize(true);
5525         bitMapLock()->lock_without_safepoint_check();
5526         startTimer();
5527       }
5528       curAddr = chunk.end();
5529     }
5530     // A successful mostly concurrent collection has been done.
5531     // Because only the full (i.e., concurrent mode failure) collections
5532     // are being measured for gc overhead limits, clean the "near" flag
5533     // and count.
5534     size_policy()->reset_gc_overhead_limit_count();
5535     _collectorState = Idling;
5536   }
5537 
5538   register_gc_end();
5539 }
5540 
5541 // Same as above but for STW paths
5542 void CMSCollector::reset_stw() {
5543   // already have the lock
5544   assert(_collectorState == Resetting, "just checking");
5545   assert_lock_strong(bitMapLock());
5546   GCIdMarkAndRestore gc_id_mark(_cmsThread->gc_id());
5547   _markBitMap.clear_all();
5548   _collectorState = Idling;
5549   register_gc_end();
5550 }
5551 
5552 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5553   GCTraceCPUTime tcpu;
5554   TraceCollectorStats tcs(cgc_counters());
5555 
5556   switch (op) {
5557     case CMS_op_checkpointRootsInitial: {
5558       GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5559       SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
5560       checkpointRootsInitial();
5561       break;
5562     }
5563     case CMS_op_checkpointRootsFinal: {
5564       GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5565       SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
5566       checkpointRootsFinal();
5567       break;
5568     }
5569     default:
5570       fatal("No such CMS_op");
5571   }
5572 }
5573 
5574 #ifndef PRODUCT
5575 size_t const CMSCollector::skip_header_HeapWords() {
5576   return FreeChunk::header_size();
5577 }
5578 
5579 // Try and collect here conditions that should hold when
5580 // CMS thread is exiting. The idea is that the foreground GC
5581 // thread should not be blocked if it wants to terminate
5582 // the CMS thread and yet continue to run the VM for a while
5583 // after that.
5584 void CMSCollector::verify_ok_to_terminate() const {
5585   assert(Thread::current()->is_ConcurrentGC_thread(),
5586          "should be called by CMS thread");
5587   assert(!_foregroundGCShouldWait, "should be false");
5588   // We could check here that all the various low-level locks
5589   // are not held by the CMS thread, but that is overkill; see
5590   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5591   // is checked.
5592 }
5593 #endif
5594 
5595 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5596    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5597           "missing Printezis mark?");
5598   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5599   size_t size = pointer_delta(nextOneAddr + 1, addr);
5600   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5601          "alignment problem");
5602   assert(size >= 3, "Necessary for Printezis marks to work");
5603   return size;
5604 }
5605 
5606 // A variant of the above (block_size_using_printezis_bits()) except
5607 // that we return 0 if the P-bits are not yet set.
5608 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5609   if (_markBitMap.isMarked(addr + 1)) {
5610     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5611     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5612     size_t size = pointer_delta(nextOneAddr + 1, addr);
5613     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5614            "alignment problem");
5615     assert(size >= 3, "Necessary for Printezis marks to work");
5616     return size;
5617   }
5618   return 0;
5619 }
5620 
5621 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5622   size_t sz = 0;
5623   oop p = (oop)addr;
5624   if (p->klass_or_null() != NULL) {
5625     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5626   } else {
5627     sz = block_size_using_printezis_bits(addr);
5628   }
5629   assert(sz > 0, "size must be nonzero");
5630   HeapWord* next_block = addr + sz;
5631   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5632                                              CardTableModRefBS::card_size);
5633   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5634          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5635          "must be different cards");
5636   return next_card;
5637 }
5638 
5639 
5640 // CMS Bit Map Wrapper /////////////////////////////////////////
5641 
5642 // Construct a CMS bit map infrastructure, but don't create the
5643 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5644 // further below.
5645 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5646   _bm(),
5647   _shifter(shifter),
5648   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5649                                     Monitor::_safepoint_check_sometimes) : NULL)
5650 {
5651   _bmStartWord = 0;
5652   _bmWordSize  = 0;
5653 }
5654 
5655 bool CMSBitMap::allocate(MemRegion mr) {
5656   _bmStartWord = mr.start();
5657   _bmWordSize  = mr.word_size();
5658   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5659                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5660   if (!brs.is_reserved()) {
5661     warning("CMS bit map allocation failure");
5662     return false;
5663   }
5664   // For now we'll just commit all of the bit map up front.
5665   // Later on we'll try to be more parsimonious with swap.
5666   if (!_virtual_space.initialize(brs, brs.size())) {
5667     warning("CMS bit map backing store failure");
5668     return false;
5669   }
5670   assert(_virtual_space.committed_size() == brs.size(),
5671          "didn't reserve backing store for all of CMS bit map?");
5672   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5673   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5674          _bmWordSize, "inconsistency in bit map sizing");
5675   _bm.set_size(_bmWordSize >> _shifter);
5676 
5677   // bm.clear(); // can we rely on getting zero'd memory? verify below
5678   assert(isAllClear(),
5679          "Expected zero'd memory from ReservedSpace constructor");
5680   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5681          "consistency check");
5682   return true;
5683 }
5684 
5685 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5686   HeapWord *next_addr, *end_addr, *last_addr;
5687   assert_locked();
5688   assert(covers(mr), "out-of-range error");
5689   // XXX assert that start and end are appropriately aligned
5690   for (next_addr = mr.start(), end_addr = mr.end();
5691        next_addr < end_addr; next_addr = last_addr) {
5692     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5693     last_addr = dirty_region.end();
5694     if (!dirty_region.is_empty()) {
5695       cl->do_MemRegion(dirty_region);
5696     } else {
5697       assert(last_addr == end_addr, "program logic");
5698       return;
5699     }
5700   }
5701 }
5702 
5703 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5704   _bm.print_on_error(st, prefix);
5705 }
5706 
5707 #ifndef PRODUCT
5708 void CMSBitMap::assert_locked() const {
5709   CMSLockVerifier::assert_locked(lock());
5710 }
5711 
5712 bool CMSBitMap::covers(MemRegion mr) const {
5713   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5714   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5715          "size inconsistency");
5716   return (mr.start() >= _bmStartWord) &&
5717          (mr.end()   <= endWord());
5718 }
5719 
5720 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5721     return (start >= _bmStartWord && (start + size) <= endWord());
5722 }
5723 
5724 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5725   // verify that there are no 1 bits in the interval [left, right)
5726   FalseBitMapClosure falseBitMapClosure;
5727   iterate(&falseBitMapClosure, left, right);
5728 }
5729 
5730 void CMSBitMap::region_invariant(MemRegion mr)
5731 {
5732   assert_locked();
5733   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5734   assert(!mr.is_empty(), "unexpected empty region");
5735   assert(covers(mr), "mr should be covered by bit map");
5736   // convert address range into offset range
5737   size_t start_ofs = heapWordToOffset(mr.start());
5738   // Make sure that end() is appropriately aligned
5739   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5740                         (1 << (_shifter+LogHeapWordSize))),
5741          "Misaligned mr.end()");
5742   size_t end_ofs   = heapWordToOffset(mr.end());
5743   assert(end_ofs > start_ofs, "Should mark at least one bit");
5744 }
5745 
5746 #endif
5747 
5748 bool CMSMarkStack::allocate(size_t size) {
5749   // allocate a stack of the requisite depth
5750   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5751                    size * sizeof(oop)));
5752   if (!rs.is_reserved()) {
5753     warning("CMSMarkStack allocation failure");
5754     return false;
5755   }
5756   if (!_virtual_space.initialize(rs, rs.size())) {
5757     warning("CMSMarkStack backing store failure");
5758     return false;
5759   }
5760   assert(_virtual_space.committed_size() == rs.size(),
5761          "didn't reserve backing store for all of CMS stack?");
5762   _base = (oop*)(_virtual_space.low());
5763   _index = 0;
5764   _capacity = size;
5765   NOT_PRODUCT(_max_depth = 0);
5766   return true;
5767 }
5768 
5769 // XXX FIX ME !!! In the MT case we come in here holding a
5770 // leaf lock. For printing we need to take a further lock
5771 // which has lower rank. We need to recalibrate the two
5772 // lock-ranks involved in order to be able to print the
5773 // messages below. (Or defer the printing to the caller.
5774 // For now we take the expedient path of just disabling the
5775 // messages for the problematic case.)
5776 void CMSMarkStack::expand() {
5777   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5778   if (_capacity == MarkStackSizeMax) {
5779     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5780       // We print a warning message only once per CMS cycle.
5781       log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5782     }
5783     return;
5784   }
5785   // Double capacity if possible
5786   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5787   // Do not give up existing stack until we have managed to
5788   // get the double capacity that we desired.
5789   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5790                    new_capacity * sizeof(oop)));
5791   if (rs.is_reserved()) {
5792     // Release the backing store associated with old stack
5793     _virtual_space.release();
5794     // Reinitialize virtual space for new stack
5795     if (!_virtual_space.initialize(rs, rs.size())) {
5796       fatal("Not enough swap for expanded marking stack");
5797     }
5798     _base = (oop*)(_virtual_space.low());
5799     _index = 0;
5800     _capacity = new_capacity;
5801   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5802     // Failed to double capacity, continue;
5803     // we print a detail message only once per CMS cycle.
5804     log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5805                         _capacity / K, new_capacity / K);
5806   }
5807 }
5808 
5809 
5810 // Closures
5811 // XXX: there seems to be a lot of code  duplication here;
5812 // should refactor and consolidate common code.
5813 
5814 // This closure is used to mark refs into the CMS generation in
5815 // the CMS bit map. Called at the first checkpoint. This closure
5816 // assumes that we do not need to re-mark dirty cards; if the CMS
5817 // generation on which this is used is not an oldest
5818 // generation then this will lose younger_gen cards!
5819 
5820 MarkRefsIntoClosure::MarkRefsIntoClosure(
5821   MemRegion span, CMSBitMap* bitMap):
5822     _span(span),
5823     _bitMap(bitMap)
5824 {
5825   assert(ref_processor() == NULL, "deliberately left NULL");
5826   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5827 }
5828 
5829 void MarkRefsIntoClosure::do_oop(oop obj) {
5830   // if p points into _span, then mark corresponding bit in _markBitMap
5831   assert(obj->is_oop(), "expected an oop");
5832   HeapWord* addr = (HeapWord*)obj;
5833   if (_span.contains(addr)) {
5834     // this should be made more efficient
5835     _bitMap->mark(addr);
5836   }
5837 }
5838 
5839 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5840 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5841 
5842 ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5843   MemRegion span, CMSBitMap* bitMap):
5844     _span(span),
5845     _bitMap(bitMap)
5846 {
5847   assert(ref_processor() == NULL, "deliberately left NULL");
5848   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5849 }
5850 
5851 void ParMarkRefsIntoClosure::do_oop(oop obj) {
5852   // if p points into _span, then mark corresponding bit in _markBitMap
5853   assert(obj->is_oop(), "expected an oop");
5854   HeapWord* addr = (HeapWord*)obj;
5855   if (_span.contains(addr)) {
5856     // this should be made more efficient
5857     _bitMap->par_mark(addr);
5858   }
5859 }
5860 
5861 void ParMarkRefsIntoClosure::do_oop(oop* p)       { ParMarkRefsIntoClosure::do_oop_work(p); }
5862 void ParMarkRefsIntoClosure::do_oop(narrowOop* p) { ParMarkRefsIntoClosure::do_oop_work(p); }
5863 
5864 // A variant of the above, used for CMS marking verification.
5865 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5866   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5867     _span(span),
5868     _verification_bm(verification_bm),
5869     _cms_bm(cms_bm)
5870 {
5871   assert(ref_processor() == NULL, "deliberately left NULL");
5872   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5873 }
5874 
5875 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5876   // if p points into _span, then mark corresponding bit in _markBitMap
5877   assert(obj->is_oop(), "expected an oop");
5878   HeapWord* addr = (HeapWord*)obj;
5879   if (_span.contains(addr)) {
5880     _verification_bm->mark(addr);
5881     if (!_cms_bm->isMarked(addr)) {
5882       LogHandle(gc, verify) log;
5883       ResourceMark rm;
5884       oop(addr)->print_on(log.error_stream());
5885       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5886       fatal("... aborting");
5887     }
5888   }
5889 }
5890 
5891 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5892 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5893 
5894 //////////////////////////////////////////////////
5895 // MarkRefsIntoAndScanClosure
5896 //////////////////////////////////////////////////
5897 
5898 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5899                                                        ReferenceProcessor* rp,
5900                                                        CMSBitMap* bit_map,
5901                                                        CMSBitMap* mod_union_table,
5902                                                        CMSMarkStack*  mark_stack,
5903                                                        CMSCollector* collector,
5904                                                        bool should_yield,
5905                                                        bool concurrent_precleaning):
5906   _collector(collector),
5907   _span(span),
5908   _bit_map(bit_map),
5909   _mark_stack(mark_stack),
5910   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
5911                       mark_stack, concurrent_precleaning),
5912   _yield(should_yield),
5913   _concurrent_precleaning(concurrent_precleaning),
5914   _freelistLock(NULL)
5915 {
5916   // FIXME: Should initialize in base class constructor.
5917   assert(rp != NULL, "ref_processor shouldn't be NULL");
5918   set_ref_processor_internal(rp);
5919 }
5920 
5921 // This closure is used to mark refs into the CMS generation at the
5922 // second (final) checkpoint, and to scan and transitively follow
5923 // the unmarked oops. It is also used during the concurrent precleaning
5924 // phase while scanning objects on dirty cards in the CMS generation.
5925 // The marks are made in the marking bit map and the marking stack is
5926 // used for keeping the (newly) grey objects during the scan.
5927 // The parallel version (Par_...) appears further below.
5928 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5929   if (obj != NULL) {
5930     assert(obj->is_oop(), "expected an oop");
5931     HeapWord* addr = (HeapWord*)obj;
5932     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5933     assert(_collector->overflow_list_is_empty(),
5934            "overflow list should be empty");
5935     if (_span.contains(addr) &&
5936         !_bit_map->isMarked(addr)) {
5937       // mark bit map (object is now grey)
5938       _bit_map->mark(addr);
5939       // push on marking stack (stack should be empty), and drain the
5940       // stack by applying this closure to the oops in the oops popped
5941       // from the stack (i.e. blacken the grey objects)
5942       bool res = _mark_stack->push(obj);
5943       assert(res, "Should have space to push on empty stack");
5944       do {
5945         oop new_oop = _mark_stack->pop();
5946         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
5947         assert(_bit_map->isMarked((HeapWord*)new_oop),
5948                "only grey objects on this stack");
5949         // iterate over the oops in this oop, marking and pushing
5950         // the ones in CMS heap (i.e. in _span).
5951         new_oop->oop_iterate(&_pushAndMarkClosure);
5952         // check if it's time to yield
5953         do_yield_check();
5954       } while (!_mark_stack->isEmpty() ||
5955                (!_concurrent_precleaning && take_from_overflow_list()));
5956         // if marking stack is empty, and we are not doing this
5957         // during precleaning, then check the overflow list
5958     }
5959     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5960     assert(_collector->overflow_list_is_empty(),
5961            "overflow list was drained above");
5962 
5963     assert(_collector->no_preserved_marks(),
5964            "All preserved marks should have been restored above");
5965   }
5966 }
5967 
5968 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5969 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5970 
5971 void MarkRefsIntoAndScanClosure::do_yield_work() {
5972   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5973          "CMS thread should hold CMS token");
5974   assert_lock_strong(_freelistLock);
5975   assert_lock_strong(_bit_map->lock());
5976   // relinquish the free_list_lock and bitMaplock()
5977   _bit_map->lock()->unlock();
5978   _freelistLock->unlock();
5979   ConcurrentMarkSweepThread::desynchronize(true);
5980   _collector->stopTimer();
5981   _collector->incrementYields();
5982 
5983   // See the comment in coordinator_yield()
5984   for (unsigned i = 0;
5985        i < CMSYieldSleepCount &&
5986        ConcurrentMarkSweepThread::should_yield() &&
5987        !CMSCollector::foregroundGCIsActive();
5988        ++i) {
5989     os::sleep(Thread::current(), 1, false);
5990   }
5991 
5992   ConcurrentMarkSweepThread::synchronize(true);
5993   _freelistLock->lock_without_safepoint_check();
5994   _bit_map->lock()->lock_without_safepoint_check();
5995   _collector->startTimer();
5996 }
5997 
5998 ///////////////////////////////////////////////////////////
5999 // ParMarkRefsIntoAndScanClosure: a parallel version of
6000 //                                MarkRefsIntoAndScanClosure
6001 ///////////////////////////////////////////////////////////
6002 ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
6003   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6004   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6005   _span(span),
6006   _bit_map(bit_map),
6007   _work_queue(work_queue),
6008   _low_water_mark(MIN2((work_queue->max_elems()/4),
6009                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6010   _parPushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6011 {
6012   // FIXME: Should initialize in base class constructor.
6013   assert(rp != NULL, "ref_processor shouldn't be NULL");
6014   set_ref_processor_internal(rp);
6015 }
6016 
6017 // This closure is used to mark refs into the CMS generation at the
6018 // second (final) checkpoint, and to scan and transitively follow
6019 // the unmarked oops. The marks are made in the marking bit map and
6020 // the work_queue is used for keeping the (newly) grey objects during
6021 // the scan phase whence they are also available for stealing by parallel
6022 // threads. Since the marking bit map is shared, updates are
6023 // synchronized (via CAS).
6024 void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
6025   if (obj != NULL) {
6026     // Ignore mark word because this could be an already marked oop
6027     // that may be chained at the end of the overflow list.
6028     assert(obj->is_oop(true), "expected an oop");
6029     HeapWord* addr = (HeapWord*)obj;
6030     if (_span.contains(addr) &&
6031         !_bit_map->isMarked(addr)) {
6032       // mark bit map (object will become grey):
6033       // It is possible for several threads to be
6034       // trying to "claim" this object concurrently;
6035       // the unique thread that succeeds in marking the
6036       // object first will do the subsequent push on
6037       // to the work queue (or overflow list).
6038       if (_bit_map->par_mark(addr)) {
6039         // push on work_queue (which may not be empty), and trim the
6040         // queue to an appropriate length by applying this closure to
6041         // the oops in the oops popped from the stack (i.e. blacken the
6042         // grey objects)
6043         bool res = _work_queue->push(obj);
6044         assert(res, "Low water mark should be less than capacity?");
6045         trim_queue(_low_water_mark);
6046       } // Else, another thread claimed the object
6047     }
6048   }
6049 }
6050 
6051 void ParMarkRefsIntoAndScanClosure::do_oop(oop* p)       { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6052 void ParMarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6053 
6054 // This closure is used to rescan the marked objects on the dirty cards
6055 // in the mod union table and the card table proper.
6056 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6057   oop p, MemRegion mr) {
6058 
6059   size_t size = 0;
6060   HeapWord* addr = (HeapWord*)p;
6061   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6062   assert(_span.contains(addr), "we are scanning the CMS generation");
6063   // check if it's time to yield
6064   if (do_yield_check()) {
6065     // We yielded for some foreground stop-world work,
6066     // and we have been asked to abort this ongoing preclean cycle.
6067     return 0;
6068   }
6069   if (_bitMap->isMarked(addr)) {
6070     // it's marked; is it potentially uninitialized?
6071     if (p->klass_or_null() != NULL) {
6072         // an initialized object; ignore mark word in verification below
6073         // since we are running concurrent with mutators
6074         assert(p->is_oop(true), "should be an oop");
6075         if (p->is_objArray()) {
6076           // objArrays are precisely marked; restrict scanning
6077           // to dirty cards only.
6078           size = CompactibleFreeListSpace::adjustObjectSize(
6079                    p->oop_iterate_size(_scanningClosure, mr));
6080         } else {
6081           // A non-array may have been imprecisely marked; we need
6082           // to scan object in its entirety.
6083           size = CompactibleFreeListSpace::adjustObjectSize(
6084                    p->oop_iterate_size(_scanningClosure));
6085         }
6086         #ifdef ASSERT
6087           size_t direct_size =
6088             CompactibleFreeListSpace::adjustObjectSize(p->size());
6089           assert(size == direct_size, "Inconsistency in size");
6090           assert(size >= 3, "Necessary for Printezis marks to work");
6091           if (!_bitMap->isMarked(addr+1)) {
6092             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6093           } else {
6094             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6095             assert(_bitMap->isMarked(addr+size-1),
6096                    "inconsistent Printezis mark");
6097           }
6098         #endif // ASSERT
6099     } else {
6100       // An uninitialized object.
6101       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6102       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6103       size = pointer_delta(nextOneAddr + 1, addr);
6104       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6105              "alignment problem");
6106       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6107       // will dirty the card when the klass pointer is installed in the
6108       // object (signaling the completion of initialization).
6109     }
6110   } else {
6111     // Either a not yet marked object or an uninitialized object
6112     if (p->klass_or_null() == NULL) {
6113       // An uninitialized object, skip to the next card, since
6114       // we may not be able to read its P-bits yet.
6115       assert(size == 0, "Initial value");
6116     } else {
6117       // An object not (yet) reached by marking: we merely need to
6118       // compute its size so as to go look at the next block.
6119       assert(p->is_oop(true), "should be an oop");
6120       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6121     }
6122   }
6123   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6124   return size;
6125 }
6126 
6127 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6128   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6129          "CMS thread should hold CMS token");
6130   assert_lock_strong(_freelistLock);
6131   assert_lock_strong(_bitMap->lock());
6132   // relinquish the free_list_lock and bitMaplock()
6133   _bitMap->lock()->unlock();
6134   _freelistLock->unlock();
6135   ConcurrentMarkSweepThread::desynchronize(true);
6136   _collector->stopTimer();
6137   _collector->incrementYields();
6138 
6139   // See the comment in coordinator_yield()
6140   for (unsigned i = 0; i < CMSYieldSleepCount &&
6141                    ConcurrentMarkSweepThread::should_yield() &&
6142                    !CMSCollector::foregroundGCIsActive(); ++i) {
6143     os::sleep(Thread::current(), 1, false);
6144   }
6145 
6146   ConcurrentMarkSweepThread::synchronize(true);
6147   _freelistLock->lock_without_safepoint_check();
6148   _bitMap->lock()->lock_without_safepoint_check();
6149   _collector->startTimer();
6150 }
6151 
6152 
6153 //////////////////////////////////////////////////////////////////
6154 // SurvivorSpacePrecleanClosure
6155 //////////////////////////////////////////////////////////////////
6156 // This (single-threaded) closure is used to preclean the oops in
6157 // the survivor spaces.
6158 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6159 
6160   HeapWord* addr = (HeapWord*)p;
6161   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6162   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6163   assert(p->klass_or_null() != NULL, "object should be initialized");
6164   // an initialized object; ignore mark word in verification below
6165   // since we are running concurrent with mutators
6166   assert(p->is_oop(true), "should be an oop");
6167   // Note that we do not yield while we iterate over
6168   // the interior oops of p, pushing the relevant ones
6169   // on our marking stack.
6170   size_t size = p->oop_iterate_size(_scanning_closure);
6171   do_yield_check();
6172   // Observe that below, we do not abandon the preclean
6173   // phase as soon as we should; rather we empty the
6174   // marking stack before returning. This is to satisfy
6175   // some existing assertions. In general, it may be a
6176   // good idea to abort immediately and complete the marking
6177   // from the grey objects at a later time.
6178   while (!_mark_stack->isEmpty()) {
6179     oop new_oop = _mark_stack->pop();
6180     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6181     assert(_bit_map->isMarked((HeapWord*)new_oop),
6182            "only grey objects on this stack");
6183     // iterate over the oops in this oop, marking and pushing
6184     // the ones in CMS heap (i.e. in _span).
6185     new_oop->oop_iterate(_scanning_closure);
6186     // check if it's time to yield
6187     do_yield_check();
6188   }
6189   unsigned int after_count =
6190     GenCollectedHeap::heap()->total_collections();
6191   bool abort = (_before_count != after_count) ||
6192                _collector->should_abort_preclean();
6193   return abort ? 0 : size;
6194 }
6195 
6196 void SurvivorSpacePrecleanClosure::do_yield_work() {
6197   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6198          "CMS thread should hold CMS token");
6199   assert_lock_strong(_bit_map->lock());
6200   // Relinquish the bit map lock
6201   _bit_map->lock()->unlock();
6202   ConcurrentMarkSweepThread::desynchronize(true);
6203   _collector->stopTimer();
6204   _collector->incrementYields();
6205 
6206   // See the comment in coordinator_yield()
6207   for (unsigned i = 0; i < CMSYieldSleepCount &&
6208                        ConcurrentMarkSweepThread::should_yield() &&
6209                        !CMSCollector::foregroundGCIsActive(); ++i) {
6210     os::sleep(Thread::current(), 1, false);
6211   }
6212 
6213   ConcurrentMarkSweepThread::synchronize(true);
6214   _bit_map->lock()->lock_without_safepoint_check();
6215   _collector->startTimer();
6216 }
6217 
6218 // This closure is used to rescan the marked objects on the dirty cards
6219 // in the mod union table and the card table proper. In the parallel
6220 // case, although the bitMap is shared, we do a single read so the
6221 // isMarked() query is "safe".
6222 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6223   // Ignore mark word because we are running concurrent with mutators
6224   assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6225   HeapWord* addr = (HeapWord*)p;
6226   assert(_span.contains(addr), "we are scanning the CMS generation");
6227   bool is_obj_array = false;
6228   #ifdef ASSERT
6229     if (!_parallel) {
6230       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6231       assert(_collector->overflow_list_is_empty(),
6232              "overflow list should be empty");
6233 
6234     }
6235   #endif // ASSERT
6236   if (_bit_map->isMarked(addr)) {
6237     // Obj arrays are precisely marked, non-arrays are not;
6238     // so we scan objArrays precisely and non-arrays in their
6239     // entirety.
6240     if (p->is_objArray()) {
6241       is_obj_array = true;
6242       if (_parallel) {
6243         p->oop_iterate(_par_scan_closure, mr);
6244       } else {
6245         p->oop_iterate(_scan_closure, mr);
6246       }
6247     } else {
6248       if (_parallel) {
6249         p->oop_iterate(_par_scan_closure);
6250       } else {
6251         p->oop_iterate(_scan_closure);
6252       }
6253     }
6254   }
6255   #ifdef ASSERT
6256     if (!_parallel) {
6257       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6258       assert(_collector->overflow_list_is_empty(),
6259              "overflow list should be empty");
6260 
6261     }
6262   #endif // ASSERT
6263   return is_obj_array;
6264 }
6265 
6266 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6267                         MemRegion span,
6268                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6269                         bool should_yield, bool verifying):
6270   _collector(collector),
6271   _span(span),
6272   _bitMap(bitMap),
6273   _mut(&collector->_modUnionTable),
6274   _markStack(markStack),
6275   _yield(should_yield),
6276   _skipBits(0)
6277 {
6278   assert(_markStack->isEmpty(), "stack should be empty");
6279   _finger = _bitMap->startWord();
6280   _threshold = _finger;
6281   assert(_collector->_restart_addr == NULL, "Sanity check");
6282   assert(_span.contains(_finger), "Out of bounds _finger?");
6283   DEBUG_ONLY(_verifying = verifying;)
6284 }
6285 
6286 void MarkFromRootsClosure::reset(HeapWord* addr) {
6287   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6288   assert(_span.contains(addr), "Out of bounds _finger?");
6289   _finger = addr;
6290   _threshold = (HeapWord*)round_to(
6291                  (intptr_t)_finger, CardTableModRefBS::card_size);
6292 }
6293 
6294 // Should revisit to see if this should be restructured for
6295 // greater efficiency.
6296 bool MarkFromRootsClosure::do_bit(size_t offset) {
6297   if (_skipBits > 0) {
6298     _skipBits--;
6299     return true;
6300   }
6301   // convert offset into a HeapWord*
6302   HeapWord* addr = _bitMap->startWord() + offset;
6303   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6304          "address out of range");
6305   assert(_bitMap->isMarked(addr), "tautology");
6306   if (_bitMap->isMarked(addr+1)) {
6307     // this is an allocated but not yet initialized object
6308     assert(_skipBits == 0, "tautology");
6309     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6310     oop p = oop(addr);
6311     if (p->klass_or_null() == NULL) {
6312       DEBUG_ONLY(if (!_verifying) {)
6313         // We re-dirty the cards on which this object lies and increase
6314         // the _threshold so that we'll come back to scan this object
6315         // during the preclean or remark phase. (CMSCleanOnEnter)
6316         if (CMSCleanOnEnter) {
6317           size_t sz = _collector->block_size_using_printezis_bits(addr);
6318           HeapWord* end_card_addr   = (HeapWord*)round_to(
6319                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6320           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6321           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6322           // Bump _threshold to end_card_addr; note that
6323           // _threshold cannot possibly exceed end_card_addr, anyhow.
6324           // This prevents future clearing of the card as the scan proceeds
6325           // to the right.
6326           assert(_threshold <= end_card_addr,
6327                  "Because we are just scanning into this object");
6328           if (_threshold < end_card_addr) {
6329             _threshold = end_card_addr;
6330           }
6331           if (p->klass_or_null() != NULL) {
6332             // Redirty the range of cards...
6333             _mut->mark_range(redirty_range);
6334           } // ...else the setting of klass will dirty the card anyway.
6335         }
6336       DEBUG_ONLY(})
6337       return true;
6338     }
6339   }
6340   scanOopsInOop(addr);
6341   return true;
6342 }
6343 
6344 // We take a break if we've been at this for a while,
6345 // so as to avoid monopolizing the locks involved.
6346 void MarkFromRootsClosure::do_yield_work() {
6347   // First give up the locks, then yield, then re-lock
6348   // We should probably use a constructor/destructor idiom to
6349   // do this unlock/lock or modify the MutexUnlocker class to
6350   // serve our purpose. XXX
6351   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6352          "CMS thread should hold CMS token");
6353   assert_lock_strong(_bitMap->lock());
6354   _bitMap->lock()->unlock();
6355   ConcurrentMarkSweepThread::desynchronize(true);
6356   _collector->stopTimer();
6357   _collector->incrementYields();
6358 
6359   // See the comment in coordinator_yield()
6360   for (unsigned i = 0; i < CMSYieldSleepCount &&
6361                        ConcurrentMarkSweepThread::should_yield() &&
6362                        !CMSCollector::foregroundGCIsActive(); ++i) {
6363     os::sleep(Thread::current(), 1, false);
6364   }
6365 
6366   ConcurrentMarkSweepThread::synchronize(true);
6367   _bitMap->lock()->lock_without_safepoint_check();
6368   _collector->startTimer();
6369 }
6370 
6371 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6372   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6373   assert(_markStack->isEmpty(),
6374          "should drain stack to limit stack usage");
6375   // convert ptr to an oop preparatory to scanning
6376   oop obj = oop(ptr);
6377   // Ignore mark word in verification below, since we
6378   // may be running concurrent with mutators.
6379   assert(obj->is_oop(true), "should be an oop");
6380   assert(_finger <= ptr, "_finger runneth ahead");
6381   // advance the finger to right end of this object
6382   _finger = ptr + obj->size();
6383   assert(_finger > ptr, "we just incremented it above");
6384   // On large heaps, it may take us some time to get through
6385   // the marking phase. During
6386   // this time it's possible that a lot of mutations have
6387   // accumulated in the card table and the mod union table --
6388   // these mutation records are redundant until we have
6389   // actually traced into the corresponding card.
6390   // Here, we check whether advancing the finger would make
6391   // us cross into a new card, and if so clear corresponding
6392   // cards in the MUT (preclean them in the card-table in the
6393   // future).
6394 
6395   DEBUG_ONLY(if (!_verifying) {)
6396     // The clean-on-enter optimization is disabled by default,
6397     // until we fix 6178663.
6398     if (CMSCleanOnEnter && (_finger > _threshold)) {
6399       // [_threshold, _finger) represents the interval
6400       // of cards to be cleared  in MUT (or precleaned in card table).
6401       // The set of cards to be cleared is all those that overlap
6402       // with the interval [_threshold, _finger); note that
6403       // _threshold is always kept card-aligned but _finger isn't
6404       // always card-aligned.
6405       HeapWord* old_threshold = _threshold;
6406       assert(old_threshold == (HeapWord*)round_to(
6407               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6408              "_threshold should always be card-aligned");
6409       _threshold = (HeapWord*)round_to(
6410                      (intptr_t)_finger, CardTableModRefBS::card_size);
6411       MemRegion mr(old_threshold, _threshold);
6412       assert(!mr.is_empty(), "Control point invariant");
6413       assert(_span.contains(mr), "Should clear within span");
6414       _mut->clear_range(mr);
6415     }
6416   DEBUG_ONLY(})
6417   // Note: the finger doesn't advance while we drain
6418   // the stack below.
6419   PushOrMarkClosure pushOrMarkClosure(_collector,
6420                                       _span, _bitMap, _markStack,
6421                                       _finger, this);
6422   bool res = _markStack->push(obj);
6423   assert(res, "Empty non-zero size stack should have space for single push");
6424   while (!_markStack->isEmpty()) {
6425     oop new_oop = _markStack->pop();
6426     // Skip verifying header mark word below because we are
6427     // running concurrent with mutators.
6428     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6429     // now scan this oop's oops
6430     new_oop->oop_iterate(&pushOrMarkClosure);
6431     do_yield_check();
6432   }
6433   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6434 }
6435 
6436 ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6437                        CMSCollector* collector, MemRegion span,
6438                        CMSBitMap* bit_map,
6439                        OopTaskQueue* work_queue,
6440                        CMSMarkStack*  overflow_stack):
6441   _collector(collector),
6442   _whole_span(collector->_span),
6443   _span(span),
6444   _bit_map(bit_map),
6445   _mut(&collector->_modUnionTable),
6446   _work_queue(work_queue),
6447   _overflow_stack(overflow_stack),
6448   _skip_bits(0),
6449   _task(task)
6450 {
6451   assert(_work_queue->size() == 0, "work_queue should be empty");
6452   _finger = span.start();
6453   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6454   assert(_span.contains(_finger), "Out of bounds _finger?");
6455 }
6456 
6457 // Should revisit to see if this should be restructured for
6458 // greater efficiency.
6459 bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6460   if (_skip_bits > 0) {
6461     _skip_bits--;
6462     return true;
6463   }
6464   // convert offset into a HeapWord*
6465   HeapWord* addr = _bit_map->startWord() + offset;
6466   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6467          "address out of range");
6468   assert(_bit_map->isMarked(addr), "tautology");
6469   if (_bit_map->isMarked(addr+1)) {
6470     // this is an allocated object that might not yet be initialized
6471     assert(_skip_bits == 0, "tautology");
6472     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6473     oop p = oop(addr);
6474     if (p->klass_or_null() == NULL) {
6475       // in the case of Clean-on-Enter optimization, redirty card
6476       // and avoid clearing card by increasing  the threshold.
6477       return true;
6478     }
6479   }
6480   scan_oops_in_oop(addr);
6481   return true;
6482 }
6483 
6484 void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6485   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6486   // Should we assert that our work queue is empty or
6487   // below some drain limit?
6488   assert(_work_queue->size() == 0,
6489          "should drain stack to limit stack usage");
6490   // convert ptr to an oop preparatory to scanning
6491   oop obj = oop(ptr);
6492   // Ignore mark word in verification below, since we
6493   // may be running concurrent with mutators.
6494   assert(obj->is_oop(true), "should be an oop");
6495   assert(_finger <= ptr, "_finger runneth ahead");
6496   // advance the finger to right end of this object
6497   _finger = ptr + obj->size();
6498   assert(_finger > ptr, "we just incremented it above");
6499   // On large heaps, it may take us some time to get through
6500   // the marking phase. During
6501   // this time it's possible that a lot of mutations have
6502   // accumulated in the card table and the mod union table --
6503   // these mutation records are redundant until we have
6504   // actually traced into the corresponding card.
6505   // Here, we check whether advancing the finger would make
6506   // us cross into a new card, and if so clear corresponding
6507   // cards in the MUT (preclean them in the card-table in the
6508   // future).
6509 
6510   // The clean-on-enter optimization is disabled by default,
6511   // until we fix 6178663.
6512   if (CMSCleanOnEnter && (_finger > _threshold)) {
6513     // [_threshold, _finger) represents the interval
6514     // of cards to be cleared  in MUT (or precleaned in card table).
6515     // The set of cards to be cleared is all those that overlap
6516     // with the interval [_threshold, _finger); note that
6517     // _threshold is always kept card-aligned but _finger isn't
6518     // always card-aligned.
6519     HeapWord* old_threshold = _threshold;
6520     assert(old_threshold == (HeapWord*)round_to(
6521             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6522            "_threshold should always be card-aligned");
6523     _threshold = (HeapWord*)round_to(
6524                    (intptr_t)_finger, CardTableModRefBS::card_size);
6525     MemRegion mr(old_threshold, _threshold);
6526     assert(!mr.is_empty(), "Control point invariant");
6527     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6528     _mut->clear_range(mr);
6529   }
6530 
6531   // Note: the local finger doesn't advance while we drain
6532   // the stack below, but the global finger sure can and will.
6533   HeapWord** gfa = _task->global_finger_addr();
6534   ParPushOrMarkClosure pushOrMarkClosure(_collector,
6535                                          _span, _bit_map,
6536                                          _work_queue,
6537                                          _overflow_stack,
6538                                          _finger,
6539                                          gfa, this);
6540   bool res = _work_queue->push(obj);   // overflow could occur here
6541   assert(res, "Will hold once we use workqueues");
6542   while (true) {
6543     oop new_oop;
6544     if (!_work_queue->pop_local(new_oop)) {
6545       // We emptied our work_queue; check if there's stuff that can
6546       // be gotten from the overflow stack.
6547       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6548             _overflow_stack, _work_queue)) {
6549         do_yield_check();
6550         continue;
6551       } else {  // done
6552         break;
6553       }
6554     }
6555     // Skip verifying header mark word below because we are
6556     // running concurrent with mutators.
6557     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6558     // now scan this oop's oops
6559     new_oop->oop_iterate(&pushOrMarkClosure);
6560     do_yield_check();
6561   }
6562   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6563 }
6564 
6565 // Yield in response to a request from VM Thread or
6566 // from mutators.
6567 void ParMarkFromRootsClosure::do_yield_work() {
6568   assert(_task != NULL, "sanity");
6569   _task->yield();
6570 }
6571 
6572 // A variant of the above used for verifying CMS marking work.
6573 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6574                         MemRegion span,
6575                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6576                         CMSMarkStack*  mark_stack):
6577   _collector(collector),
6578   _span(span),
6579   _verification_bm(verification_bm),
6580   _cms_bm(cms_bm),
6581   _mark_stack(mark_stack),
6582   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6583                       mark_stack)
6584 {
6585   assert(_mark_stack->isEmpty(), "stack should be empty");
6586   _finger = _verification_bm->startWord();
6587   assert(_collector->_restart_addr == NULL, "Sanity check");
6588   assert(_span.contains(_finger), "Out of bounds _finger?");
6589 }
6590 
6591 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6592   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6593   assert(_span.contains(addr), "Out of bounds _finger?");
6594   _finger = addr;
6595 }
6596 
6597 // Should revisit to see if this should be restructured for
6598 // greater efficiency.
6599 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6600   // convert offset into a HeapWord*
6601   HeapWord* addr = _verification_bm->startWord() + offset;
6602   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6603          "address out of range");
6604   assert(_verification_bm->isMarked(addr), "tautology");
6605   assert(_cms_bm->isMarked(addr), "tautology");
6606 
6607   assert(_mark_stack->isEmpty(),
6608          "should drain stack to limit stack usage");
6609   // convert addr to an oop preparatory to scanning
6610   oop obj = oop(addr);
6611   assert(obj->is_oop(), "should be an oop");
6612   assert(_finger <= addr, "_finger runneth ahead");
6613   // advance the finger to right end of this object
6614   _finger = addr + obj->size();
6615   assert(_finger > addr, "we just incremented it above");
6616   // Note: the finger doesn't advance while we drain
6617   // the stack below.
6618   bool res = _mark_stack->push(obj);
6619   assert(res, "Empty non-zero size stack should have space for single push");
6620   while (!_mark_stack->isEmpty()) {
6621     oop new_oop = _mark_stack->pop();
6622     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6623     // now scan this oop's oops
6624     new_oop->oop_iterate(&_pam_verify_closure);
6625   }
6626   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6627   return true;
6628 }
6629 
6630 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6631   CMSCollector* collector, MemRegion span,
6632   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6633   CMSMarkStack*  mark_stack):
6634   MetadataAwareOopClosure(collector->ref_processor()),
6635   _collector(collector),
6636   _span(span),
6637   _verification_bm(verification_bm),
6638   _cms_bm(cms_bm),
6639   _mark_stack(mark_stack)
6640 { }
6641 
6642 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6643 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6644 
6645 // Upon stack overflow, we discard (part of) the stack,
6646 // remembering the least address amongst those discarded
6647 // in CMSCollector's _restart_address.
6648 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6649   // Remember the least grey address discarded
6650   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6651   _collector->lower_restart_addr(ra);
6652   _mark_stack->reset();  // discard stack contents
6653   _mark_stack->expand(); // expand the stack if possible
6654 }
6655 
6656 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6657   assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6658   HeapWord* addr = (HeapWord*)obj;
6659   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6660     // Oop lies in _span and isn't yet grey or black
6661     _verification_bm->mark(addr);            // now grey
6662     if (!_cms_bm->isMarked(addr)) {
6663       LogHandle(gc, verify) log;
6664       ResourceMark rm;
6665       oop(addr)->print_on(log.error_stream());
6666       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6667       fatal("... aborting");
6668     }
6669 
6670     if (!_mark_stack->push(obj)) { // stack overflow
6671       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6672       assert(_mark_stack->isFull(), "Else push should have succeeded");
6673       handle_stack_overflow(addr);
6674     }
6675     // anything including and to the right of _finger
6676     // will be scanned as we iterate over the remainder of the
6677     // bit map
6678   }
6679 }
6680 
6681 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6682                      MemRegion span,
6683                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6684                      HeapWord* finger, MarkFromRootsClosure* parent) :
6685   MetadataAwareOopClosure(collector->ref_processor()),
6686   _collector(collector),
6687   _span(span),
6688   _bitMap(bitMap),
6689   _markStack(markStack),
6690   _finger(finger),
6691   _parent(parent)
6692 { }
6693 
6694 ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6695                                            MemRegion span,
6696                                            CMSBitMap* bit_map,
6697                                            OopTaskQueue* work_queue,
6698                                            CMSMarkStack*  overflow_stack,
6699                                            HeapWord* finger,
6700                                            HeapWord** global_finger_addr,
6701                                            ParMarkFromRootsClosure* parent) :
6702   MetadataAwareOopClosure(collector->ref_processor()),
6703   _collector(collector),
6704   _whole_span(collector->_span),
6705   _span(span),
6706   _bit_map(bit_map),
6707   _work_queue(work_queue),
6708   _overflow_stack(overflow_stack),
6709   _finger(finger),
6710   _global_finger_addr(global_finger_addr),
6711   _parent(parent)
6712 { }
6713 
6714 // Assumes thread-safe access by callers, who are
6715 // responsible for mutual exclusion.
6716 void CMSCollector::lower_restart_addr(HeapWord* low) {
6717   assert(_span.contains(low), "Out of bounds addr");
6718   if (_restart_addr == NULL) {
6719     _restart_addr = low;
6720   } else {
6721     _restart_addr = MIN2(_restart_addr, low);
6722   }
6723 }
6724 
6725 // Upon stack overflow, we discard (part of) the stack,
6726 // remembering the least address amongst those discarded
6727 // in CMSCollector's _restart_address.
6728 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6729   // Remember the least grey address discarded
6730   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6731   _collector->lower_restart_addr(ra);
6732   _markStack->reset();  // discard stack contents
6733   _markStack->expand(); // expand the stack if possible
6734 }
6735 
6736 // Upon stack overflow, we discard (part of) the stack,
6737 // remembering the least address amongst those discarded
6738 // in CMSCollector's _restart_address.
6739 void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6740   // We need to do this under a mutex to prevent other
6741   // workers from interfering with the work done below.
6742   MutexLockerEx ml(_overflow_stack->par_lock(),
6743                    Mutex::_no_safepoint_check_flag);
6744   // Remember the least grey address discarded
6745   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6746   _collector->lower_restart_addr(ra);
6747   _overflow_stack->reset();  // discard stack contents
6748   _overflow_stack->expand(); // expand the stack if possible
6749 }
6750 
6751 void PushOrMarkClosure::do_oop(oop obj) {
6752   // Ignore mark word because we are running concurrent with mutators.
6753   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6754   HeapWord* addr = (HeapWord*)obj;
6755   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6756     // Oop lies in _span and isn't yet grey or black
6757     _bitMap->mark(addr);            // now grey
6758     if (addr < _finger) {
6759       // the bit map iteration has already either passed, or
6760       // sampled, this bit in the bit map; we'll need to
6761       // use the marking stack to scan this oop's oops.
6762       bool simulate_overflow = false;
6763       NOT_PRODUCT(
6764         if (CMSMarkStackOverflowALot &&
6765             _collector->simulate_overflow()) {
6766           // simulate a stack overflow
6767           simulate_overflow = true;
6768         }
6769       )
6770       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6771         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6772         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6773         handle_stack_overflow(addr);
6774       }
6775     }
6776     // anything including and to the right of _finger
6777     // will be scanned as we iterate over the remainder of the
6778     // bit map
6779     do_yield_check();
6780   }
6781 }
6782 
6783 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6784 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6785 
6786 void ParPushOrMarkClosure::do_oop(oop obj) {
6787   // Ignore mark word because we are running concurrent with mutators.
6788   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6789   HeapWord* addr = (HeapWord*)obj;
6790   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6791     // Oop lies in _span and isn't yet grey or black
6792     // We read the global_finger (volatile read) strictly after marking oop
6793     bool res = _bit_map->par_mark(addr);    // now grey
6794     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6795     // Should we push this marked oop on our stack?
6796     // -- if someone else marked it, nothing to do
6797     // -- if target oop is above global finger nothing to do
6798     // -- if target oop is in chunk and above local finger
6799     //      then nothing to do
6800     // -- else push on work queue
6801     if (   !res       // someone else marked it, they will deal with it
6802         || (addr >= *gfa)  // will be scanned in a later task
6803         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6804       return;
6805     }
6806     // the bit map iteration has already either passed, or
6807     // sampled, this bit in the bit map; we'll need to
6808     // use the marking stack to scan this oop's oops.
6809     bool simulate_overflow = false;
6810     NOT_PRODUCT(
6811       if (CMSMarkStackOverflowALot &&
6812           _collector->simulate_overflow()) {
6813         // simulate a stack overflow
6814         simulate_overflow = true;
6815       }
6816     )
6817     if (simulate_overflow ||
6818         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6819       // stack overflow
6820       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6821       // We cannot assert that the overflow stack is full because
6822       // it may have been emptied since.
6823       assert(simulate_overflow ||
6824              _work_queue->size() == _work_queue->max_elems(),
6825             "Else push should have succeeded");
6826       handle_stack_overflow(addr);
6827     }
6828     do_yield_check();
6829   }
6830 }
6831 
6832 void ParPushOrMarkClosure::do_oop(oop* p)       { ParPushOrMarkClosure::do_oop_work(p); }
6833 void ParPushOrMarkClosure::do_oop(narrowOop* p) { ParPushOrMarkClosure::do_oop_work(p); }
6834 
6835 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6836                                        MemRegion span,
6837                                        ReferenceProcessor* rp,
6838                                        CMSBitMap* bit_map,
6839                                        CMSBitMap* mod_union_table,
6840                                        CMSMarkStack*  mark_stack,
6841                                        bool           concurrent_precleaning):
6842   MetadataAwareOopClosure(rp),
6843   _collector(collector),
6844   _span(span),
6845   _bit_map(bit_map),
6846   _mod_union_table(mod_union_table),
6847   _mark_stack(mark_stack),
6848   _concurrent_precleaning(concurrent_precleaning)
6849 {
6850   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6851 }
6852 
6853 // Grey object rescan during pre-cleaning and second checkpoint phases --
6854 // the non-parallel version (the parallel version appears further below.)
6855 void PushAndMarkClosure::do_oop(oop obj) {
6856   // Ignore mark word verification. If during concurrent precleaning,
6857   // the object monitor may be locked. If during the checkpoint
6858   // phases, the object may already have been reached by a  different
6859   // path and may be at the end of the global overflow list (so
6860   // the mark word may be NULL).
6861   assert(obj->is_oop_or_null(true /* ignore mark word */),
6862          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6863   HeapWord* addr = (HeapWord*)obj;
6864   // Check if oop points into the CMS generation
6865   // and is not marked
6866   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6867     // a white object ...
6868     _bit_map->mark(addr);         // ... now grey
6869     // push on the marking stack (grey set)
6870     bool simulate_overflow = false;
6871     NOT_PRODUCT(
6872       if (CMSMarkStackOverflowALot &&
6873           _collector->simulate_overflow()) {
6874         // simulate a stack overflow
6875         simulate_overflow = true;
6876       }
6877     )
6878     if (simulate_overflow || !_mark_stack->push(obj)) {
6879       if (_concurrent_precleaning) {
6880          // During precleaning we can just dirty the appropriate card(s)
6881          // in the mod union table, thus ensuring that the object remains
6882          // in the grey set  and continue. In the case of object arrays
6883          // we need to dirty all of the cards that the object spans,
6884          // since the rescan of object arrays will be limited to the
6885          // dirty cards.
6886          // Note that no one can be interfering with us in this action
6887          // of dirtying the mod union table, so no locking or atomics
6888          // are required.
6889          if (obj->is_objArray()) {
6890            size_t sz = obj->size();
6891            HeapWord* end_card_addr = (HeapWord*)round_to(
6892                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6893            MemRegion redirty_range = MemRegion(addr, end_card_addr);
6894            assert(!redirty_range.is_empty(), "Arithmetical tautology");
6895            _mod_union_table->mark_range(redirty_range);
6896          } else {
6897            _mod_union_table->mark(addr);
6898          }
6899          _collector->_ser_pmc_preclean_ovflw++;
6900       } else {
6901          // During the remark phase, we need to remember this oop
6902          // in the overflow list.
6903          _collector->push_on_overflow_list(obj);
6904          _collector->_ser_pmc_remark_ovflw++;
6905       }
6906     }
6907   }
6908 }
6909 
6910 ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6911                                              MemRegion span,
6912                                              ReferenceProcessor* rp,
6913                                              CMSBitMap* bit_map,
6914                                              OopTaskQueue* work_queue):
6915   MetadataAwareOopClosure(rp),
6916   _collector(collector),
6917   _span(span),
6918   _bit_map(bit_map),
6919   _work_queue(work_queue)
6920 {
6921   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6922 }
6923 
6924 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6925 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6926 
6927 // Grey object rescan during second checkpoint phase --
6928 // the parallel version.
6929 void ParPushAndMarkClosure::do_oop(oop obj) {
6930   // In the assert below, we ignore the mark word because
6931   // this oop may point to an already visited object that is
6932   // on the overflow stack (in which case the mark word has
6933   // been hijacked for chaining into the overflow stack --
6934   // if this is the last object in the overflow stack then
6935   // its mark word will be NULL). Because this object may
6936   // have been subsequently popped off the global overflow
6937   // stack, and the mark word possibly restored to the prototypical
6938   // value, by the time we get to examined this failing assert in
6939   // the debugger, is_oop_or_null(false) may subsequently start
6940   // to hold.
6941   assert(obj->is_oop_or_null(true),
6942          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6943   HeapWord* addr = (HeapWord*)obj;
6944   // Check if oop points into the CMS generation
6945   // and is not marked
6946   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6947     // a white object ...
6948     // If we manage to "claim" the object, by being the
6949     // first thread to mark it, then we push it on our
6950     // marking stack
6951     if (_bit_map->par_mark(addr)) {     // ... now grey
6952       // push on work queue (grey set)
6953       bool simulate_overflow = false;
6954       NOT_PRODUCT(
6955         if (CMSMarkStackOverflowALot &&
6956             _collector->par_simulate_overflow()) {
6957           // simulate a stack overflow
6958           simulate_overflow = true;
6959         }
6960       )
6961       if (simulate_overflow || !_work_queue->push(obj)) {
6962         _collector->par_push_on_overflow_list(obj);
6963         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6964       }
6965     } // Else, some other thread got there first
6966   }
6967 }
6968 
6969 void ParPushAndMarkClosure::do_oop(oop* p)       { ParPushAndMarkClosure::do_oop_work(p); }
6970 void ParPushAndMarkClosure::do_oop(narrowOop* p) { ParPushAndMarkClosure::do_oop_work(p); }
6971 
6972 void CMSPrecleanRefsYieldClosure::do_yield_work() {
6973   Mutex* bml = _collector->bitMapLock();
6974   assert_lock_strong(bml);
6975   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6976          "CMS thread should hold CMS token");
6977 
6978   bml->unlock();
6979   ConcurrentMarkSweepThread::desynchronize(true);
6980 
6981   _collector->stopTimer();
6982   _collector->incrementYields();
6983 
6984   // See the comment in coordinator_yield()
6985   for (unsigned i = 0; i < CMSYieldSleepCount &&
6986                        ConcurrentMarkSweepThread::should_yield() &&
6987                        !CMSCollector::foregroundGCIsActive(); ++i) {
6988     os::sleep(Thread::current(), 1, false);
6989   }
6990 
6991   ConcurrentMarkSweepThread::synchronize(true);
6992   bml->lock();
6993 
6994   _collector->startTimer();
6995 }
6996 
6997 bool CMSPrecleanRefsYieldClosure::should_return() {
6998   if (ConcurrentMarkSweepThread::should_yield()) {
6999     do_yield_work();
7000   }
7001   return _collector->foregroundGCIsActive();
7002 }
7003 
7004 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7005   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7006          "mr should be aligned to start at a card boundary");
7007   // We'd like to assert:
7008   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7009   //        "mr should be a range of cards");
7010   // However, that would be too strong in one case -- the last
7011   // partition ends at _unallocated_block which, in general, can be
7012   // an arbitrary boundary, not necessarily card aligned.
7013   _num_dirty_cards += mr.word_size()/CardTableModRefBS::card_size_in_words;
7014   _space->object_iterate_mem(mr, &_scan_cl);
7015 }
7016 
7017 SweepClosure::SweepClosure(CMSCollector* collector,
7018                            ConcurrentMarkSweepGeneration* g,
7019                            CMSBitMap* bitMap, bool should_yield) :
7020   _collector(collector),
7021   _g(g),
7022   _sp(g->cmsSpace()),
7023   _limit(_sp->sweep_limit()),
7024   _freelistLock(_sp->freelistLock()),
7025   _bitMap(bitMap),
7026   _yield(should_yield),
7027   _inFreeRange(false),           // No free range at beginning of sweep
7028   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7029   _lastFreeRangeCoalesced(false),
7030   _freeFinger(g->used_region().start())
7031 {
7032   NOT_PRODUCT(
7033     _numObjectsFreed = 0;
7034     _numWordsFreed   = 0;
7035     _numObjectsLive = 0;
7036     _numWordsLive = 0;
7037     _numObjectsAlreadyFree = 0;
7038     _numWordsAlreadyFree = 0;
7039     _last_fc = NULL;
7040 
7041     _sp->initializeIndexedFreeListArrayReturnedBytes();
7042     _sp->dictionary()->initialize_dict_returned_bytes();
7043   )
7044   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7045          "sweep _limit out of bounds");
7046   log_develop_trace(gc, sweep)("====================");
7047   log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7048 }
7049 
7050 void SweepClosure::print_on(outputStream* st) const {
7051   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7052                 p2i(_sp->bottom()), p2i(_sp->end()));
7053   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7054   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7055   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7056   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7057                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7058 }
7059 
7060 #ifndef PRODUCT
7061 // Assertion checking only:  no useful work in product mode --
7062 // however, if any of the flags below become product flags,
7063 // you may need to review this code to see if it needs to be
7064 // enabled in product mode.
7065 SweepClosure::~SweepClosure() {
7066   assert_lock_strong(_freelistLock);
7067   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7068          "sweep _limit out of bounds");
7069   if (inFreeRange()) {
7070     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7071     print();
7072     ShouldNotReachHere();
7073   }
7074 
7075   if (log_is_enabled(Debug, gc, sweep)) {
7076     log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7077                          _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7078     log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7079                          _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7080     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7081     log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7082   }
7083 
7084   if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7085     size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7086     size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7087     size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7088     log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7089                          returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7090   }
7091   log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7092   log_develop_trace(gc, sweep)("================");
7093 }
7094 #endif  // PRODUCT
7095 
7096 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7097     bool freeRangeInFreeLists) {
7098   log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7099                                p2i(freeFinger), freeRangeInFreeLists);
7100   assert(!inFreeRange(), "Trampling existing free range");
7101   set_inFreeRange(true);
7102   set_lastFreeRangeCoalesced(false);
7103 
7104   set_freeFinger(freeFinger);
7105   set_freeRangeInFreeLists(freeRangeInFreeLists);
7106   if (CMSTestInFreeList) {
7107     if (freeRangeInFreeLists) {
7108       FreeChunk* fc = (FreeChunk*) freeFinger;
7109       assert(fc->is_free(), "A chunk on the free list should be free.");
7110       assert(fc->size() > 0, "Free range should have a size");
7111       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7112     }
7113   }
7114 }
7115 
7116 // Note that the sweeper runs concurrently with mutators. Thus,
7117 // it is possible for direct allocation in this generation to happen
7118 // in the middle of the sweep. Note that the sweeper also coalesces
7119 // contiguous free blocks. Thus, unless the sweeper and the allocator
7120 // synchronize appropriately freshly allocated blocks may get swept up.
7121 // This is accomplished by the sweeper locking the free lists while
7122 // it is sweeping. Thus blocks that are determined to be free are
7123 // indeed free. There is however one additional complication:
7124 // blocks that have been allocated since the final checkpoint and
7125 // mark, will not have been marked and so would be treated as
7126 // unreachable and swept up. To prevent this, the allocator marks
7127 // the bit map when allocating during the sweep phase. This leads,
7128 // however, to a further complication -- objects may have been allocated
7129 // but not yet initialized -- in the sense that the header isn't yet
7130 // installed. The sweeper can not then determine the size of the block
7131 // in order to skip over it. To deal with this case, we use a technique
7132 // (due to Printezis) to encode such uninitialized block sizes in the
7133 // bit map. Since the bit map uses a bit per every HeapWord, but the
7134 // CMS generation has a minimum object size of 3 HeapWords, it follows
7135 // that "normal marks" won't be adjacent in the bit map (there will
7136 // always be at least two 0 bits between successive 1 bits). We make use
7137 // of these "unused" bits to represent uninitialized blocks -- the bit
7138 // corresponding to the start of the uninitialized object and the next
7139 // bit are both set. Finally, a 1 bit marks the end of the object that
7140 // started with the two consecutive 1 bits to indicate its potentially
7141 // uninitialized state.
7142 
7143 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7144   FreeChunk* fc = (FreeChunk*)addr;
7145   size_t res;
7146 
7147   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7148   // than "addr == _limit" because although _limit was a block boundary when
7149   // we started the sweep, it may no longer be one because heap expansion
7150   // may have caused us to coalesce the block ending at the address _limit
7151   // with a newly expanded chunk (this happens when _limit was set to the
7152   // previous _end of the space), so we may have stepped past _limit:
7153   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7154   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7155     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7156            "sweep _limit out of bounds");
7157     assert(addr < _sp->end(), "addr out of bounds");
7158     // Flush any free range we might be holding as a single
7159     // coalesced chunk to the appropriate free list.
7160     if (inFreeRange()) {
7161       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7162              "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7163       flush_cur_free_chunk(freeFinger(),
7164                            pointer_delta(addr, freeFinger()));
7165       log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7166                                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7167                                    lastFreeRangeCoalesced() ? 1 : 0);
7168     }
7169 
7170     // help the iterator loop finish
7171     return pointer_delta(_sp->end(), addr);
7172   }
7173 
7174   assert(addr < _limit, "sweep invariant");
7175   // check if we should yield
7176   do_yield_check(addr);
7177   if (fc->is_free()) {
7178     // Chunk that is already free
7179     res = fc->size();
7180     do_already_free_chunk(fc);
7181     debug_only(_sp->verifyFreeLists());
7182     // If we flush the chunk at hand in lookahead_and_flush()
7183     // and it's coalesced with a preceding chunk, then the
7184     // process of "mangling" the payload of the coalesced block
7185     // will cause erasure of the size information from the
7186     // (erstwhile) header of all the coalesced blocks but the
7187     // first, so the first disjunct in the assert will not hold
7188     // in that specific case (in which case the second disjunct
7189     // will hold).
7190     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7191            "Otherwise the size info doesn't change at this step");
7192     NOT_PRODUCT(
7193       _numObjectsAlreadyFree++;
7194       _numWordsAlreadyFree += res;
7195     )
7196     NOT_PRODUCT(_last_fc = fc;)
7197   } else if (!_bitMap->isMarked(addr)) {
7198     // Chunk is fresh garbage
7199     res = do_garbage_chunk(fc);
7200     debug_only(_sp->verifyFreeLists());
7201     NOT_PRODUCT(
7202       _numObjectsFreed++;
7203       _numWordsFreed += res;
7204     )
7205   } else {
7206     // Chunk that is alive.
7207     res = do_live_chunk(fc);
7208     debug_only(_sp->verifyFreeLists());
7209     NOT_PRODUCT(
7210         _numObjectsLive++;
7211         _numWordsLive += res;
7212     )
7213   }
7214   return res;
7215 }
7216 
7217 // For the smart allocation, record following
7218 //  split deaths - a free chunk is removed from its free list because
7219 //      it is being split into two or more chunks.
7220 //  split birth - a free chunk is being added to its free list because
7221 //      a larger free chunk has been split and resulted in this free chunk.
7222 //  coal death - a free chunk is being removed from its free list because
7223 //      it is being coalesced into a large free chunk.
7224 //  coal birth - a free chunk is being added to its free list because
7225 //      it was created when two or more free chunks where coalesced into
7226 //      this free chunk.
7227 //
7228 // These statistics are used to determine the desired number of free
7229 // chunks of a given size.  The desired number is chosen to be relative
7230 // to the end of a CMS sweep.  The desired number at the end of a sweep
7231 // is the
7232 //      count-at-end-of-previous-sweep (an amount that was enough)
7233 //              - count-at-beginning-of-current-sweep  (the excess)
7234 //              + split-births  (gains in this size during interval)
7235 //              - split-deaths  (demands on this size during interval)
7236 // where the interval is from the end of one sweep to the end of the
7237 // next.
7238 //
7239 // When sweeping the sweeper maintains an accumulated chunk which is
7240 // the chunk that is made up of chunks that have been coalesced.  That
7241 // will be termed the left-hand chunk.  A new chunk of garbage that
7242 // is being considered for coalescing will be referred to as the
7243 // right-hand chunk.
7244 //
7245 // When making a decision on whether to coalesce a right-hand chunk with
7246 // the current left-hand chunk, the current count vs. the desired count
7247 // of the left-hand chunk is considered.  Also if the right-hand chunk
7248 // is near the large chunk at the end of the heap (see
7249 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7250 // left-hand chunk is coalesced.
7251 //
7252 // When making a decision about whether to split a chunk, the desired count
7253 // vs. the current count of the candidate to be split is also considered.
7254 // If the candidate is underpopulated (currently fewer chunks than desired)
7255 // a chunk of an overpopulated (currently more chunks than desired) size may
7256 // be chosen.  The "hint" associated with a free list, if non-null, points
7257 // to a free list which may be overpopulated.
7258 //
7259 
7260 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7261   const size_t size = fc->size();
7262   // Chunks that cannot be coalesced are not in the
7263   // free lists.
7264   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7265     assert(_sp->verify_chunk_in_free_list(fc),
7266            "free chunk should be in free lists");
7267   }
7268   // a chunk that is already free, should not have been
7269   // marked in the bit map
7270   HeapWord* const addr = (HeapWord*) fc;
7271   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7272   // Verify that the bit map has no bits marked between
7273   // addr and purported end of this block.
7274   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7275 
7276   // Some chunks cannot be coalesced under any circumstances.
7277   // See the definition of cantCoalesce().
7278   if (!fc->cantCoalesce()) {
7279     // This chunk can potentially be coalesced.
7280     // All the work is done in
7281     do_post_free_or_garbage_chunk(fc, size);
7282     // Note that if the chunk is not coalescable (the else arm
7283     // below), we unconditionally flush, without needing to do
7284     // a "lookahead," as we do below.
7285     if (inFreeRange()) lookahead_and_flush(fc, size);
7286   } else {
7287     // Code path common to both original and adaptive free lists.
7288 
7289     // cant coalesce with previous block; this should be treated
7290     // as the end of a free run if any
7291     if (inFreeRange()) {
7292       // we kicked some butt; time to pick up the garbage
7293       assert(freeFinger() < addr, "freeFinger points too high");
7294       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7295     }
7296     // else, nothing to do, just continue
7297   }
7298 }
7299 
7300 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7301   // This is a chunk of garbage.  It is not in any free list.
7302   // Add it to a free list or let it possibly be coalesced into
7303   // a larger chunk.
7304   HeapWord* const addr = (HeapWord*) fc;
7305   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7306 
7307   // Verify that the bit map has no bits marked between
7308   // addr and purported end of just dead object.
7309   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7310   do_post_free_or_garbage_chunk(fc, size);
7311 
7312   assert(_limit >= addr + size,
7313          "A freshly garbage chunk can't possibly straddle over _limit");
7314   if (inFreeRange()) lookahead_and_flush(fc, size);
7315   return size;
7316 }
7317 
7318 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7319   HeapWord* addr = (HeapWord*) fc;
7320   // The sweeper has just found a live object. Return any accumulated
7321   // left hand chunk to the free lists.
7322   if (inFreeRange()) {
7323     assert(freeFinger() < addr, "freeFinger points too high");
7324     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7325   }
7326 
7327   // This object is live: we'd normally expect this to be
7328   // an oop, and like to assert the following:
7329   // assert(oop(addr)->is_oop(), "live block should be an oop");
7330   // However, as we commented above, this may be an object whose
7331   // header hasn't yet been initialized.
7332   size_t size;
7333   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7334   if (_bitMap->isMarked(addr + 1)) {
7335     // Determine the size from the bit map, rather than trying to
7336     // compute it from the object header.
7337     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7338     size = pointer_delta(nextOneAddr + 1, addr);
7339     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7340            "alignment problem");
7341 
7342 #ifdef ASSERT
7343       if (oop(addr)->klass_or_null() != NULL) {
7344         // Ignore mark word because we are running concurrent with mutators
7345         assert(oop(addr)->is_oop(true), "live block should be an oop");
7346         assert(size ==
7347                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7348                "P-mark and computed size do not agree");
7349       }
7350 #endif
7351 
7352   } else {
7353     // This should be an initialized object that's alive.
7354     assert(oop(addr)->klass_or_null() != NULL,
7355            "Should be an initialized object");
7356     // Ignore mark word because we are running concurrent with mutators
7357     assert(oop(addr)->is_oop(true), "live block should be an oop");
7358     // Verify that the bit map has no bits marked between
7359     // addr and purported end of this block.
7360     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7361     assert(size >= 3, "Necessary for Printezis marks to work");
7362     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7363     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7364   }
7365   return size;
7366 }
7367 
7368 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7369                                                  size_t chunkSize) {
7370   // do_post_free_or_garbage_chunk() should only be called in the case
7371   // of the adaptive free list allocator.
7372   const bool fcInFreeLists = fc->is_free();
7373   assert((HeapWord*)fc <= _limit, "sweep invariant");
7374   if (CMSTestInFreeList && fcInFreeLists) {
7375     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7376   }
7377 
7378   log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7379 
7380   HeapWord* const fc_addr = (HeapWord*) fc;
7381 
7382   bool coalesce = false;
7383   const size_t left  = pointer_delta(fc_addr, freeFinger());
7384   const size_t right = chunkSize;
7385   switch (FLSCoalescePolicy) {
7386     // numeric value forms a coalition aggressiveness metric
7387     case 0:  { // never coalesce
7388       coalesce = false;
7389       break;
7390     }
7391     case 1: { // coalesce if left & right chunks on overpopulated lists
7392       coalesce = _sp->coalOverPopulated(left) &&
7393                  _sp->coalOverPopulated(right);
7394       break;
7395     }
7396     case 2: { // coalesce if left chunk on overpopulated list (default)
7397       coalesce = _sp->coalOverPopulated(left);
7398       break;
7399     }
7400     case 3: { // coalesce if left OR right chunk on overpopulated list
7401       coalesce = _sp->coalOverPopulated(left) ||
7402                  _sp->coalOverPopulated(right);
7403       break;
7404     }
7405     case 4: { // always coalesce
7406       coalesce = true;
7407       break;
7408     }
7409     default:
7410      ShouldNotReachHere();
7411   }
7412 
7413   // Should the current free range be coalesced?
7414   // If the chunk is in a free range and either we decided to coalesce above
7415   // or the chunk is near the large block at the end of the heap
7416   // (isNearLargestChunk() returns true), then coalesce this chunk.
7417   const bool doCoalesce = inFreeRange()
7418                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7419   if (doCoalesce) {
7420     // Coalesce the current free range on the left with the new
7421     // chunk on the right.  If either is on a free list,
7422     // it must be removed from the list and stashed in the closure.
7423     if (freeRangeInFreeLists()) {
7424       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7425       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7426              "Size of free range is inconsistent with chunk size.");
7427       if (CMSTestInFreeList) {
7428         assert(_sp->verify_chunk_in_free_list(ffc),
7429                "Chunk is not in free lists");
7430       }
7431       _sp->coalDeath(ffc->size());
7432       _sp->removeFreeChunkFromFreeLists(ffc);
7433       set_freeRangeInFreeLists(false);
7434     }
7435     if (fcInFreeLists) {
7436       _sp->coalDeath(chunkSize);
7437       assert(fc->size() == chunkSize,
7438         "The chunk has the wrong size or is not in the free lists");
7439       _sp->removeFreeChunkFromFreeLists(fc);
7440     }
7441     set_lastFreeRangeCoalesced(true);
7442     print_free_block_coalesced(fc);
7443   } else {  // not in a free range and/or should not coalesce
7444     // Return the current free range and start a new one.
7445     if (inFreeRange()) {
7446       // In a free range but cannot coalesce with the right hand chunk.
7447       // Put the current free range into the free lists.
7448       flush_cur_free_chunk(freeFinger(),
7449                            pointer_delta(fc_addr, freeFinger()));
7450     }
7451     // Set up for new free range.  Pass along whether the right hand
7452     // chunk is in the free lists.
7453     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7454   }
7455 }
7456 
7457 // Lookahead flush:
7458 // If we are tracking a free range, and this is the last chunk that
7459 // we'll look at because its end crosses past _limit, we'll preemptively
7460 // flush it along with any free range we may be holding on to. Note that
7461 // this can be the case only for an already free or freshly garbage
7462 // chunk. If this block is an object, it can never straddle
7463 // over _limit. The "straddling" occurs when _limit is set at
7464 // the previous end of the space when this cycle started, and
7465 // a subsequent heap expansion caused the previously co-terminal
7466 // free block to be coalesced with the newly expanded portion,
7467 // thus rendering _limit a non-block-boundary making it dangerous
7468 // for the sweeper to step over and examine.
7469 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7470   assert(inFreeRange(), "Should only be called if currently in a free range.");
7471   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7472   assert(_sp->used_region().contains(eob - 1),
7473          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7474          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7475          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7476          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7477   if (eob >= _limit) {
7478     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7479     log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7480                                  "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7481                                  "[" PTR_FORMAT "," PTR_FORMAT ")",
7482                                  p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7483     // Return the storage we are tracking back into the free lists.
7484     log_develop_trace(gc, sweep)("Flushing ... ");
7485     assert(freeFinger() < eob, "Error");
7486     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7487   }
7488 }
7489 
7490 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7491   assert(inFreeRange(), "Should only be called if currently in a free range.");
7492   assert(size > 0,
7493     "A zero sized chunk cannot be added to the free lists.");
7494   if (!freeRangeInFreeLists()) {
7495     if (CMSTestInFreeList) {
7496       FreeChunk* fc = (FreeChunk*) chunk;
7497       fc->set_size(size);
7498       assert(!_sp->verify_chunk_in_free_list(fc),
7499              "chunk should not be in free lists yet");
7500     }
7501     log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7502     // A new free range is going to be starting.  The current
7503     // free range has not been added to the free lists yet or
7504     // was removed so add it back.
7505     // If the current free range was coalesced, then the death
7506     // of the free range was recorded.  Record a birth now.
7507     if (lastFreeRangeCoalesced()) {
7508       _sp->coalBirth(size);
7509     }
7510     _sp->addChunkAndRepairOffsetTable(chunk, size,
7511             lastFreeRangeCoalesced());
7512   } else {
7513     log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7514   }
7515   set_inFreeRange(false);
7516   set_freeRangeInFreeLists(false);
7517 }
7518 
7519 // We take a break if we've been at this for a while,
7520 // so as to avoid monopolizing the locks involved.
7521 void SweepClosure::do_yield_work(HeapWord* addr) {
7522   // Return current free chunk being used for coalescing (if any)
7523   // to the appropriate freelist.  After yielding, the next
7524   // free block encountered will start a coalescing range of
7525   // free blocks.  If the next free block is adjacent to the
7526   // chunk just flushed, they will need to wait for the next
7527   // sweep to be coalesced.
7528   if (inFreeRange()) {
7529     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7530   }
7531 
7532   // First give up the locks, then yield, then re-lock.
7533   // We should probably use a constructor/destructor idiom to
7534   // do this unlock/lock or modify the MutexUnlocker class to
7535   // serve our purpose. XXX
7536   assert_lock_strong(_bitMap->lock());
7537   assert_lock_strong(_freelistLock);
7538   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7539          "CMS thread should hold CMS token");
7540   _bitMap->lock()->unlock();
7541   _freelistLock->unlock();
7542   ConcurrentMarkSweepThread::desynchronize(true);
7543   _collector->stopTimer();
7544   _collector->incrementYields();
7545 
7546   // See the comment in coordinator_yield()
7547   for (unsigned i = 0; i < CMSYieldSleepCount &&
7548                        ConcurrentMarkSweepThread::should_yield() &&
7549                        !CMSCollector::foregroundGCIsActive(); ++i) {
7550     os::sleep(Thread::current(), 1, false);
7551   }
7552 
7553   ConcurrentMarkSweepThread::synchronize(true);
7554   _freelistLock->lock();
7555   _bitMap->lock()->lock_without_safepoint_check();
7556   _collector->startTimer();
7557 }
7558 
7559 #ifndef PRODUCT
7560 // This is actually very useful in a product build if it can
7561 // be called from the debugger.  Compile it into the product
7562 // as needed.
7563 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7564   return debug_cms_space->verify_chunk_in_free_list(fc);
7565 }
7566 #endif
7567 
7568 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7569   log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7570                                p2i(fc), fc->size());
7571 }
7572 
7573 // CMSIsAliveClosure
7574 bool CMSIsAliveClosure::do_object_b(oop obj) {
7575   HeapWord* addr = (HeapWord*)obj;
7576   return addr != NULL &&
7577          (!_span.contains(addr) || _bit_map->isMarked(addr));
7578 }
7579 
7580 
7581 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7582                       MemRegion span,
7583                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7584                       bool cpc):
7585   _collector(collector),
7586   _span(span),
7587   _bit_map(bit_map),
7588   _mark_stack(mark_stack),
7589   _concurrent_precleaning(cpc) {
7590   assert(!_span.is_empty(), "Empty span could spell trouble");
7591 }
7592 
7593 
7594 // CMSKeepAliveClosure: the serial version
7595 void CMSKeepAliveClosure::do_oop(oop obj) {
7596   HeapWord* addr = (HeapWord*)obj;
7597   if (_span.contains(addr) &&
7598       !_bit_map->isMarked(addr)) {
7599     _bit_map->mark(addr);
7600     bool simulate_overflow = false;
7601     NOT_PRODUCT(
7602       if (CMSMarkStackOverflowALot &&
7603           _collector->simulate_overflow()) {
7604         // simulate a stack overflow
7605         simulate_overflow = true;
7606       }
7607     )
7608     if (simulate_overflow || !_mark_stack->push(obj)) {
7609       if (_concurrent_precleaning) {
7610         // We dirty the overflown object and let the remark
7611         // phase deal with it.
7612         assert(_collector->overflow_list_is_empty(), "Error");
7613         // In the case of object arrays, we need to dirty all of
7614         // the cards that the object spans. No locking or atomics
7615         // are needed since no one else can be mutating the mod union
7616         // table.
7617         if (obj->is_objArray()) {
7618           size_t sz = obj->size();
7619           HeapWord* end_card_addr =
7620             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7621           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7622           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7623           _collector->_modUnionTable.mark_range(redirty_range);
7624         } else {
7625           _collector->_modUnionTable.mark(addr);
7626         }
7627         _collector->_ser_kac_preclean_ovflw++;
7628       } else {
7629         _collector->push_on_overflow_list(obj);
7630         _collector->_ser_kac_ovflw++;
7631       }
7632     }
7633   }
7634 }
7635 
7636 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7637 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7638 
7639 // CMSParKeepAliveClosure: a parallel version of the above.
7640 // The work queues are private to each closure (thread),
7641 // but (may be) available for stealing by other threads.
7642 void CMSParKeepAliveClosure::do_oop(oop obj) {
7643   HeapWord* addr = (HeapWord*)obj;
7644   if (_span.contains(addr) &&
7645       !_bit_map->isMarked(addr)) {
7646     // In general, during recursive tracing, several threads
7647     // may be concurrently getting here; the first one to
7648     // "tag" it, claims it.
7649     if (_bit_map->par_mark(addr)) {
7650       bool res = _work_queue->push(obj);
7651       assert(res, "Low water mark should be much less than capacity");
7652       // Do a recursive trim in the hope that this will keep
7653       // stack usage lower, but leave some oops for potential stealers
7654       trim_queue(_low_water_mark);
7655     } // Else, another thread got there first
7656   }
7657 }
7658 
7659 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7660 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7661 
7662 void CMSParKeepAliveClosure::trim_queue(uint max) {
7663   while (_work_queue->size() > max) {
7664     oop new_oop;
7665     if (_work_queue->pop_local(new_oop)) {
7666       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7667       assert(_bit_map->isMarked((HeapWord*)new_oop),
7668              "no white objects on this stack!");
7669       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7670       // iterate over the oops in this oop, marking and pushing
7671       // the ones in CMS heap (i.e. in _span).
7672       new_oop->oop_iterate(&_mark_and_push);
7673     }
7674   }
7675 }
7676 
7677 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7678                                 CMSCollector* collector,
7679                                 MemRegion span, CMSBitMap* bit_map,
7680                                 OopTaskQueue* work_queue):
7681   _collector(collector),
7682   _span(span),
7683   _bit_map(bit_map),
7684   _work_queue(work_queue) { }
7685 
7686 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7687   HeapWord* addr = (HeapWord*)obj;
7688   if (_span.contains(addr) &&
7689       !_bit_map->isMarked(addr)) {
7690     if (_bit_map->par_mark(addr)) {
7691       bool simulate_overflow = false;
7692       NOT_PRODUCT(
7693         if (CMSMarkStackOverflowALot &&
7694             _collector->par_simulate_overflow()) {
7695           // simulate a stack overflow
7696           simulate_overflow = true;
7697         }
7698       )
7699       if (simulate_overflow || !_work_queue->push(obj)) {
7700         _collector->par_push_on_overflow_list(obj);
7701         _collector->_par_kac_ovflw++;
7702       }
7703     } // Else another thread got there already
7704   }
7705 }
7706 
7707 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7708 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7709 
7710 //////////////////////////////////////////////////////////////////
7711 //  CMSExpansionCause                /////////////////////////////
7712 //////////////////////////////////////////////////////////////////
7713 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7714   switch (cause) {
7715     case _no_expansion:
7716       return "No expansion";
7717     case _satisfy_free_ratio:
7718       return "Free ratio";
7719     case _satisfy_promotion:
7720       return "Satisfy promotion";
7721     case _satisfy_allocation:
7722       return "allocation";
7723     case _allocate_par_lab:
7724       return "Par LAB";
7725     case _allocate_par_spooling_space:
7726       return "Par Spooling Space";
7727     case _adaptive_size_policy:
7728       return "Ergonomics";
7729     default:
7730       return "unknown";
7731   }
7732 }
7733 
7734 void CMSDrainMarkingStackClosure::do_void() {
7735   // the max number to take from overflow list at a time
7736   const size_t num = _mark_stack->capacity()/4;
7737   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7738          "Overflow list should be NULL during concurrent phases");
7739   while (!_mark_stack->isEmpty() ||
7740          // if stack is empty, check the overflow list
7741          _collector->take_from_overflow_list(num, _mark_stack)) {
7742     oop obj = _mark_stack->pop();
7743     HeapWord* addr = (HeapWord*)obj;
7744     assert(_span.contains(addr), "Should be within span");
7745     assert(_bit_map->isMarked(addr), "Should be marked");
7746     assert(obj->is_oop(), "Should be an oop");
7747     obj->oop_iterate(_keep_alive);
7748   }
7749 }
7750 
7751 void CMSParDrainMarkingStackClosure::do_void() {
7752   // drain queue
7753   trim_queue(0);
7754 }
7755 
7756 // Trim our work_queue so its length is below max at return
7757 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7758   while (_work_queue->size() > max) {
7759     oop new_oop;
7760     if (_work_queue->pop_local(new_oop)) {
7761       assert(new_oop->is_oop(), "Expected an oop");
7762       assert(_bit_map->isMarked((HeapWord*)new_oop),
7763              "no white objects on this stack!");
7764       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7765       // iterate over the oops in this oop, marking and pushing
7766       // the ones in CMS heap (i.e. in _span).
7767       new_oop->oop_iterate(&_mark_and_push);
7768     }
7769   }
7770 }
7771 
7772 ////////////////////////////////////////////////////////////////////
7773 // Support for Marking Stack Overflow list handling and related code
7774 ////////////////////////////////////////////////////////////////////
7775 // Much of the following code is similar in shape and spirit to the
7776 // code used in ParNewGC. We should try and share that code
7777 // as much as possible in the future.
7778 
7779 #ifndef PRODUCT
7780 // Debugging support for CMSStackOverflowALot
7781 
7782 // It's OK to call this multi-threaded;  the worst thing
7783 // that can happen is that we'll get a bunch of closely
7784 // spaced simulated overflows, but that's OK, in fact
7785 // probably good as it would exercise the overflow code
7786 // under contention.
7787 bool CMSCollector::simulate_overflow() {
7788   if (_overflow_counter-- <= 0) { // just being defensive
7789     _overflow_counter = CMSMarkStackOverflowInterval;
7790     return true;
7791   } else {
7792     return false;
7793   }
7794 }
7795 
7796 bool CMSCollector::par_simulate_overflow() {
7797   return simulate_overflow();
7798 }
7799 #endif
7800 
7801 // Single-threaded
7802 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7803   assert(stack->isEmpty(), "Expected precondition");
7804   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7805   size_t i = num;
7806   oop  cur = _overflow_list;
7807   const markOop proto = markOopDesc::prototype();
7808   NOT_PRODUCT(ssize_t n = 0;)
7809   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7810     next = oop(cur->mark());
7811     cur->set_mark(proto);   // until proven otherwise
7812     assert(cur->is_oop(), "Should be an oop");
7813     bool res = stack->push(cur);
7814     assert(res, "Bit off more than can chew?");
7815     NOT_PRODUCT(n++;)
7816   }
7817   _overflow_list = cur;
7818 #ifndef PRODUCT
7819   assert(_num_par_pushes >= n, "Too many pops?");
7820   _num_par_pushes -=n;
7821 #endif
7822   return !stack->isEmpty();
7823 }
7824 
7825 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7826 // (MT-safe) Get a prefix of at most "num" from the list.
7827 // The overflow list is chained through the mark word of
7828 // each object in the list. We fetch the entire list,
7829 // break off a prefix of the right size and return the
7830 // remainder. If other threads try to take objects from
7831 // the overflow list at that time, they will wait for
7832 // some time to see if data becomes available. If (and
7833 // only if) another thread places one or more object(s)
7834 // on the global list before we have returned the suffix
7835 // to the global list, we will walk down our local list
7836 // to find its end and append the global list to
7837 // our suffix before returning it. This suffix walk can
7838 // prove to be expensive (quadratic in the amount of traffic)
7839 // when there are many objects in the overflow list and
7840 // there is much producer-consumer contention on the list.
7841 // *NOTE*: The overflow list manipulation code here and
7842 // in ParNewGeneration:: are very similar in shape,
7843 // except that in the ParNew case we use the old (from/eden)
7844 // copy of the object to thread the list via its klass word.
7845 // Because of the common code, if you make any changes in
7846 // the code below, please check the ParNew version to see if
7847 // similar changes might be needed.
7848 // CR 6797058 has been filed to consolidate the common code.
7849 bool CMSCollector::par_take_from_overflow_list(size_t num,
7850                                                OopTaskQueue* work_q,
7851                                                int no_of_gc_threads) {
7852   assert(work_q->size() == 0, "First empty local work queue");
7853   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7854   if (_overflow_list == NULL) {
7855     return false;
7856   }
7857   // Grab the entire list; we'll put back a suffix
7858   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7859   Thread* tid = Thread::current();
7860   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7861   // set to ParallelGCThreads.
7862   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7863   size_t sleep_time_millis = MAX2((size_t)1, num/100);
7864   // If the list is busy, we spin for a short while,
7865   // sleeping between attempts to get the list.
7866   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7867     os::sleep(tid, sleep_time_millis, false);
7868     if (_overflow_list == NULL) {
7869       // Nothing left to take
7870       return false;
7871     } else if (_overflow_list != BUSY) {
7872       // Try and grab the prefix
7873       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7874     }
7875   }
7876   // If the list was found to be empty, or we spun long
7877   // enough, we give up and return empty-handed. If we leave
7878   // the list in the BUSY state below, it must be the case that
7879   // some other thread holds the overflow list and will set it
7880   // to a non-BUSY state in the future.
7881   if (prefix == NULL || prefix == BUSY) {
7882      // Nothing to take or waited long enough
7883      if (prefix == NULL) {
7884        // Write back the NULL in case we overwrote it with BUSY above
7885        // and it is still the same value.
7886        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7887      }
7888      return false;
7889   }
7890   assert(prefix != NULL && prefix != BUSY, "Error");
7891   size_t i = num;
7892   oop cur = prefix;
7893   // Walk down the first "num" objects, unless we reach the end.
7894   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
7895   if (cur->mark() == NULL) {
7896     // We have "num" or fewer elements in the list, so there
7897     // is nothing to return to the global list.
7898     // Write back the NULL in lieu of the BUSY we wrote
7899     // above, if it is still the same value.
7900     if (_overflow_list == BUSY) {
7901       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7902     }
7903   } else {
7904     // Chop off the suffix and return it to the global list.
7905     assert(cur->mark() != BUSY, "Error");
7906     oop suffix_head = cur->mark(); // suffix will be put back on global list
7907     cur->set_mark(NULL);           // break off suffix
7908     // It's possible that the list is still in the empty(busy) state
7909     // we left it in a short while ago; in that case we may be
7910     // able to place back the suffix without incurring the cost
7911     // of a walk down the list.
7912     oop observed_overflow_list = _overflow_list;
7913     oop cur_overflow_list = observed_overflow_list;
7914     bool attached = false;
7915     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7916       observed_overflow_list =
7917         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7918       if (cur_overflow_list == observed_overflow_list) {
7919         attached = true;
7920         break;
7921       } else cur_overflow_list = observed_overflow_list;
7922     }
7923     if (!attached) {
7924       // Too bad, someone else sneaked in (at least) an element; we'll need
7925       // to do a splice. Find tail of suffix so we can prepend suffix to global
7926       // list.
7927       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
7928       oop suffix_tail = cur;
7929       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
7930              "Tautology");
7931       observed_overflow_list = _overflow_list;
7932       do {
7933         cur_overflow_list = observed_overflow_list;
7934         if (cur_overflow_list != BUSY) {
7935           // Do the splice ...
7936           suffix_tail->set_mark(markOop(cur_overflow_list));
7937         } else { // cur_overflow_list == BUSY
7938           suffix_tail->set_mark(NULL);
7939         }
7940         // ... and try to place spliced list back on overflow_list ...
7941         observed_overflow_list =
7942           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7943       } while (cur_overflow_list != observed_overflow_list);
7944       // ... until we have succeeded in doing so.
7945     }
7946   }
7947 
7948   // Push the prefix elements on work_q
7949   assert(prefix != NULL, "control point invariant");
7950   const markOop proto = markOopDesc::prototype();
7951   oop next;
7952   NOT_PRODUCT(ssize_t n = 0;)
7953   for (cur = prefix; cur != NULL; cur = next) {
7954     next = oop(cur->mark());
7955     cur->set_mark(proto);   // until proven otherwise
7956     assert(cur->is_oop(), "Should be an oop");
7957     bool res = work_q->push(cur);
7958     assert(res, "Bit off more than we can chew?");
7959     NOT_PRODUCT(n++;)
7960   }
7961 #ifndef PRODUCT
7962   assert(_num_par_pushes >= n, "Too many pops?");
7963   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
7964 #endif
7965   return true;
7966 }
7967 
7968 // Single-threaded
7969 void CMSCollector::push_on_overflow_list(oop p) {
7970   NOT_PRODUCT(_num_par_pushes++;)
7971   assert(p->is_oop(), "Not an oop");
7972   preserve_mark_if_necessary(p);
7973   p->set_mark((markOop)_overflow_list);
7974   _overflow_list = p;
7975 }
7976 
7977 // Multi-threaded; use CAS to prepend to overflow list
7978 void CMSCollector::par_push_on_overflow_list(oop p) {
7979   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
7980   assert(p->is_oop(), "Not an oop");
7981   par_preserve_mark_if_necessary(p);
7982   oop observed_overflow_list = _overflow_list;
7983   oop cur_overflow_list;
7984   do {
7985     cur_overflow_list = observed_overflow_list;
7986     if (cur_overflow_list != BUSY) {
7987       p->set_mark(markOop(cur_overflow_list));
7988     } else {
7989       p->set_mark(NULL);
7990     }
7991     observed_overflow_list =
7992       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
7993   } while (cur_overflow_list != observed_overflow_list);
7994 }
7995 #undef BUSY
7996 
7997 // Single threaded
7998 // General Note on GrowableArray: pushes may silently fail
7999 // because we are (temporarily) out of C-heap for expanding
8000 // the stack. The problem is quite ubiquitous and affects
8001 // a lot of code in the JVM. The prudent thing for GrowableArray
8002 // to do (for now) is to exit with an error. However, that may
8003 // be too draconian in some cases because the caller may be
8004 // able to recover without much harm. For such cases, we
8005 // should probably introduce a "soft_push" method which returns
8006 // an indication of success or failure with the assumption that
8007 // the caller may be able to recover from a failure; code in
8008 // the VM can then be changed, incrementally, to deal with such
8009 // failures where possible, thus, incrementally hardening the VM
8010 // in such low resource situations.
8011 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8012   _preserved_oop_stack.push(p);
8013   _preserved_mark_stack.push(m);
8014   assert(m == p->mark(), "Mark word changed");
8015   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8016          "bijection");
8017 }
8018 
8019 // Single threaded
8020 void CMSCollector::preserve_mark_if_necessary(oop p) {
8021   markOop m = p->mark();
8022   if (m->must_be_preserved(p)) {
8023     preserve_mark_work(p, m);
8024   }
8025 }
8026 
8027 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8028   markOop m = p->mark();
8029   if (m->must_be_preserved(p)) {
8030     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8031     // Even though we read the mark word without holding
8032     // the lock, we are assured that it will not change
8033     // because we "own" this oop, so no other thread can
8034     // be trying to push it on the overflow list; see
8035     // the assertion in preserve_mark_work() that checks
8036     // that m == p->mark().
8037     preserve_mark_work(p, m);
8038   }
8039 }
8040 
8041 // We should be able to do this multi-threaded,
8042 // a chunk of stack being a task (this is
8043 // correct because each oop only ever appears
8044 // once in the overflow list. However, it's
8045 // not very easy to completely overlap this with
8046 // other operations, so will generally not be done
8047 // until all work's been completed. Because we
8048 // expect the preserved oop stack (set) to be small,
8049 // it's probably fine to do this single-threaded.
8050 // We can explore cleverer concurrent/overlapped/parallel
8051 // processing of preserved marks if we feel the
8052 // need for this in the future. Stack overflow should
8053 // be so rare in practice and, when it happens, its
8054 // effect on performance so great that this will
8055 // likely just be in the noise anyway.
8056 void CMSCollector::restore_preserved_marks_if_any() {
8057   assert(SafepointSynchronize::is_at_safepoint(),
8058          "world should be stopped");
8059   assert(Thread::current()->is_ConcurrentGC_thread() ||
8060          Thread::current()->is_VM_thread(),
8061          "should be single-threaded");
8062   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8063          "bijection");
8064 
8065   while (!_preserved_oop_stack.is_empty()) {
8066     oop p = _preserved_oop_stack.pop();
8067     assert(p->is_oop(), "Should be an oop");
8068     assert(_span.contains(p), "oop should be in _span");
8069     assert(p->mark() == markOopDesc::prototype(),
8070            "Set when taken from overflow list");
8071     markOop m = _preserved_mark_stack.pop();
8072     p->set_mark(m);
8073   }
8074   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8075          "stacks were cleared above");
8076 }
8077 
8078 #ifndef PRODUCT
8079 bool CMSCollector::no_preserved_marks() const {
8080   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8081 }
8082 #endif
8083 
8084 // Transfer some number of overflown objects to usual marking
8085 // stack. Return true if some objects were transferred.
8086 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8087   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8088                     (size_t)ParGCDesiredObjsFromOverflowList);
8089 
8090   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8091   assert(_collector->overflow_list_is_empty() || res,
8092          "If list is not empty, we should have taken something");
8093   assert(!res || !_mark_stack->isEmpty(),
8094          "If we took something, it should now be on our stack");
8095   return res;
8096 }
8097 
8098 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8099   size_t res = _sp->block_size_no_stall(addr, _collector);
8100   if (_sp->block_is_obj(addr)) {
8101     if (_live_bit_map->isMarked(addr)) {
8102       // It can't have been dead in a previous cycle
8103       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8104     } else {
8105       _dead_bit_map->mark(addr);      // mark the dead object
8106     }
8107   }
8108   // Could be 0, if the block size could not be computed without stalling.
8109   return res;
8110 }
8111 
8112 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8113 
8114   switch (phase) {
8115     case CMSCollector::InitialMarking:
8116       initialize(true  /* fullGC */ ,
8117                  cause /* cause of the GC */,
8118                  true  /* recordGCBeginTime */,
8119                  true  /* recordPreGCUsage */,
8120                  false /* recordPeakUsage */,
8121                  false /* recordPostGCusage */,
8122                  true  /* recordAccumulatedGCTime */,
8123                  false /* recordGCEndTime */,
8124                  false /* countCollection */  );
8125       break;
8126 
8127     case CMSCollector::FinalMarking:
8128       initialize(true  /* fullGC */ ,
8129                  cause /* cause of the GC */,
8130                  false /* recordGCBeginTime */,
8131                  false /* recordPreGCUsage */,
8132                  false /* recordPeakUsage */,
8133                  false /* recordPostGCusage */,
8134                  true  /* recordAccumulatedGCTime */,
8135                  false /* recordGCEndTime */,
8136                  false /* countCollection */  );
8137       break;
8138 
8139     case CMSCollector::Sweeping:
8140       initialize(true  /* fullGC */ ,
8141                  cause /* cause of the GC */,
8142                  false /* recordGCBeginTime */,
8143                  false /* recordPreGCUsage */,
8144                  true  /* recordPeakUsage */,
8145                  true  /* recordPostGCusage */,
8146                  false /* recordAccumulatedGCTime */,
8147                  true  /* recordGCEndTime */,
8148                  true  /* countCollection */  );
8149       break;
8150 
8151     default:
8152       ShouldNotReachHere();
8153   }
8154 }