1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "utilities/globalDefinitions.hpp"
  26 #include "prims/jvm.h"
  27 #include "runtime/frame.inline.hpp"
  28 #include "runtime/interfaceSupport.hpp"
  29 #include "runtime/os.hpp"
  30 #include "utilities/vmError.hpp"
  31 
  32 #include <signal.h>
  33 #include <unistd.h>
  34 #include <sys/resource.h>
  35 #include <sys/utsname.h>
  36 #include <pthread.h>
  37 #include <signal.h>
  38 
  39 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  40 
  41 // Todo: provide a os::get_max_process_id() or similar. Number of processes
  42 // may have been configured, can be read more accurately from proc fs etc.
  43 #ifndef MAX_PID
  44 #define MAX_PID INT_MAX
  45 #endif
  46 #define IS_VALID_PID(p) (p > 0 && p < MAX_PID)
  47 
  48 // Check core dump limit and report possible place where core can be found
  49 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
  50   int n;
  51   struct rlimit rlim;
  52   bool success;
  53 
  54   n = get_core_path(buffer, bufferSize);
  55 
  56   if (getrlimit(RLIMIT_CORE, &rlim) != 0) {
  57     jio_snprintf(buffer + n, bufferSize - n, "/core or core.%d (may not exist)", current_process_id());
  58     success = true;
  59   } else {
  60     switch(rlim.rlim_cur) {
  61       case RLIM_INFINITY:
  62         jio_snprintf(buffer + n, bufferSize - n, "/core or core.%d", current_process_id());
  63         success = true;
  64         break;
  65       case 0:
  66         jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again");
  67         success = false;
  68         break;
  69       default:
  70         jio_snprintf(buffer + n, bufferSize - n, "/core or core.%d (max size %lu kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", current_process_id(), (unsigned long)(rlim.rlim_cur >> 10));
  71         success = true;
  72         break;
  73     }
  74   }
  75   VMError::report_coredump_status(buffer, success);
  76 }
  77 
  78 int os::get_native_stack(address* stack, int frames, int toSkip) {
  79 #ifdef _NMT_NOINLINE_
  80   toSkip++;
  81 #endif
  82 
  83   int frame_idx = 0;
  84   int num_of_frames;  // number of frames captured
  85   frame fr = os::current_frame();
  86   while (fr.pc() && frame_idx < frames) {
  87     if (toSkip > 0) {
  88       toSkip --;
  89     } else {
  90       stack[frame_idx ++] = fr.pc();
  91     }
  92     if (fr.fp() == NULL || os::is_first_C_frame(&fr)
  93         ||fr.sender_pc() == NULL || fr.cb() != NULL) break;
  94 
  95     if (fr.sender_pc() && !os::is_first_C_frame(&fr)) {
  96       fr = os::get_sender_for_C_frame(&fr);
  97     } else {
  98       break;
  99     }
 100   }
 101   num_of_frames = frame_idx;
 102   for (; frame_idx < frames; frame_idx ++) {
 103     stack[frame_idx] = NULL;
 104   }
 105 
 106   return num_of_frames;
 107 }
 108 
 109 
 110 bool os::unsetenv(const char* name) {
 111   assert(name != NULL, "Null pointer");
 112   return (::unsetenv(name) == 0);
 113 }
 114 
 115 int os::get_last_error() {
 116   return errno;
 117 }
 118 
 119 bool os::is_debugger_attached() {
 120   // not implemented
 121   return false;
 122 }
 123 
 124 void os::wait_for_keypress_at_exit(void) {
 125   // don't do anything on posix platforms
 126   return;
 127 }
 128 
 129 // Multiple threads can race in this code, and can remap over each other with MAP_FIXED,
 130 // so on posix, unmap the section at the start and at the end of the chunk that we mapped
 131 // rather than unmapping and remapping the whole chunk to get requested alignment.
 132 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
 133   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
 134       "Alignment must be a multiple of allocation granularity (page size)");
 135   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
 136 
 137   size_t extra_size = size + alignment;
 138   assert(extra_size >= size, "overflow, size is too large to allow alignment");
 139 
 140   char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
 141 
 142   if (extra_base == NULL) {
 143     return NULL;
 144   }
 145 
 146   // Do manual alignment
 147   char* aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
 148 
 149   // [  |                                       |  ]
 150   // ^ extra_base
 151   //    ^ extra_base + begin_offset == aligned_base
 152   //     extra_base + begin_offset + size       ^
 153   //                       extra_base + extra_size ^
 154   // |<>| == begin_offset
 155   //                              end_offset == |<>|
 156   size_t begin_offset = aligned_base - extra_base;
 157   size_t end_offset = (extra_base + extra_size) - (aligned_base + size);
 158 
 159   if (begin_offset > 0) {
 160       os::release_memory(extra_base, begin_offset);
 161   }
 162 
 163   if (end_offset > 0) {
 164       os::release_memory(extra_base + begin_offset + size, end_offset);
 165   }
 166 
 167   return aligned_base;
 168 }
 169 
 170 void os::Posix::print_load_average(outputStream* st) {
 171   st->print("load average:");
 172   double loadavg[3];
 173   os::loadavg(loadavg, 3);
 174   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
 175   st->cr();
 176 }
 177 
 178 void os::Posix::print_rlimit_info(outputStream* st) {
 179   st->print("rlimit:");
 180   struct rlimit rlim;
 181 
 182   st->print(" STACK ");
 183   getrlimit(RLIMIT_STACK, &rlim);
 184   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 185   else st->print("%uk", rlim.rlim_cur >> 10);
 186 
 187   st->print(", CORE ");
 188   getrlimit(RLIMIT_CORE, &rlim);
 189   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 190   else st->print("%uk", rlim.rlim_cur >> 10);
 191 
 192   // Isn't there on solaris
 193 #if !defined(TARGET_OS_FAMILY_solaris) && !defined(TARGET_OS_FAMILY_aix)
 194   st->print(", NPROC ");
 195   getrlimit(RLIMIT_NPROC, &rlim);
 196   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 197   else st->print("%d", rlim.rlim_cur);
 198 #endif
 199 
 200   st->print(", NOFILE ");
 201   getrlimit(RLIMIT_NOFILE, &rlim);
 202   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 203   else st->print("%d", rlim.rlim_cur);
 204 
 205   st->print(", AS ");
 206   getrlimit(RLIMIT_AS, &rlim);
 207   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 208   else st->print("%uk", rlim.rlim_cur >> 10);
 209   st->cr();
 210 }
 211 
 212 void os::Posix::print_uname_info(outputStream* st) {
 213   // kernel
 214   st->print("uname:");
 215   struct utsname name;
 216   uname(&name);
 217   st->print("%s ", name.sysname);
 218 #ifdef ASSERT
 219   st->print("%s ", name.nodename);
 220 #endif
 221   st->print("%s ", name.release);
 222   st->print("%s ", name.version);
 223   st->print("%s", name.machine);
 224   st->cr();
 225 }
 226 
 227 bool os::has_allocatable_memory_limit(julong* limit) {
 228   struct rlimit rlim;
 229   int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
 230   // if there was an error when calling getrlimit, assume that there is no limitation
 231   // on virtual memory.
 232   bool result;
 233   if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) {
 234     result = false;
 235   } else {
 236     *limit = (julong)rlim.rlim_cur;
 237     result = true;
 238   }
 239 #ifdef _LP64
 240   return result;
 241 #else
 242   // arbitrary virtual space limit for 32 bit Unices found by testing. If
 243   // getrlimit above returned a limit, bound it with this limit. Otherwise
 244   // directly use it.
 245   const julong max_virtual_limit = (julong)3800*M;
 246   if (result) {
 247     *limit = MIN2(*limit, max_virtual_limit);
 248   } else {
 249     *limit = max_virtual_limit;
 250   }
 251 
 252   // bound by actually allocatable memory. The algorithm uses two bounds, an
 253   // upper and a lower limit. The upper limit is the current highest amount of
 254   // memory that could not be allocated, the lower limit is the current highest
 255   // amount of memory that could be allocated.
 256   // The algorithm iteratively refines the result by halving the difference
 257   // between these limits, updating either the upper limit (if that value could
 258   // not be allocated) or the lower limit (if the that value could be allocated)
 259   // until the difference between these limits is "small".
 260 
 261   // the minimum amount of memory we care about allocating.
 262   const julong min_allocation_size = M;
 263 
 264   julong upper_limit = *limit;
 265 
 266   // first check a few trivial cases
 267   if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) {
 268     *limit = upper_limit;
 269   } else if (!is_allocatable(min_allocation_size)) {
 270     // we found that not even min_allocation_size is allocatable. Return it
 271     // anyway. There is no point to search for a better value any more.
 272     *limit = min_allocation_size;
 273   } else {
 274     // perform the binary search.
 275     julong lower_limit = min_allocation_size;
 276     while ((upper_limit - lower_limit) > min_allocation_size) {
 277       julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit;
 278       temp_limit = align_size_down_(temp_limit, min_allocation_size);
 279       if (is_allocatable(temp_limit)) {
 280         lower_limit = temp_limit;
 281       } else {
 282         upper_limit = temp_limit;
 283       }
 284     }
 285     *limit = lower_limit;
 286   }
 287   return true;
 288 #endif
 289 }
 290 
 291 const char* os::get_current_directory(char *buf, size_t buflen) {
 292   return getcwd(buf, buflen);
 293 }
 294 
 295 FILE* os::open(int fd, const char* mode) {
 296   return ::fdopen(fd, mode);
 297 }
 298 
 299 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
 300 // which is used to find statically linked in agents.
 301 // Parameters:
 302 //            sym_name: Symbol in library we are looking for
 303 //            lib_name: Name of library to look in, NULL for shared libs.
 304 //            is_absolute_path == true if lib_name is absolute path to agent
 305 //                                     such as "/a/b/libL.so"
 306 //            == false if only the base name of the library is passed in
 307 //               such as "L"
 308 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
 309                                     bool is_absolute_path) {
 310   char *agent_entry_name;
 311   size_t len;
 312   size_t name_len;
 313   size_t prefix_len = strlen(JNI_LIB_PREFIX);
 314   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
 315   const char *start;
 316 
 317   if (lib_name != NULL) {
 318     len = name_len = strlen(lib_name);
 319     if (is_absolute_path) {
 320       // Need to strip path, prefix and suffix
 321       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
 322         lib_name = ++start;
 323       }
 324       if (len <= (prefix_len + suffix_len)) {
 325         return NULL;
 326       }
 327       lib_name += prefix_len;
 328       name_len = strlen(lib_name) - suffix_len;
 329     }
 330   }
 331   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
 332   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
 333   if (agent_entry_name == NULL) {
 334     return NULL;
 335   }
 336   strcpy(agent_entry_name, sym_name);
 337   if (lib_name != NULL) {
 338     strcat(agent_entry_name, "_");
 339     strncat(agent_entry_name, lib_name, name_len);
 340   }
 341   return agent_entry_name;
 342 }
 343 
 344 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
 345   assert(thread == Thread::current(),  "thread consistency check");
 346 
 347   ParkEvent * const slp = thread->_SleepEvent ;
 348   slp->reset() ;
 349   OrderAccess::fence() ;
 350 
 351   if (interruptible) {
 352     jlong prevtime = javaTimeNanos();
 353 
 354     for (;;) {
 355       if (os::is_interrupted(thread, true)) {
 356         return OS_INTRPT;
 357       }
 358 
 359       jlong newtime = javaTimeNanos();
 360 
 361       if (newtime - prevtime < 0) {
 362         // time moving backwards, should only happen if no monotonic clock
 363         // not a guarantee() because JVM should not abort on kernel/glibc bugs
 364         assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected in os::sleep(interruptible)");
 365       } else {
 366         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
 367       }
 368 
 369       if (millis <= 0) {
 370         return OS_OK;
 371       }
 372 
 373       prevtime = newtime;
 374 
 375       {
 376         assert(thread->is_Java_thread(), "sanity check");
 377         JavaThread *jt = (JavaThread *) thread;
 378         ThreadBlockInVM tbivm(jt);
 379         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
 380 
 381         jt->set_suspend_equivalent();
 382         // cleared by handle_special_suspend_equivalent_condition() or
 383         // java_suspend_self() via check_and_wait_while_suspended()
 384 
 385         slp->park(millis);
 386 
 387         // were we externally suspended while we were waiting?
 388         jt->check_and_wait_while_suspended();
 389       }
 390     }
 391   } else {
 392     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
 393     jlong prevtime = javaTimeNanos();
 394 
 395     for (;;) {
 396       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
 397       // the 1st iteration ...
 398       jlong newtime = javaTimeNanos();
 399 
 400       if (newtime - prevtime < 0) {
 401         // time moving backwards, should only happen if no monotonic clock
 402         // not a guarantee() because JVM should not abort on kernel/glibc bugs
 403         assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected on os::sleep(!interruptible)");
 404       } else {
 405         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
 406       }
 407 
 408       if (millis <= 0) break ;
 409 
 410       prevtime = newtime;
 411       slp->park(millis);
 412     }
 413     return OS_OK ;
 414   }
 415 }
 416 
 417 ////////////////////////////////////////////////////////////////////////////////
 418 // interrupt support
 419 
 420 void os::interrupt(Thread* thread) {
 421   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
 422     "possibility of dangling Thread pointer");
 423 
 424   OSThread* osthread = thread->osthread();
 425 
 426   if (!osthread->interrupted()) {
 427     osthread->set_interrupted(true);
 428     // More than one thread can get here with the same value of osthread,
 429     // resulting in multiple notifications.  We do, however, want the store
 430     // to interrupted() to be visible to other threads before we execute unpark().
 431     OrderAccess::fence();
 432     ParkEvent * const slp = thread->_SleepEvent ;
 433     if (slp != NULL) slp->unpark() ;
 434   }
 435 
 436   // For JSR166. Unpark even if interrupt status already was set
 437   if (thread->is_Java_thread())
 438     ((JavaThread*)thread)->parker()->unpark();
 439 
 440   ParkEvent * ev = thread->_ParkEvent ;
 441   if (ev != NULL) ev->unpark() ;
 442 
 443 }
 444 
 445 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
 446   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
 447     "possibility of dangling Thread pointer");
 448 
 449   OSThread* osthread = thread->osthread();
 450 
 451   bool interrupted = osthread->interrupted();
 452 
 453   // NOTE that since there is no "lock" around the interrupt and
 454   // is_interrupted operations, there is the possibility that the
 455   // interrupted flag (in osThread) will be "false" but that the
 456   // low-level events will be in the signaled state. This is
 457   // intentional. The effect of this is that Object.wait() and
 458   // LockSupport.park() will appear to have a spurious wakeup, which
 459   // is allowed and not harmful, and the possibility is so rare that
 460   // it is not worth the added complexity to add yet another lock.
 461   // For the sleep event an explicit reset is performed on entry
 462   // to os::sleep, so there is no early return. It has also been
 463   // recommended not to put the interrupted flag into the "event"
 464   // structure because it hides the issue.
 465   if (interrupted && clear_interrupted) {
 466     osthread->set_interrupted(false);
 467     // consider thread->_SleepEvent->reset() ... optional optimization
 468   }
 469 
 470   return interrupted;
 471 }
 472 
 473 // Returned string is a constant. For unknown signals "UNKNOWN" is returned.
 474 const char* os::Posix::get_signal_name(int sig, char* out, size_t outlen) {
 475 
 476   static const struct {
 477     int sig; const char* name;
 478   }
 479   info[] =
 480   {
 481     {  SIGABRT,     "SIGABRT" },
 482 #ifdef SIGAIO
 483     {  SIGAIO,      "SIGAIO" },
 484 #endif
 485     {  SIGALRM,     "SIGALRM" },
 486 #ifdef SIGALRM1
 487     {  SIGALRM1,    "SIGALRM1" },
 488 #endif
 489     {  SIGBUS,      "SIGBUS" },
 490 #ifdef SIGCANCEL
 491     {  SIGCANCEL,   "SIGCANCEL" },
 492 #endif
 493     {  SIGCHLD,     "SIGCHLD" },
 494 #ifdef SIGCLD
 495     {  SIGCLD,      "SIGCLD" },
 496 #endif
 497     {  SIGCONT,     "SIGCONT" },
 498 #ifdef SIGCPUFAIL
 499     {  SIGCPUFAIL,  "SIGCPUFAIL" },
 500 #endif
 501 #ifdef SIGDANGER
 502     {  SIGDANGER,   "SIGDANGER" },
 503 #endif
 504 #ifdef SIGDIL
 505     {  SIGDIL,      "SIGDIL" },
 506 #endif
 507 #ifdef SIGEMT
 508     {  SIGEMT,      "SIGEMT" },
 509 #endif
 510     {  SIGFPE,      "SIGFPE" },
 511 #ifdef SIGFREEZE
 512     {  SIGFREEZE,   "SIGFREEZE" },
 513 #endif
 514 #ifdef SIGGFAULT
 515     {  SIGGFAULT,   "SIGGFAULT" },
 516 #endif
 517 #ifdef SIGGRANT
 518     {  SIGGRANT,    "SIGGRANT" },
 519 #endif
 520     {  SIGHUP,      "SIGHUP" },
 521     {  SIGILL,      "SIGILL" },
 522     {  SIGINT,      "SIGINT" },
 523 #ifdef SIGIO
 524     {  SIGIO,       "SIGIO" },
 525 #endif
 526 #ifdef SIGIOINT
 527     {  SIGIOINT,    "SIGIOINT" },
 528 #endif
 529 #ifdef SIGIOT
 530   // SIGIOT is there for BSD compatibility, but on most Unices just a
 531   // synonym for SIGABRT. The result should be "SIGABRT", not
 532   // "SIGIOT".
 533   #if (SIGIOT != SIGABRT )
 534     {  SIGIOT,      "SIGIOT" },
 535   #endif
 536 #endif
 537 #ifdef SIGKAP
 538     {  SIGKAP,      "SIGKAP" },
 539 #endif
 540     {  SIGKILL,     "SIGKILL" },
 541 #ifdef SIGLOST
 542     {  SIGLOST,     "SIGLOST" },
 543 #endif
 544 #ifdef SIGLWP
 545     {  SIGLWP,      "SIGLWP" },
 546 #endif
 547 #ifdef SIGLWPTIMER
 548     {  SIGLWPTIMER, "SIGLWPTIMER" },
 549 #endif
 550 #ifdef SIGMIGRATE
 551     {  SIGMIGRATE,  "SIGMIGRATE" },
 552 #endif
 553 #ifdef SIGMSG
 554     {  SIGMSG,      "SIGMSG" },
 555 #endif
 556     {  SIGPIPE,     "SIGPIPE" },
 557 #ifdef SIGPOLL
 558     {  SIGPOLL,     "SIGPOLL" },
 559 #endif
 560 #ifdef SIGPRE
 561     {  SIGPRE,      "SIGPRE" },
 562 #endif
 563     {  SIGPROF,     "SIGPROF" },
 564 #ifdef SIGPTY
 565     {  SIGPTY,      "SIGPTY" },
 566 #endif
 567 #ifdef SIGPWR
 568     {  SIGPWR,      "SIGPWR" },
 569 #endif
 570     {  SIGQUIT,     "SIGQUIT" },
 571 #ifdef SIGRECONFIG
 572     {  SIGRECONFIG, "SIGRECONFIG" },
 573 #endif
 574 #ifdef SIGRECOVERY
 575     {  SIGRECOVERY, "SIGRECOVERY" },
 576 #endif
 577 #ifdef SIGRESERVE
 578     {  SIGRESERVE,  "SIGRESERVE" },
 579 #endif
 580 #ifdef SIGRETRACT
 581     {  SIGRETRACT,  "SIGRETRACT" },
 582 #endif
 583 #ifdef SIGSAK
 584     {  SIGSAK,      "SIGSAK" },
 585 #endif
 586     {  SIGSEGV,     "SIGSEGV" },
 587 #ifdef SIGSOUND
 588     {  SIGSOUND,    "SIGSOUND" },
 589 #endif
 590     {  SIGSTOP,     "SIGSTOP" },
 591     {  SIGSYS,      "SIGSYS" },
 592 #ifdef SIGSYSERROR
 593     {  SIGSYSERROR, "SIGSYSERROR" },
 594 #endif
 595 #ifdef SIGTALRM
 596     {  SIGTALRM,    "SIGTALRM" },
 597 #endif
 598     {  SIGTERM,     "SIGTERM" },
 599 #ifdef SIGTHAW
 600     {  SIGTHAW,     "SIGTHAW" },
 601 #endif
 602     {  SIGTRAP,     "SIGTRAP" },
 603 #ifdef SIGTSTP
 604     {  SIGTSTP,     "SIGTSTP" },
 605 #endif
 606     {  SIGTTIN,     "SIGTTIN" },
 607     {  SIGTTOU,     "SIGTTOU" },
 608 #ifdef SIGURG
 609     {  SIGURG,      "SIGURG" },
 610 #endif
 611     {  SIGUSR1,     "SIGUSR1" },
 612     {  SIGUSR2,     "SIGUSR2" },
 613 #ifdef SIGVIRT
 614     {  SIGVIRT,     "SIGVIRT" },
 615 #endif
 616     {  SIGVTALRM,   "SIGVTALRM" },
 617 #ifdef SIGWAITING
 618     {  SIGWAITING,  "SIGWAITING" },
 619 #endif
 620 #ifdef SIGWINCH
 621     {  SIGWINCH,    "SIGWINCH" },
 622 #endif
 623 #ifdef SIGWINDOW
 624     {  SIGWINDOW,   "SIGWINDOW" },
 625 #endif
 626     {  SIGXCPU,     "SIGXCPU" },
 627     {  SIGXFSZ,     "SIGXFSZ" },
 628 #ifdef SIGXRES
 629     {  SIGXRES,     "SIGXRES" },
 630 #endif
 631     { -1, NULL }
 632   };
 633 
 634   const char* ret = NULL;
 635 
 636 #ifdef SIGRTMIN
 637   if (sig >= SIGRTMIN && sig <= SIGRTMAX) {
 638     if (sig == SIGRTMIN) {
 639       ret = "SIGRTMIN";
 640     } else if (sig == SIGRTMAX) {
 641       ret = "SIGRTMAX";
 642     } else {
 643       jio_snprintf(out, outlen, "SIGRTMIN+%d", sig - SIGRTMIN);
 644       return out;
 645     }
 646   }
 647 #endif
 648 
 649   if (sig > 0) {
 650     for (int idx = 0; info[idx].sig != -1; idx ++) {
 651       if (info[idx].sig == sig) {
 652         ret = info[idx].name;
 653         break;
 654       }
 655     }
 656   }
 657 
 658   if (!ret) {
 659     if (!is_valid_signal(sig)) {
 660       ret = "INVALID";
 661     } else {
 662       ret = "UNKNOWN";
 663     }
 664   }
 665 
 666   jio_snprintf(out, outlen, ret);
 667   return out;
 668 }
 669 
 670 // Returns true if signal number is valid.
 671 bool os::Posix::is_valid_signal(int sig) {
 672   // MacOS not really POSIX compliant: sigaddset does not return
 673   // an error for invalid signal numbers. However, MacOS does not
 674   // support real time signals and simply seems to have just 33
 675   // signals with no holes in the signal range.
 676 #ifdef __APPLE__
 677   return sig >= 1 && sig < NSIG;
 678 #else
 679   // Use sigaddset to check for signal validity.
 680   sigset_t set;
 681   if (sigaddset(&set, sig) == -1 && errno == EINVAL) {
 682     return false;
 683   }
 684   return true;
 685 #endif
 686 }
 687 
 688 #define NUM_IMPORTANT_SIGS 32
 689 // Returns one-line short description of a signal set in a user provided buffer.
 690 const char* os::Posix::describe_signal_set_short(const sigset_t* set, char* buffer, size_t buf_size) {
 691   assert(buf_size == (NUM_IMPORTANT_SIGS + 1), "wrong buffer size");
 692   // Note: for shortness, just print out the first 32. That should
 693   // cover most of the useful ones, apart from realtime signals.
 694   for (int sig = 1; sig <= NUM_IMPORTANT_SIGS; sig++) {
 695     const int rc = sigismember(set, sig);
 696     if (rc == -1 && errno == EINVAL) {
 697       buffer[sig-1] = '?';
 698     } else {
 699       buffer[sig-1] = rc == 0 ? '0' : '1';
 700     }
 701   }
 702   buffer[NUM_IMPORTANT_SIGS] = 0;
 703   return buffer;
 704 }
 705 
 706 // Prints one-line description of a signal set.
 707 void os::Posix::print_signal_set_short(outputStream* st, const sigset_t* set) {
 708   char buf[NUM_IMPORTANT_SIGS + 1];
 709   os::Posix::describe_signal_set_short(set, buf, sizeof(buf));
 710   st->print("%s", buf);
 711 }
 712 
 713 // Writes one-line description of a combination of sigaction.sa_flags into a user
 714 // provided buffer. Returns that buffer.
 715 const char* os::Posix::describe_sa_flags(int flags, char* buffer, size_t size) {
 716   char* p = buffer;
 717   size_t remaining = size;
 718   bool first = true;
 719   int idx = 0;
 720 
 721   assert(buffer, "invalid argument");
 722 
 723   if (size == 0) {
 724     return buffer;
 725   }
 726 
 727   strncpy(buffer, "none", size);
 728 
 729   const struct {
 730     int i;
 731     const char* s;
 732   } flaginfo [] = {
 733     { SA_NOCLDSTOP, "SA_NOCLDSTOP" },
 734     { SA_ONSTACK,   "SA_ONSTACK"   },
 735     { SA_RESETHAND, "SA_RESETHAND" },
 736     { SA_RESTART,   "SA_RESTART"   },
 737     { SA_SIGINFO,   "SA_SIGINFO"   },
 738     { SA_NOCLDWAIT, "SA_NOCLDWAIT" },
 739     { SA_NODEFER,   "SA_NODEFER"   },
 740 #ifdef AIX
 741     { SA_ONSTACK,   "SA_ONSTACK"   },
 742     { SA_OLDSTYLE,  "SA_OLDSTYLE"  },
 743 #endif
 744     { 0, NULL }
 745   };
 746 
 747   for (idx = 0; flaginfo[idx].s && remaining > 1; idx++) {
 748     if (flags & flaginfo[idx].i) {
 749       if (first) {
 750         jio_snprintf(p, remaining, "%s", flaginfo[idx].s);
 751         first = false;
 752       } else {
 753         jio_snprintf(p, remaining, "|%s", flaginfo[idx].s);
 754       }
 755       const size_t len = strlen(p);
 756       p += len;
 757       remaining -= len;
 758     }
 759   }
 760 
 761   buffer[size - 1] = '\0';
 762 
 763   return buffer;
 764 }
 765 
 766 // Prints one-line description of a combination of sigaction.sa_flags.
 767 void os::Posix::print_sa_flags(outputStream* st, int flags) {
 768   char buffer[0x100];
 769   os::Posix::describe_sa_flags(flags, buffer, sizeof(buffer));
 770   st->print("%s", buffer);
 771 }
 772 
 773 // Helper function for os::Posix::print_siginfo_...():
 774 // return a textual description for signal code.
 775 struct enum_sigcode_desc_t {
 776   const char* s_name;
 777   const char* s_desc;
 778 };
 779 
 780 static bool get_signal_code_description(const siginfo_t* si, enum_sigcode_desc_t* out) {
 781 
 782   const struct {
 783     int sig; int code; const char* s_code; const char* s_desc;
 784   } t1 [] = {
 785     { SIGILL,  ILL_ILLOPC,   "ILL_ILLOPC",   "Illegal opcode." },
 786     { SIGILL,  ILL_ILLOPN,   "ILL_ILLOPN",   "Illegal operand." },
 787     { SIGILL,  ILL_ILLADR,   "ILL_ILLADR",   "Illegal addressing mode." },
 788     { SIGILL,  ILL_ILLTRP,   "ILL_ILLTRP",   "Illegal trap." },
 789     { SIGILL,  ILL_PRVOPC,   "ILL_PRVOPC",   "Privileged opcode." },
 790     { SIGILL,  ILL_PRVREG,   "ILL_PRVREG",   "Privileged register." },
 791     { SIGILL,  ILL_COPROC,   "ILL_COPROC",   "Coprocessor error." },
 792     { SIGILL,  ILL_BADSTK,   "ILL_BADSTK",   "Internal stack error." },
 793 #if defined(IA64) && defined(LINUX)
 794     { SIGILL,  ILL_BADIADDR, "ILL_BADIADDR", "Unimplemented instruction address" },
 795     { SIGILL,  ILL_BREAK,    "ILL_BREAK",    "Application Break instruction" },
 796 #endif
 797     { SIGFPE,  FPE_INTDIV,   "FPE_INTDIV",   "Integer divide by zero." },
 798     { SIGFPE,  FPE_INTOVF,   "FPE_INTOVF",   "Integer overflow." },
 799     { SIGFPE,  FPE_FLTDIV,   "FPE_FLTDIV",   "Floating-point divide by zero." },
 800     { SIGFPE,  FPE_FLTOVF,   "FPE_FLTOVF",   "Floating-point overflow." },
 801     { SIGFPE,  FPE_FLTUND,   "FPE_FLTUND",   "Floating-point underflow." },
 802     { SIGFPE,  FPE_FLTRES,   "FPE_FLTRES",   "Floating-point inexact result." },
 803     { SIGFPE,  FPE_FLTINV,   "FPE_FLTINV",   "Invalid floating-point operation." },
 804     { SIGFPE,  FPE_FLTSUB,   "FPE_FLTSUB",   "Subscript out of range." },
 805     { SIGSEGV, SEGV_MAPERR,  "SEGV_MAPERR",  "Address not mapped to object." },
 806     { SIGSEGV, SEGV_ACCERR,  "SEGV_ACCERR",  "Invalid permissions for mapped object." },
 807 #ifdef AIX
 808     // no explanation found what keyerr would be
 809     { SIGSEGV, SEGV_KEYERR,  "SEGV_KEYERR",  "key error" },
 810 #endif
 811 #if defined(IA64) && !defined(AIX)
 812     { SIGSEGV, SEGV_PSTKOVF, "SEGV_PSTKOVF", "Paragraph stack overflow" },
 813 #endif
 814     { SIGBUS,  BUS_ADRALN,   "BUS_ADRALN",   "Invalid address alignment." },
 815     { SIGBUS,  BUS_ADRERR,   "BUS_ADRERR",   "Nonexistent physical address." },
 816     { SIGBUS,  BUS_OBJERR,   "BUS_OBJERR",   "Object-specific hardware error." },
 817     { SIGTRAP, TRAP_BRKPT,   "TRAP_BRKPT",   "Process breakpoint." },
 818     { SIGTRAP, TRAP_TRACE,   "TRAP_TRACE",   "Process trace trap." },
 819     { SIGCHLD, CLD_EXITED,   "CLD_EXITED",   "Child has exited." },
 820     { SIGCHLD, CLD_KILLED,   "CLD_KILLED",   "Child has terminated abnormally and did not create a core file." },
 821     { SIGCHLD, CLD_DUMPED,   "CLD_DUMPED",   "Child has terminated abnormally and created a core file." },
 822     { SIGCHLD, CLD_TRAPPED,  "CLD_TRAPPED",  "Traced child has trapped." },
 823     { SIGCHLD, CLD_STOPPED,  "CLD_STOPPED",  "Child has stopped." },
 824     { SIGCHLD, CLD_CONTINUED,"CLD_CONTINUED","Stopped child has continued." },
 825 #ifdef SIGPOLL
 826     { SIGPOLL, POLL_OUT,     "POLL_OUT",     "Output buffers available." },
 827     { SIGPOLL, POLL_MSG,     "POLL_MSG",     "Input message available." },
 828     { SIGPOLL, POLL_ERR,     "POLL_ERR",     "I/O error." },
 829     { SIGPOLL, POLL_PRI,     "POLL_PRI",     "High priority input available." },
 830     { SIGPOLL, POLL_HUP,     "POLL_HUP",     "Device disconnected. [Option End]" },
 831 #endif
 832     { -1, -1, NULL, NULL }
 833   };
 834 
 835   // Codes valid in any signal context.
 836   const struct {
 837     int code; const char* s_code; const char* s_desc;
 838   } t2 [] = {
 839     { SI_USER,      "SI_USER",     "Signal sent by kill()." },
 840     { SI_QUEUE,     "SI_QUEUE",    "Signal sent by the sigqueue()." },
 841     { SI_TIMER,     "SI_TIMER",    "Signal generated by expiration of a timer set by timer_settime()." },
 842     { SI_ASYNCIO,   "SI_ASYNCIO",  "Signal generated by completion of an asynchronous I/O request." },
 843     { SI_MESGQ,     "SI_MESGQ",    "Signal generated by arrival of a message on an empty message queue." },
 844     // Linux specific
 845 #ifdef SI_TKILL
 846     { SI_TKILL,     "SI_TKILL",    "Signal sent by tkill (pthread_kill)" },
 847 #endif
 848 #ifdef SI_DETHREAD
 849     { SI_DETHREAD,  "SI_DETHREAD", "Signal sent by execve() killing subsidiary threads" },
 850 #endif
 851 #ifdef SI_KERNEL
 852     { SI_KERNEL,    "SI_KERNEL",   "Signal sent by kernel." },
 853 #endif
 854 #ifdef SI_SIGIO
 855     { SI_SIGIO,     "SI_SIGIO",    "Signal sent by queued SIGIO" },
 856 #endif
 857 
 858 #ifdef AIX
 859     { SI_UNDEFINED, "SI_UNDEFINED","siginfo contains partial information" },
 860     { SI_EMPTY,     "SI_EMPTY",    "siginfo contains no useful information" },
 861 #endif
 862 
 863 #ifdef __sun
 864     { SI_NOINFO,    "SI_NOINFO",   "No signal information" },
 865     { SI_RCTL,      "SI_RCTL",     "kernel generated signal via rctl action" },
 866     { SI_LWP,       "SI_LWP",      "Signal sent via lwp_kill" },
 867 #endif
 868 
 869     { -1, NULL, NULL }
 870   };
 871 
 872   const char* s_code = NULL;
 873   const char* s_desc = NULL;
 874 
 875   for (int i = 0; t1[i].sig != -1; i ++) {
 876     if (t1[i].sig == si->si_signo && t1[i].code == si->si_code) {
 877       s_code = t1[i].s_code;
 878       s_desc = t1[i].s_desc;
 879       break;
 880     }
 881   }
 882 
 883   if (s_code == NULL) {
 884     for (int i = 0; t2[i].s_code != NULL; i ++) {
 885       if (t2[i].code == si->si_code) {
 886         s_code = t2[i].s_code;
 887         s_desc = t2[i].s_desc;
 888       }
 889     }
 890   }
 891 
 892   if (s_code == NULL) {
 893     out->s_name = "unknown";
 894     out->s_desc = "unknown";
 895     return false;
 896   }
 897 
 898   out->s_name = s_code;
 899   out->s_desc = s_desc;
 900 
 901   return true;
 902 }
 903 
 904 // A POSIX conform, platform-independend siginfo print routine.
 905 // Short print out on one line.
 906 void os::Posix::print_siginfo_brief(outputStream* os, const siginfo_t* si) {
 907   char buf[20];
 908   os->print("siginfo: ");
 909 
 910   if (!si) {
 911     os->print("<null>");
 912     return;
 913   }
 914 
 915   // See print_siginfo_full() for details.
 916   const int sig = si->si_signo;
 917 
 918   os->print("si_signo: %d (%s)", sig, os::Posix::get_signal_name(sig, buf, sizeof(buf)));
 919 
 920   enum_sigcode_desc_t ed;
 921   if (get_signal_code_description(si, &ed)) {
 922     os->print(", si_code: %d (%s)", si->si_code, ed.s_name);
 923   } else {
 924     os->print(", si_code: %d (unknown)", si->si_code);
 925   }
 926 
 927   if (si->si_errno) {
 928     os->print(", si_errno: %d", si->si_errno);
 929   }
 930 
 931   const int me = (int) ::getpid();
 932   const int pid = (int) si->si_pid;
 933 
 934   if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
 935     if (IS_VALID_PID(pid) && pid != me) {
 936       os->print(", sent from pid: %d (uid: %d)", pid, (int) si->si_uid);
 937     }
 938   } else if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
 939              sig == SIGTRAP || sig == SIGFPE) {
 940     os->print(", si_addr: " PTR_FORMAT, si->si_addr);
 941 #ifdef SIGPOLL
 942   } else if (sig == SIGPOLL) {
 943     os->print(", si_band: " PTR64_FORMAT, (uint64_t)si->si_band);
 944 #endif
 945   } else if (sig == SIGCHLD) {
 946     os->print_cr(", si_pid: %d, si_uid: %d, si_status: %d", (int) si->si_pid, si->si_uid, si->si_status);
 947   }
 948 }
 949 
 950 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
 951   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
 952 }
 953 
 954 /*
 955  * See the caveats for this class in os_posix.hpp
 956  * Protects the callback call so that SIGSEGV / SIGBUS jumps back into this
 957  * method and returns false. If none of the signals are raised, returns true.
 958  * The callback is supposed to provide the method that should be protected.
 959  */
 960 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
 961   sigset_t saved_sig_mask;
 962 
 963   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
 964   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
 965       "crash_protection already set?");
 966 
 967   // we cannot rely on sigsetjmp/siglongjmp to save/restore the signal mask
 968   // since on at least some systems (OS X) siglongjmp will restore the mask
 969   // for the process, not the thread
 970   pthread_sigmask(0, NULL, &saved_sig_mask);
 971   if (sigsetjmp(_jmpbuf, 0) == 0) {
 972     // make sure we can see in the signal handler that we have crash protection
 973     // installed
 974     WatcherThread::watcher_thread()->set_crash_protection(this);
 975     cb.call();
 976     // and clear the crash protection
 977     WatcherThread::watcher_thread()->set_crash_protection(NULL);
 978     return true;
 979   }
 980   // this happens when we siglongjmp() back
 981   pthread_sigmask(SIG_SETMASK, &saved_sig_mask, NULL);
 982   WatcherThread::watcher_thread()->set_crash_protection(NULL);
 983   return false;
 984 }
 985 
 986 void os::WatcherThreadCrashProtection::restore() {
 987   assert(WatcherThread::watcher_thread()->has_crash_protection(),
 988       "must have crash protection");
 989 
 990   siglongjmp(_jmpbuf, 1);
 991 }
 992 
 993 void os::WatcherThreadCrashProtection::check_crash_protection(int sig,
 994     Thread* thread) {
 995 
 996   if (thread != NULL &&
 997       thread->is_Watcher_thread() &&
 998       WatcherThread::watcher_thread()->has_crash_protection()) {
 999 
1000     if (sig == SIGSEGV || sig == SIGBUS) {
1001       WatcherThread::watcher_thread()->crash_protection()->restore();
1002     }
1003   }
1004 }