1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/elfFile.hpp"
  70 #include "utilities/growableArray.hpp"
  71 #include "utilities/vmError.hpp"
  72 
  73 // put OS-includes here
  74 # include <sys/types.h>
  75 # include <sys/mman.h>
  76 # include <sys/stat.h>
  77 # include <sys/select.h>
  78 # include <pthread.h>
  79 # include <signal.h>
  80 # include <errno.h>
  81 # include <dlfcn.h>
  82 # include <stdio.h>
  83 # include <unistd.h>
  84 # include <sys/resource.h>
  85 # include <pthread.h>
  86 # include <sys/stat.h>
  87 # include <sys/time.h>
  88 # include <sys/times.h>
  89 # include <sys/utsname.h>
  90 # include <sys/socket.h>
  91 # include <sys/wait.h>
  92 # include <pwd.h>
  93 # include <poll.h>
  94 # include <semaphore.h>
  95 # include <fcntl.h>
  96 # include <string.h>
  97 # include <syscall.h>
  98 # include <sys/sysinfo.h>
  99 # include <gnu/libc-version.h>
 100 # include <sys/ipc.h>
 101 # include <sys/shm.h>
 102 # include <link.h>
 103 # include <stdint.h>
 104 # include <inttypes.h>
 105 # include <sys/ioctl.h>
 106 # include <sys/prctl.h>
 107 
 108 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 109 
 110 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 111 // getrusage() is prepared to handle the associated failure.
 112 #ifndef RUSAGE_THREAD
 113   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 114 #endif
 115 
 116 #define MAX_PATH    (2 * K)
 117 
 118 #define MAX_SECS 100000000
 119 
 120 // for timer info max values which include all bits
 121 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 122 
 123 #define LARGEPAGES_BIT (1 << 6)
 124 ////////////////////////////////////////////////////////////////////////////////
 125 // global variables
 126 julong os::Linux::_physical_memory = 0;
 127 
 128 address   os::Linux::_initial_thread_stack_bottom = NULL;
 129 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 130 
 131 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 132 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 133 Mutex* os::Linux::_createThread_lock = NULL;
 134 pthread_t os::Linux::_main_thread;
 135 int os::Linux::_page_size = -1;
 136 const int os::Linux::_vm_default_page_size = (8 * K);
 137 bool os::Linux::_is_floating_stack = false;
 138 bool os::Linux::_is_NPTL = false;
 139 bool os::Linux::_supports_fast_thread_cpu_time = false;
 140 const char * os::Linux::_glibc_version = NULL;
 141 const char * os::Linux::_libpthread_version = NULL;
 142 pthread_condattr_t os::Linux::_condattr[1];
 143 
 144 static jlong initial_time_count=0;
 145 
 146 static int clock_tics_per_sec = 100;
 147 
 148 // For diagnostics to print a message once. see run_periodic_checks
 149 static sigset_t check_signal_done;
 150 static bool check_signals = true;
 151 
 152 static pid_t _initial_pid = 0;
 153 
 154 // Signal number used to suspend/resume a thread
 155 
 156 // do not use any signal number less than SIGSEGV, see 4355769
 157 static int SR_signum = SIGUSR2;
 158 sigset_t SR_sigset;
 159 
 160 // Used to protect dlsym() calls
 161 static pthread_mutex_t dl_mutex;
 162 
 163 // Declarations
 164 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 165 
 166 #ifdef JAVASE_EMBEDDED
 167 class MemNotifyThread: public Thread {
 168   friend class VMStructs;
 169  public:
 170   virtual void run();
 171 
 172  private:
 173   static MemNotifyThread* _memnotify_thread;
 174   int _fd;
 175 
 176  public:
 177 
 178   // Constructor
 179   MemNotifyThread(int fd);
 180 
 181   // Tester
 182   bool is_memnotify_thread() const { return true; }
 183 
 184   // Printing
 185   char* name() const { return (char*)"Linux MemNotify Thread"; }
 186 
 187   // Returns the single instance of the MemNotifyThread
 188   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 189 
 190   // Create and start the single instance of MemNotifyThread
 191   static void start();
 192 };
 193 #endif // JAVASE_EMBEDDED
 194 
 195 // utility functions
 196 
 197 static int SR_initialize();
 198 
 199 julong os::available_memory() {
 200   return Linux::available_memory();
 201 }
 202 
 203 julong os::Linux::available_memory() {
 204   // values in struct sysinfo are "unsigned long"
 205   struct sysinfo si;
 206   sysinfo(&si);
 207 
 208   return (julong)si.freeram * si.mem_unit;
 209 }
 210 
 211 julong os::physical_memory() {
 212   return Linux::physical_memory();
 213 }
 214 
 215 ////////////////////////////////////////////////////////////////////////////////
 216 // environment support
 217 
 218 bool os::getenv(const char* name, char* buf, int len) {
 219   const char* val = ::getenv(name);
 220   if (val != NULL && strlen(val) < (size_t)len) {
 221     strcpy(buf, val);
 222     return true;
 223   }
 224   if (len > 0) buf[0] = 0;  // return a null string
 225   return false;
 226 }
 227 
 228 
 229 // Return true if user is running as root.
 230 
 231 bool os::have_special_privileges() {
 232   static bool init = false;
 233   static bool privileges = false;
 234   if (!init) {
 235     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 236     init = true;
 237   }
 238   return privileges;
 239 }
 240 
 241 
 242 #ifndef SYS_gettid
 243 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 244   #ifdef __ia64__
 245     #define SYS_gettid 1105
 246   #elif __i386__
 247     #define SYS_gettid 224
 248   #elif __amd64__
 249     #define SYS_gettid 186
 250   #elif __sparc__
 251     #define SYS_gettid 143
 252   #else
 253     #error define gettid for the arch
 254   #endif
 255 #endif
 256 
 257 // Cpu architecture string
 258 #if   defined(ZERO)
 259 static char cpu_arch[] = ZERO_LIBARCH;
 260 #elif defined(IA64)
 261 static char cpu_arch[] = "ia64";
 262 #elif defined(IA32)
 263 static char cpu_arch[] = "i386";
 264 #elif defined(AMD64)
 265 static char cpu_arch[] = "amd64";
 266 #elif defined(ARM)
 267 static char cpu_arch[] = "arm";
 268 #elif defined(PPC32)
 269 static char cpu_arch[] = "ppc";
 270 #elif defined(PPC64)
 271 static char cpu_arch[] = "ppc64";
 272 #elif defined(SPARC)
 273   #ifdef _LP64
 274 static char cpu_arch[] = "sparcv9";
 275   #else
 276 static char cpu_arch[] = "sparc";
 277   #endif
 278 #else
 279   #error Add appropriate cpu_arch setting
 280 #endif
 281 
 282 
 283 // pid_t gettid()
 284 //
 285 // Returns the kernel thread id of the currently running thread. Kernel
 286 // thread id is used to access /proc.
 287 //
 288 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 289 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 290 //
 291 pid_t os::Linux::gettid() {
 292   int rslt = syscall(SYS_gettid);
 293   if (rslt == -1) {
 294     // old kernel, no NPTL support
 295     return getpid();
 296   } else {
 297     return (pid_t)rslt;
 298   }
 299 }
 300 
 301 // Most versions of linux have a bug where the number of processors are
 302 // determined by looking at the /proc file system.  In a chroot environment,
 303 // the system call returns 1.  This causes the VM to act as if it is
 304 // a single processor and elide locking (see is_MP() call).
 305 static bool unsafe_chroot_detected = false;
 306 static const char *unstable_chroot_error = "/proc file system not found.\n"
 307                      "Java may be unstable running multithreaded in a chroot "
 308                      "environment on Linux when /proc filesystem is not mounted.";
 309 
 310 void os::Linux::initialize_system_info() {
 311   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 312   if (processor_count() == 1) {
 313     pid_t pid = os::Linux::gettid();
 314     char fname[32];
 315     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 316     FILE *fp = fopen(fname, "r");
 317     if (fp == NULL) {
 318       unsafe_chroot_detected = true;
 319     } else {
 320       fclose(fp);
 321     }
 322   }
 323   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 324   assert(processor_count() > 0, "linux error");
 325 }
 326 
 327 void os::init_system_properties_values() {
 328   // The next steps are taken in the product version:
 329   //
 330   // Obtain the JAVA_HOME value from the location of libjvm.so.
 331   // This library should be located at:
 332   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 333   //
 334   // If "/jre/lib/" appears at the right place in the path, then we
 335   // assume libjvm.so is installed in a JDK and we use this path.
 336   //
 337   // Otherwise exit with message: "Could not create the Java virtual machine."
 338   //
 339   // The following extra steps are taken in the debugging version:
 340   //
 341   // If "/jre/lib/" does NOT appear at the right place in the path
 342   // instead of exit check for $JAVA_HOME environment variable.
 343   //
 344   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 345   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 346   // it looks like libjvm.so is installed there
 347   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 348   //
 349   // Otherwise exit.
 350   //
 351   // Important note: if the location of libjvm.so changes this
 352   // code needs to be changed accordingly.
 353 
 354   // See ld(1):
 355   //      The linker uses the following search paths to locate required
 356   //      shared libraries:
 357   //        1: ...
 358   //        ...
 359   //        7: The default directories, normally /lib and /usr/lib.
 360 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 361   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 362 #else
 363   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 364 #endif
 365 
 366 // Base path of extensions installed on the system.
 367 #define SYS_EXT_DIR     "/usr/java/packages"
 368 #define EXTENSIONS_DIR  "/lib/ext"
 369 #define ENDORSED_DIR    "/lib/endorsed"
 370 
 371   // Buffer that fits several sprintfs.
 372   // Note that the space for the colon and the trailing null are provided
 373   // by the nulls included by the sizeof operator.
 374   const size_t bufsize =
 375     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 376          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 377          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 378   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 379 
 380   // sysclasspath, java_home, dll_dir
 381   {
 382     char *pslash;
 383     os::jvm_path(buf, bufsize);
 384 
 385     // Found the full path to libjvm.so.
 386     // Now cut the path to <java_home>/jre if we can.
 387     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 388     pslash = strrchr(buf, '/');
 389     if (pslash != NULL) {
 390       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 391     }
 392     Arguments::set_dll_dir(buf);
 393 
 394     if (pslash != NULL) {
 395       pslash = strrchr(buf, '/');
 396       if (pslash != NULL) {
 397         *pslash = '\0';          // Get rid of /<arch>.
 398         pslash = strrchr(buf, '/');
 399         if (pslash != NULL) {
 400           *pslash = '\0';        // Get rid of /lib.
 401         }
 402       }
 403     }
 404     Arguments::set_java_home(buf);
 405     set_boot_path('/', ':');
 406   }
 407 
 408   // Where to look for native libraries.
 409   //
 410   // Note: Due to a legacy implementation, most of the library path
 411   // is set in the launcher. This was to accomodate linking restrictions
 412   // on legacy Linux implementations (which are no longer supported).
 413   // Eventually, all the library path setting will be done here.
 414   //
 415   // However, to prevent the proliferation of improperly built native
 416   // libraries, the new path component /usr/java/packages is added here.
 417   // Eventually, all the library path setting will be done here.
 418   {
 419     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 420     // should always exist (until the legacy problem cited above is
 421     // addressed).
 422     const char *v = ::getenv("LD_LIBRARY_PATH");
 423     const char *v_colon = ":";
 424     if (v == NULL) { v = ""; v_colon = ""; }
 425     // That's +1 for the colon and +1 for the trailing '\0'.
 426     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 427                                                      strlen(v) + 1 +
 428                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 429                                                      mtInternal);
 430     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 431     Arguments::set_library_path(ld_library_path);
 432     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 433   }
 434 
 435   // Extensions directories.
 436   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 437   Arguments::set_ext_dirs(buf);
 438 
 439   // Endorsed standards default directory.
 440   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 441   Arguments::set_endorsed_dirs(buf);
 442 
 443   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 444 
 445 #undef DEFAULT_LIBPATH
 446 #undef SYS_EXT_DIR
 447 #undef EXTENSIONS_DIR
 448 #undef ENDORSED_DIR
 449 }
 450 
 451 ////////////////////////////////////////////////////////////////////////////////
 452 // breakpoint support
 453 
 454 void os::breakpoint() {
 455   BREAKPOINT;
 456 }
 457 
 458 extern "C" void breakpoint() {
 459   // use debugger to set breakpoint here
 460 }
 461 
 462 ////////////////////////////////////////////////////////////////////////////////
 463 // signal support
 464 
 465 debug_only(static bool signal_sets_initialized = false);
 466 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 467 
 468 bool os::Linux::is_sig_ignored(int sig) {
 469   struct sigaction oact;
 470   sigaction(sig, (struct sigaction*)NULL, &oact);
 471   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 472                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 473   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 474     return true;
 475   } else {
 476     return false;
 477   }
 478 }
 479 
 480 void os::Linux::signal_sets_init() {
 481   // Should also have an assertion stating we are still single-threaded.
 482   assert(!signal_sets_initialized, "Already initialized");
 483   // Fill in signals that are necessarily unblocked for all threads in
 484   // the VM. Currently, we unblock the following signals:
 485   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 486   //                         by -Xrs (=ReduceSignalUsage));
 487   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 488   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 489   // the dispositions or masks wrt these signals.
 490   // Programs embedding the VM that want to use the above signals for their
 491   // own purposes must, at this time, use the "-Xrs" option to prevent
 492   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 493   // (See bug 4345157, and other related bugs).
 494   // In reality, though, unblocking these signals is really a nop, since
 495   // these signals are not blocked by default.
 496   sigemptyset(&unblocked_sigs);
 497   sigemptyset(&allowdebug_blocked_sigs);
 498   sigaddset(&unblocked_sigs, SIGILL);
 499   sigaddset(&unblocked_sigs, SIGSEGV);
 500   sigaddset(&unblocked_sigs, SIGBUS);
 501   sigaddset(&unblocked_sigs, SIGFPE);
 502 #if defined(PPC64)
 503   sigaddset(&unblocked_sigs, SIGTRAP);
 504 #endif
 505   sigaddset(&unblocked_sigs, SR_signum);
 506 
 507   if (!ReduceSignalUsage) {
 508     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 509       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 510       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 511     }
 512     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 513       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 514       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 515     }
 516     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 517       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 518       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 519     }
 520   }
 521   // Fill in signals that are blocked by all but the VM thread.
 522   sigemptyset(&vm_sigs);
 523   if (!ReduceSignalUsage) {
 524     sigaddset(&vm_sigs, BREAK_SIGNAL);
 525   }
 526   debug_only(signal_sets_initialized = true);
 527 
 528 }
 529 
 530 // These are signals that are unblocked while a thread is running Java.
 531 // (For some reason, they get blocked by default.)
 532 sigset_t* os::Linux::unblocked_signals() {
 533   assert(signal_sets_initialized, "Not initialized");
 534   return &unblocked_sigs;
 535 }
 536 
 537 // These are the signals that are blocked while a (non-VM) thread is
 538 // running Java. Only the VM thread handles these signals.
 539 sigset_t* os::Linux::vm_signals() {
 540   assert(signal_sets_initialized, "Not initialized");
 541   return &vm_sigs;
 542 }
 543 
 544 // These are signals that are blocked during cond_wait to allow debugger in
 545 sigset_t* os::Linux::allowdebug_blocked_signals() {
 546   assert(signal_sets_initialized, "Not initialized");
 547   return &allowdebug_blocked_sigs;
 548 }
 549 
 550 void os::Linux::hotspot_sigmask(Thread* thread) {
 551 
 552   //Save caller's signal mask before setting VM signal mask
 553   sigset_t caller_sigmask;
 554   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 555 
 556   OSThread* osthread = thread->osthread();
 557   osthread->set_caller_sigmask(caller_sigmask);
 558 
 559   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 560 
 561   if (!ReduceSignalUsage) {
 562     if (thread->is_VM_thread()) {
 563       // Only the VM thread handles BREAK_SIGNAL ...
 564       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 565     } else {
 566       // ... all other threads block BREAK_SIGNAL
 567       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 568     }
 569   }
 570 }
 571 
 572 //////////////////////////////////////////////////////////////////////////////
 573 // detecting pthread library
 574 
 575 void os::Linux::libpthread_init() {
 576   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 577   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 578   // generic name for earlier versions.
 579   // Define macros here so we can build HotSpot on old systems.
 580 #ifndef _CS_GNU_LIBC_VERSION
 581   #define _CS_GNU_LIBC_VERSION 2
 582 #endif
 583 #ifndef _CS_GNU_LIBPTHREAD_VERSION
 584   #define _CS_GNU_LIBPTHREAD_VERSION 3
 585 #endif
 586 
 587   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 588   if (n > 0) {
 589     char *str = (char *)malloc(n, mtInternal);
 590     confstr(_CS_GNU_LIBC_VERSION, str, n);
 591     os::Linux::set_glibc_version(str);
 592   } else {
 593     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 594     static char _gnu_libc_version[32];
 595     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 596                  "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 597     os::Linux::set_glibc_version(_gnu_libc_version);
 598   }
 599 
 600   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 601   if (n > 0) {
 602     char *str = (char *)malloc(n, mtInternal);
 603     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 604     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 605     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 606     // is the case. LinuxThreads has a hard limit on max number of threads.
 607     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 608     // On the other hand, NPTL does not have such a limit, sysconf()
 609     // will return -1 and errno is not changed. Check if it is really NPTL.
 610     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 611         strstr(str, "NPTL") &&
 612         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 613       free(str);
 614       os::Linux::set_libpthread_version("linuxthreads");
 615     } else {
 616       os::Linux::set_libpthread_version(str);
 617     }
 618   } else {
 619     // glibc before 2.3.2 only has LinuxThreads.
 620     os::Linux::set_libpthread_version("linuxthreads");
 621   }
 622 
 623   if (strstr(libpthread_version(), "NPTL")) {
 624     os::Linux::set_is_NPTL();
 625   } else {
 626     os::Linux::set_is_LinuxThreads();
 627   }
 628 
 629   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 630   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 631   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 632     os::Linux::set_is_floating_stack();
 633   }
 634 }
 635 
 636 /////////////////////////////////////////////////////////////////////////////
 637 // thread stack
 638 
 639 // Force Linux kernel to expand current thread stack. If "bottom" is close
 640 // to the stack guard, caller should block all signals.
 641 //
 642 // MAP_GROWSDOWN:
 643 //   A special mmap() flag that is used to implement thread stacks. It tells
 644 //   kernel that the memory region should extend downwards when needed. This
 645 //   allows early versions of LinuxThreads to only mmap the first few pages
 646 //   when creating a new thread. Linux kernel will automatically expand thread
 647 //   stack as needed (on page faults).
 648 //
 649 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 650 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 651 //   region, it's hard to tell if the fault is due to a legitimate stack
 652 //   access or because of reading/writing non-exist memory (e.g. buffer
 653 //   overrun). As a rule, if the fault happens below current stack pointer,
 654 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 655 //   application (see Linux kernel fault.c).
 656 //
 657 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 658 //   stack overflow detection.
 659 //
 660 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 661 //   not use this flag. However, the stack of initial thread is not created
 662 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 663 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 664 //   and then attach the thread to JVM.
 665 //
 666 // To get around the problem and allow stack banging on Linux, we need to
 667 // manually expand thread stack after receiving the SIGSEGV.
 668 //
 669 // There are two ways to expand thread stack to address "bottom", we used
 670 // both of them in JVM before 1.5:
 671 //   1. adjust stack pointer first so that it is below "bottom", and then
 672 //      touch "bottom"
 673 //   2. mmap() the page in question
 674 //
 675 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 676 // if current sp is already near the lower end of page 101, and we need to
 677 // call mmap() to map page 100, it is possible that part of the mmap() frame
 678 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 679 // That will destroy the mmap() frame and cause VM to crash.
 680 //
 681 // The following code works by adjusting sp first, then accessing the "bottom"
 682 // page to force a page fault. Linux kernel will then automatically expand the
 683 // stack mapping.
 684 //
 685 // _expand_stack_to() assumes its frame size is less than page size, which
 686 // should always be true if the function is not inlined.
 687 
 688 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 689   #define NOINLINE
 690 #else
 691   #define NOINLINE __attribute__ ((noinline))
 692 #endif
 693 
 694 static void _expand_stack_to(address bottom) NOINLINE;
 695 
 696 static void _expand_stack_to(address bottom) {
 697   address sp;
 698   size_t size;
 699   volatile char *p;
 700 
 701   // Adjust bottom to point to the largest address within the same page, it
 702   // gives us a one-page buffer if alloca() allocates slightly more memory.
 703   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 704   bottom += os::Linux::page_size() - 1;
 705 
 706   // sp might be slightly above current stack pointer; if that's the case, we
 707   // will alloca() a little more space than necessary, which is OK. Don't use
 708   // os::current_stack_pointer(), as its result can be slightly below current
 709   // stack pointer, causing us to not alloca enough to reach "bottom".
 710   sp = (address)&sp;
 711 
 712   if (sp > bottom) {
 713     size = sp - bottom;
 714     p = (volatile char *)alloca(size);
 715     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 716     p[0] = '\0';
 717   }
 718 }
 719 
 720 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 721   assert(t!=NULL, "just checking");
 722   assert(t->osthread()->expanding_stack(), "expand should be set");
 723   assert(t->stack_base() != NULL, "stack_base was not initialized");
 724 
 725   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 726     sigset_t mask_all, old_sigset;
 727     sigfillset(&mask_all);
 728     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 729     _expand_stack_to(addr);
 730     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 731     return true;
 732   }
 733   return false;
 734 }
 735 
 736 //////////////////////////////////////////////////////////////////////////////
 737 // create new thread
 738 
 739 static address highest_vm_reserved_address();
 740 
 741 // check if it's safe to start a new thread
 742 static bool _thread_safety_check(Thread* thread) {
 743   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 744     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 745     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 746     //   allocated (MAP_FIXED) from high address space. Every thread stack
 747     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 748     //   it to other values if they rebuild LinuxThreads).
 749     //
 750     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 751     // the memory region has already been mmap'ed. That means if we have too
 752     // many threads and/or very large heap, eventually thread stack will
 753     // collide with heap.
 754     //
 755     // Here we try to prevent heap/stack collision by comparing current
 756     // stack bottom with the highest address that has been mmap'ed by JVM
 757     // plus a safety margin for memory maps created by native code.
 758     //
 759     // This feature can be disabled by setting ThreadSafetyMargin to 0
 760     //
 761     if (ThreadSafetyMargin > 0) {
 762       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 763 
 764       // not safe if our stack extends below the safety margin
 765       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 766     } else {
 767       return true;
 768     }
 769   } else {
 770     // Floating stack LinuxThreads or NPTL:
 771     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 772     //   there's not enough space left, pthread_create() will fail. If we come
 773     //   here, that means enough space has been reserved for stack.
 774     return true;
 775   }
 776 }
 777 
 778 // Thread start routine for all newly created threads
 779 static void *java_start(Thread *thread) {
 780   // Try to randomize the cache line index of hot stack frames.
 781   // This helps when threads of the same stack traces evict each other's
 782   // cache lines. The threads can be either from the same JVM instance, or
 783   // from different JVM instances. The benefit is especially true for
 784   // processors with hyperthreading technology.
 785   static int counter = 0;
 786   int pid = os::current_process_id();
 787   alloca(((pid ^ counter++) & 7) * 128);
 788 
 789   ThreadLocalStorage::set_thread(thread);
 790 
 791   OSThread* osthread = thread->osthread();
 792   Monitor* sync = osthread->startThread_lock();
 793 
 794   // non floating stack LinuxThreads needs extra check, see above
 795   if (!_thread_safety_check(thread)) {
 796     // notify parent thread
 797     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 798     osthread->set_state(ZOMBIE);
 799     sync->notify_all();
 800     return NULL;
 801   }
 802 
 803   // thread_id is kernel thread id (similar to Solaris LWP id)
 804   osthread->set_thread_id(os::Linux::gettid());
 805 
 806   if (UseNUMA) {
 807     int lgrp_id = os::numa_get_group_id();
 808     if (lgrp_id != -1) {
 809       thread->set_lgrp_id(lgrp_id);
 810     }
 811   }
 812   // initialize signal mask for this thread
 813   os::Linux::hotspot_sigmask(thread);
 814 
 815   // initialize floating point control register
 816   os::Linux::init_thread_fpu_state();
 817 
 818   // handshaking with parent thread
 819   {
 820     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 821 
 822     // notify parent thread
 823     osthread->set_state(INITIALIZED);
 824     sync->notify_all();
 825 
 826     // wait until os::start_thread()
 827     while (osthread->get_state() == INITIALIZED) {
 828       sync->wait(Mutex::_no_safepoint_check_flag);
 829     }
 830   }
 831 
 832   // call one more level start routine
 833   thread->run();
 834 
 835   return 0;
 836 }
 837 
 838 bool os::create_thread(Thread* thread, ThreadType thr_type,
 839                        size_t stack_size) {
 840   assert(thread->osthread() == NULL, "caller responsible");
 841 
 842   // Allocate the OSThread object
 843   OSThread* osthread = new OSThread(NULL, NULL);
 844   if (osthread == NULL) {
 845     return false;
 846   }
 847 
 848   // set the correct thread state
 849   osthread->set_thread_type(thr_type);
 850 
 851   // Initial state is ALLOCATED but not INITIALIZED
 852   osthread->set_state(ALLOCATED);
 853 
 854   thread->set_osthread(osthread);
 855 
 856   // init thread attributes
 857   pthread_attr_t attr;
 858   pthread_attr_init(&attr);
 859   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 860 
 861   // stack size
 862   if (os::Linux::supports_variable_stack_size()) {
 863     // calculate stack size if it's not specified by caller
 864     if (stack_size == 0) {
 865       stack_size = os::Linux::default_stack_size(thr_type);
 866 
 867       switch (thr_type) {
 868       case os::java_thread:
 869         // Java threads use ThreadStackSize which default value can be
 870         // changed with the flag -Xss
 871         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 872         stack_size = JavaThread::stack_size_at_create();
 873         break;
 874       case os::compiler_thread:
 875         if (CompilerThreadStackSize > 0) {
 876           stack_size = (size_t)(CompilerThreadStackSize * K);
 877           break;
 878         } // else fall through:
 879           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 880       case os::vm_thread:
 881       case os::pgc_thread:
 882       case os::cgc_thread:
 883       case os::watcher_thread:
 884         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 885         break;
 886       }
 887     }
 888 
 889     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 890     pthread_attr_setstacksize(&attr, stack_size);
 891   } else {
 892     // let pthread_create() pick the default value.
 893   }
 894 
 895   // glibc guard page
 896   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 897 
 898   ThreadState state;
 899 
 900   {
 901     // Serialize thread creation if we are running with fixed stack LinuxThreads
 902     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 903     if (lock) {
 904       os::Linux::createThread_lock()->lock_without_safepoint_check();
 905     }
 906 
 907     pthread_t tid;
 908     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 909 
 910     pthread_attr_destroy(&attr);
 911 
 912     if (ret != 0) {
 913       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 914         perror("pthread_create()");
 915       }
 916       // Need to clean up stuff we've allocated so far
 917       thread->set_osthread(NULL);
 918       delete osthread;
 919       if (lock) os::Linux::createThread_lock()->unlock();
 920       return false;
 921     }
 922 
 923     // Store pthread info into the OSThread
 924     osthread->set_pthread_id(tid);
 925 
 926     // Wait until child thread is either initialized or aborted
 927     {
 928       Monitor* sync_with_child = osthread->startThread_lock();
 929       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 930       while ((state = osthread->get_state()) == ALLOCATED) {
 931         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 932       }
 933     }
 934 
 935     if (lock) {
 936       os::Linux::createThread_lock()->unlock();
 937     }
 938   }
 939 
 940   // Aborted due to thread limit being reached
 941   if (state == ZOMBIE) {
 942     thread->set_osthread(NULL);
 943     delete osthread;
 944     return false;
 945   }
 946 
 947   // The thread is returned suspended (in state INITIALIZED),
 948   // and is started higher up in the call chain
 949   assert(state == INITIALIZED, "race condition");
 950   return true;
 951 }
 952 
 953 /////////////////////////////////////////////////////////////////////////////
 954 // attach existing thread
 955 
 956 // bootstrap the main thread
 957 bool os::create_main_thread(JavaThread* thread) {
 958   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 959   return create_attached_thread(thread);
 960 }
 961 
 962 bool os::create_attached_thread(JavaThread* thread) {
 963 #ifdef ASSERT
 964   thread->verify_not_published();
 965 #endif
 966 
 967   // Allocate the OSThread object
 968   OSThread* osthread = new OSThread(NULL, NULL);
 969 
 970   if (osthread == NULL) {
 971     return false;
 972   }
 973 
 974   // Store pthread info into the OSThread
 975   osthread->set_thread_id(os::Linux::gettid());
 976   osthread->set_pthread_id(::pthread_self());
 977 
 978   // initialize floating point control register
 979   os::Linux::init_thread_fpu_state();
 980 
 981   // Initial thread state is RUNNABLE
 982   osthread->set_state(RUNNABLE);
 983 
 984   thread->set_osthread(osthread);
 985 
 986   if (UseNUMA) {
 987     int lgrp_id = os::numa_get_group_id();
 988     if (lgrp_id != -1) {
 989       thread->set_lgrp_id(lgrp_id);
 990     }
 991   }
 992 
 993   if (os::Linux::is_initial_thread()) {
 994     // If current thread is initial thread, its stack is mapped on demand,
 995     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 996     // the entire stack region to avoid SEGV in stack banging.
 997     // It is also useful to get around the heap-stack-gap problem on SuSE
 998     // kernel (see 4821821 for details). We first expand stack to the top
 999     // of yellow zone, then enable stack yellow zone (order is significant,
1000     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1001     // is no gap between the last two virtual memory regions.
1002 
1003     JavaThread *jt = (JavaThread *)thread;
1004     address addr = jt->stack_yellow_zone_base();
1005     assert(addr != NULL, "initialization problem?");
1006     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1007 
1008     osthread->set_expanding_stack();
1009     os::Linux::manually_expand_stack(jt, addr);
1010     osthread->clear_expanding_stack();
1011   }
1012 
1013   // initialize signal mask for this thread
1014   // and save the caller's signal mask
1015   os::Linux::hotspot_sigmask(thread);
1016 
1017   return true;
1018 }
1019 
1020 void os::pd_start_thread(Thread* thread) {
1021   OSThread * osthread = thread->osthread();
1022   assert(osthread->get_state() != INITIALIZED, "just checking");
1023   Monitor* sync_with_child = osthread->startThread_lock();
1024   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1025   sync_with_child->notify();
1026 }
1027 
1028 // Free Linux resources related to the OSThread
1029 void os::free_thread(OSThread* osthread) {
1030   assert(osthread != NULL, "osthread not set");
1031 
1032   if (Thread::current()->osthread() == osthread) {
1033     // Restore caller's signal mask
1034     sigset_t sigmask = osthread->caller_sigmask();
1035     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1036   }
1037 
1038   delete osthread;
1039 }
1040 
1041 //////////////////////////////////////////////////////////////////////////////
1042 // thread local storage
1043 
1044 // Restore the thread pointer if the destructor is called. This is in case
1045 // someone from JNI code sets up a destructor with pthread_key_create to run
1046 // detachCurrentThread on thread death. Unless we restore the thread pointer we
1047 // will hang or crash. When detachCurrentThread is called the key will be set
1048 // to null and we will not be called again. If detachCurrentThread is never
1049 // called we could loop forever depending on the pthread implementation.
1050 static void restore_thread_pointer(void* p) {
1051   Thread* thread = (Thread*) p;
1052   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1053 }
1054 
1055 int os::allocate_thread_local_storage() {
1056   pthread_key_t key;
1057   int rslt = pthread_key_create(&key, restore_thread_pointer);
1058   assert(rslt == 0, "cannot allocate thread local storage");
1059   return (int)key;
1060 }
1061 
1062 // Note: This is currently not used by VM, as we don't destroy TLS key
1063 // on VM exit.
1064 void os::free_thread_local_storage(int index) {
1065   int rslt = pthread_key_delete((pthread_key_t)index);
1066   assert(rslt == 0, "invalid index");
1067 }
1068 
1069 void os::thread_local_storage_at_put(int index, void* value) {
1070   int rslt = pthread_setspecific((pthread_key_t)index, value);
1071   assert(rslt == 0, "pthread_setspecific failed");
1072 }
1073 
1074 extern "C" Thread* get_thread() {
1075   return ThreadLocalStorage::thread();
1076 }
1077 
1078 //////////////////////////////////////////////////////////////////////////////
1079 // initial thread
1080 
1081 // Check if current thread is the initial thread, similar to Solaris thr_main.
1082 bool os::Linux::is_initial_thread(void) {
1083   char dummy;
1084   // If called before init complete, thread stack bottom will be null.
1085   // Can be called if fatal error occurs before initialization.
1086   if (initial_thread_stack_bottom() == NULL) return false;
1087   assert(initial_thread_stack_bottom() != NULL &&
1088          initial_thread_stack_size()   != 0,
1089          "os::init did not locate initial thread's stack region");
1090   if ((address)&dummy >= initial_thread_stack_bottom() &&
1091       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1092     return true;
1093   } else {
1094     return false;
1095   }
1096 }
1097 
1098 // Find the virtual memory area that contains addr
1099 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1100   FILE *fp = fopen("/proc/self/maps", "r");
1101   if (fp) {
1102     address low, high;
1103     while (!feof(fp)) {
1104       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1105         if (low <= addr && addr < high) {
1106           if (vma_low)  *vma_low  = low;
1107           if (vma_high) *vma_high = high;
1108           fclose(fp);
1109           return true;
1110         }
1111       }
1112       for (;;) {
1113         int ch = fgetc(fp);
1114         if (ch == EOF || ch == (int)'\n') break;
1115       }
1116     }
1117     fclose(fp);
1118   }
1119   return false;
1120 }
1121 
1122 // Locate initial thread stack. This special handling of initial thread stack
1123 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1124 // bogus value for initial thread.
1125 void os::Linux::capture_initial_stack(size_t max_size) {
1126   // stack size is the easy part, get it from RLIMIT_STACK
1127   size_t stack_size;
1128   struct rlimit rlim;
1129   getrlimit(RLIMIT_STACK, &rlim);
1130   stack_size = rlim.rlim_cur;
1131 
1132   // 6308388: a bug in ld.so will relocate its own .data section to the
1133   //   lower end of primordial stack; reduce ulimit -s value a little bit
1134   //   so we won't install guard page on ld.so's data section.
1135   stack_size -= 2 * page_size();
1136 
1137   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1138   //   7.1, in both cases we will get 2G in return value.
1139   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1140   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1141   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1142   //   in case other parts in glibc still assumes 2M max stack size.
1143   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1144   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1145   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1146     stack_size = 2 * K * K IA64_ONLY(*2);
1147   }
1148   // Try to figure out where the stack base (top) is. This is harder.
1149   //
1150   // When an application is started, glibc saves the initial stack pointer in
1151   // a global variable "__libc_stack_end", which is then used by system
1152   // libraries. __libc_stack_end should be pretty close to stack top. The
1153   // variable is available since the very early days. However, because it is
1154   // a private interface, it could disappear in the future.
1155   //
1156   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1157   // to __libc_stack_end, it is very close to stack top, but isn't the real
1158   // stack top. Note that /proc may not exist if VM is running as a chroot
1159   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1160   // /proc/<pid>/stat could change in the future (though unlikely).
1161   //
1162   // We try __libc_stack_end first. If that doesn't work, look for
1163   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1164   // as a hint, which should work well in most cases.
1165 
1166   uintptr_t stack_start;
1167 
1168   // try __libc_stack_end first
1169   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1170   if (p && *p) {
1171     stack_start = *p;
1172   } else {
1173     // see if we can get the start_stack field from /proc/self/stat
1174     FILE *fp;
1175     int pid;
1176     char state;
1177     int ppid;
1178     int pgrp;
1179     int session;
1180     int nr;
1181     int tpgrp;
1182     unsigned long flags;
1183     unsigned long minflt;
1184     unsigned long cminflt;
1185     unsigned long majflt;
1186     unsigned long cmajflt;
1187     unsigned long utime;
1188     unsigned long stime;
1189     long cutime;
1190     long cstime;
1191     long prio;
1192     long nice;
1193     long junk;
1194     long it_real;
1195     uintptr_t start;
1196     uintptr_t vsize;
1197     intptr_t rss;
1198     uintptr_t rsslim;
1199     uintptr_t scodes;
1200     uintptr_t ecode;
1201     int i;
1202 
1203     // Figure what the primordial thread stack base is. Code is inspired
1204     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1205     // followed by command name surrounded by parentheses, state, etc.
1206     char stat[2048];
1207     int statlen;
1208 
1209     fp = fopen("/proc/self/stat", "r");
1210     if (fp) {
1211       statlen = fread(stat, 1, 2047, fp);
1212       stat[statlen] = '\0';
1213       fclose(fp);
1214 
1215       // Skip pid and the command string. Note that we could be dealing with
1216       // weird command names, e.g. user could decide to rename java launcher
1217       // to "java 1.4.2 :)", then the stat file would look like
1218       //                1234 (java 1.4.2 :)) R ... ...
1219       // We don't really need to know the command string, just find the last
1220       // occurrence of ")" and then start parsing from there. See bug 4726580.
1221       char * s = strrchr(stat, ')');
1222 
1223       i = 0;
1224       if (s) {
1225         // Skip blank chars
1226         do s++; while (isspace(*s));
1227 
1228 #define _UFM UINTX_FORMAT
1229 #define _DFM INTX_FORMAT
1230 
1231         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1232         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1233         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1234                    &state,          // 3  %c
1235                    &ppid,           // 4  %d
1236                    &pgrp,           // 5  %d
1237                    &session,        // 6  %d
1238                    &nr,             // 7  %d
1239                    &tpgrp,          // 8  %d
1240                    &flags,          // 9  %lu
1241                    &minflt,         // 10 %lu
1242                    &cminflt,        // 11 %lu
1243                    &majflt,         // 12 %lu
1244                    &cmajflt,        // 13 %lu
1245                    &utime,          // 14 %lu
1246                    &stime,          // 15 %lu
1247                    &cutime,         // 16 %ld
1248                    &cstime,         // 17 %ld
1249                    &prio,           // 18 %ld
1250                    &nice,           // 19 %ld
1251                    &junk,           // 20 %ld
1252                    &it_real,        // 21 %ld
1253                    &start,          // 22 UINTX_FORMAT
1254                    &vsize,          // 23 UINTX_FORMAT
1255                    &rss,            // 24 INTX_FORMAT
1256                    &rsslim,         // 25 UINTX_FORMAT
1257                    &scodes,         // 26 UINTX_FORMAT
1258                    &ecode,          // 27 UINTX_FORMAT
1259                    &stack_start);   // 28 UINTX_FORMAT
1260       }
1261 
1262 #undef _UFM
1263 #undef _DFM
1264 
1265       if (i != 28 - 2) {
1266         assert(false, "Bad conversion from /proc/self/stat");
1267         // product mode - assume we are the initial thread, good luck in the
1268         // embedded case.
1269         warning("Can't detect initial thread stack location - bad conversion");
1270         stack_start = (uintptr_t) &rlim;
1271       }
1272     } else {
1273       // For some reason we can't open /proc/self/stat (for example, running on
1274       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1275       // most cases, so don't abort:
1276       warning("Can't detect initial thread stack location - no /proc/self/stat");
1277       stack_start = (uintptr_t) &rlim;
1278     }
1279   }
1280 
1281   // Now we have a pointer (stack_start) very close to the stack top, the
1282   // next thing to do is to figure out the exact location of stack top. We
1283   // can find out the virtual memory area that contains stack_start by
1284   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1285   // and its upper limit is the real stack top. (again, this would fail if
1286   // running inside chroot, because /proc may not exist.)
1287 
1288   uintptr_t stack_top;
1289   address low, high;
1290   if (find_vma((address)stack_start, &low, &high)) {
1291     // success, "high" is the true stack top. (ignore "low", because initial
1292     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1293     stack_top = (uintptr_t)high;
1294   } else {
1295     // failed, likely because /proc/self/maps does not exist
1296     warning("Can't detect initial thread stack location - find_vma failed");
1297     // best effort: stack_start is normally within a few pages below the real
1298     // stack top, use it as stack top, and reduce stack size so we won't put
1299     // guard page outside stack.
1300     stack_top = stack_start;
1301     stack_size -= 16 * page_size();
1302   }
1303 
1304   // stack_top could be partially down the page so align it
1305   stack_top = align_size_up(stack_top, page_size());
1306 
1307   if (max_size && stack_size > max_size) {
1308     _initial_thread_stack_size = max_size;
1309   } else {
1310     _initial_thread_stack_size = stack_size;
1311   }
1312 
1313   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1314   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1315 }
1316 
1317 ////////////////////////////////////////////////////////////////////////////////
1318 // time support
1319 
1320 // Time since start-up in seconds to a fine granularity.
1321 // Used by VMSelfDestructTimer and the MemProfiler.
1322 double os::elapsedTime() {
1323 
1324   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1325 }
1326 
1327 jlong os::elapsed_counter() {
1328   return javaTimeNanos() - initial_time_count;
1329 }
1330 
1331 jlong os::elapsed_frequency() {
1332   return NANOSECS_PER_SEC; // nanosecond resolution
1333 }
1334 
1335 bool os::supports_vtime() { return true; }
1336 bool os::enable_vtime()   { return false; }
1337 bool os::vtime_enabled()  { return false; }
1338 
1339 double os::elapsedVTime() {
1340   struct rusage usage;
1341   int retval = getrusage(RUSAGE_THREAD, &usage);
1342   if (retval == 0) {
1343     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1344   } else {
1345     // better than nothing, but not much
1346     return elapsedTime();
1347   }
1348 }
1349 
1350 jlong os::javaTimeMillis() {
1351   timeval time;
1352   int status = gettimeofday(&time, NULL);
1353   assert(status != -1, "linux error");
1354   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1355 }
1356 
1357 #ifndef CLOCK_MONOTONIC
1358   #define CLOCK_MONOTONIC (1)
1359 #endif
1360 
1361 void os::Linux::clock_init() {
1362   // we do dlopen's in this particular order due to bug in linux
1363   // dynamical loader (see 6348968) leading to crash on exit
1364   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1365   if (handle == NULL) {
1366     handle = dlopen("librt.so", RTLD_LAZY);
1367   }
1368 
1369   if (handle) {
1370     int (*clock_getres_func)(clockid_t, struct timespec*) =
1371            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1372     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1373            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1374     if (clock_getres_func && clock_gettime_func) {
1375       // See if monotonic clock is supported by the kernel. Note that some
1376       // early implementations simply return kernel jiffies (updated every
1377       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1378       // for nano time (though the monotonic property is still nice to have).
1379       // It's fixed in newer kernels, however clock_getres() still returns
1380       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1381       // resolution for now. Hopefully as people move to new kernels, this
1382       // won't be a problem.
1383       struct timespec res;
1384       struct timespec tp;
1385       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1386           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1387         // yes, monotonic clock is supported
1388         _clock_gettime = clock_gettime_func;
1389         return;
1390       } else {
1391         // close librt if there is no monotonic clock
1392         dlclose(handle);
1393       }
1394     }
1395   }
1396   warning("No monotonic clock was available - timed services may " \
1397           "be adversely affected if the time-of-day clock changes");
1398 }
1399 
1400 #ifndef SYS_clock_getres
1401   #if defined(IA32) || defined(AMD64)
1402     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1403     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1404   #else
1405     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1406     #define sys_clock_getres(x,y)  -1
1407   #endif
1408 #else
1409   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1410 #endif
1411 
1412 void os::Linux::fast_thread_clock_init() {
1413   if (!UseLinuxPosixThreadCPUClocks) {
1414     return;
1415   }
1416   clockid_t clockid;
1417   struct timespec tp;
1418   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1419       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1420 
1421   // Switch to using fast clocks for thread cpu time if
1422   // the sys_clock_getres() returns 0 error code.
1423   // Note, that some kernels may support the current thread
1424   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1425   // returned by the pthread_getcpuclockid().
1426   // If the fast Posix clocks are supported then the sys_clock_getres()
1427   // must return at least tp.tv_sec == 0 which means a resolution
1428   // better than 1 sec. This is extra check for reliability.
1429 
1430   if (pthread_getcpuclockid_func &&
1431       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1432       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1433     _supports_fast_thread_cpu_time = true;
1434     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1435   }
1436 }
1437 
1438 jlong os::javaTimeNanos() {
1439   if (os::supports_monotonic_clock()) {
1440     struct timespec tp;
1441     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1442     assert(status == 0, "gettime error");
1443     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1444     return result;
1445   } else {
1446     timeval time;
1447     int status = gettimeofday(&time, NULL);
1448     assert(status != -1, "linux error");
1449     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1450     return 1000 * usecs;
1451   }
1452 }
1453 
1454 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1455   if (os::supports_monotonic_clock()) {
1456     info_ptr->max_value = ALL_64_BITS;
1457 
1458     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1459     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1460     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1461   } else {
1462     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1463     info_ptr->max_value = ALL_64_BITS;
1464 
1465     // gettimeofday is a real time clock so it skips
1466     info_ptr->may_skip_backward = true;
1467     info_ptr->may_skip_forward = true;
1468   }
1469 
1470   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1471 }
1472 
1473 // Return the real, user, and system times in seconds from an
1474 // arbitrary fixed point in the past.
1475 bool os::getTimesSecs(double* process_real_time,
1476                       double* process_user_time,
1477                       double* process_system_time) {
1478   struct tms ticks;
1479   clock_t real_ticks = times(&ticks);
1480 
1481   if (real_ticks == (clock_t) (-1)) {
1482     return false;
1483   } else {
1484     double ticks_per_second = (double) clock_tics_per_sec;
1485     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1486     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1487     *process_real_time = ((double) real_ticks) / ticks_per_second;
1488 
1489     return true;
1490   }
1491 }
1492 
1493 
1494 char * os::local_time_string(char *buf, size_t buflen) {
1495   struct tm t;
1496   time_t long_time;
1497   time(&long_time);
1498   localtime_r(&long_time, &t);
1499   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1500                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1501                t.tm_hour, t.tm_min, t.tm_sec);
1502   return buf;
1503 }
1504 
1505 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1506   return localtime_r(clock, res);
1507 }
1508 
1509 ////////////////////////////////////////////////////////////////////////////////
1510 // runtime exit support
1511 
1512 // Note: os::shutdown() might be called very early during initialization, or
1513 // called from signal handler. Before adding something to os::shutdown(), make
1514 // sure it is async-safe and can handle partially initialized VM.
1515 void os::shutdown() {
1516 
1517   // allow PerfMemory to attempt cleanup of any persistent resources
1518   perfMemory_exit();
1519 
1520   // needs to remove object in file system
1521   AttachListener::abort();
1522 
1523   // flush buffered output, finish log files
1524   ostream_abort();
1525 
1526   // Check for abort hook
1527   abort_hook_t abort_hook = Arguments::abort_hook();
1528   if (abort_hook != NULL) {
1529     abort_hook();
1530   }
1531 
1532 }
1533 
1534 // Note: os::abort() might be called very early during initialization, or
1535 // called from signal handler. Before adding something to os::abort(), make
1536 // sure it is async-safe and can handle partially initialized VM.
1537 void os::abort(bool dump_core) {
1538   os::shutdown();
1539   if (dump_core) {
1540 #ifndef PRODUCT
1541     fdStream out(defaultStream::output_fd());
1542     out.print_raw("Current thread is ");
1543     char buf[16];
1544     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1545     out.print_raw_cr(buf);
1546     out.print_raw_cr("Dumping core ...");
1547 #endif
1548     ::abort(); // dump core
1549   }
1550 
1551   ::exit(1);
1552 }
1553 
1554 // Die immediately, no exit hook, no abort hook, no cleanup.
1555 void os::die() {
1556   // _exit() on LinuxThreads only kills current thread
1557   ::abort();
1558 }
1559 
1560 
1561 // This method is a copy of JDK's sysGetLastErrorString
1562 // from src/solaris/hpi/src/system_md.c
1563 
1564 size_t os::lasterror(char *buf, size_t len) {
1565   if (errno == 0)  return 0;
1566 
1567   const char *s = ::strerror(errno);
1568   size_t n = ::strlen(s);
1569   if (n >= len) {
1570     n = len - 1;
1571   }
1572   ::strncpy(buf, s, n);
1573   buf[n] = '\0';
1574   return n;
1575 }
1576 
1577 intx os::current_thread_id() { return (intx)pthread_self(); }
1578 int os::current_process_id() {
1579 
1580   // Under the old linux thread library, linux gives each thread
1581   // its own process id. Because of this each thread will return
1582   // a different pid if this method were to return the result
1583   // of getpid(2). Linux provides no api that returns the pid
1584   // of the launcher thread for the vm. This implementation
1585   // returns a unique pid, the pid of the launcher thread
1586   // that starts the vm 'process'.
1587 
1588   // Under the NPTL, getpid() returns the same pid as the
1589   // launcher thread rather than a unique pid per thread.
1590   // Use gettid() if you want the old pre NPTL behaviour.
1591 
1592   // if you are looking for the result of a call to getpid() that
1593   // returns a unique pid for the calling thread, then look at the
1594   // OSThread::thread_id() method in osThread_linux.hpp file
1595 
1596   return (int)(_initial_pid ? _initial_pid : getpid());
1597 }
1598 
1599 // DLL functions
1600 
1601 const char* os::dll_file_extension() { return ".so"; }
1602 
1603 // This must be hard coded because it's the system's temporary
1604 // directory not the java application's temp directory, ala java.io.tmpdir.
1605 const char* os::get_temp_directory() { return "/tmp"; }
1606 
1607 static bool file_exists(const char* filename) {
1608   struct stat statbuf;
1609   if (filename == NULL || strlen(filename) == 0) {
1610     return false;
1611   }
1612   return os::stat(filename, &statbuf) == 0;
1613 }
1614 
1615 bool os::dll_build_name(char* buffer, size_t buflen,
1616                         const char* pname, const char* fname) {
1617   bool retval = false;
1618   // Copied from libhpi
1619   const size_t pnamelen = pname ? strlen(pname) : 0;
1620 
1621   // Return error on buffer overflow.
1622   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1623     return retval;
1624   }
1625 
1626   if (pnamelen == 0) {
1627     snprintf(buffer, buflen, "lib%s.so", fname);
1628     retval = true;
1629   } else if (strchr(pname, *os::path_separator()) != NULL) {
1630     int n;
1631     char** pelements = split_path(pname, &n);
1632     if (pelements == NULL) {
1633       return false;
1634     }
1635     for (int i = 0; i < n; i++) {
1636       // Really shouldn't be NULL, but check can't hurt
1637       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1638         continue; // skip the empty path values
1639       }
1640       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1641       if (file_exists(buffer)) {
1642         retval = true;
1643         break;
1644       }
1645     }
1646     // release the storage
1647     for (int i = 0; i < n; i++) {
1648       if (pelements[i] != NULL) {
1649         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1650       }
1651     }
1652     if (pelements != NULL) {
1653       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1654     }
1655   } else {
1656     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1657     retval = true;
1658   }
1659   return retval;
1660 }
1661 
1662 // check if addr is inside libjvm.so
1663 bool os::address_is_in_vm(address addr) {
1664   static address libjvm_base_addr;
1665   Dl_info dlinfo;
1666 
1667   if (libjvm_base_addr == NULL) {
1668     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1669       libjvm_base_addr = (address)dlinfo.dli_fbase;
1670     }
1671     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1672   }
1673 
1674   if (dladdr((void *)addr, &dlinfo) != 0) {
1675     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1676   }
1677 
1678   return false;
1679 }
1680 
1681 bool os::dll_address_to_function_name(address addr, char *buf,
1682                                       int buflen, int *offset) {
1683   // buf is not optional, but offset is optional
1684   assert(buf != NULL, "sanity check");
1685 
1686   Dl_info dlinfo;
1687 
1688   if (dladdr((void*)addr, &dlinfo) != 0) {
1689     // see if we have a matching symbol
1690     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1691       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1692         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1693       }
1694       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1695       return true;
1696     }
1697     // no matching symbol so try for just file info
1698     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1699       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1700                           buf, buflen, offset, dlinfo.dli_fname)) {
1701         return true;
1702       }
1703     }
1704   }
1705 
1706   buf[0] = '\0';
1707   if (offset != NULL) *offset = -1;
1708   return false;
1709 }
1710 
1711 struct _address_to_library_name {
1712   address addr;          // input : memory address
1713   size_t  buflen;        //         size of fname
1714   char*   fname;         // output: library name
1715   address base;          //         library base addr
1716 };
1717 
1718 static int address_to_library_name_callback(struct dl_phdr_info *info,
1719                                             size_t size, void *data) {
1720   int i;
1721   bool found = false;
1722   address libbase = NULL;
1723   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1724 
1725   // iterate through all loadable segments
1726   for (i = 0; i < info->dlpi_phnum; i++) {
1727     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1728     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1729       // base address of a library is the lowest address of its loaded
1730       // segments.
1731       if (libbase == NULL || libbase > segbase) {
1732         libbase = segbase;
1733       }
1734       // see if 'addr' is within current segment
1735       if (segbase <= d->addr &&
1736           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1737         found = true;
1738       }
1739     }
1740   }
1741 
1742   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1743   // so dll_address_to_library_name() can fall through to use dladdr() which
1744   // can figure out executable name from argv[0].
1745   if (found && info->dlpi_name && info->dlpi_name[0]) {
1746     d->base = libbase;
1747     if (d->fname) {
1748       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1749     }
1750     return 1;
1751   }
1752   return 0;
1753 }
1754 
1755 bool os::dll_address_to_library_name(address addr, char* buf,
1756                                      int buflen, int* offset) {
1757   // buf is not optional, but offset is optional
1758   assert(buf != NULL, "sanity check");
1759 
1760   Dl_info dlinfo;
1761   struct _address_to_library_name data;
1762 
1763   // There is a bug in old glibc dladdr() implementation that it could resolve
1764   // to wrong library name if the .so file has a base address != NULL. Here
1765   // we iterate through the program headers of all loaded libraries to find
1766   // out which library 'addr' really belongs to. This workaround can be
1767   // removed once the minimum requirement for glibc is moved to 2.3.x.
1768   data.addr = addr;
1769   data.fname = buf;
1770   data.buflen = buflen;
1771   data.base = NULL;
1772   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1773 
1774   if (rslt) {
1775     // buf already contains library name
1776     if (offset) *offset = addr - data.base;
1777     return true;
1778   }
1779   if (dladdr((void*)addr, &dlinfo) != 0) {
1780     if (dlinfo.dli_fname != NULL) {
1781       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1782     }
1783     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1784       *offset = addr - (address)dlinfo.dli_fbase;
1785     }
1786     return true;
1787   }
1788 
1789   buf[0] = '\0';
1790   if (offset) *offset = -1;
1791   return false;
1792 }
1793 
1794 // Loads .dll/.so and
1795 // in case of error it checks if .dll/.so was built for the
1796 // same architecture as Hotspot is running on
1797 
1798 
1799 // Remember the stack's state. The Linux dynamic linker will change
1800 // the stack to 'executable' at most once, so we must safepoint only once.
1801 bool os::Linux::_stack_is_executable = false;
1802 
1803 // VM operation that loads a library.  This is necessary if stack protection
1804 // of the Java stacks can be lost during loading the library.  If we
1805 // do not stop the Java threads, they can stack overflow before the stacks
1806 // are protected again.
1807 class VM_LinuxDllLoad: public VM_Operation {
1808  private:
1809   const char *_filename;
1810   char *_ebuf;
1811   int _ebuflen;
1812   void *_lib;
1813  public:
1814   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1815     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1816   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1817   void doit() {
1818     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1819     os::Linux::_stack_is_executable = true;
1820   }
1821   void* loaded_library() { return _lib; }
1822 };
1823 
1824 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1825   void * result = NULL;
1826   bool load_attempted = false;
1827 
1828   // Check whether the library to load might change execution rights
1829   // of the stack. If they are changed, the protection of the stack
1830   // guard pages will be lost. We need a safepoint to fix this.
1831   //
1832   // See Linux man page execstack(8) for more info.
1833   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1834     ElfFile ef(filename);
1835     if (!ef.specifies_noexecstack()) {
1836       if (!is_init_completed()) {
1837         os::Linux::_stack_is_executable = true;
1838         // This is OK - No Java threads have been created yet, and hence no
1839         // stack guard pages to fix.
1840         //
1841         // This should happen only when you are building JDK7 using a very
1842         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1843         //
1844         // Dynamic loader will make all stacks executable after
1845         // this function returns, and will not do that again.
1846         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1847       } else {
1848         warning("You have loaded library %s which might have disabled stack guard. "
1849                 "The VM will try to fix the stack guard now.\n"
1850                 "It's highly recommended that you fix the library with "
1851                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1852                 filename);
1853 
1854         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1855         JavaThread *jt = JavaThread::current();
1856         if (jt->thread_state() != _thread_in_native) {
1857           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1858           // that requires ExecStack. Cannot enter safe point. Let's give up.
1859           warning("Unable to fix stack guard. Giving up.");
1860         } else {
1861           if (!LoadExecStackDllInVMThread) {
1862             // This is for the case where the DLL has an static
1863             // constructor function that executes JNI code. We cannot
1864             // load such DLLs in the VMThread.
1865             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1866           }
1867 
1868           ThreadInVMfromNative tiv(jt);
1869           debug_only(VMNativeEntryWrapper vew;)
1870 
1871           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1872           VMThread::execute(&op);
1873           if (LoadExecStackDllInVMThread) {
1874             result = op.loaded_library();
1875           }
1876           load_attempted = true;
1877         }
1878       }
1879     }
1880   }
1881 
1882   if (!load_attempted) {
1883     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1884   }
1885 
1886   if (result != NULL) {
1887     // Successful loading
1888     return result;
1889   }
1890 
1891   Elf32_Ehdr elf_head;
1892   int diag_msg_max_length=ebuflen-strlen(ebuf);
1893   char* diag_msg_buf=ebuf+strlen(ebuf);
1894 
1895   if (diag_msg_max_length==0) {
1896     // No more space in ebuf for additional diagnostics message
1897     return NULL;
1898   }
1899 
1900 
1901   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1902 
1903   if (file_descriptor < 0) {
1904     // Can't open library, report dlerror() message
1905     return NULL;
1906   }
1907 
1908   bool failed_to_read_elf_head=
1909     (sizeof(elf_head)!=
1910      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1911 
1912   ::close(file_descriptor);
1913   if (failed_to_read_elf_head) {
1914     // file i/o error - report dlerror() msg
1915     return NULL;
1916   }
1917 
1918   typedef struct {
1919     Elf32_Half  code;         // Actual value as defined in elf.h
1920     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1921     char        elf_class;    // 32 or 64 bit
1922     char        endianess;    // MSB or LSB
1923     char*       name;         // String representation
1924   } arch_t;
1925 
1926 #ifndef EM_486
1927   #define EM_486          6               /* Intel 80486 */
1928 #endif
1929 
1930   static const arch_t arch_array[]={
1931     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1932     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1933     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1934     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1935     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1936     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1937     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1938     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1939 #if defined(VM_LITTLE_ENDIAN)
1940     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1941 #else
1942     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1943 #endif
1944     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1945     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1946     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1947     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1948     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1949     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1950     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1951   };
1952 
1953 #if  (defined IA32)
1954   static  Elf32_Half running_arch_code=EM_386;
1955 #elif   (defined AMD64)
1956   static  Elf32_Half running_arch_code=EM_X86_64;
1957 #elif  (defined IA64)
1958   static  Elf32_Half running_arch_code=EM_IA_64;
1959 #elif  (defined __sparc) && (defined _LP64)
1960   static  Elf32_Half running_arch_code=EM_SPARCV9;
1961 #elif  (defined __sparc) && (!defined _LP64)
1962   static  Elf32_Half running_arch_code=EM_SPARC;
1963 #elif  (defined __powerpc64__)
1964   static  Elf32_Half running_arch_code=EM_PPC64;
1965 #elif  (defined __powerpc__)
1966   static  Elf32_Half running_arch_code=EM_PPC;
1967 #elif  (defined ARM)
1968   static  Elf32_Half running_arch_code=EM_ARM;
1969 #elif  (defined S390)
1970   static  Elf32_Half running_arch_code=EM_S390;
1971 #elif  (defined ALPHA)
1972   static  Elf32_Half running_arch_code=EM_ALPHA;
1973 #elif  (defined MIPSEL)
1974   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1975 #elif  (defined PARISC)
1976   static  Elf32_Half running_arch_code=EM_PARISC;
1977 #elif  (defined MIPS)
1978   static  Elf32_Half running_arch_code=EM_MIPS;
1979 #elif  (defined M68K)
1980   static  Elf32_Half running_arch_code=EM_68K;
1981 #else
1982     #error Method os::dll_load requires that one of following is defined:\
1983          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1984 #endif
1985 
1986   // Identify compatability class for VM's architecture and library's architecture
1987   // Obtain string descriptions for architectures
1988 
1989   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1990   int running_arch_index=-1;
1991 
1992   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1993     if (running_arch_code == arch_array[i].code) {
1994       running_arch_index    = i;
1995     }
1996     if (lib_arch.code == arch_array[i].code) {
1997       lib_arch.compat_class = arch_array[i].compat_class;
1998       lib_arch.name         = arch_array[i].name;
1999     }
2000   }
2001 
2002   assert(running_arch_index != -1,
2003          "Didn't find running architecture code (running_arch_code) in arch_array");
2004   if (running_arch_index == -1) {
2005     // Even though running architecture detection failed
2006     // we may still continue with reporting dlerror() message
2007     return NULL;
2008   }
2009 
2010   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2011     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2012     return NULL;
2013   }
2014 
2015 #ifndef S390
2016   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2017     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2018     return NULL;
2019   }
2020 #endif // !S390
2021 
2022   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2023     if (lib_arch.name!=NULL) {
2024       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2025                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2026                  lib_arch.name, arch_array[running_arch_index].name);
2027     } else {
2028       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2029                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2030                  lib_arch.code,
2031                  arch_array[running_arch_index].name);
2032     }
2033   }
2034 
2035   return NULL;
2036 }
2037 
2038 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
2039                                 int ebuflen) {
2040   void * result = ::dlopen(filename, RTLD_LAZY);
2041   if (result == NULL) {
2042     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2043     ebuf[ebuflen-1] = '\0';
2044   }
2045   return result;
2046 }
2047 
2048 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2049                                        int ebuflen) {
2050   void * result = NULL;
2051   if (LoadExecStackDllInVMThread) {
2052     result = dlopen_helper(filename, ebuf, ebuflen);
2053   }
2054 
2055   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2056   // library that requires an executable stack, or which does not have this
2057   // stack attribute set, dlopen changes the stack attribute to executable. The
2058   // read protection of the guard pages gets lost.
2059   //
2060   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2061   // may have been queued at the same time.
2062 
2063   if (!_stack_is_executable) {
2064     JavaThread *jt = Threads::first();
2065 
2066     while (jt) {
2067       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2068           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2069         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2070                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2071           warning("Attempt to reguard stack yellow zone failed.");
2072         }
2073       }
2074       jt = jt->next();
2075     }
2076   }
2077 
2078   return result;
2079 }
2080 
2081 // glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2082 // chances are you might want to run the generated bits against glibc-2.0
2083 // libdl.so, so always use locking for any version of glibc.
2084 //
2085 void* os::dll_lookup(void* handle, const char* name) {
2086   pthread_mutex_lock(&dl_mutex);
2087   void* res = dlsym(handle, name);
2088   pthread_mutex_unlock(&dl_mutex);
2089   return res;
2090 }
2091 
2092 void* os::get_default_process_handle() {
2093   return (void*)::dlopen(NULL, RTLD_LAZY);
2094 }
2095 
2096 static bool _print_ascii_file(const char* filename, outputStream* st) {
2097   int fd = ::open(filename, O_RDONLY);
2098   if (fd == -1) {
2099     return false;
2100   }
2101 
2102   char buf[32];
2103   int bytes;
2104   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2105     st->print_raw(buf, bytes);
2106   }
2107 
2108   ::close(fd);
2109 
2110   return true;
2111 }
2112 
2113 void os::print_dll_info(outputStream *st) {
2114   st->print_cr("Dynamic libraries:");
2115 
2116   char fname[32];
2117   pid_t pid = os::Linux::gettid();
2118 
2119   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2120 
2121   if (!_print_ascii_file(fname, st)) {
2122     st->print("Can not get library information for pid = %d\n", pid);
2123   }
2124 }
2125 
2126 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2127   FILE *procmapsFile = NULL;
2128 
2129   // Open the procfs maps file for the current process
2130   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2131     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2132     char line[PATH_MAX + 100];
2133 
2134     // Read line by line from 'file'
2135     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2136       u8 base, top, offset, inode;
2137       char permissions[5];
2138       char device[6];
2139       char name[PATH_MAX + 1];
2140 
2141       // Parse fields from line
2142       sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2143 
2144       // Filter by device id '00:00' so that we only get file system mapped files.
2145       if (strcmp(device, "00:00") != 0) {
2146 
2147         // Call callback with the fields of interest
2148         if(callback(name, (address)base, (address)top, param)) {
2149           // Oops abort, callback aborted
2150           fclose(procmapsFile);
2151           return 1;
2152         }
2153       }
2154     }
2155     fclose(procmapsFile);
2156   }
2157   return 0;
2158 }
2159 
2160 void os::print_os_info_brief(outputStream* st) {
2161   os::Linux::print_distro_info(st);
2162 
2163   os::Posix::print_uname_info(st);
2164 
2165   os::Linux::print_libversion_info(st);
2166 
2167 }
2168 
2169 void os::print_os_info(outputStream* st) {
2170   st->print("OS:");
2171 
2172   os::Linux::print_distro_info(st);
2173 
2174   os::Posix::print_uname_info(st);
2175 
2176   // Print warning if unsafe chroot environment detected
2177   if (unsafe_chroot_detected) {
2178     st->print("WARNING!! ");
2179     st->print_cr("%s", unstable_chroot_error);
2180   }
2181 
2182   os::Linux::print_libversion_info(st);
2183 
2184   os::Posix::print_rlimit_info(st);
2185 
2186   os::Posix::print_load_average(st);
2187 
2188   os::Linux::print_full_memory_info(st);
2189 }
2190 
2191 // Try to identify popular distros.
2192 // Most Linux distributions have a /etc/XXX-release file, which contains
2193 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2194 // file that also contains the OS version string. Some have more than one
2195 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2196 // /etc/redhat-release.), so the order is important.
2197 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2198 // their own specific XXX-release file as well as a redhat-release file.
2199 // Because of this the XXX-release file needs to be searched for before the
2200 // redhat-release file.
2201 // Since Red Hat has a lsb-release file that is not very descriptive the
2202 // search for redhat-release needs to be before lsb-release.
2203 // Since the lsb-release file is the new standard it needs to be searched
2204 // before the older style release files.
2205 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2206 // next to last resort.  The os-release file is a new standard that contains
2207 // distribution information and the system-release file seems to be an old
2208 // standard that has been replaced by the lsb-release and os-release files.
2209 // Searching for the debian_version file is the last resort.  It contains
2210 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2211 // "Debian " is printed before the contents of the debian_version file.
2212 void os::Linux::print_distro_info(outputStream* st) {
2213   if (!_print_ascii_file("/etc/oracle-release", st) &&
2214       !_print_ascii_file("/etc/mandriva-release", st) &&
2215       !_print_ascii_file("/etc/mandrake-release", st) &&
2216       !_print_ascii_file("/etc/sun-release", st) &&
2217       !_print_ascii_file("/etc/redhat-release", st) &&
2218       !_print_ascii_file("/etc/lsb-release", st) &&
2219       !_print_ascii_file("/etc/SuSE-release", st) &&
2220       !_print_ascii_file("/etc/turbolinux-release", st) &&
2221       !_print_ascii_file("/etc/gentoo-release", st) &&
2222       !_print_ascii_file("/etc/ltib-release", st) &&
2223       !_print_ascii_file("/etc/angstrom-version", st) &&
2224       !_print_ascii_file("/etc/system-release", st) &&
2225       !_print_ascii_file("/etc/os-release", st)) {
2226 
2227     if (file_exists("/etc/debian_version")) {
2228       st->print("Debian ");
2229       _print_ascii_file("/etc/debian_version", st);
2230     } else {
2231       st->print("Linux");
2232     }
2233   }
2234   st->cr();
2235 }
2236 
2237 void os::Linux::print_libversion_info(outputStream* st) {
2238   // libc, pthread
2239   st->print("libc:");
2240   st->print("%s ", os::Linux::glibc_version());
2241   st->print("%s ", os::Linux::libpthread_version());
2242   if (os::Linux::is_LinuxThreads()) {
2243     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2244   }
2245   st->cr();
2246 }
2247 
2248 void os::Linux::print_full_memory_info(outputStream* st) {
2249   st->print("\n/proc/meminfo:\n");
2250   _print_ascii_file("/proc/meminfo", st);
2251   st->cr();
2252 }
2253 
2254 void os::print_memory_info(outputStream* st) {
2255 
2256   st->print("Memory:");
2257   st->print(" %dk page", os::vm_page_size()>>10);
2258 
2259   // values in struct sysinfo are "unsigned long"
2260   struct sysinfo si;
2261   sysinfo(&si);
2262 
2263   st->print(", physical " UINT64_FORMAT "k",
2264             os::physical_memory() >> 10);
2265   st->print("(" UINT64_FORMAT "k free)",
2266             os::available_memory() >> 10);
2267   st->print(", swap " UINT64_FORMAT "k",
2268             ((jlong)si.totalswap * si.mem_unit) >> 10);
2269   st->print("(" UINT64_FORMAT "k free)",
2270             ((jlong)si.freeswap * si.mem_unit) >> 10);
2271   st->cr();
2272 }
2273 
2274 void os::pd_print_cpu_info(outputStream* st) {
2275   st->print("\n/proc/cpuinfo:\n");
2276   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2277     st->print("  <Not Available>");
2278   }
2279   st->cr();
2280 }
2281 
2282 void os::print_siginfo(outputStream* st, void* siginfo) {
2283   const siginfo_t* si = (const siginfo_t*)siginfo;
2284 
2285   os::Posix::print_siginfo_brief(st, si);
2286 #if INCLUDE_CDS
2287   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2288       UseSharedSpaces) {
2289     FileMapInfo* mapinfo = FileMapInfo::current_info();
2290     if (mapinfo->is_in_shared_space(si->si_addr)) {
2291       st->print("\n\nError accessing class data sharing archive."   \
2292                 " Mapped file inaccessible during execution, "      \
2293                 " possible disk/network problem.");
2294     }
2295   }
2296 #endif
2297   st->cr();
2298 }
2299 
2300 
2301 static void print_signal_handler(outputStream* st, int sig,
2302                                  char* buf, size_t buflen);
2303 
2304 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2305   st->print_cr("Signal Handlers:");
2306   print_signal_handler(st, SIGSEGV, buf, buflen);
2307   print_signal_handler(st, SIGBUS , buf, buflen);
2308   print_signal_handler(st, SIGFPE , buf, buflen);
2309   print_signal_handler(st, SIGPIPE, buf, buflen);
2310   print_signal_handler(st, SIGXFSZ, buf, buflen);
2311   print_signal_handler(st, SIGILL , buf, buflen);
2312   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2313   print_signal_handler(st, SR_signum, buf, buflen);
2314   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2315   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2316   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2317   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2318 #if defined(PPC64)
2319   print_signal_handler(st, SIGTRAP, buf, buflen);
2320 #endif
2321 }
2322 
2323 static char saved_jvm_path[MAXPATHLEN] = {0};
2324 
2325 // Find the full path to the current module, libjvm.so
2326 void os::jvm_path(char *buf, jint buflen) {
2327   // Error checking.
2328   if (buflen < MAXPATHLEN) {
2329     assert(false, "must use a large-enough buffer");
2330     buf[0] = '\0';
2331     return;
2332   }
2333   // Lazy resolve the path to current module.
2334   if (saved_jvm_path[0] != 0) {
2335     strcpy(buf, saved_jvm_path);
2336     return;
2337   }
2338 
2339   char dli_fname[MAXPATHLEN];
2340   bool ret = dll_address_to_library_name(
2341                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2342                                          dli_fname, sizeof(dli_fname), NULL);
2343   assert(ret, "cannot locate libjvm");
2344   char *rp = NULL;
2345   if (ret && dli_fname[0] != '\0') {
2346     rp = realpath(dli_fname, buf);
2347   }
2348   if (rp == NULL) {
2349     return;
2350   }
2351 
2352   if (Arguments::sun_java_launcher_is_altjvm()) {
2353     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2354     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2355     // If "/jre/lib/" appears at the right place in the string, then
2356     // assume we are installed in a JDK and we're done. Otherwise, check
2357     // for a JAVA_HOME environment variable and fix up the path so it
2358     // looks like libjvm.so is installed there (append a fake suffix
2359     // hotspot/libjvm.so).
2360     const char *p = buf + strlen(buf) - 1;
2361     for (int count = 0; p > buf && count < 5; ++count) {
2362       for (--p; p > buf && *p != '/'; --p)
2363         /* empty */ ;
2364     }
2365 
2366     if (strncmp(p, "/jre/lib/", 9) != 0) {
2367       // Look for JAVA_HOME in the environment.
2368       char* java_home_var = ::getenv("JAVA_HOME");
2369       if (java_home_var != NULL && java_home_var[0] != 0) {
2370         char* jrelib_p;
2371         int len;
2372 
2373         // Check the current module name "libjvm.so".
2374         p = strrchr(buf, '/');
2375         assert(strstr(p, "/libjvm") == p, "invalid library name");
2376 
2377         rp = realpath(java_home_var, buf);
2378         if (rp == NULL) {
2379           return;
2380         }
2381 
2382         // determine if this is a legacy image or modules image
2383         // modules image doesn't have "jre" subdirectory
2384         len = strlen(buf);
2385         assert(len < buflen, "Ran out of buffer room");
2386         jrelib_p = buf + len;
2387         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2388         if (0 != access(buf, F_OK)) {
2389           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2390         }
2391 
2392         if (0 == access(buf, F_OK)) {
2393           // Use current module name "libjvm.so"
2394           len = strlen(buf);
2395           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2396         } else {
2397           // Go back to path of .so
2398           rp = realpath(dli_fname, buf);
2399           if (rp == NULL) {
2400             return;
2401           }
2402         }
2403       }
2404     }
2405   }
2406 
2407   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2408 }
2409 
2410 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2411   // no prefix required, not even "_"
2412 }
2413 
2414 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2415   // no suffix required
2416 }
2417 
2418 ////////////////////////////////////////////////////////////////////////////////
2419 // sun.misc.Signal support
2420 
2421 static volatile jint sigint_count = 0;
2422 
2423 static void UserHandler(int sig, void *siginfo, void *context) {
2424   // 4511530 - sem_post is serialized and handled by the manager thread. When
2425   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2426   // don't want to flood the manager thread with sem_post requests.
2427   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2428     return;
2429   }
2430 
2431   // Ctrl-C is pressed during error reporting, likely because the error
2432   // handler fails to abort. Let VM die immediately.
2433   if (sig == SIGINT && is_error_reported()) {
2434     os::die();
2435   }
2436 
2437   os::signal_notify(sig);
2438 }
2439 
2440 void* os::user_handler() {
2441   return CAST_FROM_FN_PTR(void*, UserHandler);
2442 }
2443 
2444 class Semaphore : public StackObj {
2445  public:
2446   Semaphore();
2447   ~Semaphore();
2448   void signal();
2449   void wait();
2450   bool trywait();
2451   bool timedwait(unsigned int sec, int nsec);
2452  private:
2453   sem_t _semaphore;
2454 };
2455 
2456 Semaphore::Semaphore() {
2457   sem_init(&_semaphore, 0, 0);
2458 }
2459 
2460 Semaphore::~Semaphore() {
2461   sem_destroy(&_semaphore);
2462 }
2463 
2464 void Semaphore::signal() {
2465   sem_post(&_semaphore);
2466 }
2467 
2468 void Semaphore::wait() {
2469   sem_wait(&_semaphore);
2470 }
2471 
2472 bool Semaphore::trywait() {
2473   return sem_trywait(&_semaphore) == 0;
2474 }
2475 
2476 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2477 
2478   struct timespec ts;
2479   // Semaphore's are always associated with CLOCK_REALTIME
2480   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2481   // see unpackTime for discussion on overflow checking
2482   if (sec >= MAX_SECS) {
2483     ts.tv_sec += MAX_SECS;
2484     ts.tv_nsec = 0;
2485   } else {
2486     ts.tv_sec += sec;
2487     ts.tv_nsec += nsec;
2488     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2489       ts.tv_nsec -= NANOSECS_PER_SEC;
2490       ++ts.tv_sec; // note: this must be <= max_secs
2491     }
2492   }
2493 
2494   while (1) {
2495     int result = sem_timedwait(&_semaphore, &ts);
2496     if (result == 0) {
2497       return true;
2498     } else if (errno == EINTR) {
2499       continue;
2500     } else if (errno == ETIMEDOUT) {
2501       return false;
2502     } else {
2503       return false;
2504     }
2505   }
2506 }
2507 
2508 extern "C" {
2509   typedef void (*sa_handler_t)(int);
2510   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2511 }
2512 
2513 void* os::signal(int signal_number, void* handler) {
2514   struct sigaction sigAct, oldSigAct;
2515 
2516   sigfillset(&(sigAct.sa_mask));
2517   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2518   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2519 
2520   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2521     // -1 means registration failed
2522     return (void *)-1;
2523   }
2524 
2525   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2526 }
2527 
2528 void os::signal_raise(int signal_number) {
2529   ::raise(signal_number);
2530 }
2531 
2532 // The following code is moved from os.cpp for making this
2533 // code platform specific, which it is by its very nature.
2534 
2535 // Will be modified when max signal is changed to be dynamic
2536 int os::sigexitnum_pd() {
2537   return NSIG;
2538 }
2539 
2540 // a counter for each possible signal value
2541 static volatile jint pending_signals[NSIG+1] = { 0 };
2542 
2543 // Linux(POSIX) specific hand shaking semaphore.
2544 static sem_t sig_sem;
2545 static Semaphore sr_semaphore;
2546 
2547 void os::signal_init_pd() {
2548   // Initialize signal structures
2549   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2550 
2551   // Initialize signal semaphore
2552   ::sem_init(&sig_sem, 0, 0);
2553 }
2554 
2555 void os::signal_notify(int sig) {
2556   Atomic::inc(&pending_signals[sig]);
2557   ::sem_post(&sig_sem);
2558 }
2559 
2560 static int check_pending_signals(bool wait) {
2561   Atomic::store(0, &sigint_count);
2562   for (;;) {
2563     for (int i = 0; i < NSIG + 1; i++) {
2564       jint n = pending_signals[i];
2565       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2566         return i;
2567       }
2568     }
2569     if (!wait) {
2570       return -1;
2571     }
2572     JavaThread *thread = JavaThread::current();
2573     ThreadBlockInVM tbivm(thread);
2574 
2575     bool threadIsSuspended;
2576     do {
2577       thread->set_suspend_equivalent();
2578       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2579       ::sem_wait(&sig_sem);
2580 
2581       // were we externally suspended while we were waiting?
2582       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2583       if (threadIsSuspended) {
2584         // The semaphore has been incremented, but while we were waiting
2585         // another thread suspended us. We don't want to continue running
2586         // while suspended because that would surprise the thread that
2587         // suspended us.
2588         ::sem_post(&sig_sem);
2589 
2590         thread->java_suspend_self();
2591       }
2592     } while (threadIsSuspended);
2593   }
2594 }
2595 
2596 int os::signal_lookup() {
2597   return check_pending_signals(false);
2598 }
2599 
2600 int os::signal_wait() {
2601   return check_pending_signals(true);
2602 }
2603 
2604 ////////////////////////////////////////////////////////////////////////////////
2605 // Virtual Memory
2606 
2607 int os::vm_page_size() {
2608   // Seems redundant as all get out
2609   assert(os::Linux::page_size() != -1, "must call os::init");
2610   return os::Linux::page_size();
2611 }
2612 
2613 // Solaris allocates memory by pages.
2614 int os::vm_allocation_granularity() {
2615   assert(os::Linux::page_size() != -1, "must call os::init");
2616   return os::Linux::page_size();
2617 }
2618 
2619 // Rationale behind this function:
2620 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2621 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2622 //  samples for JITted code. Here we create private executable mapping over the code cache
2623 //  and then we can use standard (well, almost, as mapping can change) way to provide
2624 //  info for the reporting script by storing timestamp and location of symbol
2625 void linux_wrap_code(char* base, size_t size) {
2626   static volatile jint cnt = 0;
2627 
2628   if (!UseOprofile) {
2629     return;
2630   }
2631 
2632   char buf[PATH_MAX+1];
2633   int num = Atomic::add(1, &cnt);
2634 
2635   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2636            os::get_temp_directory(), os::current_process_id(), num);
2637   unlink(buf);
2638 
2639   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2640 
2641   if (fd != -1) {
2642     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2643     if (rv != (off_t)-1) {
2644       if (::write(fd, "", 1) == 1) {
2645         mmap(base, size,
2646              PROT_READ|PROT_WRITE|PROT_EXEC,
2647              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2648       }
2649     }
2650     ::close(fd);
2651     unlink(buf);
2652   }
2653 }
2654 
2655 static bool recoverable_mmap_error(int err) {
2656   // See if the error is one we can let the caller handle. This
2657   // list of errno values comes from JBS-6843484. I can't find a
2658   // Linux man page that documents this specific set of errno
2659   // values so while this list currently matches Solaris, it may
2660   // change as we gain experience with this failure mode.
2661   switch (err) {
2662   case EBADF:
2663   case EINVAL:
2664   case ENOTSUP:
2665     // let the caller deal with these errors
2666     return true;
2667 
2668   default:
2669     // Any remaining errors on this OS can cause our reserved mapping
2670     // to be lost. That can cause confusion where different data
2671     // structures think they have the same memory mapped. The worst
2672     // scenario is if both the VM and a library think they have the
2673     // same memory mapped.
2674     return false;
2675   }
2676 }
2677 
2678 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2679                                     int err) {
2680   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2681           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2682           strerror(err), err);
2683 }
2684 
2685 static void warn_fail_commit_memory(char* addr, size_t size,
2686                                     size_t alignment_hint, bool exec,
2687                                     int err) {
2688   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2689           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2690           alignment_hint, exec, strerror(err), err);
2691 }
2692 
2693 // NOTE: Linux kernel does not really reserve the pages for us.
2694 //       All it does is to check if there are enough free pages
2695 //       left at the time of mmap(). This could be a potential
2696 //       problem.
2697 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2698   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2699   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2700                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2701   if (res != (uintptr_t) MAP_FAILED) {
2702     if (UseNUMAInterleaving) {
2703       numa_make_global(addr, size);
2704     }
2705     return 0;
2706   }
2707 
2708   int err = errno;  // save errno from mmap() call above
2709 
2710   if (!recoverable_mmap_error(err)) {
2711     warn_fail_commit_memory(addr, size, exec, err);
2712     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2713   }
2714 
2715   return err;
2716 }
2717 
2718 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2719   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2720 }
2721 
2722 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2723                                   const char* mesg) {
2724   assert(mesg != NULL, "mesg must be specified");
2725   int err = os::Linux::commit_memory_impl(addr, size, exec);
2726   if (err != 0) {
2727     // the caller wants all commit errors to exit with the specified mesg:
2728     warn_fail_commit_memory(addr, size, exec, err);
2729     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2730   }
2731 }
2732 
2733 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2734 #ifndef MAP_HUGETLB
2735   #define MAP_HUGETLB 0x40000
2736 #endif
2737 
2738 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2739 #ifndef MADV_HUGEPAGE
2740   #define MADV_HUGEPAGE 14
2741 #endif
2742 
2743 int os::Linux::commit_memory_impl(char* addr, size_t size,
2744                                   size_t alignment_hint, bool exec) {
2745   int err = os::Linux::commit_memory_impl(addr, size, exec);
2746   if (err == 0) {
2747     realign_memory(addr, size, alignment_hint);
2748   }
2749   return err;
2750 }
2751 
2752 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2753                           bool exec) {
2754   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2755 }
2756 
2757 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2758                                   size_t alignment_hint, bool exec,
2759                                   const char* mesg) {
2760   assert(mesg != NULL, "mesg must be specified");
2761   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2762   if (err != 0) {
2763     // the caller wants all commit errors to exit with the specified mesg:
2764     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2765     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2766   }
2767 }
2768 
2769 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2770   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2771     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2772     // be supported or the memory may already be backed by huge pages.
2773     ::madvise(addr, bytes, MADV_HUGEPAGE);
2774   }
2775 }
2776 
2777 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2778   // This method works by doing an mmap over an existing mmaping and effectively discarding
2779   // the existing pages. However it won't work for SHM-based large pages that cannot be
2780   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2781   // small pages on top of the SHM segment. This method always works for small pages, so we
2782   // allow that in any case.
2783   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2784     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2785   }
2786 }
2787 
2788 void os::numa_make_global(char *addr, size_t bytes) {
2789   Linux::numa_interleave_memory(addr, bytes);
2790 }
2791 
2792 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2793 // bind policy to MPOL_PREFERRED for the current thread.
2794 #define USE_MPOL_PREFERRED 0
2795 
2796 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2797   // To make NUMA and large pages more robust when both enabled, we need to ease
2798   // the requirements on where the memory should be allocated. MPOL_BIND is the
2799   // default policy and it will force memory to be allocated on the specified
2800   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2801   // the specified node, but will not force it. Using this policy will prevent
2802   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2803   // free large pages.
2804   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2805   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2806 }
2807 
2808 bool os::numa_topology_changed() { return false; }
2809 
2810 size_t os::numa_get_groups_num() {
2811   int max_node = Linux::numa_max_node();
2812   return max_node > 0 ? max_node + 1 : 1;
2813 }
2814 
2815 int os::numa_get_group_id() {
2816   int cpu_id = Linux::sched_getcpu();
2817   if (cpu_id != -1) {
2818     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2819     if (lgrp_id != -1) {
2820       return lgrp_id;
2821     }
2822   }
2823   return 0;
2824 }
2825 
2826 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2827   for (size_t i = 0; i < size; i++) {
2828     ids[i] = i;
2829   }
2830   return size;
2831 }
2832 
2833 bool os::get_page_info(char *start, page_info* info) {
2834   return false;
2835 }
2836 
2837 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2838                      page_info* page_found) {
2839   return end;
2840 }
2841 
2842 
2843 int os::Linux::sched_getcpu_syscall(void) {
2844   unsigned int cpu;
2845   int retval = -1;
2846 
2847 #if defined(IA32)
2848   #ifndef SYS_getcpu
2849     #define SYS_getcpu 318
2850   #endif
2851   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2852 #elif defined(AMD64)
2853 // Unfortunately we have to bring all these macros here from vsyscall.h
2854 // to be able to compile on old linuxes.
2855   #define __NR_vgetcpu 2
2856   #define VSYSCALL_START (-10UL << 20)
2857   #define VSYSCALL_SIZE 1024
2858   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2859   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2860   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2861   retval = vgetcpu(&cpu, NULL, NULL);
2862 #endif
2863 
2864   return (retval == -1) ? retval : cpu;
2865 }
2866 
2867 // Something to do with the numa-aware allocator needs these symbols
2868 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2869 extern "C" JNIEXPORT void numa_error(char *where) { }
2870 extern "C" JNIEXPORT int fork1() { return fork(); }
2871 
2872 
2873 // If we are running with libnuma version > 2, then we should
2874 // be trying to use symbols with versions 1.1
2875 // If we are running with earlier version, which did not have symbol versions,
2876 // we should use the base version.
2877 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2878   void *f = dlvsym(handle, name, "libnuma_1.1");
2879   if (f == NULL) {
2880     f = dlsym(handle, name);
2881   }
2882   return f;
2883 }
2884 
2885 bool os::Linux::libnuma_init() {
2886   // sched_getcpu() should be in libc.
2887   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2888                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2889 
2890   // If it's not, try a direct syscall.
2891   if (sched_getcpu() == -1) {
2892     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2893                                     (void*)&sched_getcpu_syscall));
2894   }
2895 
2896   if (sched_getcpu() != -1) { // Does it work?
2897     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2898     if (handle != NULL) {
2899       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2900                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2901       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2902                                        libnuma_dlsym(handle, "numa_max_node")));
2903       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2904                                         libnuma_dlsym(handle, "numa_available")));
2905       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2906                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2907       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2908                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2909       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2910                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2911 
2912 
2913       if (numa_available() != -1) {
2914         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2915         // Create a cpu -> node mapping
2916         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2917         rebuild_cpu_to_node_map();
2918         return true;
2919       }
2920     }
2921   }
2922   return false;
2923 }
2924 
2925 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2926 // The table is later used in get_node_by_cpu().
2927 void os::Linux::rebuild_cpu_to_node_map() {
2928   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2929                               // in libnuma (possible values are starting from 16,
2930                               // and continuing up with every other power of 2, but less
2931                               // than the maximum number of CPUs supported by kernel), and
2932                               // is a subject to change (in libnuma version 2 the requirements
2933                               // are more reasonable) we'll just hardcode the number they use
2934                               // in the library.
2935   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2936 
2937   size_t cpu_num = os::active_processor_count();
2938   size_t cpu_map_size = NCPUS / BitsPerCLong;
2939   size_t cpu_map_valid_size =
2940     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2941 
2942   cpu_to_node()->clear();
2943   cpu_to_node()->at_grow(cpu_num - 1);
2944   size_t node_num = numa_get_groups_num();
2945 
2946   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2947   for (size_t i = 0; i < node_num; i++) {
2948     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2949       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2950         if (cpu_map[j] != 0) {
2951           for (size_t k = 0; k < BitsPerCLong; k++) {
2952             if (cpu_map[j] & (1UL << k)) {
2953               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2954             }
2955           }
2956         }
2957       }
2958     }
2959   }
2960   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2961 }
2962 
2963 int os::Linux::get_node_by_cpu(int cpu_id) {
2964   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2965     return cpu_to_node()->at(cpu_id);
2966   }
2967   return -1;
2968 }
2969 
2970 GrowableArray<int>* os::Linux::_cpu_to_node;
2971 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2972 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2973 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2974 os::Linux::numa_available_func_t os::Linux::_numa_available;
2975 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2976 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2977 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2978 unsigned long* os::Linux::_numa_all_nodes;
2979 
2980 bool os::pd_uncommit_memory(char* addr, size_t size) {
2981   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2982                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2983   return res  != (uintptr_t) MAP_FAILED;
2984 }
2985 
2986 static address get_stack_commited_bottom(address bottom, size_t size) {
2987   address nbot = bottom;
2988   address ntop = bottom + size;
2989 
2990   size_t page_sz = os::vm_page_size();
2991   unsigned pages = size / page_sz;
2992 
2993   unsigned char vec[1];
2994   unsigned imin = 1, imax = pages + 1, imid;
2995   int mincore_return_value = 0;
2996 
2997   assert(imin <= imax, "Unexpected page size");
2998 
2999   while (imin < imax) {
3000     imid = (imax + imin) / 2;
3001     nbot = ntop - (imid * page_sz);
3002 
3003     // Use a trick with mincore to check whether the page is mapped or not.
3004     // mincore sets vec to 1 if page resides in memory and to 0 if page
3005     // is swapped output but if page we are asking for is unmapped
3006     // it returns -1,ENOMEM
3007     mincore_return_value = mincore(nbot, page_sz, vec);
3008 
3009     if (mincore_return_value == -1) {
3010       // Page is not mapped go up
3011       // to find first mapped page
3012       if (errno != EAGAIN) {
3013         assert(errno == ENOMEM, "Unexpected mincore errno");
3014         imax = imid;
3015       }
3016     } else {
3017       // Page is mapped go down
3018       // to find first not mapped page
3019       imin = imid + 1;
3020     }
3021   }
3022 
3023   nbot = nbot + page_sz;
3024 
3025   // Adjust stack bottom one page up if last checked page is not mapped
3026   if (mincore_return_value == -1) {
3027     nbot = nbot + page_sz;
3028   }
3029 
3030   return nbot;
3031 }
3032 
3033 
3034 // Linux uses a growable mapping for the stack, and if the mapping for
3035 // the stack guard pages is not removed when we detach a thread the
3036 // stack cannot grow beyond the pages where the stack guard was
3037 // mapped.  If at some point later in the process the stack expands to
3038 // that point, the Linux kernel cannot expand the stack any further
3039 // because the guard pages are in the way, and a segfault occurs.
3040 //
3041 // However, it's essential not to split the stack region by unmapping
3042 // a region (leaving a hole) that's already part of the stack mapping,
3043 // so if the stack mapping has already grown beyond the guard pages at
3044 // the time we create them, we have to truncate the stack mapping.
3045 // So, we need to know the extent of the stack mapping when
3046 // create_stack_guard_pages() is called.
3047 
3048 // We only need this for stacks that are growable: at the time of
3049 // writing thread stacks don't use growable mappings (i.e. those
3050 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3051 // only applies to the main thread.
3052 
3053 // If the (growable) stack mapping already extends beyond the point
3054 // where we're going to put our guard pages, truncate the mapping at
3055 // that point by munmap()ping it.  This ensures that when we later
3056 // munmap() the guard pages we don't leave a hole in the stack
3057 // mapping. This only affects the main/initial thread
3058 
3059 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3060   if (os::Linux::is_initial_thread()) {
3061     // As we manually grow stack up to bottom inside create_attached_thread(),
3062     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3063     // we don't need to do anything special.
3064     // Check it first, before calling heavy function.
3065     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3066     unsigned char vec[1];
3067 
3068     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3069       // Fallback to slow path on all errors, including EAGAIN
3070       stack_extent = (uintptr_t) get_stack_commited_bottom(
3071                                                            os::Linux::initial_thread_stack_bottom(),
3072                                                            (size_t)addr - stack_extent);
3073     }
3074 
3075     if (stack_extent < (uintptr_t)addr) {
3076       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3077     }
3078   }
3079 
3080   return os::commit_memory(addr, size, !ExecMem);
3081 }
3082 
3083 // If this is a growable mapping, remove the guard pages entirely by
3084 // munmap()ping them.  If not, just call uncommit_memory(). This only
3085 // affects the main/initial thread, but guard against future OS changes
3086 // It's safe to always unmap guard pages for initial thread because we
3087 // always place it right after end of the mapped region
3088 
3089 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3090   uintptr_t stack_extent, stack_base;
3091 
3092   if (os::Linux::is_initial_thread()) {
3093     return ::munmap(addr, size) == 0;
3094   }
3095 
3096   return os::uncommit_memory(addr, size);
3097 }
3098 
3099 static address _highest_vm_reserved_address = NULL;
3100 
3101 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3102 // at 'requested_addr'. If there are existing memory mappings at the same
3103 // location, however, they will be overwritten. If 'fixed' is false,
3104 // 'requested_addr' is only treated as a hint, the return value may or
3105 // may not start from the requested address. Unlike Linux mmap(), this
3106 // function returns NULL to indicate failure.
3107 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3108   char * addr;
3109   int flags;
3110 
3111   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3112   if (fixed) {
3113     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3114     flags |= MAP_FIXED;
3115   }
3116 
3117   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3118   // touch an uncommitted page. Otherwise, the read/write might
3119   // succeed if we have enough swap space to back the physical page.
3120   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3121                        flags, -1, 0);
3122 
3123   if (addr != MAP_FAILED) {
3124     // anon_mmap() should only get called during VM initialization,
3125     // don't need lock (actually we can skip locking even it can be called
3126     // from multiple threads, because _highest_vm_reserved_address is just a
3127     // hint about the upper limit of non-stack memory regions.)
3128     if ((address)addr + bytes > _highest_vm_reserved_address) {
3129       _highest_vm_reserved_address = (address)addr + bytes;
3130     }
3131   }
3132 
3133   return addr == MAP_FAILED ? NULL : addr;
3134 }
3135 
3136 // Don't update _highest_vm_reserved_address, because there might be memory
3137 // regions above addr + size. If so, releasing a memory region only creates
3138 // a hole in the address space, it doesn't help prevent heap-stack collision.
3139 //
3140 static int anon_munmap(char * addr, size_t size) {
3141   return ::munmap(addr, size) == 0;
3142 }
3143 
3144 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3145                             size_t alignment_hint) {
3146   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3147 }
3148 
3149 bool os::pd_release_memory(char* addr, size_t size) {
3150   return anon_munmap(addr, size);
3151 }
3152 
3153 static address highest_vm_reserved_address() {
3154   return _highest_vm_reserved_address;
3155 }
3156 
3157 static bool linux_mprotect(char* addr, size_t size, int prot) {
3158   // Linux wants the mprotect address argument to be page aligned.
3159   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3160 
3161   // According to SUSv3, mprotect() should only be used with mappings
3162   // established by mmap(), and mmap() always maps whole pages. Unaligned
3163   // 'addr' likely indicates problem in the VM (e.g. trying to change
3164   // protection of malloc'ed or statically allocated memory). Check the
3165   // caller if you hit this assert.
3166   assert(addr == bottom, "sanity check");
3167 
3168   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3169   return ::mprotect(bottom, size, prot) == 0;
3170 }
3171 
3172 // Set protections specified
3173 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3174                         bool is_committed) {
3175   unsigned int p = 0;
3176   switch (prot) {
3177   case MEM_PROT_NONE: p = PROT_NONE; break;
3178   case MEM_PROT_READ: p = PROT_READ; break;
3179   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3180   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3181   default:
3182     ShouldNotReachHere();
3183   }
3184   // is_committed is unused.
3185   return linux_mprotect(addr, bytes, p);
3186 }
3187 
3188 bool os::guard_memory(char* addr, size_t size) {
3189   return linux_mprotect(addr, size, PROT_NONE);
3190 }
3191 
3192 bool os::unguard_memory(char* addr, size_t size) {
3193   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3194 }
3195 
3196 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3197                                                     size_t page_size) {
3198   bool result = false;
3199   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3200                  MAP_ANONYMOUS|MAP_PRIVATE,
3201                  -1, 0);
3202   if (p != MAP_FAILED) {
3203     void *aligned_p = align_ptr_up(p, page_size);
3204 
3205     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3206 
3207     munmap(p, page_size * 2);
3208   }
3209 
3210   if (warn && !result) {
3211     warning("TransparentHugePages is not supported by the operating system.");
3212   }
3213 
3214   return result;
3215 }
3216 
3217 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3218   bool result = false;
3219   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3220                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3221                  -1, 0);
3222 
3223   if (p != MAP_FAILED) {
3224     // We don't know if this really is a huge page or not.
3225     FILE *fp = fopen("/proc/self/maps", "r");
3226     if (fp) {
3227       while (!feof(fp)) {
3228         char chars[257];
3229         long x = 0;
3230         if (fgets(chars, sizeof(chars), fp)) {
3231           if (sscanf(chars, "%lx-%*x", &x) == 1
3232               && x == (long)p) {
3233             if (strstr (chars, "hugepage")) {
3234               result = true;
3235               break;
3236             }
3237           }
3238         }
3239       }
3240       fclose(fp);
3241     }
3242     munmap(p, page_size);
3243   }
3244 
3245   if (warn && !result) {
3246     warning("HugeTLBFS is not supported by the operating system.");
3247   }
3248 
3249   return result;
3250 }
3251 
3252 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3253 //
3254 // From the coredump_filter documentation:
3255 //
3256 // - (bit 0) anonymous private memory
3257 // - (bit 1) anonymous shared memory
3258 // - (bit 2) file-backed private memory
3259 // - (bit 3) file-backed shared memory
3260 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3261 //           effective only if the bit 2 is cleared)
3262 // - (bit 5) hugetlb private memory
3263 // - (bit 6) hugetlb shared memory
3264 //
3265 static void set_coredump_filter(void) {
3266   FILE *f;
3267   long cdm;
3268 
3269   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3270     return;
3271   }
3272 
3273   if (fscanf(f, "%lx", &cdm) != 1) {
3274     fclose(f);
3275     return;
3276   }
3277 
3278   rewind(f);
3279 
3280   if ((cdm & LARGEPAGES_BIT) == 0) {
3281     cdm |= LARGEPAGES_BIT;
3282     fprintf(f, "%#lx", cdm);
3283   }
3284 
3285   fclose(f);
3286 }
3287 
3288 // Large page support
3289 
3290 static size_t _large_page_size = 0;
3291 
3292 size_t os::Linux::find_large_page_size() {
3293   size_t large_page_size = 0;
3294 
3295   // large_page_size on Linux is used to round up heap size. x86 uses either
3296   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3297   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3298   // page as large as 256M.
3299   //
3300   // Here we try to figure out page size by parsing /proc/meminfo and looking
3301   // for a line with the following format:
3302   //    Hugepagesize:     2048 kB
3303   //
3304   // If we can't determine the value (e.g. /proc is not mounted, or the text
3305   // format has been changed), we'll use the largest page size supported by
3306   // the processor.
3307 
3308 #ifndef ZERO
3309   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3310                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3311 #endif // ZERO
3312 
3313   FILE *fp = fopen("/proc/meminfo", "r");
3314   if (fp) {
3315     while (!feof(fp)) {
3316       int x = 0;
3317       char buf[16];
3318       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3319         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3320           large_page_size = x * K;
3321           break;
3322         }
3323       } else {
3324         // skip to next line
3325         for (;;) {
3326           int ch = fgetc(fp);
3327           if (ch == EOF || ch == (int)'\n') break;
3328         }
3329       }
3330     }
3331     fclose(fp);
3332   }
3333 
3334   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3335     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3336             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3337             proper_unit_for_byte_size(large_page_size));
3338   }
3339 
3340   return large_page_size;
3341 }
3342 
3343 size_t os::Linux::setup_large_page_size() {
3344   _large_page_size = Linux::find_large_page_size();
3345   const size_t default_page_size = (size_t)Linux::page_size();
3346   if (_large_page_size > default_page_size) {
3347     _page_sizes[0] = _large_page_size;
3348     _page_sizes[1] = default_page_size;
3349     _page_sizes[2] = 0;
3350   }
3351 
3352   return _large_page_size;
3353 }
3354 
3355 bool os::Linux::setup_large_page_type(size_t page_size) {
3356   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3357       FLAG_IS_DEFAULT(UseSHM) &&
3358       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3359 
3360     // The type of large pages has not been specified by the user.
3361 
3362     // Try UseHugeTLBFS and then UseSHM.
3363     UseHugeTLBFS = UseSHM = true;
3364 
3365     // Don't try UseTransparentHugePages since there are known
3366     // performance issues with it turned on. This might change in the future.
3367     UseTransparentHugePages = false;
3368   }
3369 
3370   if (UseTransparentHugePages) {
3371     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3372     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3373       UseHugeTLBFS = false;
3374       UseSHM = false;
3375       return true;
3376     }
3377     UseTransparentHugePages = false;
3378   }
3379 
3380   if (UseHugeTLBFS) {
3381     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3382     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3383       UseSHM = false;
3384       return true;
3385     }
3386     UseHugeTLBFS = false;
3387   }
3388 
3389   return UseSHM;
3390 }
3391 
3392 void os::large_page_init() {
3393   if (!UseLargePages &&
3394       !UseTransparentHugePages &&
3395       !UseHugeTLBFS &&
3396       !UseSHM) {
3397     // Not using large pages.
3398     return;
3399   }
3400 
3401   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3402     // The user explicitly turned off large pages.
3403     // Ignore the rest of the large pages flags.
3404     UseTransparentHugePages = false;
3405     UseHugeTLBFS = false;
3406     UseSHM = false;
3407     return;
3408   }
3409 
3410   size_t large_page_size = Linux::setup_large_page_size();
3411   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3412 
3413   set_coredump_filter();
3414 }
3415 
3416 #ifndef SHM_HUGETLB
3417   #define SHM_HUGETLB 04000
3418 #endif
3419 
3420 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3421                                             char* req_addr, bool exec) {
3422   // "exec" is passed in but not used.  Creating the shared image for
3423   // the code cache doesn't have an SHM_X executable permission to check.
3424   assert(UseLargePages && UseSHM, "only for SHM large pages");
3425   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3426 
3427   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3428     return NULL; // Fallback to small pages.
3429   }
3430 
3431   key_t key = IPC_PRIVATE;
3432   char *addr;
3433 
3434   bool warn_on_failure = UseLargePages &&
3435                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3436                          !FLAG_IS_DEFAULT(UseSHM) ||
3437                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3438   char msg[128];
3439 
3440   // Create a large shared memory region to attach to based on size.
3441   // Currently, size is the total size of the heap
3442   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3443   if (shmid == -1) {
3444     // Possible reasons for shmget failure:
3445     // 1. shmmax is too small for Java heap.
3446     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3447     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3448     // 2. not enough large page memory.
3449     //    > check available large pages: cat /proc/meminfo
3450     //    > increase amount of large pages:
3451     //          echo new_value > /proc/sys/vm/nr_hugepages
3452     //      Note 1: different Linux may use different name for this property,
3453     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3454     //      Note 2: it's possible there's enough physical memory available but
3455     //            they are so fragmented after a long run that they can't
3456     //            coalesce into large pages. Try to reserve large pages when
3457     //            the system is still "fresh".
3458     if (warn_on_failure) {
3459       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3460       warning("%s", msg);
3461     }
3462     return NULL;
3463   }
3464 
3465   // attach to the region
3466   addr = (char*)shmat(shmid, req_addr, 0);
3467   int err = errno;
3468 
3469   // Remove shmid. If shmat() is successful, the actual shared memory segment
3470   // will be deleted when it's detached by shmdt() or when the process
3471   // terminates. If shmat() is not successful this will remove the shared
3472   // segment immediately.
3473   shmctl(shmid, IPC_RMID, NULL);
3474 
3475   if ((intptr_t)addr == -1) {
3476     if (warn_on_failure) {
3477       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3478       warning("%s", msg);
3479     }
3480     return NULL;
3481   }
3482 
3483   return addr;
3484 }
3485 
3486 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3487                                         int error) {
3488   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3489 
3490   bool warn_on_failure = UseLargePages &&
3491       (!FLAG_IS_DEFAULT(UseLargePages) ||
3492        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3493        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3494 
3495   if (warn_on_failure) {
3496     char msg[128];
3497     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3498                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3499     warning("%s", msg);
3500   }
3501 }
3502 
3503 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3504                                                         char* req_addr,
3505                                                         bool exec) {
3506   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3507   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3508   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3509 
3510   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3511   char* addr = (char*)::mmap(req_addr, bytes, prot,
3512                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3513                              -1, 0);
3514 
3515   if (addr == MAP_FAILED) {
3516     warn_on_large_pages_failure(req_addr, bytes, errno);
3517     return NULL;
3518   }
3519 
3520   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3521 
3522   return addr;
3523 }
3524 
3525 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3526                                                          size_t alignment,
3527                                                          char* req_addr,
3528                                                          bool exec) {
3529   size_t large_page_size = os::large_page_size();
3530 
3531   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3532 
3533   // Allocate small pages.
3534 
3535   char* start;
3536   if (req_addr != NULL) {
3537     assert(is_ptr_aligned(req_addr, alignment), "Must be");
3538     assert(is_size_aligned(bytes, alignment), "Must be");
3539     start = os::reserve_memory(bytes, req_addr);
3540     assert(start == NULL || start == req_addr, "Must be");
3541   } else {
3542     start = os::reserve_memory_aligned(bytes, alignment);
3543   }
3544 
3545   if (start == NULL) {
3546     return NULL;
3547   }
3548 
3549   assert(is_ptr_aligned(start, alignment), "Must be");
3550 
3551   if (MemTracker::tracking_level() > NMT_minimal) {
3552     // os::reserve_memory_special will record this memory area.
3553     // Need to release it here to prevent overlapping reservations.
3554     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3555     tkr.record((address)start, bytes);
3556   }
3557 
3558   char* end = start + bytes;
3559 
3560   // Find the regions of the allocated chunk that can be promoted to large pages.
3561   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3562   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3563 
3564   size_t lp_bytes = lp_end - lp_start;
3565 
3566   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3567 
3568   if (lp_bytes == 0) {
3569     // The mapped region doesn't even span the start and the end of a large page.
3570     // Fall back to allocate a non-special area.
3571     ::munmap(start, end - start);
3572     return NULL;
3573   }
3574 
3575   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3576 
3577 
3578   void* result;
3579 
3580   if (start != lp_start) {
3581     result = ::mmap(start, lp_start - start, prot,
3582                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3583                     -1, 0);
3584     if (result == MAP_FAILED) {
3585       ::munmap(lp_start, end - lp_start);
3586       return NULL;
3587     }
3588   }
3589 
3590   result = ::mmap(lp_start, lp_bytes, prot,
3591                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3592                   -1, 0);
3593   if (result == MAP_FAILED) {
3594     warn_on_large_pages_failure(req_addr, bytes, errno);
3595     // If the mmap above fails, the large pages region will be unmapped and we
3596     // have regions before and after with small pages. Release these regions.
3597     //
3598     // |  mapped  |  unmapped  |  mapped  |
3599     // ^          ^            ^          ^
3600     // start      lp_start     lp_end     end
3601     //
3602     ::munmap(start, lp_start - start);
3603     ::munmap(lp_end, end - lp_end);
3604     return NULL;
3605   }
3606 
3607   if (lp_end != end) {
3608     result = ::mmap(lp_end, end - lp_end, prot,
3609                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3610                     -1, 0);
3611     if (result == MAP_FAILED) {
3612       ::munmap(start, lp_end - start);
3613       return NULL;
3614     }
3615   }
3616 
3617   return start;
3618 }
3619 
3620 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3621                                                    size_t alignment,
3622                                                    char* req_addr,
3623                                                    bool exec) {
3624   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3625   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3626   assert(is_power_of_2(alignment), "Must be");
3627   assert(is_power_of_2(os::large_page_size()), "Must be");
3628   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3629 
3630   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3631     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3632   } else {
3633     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3634   }
3635 }
3636 
3637 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3638                                  char* req_addr, bool exec) {
3639   assert(UseLargePages, "only for large pages");
3640 
3641   char* addr;
3642   if (UseSHM) {
3643     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3644   } else {
3645     assert(UseHugeTLBFS, "must be");
3646     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3647   }
3648 
3649   if (addr != NULL) {
3650     if (UseNUMAInterleaving) {
3651       numa_make_global(addr, bytes);
3652     }
3653 
3654     // The memory is committed
3655     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3656   }
3657 
3658   return addr;
3659 }
3660 
3661 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3662   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3663   return shmdt(base) == 0;
3664 }
3665 
3666 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3667   return pd_release_memory(base, bytes);
3668 }
3669 
3670 bool os::release_memory_special(char* base, size_t bytes) {
3671   bool res;
3672   if (MemTracker::tracking_level() > NMT_minimal) {
3673     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3674     res = os::Linux::release_memory_special_impl(base, bytes);
3675     if (res) {
3676       tkr.record((address)base, bytes);
3677     }
3678 
3679   } else {
3680     res = os::Linux::release_memory_special_impl(base, bytes);
3681   }
3682   return res;
3683 }
3684 
3685 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3686   assert(UseLargePages, "only for large pages");
3687   bool res;
3688 
3689   if (UseSHM) {
3690     res = os::Linux::release_memory_special_shm(base, bytes);
3691   } else {
3692     assert(UseHugeTLBFS, "must be");
3693     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3694   }
3695   return res;
3696 }
3697 
3698 size_t os::large_page_size() {
3699   return _large_page_size;
3700 }
3701 
3702 // With SysV SHM the entire memory region must be allocated as shared
3703 // memory.
3704 // HugeTLBFS allows application to commit large page memory on demand.
3705 // However, when committing memory with HugeTLBFS fails, the region
3706 // that was supposed to be committed will lose the old reservation
3707 // and allow other threads to steal that memory region. Because of this
3708 // behavior we can't commit HugeTLBFS memory.
3709 bool os::can_commit_large_page_memory() {
3710   return UseTransparentHugePages;
3711 }
3712 
3713 bool os::can_execute_large_page_memory() {
3714   return UseTransparentHugePages || UseHugeTLBFS;
3715 }
3716 
3717 // Reserve memory at an arbitrary address, only if that area is
3718 // available (and not reserved for something else).
3719 
3720 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3721   const int max_tries = 10;
3722   char* base[max_tries];
3723   size_t size[max_tries];
3724   const size_t gap = 0x000000;
3725 
3726   // Assert only that the size is a multiple of the page size, since
3727   // that's all that mmap requires, and since that's all we really know
3728   // about at this low abstraction level.  If we need higher alignment,
3729   // we can either pass an alignment to this method or verify alignment
3730   // in one of the methods further up the call chain.  See bug 5044738.
3731   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3732 
3733   // Repeatedly allocate blocks until the block is allocated at the
3734   // right spot. Give up after max_tries. Note that reserve_memory() will
3735   // automatically update _highest_vm_reserved_address if the call is
3736   // successful. The variable tracks the highest memory address every reserved
3737   // by JVM. It is used to detect heap-stack collision if running with
3738   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3739   // space than needed, it could confuse the collision detecting code. To
3740   // solve the problem, save current _highest_vm_reserved_address and
3741   // calculate the correct value before return.
3742   address old_highest = _highest_vm_reserved_address;
3743 
3744   // Linux mmap allows caller to pass an address as hint; give it a try first,
3745   // if kernel honors the hint then we can return immediately.
3746   char * addr = anon_mmap(requested_addr, bytes, false);
3747   if (addr == requested_addr) {
3748     return requested_addr;
3749   }
3750 
3751   if (addr != NULL) {
3752     // mmap() is successful but it fails to reserve at the requested address
3753     anon_munmap(addr, bytes);
3754   }
3755 
3756   int i;
3757   for (i = 0; i < max_tries; ++i) {
3758     base[i] = reserve_memory(bytes);
3759 
3760     if (base[i] != NULL) {
3761       // Is this the block we wanted?
3762       if (base[i] == requested_addr) {
3763         size[i] = bytes;
3764         break;
3765       }
3766 
3767       // Does this overlap the block we wanted? Give back the overlapped
3768       // parts and try again.
3769 
3770       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3771       if (top_overlap >= 0 && top_overlap < bytes) {
3772         unmap_memory(base[i], top_overlap);
3773         base[i] += top_overlap;
3774         size[i] = bytes - top_overlap;
3775       } else {
3776         size_t bottom_overlap = base[i] + bytes - requested_addr;
3777         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3778           unmap_memory(requested_addr, bottom_overlap);
3779           size[i] = bytes - bottom_overlap;
3780         } else {
3781           size[i] = bytes;
3782         }
3783       }
3784     }
3785   }
3786 
3787   // Give back the unused reserved pieces.
3788 
3789   for (int j = 0; j < i; ++j) {
3790     if (base[j] != NULL) {
3791       unmap_memory(base[j], size[j]);
3792     }
3793   }
3794 
3795   if (i < max_tries) {
3796     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3797     return requested_addr;
3798   } else {
3799     _highest_vm_reserved_address = old_highest;
3800     return NULL;
3801   }
3802 }
3803 
3804 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3805   return ::read(fd, buf, nBytes);
3806 }
3807 
3808 // Short sleep, direct OS call.
3809 //
3810 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3811 // sched_yield(2) will actually give up the CPU:
3812 //
3813 //   * Alone on this pariticular CPU, keeps running.
3814 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3815 //     (pre 2.6.39).
3816 //
3817 // So calling this with 0 is an alternative.
3818 //
3819 void os::naked_short_sleep(jlong ms) {
3820   struct timespec req;
3821 
3822   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3823   req.tv_sec = 0;
3824   if (ms > 0) {
3825     req.tv_nsec = (ms % 1000) * 1000000;
3826   } else {
3827     req.tv_nsec = 1;
3828   }
3829 
3830   nanosleep(&req, NULL);
3831 
3832   return;
3833 }
3834 
3835 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3836 void os::infinite_sleep() {
3837   while (true) {    // sleep forever ...
3838     ::sleep(100);   // ... 100 seconds at a time
3839   }
3840 }
3841 
3842 // Used to convert frequent JVM_Yield() to nops
3843 bool os::dont_yield() {
3844   return DontYieldALot;
3845 }
3846 
3847 void os::naked_yield() {
3848   sched_yield();
3849 }
3850 
3851 ////////////////////////////////////////////////////////////////////////////////
3852 // thread priority support
3853 
3854 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3855 // only supports dynamic priority, static priority must be zero. For real-time
3856 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3857 // However, for large multi-threaded applications, SCHED_RR is not only slower
3858 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3859 // of 5 runs - Sep 2005).
3860 //
3861 // The following code actually changes the niceness of kernel-thread/LWP. It
3862 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3863 // not the entire user process, and user level threads are 1:1 mapped to kernel
3864 // threads. It has always been the case, but could change in the future. For
3865 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3866 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3867 
3868 int os::java_to_os_priority[CriticalPriority + 1] = {
3869   19,              // 0 Entry should never be used
3870 
3871    4,              // 1 MinPriority
3872    3,              // 2
3873    2,              // 3
3874 
3875    1,              // 4
3876    0,              // 5 NormPriority
3877   -1,              // 6
3878 
3879   -2,              // 7
3880   -3,              // 8
3881   -4,              // 9 NearMaxPriority
3882 
3883   -5,              // 10 MaxPriority
3884 
3885   -5               // 11 CriticalPriority
3886 };
3887 
3888 static int prio_init() {
3889   if (ThreadPriorityPolicy == 1) {
3890     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3891     // if effective uid is not root. Perhaps, a more elegant way of doing
3892     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3893     if (geteuid() != 0) {
3894       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3895         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3896       }
3897       ThreadPriorityPolicy = 0;
3898     }
3899   }
3900   if (UseCriticalJavaThreadPriority) {
3901     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3902   }
3903   return 0;
3904 }
3905 
3906 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3907   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3908 
3909   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3910   return (ret == 0) ? OS_OK : OS_ERR;
3911 }
3912 
3913 OSReturn os::get_native_priority(const Thread* const thread,
3914                                  int *priority_ptr) {
3915   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3916     *priority_ptr = java_to_os_priority[NormPriority];
3917     return OS_OK;
3918   }
3919 
3920   errno = 0;
3921   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3922   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3923 }
3924 
3925 // Hint to the underlying OS that a task switch would not be good.
3926 // Void return because it's a hint and can fail.
3927 void os::hint_no_preempt() {}
3928 
3929 ////////////////////////////////////////////////////////////////////////////////
3930 // suspend/resume support
3931 
3932 //  the low-level signal-based suspend/resume support is a remnant from the
3933 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3934 //  within hotspot. Now there is a single use-case for this:
3935 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3936 //      that runs in the watcher thread.
3937 //  The remaining code is greatly simplified from the more general suspension
3938 //  code that used to be used.
3939 //
3940 //  The protocol is quite simple:
3941 //  - suspend:
3942 //      - sends a signal to the target thread
3943 //      - polls the suspend state of the osthread using a yield loop
3944 //      - target thread signal handler (SR_handler) sets suspend state
3945 //        and blocks in sigsuspend until continued
3946 //  - resume:
3947 //      - sets target osthread state to continue
3948 //      - sends signal to end the sigsuspend loop in the SR_handler
3949 //
3950 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3951 
3952 static void resume_clear_context(OSThread *osthread) {
3953   osthread->set_ucontext(NULL);
3954   osthread->set_siginfo(NULL);
3955 }
3956 
3957 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3958                                  ucontext_t* context) {
3959   osthread->set_ucontext(context);
3960   osthread->set_siginfo(siginfo);
3961 }
3962 
3963 // Handler function invoked when a thread's execution is suspended or
3964 // resumed. We have to be careful that only async-safe functions are
3965 // called here (Note: most pthread functions are not async safe and
3966 // should be avoided.)
3967 //
3968 // Note: sigwait() is a more natural fit than sigsuspend() from an
3969 // interface point of view, but sigwait() prevents the signal hander
3970 // from being run. libpthread would get very confused by not having
3971 // its signal handlers run and prevents sigwait()'s use with the
3972 // mutex granting granting signal.
3973 //
3974 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3975 //
3976 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3977   // Save and restore errno to avoid confusing native code with EINTR
3978   // after sigsuspend.
3979   int old_errno = errno;
3980 
3981   Thread* thread = Thread::current();
3982   OSThread* osthread = thread->osthread();
3983   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3984 
3985   os::SuspendResume::State current = osthread->sr.state();
3986   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3987     suspend_save_context(osthread, siginfo, context);
3988 
3989     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3990     os::SuspendResume::State state = osthread->sr.suspended();
3991     if (state == os::SuspendResume::SR_SUSPENDED) {
3992       sigset_t suspend_set;  // signals for sigsuspend()
3993 
3994       // get current set of blocked signals and unblock resume signal
3995       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3996       sigdelset(&suspend_set, SR_signum);
3997 
3998       sr_semaphore.signal();
3999       // wait here until we are resumed
4000       while (1) {
4001         sigsuspend(&suspend_set);
4002 
4003         os::SuspendResume::State result = osthread->sr.running();
4004         if (result == os::SuspendResume::SR_RUNNING) {
4005           sr_semaphore.signal();
4006           break;
4007         }
4008       }
4009 
4010     } else if (state == os::SuspendResume::SR_RUNNING) {
4011       // request was cancelled, continue
4012     } else {
4013       ShouldNotReachHere();
4014     }
4015 
4016     resume_clear_context(osthread);
4017   } else if (current == os::SuspendResume::SR_RUNNING) {
4018     // request was cancelled, continue
4019   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4020     // ignore
4021   } else {
4022     // ignore
4023   }
4024 
4025   errno = old_errno;
4026 }
4027 
4028 
4029 static int SR_initialize() {
4030   struct sigaction act;
4031   char *s;
4032   // Get signal number to use for suspend/resume
4033   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4034     int sig = ::strtol(s, 0, 10);
4035     if (sig > 0 || sig < _NSIG) {
4036       SR_signum = sig;
4037     }
4038   }
4039 
4040   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4041          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4042 
4043   sigemptyset(&SR_sigset);
4044   sigaddset(&SR_sigset, SR_signum);
4045 
4046   // Set up signal handler for suspend/resume
4047   act.sa_flags = SA_RESTART|SA_SIGINFO;
4048   act.sa_handler = (void (*)(int)) SR_handler;
4049 
4050   // SR_signum is blocked by default.
4051   // 4528190 - We also need to block pthread restart signal (32 on all
4052   // supported Linux platforms). Note that LinuxThreads need to block
4053   // this signal for all threads to work properly. So we don't have
4054   // to use hard-coded signal number when setting up the mask.
4055   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4056 
4057   if (sigaction(SR_signum, &act, 0) == -1) {
4058     return -1;
4059   }
4060 
4061   // Save signal flag
4062   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4063   return 0;
4064 }
4065 
4066 static int sr_notify(OSThread* osthread) {
4067   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4068   assert_status(status == 0, status, "pthread_kill");
4069   return status;
4070 }
4071 
4072 // "Randomly" selected value for how long we want to spin
4073 // before bailing out on suspending a thread, also how often
4074 // we send a signal to a thread we want to resume
4075 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4076 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4077 
4078 // returns true on success and false on error - really an error is fatal
4079 // but this seems the normal response to library errors
4080 static bool do_suspend(OSThread* osthread) {
4081   assert(osthread->sr.is_running(), "thread should be running");
4082   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4083 
4084   // mark as suspended and send signal
4085   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4086     // failed to switch, state wasn't running?
4087     ShouldNotReachHere();
4088     return false;
4089   }
4090 
4091   if (sr_notify(osthread) != 0) {
4092     ShouldNotReachHere();
4093   }
4094 
4095   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4096   while (true) {
4097     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4098       break;
4099     } else {
4100       // timeout
4101       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4102       if (cancelled == os::SuspendResume::SR_RUNNING) {
4103         return false;
4104       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4105         // make sure that we consume the signal on the semaphore as well
4106         sr_semaphore.wait();
4107         break;
4108       } else {
4109         ShouldNotReachHere();
4110         return false;
4111       }
4112     }
4113   }
4114 
4115   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4116   return true;
4117 }
4118 
4119 static void do_resume(OSThread* osthread) {
4120   assert(osthread->sr.is_suspended(), "thread should be suspended");
4121   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4122 
4123   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4124     // failed to switch to WAKEUP_REQUEST
4125     ShouldNotReachHere();
4126     return;
4127   }
4128 
4129   while (true) {
4130     if (sr_notify(osthread) == 0) {
4131       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4132         if (osthread->sr.is_running()) {
4133           return;
4134         }
4135       }
4136     } else {
4137       ShouldNotReachHere();
4138     }
4139   }
4140 
4141   guarantee(osthread->sr.is_running(), "Must be running!");
4142 }
4143 
4144 ///////////////////////////////////////////////////////////////////////////////////
4145 // signal handling (except suspend/resume)
4146 
4147 // This routine may be used by user applications as a "hook" to catch signals.
4148 // The user-defined signal handler must pass unrecognized signals to this
4149 // routine, and if it returns true (non-zero), then the signal handler must
4150 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4151 // routine will never retun false (zero), but instead will execute a VM panic
4152 // routine kill the process.
4153 //
4154 // If this routine returns false, it is OK to call it again.  This allows
4155 // the user-defined signal handler to perform checks either before or after
4156 // the VM performs its own checks.  Naturally, the user code would be making
4157 // a serious error if it tried to handle an exception (such as a null check
4158 // or breakpoint) that the VM was generating for its own correct operation.
4159 //
4160 // This routine may recognize any of the following kinds of signals:
4161 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4162 // It should be consulted by handlers for any of those signals.
4163 //
4164 // The caller of this routine must pass in the three arguments supplied
4165 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4166 // field of the structure passed to sigaction().  This routine assumes that
4167 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4168 //
4169 // Note that the VM will print warnings if it detects conflicting signal
4170 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4171 //
4172 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4173                                                  siginfo_t* siginfo,
4174                                                  void* ucontext,
4175                                                  int abort_if_unrecognized);
4176 
4177 void signalHandler(int sig, siginfo_t* info, void* uc) {
4178   assert(info != NULL && uc != NULL, "it must be old kernel");
4179   int orig_errno = errno;  // Preserve errno value over signal handler.
4180   JVM_handle_linux_signal(sig, info, uc, true);
4181   errno = orig_errno;
4182 }
4183 
4184 
4185 // This boolean allows users to forward their own non-matching signals
4186 // to JVM_handle_linux_signal, harmlessly.
4187 bool os::Linux::signal_handlers_are_installed = false;
4188 
4189 // For signal-chaining
4190 struct sigaction os::Linux::sigact[MAXSIGNUM];
4191 unsigned int os::Linux::sigs = 0;
4192 bool os::Linux::libjsig_is_loaded = false;
4193 typedef struct sigaction *(*get_signal_t)(int);
4194 get_signal_t os::Linux::get_signal_action = NULL;
4195 
4196 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4197   struct sigaction *actp = NULL;
4198 
4199   if (libjsig_is_loaded) {
4200     // Retrieve the old signal handler from libjsig
4201     actp = (*get_signal_action)(sig);
4202   }
4203   if (actp == NULL) {
4204     // Retrieve the preinstalled signal handler from jvm
4205     actp = get_preinstalled_handler(sig);
4206   }
4207 
4208   return actp;
4209 }
4210 
4211 static bool call_chained_handler(struct sigaction *actp, int sig,
4212                                  siginfo_t *siginfo, void *context) {
4213   // Call the old signal handler
4214   if (actp->sa_handler == SIG_DFL) {
4215     // It's more reasonable to let jvm treat it as an unexpected exception
4216     // instead of taking the default action.
4217     return false;
4218   } else if (actp->sa_handler != SIG_IGN) {
4219     if ((actp->sa_flags & SA_NODEFER) == 0) {
4220       // automaticlly block the signal
4221       sigaddset(&(actp->sa_mask), sig);
4222     }
4223 
4224     sa_handler_t hand;
4225     sa_sigaction_t sa;
4226     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4227     // retrieve the chained handler
4228     if (siginfo_flag_set) {
4229       sa = actp->sa_sigaction;
4230     } else {
4231       hand = actp->sa_handler;
4232     }
4233 
4234     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4235       actp->sa_handler = SIG_DFL;
4236     }
4237 
4238     // try to honor the signal mask
4239     sigset_t oset;
4240     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4241 
4242     // call into the chained handler
4243     if (siginfo_flag_set) {
4244       (*sa)(sig, siginfo, context);
4245     } else {
4246       (*hand)(sig);
4247     }
4248 
4249     // restore the signal mask
4250     pthread_sigmask(SIG_SETMASK, &oset, 0);
4251   }
4252   // Tell jvm's signal handler the signal is taken care of.
4253   return true;
4254 }
4255 
4256 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4257   bool chained = false;
4258   // signal-chaining
4259   if (UseSignalChaining) {
4260     struct sigaction *actp = get_chained_signal_action(sig);
4261     if (actp != NULL) {
4262       chained = call_chained_handler(actp, sig, siginfo, context);
4263     }
4264   }
4265   return chained;
4266 }
4267 
4268 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4269   if ((((unsigned int)1 << sig) & sigs) != 0) {
4270     return &sigact[sig];
4271   }
4272   return NULL;
4273 }
4274 
4275 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4276   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4277   sigact[sig] = oldAct;
4278   sigs |= (unsigned int)1 << sig;
4279 }
4280 
4281 // for diagnostic
4282 int os::Linux::sigflags[MAXSIGNUM];
4283 
4284 int os::Linux::get_our_sigflags(int sig) {
4285   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4286   return sigflags[sig];
4287 }
4288 
4289 void os::Linux::set_our_sigflags(int sig, int flags) {
4290   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4291   sigflags[sig] = flags;
4292 }
4293 
4294 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4295   // Check for overwrite.
4296   struct sigaction oldAct;
4297   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4298 
4299   void* oldhand = oldAct.sa_sigaction
4300                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4301                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4302   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4303       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4304       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4305     if (AllowUserSignalHandlers || !set_installed) {
4306       // Do not overwrite; user takes responsibility to forward to us.
4307       return;
4308     } else if (UseSignalChaining) {
4309       // save the old handler in jvm
4310       save_preinstalled_handler(sig, oldAct);
4311       // libjsig also interposes the sigaction() call below and saves the
4312       // old sigaction on it own.
4313     } else {
4314       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4315                     "%#lx for signal %d.", (long)oldhand, sig));
4316     }
4317   }
4318 
4319   struct sigaction sigAct;
4320   sigfillset(&(sigAct.sa_mask));
4321   sigAct.sa_handler = SIG_DFL;
4322   if (!set_installed) {
4323     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4324   } else {
4325     sigAct.sa_sigaction = signalHandler;
4326     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4327   }
4328   // Save flags, which are set by ours
4329   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4330   sigflags[sig] = sigAct.sa_flags;
4331 
4332   int ret = sigaction(sig, &sigAct, &oldAct);
4333   assert(ret == 0, "check");
4334 
4335   void* oldhand2  = oldAct.sa_sigaction
4336                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4337                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4338   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4339 }
4340 
4341 // install signal handlers for signals that HotSpot needs to
4342 // handle in order to support Java-level exception handling.
4343 
4344 void os::Linux::install_signal_handlers() {
4345   if (!signal_handlers_are_installed) {
4346     signal_handlers_are_installed = true;
4347 
4348     // signal-chaining
4349     typedef void (*signal_setting_t)();
4350     signal_setting_t begin_signal_setting = NULL;
4351     signal_setting_t end_signal_setting = NULL;
4352     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4353                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4354     if (begin_signal_setting != NULL) {
4355       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4356                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4357       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4358                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4359       libjsig_is_loaded = true;
4360       assert(UseSignalChaining, "should enable signal-chaining");
4361     }
4362     if (libjsig_is_loaded) {
4363       // Tell libjsig jvm is setting signal handlers
4364       (*begin_signal_setting)();
4365     }
4366 
4367     set_signal_handler(SIGSEGV, true);
4368     set_signal_handler(SIGPIPE, true);
4369     set_signal_handler(SIGBUS, true);
4370     set_signal_handler(SIGILL, true);
4371     set_signal_handler(SIGFPE, true);
4372 #if defined(PPC64)
4373     set_signal_handler(SIGTRAP, true);
4374 #endif
4375     set_signal_handler(SIGXFSZ, true);
4376 
4377     if (libjsig_is_loaded) {
4378       // Tell libjsig jvm finishes setting signal handlers
4379       (*end_signal_setting)();
4380     }
4381 
4382     // We don't activate signal checker if libjsig is in place, we trust ourselves
4383     // and if UserSignalHandler is installed all bets are off.
4384     // Log that signal checking is off only if -verbose:jni is specified.
4385     if (CheckJNICalls) {
4386       if (libjsig_is_loaded) {
4387         if (PrintJNIResolving) {
4388           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4389         }
4390         check_signals = false;
4391       }
4392       if (AllowUserSignalHandlers) {
4393         if (PrintJNIResolving) {
4394           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4395         }
4396         check_signals = false;
4397       }
4398     }
4399   }
4400 }
4401 
4402 // This is the fastest way to get thread cpu time on Linux.
4403 // Returns cpu time (user+sys) for any thread, not only for current.
4404 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4405 // It might work on 2.6.10+ with a special kernel/glibc patch.
4406 // For reference, please, see IEEE Std 1003.1-2004:
4407 //   http://www.unix.org/single_unix_specification
4408 
4409 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4410   struct timespec tp;
4411   int rc = os::Linux::clock_gettime(clockid, &tp);
4412   assert(rc == 0, "clock_gettime is expected to return 0 code");
4413 
4414   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4415 }
4416 
4417 /////
4418 // glibc on Linux platform uses non-documented flag
4419 // to indicate, that some special sort of signal
4420 // trampoline is used.
4421 // We will never set this flag, and we should
4422 // ignore this flag in our diagnostic
4423 #ifdef SIGNIFICANT_SIGNAL_MASK
4424   #undef SIGNIFICANT_SIGNAL_MASK
4425 #endif
4426 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4427 
4428 static const char* get_signal_handler_name(address handler,
4429                                            char* buf, int buflen) {
4430   int offset;
4431   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4432   if (found) {
4433     // skip directory names
4434     const char *p1, *p2;
4435     p1 = buf;
4436     size_t len = strlen(os::file_separator());
4437     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4438     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4439   } else {
4440     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4441   }
4442   return buf;
4443 }
4444 
4445 static void print_signal_handler(outputStream* st, int sig,
4446                                  char* buf, size_t buflen) {
4447   struct sigaction sa;
4448 
4449   sigaction(sig, NULL, &sa);
4450 
4451   // See comment for SIGNIFICANT_SIGNAL_MASK define
4452   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4453 
4454   st->print("%s: ", os::exception_name(sig, buf, buflen));
4455 
4456   address handler = (sa.sa_flags & SA_SIGINFO)
4457     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4458     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4459 
4460   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4461     st->print("SIG_DFL");
4462   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4463     st->print("SIG_IGN");
4464   } else {
4465     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4466   }
4467 
4468   st->print(", sa_mask[0]=");
4469   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4470 
4471   address rh = VMError::get_resetted_sighandler(sig);
4472   // May be, handler was resetted by VMError?
4473   if (rh != NULL) {
4474     handler = rh;
4475     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4476   }
4477 
4478   st->print(", sa_flags=");
4479   os::Posix::print_sa_flags(st, sa.sa_flags);
4480 
4481   // Check: is it our handler?
4482   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4483       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4484     // It is our signal handler
4485     // check for flags, reset system-used one!
4486     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4487       st->print(
4488                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4489                 os::Linux::get_our_sigflags(sig));
4490     }
4491   }
4492   st->cr();
4493 }
4494 
4495 
4496 #define DO_SIGNAL_CHECK(sig)                      \
4497   do {                                            \
4498     if (!sigismember(&check_signal_done, sig)) {  \
4499       os::Linux::check_signal_handler(sig);       \
4500     }                                             \
4501   } while (0)
4502 
4503 // This method is a periodic task to check for misbehaving JNI applications
4504 // under CheckJNI, we can add any periodic checks here
4505 
4506 void os::run_periodic_checks() {
4507   if (check_signals == false) return;
4508 
4509   // SEGV and BUS if overridden could potentially prevent
4510   // generation of hs*.log in the event of a crash, debugging
4511   // such a case can be very challenging, so we absolutely
4512   // check the following for a good measure:
4513   DO_SIGNAL_CHECK(SIGSEGV);
4514   DO_SIGNAL_CHECK(SIGILL);
4515   DO_SIGNAL_CHECK(SIGFPE);
4516   DO_SIGNAL_CHECK(SIGBUS);
4517   DO_SIGNAL_CHECK(SIGPIPE);
4518   DO_SIGNAL_CHECK(SIGXFSZ);
4519 #if defined(PPC64)
4520   DO_SIGNAL_CHECK(SIGTRAP);
4521 #endif
4522 
4523   // ReduceSignalUsage allows the user to override these handlers
4524   // see comments at the very top and jvm_solaris.h
4525   if (!ReduceSignalUsage) {
4526     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4527     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4528     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4529     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4530   }
4531 
4532   DO_SIGNAL_CHECK(SR_signum);
4533   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4534 }
4535 
4536 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4537 
4538 static os_sigaction_t os_sigaction = NULL;
4539 
4540 void os::Linux::check_signal_handler(int sig) {
4541   char buf[O_BUFLEN];
4542   address jvmHandler = NULL;
4543 
4544 
4545   struct sigaction act;
4546   if (os_sigaction == NULL) {
4547     // only trust the default sigaction, in case it has been interposed
4548     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4549     if (os_sigaction == NULL) return;
4550   }
4551 
4552   os_sigaction(sig, (struct sigaction*)NULL, &act);
4553 
4554 
4555   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4556 
4557   address thisHandler = (act.sa_flags & SA_SIGINFO)
4558     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4559     : CAST_FROM_FN_PTR(address, act.sa_handler);
4560 
4561 
4562   switch (sig) {
4563   case SIGSEGV:
4564   case SIGBUS:
4565   case SIGFPE:
4566   case SIGPIPE:
4567   case SIGILL:
4568   case SIGXFSZ:
4569     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4570     break;
4571 
4572   case SHUTDOWN1_SIGNAL:
4573   case SHUTDOWN2_SIGNAL:
4574   case SHUTDOWN3_SIGNAL:
4575   case BREAK_SIGNAL:
4576     jvmHandler = (address)user_handler();
4577     break;
4578 
4579   case INTERRUPT_SIGNAL:
4580     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4581     break;
4582 
4583   default:
4584     if (sig == SR_signum) {
4585       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4586     } else {
4587       return;
4588     }
4589     break;
4590   }
4591 
4592   if (thisHandler != jvmHandler) {
4593     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4594     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4595     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4596     // No need to check this sig any longer
4597     sigaddset(&check_signal_done, sig);
4598     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4599     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4600       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4601                     exception_name(sig, buf, O_BUFLEN));
4602     }
4603   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4604     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4605     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4606     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4607     // No need to check this sig any longer
4608     sigaddset(&check_signal_done, sig);
4609   }
4610 
4611   // Dump all the signal
4612   if (sigismember(&check_signal_done, sig)) {
4613     print_signal_handlers(tty, buf, O_BUFLEN);
4614   }
4615 }
4616 
4617 extern void report_error(char* file_name, int line_no, char* title,
4618                          char* format, ...);
4619 
4620 extern bool signal_name(int signo, char* buf, size_t len);
4621 
4622 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4623   if (0 < exception_code && exception_code <= SIGRTMAX) {
4624     // signal
4625     if (!signal_name(exception_code, buf, size)) {
4626       jio_snprintf(buf, size, "SIG%d", exception_code);
4627     }
4628     return buf;
4629   } else {
4630     return NULL;
4631   }
4632 }
4633 
4634 // this is called _before_ the most of global arguments have been parsed
4635 void os::init(void) {
4636   char dummy;   // used to get a guess on initial stack address
4637 //  first_hrtime = gethrtime();
4638 
4639   // With LinuxThreads the JavaMain thread pid (primordial thread)
4640   // is different than the pid of the java launcher thread.
4641   // So, on Linux, the launcher thread pid is passed to the VM
4642   // via the sun.java.launcher.pid property.
4643   // Use this property instead of getpid() if it was correctly passed.
4644   // See bug 6351349.
4645   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4646 
4647   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4648 
4649   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4650 
4651   init_random(1234567);
4652 
4653   ThreadCritical::initialize();
4654 
4655   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4656   if (Linux::page_size() == -1) {
4657     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4658                   strerror(errno)));
4659   }
4660   init_page_sizes((size_t) Linux::page_size());
4661 
4662   Linux::initialize_system_info();
4663 
4664   // main_thread points to the aboriginal thread
4665   Linux::_main_thread = pthread_self();
4666 
4667   Linux::clock_init();
4668   initial_time_count = javaTimeNanos();
4669 
4670   // pthread_condattr initialization for monotonic clock
4671   int status;
4672   pthread_condattr_t* _condattr = os::Linux::condAttr();
4673   if ((status = pthread_condattr_init(_condattr)) != 0) {
4674     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4675   }
4676   // Only set the clock if CLOCK_MONOTONIC is available
4677   if (os::supports_monotonic_clock()) {
4678     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4679       if (status == EINVAL) {
4680         warning("Unable to use monotonic clock with relative timed-waits" \
4681                 " - changes to the time-of-day clock may have adverse affects");
4682       } else {
4683         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4684       }
4685     }
4686   }
4687   // else it defaults to CLOCK_REALTIME
4688 
4689   pthread_mutex_init(&dl_mutex, NULL);
4690 
4691   // If the pagesize of the VM is greater than 8K determine the appropriate
4692   // number of initial guard pages.  The user can change this with the
4693   // command line arguments, if needed.
4694   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4695     StackYellowPages = 1;
4696     StackRedPages = 1;
4697     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4698   }
4699 }
4700 
4701 // To install functions for atexit system call
4702 extern "C" {
4703   static void perfMemory_exit_helper() {
4704     perfMemory_exit();
4705   }
4706 }
4707 
4708 // this is called _after_ the global arguments have been parsed
4709 jint os::init_2(void) {
4710   Linux::fast_thread_clock_init();
4711 
4712   // Allocate a single page and mark it as readable for safepoint polling
4713   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4714   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4715 
4716   os::set_polling_page(polling_page);
4717 
4718 #ifndef PRODUCT
4719   if (Verbose && PrintMiscellaneous) {
4720     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4721                (intptr_t)polling_page);
4722   }
4723 #endif
4724 
4725   if (!UseMembar) {
4726     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4727     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4728     os::set_memory_serialize_page(mem_serialize_page);
4729 
4730 #ifndef PRODUCT
4731     if (Verbose && PrintMiscellaneous) {
4732       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4733                  (intptr_t)mem_serialize_page);
4734     }
4735 #endif
4736   }
4737 
4738   // initialize suspend/resume support - must do this before signal_sets_init()
4739   if (SR_initialize() != 0) {
4740     perror("SR_initialize failed");
4741     return JNI_ERR;
4742   }
4743 
4744   Linux::signal_sets_init();
4745   Linux::install_signal_handlers();
4746 
4747   // Check minimum allowable stack size for thread creation and to initialize
4748   // the java system classes, including StackOverflowError - depends on page
4749   // size.  Add a page for compiler2 recursion in main thread.
4750   // Add in 2*BytesPerWord times page size to account for VM stack during
4751   // class initialization depending on 32 or 64 bit VM.
4752   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4753                                       (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4754                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4755 
4756   size_t threadStackSizeInBytes = ThreadStackSize * K;
4757   if (threadStackSizeInBytes != 0 &&
4758       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4759     tty->print_cr("\nThe stack size specified is too small, "
4760                   "Specify at least %dk",
4761                   os::Linux::min_stack_allowed/ K);
4762     return JNI_ERR;
4763   }
4764 
4765   // Make the stack size a multiple of the page size so that
4766   // the yellow/red zones can be guarded.
4767   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4768                                                 vm_page_size()));
4769 
4770   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4771 
4772 #if defined(IA32)
4773   workaround_expand_exec_shield_cs_limit();
4774 #endif
4775 
4776   Linux::libpthread_init();
4777   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4778     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4779                   Linux::glibc_version(), Linux::libpthread_version(),
4780                   Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4781   }
4782 
4783   if (UseNUMA) {
4784     if (!Linux::libnuma_init()) {
4785       UseNUMA = false;
4786     } else {
4787       if ((Linux::numa_max_node() < 1)) {
4788         // There's only one node(they start from 0), disable NUMA.
4789         UseNUMA = false;
4790       }
4791     }
4792     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4793     // we can make the adaptive lgrp chunk resizing work. If the user specified
4794     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4795     // disable adaptive resizing.
4796     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4797       if (FLAG_IS_DEFAULT(UseNUMA)) {
4798         UseNUMA = false;
4799       } else {
4800         if (FLAG_IS_DEFAULT(UseLargePages) &&
4801             FLAG_IS_DEFAULT(UseSHM) &&
4802             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4803           UseLargePages = false;
4804         } else {
4805           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4806           UseAdaptiveSizePolicy = false;
4807           UseAdaptiveNUMAChunkSizing = false;
4808         }
4809       }
4810     }
4811     if (!UseNUMA && ForceNUMA) {
4812       UseNUMA = true;
4813     }
4814   }
4815 
4816   if (MaxFDLimit) {
4817     // set the number of file descriptors to max. print out error
4818     // if getrlimit/setrlimit fails but continue regardless.
4819     struct rlimit nbr_files;
4820     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4821     if (status != 0) {
4822       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4823         perror("os::init_2 getrlimit failed");
4824       }
4825     } else {
4826       nbr_files.rlim_cur = nbr_files.rlim_max;
4827       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4828       if (status != 0) {
4829         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4830           perror("os::init_2 setrlimit failed");
4831         }
4832       }
4833     }
4834   }
4835 
4836   // Initialize lock used to serialize thread creation (see os::create_thread)
4837   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4838 
4839   // at-exit methods are called in the reverse order of their registration.
4840   // atexit functions are called on return from main or as a result of a
4841   // call to exit(3C). There can be only 32 of these functions registered
4842   // and atexit() does not set errno.
4843 
4844   if (PerfAllowAtExitRegistration) {
4845     // only register atexit functions if PerfAllowAtExitRegistration is set.
4846     // atexit functions can be delayed until process exit time, which
4847     // can be problematic for embedded VM situations. Embedded VMs should
4848     // call DestroyJavaVM() to assure that VM resources are released.
4849 
4850     // note: perfMemory_exit_helper atexit function may be removed in
4851     // the future if the appropriate cleanup code can be added to the
4852     // VM_Exit VMOperation's doit method.
4853     if (atexit(perfMemory_exit_helper) != 0) {
4854       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4855     }
4856   }
4857 
4858   // initialize thread priority policy
4859   prio_init();
4860 
4861   return JNI_OK;
4862 }
4863 
4864 // this is called at the end of vm_initialization
4865 void os::init_3(void) {
4866 #ifdef JAVASE_EMBEDDED
4867   // Start the MemNotifyThread
4868   if (LowMemoryProtection) {
4869     MemNotifyThread::start();
4870   }
4871   return;
4872 #endif
4873 }
4874 
4875 // Mark the polling page as unreadable
4876 void os::make_polling_page_unreadable(void) {
4877   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4878     fatal("Could not disable polling page");
4879   }
4880 }
4881 
4882 // Mark the polling page as readable
4883 void os::make_polling_page_readable(void) {
4884   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4885     fatal("Could not enable polling page");
4886   }
4887 }
4888 
4889 int os::active_processor_count() {
4890   // Linux doesn't yet have a (official) notion of processor sets,
4891   // so just return the number of online processors.
4892   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4893   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4894   return online_cpus;
4895 }
4896 
4897 void os::set_native_thread_name(const char *name) {
4898   // Not yet implemented.
4899   return;
4900 }
4901 
4902 bool os::distribute_processes(uint length, uint* distribution) {
4903   // Not yet implemented.
4904   return false;
4905 }
4906 
4907 bool os::bind_to_processor(uint processor_id) {
4908   // Not yet implemented.
4909   return false;
4910 }
4911 
4912 ///
4913 
4914 void os::SuspendedThreadTask::internal_do_task() {
4915   if (do_suspend(_thread->osthread())) {
4916     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4917     do_task(context);
4918     do_resume(_thread->osthread());
4919   }
4920 }
4921 
4922 class PcFetcher : public os::SuspendedThreadTask {
4923  public:
4924   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4925   ExtendedPC result();
4926  protected:
4927   void do_task(const os::SuspendedThreadTaskContext& context);
4928  private:
4929   ExtendedPC _epc;
4930 };
4931 
4932 ExtendedPC PcFetcher::result() {
4933   guarantee(is_done(), "task is not done yet.");
4934   return _epc;
4935 }
4936 
4937 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4938   Thread* thread = context.thread();
4939   OSThread* osthread = thread->osthread();
4940   if (osthread->ucontext() != NULL) {
4941     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4942   } else {
4943     // NULL context is unexpected, double-check this is the VMThread
4944     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4945   }
4946 }
4947 
4948 // Suspends the target using the signal mechanism and then grabs the PC before
4949 // resuming the target. Used by the flat-profiler only
4950 ExtendedPC os::get_thread_pc(Thread* thread) {
4951   // Make sure that it is called by the watcher for the VMThread
4952   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4953   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4954 
4955   PcFetcher fetcher(thread);
4956   fetcher.run();
4957   return fetcher.result();
4958 }
4959 
4960 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4961                                    pthread_mutex_t *_mutex,
4962                                    const struct timespec *_abstime) {
4963   if (is_NPTL()) {
4964     return pthread_cond_timedwait(_cond, _mutex, _abstime);
4965   } else {
4966     // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4967     // word back to default 64bit precision if condvar is signaled. Java
4968     // wants 53bit precision.  Save and restore current value.
4969     int fpu = get_fpu_control_word();
4970     int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4971     set_fpu_control_word(fpu);
4972     return status;
4973   }
4974 }
4975 
4976 ////////////////////////////////////////////////////////////////////////////////
4977 // debug support
4978 
4979 bool os::find(address addr, outputStream* st) {
4980   Dl_info dlinfo;
4981   memset(&dlinfo, 0, sizeof(dlinfo));
4982   if (dladdr(addr, &dlinfo) != 0) {
4983     st->print(PTR_FORMAT ": ", addr);
4984     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4985       st->print("%s+%#x", dlinfo.dli_sname,
4986                 addr - (intptr_t)dlinfo.dli_saddr);
4987     } else if (dlinfo.dli_fbase != NULL) {
4988       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4989     } else {
4990       st->print("<absolute address>");
4991     }
4992     if (dlinfo.dli_fname != NULL) {
4993       st->print(" in %s", dlinfo.dli_fname);
4994     }
4995     if (dlinfo.dli_fbase != NULL) {
4996       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4997     }
4998     st->cr();
4999 
5000     if (Verbose) {
5001       // decode some bytes around the PC
5002       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5003       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5004       address       lowest = (address) dlinfo.dli_sname;
5005       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5006       if (begin < lowest)  begin = lowest;
5007       Dl_info dlinfo2;
5008       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5009           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5010         end = (address) dlinfo2.dli_saddr;
5011       }
5012       Disassembler::decode(begin, end, st);
5013     }
5014     return true;
5015   }
5016   return false;
5017 }
5018 
5019 ////////////////////////////////////////////////////////////////////////////////
5020 // misc
5021 
5022 // This does not do anything on Linux. This is basically a hook for being
5023 // able to use structured exception handling (thread-local exception filters)
5024 // on, e.g., Win32.
5025 void
5026 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5027                          JavaCallArguments* args, Thread* thread) {
5028   f(value, method, args, thread);
5029 }
5030 
5031 void os::print_statistics() {
5032 }
5033 
5034 int os::message_box(const char* title, const char* message) {
5035   int i;
5036   fdStream err(defaultStream::error_fd());
5037   for (i = 0; i < 78; i++) err.print_raw("=");
5038   err.cr();
5039   err.print_raw_cr(title);
5040   for (i = 0; i < 78; i++) err.print_raw("-");
5041   err.cr();
5042   err.print_raw_cr(message);
5043   for (i = 0; i < 78; i++) err.print_raw("=");
5044   err.cr();
5045 
5046   char buf[16];
5047   // Prevent process from exiting upon "read error" without consuming all CPU
5048   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5049 
5050   return buf[0] == 'y' || buf[0] == 'Y';
5051 }
5052 
5053 int os::stat(const char *path, struct stat *sbuf) {
5054   char pathbuf[MAX_PATH];
5055   if (strlen(path) > MAX_PATH - 1) {
5056     errno = ENAMETOOLONG;
5057     return -1;
5058   }
5059   os::native_path(strcpy(pathbuf, path));
5060   return ::stat(pathbuf, sbuf);
5061 }
5062 
5063 bool os::check_heap(bool force) {
5064   return true;
5065 }
5066 
5067 // Is a (classpath) directory empty?
5068 bool os::dir_is_empty(const char* path) {
5069   DIR *dir = NULL;
5070   struct dirent *ptr;
5071 
5072   dir = opendir(path);
5073   if (dir == NULL) return true;
5074 
5075   // Scan the directory
5076   bool result = true;
5077   char buf[sizeof(struct dirent) + MAX_PATH];
5078   while (result && (ptr = ::readdir(dir)) != NULL) {
5079     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5080       result = false;
5081     }
5082   }
5083   closedir(dir);
5084   return result;
5085 }
5086 
5087 // This code originates from JDK's sysOpen and open64_w
5088 // from src/solaris/hpi/src/system_md.c
5089 
5090 #ifndef O_DELETE
5091   #define O_DELETE 0x10000
5092 #endif
5093 
5094 // Open a file. Unlink the file immediately after open returns
5095 // if the specified oflag has the O_DELETE flag set.
5096 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5097 
5098 int os::open(const char *path, int oflag, int mode) {
5099   if (strlen(path) > MAX_PATH - 1) {
5100     errno = ENAMETOOLONG;
5101     return -1;
5102   }
5103   int fd;
5104   int o_delete = (oflag & O_DELETE);
5105   oflag = oflag & ~O_DELETE;
5106 
5107   fd = ::open64(path, oflag, mode);
5108   if (fd == -1) return -1;
5109 
5110   //If the open succeeded, the file might still be a directory
5111   {
5112     struct stat64 buf64;
5113     int ret = ::fstat64(fd, &buf64);
5114     int st_mode = buf64.st_mode;
5115 
5116     if (ret != -1) {
5117       if ((st_mode & S_IFMT) == S_IFDIR) {
5118         errno = EISDIR;
5119         ::close(fd);
5120         return -1;
5121       }
5122     } else {
5123       ::close(fd);
5124       return -1;
5125     }
5126   }
5127 
5128   // All file descriptors that are opened in the JVM and not
5129   // specifically destined for a subprocess should have the
5130   // close-on-exec flag set.  If we don't set it, then careless 3rd
5131   // party native code might fork and exec without closing all
5132   // appropriate file descriptors (e.g. as we do in closeDescriptors in
5133   // UNIXProcess.c), and this in turn might:
5134   //
5135   // - cause end-of-file to fail to be detected on some file
5136   //   descriptors, resulting in mysterious hangs, or
5137   //
5138   // - might cause an fopen in the subprocess to fail on a system
5139   //   suffering from bug 1085341.
5140   //
5141   // (Yes, the default setting of the close-on-exec flag is a Unix
5142   // design flaw)
5143   //
5144   // See:
5145   // 1085341: 32-bit stdio routines should support file descriptors >255
5146   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5147   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5148   //
5149 #ifdef FD_CLOEXEC
5150   {
5151     int flags = ::fcntl(fd, F_GETFD);
5152     if (flags != -1) {
5153       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5154     }
5155   }
5156 #endif
5157 
5158   if (o_delete != 0) {
5159     ::unlink(path);
5160   }
5161   return fd;
5162 }
5163 
5164 
5165 // create binary file, rewriting existing file if required
5166 int os::create_binary_file(const char* path, bool rewrite_existing) {
5167   int oflags = O_WRONLY | O_CREAT;
5168   if (!rewrite_existing) {
5169     oflags |= O_EXCL;
5170   }
5171   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5172 }
5173 
5174 // return current position of file pointer
5175 jlong os::current_file_offset(int fd) {
5176   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5177 }
5178 
5179 // move file pointer to the specified offset
5180 jlong os::seek_to_file_offset(int fd, jlong offset) {
5181   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5182 }
5183 
5184 // This code originates from JDK's sysAvailable
5185 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5186 
5187 int os::available(int fd, jlong *bytes) {
5188   jlong cur, end;
5189   int mode;
5190   struct stat64 buf64;
5191 
5192   if (::fstat64(fd, &buf64) >= 0) {
5193     mode = buf64.st_mode;
5194     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5195       // XXX: is the following call interruptible? If so, this might
5196       // need to go through the INTERRUPT_IO() wrapper as for other
5197       // blocking, interruptible calls in this file.
5198       int n;
5199       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5200         *bytes = n;
5201         return 1;
5202       }
5203     }
5204   }
5205   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5206     return 0;
5207   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5208     return 0;
5209   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5210     return 0;
5211   }
5212   *bytes = end - cur;
5213   return 1;
5214 }
5215 
5216 int os::socket_available(int fd, jint *pbytes) {
5217   // Linux doc says EINTR not returned, unlike Solaris
5218   int ret = ::ioctl(fd, FIONREAD, pbytes);
5219 
5220   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5221   // is expected to return 0 on failure and 1 on success to the jdk.
5222   return (ret < 0) ? 0 : 1;
5223 }
5224 
5225 // Map a block of memory.
5226 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5227                         char *addr, size_t bytes, bool read_only,
5228                         bool allow_exec) {
5229   int prot;
5230   int flags = MAP_PRIVATE;
5231 
5232   if (read_only) {
5233     prot = PROT_READ;
5234   } else {
5235     prot = PROT_READ | PROT_WRITE;
5236   }
5237 
5238   if (allow_exec) {
5239     prot |= PROT_EXEC;
5240   }
5241 
5242   if (addr != NULL) {
5243     flags |= MAP_FIXED;
5244   }
5245 
5246   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5247                                      fd, file_offset);
5248   if (mapped_address == MAP_FAILED) {
5249     return NULL;
5250   }
5251   return mapped_address;
5252 }
5253 
5254 
5255 // Remap a block of memory.
5256 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5257                           char *addr, size_t bytes, bool read_only,
5258                           bool allow_exec) {
5259   // same as map_memory() on this OS
5260   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5261                         allow_exec);
5262 }
5263 
5264 
5265 // Unmap a block of memory.
5266 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5267   return munmap(addr, bytes) == 0;
5268 }
5269 
5270 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5271 
5272 static clockid_t thread_cpu_clockid(Thread* thread) {
5273   pthread_t tid = thread->osthread()->pthread_id();
5274   clockid_t clockid;
5275 
5276   // Get thread clockid
5277   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5278   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5279   return clockid;
5280 }
5281 
5282 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5283 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5284 // of a thread.
5285 //
5286 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5287 // the fast estimate available on the platform.
5288 
5289 jlong os::current_thread_cpu_time() {
5290   if (os::Linux::supports_fast_thread_cpu_time()) {
5291     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5292   } else {
5293     // return user + sys since the cost is the same
5294     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5295   }
5296 }
5297 
5298 jlong os::thread_cpu_time(Thread* thread) {
5299   // consistent with what current_thread_cpu_time() returns
5300   if (os::Linux::supports_fast_thread_cpu_time()) {
5301     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5302   } else {
5303     return slow_thread_cpu_time(thread, true /* user + sys */);
5304   }
5305 }
5306 
5307 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5308   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5309     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5310   } else {
5311     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5312   }
5313 }
5314 
5315 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5316   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5317     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5318   } else {
5319     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5320   }
5321 }
5322 
5323 //  -1 on error.
5324 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5325   pid_t  tid = thread->osthread()->thread_id();
5326   char *s;
5327   char stat[2048];
5328   int statlen;
5329   char proc_name[64];
5330   int count;
5331   long sys_time, user_time;
5332   char cdummy;
5333   int idummy;
5334   long ldummy;
5335   FILE *fp;
5336 
5337   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5338   fp = fopen(proc_name, "r");
5339   if (fp == NULL) return -1;
5340   statlen = fread(stat, 1, 2047, fp);
5341   stat[statlen] = '\0';
5342   fclose(fp);
5343 
5344   // Skip pid and the command string. Note that we could be dealing with
5345   // weird command names, e.g. user could decide to rename java launcher
5346   // to "java 1.4.2 :)", then the stat file would look like
5347   //                1234 (java 1.4.2 :)) R ... ...
5348   // We don't really need to know the command string, just find the last
5349   // occurrence of ")" and then start parsing from there. See bug 4726580.
5350   s = strrchr(stat, ')');
5351   if (s == NULL) return -1;
5352 
5353   // Skip blank chars
5354   do s++; while (isspace(*s));
5355 
5356   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5357                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5358                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5359                  &user_time, &sys_time);
5360   if (count != 13) return -1;
5361   if (user_sys_cpu_time) {
5362     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5363   } else {
5364     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5365   }
5366 }
5367 
5368 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5369   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5370   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5371   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5372   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5373 }
5374 
5375 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5376   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5377   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5378   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5379   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5380 }
5381 
5382 bool os::is_thread_cpu_time_supported() {
5383   return true;
5384 }
5385 
5386 // System loadavg support.  Returns -1 if load average cannot be obtained.
5387 // Linux doesn't yet have a (official) notion of processor sets,
5388 // so just return the system wide load average.
5389 int os::loadavg(double loadavg[], int nelem) {
5390   return ::getloadavg(loadavg, nelem);
5391 }
5392 
5393 void os::pause() {
5394   char filename[MAX_PATH];
5395   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5396     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5397   } else {
5398     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5399   }
5400 
5401   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5402   if (fd != -1) {
5403     struct stat buf;
5404     ::close(fd);
5405     while (::stat(filename, &buf) == 0) {
5406       (void)::poll(NULL, 0, 100);
5407     }
5408   } else {
5409     jio_fprintf(stderr,
5410                 "Could not open pause file '%s', continuing immediately.\n", filename);
5411   }
5412 }
5413 
5414 
5415 // Refer to the comments in os_solaris.cpp park-unpark.
5416 //
5417 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5418 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5419 // For specifics regarding the bug see GLIBC BUGID 261237 :
5420 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5421 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5422 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5423 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5424 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5425 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5426 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5427 // of libpthread avoids the problem, but isn't practical.
5428 //
5429 // Possible remedies:
5430 //
5431 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5432 //      This is palliative and probabilistic, however.  If the thread is preempted
5433 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5434 //      than the minimum period may have passed, and the abstime may be stale (in the
5435 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5436 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5437 //
5438 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5439 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5440 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5441 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5442 //      thread.
5443 //
5444 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5445 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5446 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5447 //      This also works well.  In fact it avoids kernel-level scalability impediments
5448 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5449 //      timers in a graceful fashion.
5450 //
5451 // 4.   When the abstime value is in the past it appears that control returns
5452 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5453 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5454 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5455 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5456 //      It may be possible to avoid reinitialization by checking the return
5457 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5458 //      condvar we must establish the invariant that cond_signal() is only called
5459 //      within critical sections protected by the adjunct mutex.  This prevents
5460 //      cond_signal() from "seeing" a condvar that's in the midst of being
5461 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5462 //      desirable signal-after-unlock optimization that avoids futile context switching.
5463 //
5464 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5465 //      structure when a condvar is used or initialized.  cond_destroy()  would
5466 //      release the helper structure.  Our reinitialize-after-timedwait fix
5467 //      put excessive stress on malloc/free and locks protecting the c-heap.
5468 //
5469 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5470 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5471 // and only enabling the work-around for vulnerable environments.
5472 
5473 // utility to compute the abstime argument to timedwait:
5474 // millis is the relative timeout time
5475 // abstime will be the absolute timeout time
5476 // TODO: replace compute_abstime() with unpackTime()
5477 
5478 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5479   if (millis < 0)  millis = 0;
5480 
5481   jlong seconds = millis / 1000;
5482   millis %= 1000;
5483   if (seconds > 50000000) { // see man cond_timedwait(3T)
5484     seconds = 50000000;
5485   }
5486 
5487   if (os::supports_monotonic_clock()) {
5488     struct timespec now;
5489     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5490     assert_status(status == 0, status, "clock_gettime");
5491     abstime->tv_sec = now.tv_sec  + seconds;
5492     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5493     if (nanos >= NANOSECS_PER_SEC) {
5494       abstime->tv_sec += 1;
5495       nanos -= NANOSECS_PER_SEC;
5496     }
5497     abstime->tv_nsec = nanos;
5498   } else {
5499     struct timeval now;
5500     int status = gettimeofday(&now, NULL);
5501     assert(status == 0, "gettimeofday");
5502     abstime->tv_sec = now.tv_sec  + seconds;
5503     long usec = now.tv_usec + millis * 1000;
5504     if (usec >= 1000000) {
5505       abstime->tv_sec += 1;
5506       usec -= 1000000;
5507     }
5508     abstime->tv_nsec = usec * 1000;
5509   }
5510   return abstime;
5511 }
5512 
5513 void os::PlatformEvent::park() {       // AKA "down()"
5514   // Invariant: Only the thread associated with the Event/PlatformEvent
5515   // may call park().
5516   // TODO: assert that _Assoc != NULL or _Assoc == Self
5517   assert(_nParked == 0, "invariant");
5518 
5519   int v;
5520   for (;;) {
5521     v = _Event;
5522     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5523   }
5524   guarantee(v >= 0, "invariant");
5525   if (v == 0) {
5526     // Do this the hard way by blocking ...
5527     int status = pthread_mutex_lock(_mutex);
5528     assert_status(status == 0, status, "mutex_lock");
5529     guarantee(_nParked == 0, "invariant");
5530     ++_nParked;
5531     while (_Event < 0) {
5532       status = pthread_cond_wait(_cond, _mutex);
5533       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5534       // Treat this the same as if the wait was interrupted
5535       if (status == ETIME) { status = EINTR; }
5536       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5537     }
5538     --_nParked;
5539 
5540     _Event = 0;
5541     status = pthread_mutex_unlock(_mutex);
5542     assert_status(status == 0, status, "mutex_unlock");
5543     // Paranoia to ensure our locked and lock-free paths interact
5544     // correctly with each other.
5545     OrderAccess::fence();
5546   }
5547   guarantee(_Event >= 0, "invariant");
5548 }
5549 
5550 int os::PlatformEvent::park(jlong millis) {
5551   guarantee(_nParked == 0, "invariant");
5552 
5553   int v;
5554   for (;;) {
5555     v = _Event;
5556     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5557   }
5558   guarantee(v >= 0, "invariant");
5559   if (v != 0) return OS_OK;
5560 
5561   // We do this the hard way, by blocking the thread.
5562   // Consider enforcing a minimum timeout value.
5563   struct timespec abst;
5564   compute_abstime(&abst, millis);
5565 
5566   int ret = OS_TIMEOUT;
5567   int status = pthread_mutex_lock(_mutex);
5568   assert_status(status == 0, status, "mutex_lock");
5569   guarantee(_nParked == 0, "invariant");
5570   ++_nParked;
5571 
5572   // Object.wait(timo) will return because of
5573   // (a) notification
5574   // (b) timeout
5575   // (c) thread.interrupt
5576   //
5577   // Thread.interrupt and object.notify{All} both call Event::set.
5578   // That is, we treat thread.interrupt as a special case of notification.
5579   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5580   // We assume all ETIME returns are valid.
5581   //
5582   // TODO: properly differentiate simultaneous notify+interrupt.
5583   // In that case, we should propagate the notify to another waiter.
5584 
5585   while (_Event < 0) {
5586     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5587     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5588       pthread_cond_destroy(_cond);
5589       pthread_cond_init(_cond, os::Linux::condAttr());
5590     }
5591     assert_status(status == 0 || status == EINTR ||
5592                   status == ETIME || status == ETIMEDOUT,
5593                   status, "cond_timedwait");
5594     if (!FilterSpuriousWakeups) break;                 // previous semantics
5595     if (status == ETIME || status == ETIMEDOUT) break;
5596     // We consume and ignore EINTR and spurious wakeups.
5597   }
5598   --_nParked;
5599   if (_Event >= 0) {
5600     ret = OS_OK;
5601   }
5602   _Event = 0;
5603   status = pthread_mutex_unlock(_mutex);
5604   assert_status(status == 0, status, "mutex_unlock");
5605   assert(_nParked == 0, "invariant");
5606   // Paranoia to ensure our locked and lock-free paths interact
5607   // correctly with each other.
5608   OrderAccess::fence();
5609   return ret;
5610 }
5611 
5612 void os::PlatformEvent::unpark() {
5613   // Transitions for _Event:
5614   //    0 :=> 1
5615   //    1 :=> 1
5616   //   -1 :=> either 0 or 1; must signal target thread
5617   //          That is, we can safely transition _Event from -1 to either
5618   //          0 or 1.
5619   // See also: "Semaphores in Plan 9" by Mullender & Cox
5620   //
5621   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5622   // that it will take two back-to-back park() calls for the owning
5623   // thread to block. This has the benefit of forcing a spurious return
5624   // from the first park() call after an unpark() call which will help
5625   // shake out uses of park() and unpark() without condition variables.
5626 
5627   if (Atomic::xchg(1, &_Event) >= 0) return;
5628 
5629   // Wait for the thread associated with the event to vacate
5630   int status = pthread_mutex_lock(_mutex);
5631   assert_status(status == 0, status, "mutex_lock");
5632   int AnyWaiters = _nParked;
5633   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5634   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5635     AnyWaiters = 0;
5636     pthread_cond_signal(_cond);
5637   }
5638   status = pthread_mutex_unlock(_mutex);
5639   assert_status(status == 0, status, "mutex_unlock");
5640   if (AnyWaiters != 0) {
5641     status = pthread_cond_signal(_cond);
5642     assert_status(status == 0, status, "cond_signal");
5643   }
5644 
5645   // Note that we signal() _after dropping the lock for "immortal" Events.
5646   // This is safe and avoids a common class of  futile wakeups.  In rare
5647   // circumstances this can cause a thread to return prematurely from
5648   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5649   // simply re-test the condition and re-park itself.
5650 }
5651 
5652 
5653 // JSR166
5654 // -------------------------------------------------------
5655 
5656 // The solaris and linux implementations of park/unpark are fairly
5657 // conservative for now, but can be improved. They currently use a
5658 // mutex/condvar pair, plus a a count.
5659 // Park decrements count if > 0, else does a condvar wait.  Unpark
5660 // sets count to 1 and signals condvar.  Only one thread ever waits
5661 // on the condvar. Contention seen when trying to park implies that someone
5662 // is unparking you, so don't wait. And spurious returns are fine, so there
5663 // is no need to track notifications.
5664 
5665 // This code is common to linux and solaris and will be moved to a
5666 // common place in dolphin.
5667 //
5668 // The passed in time value is either a relative time in nanoseconds
5669 // or an absolute time in milliseconds. Either way it has to be unpacked
5670 // into suitable seconds and nanoseconds components and stored in the
5671 // given timespec structure.
5672 // Given time is a 64-bit value and the time_t used in the timespec is only
5673 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5674 // overflow if times way in the future are given. Further on Solaris versions
5675 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5676 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5677 // As it will be 28 years before "now + 100000000" will overflow we can
5678 // ignore overflow and just impose a hard-limit on seconds using the value
5679 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5680 // years from "now".
5681 
5682 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5683   assert(time > 0, "convertTime");
5684   time_t max_secs = 0;
5685 
5686   if (!os::supports_monotonic_clock() || isAbsolute) {
5687     struct timeval now;
5688     int status = gettimeofday(&now, NULL);
5689     assert(status == 0, "gettimeofday");
5690 
5691     max_secs = now.tv_sec + MAX_SECS;
5692 
5693     if (isAbsolute) {
5694       jlong secs = time / 1000;
5695       if (secs > max_secs) {
5696         absTime->tv_sec = max_secs;
5697       } else {
5698         absTime->tv_sec = secs;
5699       }
5700       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5701     } else {
5702       jlong secs = time / NANOSECS_PER_SEC;
5703       if (secs >= MAX_SECS) {
5704         absTime->tv_sec = max_secs;
5705         absTime->tv_nsec = 0;
5706       } else {
5707         absTime->tv_sec = now.tv_sec + secs;
5708         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5709         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5710           absTime->tv_nsec -= NANOSECS_PER_SEC;
5711           ++absTime->tv_sec; // note: this must be <= max_secs
5712         }
5713       }
5714     }
5715   } else {
5716     // must be relative using monotonic clock
5717     struct timespec now;
5718     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5719     assert_status(status == 0, status, "clock_gettime");
5720     max_secs = now.tv_sec + MAX_SECS;
5721     jlong secs = time / NANOSECS_PER_SEC;
5722     if (secs >= MAX_SECS) {
5723       absTime->tv_sec = max_secs;
5724       absTime->tv_nsec = 0;
5725     } else {
5726       absTime->tv_sec = now.tv_sec + secs;
5727       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5728       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5729         absTime->tv_nsec -= NANOSECS_PER_SEC;
5730         ++absTime->tv_sec; // note: this must be <= max_secs
5731       }
5732     }
5733   }
5734   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5735   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5736   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5737   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5738 }
5739 
5740 void Parker::park(bool isAbsolute, jlong time) {
5741   // Ideally we'd do something useful while spinning, such
5742   // as calling unpackTime().
5743 
5744   // Optional fast-path check:
5745   // Return immediately if a permit is available.
5746   // We depend on Atomic::xchg() having full barrier semantics
5747   // since we are doing a lock-free update to _counter.
5748   if (Atomic::xchg(0, &_counter) > 0) return;
5749 
5750   Thread* thread = Thread::current();
5751   assert(thread->is_Java_thread(), "Must be JavaThread");
5752   JavaThread *jt = (JavaThread *)thread;
5753 
5754   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5755   // Check interrupt before trying to wait
5756   if (Thread::is_interrupted(thread, false)) {
5757     return;
5758   }
5759 
5760   // Next, demultiplex/decode time arguments
5761   timespec absTime;
5762   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5763     return;
5764   }
5765   if (time > 0) {
5766     unpackTime(&absTime, isAbsolute, time);
5767   }
5768 
5769 
5770   // Enter safepoint region
5771   // Beware of deadlocks such as 6317397.
5772   // The per-thread Parker:: mutex is a classic leaf-lock.
5773   // In particular a thread must never block on the Threads_lock while
5774   // holding the Parker:: mutex.  If safepoints are pending both the
5775   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5776   ThreadBlockInVM tbivm(jt);
5777 
5778   // Don't wait if cannot get lock since interference arises from
5779   // unblocking.  Also. check interrupt before trying wait
5780   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5781     return;
5782   }
5783 
5784   int status;
5785   if (_counter > 0)  { // no wait needed
5786     _counter = 0;
5787     status = pthread_mutex_unlock(_mutex);
5788     assert(status == 0, "invariant");
5789     // Paranoia to ensure our locked and lock-free paths interact
5790     // correctly with each other and Java-level accesses.
5791     OrderAccess::fence();
5792     return;
5793   }
5794 
5795 #ifdef ASSERT
5796   // Don't catch signals while blocked; let the running threads have the signals.
5797   // (This allows a debugger to break into the running thread.)
5798   sigset_t oldsigs;
5799   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5800   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5801 #endif
5802 
5803   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5804   jt->set_suspend_equivalent();
5805   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5806 
5807   assert(_cur_index == -1, "invariant");
5808   if (time == 0) {
5809     _cur_index = REL_INDEX; // arbitrary choice when not timed
5810     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5811   } else {
5812     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5813     status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5814     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5815       pthread_cond_destroy(&_cond[_cur_index]);
5816       pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5817     }
5818   }
5819   _cur_index = -1;
5820   assert_status(status == 0 || status == EINTR ||
5821                 status == ETIME || status == ETIMEDOUT,
5822                 status, "cond_timedwait");
5823 
5824 #ifdef ASSERT
5825   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5826 #endif
5827 
5828   _counter = 0;
5829   status = pthread_mutex_unlock(_mutex);
5830   assert_status(status == 0, status, "invariant");
5831   // Paranoia to ensure our locked and lock-free paths interact
5832   // correctly with each other and Java-level accesses.
5833   OrderAccess::fence();
5834 
5835   // If externally suspended while waiting, re-suspend
5836   if (jt->handle_special_suspend_equivalent_condition()) {
5837     jt->java_suspend_self();
5838   }
5839 }
5840 
5841 void Parker::unpark() {
5842   int status = pthread_mutex_lock(_mutex);
5843   assert(status == 0, "invariant");
5844   const int s = _counter;
5845   _counter = 1;
5846   if (s < 1) {
5847     // thread might be parked
5848     if (_cur_index != -1) {
5849       // thread is definitely parked
5850       if (WorkAroundNPTLTimedWaitHang) {
5851         status = pthread_cond_signal(&_cond[_cur_index]);
5852         assert(status == 0, "invariant");
5853         status = pthread_mutex_unlock(_mutex);
5854         assert(status == 0, "invariant");
5855       } else {
5856         status = pthread_mutex_unlock(_mutex);
5857         assert(status == 0, "invariant");
5858         status = pthread_cond_signal(&_cond[_cur_index]);
5859         assert(status == 0, "invariant");
5860       }
5861     } else {
5862       pthread_mutex_unlock(_mutex);
5863       assert(status == 0, "invariant");
5864     }
5865   } else {
5866     pthread_mutex_unlock(_mutex);
5867     assert(status == 0, "invariant");
5868   }
5869 }
5870 
5871 
5872 extern char** environ;
5873 
5874 #ifndef __NR_fork
5875   #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5876 #endif
5877 
5878 #ifndef __NR_execve
5879   #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5880 #endif
5881 
5882 // Run the specified command in a separate process. Return its exit value,
5883 // or -1 on failure (e.g. can't fork a new process).
5884 // Unlike system(), this function can be called from signal handler. It
5885 // doesn't block SIGINT et al.
5886 int os::fork_and_exec(char* cmd) {
5887   const char * argv[4] = {"sh", "-c", cmd, NULL};
5888 
5889   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5890   // pthread_atfork handlers and reset pthread library. All we need is a
5891   // separate process to execve. Make a direct syscall to fork process.
5892   // On IA64 there's no fork syscall, we have to use fork() and hope for
5893   // the best...
5894   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5895   IA64_ONLY(fork();)
5896 
5897   if (pid < 0) {
5898     // fork failed
5899     return -1;
5900 
5901   } else if (pid == 0) {
5902     // child process
5903 
5904     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5905     // first to kill every thread on the thread list. Because this list is
5906     // not reset by fork() (see notes above), execve() will instead kill
5907     // every thread in the parent process. We know this is the only thread
5908     // in the new process, so make a system call directly.
5909     // IA64 should use normal execve() from glibc to match the glibc fork()
5910     // above.
5911     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5912     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5913 
5914     // execve failed
5915     _exit(-1);
5916 
5917   } else  {
5918     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5919     // care about the actual exit code, for now.
5920 
5921     int status;
5922 
5923     // Wait for the child process to exit.  This returns immediately if
5924     // the child has already exited. */
5925     while (waitpid(pid, &status, 0) < 0) {
5926       switch (errno) {
5927       case ECHILD: return 0;
5928       case EINTR: break;
5929       default: return -1;
5930       }
5931     }
5932 
5933     if (WIFEXITED(status)) {
5934       // The child exited normally; get its exit code.
5935       return WEXITSTATUS(status);
5936     } else if (WIFSIGNALED(status)) {
5937       // The child exited because of a signal
5938       // The best value to return is 0x80 + signal number,
5939       // because that is what all Unix shells do, and because
5940       // it allows callers to distinguish between process exit and
5941       // process death by signal.
5942       return 0x80 + WTERMSIG(status);
5943     } else {
5944       // Unknown exit code; pass it through
5945       return status;
5946     }
5947   }
5948 }
5949 
5950 // is_headless_jre()
5951 //
5952 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5953 // in order to report if we are running in a headless jre
5954 //
5955 // Since JDK8 xawt/libmawt.so was moved into the same directory
5956 // as libawt.so, and renamed libawt_xawt.so
5957 //
5958 bool os::is_headless_jre() {
5959   struct stat statbuf;
5960   char buf[MAXPATHLEN];
5961   char libmawtpath[MAXPATHLEN];
5962   const char *xawtstr  = "/xawt/libmawt.so";
5963   const char *new_xawtstr = "/libawt_xawt.so";
5964   char *p;
5965 
5966   // Get path to libjvm.so
5967   os::jvm_path(buf, sizeof(buf));
5968 
5969   // Get rid of libjvm.so
5970   p = strrchr(buf, '/');
5971   if (p == NULL) {
5972     return false;
5973   } else {
5974     *p = '\0';
5975   }
5976 
5977   // Get rid of client or server
5978   p = strrchr(buf, '/');
5979   if (p == NULL) {
5980     return false;
5981   } else {
5982     *p = '\0';
5983   }
5984 
5985   // check xawt/libmawt.so
5986   strcpy(libmawtpath, buf);
5987   strcat(libmawtpath, xawtstr);
5988   if (::stat(libmawtpath, &statbuf) == 0) return false;
5989 
5990   // check libawt_xawt.so
5991   strcpy(libmawtpath, buf);
5992   strcat(libmawtpath, new_xawtstr);
5993   if (::stat(libmawtpath, &statbuf) == 0) return false;
5994 
5995   return true;
5996 }
5997 
5998 // Get the default path to the core file
5999 // Returns the length of the string
6000 int os::get_core_path(char* buffer, size_t bufferSize) {
6001   /*
6002    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
6003    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
6004    */
6005   const int core_pattern_len = 129;
6006   char core_pattern[core_pattern_len] = {0};
6007 
6008   FILE *core_pattern_file = fopen("/proc/sys/kernel/core_pattern", "r");
6009   if (core_pattern_file != NULL) {
6010     char *ret_ptr = fgets(core_pattern, core_pattern_len, core_pattern_file);
6011     fclose(core_pattern_file);
6012 
6013     if (ret_ptr != NULL) {
6014       char *last_char = core_pattern + strlen(core_pattern) - 1;
6015       if (*last_char == '\n') {
6016         *last_char = '\0';
6017       }
6018     }
6019 
6020   }
6021 
6022   if (strlen(core_pattern) == 0) {
6023     return 0;
6024   }
6025 
6026   // Get executable path for 'e' and 'E'
6027   char exe_path[PATH_MAX] = {0};
6028   readlink("/proc/self/exe", exe_path, PATH_MAX);
6029 
6030   char core_path[PATH_MAX] = {0};
6031   bool with_pid = false;
6032   size_t n = 0;
6033   char *core_pattern_seq = core_pattern;
6034   while (*core_pattern_seq) {
6035 
6036     if (*core_pattern_seq == '%') {
6037       int written = 0;
6038       core_pattern_seq++; // Get format character
6039 
6040       switch (*core_pattern_seq) {
6041 
6042         case '\0': // NULL termination
6043           break;
6044 
6045         case '%': // double percent
6046           written = jio_snprintf(&core_path[n], PATH_MAX - n, "%%");
6047           break;
6048 
6049         case 'p': // pid
6050           with_pid = true;
6051           written = jio_snprintf(&core_path[n], PATH_MAX - n, "%d", current_process_id());
6052           break;
6053 
6054         case 'u': // uid
6055           written = jio_snprintf(&core_path[n], PATH_MAX - n, "%d", getuid());
6056           break;
6057 
6058         case 'g': // gid
6059           written = jio_snprintf(&core_path[n], PATH_MAX - n, "%d", getgid());
6060           break;
6061           
6062         case 'd': // dump mode
6063           written = jio_snprintf(&core_path[n], PATH_MAX - n, "%d",
6064                                prctl(PR_GET_DUMPABLE, NULL, NULL, NULL, NULL));
6065           break;
6066 
6067         case 'h': // hostname
6068           struct utsname un;
6069           uname(&un); // This call will be succeeded.
6070           written = jio_snprintf(&core_path[n], PATH_MAX - n, "%s", un.nodename);
6071           break;
6072 
6073         case 'e': // executable filename (shorten)
6074           written = jio_snprintf(&core_path[n], PATH_MAX - n, "%s", basename(exe_path));
6075           break;
6076 
6077         case 'E': // executable filename (path)
6078           written = jio_snprintf(&core_path[n], PATH_MAX - n, "%s", exe_path);
6079           break;
6080 
6081         case 'c': // core limit size
6082           struct rlimit rlim;
6083           getrlimit(RLIMIT_CORE, &rlim); // Calling getrlimit() to myself will be succeeded.
6084           written = jio_snprintf(&core_path[n], PATH_MAX - n, "%lu", rlim.rlim_cur);
6085           break;
6086 
6087         /*
6088          * We cannot other values.
6089          * e.g. 'P' (global pid), 's' (signal), 't' (UNIX time of dump)
6090          *
6091          *  - 't' will set to core dump time in Linux kernel.
6092          *    Thus we cannot set it in this function.
6093          *  - If user set undefined character, Linux kernel will drop it.
6094          *    We remain it because Linux kernel may define it in the future.
6095          */
6096         default:
6097           written = jio_snprintf(&core_path[n], PATH_MAX - n, "%%%c", *core_pattern_seq);
6098           break;
6099 
6100       }
6101 
6102       n += written;
6103     } else {
6104       core_path[n] = *core_pattern_seq;
6105       n++;
6106     }
6107 
6108     core_pattern_seq++; // Get next character
6109   }
6110 
6111   if (!with_pid && (core_path[0] != '|')) {
6112     char val[2] = {0};
6113     FILE *core_uses_pid_file = fopen("/proc/sys/kernel/core_uses_pid", "r");
6114     if (core_uses_pid_file != NULL) {
6115       fgets(val, 2, core_uses_pid_file);
6116       fclose(core_uses_pid_file);
6117     }
6118 
6119     if (val[0] == '1') {
6120       n += jio_snprintf(&core_path[n], PATH_MAX - n, ".%d", current_process_id());
6121     }
6122 
6123   }
6124 
6125   if (n > bufferSize) {
6126     n = bufferSize;
6127   }
6128 
6129   if (core_path[0] == '/') {
6130     jio_snprintf(buffer, n, core_path);
6131   } else {
6132     char cwd[PATH_MAX];
6133     const char* p = get_current_directory(cwd, PATH_MAX);
6134 
6135     if (p == NULL) {
6136       assert(p != NULL, "failed to get current directory");
6137       return 0;
6138     }
6139 
6140     if (core_path[0] == '|') {
6141       jio_snprintf(buffer, bufferSize, "%s (or dumping to %s/core.%d)",
6142                                            core_path, p, current_process_id());
6143     } else {
6144       jio_snprintf(buffer, bufferSize, "%s/%s", p, core_path);
6145     }
6146 
6147   }
6148 
6149   return strlen(buffer);
6150 }
6151 
6152 // Check core dump limit and report possible place where core can be found
6153 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
6154   int n;
6155   bool success;
6156   char core_path[PATH_MAX];
6157 
6158   n = get_core_path(core_path, PATH_MAX);
6159 
6160   if (n == 0) {
6161     jio_snprintf(buffer, bufferSize, "/core or core.%d (may not exist)", current_process_id());
6162     success = true;
6163   } else if (core_path[0] == '|') {
6164     jio_snprintf(buffer, bufferSize, "Core dumps may be processed with \"%s\"", &core_path[1]);
6165     success = true;
6166   } else {
6167     struct rlimit rlim;
6168     getrlimit(RLIMIT_CORE, &rlim); // Calling getrlimit() to myself will be succeeded.
6169 
6170     switch(rlim.rlim_cur) {
6171       case RLIM_INFINITY:
6172         jio_snprintf(buffer, bufferSize, "%s", core_path);
6173         success = true;
6174         break;
6175       case 0:
6176         jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again");
6177         success = false;
6178         break;
6179       default:
6180         jio_snprintf(buffer, bufferSize, "%s (max size %lu kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", core_path, (unsigned long)(rlim.rlim_cur >> 10));
6181         success = true;
6182         break;
6183     }
6184   }
6185   VMError::report_coredump_status(buffer, success);
6186 }
6187 
6188 
6189 #ifdef JAVASE_EMBEDDED
6190 //
6191 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
6192 //
6193 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
6194 
6195 // ctor
6196 //
6197 MemNotifyThread::MemNotifyThread(int fd): Thread() {
6198   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
6199   _fd = fd;
6200 
6201   if (os::create_thread(this, os::os_thread)) {
6202     _memnotify_thread = this;
6203     os::set_priority(this, NearMaxPriority);
6204     os::start_thread(this);
6205   }
6206 }
6207 
6208 // Where all the work gets done
6209 //
6210 void MemNotifyThread::run() {
6211   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
6212 
6213   // Set up the select arguments
6214   fd_set rfds;
6215   if (_fd != -1) {
6216     FD_ZERO(&rfds);
6217     FD_SET(_fd, &rfds);
6218   }
6219 
6220   // Now wait for the mem_notify device to wake up
6221   while (1) {
6222     // Wait for the mem_notify device to signal us..
6223     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6224     if (rc == -1) {
6225       perror("select!\n");
6226       break;
6227     } else if (rc) {
6228       //ssize_t free_before = os::available_memory();
6229       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6230 
6231       // The kernel is telling us there is not much memory left...
6232       // try to do something about that
6233 
6234       // If we are not already in a GC, try one.
6235       if (!Universe::heap()->is_gc_active()) {
6236         Universe::heap()->collect(GCCause::_allocation_failure);
6237 
6238         //ssize_t free_after = os::available_memory();
6239         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6240         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6241       }
6242       // We might want to do something like the following if we find the GC's are not helping...
6243       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6244     }
6245   }
6246 }
6247 
6248 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6249 //
6250 void MemNotifyThread::start() {
6251   int fd;
6252   fd = open("/dev/mem_notify", O_RDONLY, 0);
6253   if (fd < 0) {
6254     return;
6255   }
6256 
6257   if (memnotify_thread() == NULL) {
6258     new MemNotifyThread(fd);
6259   }
6260 }
6261 
6262 #endif // JAVASE_EMBEDDED
6263 
6264 
6265 /////////////// Unit tests ///////////////
6266 
6267 #ifndef PRODUCT
6268 
6269 #define test_log(...)              \
6270   do {                             \
6271     if (VerboseInternalVMTests) {  \
6272       tty->print_cr(__VA_ARGS__);  \
6273       tty->flush();                \
6274     }                              \
6275   } while (false)
6276 
6277 class TestReserveMemorySpecial : AllStatic {
6278  public:
6279   static void small_page_write(void* addr, size_t size) {
6280     size_t page_size = os::vm_page_size();
6281 
6282     char* end = (char*)addr + size;
6283     for (char* p = (char*)addr; p < end; p += page_size) {
6284       *p = 1;
6285     }
6286   }
6287 
6288   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6289     if (!UseHugeTLBFS) {
6290       return;
6291     }
6292 
6293     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6294 
6295     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6296 
6297     if (addr != NULL) {
6298       small_page_write(addr, size);
6299 
6300       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6301     }
6302   }
6303 
6304   static void test_reserve_memory_special_huge_tlbfs_only() {
6305     if (!UseHugeTLBFS) {
6306       return;
6307     }
6308 
6309     size_t lp = os::large_page_size();
6310 
6311     for (size_t size = lp; size <= lp * 10; size += lp) {
6312       test_reserve_memory_special_huge_tlbfs_only(size);
6313     }
6314   }
6315 
6316   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6317     if (!UseHugeTLBFS) {
6318       return;
6319     }
6320 
6321     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6322              size, alignment);
6323 
6324     assert(size >= os::large_page_size(), "Incorrect input to test");
6325 
6326     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6327 
6328     if (addr != NULL) {
6329       small_page_write(addr, size);
6330 
6331       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6332     }
6333   }
6334 
6335   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6336     size_t lp = os::large_page_size();
6337     size_t ag = os::vm_allocation_granularity();
6338 
6339     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6340       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6341     }
6342   }
6343 
6344   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6345     size_t lp = os::large_page_size();
6346     size_t ag = os::vm_allocation_granularity();
6347 
6348     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6349     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6350     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6351     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6352     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6353     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6354     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6355     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6356     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6357   }
6358 
6359   static void test_reserve_memory_special_huge_tlbfs() {
6360     if (!UseHugeTLBFS) {
6361       return;
6362     }
6363 
6364     test_reserve_memory_special_huge_tlbfs_only();
6365     test_reserve_memory_special_huge_tlbfs_mixed();
6366   }
6367 
6368   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6369     if (!UseSHM) {
6370       return;
6371     }
6372 
6373     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6374 
6375     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6376 
6377     if (addr != NULL) {
6378       assert(is_ptr_aligned(addr, alignment), "Check");
6379       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6380 
6381       small_page_write(addr, size);
6382 
6383       os::Linux::release_memory_special_shm(addr, size);
6384     }
6385   }
6386 
6387   static void test_reserve_memory_special_shm() {
6388     size_t lp = os::large_page_size();
6389     size_t ag = os::vm_allocation_granularity();
6390 
6391     for (size_t size = ag; size < lp * 3; size += ag) {
6392       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6393         test_reserve_memory_special_shm(size, alignment);
6394       }
6395     }
6396   }
6397 
6398   static void test() {
6399     test_reserve_memory_special_huge_tlbfs();
6400     test_reserve_memory_special_shm();
6401   }
6402 };
6403 
6404 void TestReserveMemorySpecial_test() {
6405   TestReserveMemorySpecial::test();
6406 }
6407 
6408 #endif