1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
  30 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
  31 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
  32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
  33 #include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
  34 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
  35 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
  36 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
  37 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
  38 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
  39 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  40 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
  41 #include "gc_implementation/shared/gcHeapSummary.hpp"
  42 #include "gc_implementation/shared/gcTimer.hpp"
  43 #include "gc_implementation/shared/gcTrace.hpp"
  44 #include "gc_implementation/shared/gcTraceTime.hpp"
  45 #include "gc_implementation/shared/isGCActiveMark.hpp"
  46 #include "gc_implementation/shared/spaceDecorator.hpp"
  47 #include "gc_interface/gcCause.hpp"
  48 #include "memory/gcLocker.inline.hpp"
  49 #include "memory/referencePolicy.hpp"
  50 #include "memory/referenceProcessor.hpp"
  51 #include "oops/methodData.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "oops/oop.pcgc.inline.hpp"
  54 #include "runtime/atomic.inline.hpp"
  55 #include "runtime/fprofiler.hpp"
  56 #include "runtime/safepoint.hpp"
  57 #include "runtime/vmThread.hpp"
  58 #include "services/management.hpp"
  59 #include "services/memoryService.hpp"
  60 #include "services/memTracker.hpp"
  61 #include "utilities/events.hpp"
  62 #include "utilities/stack.inline.hpp"
  63 
  64 #include <math.h>
  65 
  66 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  67 
  68 // All sizes are in HeapWords.
  69 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
  70 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
  71 const size_t ParallelCompactData::RegionSizeBytes =
  72   RegionSize << LogHeapWordSize;
  73 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
  74 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
  75 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
  76 
  77 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
  78 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
  79 const size_t ParallelCompactData::BlockSizeBytes  =
  80   BlockSize << LogHeapWordSize;
  81 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
  82 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
  83 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
  84 
  85 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
  86 const size_t ParallelCompactData::Log2BlocksPerRegion =
  87   Log2RegionSize - Log2BlockSize;
  88 
  89 const ParallelCompactData::RegionData::region_sz_t
  90 ParallelCompactData::RegionData::dc_shift = 27;
  91 
  92 const ParallelCompactData::RegionData::region_sz_t
  93 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
  94 
  95 const ParallelCompactData::RegionData::region_sz_t
  96 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
  97 
  98 const ParallelCompactData::RegionData::region_sz_t
  99 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 100 
 101 const ParallelCompactData::RegionData::region_sz_t
 102 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 103 
 104 const ParallelCompactData::RegionData::region_sz_t
 105 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 106 
 107 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 108 bool      PSParallelCompact::_print_phases = false;
 109 
 110 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
 111 Klass*              PSParallelCompact::_updated_int_array_klass_obj = NULL;
 112 
 113 double PSParallelCompact::_dwl_mean;
 114 double PSParallelCompact::_dwl_std_dev;
 115 double PSParallelCompact::_dwl_first_term;
 116 double PSParallelCompact::_dwl_adjustment;
 117 #ifdef  ASSERT
 118 bool   PSParallelCompact::_dwl_initialized = false;
 119 #endif  // #ifdef ASSERT
 120 
 121 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 122                        HeapWord* destination)
 123 {
 124   assert(src_region_idx != 0, "invalid src_region_idx");
 125   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 126   assert(destination != NULL, "invalid destination argument");
 127 
 128   _src_region_idx = src_region_idx;
 129   _partial_obj_size = partial_obj_size;
 130   _destination = destination;
 131 
 132   // These fields may not be updated below, so make sure they're clear.
 133   assert(_dest_region_addr == NULL, "should have been cleared");
 134   assert(_first_src_addr == NULL, "should have been cleared");
 135 
 136   // Determine the number of destination regions for the partial object.
 137   HeapWord* const last_word = destination + partial_obj_size - 1;
 138   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 139   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 140   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 141 
 142   if (beg_region_addr == end_region_addr) {
 143     // One destination region.
 144     _destination_count = 1;
 145     if (end_region_addr == destination) {
 146       // The destination falls on a region boundary, thus the first word of the
 147       // partial object will be the first word copied to the destination region.
 148       _dest_region_addr = end_region_addr;
 149       _first_src_addr = sd.region_to_addr(src_region_idx);
 150     }
 151   } else {
 152     // Two destination regions.  When copied, the partial object will cross a
 153     // destination region boundary, so a word somewhere within the partial
 154     // object will be the first word copied to the second destination region.
 155     _destination_count = 2;
 156     _dest_region_addr = end_region_addr;
 157     const size_t ofs = pointer_delta(end_region_addr, destination);
 158     assert(ofs < _partial_obj_size, "sanity");
 159     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 160   }
 161 }
 162 
 163 void SplitInfo::clear()
 164 {
 165   _src_region_idx = 0;
 166   _partial_obj_size = 0;
 167   _destination = NULL;
 168   _destination_count = 0;
 169   _dest_region_addr = NULL;
 170   _first_src_addr = NULL;
 171   assert(!is_valid(), "sanity");
 172 }
 173 
 174 #ifdef  ASSERT
 175 void SplitInfo::verify_clear()
 176 {
 177   assert(_src_region_idx == 0, "not clear");
 178   assert(_partial_obj_size == 0, "not clear");
 179   assert(_destination == NULL, "not clear");
 180   assert(_destination_count == 0, "not clear");
 181   assert(_dest_region_addr == NULL, "not clear");
 182   assert(_first_src_addr == NULL, "not clear");
 183 }
 184 #endif  // #ifdef ASSERT
 185 
 186 
 187 void PSParallelCompact::print_on_error(outputStream* st) {
 188   _mark_bitmap.print_on_error(st);
 189 }
 190 
 191 #ifndef PRODUCT
 192 const char* PSParallelCompact::space_names[] = {
 193   "old ", "eden", "from", "to  "
 194 };
 195 
 196 void PSParallelCompact::print_region_ranges()
 197 {
 198   tty->print_cr("space  bottom     top        end        new_top");
 199   tty->print_cr("------ ---------- ---------- ---------- ----------");
 200 
 201   for (unsigned int id = 0; id < last_space_id; ++id) {
 202     const MutableSpace* space = _space_info[id].space();
 203     tty->print_cr("%u %s "
 204                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 205                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 206                   id, space_names[id],
 207                   summary_data().addr_to_region_idx(space->bottom()),
 208                   summary_data().addr_to_region_idx(space->top()),
 209                   summary_data().addr_to_region_idx(space->end()),
 210                   summary_data().addr_to_region_idx(_space_info[id].new_top()));
 211   }
 212 }
 213 
 214 void
 215 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 216 {
 217 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 218 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 219 
 220   ParallelCompactData& sd = PSParallelCompact::summary_data();
 221   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 222   tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
 223                 REGION_IDX_FORMAT " " PTR_FORMAT " "
 224                 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 225                 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 226                 i, c->data_location(), dci, c->destination(),
 227                 c->partial_obj_size(), c->live_obj_size(),
 228                 c->data_size(), c->source_region(), c->destination_count());
 229 
 230 #undef  REGION_IDX_FORMAT
 231 #undef  REGION_DATA_FORMAT
 232 }
 233 
 234 void
 235 print_generic_summary_data(ParallelCompactData& summary_data,
 236                            HeapWord* const beg_addr,
 237                            HeapWord* const end_addr)
 238 {
 239   size_t total_words = 0;
 240   size_t i = summary_data.addr_to_region_idx(beg_addr);
 241   const size_t last = summary_data.addr_to_region_idx(end_addr);
 242   HeapWord* pdest = 0;
 243 
 244   while (i <= last) {
 245     ParallelCompactData::RegionData* c = summary_data.region(i);
 246     if (c->data_size() != 0 || c->destination() != pdest) {
 247       print_generic_summary_region(i, c);
 248       total_words += c->data_size();
 249       pdest = c->destination();
 250     }
 251     ++i;
 252   }
 253 
 254   tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 255 }
 256 
 257 void
 258 print_generic_summary_data(ParallelCompactData& summary_data,
 259                            SpaceInfo* space_info)
 260 {
 261   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 262     const MutableSpace* space = space_info[id].space();
 263     print_generic_summary_data(summary_data, space->bottom(),
 264                                MAX2(space->top(), space_info[id].new_top()));
 265   }
 266 }
 267 
 268 void
 269 print_initial_summary_region(size_t i,
 270                              const ParallelCompactData::RegionData* c,
 271                              bool newline = true)
 272 {
 273   tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
 274              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
 275              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 276              i, c->destination(),
 277              c->partial_obj_size(), c->live_obj_size(),
 278              c->data_size(), c->source_region(), c->destination_count());
 279   if (newline) tty->cr();
 280 }
 281 
 282 void
 283 print_initial_summary_data(ParallelCompactData& summary_data,
 284                            const MutableSpace* space) {
 285   if (space->top() == space->bottom()) {
 286     return;
 287   }
 288 
 289   const size_t region_size = ParallelCompactData::RegionSize;
 290   typedef ParallelCompactData::RegionData RegionData;
 291   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 292   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 293   const RegionData* c = summary_data.region(end_region - 1);
 294   HeapWord* end_addr = c->destination() + c->data_size();
 295   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 296 
 297   // Print (and count) the full regions at the beginning of the space.
 298   size_t full_region_count = 0;
 299   size_t i = summary_data.addr_to_region_idx(space->bottom());
 300   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 301     print_initial_summary_region(i, summary_data.region(i));
 302     ++full_region_count;
 303     ++i;
 304   }
 305 
 306   size_t live_to_right = live_in_space - full_region_count * region_size;
 307 
 308   double max_reclaimed_ratio = 0.0;
 309   size_t max_reclaimed_ratio_region = 0;
 310   size_t max_dead_to_right = 0;
 311   size_t max_live_to_right = 0;
 312 
 313   // Print the 'reclaimed ratio' for regions while there is something live in
 314   // the region or to the right of it.  The remaining regions are empty (and
 315   // uninteresting), and computing the ratio will result in division by 0.
 316   while (i < end_region && live_to_right > 0) {
 317     c = summary_data.region(i);
 318     HeapWord* const region_addr = summary_data.region_to_addr(i);
 319     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 320     const size_t dead_to_right = used_to_right - live_to_right;
 321     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 322 
 323     if (reclaimed_ratio > max_reclaimed_ratio) {
 324             max_reclaimed_ratio = reclaimed_ratio;
 325             max_reclaimed_ratio_region = i;
 326             max_dead_to_right = dead_to_right;
 327             max_live_to_right = live_to_right;
 328     }
 329 
 330     print_initial_summary_region(i, c, false);
 331     tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 332                   reclaimed_ratio, dead_to_right, live_to_right);
 333 
 334     live_to_right -= c->data_size();
 335     ++i;
 336   }
 337 
 338   // Any remaining regions are empty.  Print one more if there is one.
 339   if (i < end_region) {
 340     print_initial_summary_region(i, summary_data.region(i));
 341   }
 342 
 343   tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
 344                 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 345                 max_reclaimed_ratio_region, max_dead_to_right,
 346                 max_live_to_right, max_reclaimed_ratio);
 347 }
 348 
 349 void
 350 print_initial_summary_data(ParallelCompactData& summary_data,
 351                            SpaceInfo* space_info) {
 352   unsigned int id = PSParallelCompact::old_space_id;
 353   const MutableSpace* space;
 354   do {
 355     space = space_info[id].space();
 356     print_initial_summary_data(summary_data, space);
 357   } while (++id < PSParallelCompact::eden_space_id);
 358 
 359   do {
 360     space = space_info[id].space();
 361     print_generic_summary_data(summary_data, space->bottom(), space->top());
 362   } while (++id < PSParallelCompact::last_space_id);
 363 }
 364 #endif  // #ifndef PRODUCT
 365 
 366 #ifdef  ASSERT
 367 size_t add_obj_count;
 368 size_t add_obj_size;
 369 size_t mark_bitmap_count;
 370 size_t mark_bitmap_size;
 371 #endif  // #ifdef ASSERT
 372 
 373 ParallelCompactData::ParallelCompactData()
 374 {
 375   _region_start = 0;
 376 
 377   _region_vspace = 0;
 378   _reserved_byte_size = 0;
 379   _region_data = 0;
 380   _region_count = 0;
 381 
 382   _block_vspace = 0;
 383   _block_data = 0;
 384   _block_count = 0;
 385 }
 386 
 387 bool ParallelCompactData::initialize(MemRegion covered_region)
 388 {
 389   _region_start = covered_region.start();
 390   const size_t region_size = covered_region.word_size();
 391   DEBUG_ONLY(_region_end = _region_start + region_size;)
 392 
 393   assert(region_align_down(_region_start) == _region_start,
 394          "region start not aligned");
 395   assert((region_size & RegionSizeOffsetMask) == 0,
 396          "region size not a multiple of RegionSize");
 397 
 398   bool result = initialize_region_data(region_size) && initialize_block_data();
 399   return result;
 400 }
 401 
 402 PSVirtualSpace*
 403 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 404 {
 405   const size_t raw_bytes = count * element_size;
 406   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 407   const size_t granularity = os::vm_allocation_granularity();
 408   _reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity));
 409 
 410   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
 411     MAX2(page_sz, granularity);
 412   ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
 413   os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
 414                        rs.size());
 415 
 416   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 417 
 418   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 419   if (vspace != 0) {
 420     if (vspace->expand_by(_reserved_byte_size)) {
 421       return vspace;
 422     }
 423     delete vspace;
 424     // Release memory reserved in the space.
 425     rs.release();
 426   }
 427 
 428   return 0;
 429 }
 430 
 431 bool ParallelCompactData::initialize_region_data(size_t region_size)
 432 {
 433   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
 434   _region_vspace = create_vspace(count, sizeof(RegionData));
 435   if (_region_vspace != 0) {
 436     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 437     _region_count = count;
 438     return true;
 439   }
 440   return false;
 441 }
 442 
 443 bool ParallelCompactData::initialize_block_data()
 444 {
 445   assert(_region_count != 0, "region data must be initialized first");
 446   const size_t count = _region_count << Log2BlocksPerRegion;
 447   _block_vspace = create_vspace(count, sizeof(BlockData));
 448   if (_block_vspace != 0) {
 449     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
 450     _block_count = count;
 451     return true;
 452   }
 453   return false;
 454 }
 455 
 456 void ParallelCompactData::clear()
 457 {
 458   memset(_region_data, 0, _region_vspace->committed_size());
 459   memset(_block_data, 0, _block_vspace->committed_size());
 460 }
 461 
 462 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 463   assert(beg_region <= _region_count, "beg_region out of range");
 464   assert(end_region <= _region_count, "end_region out of range");
 465   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
 466 
 467   const size_t region_cnt = end_region - beg_region;
 468   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 469 
 470   const size_t beg_block = beg_region * BlocksPerRegion;
 471   const size_t block_cnt = region_cnt * BlocksPerRegion;
 472   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
 473 }
 474 
 475 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 476 {
 477   const RegionData* cur_cp = region(region_idx);
 478   const RegionData* const end_cp = region(region_count() - 1);
 479 
 480   HeapWord* result = region_to_addr(region_idx);
 481   if (cur_cp < end_cp) {
 482     do {
 483       result += cur_cp->partial_obj_size();
 484     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 485   }
 486   return result;
 487 }
 488 
 489 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 490 {
 491   const size_t obj_ofs = pointer_delta(addr, _region_start);
 492   const size_t beg_region = obj_ofs >> Log2RegionSize;
 493   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 494 
 495   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
 496   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
 497 
 498   if (beg_region == end_region) {
 499     // All in one region.
 500     _region_data[beg_region].add_live_obj(len);
 501     return;
 502   }
 503 
 504   // First region.
 505   const size_t beg_ofs = region_offset(addr);
 506   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 507 
 508   Klass* klass = ((oop)addr)->klass();
 509   // Middle regions--completely spanned by this object.
 510   for (size_t region = beg_region + 1; region < end_region; ++region) {
 511     _region_data[region].set_partial_obj_size(RegionSize);
 512     _region_data[region].set_partial_obj_addr(addr);
 513   }
 514 
 515   // Last region.
 516   const size_t end_ofs = region_offset(addr + len - 1);
 517   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 518   _region_data[end_region].set_partial_obj_addr(addr);
 519 }
 520 
 521 void
 522 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 523 {
 524   assert(region_offset(beg) == 0, "not RegionSize aligned");
 525   assert(region_offset(end) == 0, "not RegionSize aligned");
 526 
 527   size_t cur_region = addr_to_region_idx(beg);
 528   const size_t end_region = addr_to_region_idx(end);
 529   HeapWord* addr = beg;
 530   while (cur_region < end_region) {
 531     _region_data[cur_region].set_destination(addr);
 532     _region_data[cur_region].set_destination_count(0);
 533     _region_data[cur_region].set_source_region(cur_region);
 534     _region_data[cur_region].set_data_location(addr);
 535 
 536     // Update live_obj_size so the region appears completely full.
 537     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 538     _region_data[cur_region].set_live_obj_size(live_size);
 539 
 540     ++cur_region;
 541     addr += RegionSize;
 542   }
 543 }
 544 
 545 // Find the point at which a space can be split and, if necessary, record the
 546 // split point.
 547 //
 548 // If the current src region (which overflowed the destination space) doesn't
 549 // have a partial object, the split point is at the beginning of the current src
 550 // region (an "easy" split, no extra bookkeeping required).
 551 //
 552 // If the current src region has a partial object, the split point is in the
 553 // region where that partial object starts (call it the split_region).  If
 554 // split_region has a partial object, then the split point is just after that
 555 // partial object (a "hard" split where we have to record the split data and
 556 // zero the partial_obj_size field).  With a "hard" split, we know that the
 557 // partial_obj ends within split_region because the partial object that caused
 558 // the overflow starts in split_region.  If split_region doesn't have a partial
 559 // obj, then the split is at the beginning of split_region (another "easy"
 560 // split).
 561 HeapWord*
 562 ParallelCompactData::summarize_split_space(size_t src_region,
 563                                            SplitInfo& split_info,
 564                                            HeapWord* destination,
 565                                            HeapWord* target_end,
 566                                            HeapWord** target_next)
 567 {
 568   assert(destination <= target_end, "sanity");
 569   assert(destination + _region_data[src_region].data_size() > target_end,
 570     "region should not fit into target space");
 571   assert(is_region_aligned(target_end), "sanity");
 572 
 573   size_t split_region = src_region;
 574   HeapWord* split_destination = destination;
 575   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 576 
 577   if (destination + partial_obj_size > target_end) {
 578     // The split point is just after the partial object (if any) in the
 579     // src_region that contains the start of the object that overflowed the
 580     // destination space.
 581     //
 582     // Find the start of the "overflow" object and set split_region to the
 583     // region containing it.
 584     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 585     split_region = addr_to_region_idx(overflow_obj);
 586 
 587     // Clear the source_region field of all destination regions whose first word
 588     // came from data after the split point (a non-null source_region field
 589     // implies a region must be filled).
 590     //
 591     // An alternative to the simple loop below:  clear during post_compact(),
 592     // which uses memcpy instead of individual stores, and is easy to
 593     // parallelize.  (The downside is that it clears the entire RegionData
 594     // object as opposed to just one field.)
 595     //
 596     // post_compact() would have to clear the summary data up to the highest
 597     // address that was written during the summary phase, which would be
 598     //
 599     //         max(top, max(new_top, clear_top))
 600     //
 601     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 602     // to target_end.
 603     const RegionData* const sr = region(split_region);
 604     const size_t beg_idx =
 605       addr_to_region_idx(region_align_up(sr->destination() +
 606                                          sr->partial_obj_size()));
 607     const size_t end_idx = addr_to_region_idx(target_end);
 608 
 609     if (TraceParallelOldGCSummaryPhase) {
 610         gclog_or_tty->print_cr("split:  clearing source_region field in ["
 611                                SIZE_FORMAT ", " SIZE_FORMAT ")",
 612                                beg_idx, end_idx);
 613     }
 614     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 615       _region_data[idx].set_source_region(0);
 616     }
 617 
 618     // Set split_destination and partial_obj_size to reflect the split region.
 619     split_destination = sr->destination();
 620     partial_obj_size = sr->partial_obj_size();
 621   }
 622 
 623   // The split is recorded only if a partial object extends onto the region.
 624   if (partial_obj_size != 0) {
 625     _region_data[split_region].set_partial_obj_size(0);
 626     split_info.record(split_region, partial_obj_size, split_destination);
 627   }
 628 
 629   // Setup the continuation addresses.
 630   *target_next = split_destination + partial_obj_size;
 631   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 632 
 633   if (TraceParallelOldGCSummaryPhase) {
 634     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 635     gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
 636                            " pos=" SIZE_FORMAT,
 637                            split_type, source_next, split_region,
 638                            partial_obj_size);
 639     gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
 640                            " tn=" PTR_FORMAT,
 641                            split_type, split_destination,
 642                            addr_to_region_idx(split_destination),
 643                            *target_next);
 644 
 645     if (partial_obj_size != 0) {
 646       HeapWord* const po_beg = split_info.destination();
 647       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 648       gclog_or_tty->print_cr("%s split:  "
 649                              "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
 650                              "po_end=" PTR_FORMAT " " SIZE_FORMAT,
 651                              split_type,
 652                              po_beg, addr_to_region_idx(po_beg),
 653                              po_end, addr_to_region_idx(po_end));
 654     }
 655   }
 656 
 657   return source_next;
 658 }
 659 
 660 bool ParallelCompactData::summarize(SplitInfo& split_info,
 661                                     HeapWord* source_beg, HeapWord* source_end,
 662                                     HeapWord** source_next,
 663                                     HeapWord* target_beg, HeapWord* target_end,
 664                                     HeapWord** target_next)
 665 {
 666   if (TraceParallelOldGCSummaryPhase) {
 667     HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
 668     tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 669                   "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 670                   source_beg, source_end, source_next_val,
 671                   target_beg, target_end, *target_next);
 672   }
 673 
 674   size_t cur_region = addr_to_region_idx(source_beg);
 675   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 676 
 677   HeapWord *dest_addr = target_beg;
 678   while (cur_region < end_region) {
 679     // The destination must be set even if the region has no data.
 680     _region_data[cur_region].set_destination(dest_addr);
 681 
 682     size_t words = _region_data[cur_region].data_size();
 683     if (words > 0) {
 684       // If cur_region does not fit entirely into the target space, find a point
 685       // at which the source space can be 'split' so that part is copied to the
 686       // target space and the rest is copied elsewhere.
 687       if (dest_addr + words > target_end) {
 688         assert(source_next != NULL, "source_next is NULL when splitting");
 689         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 690                                              target_end, target_next);
 691         return false;
 692       }
 693 
 694       // Compute the destination_count for cur_region, and if necessary, update
 695       // source_region for a destination region.  The source_region field is
 696       // updated if cur_region is the first (left-most) region to be copied to a
 697       // destination region.
 698       //
 699       // The destination_count calculation is a bit subtle.  A region that has
 700       // data that compacts into itself does not count itself as a destination.
 701       // This maintains the invariant that a zero count means the region is
 702       // available and can be claimed and then filled.
 703       uint destination_count = 0;
 704       if (split_info.is_split(cur_region)) {
 705         // The current region has been split:  the partial object will be copied
 706         // to one destination space and the remaining data will be copied to
 707         // another destination space.  Adjust the initial destination_count and,
 708         // if necessary, set the source_region field if the partial object will
 709         // cross a destination region boundary.
 710         destination_count = split_info.destination_count();
 711         if (destination_count == 2) {
 712           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 713           _region_data[dest_idx].set_source_region(cur_region);
 714         }
 715       }
 716 
 717       HeapWord* const last_addr = dest_addr + words - 1;
 718       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 719       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 720 
 721       // Initially assume that the destination regions will be the same and
 722       // adjust the value below if necessary.  Under this assumption, if
 723       // cur_region == dest_region_2, then cur_region will be compacted
 724       // completely into itself.
 725       destination_count += cur_region == dest_region_2 ? 0 : 1;
 726       if (dest_region_1 != dest_region_2) {
 727         // Destination regions differ; adjust destination_count.
 728         destination_count += 1;
 729         // Data from cur_region will be copied to the start of dest_region_2.
 730         _region_data[dest_region_2].set_source_region(cur_region);
 731       } else if (region_offset(dest_addr) == 0) {
 732         // Data from cur_region will be copied to the start of the destination
 733         // region.
 734         _region_data[dest_region_1].set_source_region(cur_region);
 735       }
 736 
 737       _region_data[cur_region].set_destination_count(destination_count);
 738       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 739       dest_addr += words;
 740     }
 741 
 742     ++cur_region;
 743   }
 744 
 745   *target_next = dest_addr;
 746   return true;
 747 }
 748 
 749 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
 750   assert(addr != NULL, "Should detect NULL oop earlier");
 751   assert(PSParallelCompact::gc_heap()->is_in(addr), "not in heap");
 752   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
 753 
 754   // Region covering the object.
 755   RegionData* const region_ptr = addr_to_region_ptr(addr);
 756   HeapWord* result = region_ptr->destination();
 757 
 758   // If the entire Region is live, the new location is region->destination + the
 759   // offset of the object within in the Region.
 760 
 761   // Run some performance tests to determine if this special case pays off.  It
 762   // is worth it for pointers into the dense prefix.  If the optimization to
 763   // avoid pointer updates in regions that only point to the dense prefix is
 764   // ever implemented, this should be revisited.
 765   if (region_ptr->data_size() == RegionSize) {
 766     result += region_offset(addr);
 767     return result;
 768   }
 769 
 770   // Otherwise, the new location is region->destination + block offset + the
 771   // number of live words in the Block that are (a) to the left of addr and (b)
 772   // due to objects that start in the Block.
 773 
 774   // Fill in the block table if necessary.  This is unsynchronized, so multiple
 775   // threads may fill the block table for a region (harmless, since it is
 776   // idempotent).
 777   if (!region_ptr->blocks_filled()) {
 778     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
 779     region_ptr->set_blocks_filled();
 780   }
 781 
 782   HeapWord* const search_start = block_align_down(addr);
 783   const size_t block_offset = addr_to_block_ptr(addr)->offset();
 784 
 785   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 786   const size_t live = bitmap->live_words_in_range(search_start, oop(addr));
 787   result += block_offset + live;
 788   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
 789   return result;
 790 }
 791 
 792 #ifdef ASSERT
 793 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 794 {
 795   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 796   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 797   for (const size_t* p = beg; p < end; ++p) {
 798     assert(*p == 0, "not zero");
 799   }
 800 }
 801 
 802 void ParallelCompactData::verify_clear()
 803 {
 804   verify_clear(_region_vspace);
 805   verify_clear(_block_vspace);
 806 }
 807 #endif  // #ifdef ASSERT
 808 
 809 STWGCTimer          PSParallelCompact::_gc_timer;
 810 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 811 elapsedTimer        PSParallelCompact::_accumulated_time;
 812 unsigned int        PSParallelCompact::_total_invocations = 0;
 813 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 814 jlong               PSParallelCompact::_time_of_last_gc = 0;
 815 CollectorCounters*  PSParallelCompact::_counters = NULL;
 816 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 817 ParallelCompactData PSParallelCompact::_summary_data;
 818 
 819 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 820 
 821 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 822 
 823 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
 824 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
 825 
 826 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure;
 827 PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
 828 
 829 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p); }
 830 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p); }
 831 
 832 void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
 833 
 834 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       {
 835   mark_and_push(_compaction_manager, p);
 836 }
 837 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
 838 
 839 void PSParallelCompact::FollowKlassClosure::do_klass(Klass* klass) {
 840   klass->oops_do(_mark_and_push_closure);
 841 }
 842 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
 843   klass->oops_do(&PSParallelCompact::_adjust_pointer_closure);
 844 }
 845 
 846 void PSParallelCompact::post_initialize() {
 847   ParallelScavengeHeap* heap = gc_heap();
 848   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 849 
 850   MemRegion mr = heap->reserved_region();
 851   _ref_processor =
 852     new ReferenceProcessor(mr,            // span
 853                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
 854                            (int) ParallelGCThreads, // mt processing degree
 855                            true,          // mt discovery
 856                            (int) ParallelGCThreads, // mt discovery degree
 857                            true,          // atomic_discovery
 858                            &_is_alive_closure); // non-header is alive closure
 859   _counters = new CollectorCounters("PSParallelCompact", 1);
 860 
 861   // Initialize static fields in ParCompactionManager.
 862   ParCompactionManager::initialize(mark_bitmap());
 863 }
 864 
 865 bool PSParallelCompact::initialize() {
 866   ParallelScavengeHeap* heap = gc_heap();
 867   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 868   MemRegion mr = heap->reserved_region();
 869 
 870   // Was the old gen get allocated successfully?
 871   if (!heap->old_gen()->is_allocated()) {
 872     return false;
 873   }
 874 
 875   initialize_space_info();
 876   initialize_dead_wood_limiter();
 877 
 878   if (!_mark_bitmap.initialize(mr)) {
 879     vm_shutdown_during_initialization(
 880       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
 881       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 882       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 883     return false;
 884   }
 885 
 886   if (!_summary_data.initialize(mr)) {
 887     vm_shutdown_during_initialization(
 888       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
 889       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 890       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 891     return false;
 892   }
 893 
 894   return true;
 895 }
 896 
 897 void PSParallelCompact::initialize_space_info()
 898 {
 899   memset(&_space_info, 0, sizeof(_space_info));
 900 
 901   ParallelScavengeHeap* heap = gc_heap();
 902   PSYoungGen* young_gen = heap->young_gen();
 903 
 904   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 905   _space_info[eden_space_id].set_space(young_gen->eden_space());
 906   _space_info[from_space_id].set_space(young_gen->from_space());
 907   _space_info[to_space_id].set_space(young_gen->to_space());
 908 
 909   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 910 }
 911 
 912 void PSParallelCompact::initialize_dead_wood_limiter()
 913 {
 914   const size_t max = 100;
 915   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 916   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 917   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 918   DEBUG_ONLY(_dwl_initialized = true;)
 919   _dwl_adjustment = normal_distribution(1.0);
 920 }
 921 
 922 // Simple class for storing info about the heap at the start of GC, to be used
 923 // after GC for comparison/printing.
 924 class PreGCValues {
 925 public:
 926   PreGCValues() { }
 927   PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
 928 
 929   void fill(ParallelScavengeHeap* heap) {
 930     _heap_used      = heap->used();
 931     _young_gen_used = heap->young_gen()->used_in_bytes();
 932     _old_gen_used   = heap->old_gen()->used_in_bytes();
 933     _metadata_used  = MetaspaceAux::used_bytes();
 934   };
 935 
 936   size_t heap_used() const      { return _heap_used; }
 937   size_t young_gen_used() const { return _young_gen_used; }
 938   size_t old_gen_used() const   { return _old_gen_used; }
 939   size_t metadata_used() const  { return _metadata_used; }
 940 
 941 private:
 942   size_t _heap_used;
 943   size_t _young_gen_used;
 944   size_t _old_gen_used;
 945   size_t _metadata_used;
 946 };
 947 
 948 void
 949 PSParallelCompact::clear_data_covering_space(SpaceId id)
 950 {
 951   // At this point, top is the value before GC, new_top() is the value that will
 952   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 953   // should be marked above top.  The summary data is cleared to the larger of
 954   // top & new_top.
 955   MutableSpace* const space = _space_info[id].space();
 956   HeapWord* const bot = space->bottom();
 957   HeapWord* const top = space->top();
 958   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 959 
 960   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 961   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
 962   _mark_bitmap.clear_range(beg_bit, end_bit);
 963 
 964   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 965   const size_t end_region =
 966     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 967   _summary_data.clear_range(beg_region, end_region);
 968 
 969   // Clear the data used to 'split' regions.
 970   SplitInfo& split_info = _space_info[id].split_info();
 971   if (split_info.is_valid()) {
 972     split_info.clear();
 973   }
 974   DEBUG_ONLY(split_info.verify_clear();)
 975 }
 976 
 977 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
 978 {
 979   // Update the from & to space pointers in space_info, since they are swapped
 980   // at each young gen gc.  Do the update unconditionally (even though a
 981   // promotion failure does not swap spaces) because an unknown number of minor
 982   // collections will have swapped the spaces an unknown number of times.
 983   GCTraceTime tm("pre compact", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
 984   ParallelScavengeHeap* heap = gc_heap();
 985   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 986   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 987 
 988   pre_gc_values->fill(heap);
 989 
 990   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
 991   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
 992 
 993   // Increment the invocation count
 994   heap->increment_total_collections(true);
 995 
 996   // We need to track unique mark sweep invocations as well.
 997   _total_invocations++;
 998 
 999   heap->print_heap_before_gc();
1000   heap->trace_heap_before_gc(&_gc_tracer);
1001 
1002   // Fill in TLABs
1003   heap->accumulate_statistics_all_tlabs();
1004   heap->ensure_parsability(true);  // retire TLABs
1005 
1006   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
1007     HandleMark hm;  // Discard invalid handles created during verification
1008     Universe::verify(" VerifyBeforeGC:");
1009   }
1010 
1011   // Verify object start arrays
1012   if (VerifyObjectStartArray &&
1013       VerifyBeforeGC) {
1014     heap->old_gen()->verify_object_start_array();
1015   }
1016 
1017   DEBUG_ONLY(mark_bitmap()->verify_clear();)
1018   DEBUG_ONLY(summary_data().verify_clear();)
1019 
1020   // Have worker threads release resources the next time they run a task.
1021   gc_task_manager()->release_all_resources();
1022 }
1023 
1024 void PSParallelCompact::post_compact()
1025 {
1026   GCTraceTime tm("post compact", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
1027 
1028   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1029     // Clear the marking bitmap, summary data and split info.
1030     clear_data_covering_space(SpaceId(id));
1031     // Update top().  Must be done after clearing the bitmap and summary data.
1032     _space_info[id].publish_new_top();
1033   }
1034 
1035   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1036   MutableSpace* const from_space = _space_info[from_space_id].space();
1037   MutableSpace* const to_space   = _space_info[to_space_id].space();
1038 
1039   ParallelScavengeHeap* heap = gc_heap();
1040   bool eden_empty = eden_space->is_empty();
1041   if (!eden_empty) {
1042     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1043                                             heap->young_gen(), heap->old_gen());
1044   }
1045 
1046   // Update heap occupancy information which is used as input to the soft ref
1047   // clearing policy at the next gc.
1048   Universe::update_heap_info_at_gc();
1049 
1050   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1051     to_space->is_empty();
1052 
1053   ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set());
1054   MemRegion old_mr = heap->old_gen()->reserved();
1055   if (young_gen_empty) {
1056     modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
1057   } else {
1058     modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1059   }
1060 
1061   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1062   ClassLoaderDataGraph::purge();
1063   MetaspaceAux::verify_metrics();
1064 
1065   CodeCache::gc_epilogue();
1066   JvmtiExport::gc_epilogue();
1067 
1068   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1069 
1070   ref_processor()->enqueue_discovered_references(NULL);
1071 
1072   if (ZapUnusedHeapArea) {
1073     heap->gen_mangle_unused_area();
1074   }
1075 
1076   // Update time of last GC
1077   reset_millis_since_last_gc();
1078 }
1079 
1080 HeapWord*
1081 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1082                                                     bool maximum_compaction)
1083 {
1084   const size_t region_size = ParallelCompactData::RegionSize;
1085   const ParallelCompactData& sd = summary_data();
1086 
1087   const MutableSpace* const space = _space_info[id].space();
1088   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1089   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1090   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1091 
1092   // Skip full regions at the beginning of the space--they are necessarily part
1093   // of the dense prefix.
1094   size_t full_count = 0;
1095   const RegionData* cp;
1096   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1097     ++full_count;
1098   }
1099 
1100   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1101   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1102   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1103   if (maximum_compaction || cp == end_cp || interval_ended) {
1104     _maximum_compaction_gc_num = total_invocations();
1105     return sd.region_to_addr(cp);
1106   }
1107 
1108   HeapWord* const new_top = _space_info[id].new_top();
1109   const size_t space_live = pointer_delta(new_top, space->bottom());
1110   const size_t space_used = space->used_in_words();
1111   const size_t space_capacity = space->capacity_in_words();
1112 
1113   const double cur_density = double(space_live) / space_capacity;
1114   const double deadwood_density =
1115     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1116   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1117 
1118   if (TraceParallelOldGCDensePrefix) {
1119     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1120                   cur_density, deadwood_density, deadwood_goal);
1121     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1122                   "space_cap=" SIZE_FORMAT,
1123                   space_live, space_used,
1124                   space_capacity);
1125   }
1126 
1127   // XXX - Use binary search?
1128   HeapWord* dense_prefix = sd.region_to_addr(cp);
1129   const RegionData* full_cp = cp;
1130   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1131   while (cp < end_cp) {
1132     HeapWord* region_destination = cp->destination();
1133     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1134     if (TraceParallelOldGCDensePrefix && Verbose) {
1135       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1136                     "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
1137                     sd.region(cp), region_destination,
1138                     dense_prefix, cur_deadwood);
1139     }
1140 
1141     if (cur_deadwood >= deadwood_goal) {
1142       // Found the region that has the correct amount of deadwood to the left.
1143       // This typically occurs after crossing a fairly sparse set of regions, so
1144       // iterate backwards over those sparse regions, looking for the region
1145       // that has the lowest density of live objects 'to the right.'
1146       size_t space_to_left = sd.region(cp) * region_size;
1147       size_t live_to_left = space_to_left - cur_deadwood;
1148       size_t space_to_right = space_capacity - space_to_left;
1149       size_t live_to_right = space_live - live_to_left;
1150       double density_to_right = double(live_to_right) / space_to_right;
1151       while (cp > full_cp) {
1152         --cp;
1153         const size_t prev_region_live_to_right = live_to_right -
1154           cp->data_size();
1155         const size_t prev_region_space_to_right = space_to_right + region_size;
1156         double prev_region_density_to_right =
1157           double(prev_region_live_to_right) / prev_region_space_to_right;
1158         if (density_to_right <= prev_region_density_to_right) {
1159           return dense_prefix;
1160         }
1161         if (TraceParallelOldGCDensePrefix && Verbose) {
1162           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1163                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1164                         prev_region_density_to_right);
1165         }
1166         dense_prefix -= region_size;
1167         live_to_right = prev_region_live_to_right;
1168         space_to_right = prev_region_space_to_right;
1169         density_to_right = prev_region_density_to_right;
1170       }
1171       return dense_prefix;
1172     }
1173 
1174     dense_prefix += region_size;
1175     ++cp;
1176   }
1177 
1178   return dense_prefix;
1179 }
1180 
1181 #ifndef PRODUCT
1182 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1183                                                  const SpaceId id,
1184                                                  const bool maximum_compaction,
1185                                                  HeapWord* const addr)
1186 {
1187   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1188   RegionData* const cp = summary_data().region(region_idx);
1189   const MutableSpace* const space = _space_info[id].space();
1190   HeapWord* const new_top = _space_info[id].new_top();
1191 
1192   const size_t space_live = pointer_delta(new_top, space->bottom());
1193   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1194   const size_t space_cap = space->capacity_in_words();
1195   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1196   const size_t live_to_right = new_top - cp->destination();
1197   const size_t dead_to_right = space->top() - addr - live_to_right;
1198 
1199   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1200                 "spl=" SIZE_FORMAT " "
1201                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1202                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1203                 " ratio=%10.8f",
1204                 algorithm, addr, region_idx,
1205                 space_live,
1206                 dead_to_left, dead_to_left_pct,
1207                 dead_to_right, live_to_right,
1208                 double(dead_to_right) / live_to_right);
1209 }
1210 #endif  // #ifndef PRODUCT
1211 
1212 // Return a fraction indicating how much of the generation can be treated as
1213 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1214 // based on the density of live objects in the generation to determine a limit,
1215 // which is then adjusted so the return value is min_percent when the density is
1216 // 1.
1217 //
1218 // The following table shows some return values for a different values of the
1219 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1220 // min_percent is 1.
1221 //
1222 //                          fraction allowed as dead wood
1223 //         -----------------------------------------------------------------
1224 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1225 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1226 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1227 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1228 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1229 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1230 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1231 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1232 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1233 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1234 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1235 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1236 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1237 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1238 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1239 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1240 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1241 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1242 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1243 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1244 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1245 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1246 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1247 
1248 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1249 {
1250   assert(_dwl_initialized, "uninitialized");
1251 
1252   // The raw limit is the value of the normal distribution at x = density.
1253   const double raw_limit = normal_distribution(density);
1254 
1255   // Adjust the raw limit so it becomes the minimum when the density is 1.
1256   //
1257   // First subtract the adjustment value (which is simply the precomputed value
1258   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1259   // Then add the minimum value, so the minimum is returned when the density is
1260   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1261   const double min = double(min_percent) / 100.0;
1262   const double limit = raw_limit - _dwl_adjustment + min;
1263   return MAX2(limit, 0.0);
1264 }
1265 
1266 ParallelCompactData::RegionData*
1267 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1268                                            const RegionData* end)
1269 {
1270   const size_t region_size = ParallelCompactData::RegionSize;
1271   ParallelCompactData& sd = summary_data();
1272   size_t left = sd.region(beg);
1273   size_t right = end > beg ? sd.region(end) - 1 : left;
1274 
1275   // Binary search.
1276   while (left < right) {
1277     // Equivalent to (left + right) / 2, but does not overflow.
1278     const size_t middle = left + (right - left) / 2;
1279     RegionData* const middle_ptr = sd.region(middle);
1280     HeapWord* const dest = middle_ptr->destination();
1281     HeapWord* const addr = sd.region_to_addr(middle);
1282     assert(dest != NULL, "sanity");
1283     assert(dest <= addr, "must move left");
1284 
1285     if (middle > left && dest < addr) {
1286       right = middle - 1;
1287     } else if (middle < right && middle_ptr->data_size() == region_size) {
1288       left = middle + 1;
1289     } else {
1290       return middle_ptr;
1291     }
1292   }
1293   return sd.region(left);
1294 }
1295 
1296 ParallelCompactData::RegionData*
1297 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1298                                           const RegionData* end,
1299                                           size_t dead_words)
1300 {
1301   ParallelCompactData& sd = summary_data();
1302   size_t left = sd.region(beg);
1303   size_t right = end > beg ? sd.region(end) - 1 : left;
1304 
1305   // Binary search.
1306   while (left < right) {
1307     // Equivalent to (left + right) / 2, but does not overflow.
1308     const size_t middle = left + (right - left) / 2;
1309     RegionData* const middle_ptr = sd.region(middle);
1310     HeapWord* const dest = middle_ptr->destination();
1311     HeapWord* const addr = sd.region_to_addr(middle);
1312     assert(dest != NULL, "sanity");
1313     assert(dest <= addr, "must move left");
1314 
1315     const size_t dead_to_left = pointer_delta(addr, dest);
1316     if (middle > left && dead_to_left > dead_words) {
1317       right = middle - 1;
1318     } else if (middle < right && dead_to_left < dead_words) {
1319       left = middle + 1;
1320     } else {
1321       return middle_ptr;
1322     }
1323   }
1324   return sd.region(left);
1325 }
1326 
1327 // The result is valid during the summary phase, after the initial summarization
1328 // of each space into itself, and before final summarization.
1329 inline double
1330 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1331                                    HeapWord* const bottom,
1332                                    HeapWord* const top,
1333                                    HeapWord* const new_top)
1334 {
1335   ParallelCompactData& sd = summary_data();
1336 
1337   assert(cp != NULL, "sanity");
1338   assert(bottom != NULL, "sanity");
1339   assert(top != NULL, "sanity");
1340   assert(new_top != NULL, "sanity");
1341   assert(top >= new_top, "summary data problem?");
1342   assert(new_top > bottom, "space is empty; should not be here");
1343   assert(new_top >= cp->destination(), "sanity");
1344   assert(top >= sd.region_to_addr(cp), "sanity");
1345 
1346   HeapWord* const destination = cp->destination();
1347   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1348   const size_t compacted_region_live = pointer_delta(new_top, destination);
1349   const size_t compacted_region_used = pointer_delta(top,
1350                                                      sd.region_to_addr(cp));
1351   const size_t reclaimable = compacted_region_used - compacted_region_live;
1352 
1353   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1354   return double(reclaimable) / divisor;
1355 }
1356 
1357 // Return the address of the end of the dense prefix, a.k.a. the start of the
1358 // compacted region.  The address is always on a region boundary.
1359 //
1360 // Completely full regions at the left are skipped, since no compaction can
1361 // occur in those regions.  Then the maximum amount of dead wood to allow is
1362 // computed, based on the density (amount live / capacity) of the generation;
1363 // the region with approximately that amount of dead space to the left is
1364 // identified as the limit region.  Regions between the last completely full
1365 // region and the limit region are scanned and the one that has the best
1366 // (maximum) reclaimed_ratio() is selected.
1367 HeapWord*
1368 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1369                                         bool maximum_compaction)
1370 {
1371   if (ParallelOldGCSplitALot) {
1372     if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
1373       // The value was chosen to provoke splitting a young gen space; use it.
1374       return _space_info[id].dense_prefix();
1375     }
1376   }
1377 
1378   const size_t region_size = ParallelCompactData::RegionSize;
1379   const ParallelCompactData& sd = summary_data();
1380 
1381   const MutableSpace* const space = _space_info[id].space();
1382   HeapWord* const top = space->top();
1383   HeapWord* const top_aligned_up = sd.region_align_up(top);
1384   HeapWord* const new_top = _space_info[id].new_top();
1385   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1386   HeapWord* const bottom = space->bottom();
1387   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1388   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1389   const RegionData* const new_top_cp =
1390     sd.addr_to_region_ptr(new_top_aligned_up);
1391 
1392   // Skip full regions at the beginning of the space--they are necessarily part
1393   // of the dense prefix.
1394   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1395   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1396          space->is_empty(), "no dead space allowed to the left");
1397   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1398          "region must have dead space");
1399 
1400   // The gc number is saved whenever a maximum compaction is done, and used to
1401   // determine when the maximum compaction interval has expired.  This avoids
1402   // successive max compactions for different reasons.
1403   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1404   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1405   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1406     total_invocations() == HeapFirstMaximumCompactionCount;
1407   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1408     _maximum_compaction_gc_num = total_invocations();
1409     return sd.region_to_addr(full_cp);
1410   }
1411 
1412   const size_t space_live = pointer_delta(new_top, bottom);
1413   const size_t space_used = space->used_in_words();
1414   const size_t space_capacity = space->capacity_in_words();
1415 
1416   const double density = double(space_live) / double(space_capacity);
1417   const size_t min_percent_free = MarkSweepDeadRatio;
1418   const double limiter = dead_wood_limiter(density, min_percent_free);
1419   const size_t dead_wood_max = space_used - space_live;
1420   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1421                                       dead_wood_max);
1422 
1423   if (TraceParallelOldGCDensePrefix) {
1424     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1425                   "space_cap=" SIZE_FORMAT,
1426                   space_live, space_used,
1427                   space_capacity);
1428     tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1429                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1430                   density, min_percent_free, limiter,
1431                   dead_wood_max, dead_wood_limit);
1432   }
1433 
1434   // Locate the region with the desired amount of dead space to the left.
1435   const RegionData* const limit_cp =
1436     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1437 
1438   // Scan from the first region with dead space to the limit region and find the
1439   // one with the best (largest) reclaimed ratio.
1440   double best_ratio = 0.0;
1441   const RegionData* best_cp = full_cp;
1442   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1443     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1444     if (tmp_ratio > best_ratio) {
1445       best_cp = cp;
1446       best_ratio = tmp_ratio;
1447     }
1448   }
1449 
1450 #if     0
1451   // Something to consider:  if the region with the best ratio is 'close to' the
1452   // first region w/free space, choose the first region with free space
1453   // ("first-free").  The first-free region is usually near the start of the
1454   // heap, which means we are copying most of the heap already, so copy a bit
1455   // more to get complete compaction.
1456   if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
1457     _maximum_compaction_gc_num = total_invocations();
1458     best_cp = full_cp;
1459   }
1460 #endif  // #if 0
1461 
1462   return sd.region_to_addr(best_cp);
1463 }
1464 
1465 #ifndef PRODUCT
1466 void
1467 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
1468                                           size_t words)
1469 {
1470   if (TraceParallelOldGCSummaryPhase) {
1471     tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
1472                   SIZE_FORMAT, start, start + words, words);
1473   }
1474 
1475   ObjectStartArray* const start_array = _space_info[id].start_array();
1476   CollectedHeap::fill_with_objects(start, words);
1477   for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
1478     _mark_bitmap.mark_obj(p, words);
1479     _summary_data.add_obj(p, words);
1480     start_array->allocate_block(p);
1481   }
1482 }
1483 
1484 void
1485 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
1486 {
1487   ParallelCompactData& sd = summary_data();
1488   MutableSpace* space = _space_info[id].space();
1489 
1490   // Find the source and destination start addresses.
1491   HeapWord* const src_addr = sd.region_align_down(start);
1492   HeapWord* dst_addr;
1493   if (src_addr < start) {
1494     dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
1495   } else if (src_addr > space->bottom()) {
1496     // The start (the original top() value) is aligned to a region boundary so
1497     // the associated region does not have a destination.  Compute the
1498     // destination from the previous region.
1499     RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
1500     dst_addr = cp->destination() + cp->data_size();
1501   } else {
1502     // Filling the entire space.
1503     dst_addr = space->bottom();
1504   }
1505   assert(dst_addr != NULL, "sanity");
1506 
1507   // Update the summary data.
1508   bool result = _summary_data.summarize(_space_info[id].split_info(),
1509                                         src_addr, space->top(), NULL,
1510                                         dst_addr, space->end(),
1511                                         _space_info[id].new_top_addr());
1512   assert(result, "should not fail:  bad filler object size");
1513 }
1514 
1515 void
1516 PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
1517 {
1518   if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
1519     return;
1520   }
1521 
1522   MutableSpace* const space = _space_info[id].space();
1523   if (space->is_empty()) {
1524     HeapWord* b = space->bottom();
1525     HeapWord* t = b + space->capacity_in_words() / 2;
1526     space->set_top(t);
1527     if (ZapUnusedHeapArea) {
1528       space->set_top_for_allocations();
1529     }
1530 
1531     size_t min_size = CollectedHeap::min_fill_size();
1532     size_t obj_len = min_size;
1533     while (b + obj_len <= t) {
1534       CollectedHeap::fill_with_object(b, obj_len);
1535       mark_bitmap()->mark_obj(b, obj_len);
1536       summary_data().add_obj(b, obj_len);
1537       b += obj_len;
1538       obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
1539     }
1540     if (b < t) {
1541       // The loop didn't completely fill to t (top); adjust top downward.
1542       space->set_top(b);
1543       if (ZapUnusedHeapArea) {
1544         space->set_top_for_allocations();
1545       }
1546     }
1547 
1548     HeapWord** nta = _space_info[id].new_top_addr();
1549     bool result = summary_data().summarize(_space_info[id].split_info(),
1550                                            space->bottom(), space->top(), NULL,
1551                                            space->bottom(), space->end(), nta);
1552     assert(result, "space must fit into itself");
1553   }
1554 }
1555 
1556 void
1557 PSParallelCompact::provoke_split(bool & max_compaction)
1558 {
1559   if (total_invocations() % ParallelOldGCSplitInterval != 0) {
1560     return;
1561   }
1562 
1563   const size_t region_size = ParallelCompactData::RegionSize;
1564   ParallelCompactData& sd = summary_data();
1565 
1566   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1567   MutableSpace* const from_space = _space_info[from_space_id].space();
1568   const size_t eden_live = pointer_delta(eden_space->top(),
1569                                          _space_info[eden_space_id].new_top());
1570   const size_t from_live = pointer_delta(from_space->top(),
1571                                          _space_info[from_space_id].new_top());
1572 
1573   const size_t min_fill_size = CollectedHeap::min_fill_size();
1574   const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
1575   const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
1576   const size_t from_free = pointer_delta(from_space->end(), from_space->top());
1577   const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
1578 
1579   // Choose the space to split; need at least 2 regions live (or fillable).
1580   SpaceId id;
1581   MutableSpace* space;
1582   size_t live_words;
1583   size_t fill_words;
1584   if (eden_live + eden_fillable >= region_size * 2) {
1585     id = eden_space_id;
1586     space = eden_space;
1587     live_words = eden_live;
1588     fill_words = eden_fillable;
1589   } else if (from_live + from_fillable >= region_size * 2) {
1590     id = from_space_id;
1591     space = from_space;
1592     live_words = from_live;
1593     fill_words = from_fillable;
1594   } else {
1595     return; // Give up.
1596   }
1597   assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
1598 
1599   if (live_words < region_size * 2) {
1600     // Fill from top() to end() w/live objects of mixed sizes.
1601     HeapWord* const fill_start = space->top();
1602     live_words += fill_words;
1603 
1604     space->set_top(fill_start + fill_words);
1605     if (ZapUnusedHeapArea) {
1606       space->set_top_for_allocations();
1607     }
1608 
1609     HeapWord* cur_addr = fill_start;
1610     while (fill_words > 0) {
1611       const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
1612       size_t cur_size = MIN2(align_object_size_(r), fill_words);
1613       if (fill_words - cur_size < min_fill_size) {
1614         cur_size = fill_words; // Avoid leaving a fragment too small to fill.
1615       }
1616 
1617       CollectedHeap::fill_with_object(cur_addr, cur_size);
1618       mark_bitmap()->mark_obj(cur_addr, cur_size);
1619       sd.add_obj(cur_addr, cur_size);
1620 
1621       cur_addr += cur_size;
1622       fill_words -= cur_size;
1623     }
1624 
1625     summarize_new_objects(id, fill_start);
1626   }
1627 
1628   max_compaction = false;
1629 
1630   // Manipulate the old gen so that it has room for about half of the live data
1631   // in the target young gen space (live_words / 2).
1632   id = old_space_id;
1633   space = _space_info[id].space();
1634   const size_t free_at_end = space->free_in_words();
1635   const size_t free_target = align_object_size(live_words / 2);
1636   const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
1637 
1638   if (free_at_end >= free_target + min_fill_size) {
1639     // Fill space above top() and set the dense prefix so everything survives.
1640     HeapWord* const fill_start = space->top();
1641     const size_t fill_size = free_at_end - free_target;
1642     space->set_top(space->top() + fill_size);
1643     if (ZapUnusedHeapArea) {
1644       space->set_top_for_allocations();
1645     }
1646     fill_with_live_objects(id, fill_start, fill_size);
1647     summarize_new_objects(id, fill_start);
1648     _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
1649   } else if (dead + free_at_end > free_target) {
1650     // Find a dense prefix that makes the right amount of space available.
1651     HeapWord* cur = sd.region_align_down(space->top());
1652     HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
1653     size_t dead_to_right = pointer_delta(space->end(), cur_destination);
1654     while (dead_to_right < free_target) {
1655       cur -= region_size;
1656       cur_destination = sd.addr_to_region_ptr(cur)->destination();
1657       dead_to_right = pointer_delta(space->end(), cur_destination);
1658     }
1659     _space_info[id].set_dense_prefix(cur);
1660   }
1661 }
1662 #endif // #ifndef PRODUCT
1663 
1664 void PSParallelCompact::summarize_spaces_quick()
1665 {
1666   for (unsigned int i = 0; i < last_space_id; ++i) {
1667     const MutableSpace* space = _space_info[i].space();
1668     HeapWord** nta = _space_info[i].new_top_addr();
1669     bool result = _summary_data.summarize(_space_info[i].split_info(),
1670                                           space->bottom(), space->top(), NULL,
1671                                           space->bottom(), space->end(), nta);
1672     assert(result, "space must fit into itself");
1673     _space_info[i].set_dense_prefix(space->bottom());
1674   }
1675 
1676 #ifndef PRODUCT
1677   if (ParallelOldGCSplitALot) {
1678     provoke_split_fill_survivor(to_space_id);
1679   }
1680 #endif // #ifndef PRODUCT
1681 }
1682 
1683 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1684 {
1685   HeapWord* const dense_prefix_end = dense_prefix(id);
1686   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1687   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1688   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1689     // Only enough dead space is filled so that any remaining dead space to the
1690     // left is larger than the minimum filler object.  (The remainder is filled
1691     // during the copy/update phase.)
1692     //
1693     // The size of the dead space to the right of the boundary is not a
1694     // concern, since compaction will be able to use whatever space is
1695     // available.
1696     //
1697     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1698     // surrounds the space to be filled with an object.
1699     //
1700     // In the 32-bit VM, each bit represents two 32-bit words:
1701     //                              +---+
1702     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1703     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1704     //                              +---+
1705     //
1706     // In the 64-bit VM, each bit represents one 64-bit word:
1707     //                              +------------+
1708     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1709     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1710     //                              +------------+
1711     //                          +-------+
1712     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1713     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1714     //                          +-------+
1715     //                      +-----------+
1716     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1717     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1718     //                      +-----------+
1719     //                          +-------+
1720     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1721     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1722     //                          +-------+
1723 
1724     // Initially assume case a, c or e will apply.
1725     size_t obj_len = CollectedHeap::min_fill_size();
1726     HeapWord* obj_beg = dense_prefix_end - obj_len;
1727 
1728 #ifdef  _LP64
1729     if (MinObjAlignment > 1) { // object alignment > heap word size
1730       // Cases a, c or e.
1731     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1732       // Case b above.
1733       obj_beg = dense_prefix_end - 1;
1734     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1735                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1736       // Case d above.
1737       obj_beg = dense_prefix_end - 3;
1738       obj_len = 3;
1739     }
1740 #endif  // #ifdef _LP64
1741 
1742     CollectedHeap::fill_with_object(obj_beg, obj_len);
1743     _mark_bitmap.mark_obj(obj_beg, obj_len);
1744     _summary_data.add_obj(obj_beg, obj_len);
1745     assert(start_array(id) != NULL, "sanity");
1746     start_array(id)->allocate_block(obj_beg);
1747   }
1748 }
1749 
1750 void
1751 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
1752 {
1753   RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
1754   HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
1755   RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
1756   for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
1757     cur->set_source_region(0);
1758   }
1759 }
1760 
1761 void
1762 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1763 {
1764   assert(id < last_space_id, "id out of range");
1765   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
1766          ParallelOldGCSplitALot && id == old_space_id,
1767          "should have been reset in summarize_spaces_quick()");
1768 
1769   const MutableSpace* space = _space_info[id].space();
1770   if (_space_info[id].new_top() != space->bottom()) {
1771     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1772     _space_info[id].set_dense_prefix(dense_prefix_end);
1773 
1774 #ifndef PRODUCT
1775     if (TraceParallelOldGCDensePrefix) {
1776       print_dense_prefix_stats("ratio", id, maximum_compaction,
1777                                dense_prefix_end);
1778       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1779       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1780     }
1781 #endif  // #ifndef PRODUCT
1782 
1783     // Recompute the summary data, taking into account the dense prefix.  If
1784     // every last byte will be reclaimed, then the existing summary data which
1785     // compacts everything can be left in place.
1786     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1787       // If dead space crosses the dense prefix boundary, it is (at least
1788       // partially) filled with a dummy object, marked live and added to the
1789       // summary data.  This simplifies the copy/update phase and must be done
1790       // before the final locations of objects are determined, to prevent
1791       // leaving a fragment of dead space that is too small to fill.
1792       fill_dense_prefix_end(id);
1793 
1794       // Compute the destination of each Region, and thus each object.
1795       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1796       _summary_data.summarize(_space_info[id].split_info(),
1797                               dense_prefix_end, space->top(), NULL,
1798                               dense_prefix_end, space->end(),
1799                               _space_info[id].new_top_addr());
1800     }
1801   }
1802 
1803   if (TraceParallelOldGCSummaryPhase) {
1804     const size_t region_size = ParallelCompactData::RegionSize;
1805     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1806     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1807     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1808     HeapWord* const new_top = _space_info[id].new_top();
1809     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1810     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1811     tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1812                   "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1813                   "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1814                   id, space->capacity_in_words(), dense_prefix_end,
1815                   dp_region, dp_words / region_size,
1816                   cr_words / region_size, new_top);
1817   }
1818 }
1819 
1820 #ifndef PRODUCT
1821 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1822                                           HeapWord* dst_beg, HeapWord* dst_end,
1823                                           SpaceId src_space_id,
1824                                           HeapWord* src_beg, HeapWord* src_end)
1825 {
1826   if (TraceParallelOldGCSummaryPhase) {
1827     tty->print_cr("summarizing %d [%s] into %d [%s]:  "
1828                   "src=" PTR_FORMAT "-" PTR_FORMAT " "
1829                   SIZE_FORMAT "-" SIZE_FORMAT " "
1830                   "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1831                   SIZE_FORMAT "-" SIZE_FORMAT,
1832                   src_space_id, space_names[src_space_id],
1833                   dst_space_id, space_names[dst_space_id],
1834                   src_beg, src_end,
1835                   _summary_data.addr_to_region_idx(src_beg),
1836                   _summary_data.addr_to_region_idx(src_end),
1837                   dst_beg, dst_end,
1838                   _summary_data.addr_to_region_idx(dst_beg),
1839                   _summary_data.addr_to_region_idx(dst_end));
1840   }
1841 }
1842 #endif  // #ifndef PRODUCT
1843 
1844 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1845                                       bool maximum_compaction)
1846 {
1847   GCTraceTime tm("summary phase", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
1848   // trace("2");
1849 
1850 #ifdef  ASSERT
1851   if (TraceParallelOldGCMarkingPhase) {
1852     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1853                   "add_obj_bytes=" SIZE_FORMAT,
1854                   add_obj_count, add_obj_size * HeapWordSize);
1855     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1856                   "mark_bitmap_bytes=" SIZE_FORMAT,
1857                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1858   }
1859 #endif  // #ifdef ASSERT
1860 
1861   // Quick summarization of each space into itself, to see how much is live.
1862   summarize_spaces_quick();
1863 
1864   if (TraceParallelOldGCSummaryPhase) {
1865     tty->print_cr("summary_phase:  after summarizing each space to self");
1866     Universe::print();
1867     NOT_PRODUCT(print_region_ranges());
1868     if (Verbose) {
1869       NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1870     }
1871   }
1872 
1873   // The amount of live data that will end up in old space (assuming it fits).
1874   size_t old_space_total_live = 0;
1875   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1876     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1877                                           _space_info[id].space()->bottom());
1878   }
1879 
1880   MutableSpace* const old_space = _space_info[old_space_id].space();
1881   const size_t old_capacity = old_space->capacity_in_words();
1882   if (old_space_total_live > old_capacity) {
1883     // XXX - should also try to expand
1884     maximum_compaction = true;
1885   }
1886 #ifndef PRODUCT
1887   if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
1888     provoke_split(maximum_compaction);
1889   }
1890 #endif // #ifndef PRODUCT
1891 
1892   // Old generations.
1893   summarize_space(old_space_id, maximum_compaction);
1894 
1895   // Summarize the remaining spaces in the young gen.  The initial target space
1896   // is the old gen.  If a space does not fit entirely into the target, then the
1897   // remainder is compacted into the space itself and that space becomes the new
1898   // target.
1899   SpaceId dst_space_id = old_space_id;
1900   HeapWord* dst_space_end = old_space->end();
1901   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1902   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1903     const MutableSpace* space = _space_info[id].space();
1904     const size_t live = pointer_delta(_space_info[id].new_top(),
1905                                       space->bottom());
1906     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1907 
1908     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1909                                   SpaceId(id), space->bottom(), space->top());)
1910     if (live > 0 && live <= available) {
1911       // All the live data will fit.
1912       bool done = _summary_data.summarize(_space_info[id].split_info(),
1913                                           space->bottom(), space->top(),
1914                                           NULL,
1915                                           *new_top_addr, dst_space_end,
1916                                           new_top_addr);
1917       assert(done, "space must fit into old gen");
1918 
1919       // Reset the new_top value for the space.
1920       _space_info[id].set_new_top(space->bottom());
1921     } else if (live > 0) {
1922       // Attempt to fit part of the source space into the target space.
1923       HeapWord* next_src_addr = NULL;
1924       bool done = _summary_data.summarize(_space_info[id].split_info(),
1925                                           space->bottom(), space->top(),
1926                                           &next_src_addr,
1927                                           *new_top_addr, dst_space_end,
1928                                           new_top_addr);
1929       assert(!done, "space should not fit into old gen");
1930       assert(next_src_addr != NULL, "sanity");
1931 
1932       // The source space becomes the new target, so the remainder is compacted
1933       // within the space itself.
1934       dst_space_id = SpaceId(id);
1935       dst_space_end = space->end();
1936       new_top_addr = _space_info[id].new_top_addr();
1937       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1938                                     space->bottom(), dst_space_end,
1939                                     SpaceId(id), next_src_addr, space->top());)
1940       done = _summary_data.summarize(_space_info[id].split_info(),
1941                                      next_src_addr, space->top(),
1942                                      NULL,
1943                                      space->bottom(), dst_space_end,
1944                                      new_top_addr);
1945       assert(done, "space must fit when compacted into itself");
1946       assert(*new_top_addr <= space->top(), "usage should not grow");
1947     }
1948   }
1949 
1950   if (TraceParallelOldGCSummaryPhase) {
1951     tty->print_cr("summary_phase:  after final summarization");
1952     Universe::print();
1953     NOT_PRODUCT(print_region_ranges());
1954     if (Verbose) {
1955       NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
1956     }
1957   }
1958 }
1959 
1960 // This method should contain all heap-specific policy for invoking a full
1961 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1962 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1963 // before full gc, or any other specialized behavior, it needs to be added here.
1964 //
1965 // Note that this method should only be called from the vm_thread while at a
1966 // safepoint.
1967 //
1968 // Note that the all_soft_refs_clear flag in the collector policy
1969 // may be true because this method can be called without intervening
1970 // activity.  For example when the heap space is tight and full measure
1971 // are being taken to free space.
1972 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1973   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1974   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1975          "should be in vm thread");
1976 
1977   ParallelScavengeHeap* heap = gc_heap();
1978   GCCause::Cause gc_cause = heap->gc_cause();
1979   assert(!heap->is_gc_active(), "not reentrant");
1980 
1981   PSAdaptiveSizePolicy* policy = heap->size_policy();
1982   IsGCActiveMark mark;
1983 
1984   if (ScavengeBeforeFullGC) {
1985     PSScavenge::invoke_no_policy();
1986   }
1987 
1988   const bool clear_all_soft_refs =
1989     heap->collector_policy()->should_clear_all_soft_refs();
1990 
1991   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1992                                       maximum_heap_compaction);
1993 }
1994 
1995 // This method contains no policy. You should probably
1996 // be calling invoke() instead.
1997 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1998   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1999   assert(ref_processor() != NULL, "Sanity");
2000 
2001   if (GC_locker::check_active_before_gc()) {
2002     return false;
2003   }
2004 
2005   ParallelScavengeHeap* heap = gc_heap();
2006 
2007   _gc_timer.register_gc_start();
2008   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
2009 
2010   TimeStamp marking_start;
2011   TimeStamp compaction_start;
2012   TimeStamp collection_exit;
2013 
2014   GCCause::Cause gc_cause = heap->gc_cause();
2015   PSYoungGen* young_gen = heap->young_gen();
2016   PSOldGen* old_gen = heap->old_gen();
2017   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
2018 
2019   // The scope of casr should end after code that can change
2020   // CollectorPolicy::_should_clear_all_soft_refs.
2021   ClearedAllSoftRefs casr(maximum_heap_compaction,
2022                           heap->collector_policy());
2023 
2024   if (ZapUnusedHeapArea) {
2025     // Save information needed to minimize mangling
2026     heap->record_gen_tops_before_GC();
2027   }
2028 
2029   heap->pre_full_gc_dump(&_gc_timer);
2030 
2031   _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
2032 
2033   // Make sure data structures are sane, make the heap parsable, and do other
2034   // miscellaneous bookkeeping.
2035   PreGCValues pre_gc_values;
2036   pre_compact(&pre_gc_values);
2037 
2038   // Get the compaction manager reserved for the VM thread.
2039   ParCompactionManager* const vmthread_cm =
2040     ParCompactionManager::manager_array(gc_task_manager()->workers());
2041 
2042   // Place after pre_compact() where the number of invocations is incremented.
2043   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
2044 
2045   {
2046     ResourceMark rm;
2047     HandleMark hm;
2048 
2049     // Set the number of GC threads to be used in this collection
2050     gc_task_manager()->set_active_gang();
2051     gc_task_manager()->task_idle_workers();
2052     heap->set_par_threads(gc_task_manager()->active_workers());
2053 
2054     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
2055     GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer.gc_id());
2056     TraceCollectorStats tcs(counters());
2057     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
2058 
2059     if (TraceOldGenTime) accumulated_time()->start();
2060 
2061     // Let the size policy know we're starting
2062     size_policy->major_collection_begin();
2063 
2064     CodeCache::gc_prologue();
2065 
2066     COMPILER2_PRESENT(DerivedPointerTable::clear());
2067 
2068     ref_processor()->enable_discovery();
2069     ref_processor()->setup_policy(maximum_heap_compaction);
2070 
2071     bool marked_for_unloading = false;
2072 
2073     marking_start.update();
2074     marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
2075 
2076     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
2077       && GCCause::is_user_requested_gc(gc_cause);
2078     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
2079 
2080     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
2081     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
2082 
2083     // adjust_roots() updates Universe::_intArrayKlassObj which is
2084     // needed by the compaction for filling holes in the dense prefix.
2085     adjust_roots();
2086 
2087     compaction_start.update();
2088     compact();
2089 
2090     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
2091     // done before resizing.
2092     post_compact();
2093 
2094     // Let the size policy know we're done
2095     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
2096 
2097     if (UseAdaptiveSizePolicy) {
2098       if (PrintAdaptiveSizePolicy) {
2099         gclog_or_tty->print("AdaptiveSizeStart: ");
2100         gclog_or_tty->stamp();
2101         gclog_or_tty->print_cr(" collection: %d ",
2102                        heap->total_collections());
2103         if (Verbose) {
2104           gclog_or_tty->print("old_gen_capacity: " SIZE_FORMAT
2105             " young_gen_capacity: " SIZE_FORMAT,
2106             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
2107         }
2108       }
2109 
2110       // Don't check if the size_policy is ready here.  Let
2111       // the size_policy check that internally.
2112       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
2113           (!GCCause::is_user_requested_gc(gc_cause) ||
2114             UseAdaptiveSizePolicyWithSystemGC)) {
2115         // Swap the survivor spaces if from_space is empty. The
2116         // resize_young_gen() called below is normally used after
2117         // a successful young GC and swapping of survivor spaces;
2118         // otherwise, it will fail to resize the young gen with
2119         // the current implementation.
2120         if (young_gen->from_space()->is_empty()) {
2121           young_gen->from_space()->clear(SpaceDecorator::Mangle);
2122           young_gen->swap_spaces();
2123         }
2124 
2125         // Calculate optimal free space amounts
2126         assert(young_gen->max_size() >
2127           young_gen->from_space()->capacity_in_bytes() +
2128           young_gen->to_space()->capacity_in_bytes(),
2129           "Sizes of space in young gen are out-of-bounds");
2130 
2131         size_t young_live = young_gen->used_in_bytes();
2132         size_t eden_live = young_gen->eden_space()->used_in_bytes();
2133         size_t old_live = old_gen->used_in_bytes();
2134         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
2135         size_t max_old_gen_size = old_gen->max_gen_size();
2136         size_t max_eden_size = young_gen->max_size() -
2137           young_gen->from_space()->capacity_in_bytes() -
2138           young_gen->to_space()->capacity_in_bytes();
2139 
2140         // Used for diagnostics
2141         size_policy->clear_generation_free_space_flags();
2142 
2143         size_policy->compute_generations_free_space(young_live,
2144                                                     eden_live,
2145                                                     old_live,
2146                                                     cur_eden,
2147                                                     max_old_gen_size,
2148                                                     max_eden_size,
2149                                                     true /* full gc*/);
2150 
2151         size_policy->check_gc_overhead_limit(young_live,
2152                                              eden_live,
2153                                              max_old_gen_size,
2154                                              max_eden_size,
2155                                              true /* full gc*/,
2156                                              gc_cause,
2157                                              heap->collector_policy());
2158 
2159         size_policy->decay_supplemental_growth(true /* full gc*/);
2160 
2161         heap->resize_old_gen(
2162           size_policy->calculated_old_free_size_in_bytes());
2163 
2164         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
2165                                size_policy->calculated_survivor_size_in_bytes());
2166       }
2167       if (PrintAdaptiveSizePolicy) {
2168         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
2169                        heap->total_collections());
2170       }
2171     }
2172 
2173     if (UsePerfData) {
2174       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
2175       counters->update_counters();
2176       counters->update_old_capacity(old_gen->capacity_in_bytes());
2177       counters->update_young_capacity(young_gen->capacity_in_bytes());
2178     }
2179 
2180     heap->resize_all_tlabs();
2181 
2182     // Resize the metaspace capacity after a collection
2183     MetaspaceGC::compute_new_size();
2184 
2185     if (TraceOldGenTime) accumulated_time()->stop();
2186 
2187     if (PrintGC) {
2188       if (PrintGCDetails) {
2189         // No GC timestamp here.  This is after GC so it would be confusing.
2190         young_gen->print_used_change(pre_gc_values.young_gen_used());
2191         old_gen->print_used_change(pre_gc_values.old_gen_used());
2192         heap->print_heap_change(pre_gc_values.heap_used());
2193         MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
2194       } else {
2195         heap->print_heap_change(pre_gc_values.heap_used());
2196       }
2197     }
2198 
2199     // Track memory usage and detect low memory
2200     MemoryService::track_memory_usage();
2201     heap->update_counters();
2202     gc_task_manager()->release_idle_workers();
2203   }
2204 
2205 #ifdef ASSERT
2206   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
2207     ParCompactionManager* const cm =
2208       ParCompactionManager::manager_array(int(i));
2209     assert(cm->marking_stack()->is_empty(),       "should be empty");
2210     assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
2211   }
2212 #endif // ASSERT
2213 
2214   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
2215     HandleMark hm;  // Discard invalid handles created during verification
2216     Universe::verify(" VerifyAfterGC:");
2217   }
2218 
2219   // Re-verify object start arrays
2220   if (VerifyObjectStartArray &&
2221       VerifyAfterGC) {
2222     old_gen->verify_object_start_array();
2223   }
2224 
2225   if (ZapUnusedHeapArea) {
2226     old_gen->object_space()->check_mangled_unused_area_complete();
2227   }
2228 
2229   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
2230 
2231   collection_exit.update();
2232 
2233   heap->print_heap_after_gc();
2234   heap->trace_heap_after_gc(&_gc_tracer);
2235 
2236   if (PrintGCTaskTimeStamps) {
2237     gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
2238                            INT64_FORMAT,
2239                            marking_start.ticks(), compaction_start.ticks(),
2240                            collection_exit.ticks());
2241     gc_task_manager()->print_task_time_stamps();
2242   }
2243 
2244   heap->post_full_gc_dump(&_gc_timer);
2245 
2246 #ifdef TRACESPINNING
2247   ParallelTaskTerminator::print_termination_counts();
2248 #endif
2249 
2250   _gc_timer.register_gc_end();
2251 
2252   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
2253   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
2254 
2255   return true;
2256 }
2257 
2258 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
2259                                              PSYoungGen* young_gen,
2260                                              PSOldGen* old_gen) {
2261   MutableSpace* const eden_space = young_gen->eden_space();
2262   assert(!eden_space->is_empty(), "eden must be non-empty");
2263   assert(young_gen->virtual_space()->alignment() ==
2264          old_gen->virtual_space()->alignment(), "alignments do not match");
2265 
2266   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
2267     return false;
2268   }
2269 
2270   // Both generations must be completely committed.
2271   if (young_gen->virtual_space()->uncommitted_size() != 0) {
2272     return false;
2273   }
2274   if (old_gen->virtual_space()->uncommitted_size() != 0) {
2275     return false;
2276   }
2277 
2278   // Figure out how much to take from eden.  Include the average amount promoted
2279   // in the total; otherwise the next young gen GC will simply bail out to a
2280   // full GC.
2281   const size_t alignment = old_gen->virtual_space()->alignment();
2282   const size_t eden_used = eden_space->used_in_bytes();
2283   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
2284   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
2285   const size_t eden_capacity = eden_space->capacity_in_bytes();
2286 
2287   if (absorb_size >= eden_capacity) {
2288     return false; // Must leave some space in eden.
2289   }
2290 
2291   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
2292   if (new_young_size < young_gen->min_gen_size()) {
2293     return false; // Respect young gen minimum size.
2294   }
2295 
2296   if (TraceAdaptiveGCBoundary && Verbose) {
2297     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
2298                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
2299                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2300                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2301                         absorb_size / K,
2302                         eden_capacity / K, (eden_capacity - absorb_size) / K,
2303                         young_gen->from_space()->used_in_bytes() / K,
2304                         young_gen->to_space()->used_in_bytes() / K,
2305                         young_gen->capacity_in_bytes() / K, new_young_size / K);
2306   }
2307 
2308   // Fill the unused part of the old gen.
2309   MutableSpace* const old_space = old_gen->object_space();
2310   HeapWord* const unused_start = old_space->top();
2311   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2312 
2313   if (unused_words > 0) {
2314     if (unused_words < CollectedHeap::min_fill_size()) {
2315       return false;  // If the old gen cannot be filled, must give up.
2316     }
2317     CollectedHeap::fill_with_objects(unused_start, unused_words);
2318   }
2319 
2320   // Take the live data from eden and set both top and end in the old gen to
2321   // eden top.  (Need to set end because reset_after_change() mangles the region
2322   // from end to virtual_space->high() in debug builds).
2323   HeapWord* const new_top = eden_space->top();
2324   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2325                                         absorb_size);
2326   young_gen->reset_after_change();
2327   old_space->set_top(new_top);
2328   old_space->set_end(new_top);
2329   old_gen->reset_after_change();
2330 
2331   // Update the object start array for the filler object and the data from eden.
2332   ObjectStartArray* const start_array = old_gen->start_array();
2333   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2334     start_array->allocate_block(p);
2335   }
2336 
2337   // Could update the promoted average here, but it is not typically updated at
2338   // full GCs and the value to use is unclear.  Something like
2339   //
2340   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2341 
2342   size_policy->set_bytes_absorbed_from_eden(absorb_size);
2343   return true;
2344 }
2345 
2346 GCTaskManager* const PSParallelCompact::gc_task_manager() {
2347   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2348     "shouldn't return NULL");
2349   return ParallelScavengeHeap::gc_task_manager();
2350 }
2351 
2352 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2353                                       bool maximum_heap_compaction,
2354                                       ParallelOldTracer *gc_tracer) {
2355   // Recursively traverse all live objects and mark them
2356   GCTraceTime tm("marking phase", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2357 
2358   ParallelScavengeHeap* heap = gc_heap();
2359   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2360   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2361   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2362   ParallelTaskTerminator terminator(active_gc_threads, qset);
2363 
2364   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
2365   PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
2366 
2367   // Need new claim bits before marking starts.
2368   ClassLoaderDataGraph::clear_claimed_marks();
2369 
2370   {
2371     GCTraceTime tm_m("par mark", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2372 
2373     ParallelScavengeHeap::ParStrongRootsScope psrs;
2374 
2375     GCTaskQueue* q = GCTaskQueue::create();
2376 
2377     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2378     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2379     // We scan the thread roots in parallel
2380     Threads::create_thread_roots_marking_tasks(q);
2381     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2382     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
2383     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2384     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2385     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
2386     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2387     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2388 
2389     if (active_gc_threads > 1) {
2390       for (uint j = 0; j < active_gc_threads; j++) {
2391         q->enqueue(new StealMarkingTask(&terminator));
2392       }
2393     }
2394 
2395     gc_task_manager()->execute_and_wait(q);
2396   }
2397 
2398   // Process reference objects found during marking
2399   {
2400     GCTraceTime tm_r("reference processing", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2401 
2402     ReferenceProcessorStats stats;
2403     if (ref_processor()->processing_is_mt()) {
2404       RefProcTaskExecutor task_executor;
2405       stats = ref_processor()->process_discovered_references(
2406         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2407         &task_executor, &_gc_timer, _gc_tracer.gc_id());
2408     } else {
2409       stats = ref_processor()->process_discovered_references(
2410         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2411         &_gc_timer, _gc_tracer.gc_id());
2412     }
2413 
2414     gc_tracer->report_gc_reference_stats(stats);
2415   }
2416 
2417   GCTraceTime tm_c("class unloading", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2418 
2419   // This is the point where the entire marking should have completed.
2420   assert(cm->marking_stacks_empty(), "Marking should have completed");
2421 
2422   // Follow system dictionary roots and unload classes.
2423   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
2424 
2425   // Unload nmethods.
2426   CodeCache::do_unloading(is_alive_closure(), purged_class);
2427 
2428   // Prune dead klasses from subklass/sibling/implementor lists.
2429   Klass::clean_weak_klass_links(is_alive_closure());
2430 
2431   // Delete entries for dead interned strings.
2432   StringTable::unlink(is_alive_closure());
2433 
2434   // Clean up unreferenced symbols in symbol table.
2435   SymbolTable::unlink();
2436   _gc_tracer.report_object_count_after_gc(is_alive_closure());
2437 }
2438 
2439 void PSParallelCompact::follow_class_loader(ParCompactionManager* cm,
2440                                             ClassLoaderData* cld) {
2441   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
2442   PSParallelCompact::FollowKlassClosure follow_klass_closure(&mark_and_push_closure);
2443 
2444   cld->oops_do(&mark_and_push_closure, &follow_klass_closure, true);
2445 }
2446 
2447 // This should be moved to the shared markSweep code!
2448 class PSAlwaysTrueClosure: public BoolObjectClosure {
2449 public:
2450   bool do_object_b(oop p) { return true; }
2451 };
2452 static PSAlwaysTrueClosure always_true;
2453 
2454 void PSParallelCompact::adjust_roots() {
2455   // Adjust the pointers to reflect the new locations
2456   GCTraceTime tm("adjust roots", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2457 
2458   // Need new claim bits when tracing through and adjusting pointers.
2459   ClassLoaderDataGraph::clear_claimed_marks();
2460 
2461   // General strong roots.
2462   Universe::oops_do(adjust_pointer_closure());
2463   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
2464   CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
2465   Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
2466   ObjectSynchronizer::oops_do(adjust_pointer_closure());
2467   FlatProfiler::oops_do(adjust_pointer_closure());
2468   Management::oops_do(adjust_pointer_closure());
2469   JvmtiExport::oops_do(adjust_pointer_closure());
2470   SystemDictionary::oops_do(adjust_pointer_closure());
2471   ClassLoaderDataGraph::oops_do(adjust_pointer_closure(), adjust_klass_closure(), true);
2472 
2473   // Now adjust pointers in remaining weak roots.  (All of which should
2474   // have been cleared if they pointed to non-surviving objects.)
2475   // Global (weak) JNI handles
2476   JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
2477 
2478   CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
2479   CodeCache::blobs_do(&adjust_from_blobs);
2480   StringTable::oops_do(adjust_pointer_closure());
2481   ref_processor()->weak_oops_do(adjust_pointer_closure());
2482   // Roots were visited so references into the young gen in roots
2483   // may have been scanned.  Process them also.
2484   // Should the reference processor have a span that excludes
2485   // young gen objects?
2486   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
2487 }
2488 
2489 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
2490                                                       uint parallel_gc_threads)
2491 {
2492   GCTraceTime tm("drain task setup", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2493 
2494   // Find the threads that are active
2495   unsigned int which = 0;
2496 
2497   const uint task_count = MAX2(parallel_gc_threads, 1U);
2498   for (uint j = 0; j < task_count; j++) {
2499     q->enqueue(new DrainStacksCompactionTask(j));
2500     ParCompactionManager::verify_region_list_empty(j);
2501     // Set the region stacks variables to "no" region stack values
2502     // so that they will be recognized and needing a region stack
2503     // in the stealing tasks if they do not get one by executing
2504     // a draining stack.
2505     ParCompactionManager* cm = ParCompactionManager::manager_array(j);
2506     cm->set_region_stack(NULL);
2507     cm->set_region_stack_index((uint)max_uintx);
2508   }
2509   ParCompactionManager::reset_recycled_stack_index();
2510 
2511   // Find all regions that are available (can be filled immediately) and
2512   // distribute them to the thread stacks.  The iteration is done in reverse
2513   // order (high to low) so the regions will be removed in ascending order.
2514 
2515   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2516 
2517   size_t fillable_regions = 0;   // A count for diagnostic purposes.
2518   // A region index which corresponds to the tasks created above.
2519   // "which" must be 0 <= which < task_count
2520 
2521   which = 0;
2522   // id + 1 is used to test termination so unsigned  can
2523   // be used with an old_space_id == 0.
2524   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2525     SpaceInfo* const space_info = _space_info + id;
2526     MutableSpace* const space = space_info->space();
2527     HeapWord* const new_top = space_info->new_top();
2528 
2529     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2530     const size_t end_region =
2531       sd.addr_to_region_idx(sd.region_align_up(new_top));
2532 
2533     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2534       if (sd.region(cur)->claim_unsafe()) {
2535         ParCompactionManager::region_list_push(which, cur);
2536 
2537         if (TraceParallelOldGCCompactionPhase && Verbose) {
2538           const size_t count_mod_8 = fillable_regions & 7;
2539           if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
2540           gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
2541           if (count_mod_8 == 7) gclog_or_tty->cr();
2542         }
2543 
2544         NOT_PRODUCT(++fillable_regions;)
2545 
2546         // Assign regions to tasks in round-robin fashion.
2547         if (++which == task_count) {
2548           assert(which <= parallel_gc_threads,
2549             "Inconsistent number of workers");
2550           which = 0;
2551         }
2552       }
2553     }
2554   }
2555 
2556   if (TraceParallelOldGCCompactionPhase) {
2557     if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
2558     gclog_or_tty->print_cr(SIZE_FORMAT " initially fillable regions", fillable_regions);
2559   }
2560 }
2561 
2562 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2563 
2564 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2565                                                     uint parallel_gc_threads) {
2566   GCTraceTime tm("dense prefix task setup", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2567 
2568   ParallelCompactData& sd = PSParallelCompact::summary_data();
2569 
2570   // Iterate over all the spaces adding tasks for updating
2571   // regions in the dense prefix.  Assume that 1 gc thread
2572   // will work on opening the gaps and the remaining gc threads
2573   // will work on the dense prefix.
2574   unsigned int space_id;
2575   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2576     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2577     const MutableSpace* const space = _space_info[space_id].space();
2578 
2579     if (dense_prefix_end == space->bottom()) {
2580       // There is no dense prefix for this space.
2581       continue;
2582     }
2583 
2584     // The dense prefix is before this region.
2585     size_t region_index_end_dense_prefix =
2586         sd.addr_to_region_idx(dense_prefix_end);
2587     RegionData* const dense_prefix_cp =
2588       sd.region(region_index_end_dense_prefix);
2589     assert(dense_prefix_end == space->end() ||
2590            dense_prefix_cp->available() ||
2591            dense_prefix_cp->claimed(),
2592            "The region after the dense prefix should always be ready to fill");
2593 
2594     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2595 
2596     // Is there dense prefix work?
2597     size_t total_dense_prefix_regions =
2598       region_index_end_dense_prefix - region_index_start;
2599     // How many regions of the dense prefix should be given to
2600     // each thread?
2601     if (total_dense_prefix_regions > 0) {
2602       uint tasks_for_dense_prefix = 1;
2603       if (total_dense_prefix_regions <=
2604           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2605         // Don't over partition.  This assumes that
2606         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2607         // so there are not many regions to process.
2608         tasks_for_dense_prefix = parallel_gc_threads;
2609       } else {
2610         // Over partition
2611         tasks_for_dense_prefix = parallel_gc_threads *
2612           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2613       }
2614       size_t regions_per_thread = total_dense_prefix_regions /
2615         tasks_for_dense_prefix;
2616       // Give each thread at least 1 region.
2617       if (regions_per_thread == 0) {
2618         regions_per_thread = 1;
2619       }
2620 
2621       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2622         if (region_index_start >= region_index_end_dense_prefix) {
2623           break;
2624         }
2625         // region_index_end is not processed
2626         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2627                                        region_index_end_dense_prefix);
2628         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2629                                              region_index_start,
2630                                              region_index_end));
2631         region_index_start = region_index_end;
2632       }
2633     }
2634     // This gets any part of the dense prefix that did not
2635     // fit evenly.
2636     if (region_index_start < region_index_end_dense_prefix) {
2637       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2638                                            region_index_start,
2639                                            region_index_end_dense_prefix));
2640     }
2641   }
2642 }
2643 
2644 void PSParallelCompact::enqueue_region_stealing_tasks(
2645                                      GCTaskQueue* q,
2646                                      ParallelTaskTerminator* terminator_ptr,
2647                                      uint parallel_gc_threads) {
2648   GCTraceTime tm("steal task setup", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2649 
2650   // Once a thread has drained it's stack, it should try to steal regions from
2651   // other threads.
2652   if (parallel_gc_threads > 1) {
2653     for (uint j = 0; j < parallel_gc_threads; j++) {
2654       q->enqueue(new StealRegionCompactionTask(terminator_ptr));
2655     }
2656   }
2657 }
2658 
2659 #ifdef ASSERT
2660 // Write a histogram of the number of times the block table was filled for a
2661 // region.
2662 void PSParallelCompact::write_block_fill_histogram(outputStream* const out)
2663 {
2664   if (!TraceParallelOldGCCompactionPhase) return;
2665 
2666   typedef ParallelCompactData::RegionData rd_t;
2667   ParallelCompactData& sd = summary_data();
2668 
2669   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2670     MutableSpace* const spc = _space_info[id].space();
2671     if (spc->bottom() != spc->top()) {
2672       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2673       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2674       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2675 
2676       size_t histo[5] = { 0, 0, 0, 0, 0 };
2677       const size_t histo_len = sizeof(histo) / sizeof(size_t);
2678       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2679 
2680       for (const rd_t* cur = beg; cur < end; ++cur) {
2681         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2682       }
2683       out->print("%u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2684       for (size_t i = 0; i < histo_len; ++i) {
2685         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2686                    histo[i], 100.0 * histo[i] / region_cnt);
2687       }
2688       out->cr();
2689     }
2690   }
2691 }
2692 #endif // #ifdef ASSERT
2693 
2694 void PSParallelCompact::compact() {
2695   // trace("5");
2696   GCTraceTime tm("compaction phase", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2697 
2698   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
2699   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
2700   PSOldGen* old_gen = heap->old_gen();
2701   old_gen->start_array()->reset();
2702   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2703   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2704   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2705   ParallelTaskTerminator terminator(active_gc_threads, qset);
2706 
2707   GCTaskQueue* q = GCTaskQueue::create();
2708   enqueue_region_draining_tasks(q, active_gc_threads);
2709   enqueue_dense_prefix_tasks(q, active_gc_threads);
2710   enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
2711 
2712   {
2713     GCTraceTime tm_pc("par compact", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2714 
2715     gc_task_manager()->execute_and_wait(q);
2716 
2717 #ifdef  ASSERT
2718     // Verify that all regions have been processed before the deferred updates.
2719     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2720       verify_complete(SpaceId(id));
2721     }
2722 #endif
2723   }
2724 
2725   {
2726     // Update the deferred objects, if any.  Any compaction manager can be used.
2727     GCTraceTime tm_du("deferred updates", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2728     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2729     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2730       update_deferred_objects(cm, SpaceId(id));
2731     }
2732   }
2733 
2734   DEBUG_ONLY(write_block_fill_histogram(gclog_or_tty));
2735 }
2736 
2737 #ifdef  ASSERT
2738 void PSParallelCompact::verify_complete(SpaceId space_id) {
2739   // All Regions between space bottom() to new_top() should be marked as filled
2740   // and all Regions between new_top() and top() should be available (i.e.,
2741   // should have been emptied).
2742   ParallelCompactData& sd = summary_data();
2743   SpaceInfo si = _space_info[space_id];
2744   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2745   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2746   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2747   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2748   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2749 
2750   bool issued_a_warning = false;
2751 
2752   size_t cur_region;
2753   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2754     const RegionData* const c = sd.region(cur_region);
2755     if (!c->completed()) {
2756       warning("region " SIZE_FORMAT " not filled:  "
2757               "destination_count=" SIZE_FORMAT,
2758               cur_region, c->destination_count());
2759       issued_a_warning = true;
2760     }
2761   }
2762 
2763   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2764     const RegionData* const c = sd.region(cur_region);
2765     if (!c->available()) {
2766       warning("region " SIZE_FORMAT " not empty:   "
2767               "destination_count=" SIZE_FORMAT,
2768               cur_region, c->destination_count());
2769       issued_a_warning = true;
2770     }
2771   }
2772 
2773   if (issued_a_warning) {
2774     print_region_ranges();
2775   }
2776 }
2777 #endif  // #ifdef ASSERT
2778 
2779 // Update interior oops in the ranges of regions [beg_region, end_region).
2780 void
2781 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2782                                                        SpaceId space_id,
2783                                                        size_t beg_region,
2784                                                        size_t end_region) {
2785   ParallelCompactData& sd = summary_data();
2786   ParMarkBitMap* const mbm = mark_bitmap();
2787 
2788   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2789   HeapWord* const end_addr = sd.region_to_addr(end_region);
2790   assert(beg_region <= end_region, "bad region range");
2791   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2792 
2793 #ifdef  ASSERT
2794   // Claim the regions to avoid triggering an assert when they are marked as
2795   // filled.
2796   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2797     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2798   }
2799 #endif  // #ifdef ASSERT
2800 
2801   if (beg_addr != space(space_id)->bottom()) {
2802     // Find the first live object or block of dead space that *starts* in this
2803     // range of regions.  If a partial object crosses onto the region, skip it;
2804     // it will be marked for 'deferred update' when the object head is
2805     // processed.  If dead space crosses onto the region, it is also skipped; it
2806     // will be filled when the prior region is processed.  If neither of those
2807     // apply, the first word in the region is the start of a live object or dead
2808     // space.
2809     assert(beg_addr > space(space_id)->bottom(), "sanity");
2810     const RegionData* const cp = sd.region(beg_region);
2811     if (cp->partial_obj_size() != 0) {
2812       beg_addr = sd.partial_obj_end(beg_region);
2813     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2814       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2815     }
2816   }
2817 
2818   if (beg_addr < end_addr) {
2819     // A live object or block of dead space starts in this range of Regions.
2820      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2821 
2822     // Create closures and iterate.
2823     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2824     FillClosure fill_closure(cm, space_id);
2825     ParMarkBitMap::IterationStatus status;
2826     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2827                           dense_prefix_end);
2828     if (status == ParMarkBitMap::incomplete) {
2829       update_closure.do_addr(update_closure.source());
2830     }
2831   }
2832 
2833   // Mark the regions as filled.
2834   RegionData* const beg_cp = sd.region(beg_region);
2835   RegionData* const end_cp = sd.region(end_region);
2836   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2837     cp->set_completed();
2838   }
2839 }
2840 
2841 // Return the SpaceId for the space containing addr.  If addr is not in the
2842 // heap, last_space_id is returned.  In debug mode it expects the address to be
2843 // in the heap and asserts such.
2844 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2845   assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
2846 
2847   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2848     if (_space_info[id].space()->contains(addr)) {
2849       return SpaceId(id);
2850     }
2851   }
2852 
2853   assert(false, "no space contains the addr");
2854   return last_space_id;
2855 }
2856 
2857 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2858                                                 SpaceId id) {
2859   assert(id < last_space_id, "bad space id");
2860 
2861   ParallelCompactData& sd = summary_data();
2862   const SpaceInfo* const space_info = _space_info + id;
2863   ObjectStartArray* const start_array = space_info->start_array();
2864 
2865   const MutableSpace* const space = space_info->space();
2866   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2867   HeapWord* const beg_addr = space_info->dense_prefix();
2868   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2869 
2870   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2871   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2872   const RegionData* cur_region;
2873   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2874     HeapWord* const addr = cur_region->deferred_obj_addr();
2875     if (addr != NULL) {
2876       if (start_array != NULL) {
2877         start_array->allocate_block(addr);
2878       }
2879       oop(addr)->update_contents(cm);
2880       assert(oop(addr)->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr))));
2881     }
2882   }
2883 }
2884 
2885 // Skip over count live words starting from beg, and return the address of the
2886 // next live word.  Unless marked, the word corresponding to beg is assumed to
2887 // be dead.  Callers must either ensure beg does not correspond to the middle of
2888 // an object, or account for those live words in some other way.  Callers must
2889 // also ensure that there are enough live words in the range [beg, end) to skip.
2890 HeapWord*
2891 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2892 {
2893   assert(count > 0, "sanity");
2894 
2895   ParMarkBitMap* m = mark_bitmap();
2896   idx_t bits_to_skip = m->words_to_bits(count);
2897   idx_t cur_beg = m->addr_to_bit(beg);
2898   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
2899 
2900   do {
2901     cur_beg = m->find_obj_beg(cur_beg, search_end);
2902     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2903     const size_t obj_bits = cur_end - cur_beg + 1;
2904     if (obj_bits > bits_to_skip) {
2905       return m->bit_to_addr(cur_beg + bits_to_skip);
2906     }
2907     bits_to_skip -= obj_bits;
2908     cur_beg = cur_end + 1;
2909   } while (bits_to_skip > 0);
2910 
2911   // Skipping the desired number of words landed just past the end of an object.
2912   // Find the start of the next object.
2913   cur_beg = m->find_obj_beg(cur_beg, search_end);
2914   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2915   return m->bit_to_addr(cur_beg);
2916 }
2917 
2918 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2919                                             SpaceId src_space_id,
2920                                             size_t src_region_idx)
2921 {
2922   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2923 
2924   const SplitInfo& split_info = _space_info[src_space_id].split_info();
2925   if (split_info.dest_region_addr() == dest_addr) {
2926     // The partial object ending at the split point contains the first word to
2927     // be copied to dest_addr.
2928     return split_info.first_src_addr();
2929   }
2930 
2931   const ParallelCompactData& sd = summary_data();
2932   ParMarkBitMap* const bitmap = mark_bitmap();
2933   const size_t RegionSize = ParallelCompactData::RegionSize;
2934 
2935   assert(sd.is_region_aligned(dest_addr), "not aligned");
2936   const RegionData* const src_region_ptr = sd.region(src_region_idx);
2937   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2938   HeapWord* const src_region_destination = src_region_ptr->destination();
2939 
2940   assert(dest_addr >= src_region_destination, "wrong src region");
2941   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2942 
2943   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2944   HeapWord* const src_region_end = src_region_beg + RegionSize;
2945 
2946   HeapWord* addr = src_region_beg;
2947   if (dest_addr == src_region_destination) {
2948     // Return the first live word in the source region.
2949     if (partial_obj_size == 0) {
2950       addr = bitmap->find_obj_beg(addr, src_region_end);
2951       assert(addr < src_region_end, "no objects start in src region");
2952     }
2953     return addr;
2954   }
2955 
2956   // Must skip some live data.
2957   size_t words_to_skip = dest_addr - src_region_destination;
2958   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2959 
2960   if (partial_obj_size >= words_to_skip) {
2961     // All the live words to skip are part of the partial object.
2962     addr += words_to_skip;
2963     if (partial_obj_size == words_to_skip) {
2964       // Find the first live word past the partial object.
2965       addr = bitmap->find_obj_beg(addr, src_region_end);
2966       assert(addr < src_region_end, "wrong src region");
2967     }
2968     return addr;
2969   }
2970 
2971   // Skip over the partial object (if any).
2972   if (partial_obj_size != 0) {
2973     words_to_skip -= partial_obj_size;
2974     addr += partial_obj_size;
2975   }
2976 
2977   // Skip over live words due to objects that start in the region.
2978   addr = skip_live_words(addr, src_region_end, words_to_skip);
2979   assert(addr < src_region_end, "wrong src region");
2980   return addr;
2981 }
2982 
2983 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2984                                                      SpaceId src_space_id,
2985                                                      size_t beg_region,
2986                                                      HeapWord* end_addr)
2987 {
2988   ParallelCompactData& sd = summary_data();
2989 
2990 #ifdef ASSERT
2991   MutableSpace* const src_space = _space_info[src_space_id].space();
2992   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2993   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2994          "src_space_id does not match beg_addr");
2995   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2996          "src_space_id does not match end_addr");
2997 #endif // #ifdef ASSERT
2998 
2999   RegionData* const beg = sd.region(beg_region);
3000   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
3001 
3002   // Regions up to new_top() are enqueued if they become available.
3003   HeapWord* const new_top = _space_info[src_space_id].new_top();
3004   RegionData* const enqueue_end =
3005     sd.addr_to_region_ptr(sd.region_align_up(new_top));
3006 
3007   for (RegionData* cur = beg; cur < end; ++cur) {
3008     assert(cur->data_size() > 0, "region must have live data");
3009     cur->decrement_destination_count();
3010     if (cur < enqueue_end && cur->available() && cur->claim()) {
3011       cm->push_region(sd.region(cur));
3012     }
3013   }
3014 }
3015 
3016 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
3017                                           SpaceId& src_space_id,
3018                                           HeapWord*& src_space_top,
3019                                           HeapWord* end_addr)
3020 {
3021   typedef ParallelCompactData::RegionData RegionData;
3022 
3023   ParallelCompactData& sd = PSParallelCompact::summary_data();
3024   const size_t region_size = ParallelCompactData::RegionSize;
3025 
3026   size_t src_region_idx = 0;
3027 
3028   // Skip empty regions (if any) up to the top of the space.
3029   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
3030   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
3031   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
3032   const RegionData* const top_region_ptr =
3033     sd.addr_to_region_ptr(top_aligned_up);
3034   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
3035     ++src_region_ptr;
3036   }
3037 
3038   if (src_region_ptr < top_region_ptr) {
3039     // The next source region is in the current space.  Update src_region_idx
3040     // and the source address to match src_region_ptr.
3041     src_region_idx = sd.region(src_region_ptr);
3042     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
3043     if (src_region_addr > closure.source()) {
3044       closure.set_source(src_region_addr);
3045     }
3046     return src_region_idx;
3047   }
3048 
3049   // Switch to a new source space and find the first non-empty region.
3050   unsigned int space_id = src_space_id + 1;
3051   assert(space_id < last_space_id, "not enough spaces");
3052 
3053   HeapWord* const destination = closure.destination();
3054 
3055   do {
3056     MutableSpace* space = _space_info[space_id].space();
3057     HeapWord* const bottom = space->bottom();
3058     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
3059 
3060     // Iterate over the spaces that do not compact into themselves.
3061     if (bottom_cp->destination() != bottom) {
3062       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
3063       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
3064 
3065       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
3066         if (src_cp->live_obj_size() > 0) {
3067           // Found it.
3068           assert(src_cp->destination() == destination,
3069                  "first live obj in the space must match the destination");
3070           assert(src_cp->partial_obj_size() == 0,
3071                  "a space cannot begin with a partial obj");
3072 
3073           src_space_id = SpaceId(space_id);
3074           src_space_top = space->top();
3075           const size_t src_region_idx = sd.region(src_cp);
3076           closure.set_source(sd.region_to_addr(src_region_idx));
3077           return src_region_idx;
3078         } else {
3079           assert(src_cp->data_size() == 0, "sanity");
3080         }
3081       }
3082     }
3083   } while (++space_id < last_space_id);
3084 
3085   assert(false, "no source region was found");
3086   return 0;
3087 }
3088 
3089 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
3090 {
3091   typedef ParMarkBitMap::IterationStatus IterationStatus;
3092   const size_t RegionSize = ParallelCompactData::RegionSize;
3093   ParMarkBitMap* const bitmap = mark_bitmap();
3094   ParallelCompactData& sd = summary_data();
3095   RegionData* const region_ptr = sd.region(region_idx);
3096 
3097   // Get the items needed to construct the closure.
3098   HeapWord* dest_addr = sd.region_to_addr(region_idx);
3099   SpaceId dest_space_id = space_id(dest_addr);
3100   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
3101   HeapWord* new_top = _space_info[dest_space_id].new_top();
3102   assert(dest_addr < new_top, "sanity");
3103   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
3104 
3105   // Get the source region and related info.
3106   size_t src_region_idx = region_ptr->source_region();
3107   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
3108   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
3109 
3110   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3111   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
3112 
3113   // Adjust src_region_idx to prepare for decrementing destination counts (the
3114   // destination count is not decremented when a region is copied to itself).
3115   if (src_region_idx == region_idx) {
3116     src_region_idx += 1;
3117   }
3118 
3119   if (bitmap->is_unmarked(closure.source())) {
3120     // The first source word is in the middle of an object; copy the remainder
3121     // of the object or as much as will fit.  The fact that pointer updates were
3122     // deferred will be noted when the object header is processed.
3123     HeapWord* const old_src_addr = closure.source();
3124     closure.copy_partial_obj();
3125     if (closure.is_full()) {
3126       decrement_destination_counts(cm, src_space_id, src_region_idx,
3127                                    closure.source());
3128       region_ptr->set_deferred_obj_addr(NULL);
3129       region_ptr->set_completed();
3130       return;
3131     }
3132 
3133     HeapWord* const end_addr = sd.region_align_down(closure.source());
3134     if (sd.region_align_down(old_src_addr) != end_addr) {
3135       // The partial object was copied from more than one source region.
3136       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3137 
3138       // Move to the next source region, possibly switching spaces as well.  All
3139       // args except end_addr may be modified.
3140       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3141                                        end_addr);
3142     }
3143   }
3144 
3145   do {
3146     HeapWord* const cur_addr = closure.source();
3147     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
3148                                     src_space_top);
3149     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
3150 
3151     if (status == ParMarkBitMap::incomplete) {
3152       // The last obj that starts in the source region does not end in the
3153       // region.
3154       assert(closure.source() < end_addr, "sanity");
3155       HeapWord* const obj_beg = closure.source();
3156       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
3157                                        src_space_top);
3158       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
3159       if (obj_end < range_end) {
3160         // The end was found; the entire object will fit.
3161         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
3162         assert(status != ParMarkBitMap::would_overflow, "sanity");
3163       } else {
3164         // The end was not found; the object will not fit.
3165         assert(range_end < src_space_top, "obj cannot cross space boundary");
3166         status = ParMarkBitMap::would_overflow;
3167       }
3168     }
3169 
3170     if (status == ParMarkBitMap::would_overflow) {
3171       // The last object did not fit.  Note that interior oop updates were
3172       // deferred, then copy enough of the object to fill the region.
3173       region_ptr->set_deferred_obj_addr(closure.destination());
3174       status = closure.copy_until_full(); // copies from closure.source()
3175 
3176       decrement_destination_counts(cm, src_space_id, src_region_idx,
3177                                    closure.source());
3178       region_ptr->set_completed();
3179       return;
3180     }
3181 
3182     if (status == ParMarkBitMap::full) {
3183       decrement_destination_counts(cm, src_space_id, src_region_idx,
3184                                    closure.source());
3185       region_ptr->set_deferred_obj_addr(NULL);
3186       region_ptr->set_completed();
3187       return;
3188     }
3189 
3190     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3191 
3192     // Move to the next source region, possibly switching spaces as well.  All
3193     // args except end_addr may be modified.
3194     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3195                                      end_addr);
3196   } while (true);
3197 }
3198 
3199 void PSParallelCompact::fill_blocks(size_t region_idx)
3200 {
3201   // Fill in the block table elements for the specified region.  Each block
3202   // table element holds the number of live words in the region that are to the
3203   // left of the first object that starts in the block.  Thus only blocks in
3204   // which an object starts need to be filled.
3205   //
3206   // The algorithm scans the section of the bitmap that corresponds to the
3207   // region, keeping a running total of the live words.  When an object start is
3208   // found, if it's the first to start in the block that contains it, the
3209   // current total is written to the block table element.
3210   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
3211   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
3212   const size_t RegionSize = ParallelCompactData::RegionSize;
3213 
3214   ParallelCompactData& sd = summary_data();
3215   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
3216   if (partial_obj_size >= RegionSize) {
3217     return; // No objects start in this region.
3218   }
3219 
3220   // Ensure the first loop iteration decides that the block has changed.
3221   size_t cur_block = sd.block_count();
3222 
3223   const ParMarkBitMap* const bitmap = mark_bitmap();
3224 
3225   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
3226   assert((size_t)1 << Log2BitsPerBlock ==
3227          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
3228 
3229   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
3230   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
3231   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
3232   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
3233   while (beg_bit < range_end) {
3234     const size_t new_block = beg_bit >> Log2BitsPerBlock;
3235     if (new_block != cur_block) {
3236       cur_block = new_block;
3237       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
3238     }
3239 
3240     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
3241     if (end_bit < range_end - 1) {
3242       live_bits += end_bit - beg_bit + 1;
3243       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
3244     } else {
3245       return;
3246     }
3247   }
3248 }
3249 
3250 void
3251 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
3252   const MutableSpace* sp = space(space_id);
3253   if (sp->is_empty()) {
3254     return;
3255   }
3256 
3257   ParallelCompactData& sd = PSParallelCompact::summary_data();
3258   ParMarkBitMap* const bitmap = mark_bitmap();
3259   HeapWord* const dp_addr = dense_prefix(space_id);
3260   HeapWord* beg_addr = sp->bottom();
3261   HeapWord* end_addr = sp->top();
3262 
3263   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
3264 
3265   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
3266   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
3267   if (beg_region < dp_region) {
3268     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
3269   }
3270 
3271   // The destination of the first live object that starts in the region is one
3272   // past the end of the partial object entering the region (if any).
3273   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
3274   HeapWord* const new_top = _space_info[space_id].new_top();
3275   assert(new_top >= dest_addr, "bad new_top value");
3276   const size_t words = pointer_delta(new_top, dest_addr);
3277 
3278   if (words > 0) {
3279     ObjectStartArray* start_array = _space_info[space_id].start_array();
3280     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3281 
3282     ParMarkBitMap::IterationStatus status;
3283     status = bitmap->iterate(&closure, dest_addr, end_addr);
3284     assert(status == ParMarkBitMap::full, "iteration not complete");
3285     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
3286            "live objects skipped because closure is full");
3287   }
3288 }
3289 
3290 jlong PSParallelCompact::millis_since_last_gc() {
3291   // We need a monotonically non-decreasing time in ms but
3292   // os::javaTimeMillis() does not guarantee monotonicity.
3293   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3294   jlong ret_val = now - _time_of_last_gc;
3295   // XXX See note in genCollectedHeap::millis_since_last_gc().
3296   if (ret_val < 0) {
3297     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
3298     return 0;
3299   }
3300   return ret_val;
3301 }
3302 
3303 void PSParallelCompact::reset_millis_since_last_gc() {
3304   // We need a monotonically non-decreasing time in ms but
3305   // os::javaTimeMillis() does not guarantee monotonicity.
3306   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3307 }
3308 
3309 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3310 {
3311   if (source() != destination()) {
3312     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3313     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3314   }
3315   update_state(words_remaining());
3316   assert(is_full(), "sanity");
3317   return ParMarkBitMap::full;
3318 }
3319 
3320 void MoveAndUpdateClosure::copy_partial_obj()
3321 {
3322   size_t words = words_remaining();
3323 
3324   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3325   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3326   if (end_addr < range_end) {
3327     words = bitmap()->obj_size(source(), end_addr);
3328   }
3329 
3330   // This test is necessary; if omitted, the pointer updates to a partial object
3331   // that crosses the dense prefix boundary could be overwritten.
3332   if (source() != destination()) {
3333     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3334     Copy::aligned_conjoint_words(source(), destination(), words);
3335   }
3336   update_state(words);
3337 }
3338 
3339 ParMarkBitMapClosure::IterationStatus
3340 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3341   assert(destination() != NULL, "sanity");
3342   assert(bitmap()->obj_size(addr) == words, "bad size");
3343 
3344   _source = addr;
3345   assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
3346          destination(), "wrong destination");
3347 
3348   if (words > words_remaining()) {
3349     return ParMarkBitMap::would_overflow;
3350   }
3351 
3352   // The start_array must be updated even if the object is not moving.
3353   if (_start_array != NULL) {
3354     _start_array->allocate_block(destination());
3355   }
3356 
3357   if (destination() != source()) {
3358     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3359     Copy::aligned_conjoint_words(source(), destination(), words);
3360   }
3361 
3362   oop moved_oop = (oop) destination();
3363   moved_oop->update_contents(compaction_manager());
3364   assert(moved_oop->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop)));
3365 
3366   update_state(words);
3367   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3368   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3369 }
3370 
3371 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3372                                      ParCompactionManager* cm,
3373                                      PSParallelCompact::SpaceId space_id) :
3374   ParMarkBitMapClosure(mbm, cm),
3375   _space_id(space_id),
3376   _start_array(PSParallelCompact::start_array(space_id))
3377 {
3378 }
3379 
3380 // Updates the references in the object to their new values.
3381 ParMarkBitMapClosure::IterationStatus
3382 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3383   do_addr(addr);
3384   return ParMarkBitMap::incomplete;
3385 }