1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/codeCacheExtensions.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/gcId.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "gc/shared/referencePendingListLocker.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jvmtifiles/jvmtiEnv.hpp"
  44 #include "logging/log.hpp"
  45 #include "logging/logConfiguration.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/universe.inline.hpp"
  49 #include "oops/instanceKlass.hpp"
  50 #include "oops/objArrayOop.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/symbol.hpp"
  53 #include "oops/verifyOopClosure.hpp"
  54 #include "prims/jvm_misc.hpp"
  55 #include "prims/jvmtiExport.hpp"
  56 #include "prims/jvmtiThreadState.hpp"
  57 #include "prims/privilegedStack.hpp"
  58 #include "runtime/arguments.hpp"
  59 #include "runtime/atomic.inline.hpp"
  60 #include "runtime/biasedLocking.hpp"
  61 #include "runtime/commandLineFlagConstraintList.hpp"
  62 #include "runtime/commandLineFlagRangeList.hpp"
  63 #include "runtime/deoptimization.hpp"
  64 #include "runtime/fprofiler.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/globals.hpp"
  67 #include "runtime/init.hpp"
  68 #include "runtime/interfaceSupport.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/jniPeriodicChecker.hpp"
  72 #include "runtime/timerTrace.hpp"
  73 #include "runtime/memprofiler.hpp"
  74 #include "runtime/mutexLocker.hpp"
  75 #include "runtime/objectMonitor.hpp"
  76 #include "runtime/orderAccess.inline.hpp"
  77 #include "runtime/osThread.hpp"
  78 #include "runtime/safepoint.hpp"
  79 #include "runtime/sharedRuntime.hpp"
  80 #include "runtime/statSampler.hpp"
  81 #include "runtime/stubRoutines.hpp"
  82 #include "runtime/sweeper.hpp"
  83 #include "runtime/task.hpp"
  84 #include "runtime/thread.inline.hpp"
  85 #include "runtime/threadCritical.hpp"
  86 #include "runtime/vframe.hpp"
  87 #include "runtime/vframeArray.hpp"
  88 #include "runtime/vframe_hp.hpp"
  89 #include "runtime/vmThread.hpp"
  90 #include "runtime/vm_operations.hpp"
  91 #include "runtime/vm_version.hpp"
  92 #include "services/attachListener.hpp"
  93 #include "services/management.hpp"
  94 #include "services/memTracker.hpp"
  95 #include "services/threadService.hpp"
  96 #include "trace/traceMacros.hpp"
  97 #include "trace/tracing.hpp"
  98 #include "utilities/defaultStream.hpp"
  99 #include "utilities/dtrace.hpp"
 100 #include "utilities/events.hpp"
 101 #include "utilities/macros.hpp"
 102 #include "utilities/preserveException.hpp"
 103 #if INCLUDE_ALL_GCS
 104 #include "gc/cms/concurrentMarkSweepThread.hpp"
 105 #include "gc/g1/concurrentMarkThread.inline.hpp"
 106 #include "gc/parallel/pcTasks.hpp"
 107 #endif // INCLUDE_ALL_GCS
 108 #if INCLUDE_JVMCI
 109 #include "jvmci/jvmciCompiler.hpp"
 110 #include "jvmci/jvmciRuntime.hpp"
 111 #endif
 112 #ifdef COMPILER1
 113 #include "c1/c1_Compiler.hpp"
 114 #endif
 115 #ifdef COMPILER2
 116 #include "opto/c2compiler.hpp"
 117 #include "opto/idealGraphPrinter.hpp"
 118 #endif
 119 #if INCLUDE_RTM_OPT
 120 #include "runtime/rtmLocking.hpp"
 121 #endif
 122 
 123 // Initialization after module runtime initialization
 124 void universe_post_module_init();  // must happen after call_initPhase2
 125 
 126 #ifdef DTRACE_ENABLED
 127 
 128 // Only bother with this argument setup if dtrace is available
 129 
 130   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 131   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 132 
 133   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 134     {                                                                      \
 135       ResourceMark rm(this);                                               \
 136       int len = 0;                                                         \
 137       const char* name = (javathread)->get_thread_name();                  \
 138       len = strlen(name);                                                  \
 139       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 140         (char *) name, len,                                                \
 141         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 142         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 143         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 144     }
 145 
 146 #else //  ndef DTRACE_ENABLED
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)
 149 
 150 #endif // ndef DTRACE_ENABLED
 151 
 152 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 153 // Current thread is maintained as a thread-local variable
 154 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 155 #endif
 156 
 157 // Class hierarchy
 158 // - Thread
 159 //   - VMThread
 160 //   - WatcherThread
 161 //   - ConcurrentMarkSweepThread
 162 //   - JavaThread
 163 //     - CompilerThread
 164 
 165 // ======= Thread ========
 166 // Support for forcing alignment of thread objects for biased locking
 167 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 168   if (UseBiasedLocking) {
 169     const int alignment = markOopDesc::biased_lock_alignment;
 170     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 171     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 172                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 173                                                          AllocFailStrategy::RETURN_NULL);
 174     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 175     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 176            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 177            "JavaThread alignment code overflowed allocated storage");
 178     if (aligned_addr != real_malloc_addr) {
 179       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 180                               p2i(real_malloc_addr),
 181                               p2i(aligned_addr));
 182     }
 183     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 184     return aligned_addr;
 185   } else {
 186     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 187                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 188   }
 189 }
 190 
 191 void Thread::operator delete(void* p) {
 192   if (UseBiasedLocking) {
 193     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 194     FreeHeap(real_malloc_addr);
 195   } else {
 196     FreeHeap(p);
 197   }
 198 }
 199 
 200 
 201 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 202 // JavaThread
 203 
 204 
 205 Thread::Thread() {
 206   // stack and get_thread
 207   set_stack_base(NULL);
 208   set_stack_size(0);
 209   set_self_raw_id(0);
 210   set_lgrp_id(-1);
 211   DEBUG_ONLY(clear_suspendible_thread();)
 212 
 213   // allocated data structures
 214   set_osthread(NULL);
 215   set_resource_area(new (mtThread)ResourceArea());
 216   DEBUG_ONLY(_current_resource_mark = NULL;)
 217   set_handle_area(new (mtThread) HandleArea(NULL));
 218   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 219   set_active_handles(NULL);
 220   set_free_handle_block(NULL);
 221   set_last_handle_mark(NULL);
 222 
 223   // This initial value ==> never claimed.
 224   _oops_do_parity = 0;
 225 
 226   // the handle mark links itself to last_handle_mark
 227   new HandleMark(this);
 228 
 229   // plain initialization
 230   debug_only(_owned_locks = NULL;)
 231   debug_only(_allow_allocation_count = 0;)
 232   NOT_PRODUCT(_allow_safepoint_count = 0;)
 233   NOT_PRODUCT(_skip_gcalot = false;)
 234   _jvmti_env_iteration_count = 0;
 235   set_allocated_bytes(0);
 236   _vm_operation_started_count = 0;
 237   _vm_operation_completed_count = 0;
 238   _current_pending_monitor = NULL;
 239   _current_pending_monitor_is_from_java = true;
 240   _current_waiting_monitor = NULL;
 241   _num_nested_signal = 0;
 242   omFreeList = NULL;
 243   omFreeCount = 0;
 244   omFreeProvision = 32;
 245   omInUseList = NULL;
 246   omInUseCount = 0;
 247 
 248 #ifdef ASSERT
 249   _visited_for_critical_count = false;
 250 #endif
 251 
 252   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 253                          Monitor::_safepoint_check_sometimes);
 254   _suspend_flags = 0;
 255 
 256   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 257   _hashStateX = os::random();
 258   _hashStateY = 842502087;
 259   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 260   _hashStateW = 273326509;
 261 
 262   _OnTrap   = 0;
 263   _schedctl = NULL;
 264   _Stalled  = 0;
 265   _TypeTag  = 0x2BAD;
 266 
 267   // Many of the following fields are effectively final - immutable
 268   // Note that nascent threads can't use the Native Monitor-Mutex
 269   // construct until the _MutexEvent is initialized ...
 270   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 271   // we might instead use a stack of ParkEvents that we could provision on-demand.
 272   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 273   // and ::Release()
 274   _ParkEvent   = ParkEvent::Allocate(this);
 275   _SleepEvent  = ParkEvent::Allocate(this);
 276   _MutexEvent  = ParkEvent::Allocate(this);
 277   _MuxEvent    = ParkEvent::Allocate(this);
 278 
 279 #ifdef CHECK_UNHANDLED_OOPS
 280   if (CheckUnhandledOops) {
 281     _unhandled_oops = new UnhandledOops(this);
 282   }
 283 #endif // CHECK_UNHANDLED_OOPS
 284 #ifdef ASSERT
 285   if (UseBiasedLocking) {
 286     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 287     assert(this == _real_malloc_address ||
 288            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 289            "bug in forced alignment of thread objects");
 290   }
 291 #endif // ASSERT
 292 }
 293 
 294 void Thread::initialize_thread_current() {
 295 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 296   assert(_thr_current == NULL, "Thread::current already initialized");
 297   _thr_current = this;
 298 #endif
 299   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 300   ThreadLocalStorage::set_thread(this);
 301   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 302 }
 303 
 304 void Thread::clear_thread_current() {
 305   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 306 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 307   _thr_current = NULL;
 308 #endif
 309   ThreadLocalStorage::set_thread(NULL);
 310 }
 311 
 312 void Thread::record_stack_base_and_size() {
 313   set_stack_base(os::current_stack_base());
 314   set_stack_size(os::current_stack_size());
 315   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 316   // in initialize_thread(). Without the adjustment, stack size is
 317   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 318   // So far, only Solaris has real implementation of initialize_thread().
 319   //
 320   // set up any platform-specific state.
 321   os::initialize_thread(this);
 322 
 323   // Set stack limits after thread is initialized.
 324   if (is_Java_thread()) {
 325     ((JavaThread*) this)->set_stack_overflow_limit();
 326     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 327   }
 328 #if INCLUDE_NMT
 329   // record thread's native stack, stack grows downward
 330   MemTracker::record_thread_stack(stack_end(), stack_size());
 331 #endif // INCLUDE_NMT
 332   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 333     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 334     os::current_thread_id(), p2i(stack_base() - stack_size()),
 335     p2i(stack_base()), stack_size()/1024);
 336 }
 337 
 338 
 339 Thread::~Thread() {
 340   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 341   ObjectSynchronizer::omFlush(this);
 342 
 343   EVENT_THREAD_DESTRUCT(this);
 344 
 345   // stack_base can be NULL if the thread is never started or exited before
 346   // record_stack_base_and_size called. Although, we would like to ensure
 347   // that all started threads do call record_stack_base_and_size(), there is
 348   // not proper way to enforce that.
 349 #if INCLUDE_NMT
 350   if (_stack_base != NULL) {
 351     MemTracker::release_thread_stack(stack_end(), stack_size());
 352 #ifdef ASSERT
 353     set_stack_base(NULL);
 354 #endif
 355   }
 356 #endif // INCLUDE_NMT
 357 
 358   // deallocate data structures
 359   delete resource_area();
 360   // since the handle marks are using the handle area, we have to deallocated the root
 361   // handle mark before deallocating the thread's handle area,
 362   assert(last_handle_mark() != NULL, "check we have an element");
 363   delete last_handle_mark();
 364   assert(last_handle_mark() == NULL, "check we have reached the end");
 365 
 366   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 367   // We NULL out the fields for good hygiene.
 368   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 369   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 370   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 371   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 372 
 373   delete handle_area();
 374   delete metadata_handles();
 375 
 376   // osthread() can be NULL, if creation of thread failed.
 377   if (osthread() != NULL) os::free_thread(osthread());
 378 
 379   delete _SR_lock;
 380 
 381   // clear Thread::current if thread is deleting itself.
 382   // Needed to ensure JNI correctly detects non-attached threads.
 383   if (this == Thread::current()) {
 384     clear_thread_current();
 385   }
 386 
 387   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 388 }
 389 
 390 // NOTE: dummy function for assertion purpose.
 391 void Thread::run() {
 392   ShouldNotReachHere();
 393 }
 394 
 395 #ifdef ASSERT
 396 // Private method to check for dangling thread pointer
 397 void check_for_dangling_thread_pointer(Thread *thread) {
 398   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 399          "possibility of dangling Thread pointer");
 400 }
 401 #endif
 402 
 403 ThreadPriority Thread::get_priority(const Thread* const thread) {
 404   ThreadPriority priority;
 405   // Can return an error!
 406   (void)os::get_priority(thread, priority);
 407   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 408   return priority;
 409 }
 410 
 411 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 412   debug_only(check_for_dangling_thread_pointer(thread);)
 413   // Can return an error!
 414   (void)os::set_priority(thread, priority);
 415 }
 416 
 417 
 418 void Thread::start(Thread* thread) {
 419   // Start is different from resume in that its safety is guaranteed by context or
 420   // being called from a Java method synchronized on the Thread object.
 421   if (!DisableStartThread) {
 422     if (thread->is_Java_thread()) {
 423       // Initialize the thread state to RUNNABLE before starting this thread.
 424       // Can not set it after the thread started because we do not know the
 425       // exact thread state at that time. It could be in MONITOR_WAIT or
 426       // in SLEEPING or some other state.
 427       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 428                                           java_lang_Thread::RUNNABLE);
 429     }
 430     os::start_thread(thread);
 431   }
 432 }
 433 
 434 // Enqueue a VM_Operation to do the job for us - sometime later
 435 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 436   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 437   VMThread::execute(vm_stop);
 438 }
 439 
 440 
 441 // Check if an external suspend request has completed (or has been
 442 // cancelled). Returns true if the thread is externally suspended and
 443 // false otherwise.
 444 //
 445 // The bits parameter returns information about the code path through
 446 // the routine. Useful for debugging:
 447 //
 448 // set in is_ext_suspend_completed():
 449 // 0x00000001 - routine was entered
 450 // 0x00000010 - routine return false at end
 451 // 0x00000100 - thread exited (return false)
 452 // 0x00000200 - suspend request cancelled (return false)
 453 // 0x00000400 - thread suspended (return true)
 454 // 0x00001000 - thread is in a suspend equivalent state (return true)
 455 // 0x00002000 - thread is native and walkable (return true)
 456 // 0x00004000 - thread is native_trans and walkable (needed retry)
 457 //
 458 // set in wait_for_ext_suspend_completion():
 459 // 0x00010000 - routine was entered
 460 // 0x00020000 - suspend request cancelled before loop (return false)
 461 // 0x00040000 - thread suspended before loop (return true)
 462 // 0x00080000 - suspend request cancelled in loop (return false)
 463 // 0x00100000 - thread suspended in loop (return true)
 464 // 0x00200000 - suspend not completed during retry loop (return false)
 465 
 466 // Helper class for tracing suspend wait debug bits.
 467 //
 468 // 0x00000100 indicates that the target thread exited before it could
 469 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 470 // 0x00080000 each indicate a cancelled suspend request so they don't
 471 // count as wait failures either.
 472 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 473 
 474 class TraceSuspendDebugBits : public StackObj {
 475  private:
 476   JavaThread * jt;
 477   bool         is_wait;
 478   bool         called_by_wait;  // meaningful when !is_wait
 479   uint32_t *   bits;
 480 
 481  public:
 482   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 483                         uint32_t *_bits) {
 484     jt             = _jt;
 485     is_wait        = _is_wait;
 486     called_by_wait = _called_by_wait;
 487     bits           = _bits;
 488   }
 489 
 490   ~TraceSuspendDebugBits() {
 491     if (!is_wait) {
 492 #if 1
 493       // By default, don't trace bits for is_ext_suspend_completed() calls.
 494       // That trace is very chatty.
 495       return;
 496 #else
 497       if (!called_by_wait) {
 498         // If tracing for is_ext_suspend_completed() is enabled, then only
 499         // trace calls to it from wait_for_ext_suspend_completion()
 500         return;
 501       }
 502 #endif
 503     }
 504 
 505     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 506       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 507         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 508         ResourceMark rm;
 509 
 510         tty->print_cr(
 511                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 512                       jt->get_thread_name(), *bits);
 513 
 514         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 515       }
 516     }
 517   }
 518 };
 519 #undef DEBUG_FALSE_BITS
 520 
 521 
 522 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 523                                           uint32_t *bits) {
 524   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 525 
 526   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 527   bool do_trans_retry;           // flag to force the retry
 528 
 529   *bits |= 0x00000001;
 530 
 531   do {
 532     do_trans_retry = false;
 533 
 534     if (is_exiting()) {
 535       // Thread is in the process of exiting. This is always checked
 536       // first to reduce the risk of dereferencing a freed JavaThread.
 537       *bits |= 0x00000100;
 538       return false;
 539     }
 540 
 541     if (!is_external_suspend()) {
 542       // Suspend request is cancelled. This is always checked before
 543       // is_ext_suspended() to reduce the risk of a rogue resume
 544       // confusing the thread that made the suspend request.
 545       *bits |= 0x00000200;
 546       return false;
 547     }
 548 
 549     if (is_ext_suspended()) {
 550       // thread is suspended
 551       *bits |= 0x00000400;
 552       return true;
 553     }
 554 
 555     // Now that we no longer do hard suspends of threads running
 556     // native code, the target thread can be changing thread state
 557     // while we are in this routine:
 558     //
 559     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 560     //
 561     // We save a copy of the thread state as observed at this moment
 562     // and make our decision about suspend completeness based on the
 563     // copy. This closes the race where the thread state is seen as
 564     // _thread_in_native_trans in the if-thread_blocked check, but is
 565     // seen as _thread_blocked in if-thread_in_native_trans check.
 566     JavaThreadState save_state = thread_state();
 567 
 568     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 569       // If the thread's state is _thread_blocked and this blocking
 570       // condition is known to be equivalent to a suspend, then we can
 571       // consider the thread to be externally suspended. This means that
 572       // the code that sets _thread_blocked has been modified to do
 573       // self-suspension if the blocking condition releases. We also
 574       // used to check for CONDVAR_WAIT here, but that is now covered by
 575       // the _thread_blocked with self-suspension check.
 576       //
 577       // Return true since we wouldn't be here unless there was still an
 578       // external suspend request.
 579       *bits |= 0x00001000;
 580       return true;
 581     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 582       // Threads running native code will self-suspend on native==>VM/Java
 583       // transitions. If its stack is walkable (should always be the case
 584       // unless this function is called before the actual java_suspend()
 585       // call), then the wait is done.
 586       *bits |= 0x00002000;
 587       return true;
 588     } else if (!called_by_wait && !did_trans_retry &&
 589                save_state == _thread_in_native_trans &&
 590                frame_anchor()->walkable()) {
 591       // The thread is transitioning from thread_in_native to another
 592       // thread state. check_safepoint_and_suspend_for_native_trans()
 593       // will force the thread to self-suspend. If it hasn't gotten
 594       // there yet we may have caught the thread in-between the native
 595       // code check above and the self-suspend. Lucky us. If we were
 596       // called by wait_for_ext_suspend_completion(), then it
 597       // will be doing the retries so we don't have to.
 598       //
 599       // Since we use the saved thread state in the if-statement above,
 600       // there is a chance that the thread has already transitioned to
 601       // _thread_blocked by the time we get here. In that case, we will
 602       // make a single unnecessary pass through the logic below. This
 603       // doesn't hurt anything since we still do the trans retry.
 604 
 605       *bits |= 0x00004000;
 606 
 607       // Once the thread leaves thread_in_native_trans for another
 608       // thread state, we break out of this retry loop. We shouldn't
 609       // need this flag to prevent us from getting back here, but
 610       // sometimes paranoia is good.
 611       did_trans_retry = true;
 612 
 613       // We wait for the thread to transition to a more usable state.
 614       for (int i = 1; i <= SuspendRetryCount; i++) {
 615         // We used to do an "os::yield_all(i)" call here with the intention
 616         // that yielding would increase on each retry. However, the parameter
 617         // is ignored on Linux which means the yield didn't scale up. Waiting
 618         // on the SR_lock below provides a much more predictable scale up for
 619         // the delay. It also provides a simple/direct point to check for any
 620         // safepoint requests from the VMThread
 621 
 622         // temporarily drops SR_lock while doing wait with safepoint check
 623         // (if we're a JavaThread - the WatcherThread can also call this)
 624         // and increase delay with each retry
 625         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 626 
 627         // check the actual thread state instead of what we saved above
 628         if (thread_state() != _thread_in_native_trans) {
 629           // the thread has transitioned to another thread state so
 630           // try all the checks (except this one) one more time.
 631           do_trans_retry = true;
 632           break;
 633         }
 634       } // end retry loop
 635 
 636 
 637     }
 638   } while (do_trans_retry);
 639 
 640   *bits |= 0x00000010;
 641   return false;
 642 }
 643 
 644 // Wait for an external suspend request to complete (or be cancelled).
 645 // Returns true if the thread is externally suspended and false otherwise.
 646 //
 647 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 648                                                  uint32_t *bits) {
 649   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 650                              false /* !called_by_wait */, bits);
 651 
 652   // local flag copies to minimize SR_lock hold time
 653   bool is_suspended;
 654   bool pending;
 655   uint32_t reset_bits;
 656 
 657   // set a marker so is_ext_suspend_completed() knows we are the caller
 658   *bits |= 0x00010000;
 659 
 660   // We use reset_bits to reinitialize the bits value at the top of
 661   // each retry loop. This allows the caller to make use of any
 662   // unused bits for their own marking purposes.
 663   reset_bits = *bits;
 664 
 665   {
 666     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 667     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 668                                             delay, bits);
 669     pending = is_external_suspend();
 670   }
 671   // must release SR_lock to allow suspension to complete
 672 
 673   if (!pending) {
 674     // A cancelled suspend request is the only false return from
 675     // is_ext_suspend_completed() that keeps us from entering the
 676     // retry loop.
 677     *bits |= 0x00020000;
 678     return false;
 679   }
 680 
 681   if (is_suspended) {
 682     *bits |= 0x00040000;
 683     return true;
 684   }
 685 
 686   for (int i = 1; i <= retries; i++) {
 687     *bits = reset_bits;  // reinit to only track last retry
 688 
 689     // We used to do an "os::yield_all(i)" call here with the intention
 690     // that yielding would increase on each retry. However, the parameter
 691     // is ignored on Linux which means the yield didn't scale up. Waiting
 692     // on the SR_lock below provides a much more predictable scale up for
 693     // the delay. It also provides a simple/direct point to check for any
 694     // safepoint requests from the VMThread
 695 
 696     {
 697       MutexLocker ml(SR_lock());
 698       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 699       // can also call this)  and increase delay with each retry
 700       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 701 
 702       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 703                                               delay, bits);
 704 
 705       // It is possible for the external suspend request to be cancelled
 706       // (by a resume) before the actual suspend operation is completed.
 707       // Refresh our local copy to see if we still need to wait.
 708       pending = is_external_suspend();
 709     }
 710 
 711     if (!pending) {
 712       // A cancelled suspend request is the only false return from
 713       // is_ext_suspend_completed() that keeps us from staying in the
 714       // retry loop.
 715       *bits |= 0x00080000;
 716       return false;
 717     }
 718 
 719     if (is_suspended) {
 720       *bits |= 0x00100000;
 721       return true;
 722     }
 723   } // end retry loop
 724 
 725   // thread did not suspend after all our retries
 726   *bits |= 0x00200000;
 727   return false;
 728 }
 729 
 730 #ifndef PRODUCT
 731 void JavaThread::record_jump(address target, address instr, const char* file,
 732                              int line) {
 733 
 734   // This should not need to be atomic as the only way for simultaneous
 735   // updates is via interrupts. Even then this should be rare or non-existent
 736   // and we don't care that much anyway.
 737 
 738   int index = _jmp_ring_index;
 739   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 740   _jmp_ring[index]._target = (intptr_t) target;
 741   _jmp_ring[index]._instruction = (intptr_t) instr;
 742   _jmp_ring[index]._file = file;
 743   _jmp_ring[index]._line = line;
 744 }
 745 #endif // PRODUCT
 746 
 747 // Called by flat profiler
 748 // Callers have already called wait_for_ext_suspend_completion
 749 // The assertion for that is currently too complex to put here:
 750 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 751   bool gotframe = false;
 752   // self suspension saves needed state.
 753   if (has_last_Java_frame() && _anchor.walkable()) {
 754     *_fr = pd_last_frame();
 755     gotframe = true;
 756   }
 757   return gotframe;
 758 }
 759 
 760 void Thread::interrupt(Thread* thread) {
 761   debug_only(check_for_dangling_thread_pointer(thread);)
 762   os::interrupt(thread);
 763 }
 764 
 765 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 766   debug_only(check_for_dangling_thread_pointer(thread);)
 767   // Note:  If clear_interrupted==false, this simply fetches and
 768   // returns the value of the field osthread()->interrupted().
 769   return os::is_interrupted(thread, clear_interrupted);
 770 }
 771 
 772 
 773 // GC Support
 774 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 775   jint thread_parity = _oops_do_parity;
 776   if (thread_parity != strong_roots_parity) {
 777     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 778     if (res == thread_parity) {
 779       return true;
 780     } else {
 781       guarantee(res == strong_roots_parity, "Or else what?");
 782       return false;
 783     }
 784   }
 785   return false;
 786 }
 787 
 788 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 789   active_handles()->oops_do(f);
 790   // Do oop for ThreadShadow
 791   f->do_oop((oop*)&_pending_exception);
 792   handle_area()->oops_do(f);
 793 }
 794 
 795 void Thread::nmethods_do(CodeBlobClosure* cf) {
 796   // no nmethods in a generic thread...
 797 }
 798 
 799 void Thread::metadata_handles_do(void f(Metadata*)) {
 800   // Only walk the Handles in Thread.
 801   if (metadata_handles() != NULL) {
 802     for (int i = 0; i< metadata_handles()->length(); i++) {
 803       f(metadata_handles()->at(i));
 804     }
 805   }
 806 }
 807 
 808 void Thread::print_on(outputStream* st) const {
 809   // get_priority assumes osthread initialized
 810   if (osthread() != NULL) {
 811     int os_prio;
 812     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 813       st->print("os_prio=%d ", os_prio);
 814     }
 815     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 816     ext().print_on(st);
 817     osthread()->print_on(st);
 818   }
 819   debug_only(if (WizardMode) print_owned_locks_on(st);)
 820 }
 821 
 822 // Thread::print_on_error() is called by fatal error handler. Don't use
 823 // any lock or allocate memory.
 824 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 825   if (is_VM_thread())                 st->print("VMThread");
 826   else if (is_Compiler_thread())      st->print("CompilerThread");
 827   else if (is_Java_thread())          st->print("JavaThread");
 828   else if (is_GC_task_thread())       st->print("GCTaskThread");
 829   else if (is_Watcher_thread())       st->print("WatcherThread");
 830   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 831   else                                st->print("Thread");
 832 
 833   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 834             p2i(stack_end()), p2i(stack_base()));
 835 
 836   if (osthread()) {
 837     st->print(" [id=%d]", osthread()->thread_id());
 838   }
 839 }
 840 
 841 #ifdef ASSERT
 842 void Thread::print_owned_locks_on(outputStream* st) const {
 843   Monitor *cur = _owned_locks;
 844   if (cur == NULL) {
 845     st->print(" (no locks) ");
 846   } else {
 847     st->print_cr(" Locks owned:");
 848     while (cur) {
 849       cur->print_on(st);
 850       cur = cur->next();
 851     }
 852   }
 853 }
 854 
 855 static int ref_use_count  = 0;
 856 
 857 bool Thread::owns_locks_but_compiled_lock() const {
 858   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 859     if (cur != Compile_lock) return true;
 860   }
 861   return false;
 862 }
 863 
 864 
 865 #endif
 866 
 867 #ifndef PRODUCT
 868 
 869 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 870 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 871 // no threads which allow_vm_block's are held
 872 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 873   // Check if current thread is allowed to block at a safepoint
 874   if (!(_allow_safepoint_count == 0)) {
 875     fatal("Possible safepoint reached by thread that does not allow it");
 876   }
 877   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 878     fatal("LEAF method calling lock?");
 879   }
 880 
 881 #ifdef ASSERT
 882   if (potential_vm_operation && is_Java_thread()
 883       && !Universe::is_bootstrapping()) {
 884     // Make sure we do not hold any locks that the VM thread also uses.
 885     // This could potentially lead to deadlocks
 886     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 887       // Threads_lock is special, since the safepoint synchronization will not start before this is
 888       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 889       // since it is used to transfer control between JavaThreads and the VMThread
 890       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 891       if ((cur->allow_vm_block() &&
 892            cur != Threads_lock &&
 893            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 894            cur != VMOperationRequest_lock &&
 895            cur != VMOperationQueue_lock) ||
 896            cur->rank() == Mutex::special) {
 897         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 898       }
 899     }
 900   }
 901 
 902   if (GCALotAtAllSafepoints) {
 903     // We could enter a safepoint here and thus have a gc
 904     InterfaceSupport::check_gc_alot();
 905   }
 906 #endif
 907 }
 908 #endif
 909 
 910 bool Thread::is_in_stack(address adr) const {
 911   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 912   address end = os::current_stack_pointer();
 913   // Allow non Java threads to call this without stack_base
 914   if (_stack_base == NULL) return true;
 915   if (stack_base() >= adr && adr >= end) return true;
 916 
 917   return false;
 918 }
 919 
 920 bool Thread::is_in_usable_stack(address adr) const {
 921   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 922   size_t usable_stack_size = _stack_size - stack_guard_size;
 923 
 924   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 925 }
 926 
 927 
 928 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 929 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 930 // used for compilation in the future. If that change is made, the need for these methods
 931 // should be revisited, and they should be removed if possible.
 932 
 933 bool Thread::is_lock_owned(address adr) const {
 934   return on_local_stack(adr);
 935 }
 936 
 937 bool Thread::set_as_starting_thread() {
 938   // NOTE: this must be called inside the main thread.
 939   return os::create_main_thread((JavaThread*)this);
 940 }
 941 
 942 static void initialize_class(Symbol* class_name, TRAPS) {
 943   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 944   InstanceKlass::cast(klass)->initialize(CHECK);
 945 }
 946 
 947 
 948 // Creates the initial ThreadGroup
 949 static Handle create_initial_thread_group(TRAPS) {
 950   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 951   instanceKlassHandle klass (THREAD, k);
 952 
 953   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 954   {
 955     JavaValue result(T_VOID);
 956     JavaCalls::call_special(&result,
 957                             system_instance,
 958                             klass,
 959                             vmSymbols::object_initializer_name(),
 960                             vmSymbols::void_method_signature(),
 961                             CHECK_NH);
 962   }
 963   Universe::set_system_thread_group(system_instance());
 964 
 965   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 966   {
 967     JavaValue result(T_VOID);
 968     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 969     JavaCalls::call_special(&result,
 970                             main_instance,
 971                             klass,
 972                             vmSymbols::object_initializer_name(),
 973                             vmSymbols::threadgroup_string_void_signature(),
 974                             system_instance,
 975                             string,
 976                             CHECK_NH);
 977   }
 978   return main_instance;
 979 }
 980 
 981 // Creates the initial Thread
 982 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 983                                  TRAPS) {
 984   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 985   instanceKlassHandle klass (THREAD, k);
 986   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 987 
 988   java_lang_Thread::set_thread(thread_oop(), thread);
 989   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 990   thread->set_threadObj(thread_oop());
 991 
 992   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 993 
 994   JavaValue result(T_VOID);
 995   JavaCalls::call_special(&result, thread_oop,
 996                           klass,
 997                           vmSymbols::object_initializer_name(),
 998                           vmSymbols::threadgroup_string_void_signature(),
 999                           thread_group,
1000                           string,
1001                           CHECK_NULL);
1002   os::set_native_thread_name("main");
1003   return thread_oop();
1004 }
1005 
1006 char java_runtime_name[128] = "";
1007 char java_runtime_version[128] = "";
1008 
1009 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1010 static const char* get_java_runtime_name(TRAPS) {
1011   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1012                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1013   fieldDescriptor fd;
1014   bool found = k != NULL &&
1015                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1016                                                         vmSymbols::string_signature(), &fd);
1017   if (found) {
1018     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1019     if (name_oop == NULL) {
1020       return NULL;
1021     }
1022     const char* name = java_lang_String::as_utf8_string(name_oop,
1023                                                         java_runtime_name,
1024                                                         sizeof(java_runtime_name));
1025     return name;
1026   } else {
1027     return NULL;
1028   }
1029 }
1030 
1031 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1032 static const char* get_java_runtime_version(TRAPS) {
1033   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1034                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1035   fieldDescriptor fd;
1036   bool found = k != NULL &&
1037                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1038                                                         vmSymbols::string_signature(), &fd);
1039   if (found) {
1040     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1041     if (name_oop == NULL) {
1042       return NULL;
1043     }
1044     const char* name = java_lang_String::as_utf8_string(name_oop,
1045                                                         java_runtime_version,
1046                                                         sizeof(java_runtime_version));
1047     return name;
1048   } else {
1049     return NULL;
1050   }
1051 }
1052 
1053 // General purpose hook into Java code, run once when the VM is initialized.
1054 // The Java library method itself may be changed independently from the VM.
1055 static void call_postVMInitHook(TRAPS) {
1056   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1057   instanceKlassHandle klass (THREAD, k);
1058   if (klass.not_null()) {
1059     JavaValue result(T_VOID);
1060     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1061                            vmSymbols::void_method_signature(),
1062                            CHECK);
1063   }
1064 }
1065 
1066 static void reset_vm_info_property(TRAPS) {
1067   // the vm info string
1068   ResourceMark rm(THREAD);
1069   const char *vm_info = VM_Version::vm_info_string();
1070 
1071   // java.lang.System class
1072   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1073   instanceKlassHandle klass (THREAD, k);
1074 
1075   // setProperty arguments
1076   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1077   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1078 
1079   // return value
1080   JavaValue r(T_OBJECT);
1081 
1082   // public static String setProperty(String key, String value);
1083   JavaCalls::call_static(&r,
1084                          klass,
1085                          vmSymbols::setProperty_name(),
1086                          vmSymbols::string_string_string_signature(),
1087                          key_str,
1088                          value_str,
1089                          CHECK);
1090 }
1091 
1092 
1093 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1094                                     bool daemon, TRAPS) {
1095   assert(thread_group.not_null(), "thread group should be specified");
1096   assert(threadObj() == NULL, "should only create Java thread object once");
1097 
1098   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1099   instanceKlassHandle klass (THREAD, k);
1100   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1101 
1102   java_lang_Thread::set_thread(thread_oop(), this);
1103   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1104   set_threadObj(thread_oop());
1105 
1106   JavaValue result(T_VOID);
1107   if (thread_name != NULL) {
1108     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1109     // Thread gets assigned specified name and null target
1110     JavaCalls::call_special(&result,
1111                             thread_oop,
1112                             klass,
1113                             vmSymbols::object_initializer_name(),
1114                             vmSymbols::threadgroup_string_void_signature(),
1115                             thread_group, // Argument 1
1116                             name,         // Argument 2
1117                             THREAD);
1118   } else {
1119     // Thread gets assigned name "Thread-nnn" and null target
1120     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1121     JavaCalls::call_special(&result,
1122                             thread_oop,
1123                             klass,
1124                             vmSymbols::object_initializer_name(),
1125                             vmSymbols::threadgroup_runnable_void_signature(),
1126                             thread_group, // Argument 1
1127                             Handle(),     // Argument 2
1128                             THREAD);
1129   }
1130 
1131 
1132   if (daemon) {
1133     java_lang_Thread::set_daemon(thread_oop());
1134   }
1135 
1136   if (HAS_PENDING_EXCEPTION) {
1137     return;
1138   }
1139 
1140   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1141   Handle threadObj(THREAD, this->threadObj());
1142 
1143   JavaCalls::call_special(&result,
1144                           thread_group,
1145                           group,
1146                           vmSymbols::add_method_name(),
1147                           vmSymbols::thread_void_signature(),
1148                           threadObj,          // Arg 1
1149                           THREAD);
1150 }
1151 
1152 // NamedThread --  non-JavaThread subclasses with multiple
1153 // uniquely named instances should derive from this.
1154 NamedThread::NamedThread() : Thread() {
1155   _name = NULL;
1156   _processed_thread = NULL;
1157   _gc_id = GCId::undefined();
1158 }
1159 
1160 NamedThread::~NamedThread() {
1161   if (_name != NULL) {
1162     FREE_C_HEAP_ARRAY(char, _name);
1163     _name = NULL;
1164   }
1165 }
1166 
1167 void NamedThread::set_name(const char* format, ...) {
1168   guarantee(_name == NULL, "Only get to set name once.");
1169   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1170   guarantee(_name != NULL, "alloc failure");
1171   va_list ap;
1172   va_start(ap, format);
1173   jio_vsnprintf(_name, max_name_len, format, ap);
1174   va_end(ap);
1175 }
1176 
1177 void NamedThread::initialize_named_thread() {
1178   set_native_thread_name(name());
1179 }
1180 
1181 void NamedThread::print_on(outputStream* st) const {
1182   st->print("\"%s\" ", name());
1183   Thread::print_on(st);
1184   st->cr();
1185 }
1186 
1187 
1188 // ======= WatcherThread ========
1189 
1190 // The watcher thread exists to simulate timer interrupts.  It should
1191 // be replaced by an abstraction over whatever native support for
1192 // timer interrupts exists on the platform.
1193 
1194 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1195 bool WatcherThread::_startable = false;
1196 volatile bool  WatcherThread::_should_terminate = false;
1197 
1198 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1199   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1200   if (os::create_thread(this, os::watcher_thread)) {
1201     _watcher_thread = this;
1202 
1203     // Set the watcher thread to the highest OS priority which should not be
1204     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1205     // is created. The only normal thread using this priority is the reference
1206     // handler thread, which runs for very short intervals only.
1207     // If the VMThread's priority is not lower than the WatcherThread profiling
1208     // will be inaccurate.
1209     os::set_priority(this, MaxPriority);
1210     if (!DisableStartThread) {
1211       os::start_thread(this);
1212     }
1213   }
1214 }
1215 
1216 int WatcherThread::sleep() const {
1217   // The WatcherThread does not participate in the safepoint protocol
1218   // for the PeriodicTask_lock because it is not a JavaThread.
1219   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1220 
1221   if (_should_terminate) {
1222     // check for termination before we do any housekeeping or wait
1223     return 0;  // we did not sleep.
1224   }
1225 
1226   // remaining will be zero if there are no tasks,
1227   // causing the WatcherThread to sleep until a task is
1228   // enrolled
1229   int remaining = PeriodicTask::time_to_wait();
1230   int time_slept = 0;
1231 
1232   // we expect this to timeout - we only ever get unparked when
1233   // we should terminate or when a new task has been enrolled
1234   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1235 
1236   jlong time_before_loop = os::javaTimeNanos();
1237 
1238   while (true) {
1239     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1240                                             remaining);
1241     jlong now = os::javaTimeNanos();
1242 
1243     if (remaining == 0) {
1244       // if we didn't have any tasks we could have waited for a long time
1245       // consider the time_slept zero and reset time_before_loop
1246       time_slept = 0;
1247       time_before_loop = now;
1248     } else {
1249       // need to recalculate since we might have new tasks in _tasks
1250       time_slept = (int) ((now - time_before_loop) / 1000000);
1251     }
1252 
1253     // Change to task list or spurious wakeup of some kind
1254     if (timedout || _should_terminate) {
1255       break;
1256     }
1257 
1258     remaining = PeriodicTask::time_to_wait();
1259     if (remaining == 0) {
1260       // Last task was just disenrolled so loop around and wait until
1261       // another task gets enrolled
1262       continue;
1263     }
1264 
1265     remaining -= time_slept;
1266     if (remaining <= 0) {
1267       break;
1268     }
1269   }
1270 
1271   return time_slept;
1272 }
1273 
1274 void WatcherThread::run() {
1275   assert(this == watcher_thread(), "just checking");
1276 
1277   this->record_stack_base_and_size();
1278   this->set_native_thread_name(this->name());
1279   this->set_active_handles(JNIHandleBlock::allocate_block());
1280   while (true) {
1281     assert(watcher_thread() == Thread::current(), "thread consistency check");
1282     assert(watcher_thread() == this, "thread consistency check");
1283 
1284     // Calculate how long it'll be until the next PeriodicTask work
1285     // should be done, and sleep that amount of time.
1286     int time_waited = sleep();
1287 
1288     if (is_error_reported()) {
1289       // A fatal error has happened, the error handler(VMError::report_and_die)
1290       // should abort JVM after creating an error log file. However in some
1291       // rare cases, the error handler itself might deadlock. Here we try to
1292       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1293       //
1294       // This code is in WatcherThread because WatcherThread wakes up
1295       // periodically so the fatal error handler doesn't need to do anything;
1296       // also because the WatcherThread is less likely to crash than other
1297       // threads.
1298 
1299       for (;;) {
1300         if (!ShowMessageBoxOnError
1301             && (OnError == NULL || OnError[0] == '\0')
1302             && Arguments::abort_hook() == NULL) {
1303           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1304           fdStream err(defaultStream::output_fd());
1305           err.print_raw_cr("# [ timer expired, abort... ]");
1306           // skip atexit/vm_exit/vm_abort hooks
1307           os::die();
1308         }
1309 
1310         // Wake up 5 seconds later, the fatal handler may reset OnError or
1311         // ShowMessageBoxOnError when it is ready to abort.
1312         os::sleep(this, 5 * 1000, false);
1313       }
1314     }
1315 
1316     if (_should_terminate) {
1317       // check for termination before posting the next tick
1318       break;
1319     }
1320 
1321     PeriodicTask::real_time_tick(time_waited);
1322   }
1323 
1324   // Signal that it is terminated
1325   {
1326     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1327     _watcher_thread = NULL;
1328     Terminator_lock->notify();
1329   }
1330 }
1331 
1332 void WatcherThread::start() {
1333   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1334 
1335   if (watcher_thread() == NULL && _startable) {
1336     _should_terminate = false;
1337     // Create the single instance of WatcherThread
1338     new WatcherThread();
1339   }
1340 }
1341 
1342 void WatcherThread::make_startable() {
1343   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1344   _startable = true;
1345 }
1346 
1347 void WatcherThread::stop() {
1348   {
1349     // Follow normal safepoint aware lock enter protocol since the
1350     // WatcherThread is stopped by another JavaThread.
1351     MutexLocker ml(PeriodicTask_lock);
1352     _should_terminate = true;
1353 
1354     WatcherThread* watcher = watcher_thread();
1355     if (watcher != NULL) {
1356       // unpark the WatcherThread so it can see that it should terminate
1357       watcher->unpark();
1358     }
1359   }
1360 
1361   MutexLocker mu(Terminator_lock);
1362 
1363   while (watcher_thread() != NULL) {
1364     // This wait should make safepoint checks, wait without a timeout,
1365     // and wait as a suspend-equivalent condition.
1366     //
1367     // Note: If the FlatProfiler is running, then this thread is waiting
1368     // for the WatcherThread to terminate and the WatcherThread, via the
1369     // FlatProfiler task, is waiting for the external suspend request on
1370     // this thread to complete. wait_for_ext_suspend_completion() will
1371     // eventually timeout, but that takes time. Making this wait a
1372     // suspend-equivalent condition solves that timeout problem.
1373     //
1374     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1375                           Mutex::_as_suspend_equivalent_flag);
1376   }
1377 }
1378 
1379 void WatcherThread::unpark() {
1380   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1381   PeriodicTask_lock->notify();
1382 }
1383 
1384 void WatcherThread::print_on(outputStream* st) const {
1385   st->print("\"%s\" ", name());
1386   Thread::print_on(st);
1387   st->cr();
1388 }
1389 
1390 // ======= JavaThread ========
1391 
1392 #if INCLUDE_JVMCI
1393 
1394 jlong* JavaThread::_jvmci_old_thread_counters;
1395 
1396 bool jvmci_counters_include(JavaThread* thread) {
1397   oop threadObj = thread->threadObj();
1398   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1399 }
1400 
1401 void JavaThread::collect_counters(typeArrayOop array) {
1402   if (JVMCICounterSize > 0) {
1403     MutexLocker tl(Threads_lock);
1404     for (int i = 0; i < array->length(); i++) {
1405       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1406     }
1407     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1408       if (jvmci_counters_include(tp)) {
1409         for (int i = 0; i < array->length(); i++) {
1410           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1411         }
1412       }
1413     }
1414   }
1415 }
1416 
1417 #endif // INCLUDE_JVMCI
1418 
1419 // A JavaThread is a normal Java thread
1420 
1421 void JavaThread::initialize() {
1422   // Initialize fields
1423 
1424   set_saved_exception_pc(NULL);
1425   set_threadObj(NULL);
1426   _anchor.clear();
1427   set_entry_point(NULL);
1428   set_jni_functions(jni_functions());
1429   set_callee_target(NULL);
1430   set_vm_result(NULL);
1431   set_vm_result_2(NULL);
1432   set_vframe_array_head(NULL);
1433   set_vframe_array_last(NULL);
1434   set_deferred_locals(NULL);
1435   set_deopt_mark(NULL);
1436   set_deopt_nmethod(NULL);
1437   clear_must_deopt_id();
1438   set_monitor_chunks(NULL);
1439   set_next(NULL);
1440   set_thread_state(_thread_new);
1441   _terminated = _not_terminated;
1442   _privileged_stack_top = NULL;
1443   _array_for_gc = NULL;
1444   _suspend_equivalent = false;
1445   _in_deopt_handler = 0;
1446   _doing_unsafe_access = false;
1447   _stack_guard_state = stack_guard_unused;
1448 #if INCLUDE_JVMCI
1449   _pending_monitorenter = false;
1450   _pending_deoptimization = -1;
1451   _pending_failed_speculation = NULL;
1452   _pending_transfer_to_interpreter = false;
1453   _jvmci._alternate_call_target = NULL;
1454   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1455   if (JVMCICounterSize > 0) {
1456     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1457     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1458   } else {
1459     _jvmci_counters = NULL;
1460   }
1461 #endif // INCLUDE_JVMCI
1462   _reserved_stack_activation = NULL;  // stack base not known yet
1463   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1464   _exception_pc  = 0;
1465   _exception_handler_pc = 0;
1466   _is_method_handle_return = 0;
1467   _jvmti_thread_state= NULL;
1468   _should_post_on_exceptions_flag = JNI_FALSE;
1469   _jvmti_get_loaded_classes_closure = NULL;
1470   _interp_only_mode    = 0;
1471   _special_runtime_exit_condition = _no_async_condition;
1472   _pending_async_exception = NULL;
1473   _thread_stat = NULL;
1474   _thread_stat = new ThreadStatistics();
1475   _blocked_on_compilation = false;
1476   _jni_active_critical = 0;
1477   _pending_jni_exception_check_fn = NULL;
1478   _do_not_unlock_if_synchronized = false;
1479   _cached_monitor_info = NULL;
1480   _parker = Parker::Allocate(this);
1481 
1482 #ifndef PRODUCT
1483   _jmp_ring_index = 0;
1484   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1485     record_jump(NULL, NULL, NULL, 0);
1486   }
1487 #endif // PRODUCT
1488 
1489   set_thread_profiler(NULL);
1490   if (FlatProfiler::is_active()) {
1491     // This is where we would decide to either give each thread it's own profiler
1492     // or use one global one from FlatProfiler,
1493     // or up to some count of the number of profiled threads, etc.
1494     ThreadProfiler* pp = new ThreadProfiler();
1495     pp->engage();
1496     set_thread_profiler(pp);
1497   }
1498 
1499   // Setup safepoint state info for this thread
1500   ThreadSafepointState::create(this);
1501 
1502   debug_only(_java_call_counter = 0);
1503 
1504   // JVMTI PopFrame support
1505   _popframe_condition = popframe_inactive;
1506   _popframe_preserved_args = NULL;
1507   _popframe_preserved_args_size = 0;
1508   _frames_to_pop_failed_realloc = 0;
1509 
1510   pd_initialize();
1511 }
1512 
1513 #if INCLUDE_ALL_GCS
1514 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1515 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1516 #endif // INCLUDE_ALL_GCS
1517 
1518 JavaThread::JavaThread(bool is_attaching_via_jni) :
1519                        Thread()
1520 #if INCLUDE_ALL_GCS
1521                        , _satb_mark_queue(&_satb_mark_queue_set),
1522                        _dirty_card_queue(&_dirty_card_queue_set)
1523 #endif // INCLUDE_ALL_GCS
1524 {
1525   initialize();
1526   if (is_attaching_via_jni) {
1527     _jni_attach_state = _attaching_via_jni;
1528   } else {
1529     _jni_attach_state = _not_attaching_via_jni;
1530   }
1531   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1532 }
1533 
1534 bool JavaThread::reguard_stack(address cur_sp) {
1535   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1536       && _stack_guard_state != stack_guard_reserved_disabled) {
1537     return true; // Stack already guarded or guard pages not needed.
1538   }
1539 
1540   if (register_stack_overflow()) {
1541     // For those architectures which have separate register and
1542     // memory stacks, we must check the register stack to see if
1543     // it has overflowed.
1544     return false;
1545   }
1546 
1547   // Java code never executes within the yellow zone: the latter is only
1548   // there to provoke an exception during stack banging.  If java code
1549   // is executing there, either StackShadowPages should be larger, or
1550   // some exception code in c1, c2 or the interpreter isn't unwinding
1551   // when it should.
1552   guarantee(cur_sp > stack_reserved_zone_base(),
1553             "not enough space to reguard - increase StackShadowPages");
1554   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1555     enable_stack_yellow_reserved_zone();
1556     if (reserved_stack_activation() != stack_base()) {
1557       set_reserved_stack_activation(stack_base());
1558     }
1559   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1560     set_reserved_stack_activation(stack_base());
1561     enable_stack_reserved_zone();
1562   }
1563   return true;
1564 }
1565 
1566 bool JavaThread::reguard_stack(void) {
1567   return reguard_stack(os::current_stack_pointer());
1568 }
1569 
1570 
1571 void JavaThread::block_if_vm_exited() {
1572   if (_terminated == _vm_exited) {
1573     // _vm_exited is set at safepoint, and Threads_lock is never released
1574     // we will block here forever
1575     Threads_lock->lock_without_safepoint_check();
1576     ShouldNotReachHere();
1577   }
1578 }
1579 
1580 
1581 // Remove this ifdef when C1 is ported to the compiler interface.
1582 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1583 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1584 
1585 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1586                        Thread()
1587 #if INCLUDE_ALL_GCS
1588                        , _satb_mark_queue(&_satb_mark_queue_set),
1589                        _dirty_card_queue(&_dirty_card_queue_set)
1590 #endif // INCLUDE_ALL_GCS
1591 {
1592   initialize();
1593   _jni_attach_state = _not_attaching_via_jni;
1594   set_entry_point(entry_point);
1595   // Create the native thread itself.
1596   // %note runtime_23
1597   os::ThreadType thr_type = os::java_thread;
1598   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1599                                                      os::java_thread;
1600   os::create_thread(this, thr_type, stack_sz);
1601   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1602   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1603   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1604   // the exception consists of creating the exception object & initializing it, initialization
1605   // will leave the VM via a JavaCall and then all locks must be unlocked).
1606   //
1607   // The thread is still suspended when we reach here. Thread must be explicit started
1608   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1609   // by calling Threads:add. The reason why this is not done here, is because the thread
1610   // object must be fully initialized (take a look at JVM_Start)
1611 }
1612 
1613 JavaThread::~JavaThread() {
1614 
1615   // JSR166 -- return the parker to the free list
1616   Parker::Release(_parker);
1617   _parker = NULL;
1618 
1619   // Free any remaining  previous UnrollBlock
1620   vframeArray* old_array = vframe_array_last();
1621 
1622   if (old_array != NULL) {
1623     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1624     old_array->set_unroll_block(NULL);
1625     delete old_info;
1626     delete old_array;
1627   }
1628 
1629   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1630   if (deferred != NULL) {
1631     // This can only happen if thread is destroyed before deoptimization occurs.
1632     assert(deferred->length() != 0, "empty array!");
1633     do {
1634       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1635       deferred->remove_at(0);
1636       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1637       delete dlv;
1638     } while (deferred->length() != 0);
1639     delete deferred;
1640   }
1641 
1642   // All Java related clean up happens in exit
1643   ThreadSafepointState::destroy(this);
1644   if (_thread_profiler != NULL) delete _thread_profiler;
1645   if (_thread_stat != NULL) delete _thread_stat;
1646 
1647 #if INCLUDE_JVMCI
1648   if (JVMCICounterSize > 0) {
1649     if (jvmci_counters_include(this)) {
1650       for (int i = 0; i < JVMCICounterSize; i++) {
1651         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1652       }
1653     }
1654     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1655   }
1656 #endif // INCLUDE_JVMCI
1657 }
1658 
1659 
1660 // The first routine called by a new Java thread
1661 void JavaThread::run() {
1662   // initialize thread-local alloc buffer related fields
1663   this->initialize_tlab();
1664 
1665   // used to test validity of stack trace backs
1666   this->record_base_of_stack_pointer();
1667 
1668   // Record real stack base and size.
1669   this->record_stack_base_and_size();
1670 
1671   this->create_stack_guard_pages();
1672 
1673   this->cache_global_variables();
1674 
1675   // Thread is now sufficient initialized to be handled by the safepoint code as being
1676   // in the VM. Change thread state from _thread_new to _thread_in_vm
1677   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1678 
1679   assert(JavaThread::current() == this, "sanity check");
1680   assert(!Thread::current()->owns_locks(), "sanity check");
1681 
1682   DTRACE_THREAD_PROBE(start, this);
1683 
1684   // This operation might block. We call that after all safepoint checks for a new thread has
1685   // been completed.
1686   this->set_active_handles(JNIHandleBlock::allocate_block());
1687 
1688   if (JvmtiExport::should_post_thread_life()) {
1689     JvmtiExport::post_thread_start(this);
1690   }
1691 
1692   EventThreadStart event;
1693   if (event.should_commit()) {
1694     event.set_thread(THREAD_TRACE_ID(this));
1695     event.commit();
1696   }
1697 
1698   // We call another function to do the rest so we are sure that the stack addresses used
1699   // from there will be lower than the stack base just computed
1700   thread_main_inner();
1701 
1702   // Note, thread is no longer valid at this point!
1703 }
1704 
1705 
1706 void JavaThread::thread_main_inner() {
1707   assert(JavaThread::current() == this, "sanity check");
1708   assert(this->threadObj() != NULL, "just checking");
1709 
1710   // Execute thread entry point unless this thread has a pending exception
1711   // or has been stopped before starting.
1712   // Note: Due to JVM_StopThread we can have pending exceptions already!
1713   if (!this->has_pending_exception() &&
1714       !java_lang_Thread::is_stillborn(this->threadObj())) {
1715     {
1716       ResourceMark rm(this);
1717       this->set_native_thread_name(this->get_thread_name());
1718     }
1719     HandleMark hm(this);
1720     this->entry_point()(this, this);
1721   }
1722 
1723   DTRACE_THREAD_PROBE(stop, this);
1724 
1725   this->exit(false);
1726   delete this;
1727 }
1728 
1729 
1730 static void ensure_join(JavaThread* thread) {
1731   // We do not need to grap the Threads_lock, since we are operating on ourself.
1732   Handle threadObj(thread, thread->threadObj());
1733   assert(threadObj.not_null(), "java thread object must exist");
1734   ObjectLocker lock(threadObj, thread);
1735   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1736   thread->clear_pending_exception();
1737   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1738   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1739   // Clear the native thread instance - this makes isAlive return false and allows the join()
1740   // to complete once we've done the notify_all below
1741   java_lang_Thread::set_thread(threadObj(), NULL);
1742   lock.notify_all(thread);
1743   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1744   thread->clear_pending_exception();
1745 }
1746 
1747 
1748 // For any new cleanup additions, please check to see if they need to be applied to
1749 // cleanup_failed_attach_current_thread as well.
1750 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1751   assert(this == JavaThread::current(), "thread consistency check");
1752 
1753   HandleMark hm(this);
1754   Handle uncaught_exception(this, this->pending_exception());
1755   this->clear_pending_exception();
1756   Handle threadObj(this, this->threadObj());
1757   assert(threadObj.not_null(), "Java thread object should be created");
1758 
1759   if (get_thread_profiler() != NULL) {
1760     get_thread_profiler()->disengage();
1761     ResourceMark rm;
1762     get_thread_profiler()->print(get_thread_name());
1763   }
1764 
1765 
1766   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1767   {
1768     EXCEPTION_MARK;
1769 
1770     CLEAR_PENDING_EXCEPTION;
1771   }
1772   if (!destroy_vm) {
1773     if (uncaught_exception.not_null()) {
1774       EXCEPTION_MARK;
1775       // Call method Thread.dispatchUncaughtException().
1776       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1777       JavaValue result(T_VOID);
1778       JavaCalls::call_virtual(&result,
1779                               threadObj, thread_klass,
1780                               vmSymbols::dispatchUncaughtException_name(),
1781                               vmSymbols::throwable_void_signature(),
1782                               uncaught_exception,
1783                               THREAD);
1784       if (HAS_PENDING_EXCEPTION) {
1785         ResourceMark rm(this);
1786         jio_fprintf(defaultStream::error_stream(),
1787                     "\nException: %s thrown from the UncaughtExceptionHandler"
1788                     " in thread \"%s\"\n",
1789                     pending_exception()->klass()->external_name(),
1790                     get_thread_name());
1791         CLEAR_PENDING_EXCEPTION;
1792       }
1793     }
1794 
1795     // Called before the java thread exit since we want to read info
1796     // from java_lang_Thread object
1797     EventThreadEnd event;
1798     if (event.should_commit()) {
1799       event.set_thread(THREAD_TRACE_ID(this));
1800       event.commit();
1801     }
1802 
1803     // Call after last event on thread
1804     EVENT_THREAD_EXIT(this);
1805 
1806     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1807     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1808     // is deprecated anyhow.
1809     if (!is_Compiler_thread()) {
1810       int count = 3;
1811       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1812         EXCEPTION_MARK;
1813         JavaValue result(T_VOID);
1814         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1815         JavaCalls::call_virtual(&result,
1816                                 threadObj, thread_klass,
1817                                 vmSymbols::exit_method_name(),
1818                                 vmSymbols::void_method_signature(),
1819                                 THREAD);
1820         CLEAR_PENDING_EXCEPTION;
1821       }
1822     }
1823     // notify JVMTI
1824     if (JvmtiExport::should_post_thread_life()) {
1825       JvmtiExport::post_thread_end(this);
1826     }
1827 
1828     // We have notified the agents that we are exiting, before we go on,
1829     // we must check for a pending external suspend request and honor it
1830     // in order to not surprise the thread that made the suspend request.
1831     while (true) {
1832       {
1833         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1834         if (!is_external_suspend()) {
1835           set_terminated(_thread_exiting);
1836           ThreadService::current_thread_exiting(this);
1837           break;
1838         }
1839         // Implied else:
1840         // Things get a little tricky here. We have a pending external
1841         // suspend request, but we are holding the SR_lock so we
1842         // can't just self-suspend. So we temporarily drop the lock
1843         // and then self-suspend.
1844       }
1845 
1846       ThreadBlockInVM tbivm(this);
1847       java_suspend_self();
1848 
1849       // We're done with this suspend request, but we have to loop around
1850       // and check again. Eventually we will get SR_lock without a pending
1851       // external suspend request and will be able to mark ourselves as
1852       // exiting.
1853     }
1854     // no more external suspends are allowed at this point
1855   } else {
1856     // before_exit() has already posted JVMTI THREAD_END events
1857   }
1858 
1859   // Notify waiters on thread object. This has to be done after exit() is called
1860   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1861   // group should have the destroyed bit set before waiters are notified).
1862   ensure_join(this);
1863   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1864 
1865   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1866   // held by this thread must be released. The spec does not distinguish
1867   // between JNI-acquired and regular Java monitors. We can only see
1868   // regular Java monitors here if monitor enter-exit matching is broken.
1869   //
1870   // Optionally release any monitors for regular JavaThread exits. This
1871   // is provided as a work around for any bugs in monitor enter-exit
1872   // matching. This can be expensive so it is not enabled by default.
1873   //
1874   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1875   // ObjectSynchronizer::release_monitors_owned_by_thread().
1876   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1877     // Sanity check even though JNI DetachCurrentThread() would have
1878     // returned JNI_ERR if there was a Java frame. JavaThread exit
1879     // should be done executing Java code by the time we get here.
1880     assert(!this->has_last_Java_frame(),
1881            "should not have a Java frame when detaching or exiting");
1882     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1883     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1884   }
1885 
1886   // These things needs to be done while we are still a Java Thread. Make sure that thread
1887   // is in a consistent state, in case GC happens
1888   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1889 
1890   if (active_handles() != NULL) {
1891     JNIHandleBlock* block = active_handles();
1892     set_active_handles(NULL);
1893     JNIHandleBlock::release_block(block);
1894   }
1895 
1896   if (free_handle_block() != NULL) {
1897     JNIHandleBlock* block = free_handle_block();
1898     set_free_handle_block(NULL);
1899     JNIHandleBlock::release_block(block);
1900   }
1901 
1902   // These have to be removed while this is still a valid thread.
1903   remove_stack_guard_pages();
1904 
1905   if (UseTLAB) {
1906     tlab().make_parsable(true);  // retire TLAB
1907   }
1908 
1909   if (JvmtiEnv::environments_might_exist()) {
1910     JvmtiExport::cleanup_thread(this);
1911   }
1912 
1913   // We must flush any deferred card marks before removing a thread from
1914   // the list of active threads.
1915   Universe::heap()->flush_deferred_store_barrier(this);
1916   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1917 
1918 #if INCLUDE_ALL_GCS
1919   // We must flush the G1-related buffers before removing a thread
1920   // from the list of active threads. We must do this after any deferred
1921   // card marks have been flushed (above) so that any entries that are
1922   // added to the thread's dirty card queue as a result are not lost.
1923   if (UseG1GC) {
1924     flush_barrier_queues();
1925   }
1926 #endif // INCLUDE_ALL_GCS
1927 
1928   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1929     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1930     os::current_thread_id());
1931 
1932   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1933   Threads::remove(this);
1934 }
1935 
1936 #if INCLUDE_ALL_GCS
1937 // Flush G1-related queues.
1938 void JavaThread::flush_barrier_queues() {
1939   satb_mark_queue().flush();
1940   dirty_card_queue().flush();
1941 }
1942 
1943 void JavaThread::initialize_queues() {
1944   assert(!SafepointSynchronize::is_at_safepoint(),
1945          "we should not be at a safepoint");
1946 
1947   SATBMarkQueue& satb_queue = satb_mark_queue();
1948   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1949   // The SATB queue should have been constructed with its active
1950   // field set to false.
1951   assert(!satb_queue.is_active(), "SATB queue should not be active");
1952   assert(satb_queue.is_empty(), "SATB queue should be empty");
1953   // If we are creating the thread during a marking cycle, we should
1954   // set the active field of the SATB queue to true.
1955   if (satb_queue_set.is_active()) {
1956     satb_queue.set_active(true);
1957   }
1958 
1959   DirtyCardQueue& dirty_queue = dirty_card_queue();
1960   // The dirty card queue should have been constructed with its
1961   // active field set to true.
1962   assert(dirty_queue.is_active(), "dirty card queue should be active");
1963 }
1964 #endif // INCLUDE_ALL_GCS
1965 
1966 void JavaThread::cleanup_failed_attach_current_thread() {
1967   if (get_thread_profiler() != NULL) {
1968     get_thread_profiler()->disengage();
1969     ResourceMark rm;
1970     get_thread_profiler()->print(get_thread_name());
1971   }
1972 
1973   if (active_handles() != NULL) {
1974     JNIHandleBlock* block = active_handles();
1975     set_active_handles(NULL);
1976     JNIHandleBlock::release_block(block);
1977   }
1978 
1979   if (free_handle_block() != NULL) {
1980     JNIHandleBlock* block = free_handle_block();
1981     set_free_handle_block(NULL);
1982     JNIHandleBlock::release_block(block);
1983   }
1984 
1985   // These have to be removed while this is still a valid thread.
1986   remove_stack_guard_pages();
1987 
1988   if (UseTLAB) {
1989     tlab().make_parsable(true);  // retire TLAB, if any
1990   }
1991 
1992 #if INCLUDE_ALL_GCS
1993   if (UseG1GC) {
1994     flush_barrier_queues();
1995   }
1996 #endif // INCLUDE_ALL_GCS
1997 
1998   Threads::remove(this);
1999   delete this;
2000 }
2001 
2002 
2003 
2004 
2005 JavaThread* JavaThread::active() {
2006   Thread* thread = Thread::current();
2007   if (thread->is_Java_thread()) {
2008     return (JavaThread*) thread;
2009   } else {
2010     assert(thread->is_VM_thread(), "this must be a vm thread");
2011     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2012     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2013     assert(ret->is_Java_thread(), "must be a Java thread");
2014     return ret;
2015   }
2016 }
2017 
2018 bool JavaThread::is_lock_owned(address adr) const {
2019   if (Thread::is_lock_owned(adr)) return true;
2020 
2021   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2022     if (chunk->contains(adr)) return true;
2023   }
2024 
2025   return false;
2026 }
2027 
2028 
2029 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2030   chunk->set_next(monitor_chunks());
2031   set_monitor_chunks(chunk);
2032 }
2033 
2034 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2035   guarantee(monitor_chunks() != NULL, "must be non empty");
2036   if (monitor_chunks() == chunk) {
2037     set_monitor_chunks(chunk->next());
2038   } else {
2039     MonitorChunk* prev = monitor_chunks();
2040     while (prev->next() != chunk) prev = prev->next();
2041     prev->set_next(chunk->next());
2042   }
2043 }
2044 
2045 // JVM support.
2046 
2047 // Note: this function shouldn't block if it's called in
2048 // _thread_in_native_trans state (such as from
2049 // check_special_condition_for_native_trans()).
2050 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2051 
2052   if (has_last_Java_frame() && has_async_condition()) {
2053     // If we are at a polling page safepoint (not a poll return)
2054     // then we must defer async exception because live registers
2055     // will be clobbered by the exception path. Poll return is
2056     // ok because the call we a returning from already collides
2057     // with exception handling registers and so there is no issue.
2058     // (The exception handling path kills call result registers but
2059     //  this is ok since the exception kills the result anyway).
2060 
2061     if (is_at_poll_safepoint()) {
2062       // if the code we are returning to has deoptimized we must defer
2063       // the exception otherwise live registers get clobbered on the
2064       // exception path before deoptimization is able to retrieve them.
2065       //
2066       RegisterMap map(this, false);
2067       frame caller_fr = last_frame().sender(&map);
2068       assert(caller_fr.is_compiled_frame(), "what?");
2069       if (caller_fr.is_deoptimized_frame()) {
2070         log_info(exceptions)("deferred async exception at compiled safepoint");
2071         return;
2072       }
2073     }
2074   }
2075 
2076   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2077   if (condition == _no_async_condition) {
2078     // Conditions have changed since has_special_runtime_exit_condition()
2079     // was called:
2080     // - if we were here only because of an external suspend request,
2081     //   then that was taken care of above (or cancelled) so we are done
2082     // - if we were here because of another async request, then it has
2083     //   been cleared between the has_special_runtime_exit_condition()
2084     //   and now so again we are done
2085     return;
2086   }
2087 
2088   // Check for pending async. exception
2089   if (_pending_async_exception != NULL) {
2090     // Only overwrite an already pending exception, if it is not a threadDeath.
2091     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2092 
2093       // We cannot call Exceptions::_throw(...) here because we cannot block
2094       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2095 
2096       if (log_is_enabled(Info, exceptions)) {
2097         ResourceMark rm;
2098         outputStream* logstream = LogHandle(exceptions)::info_stream();
2099         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2100           if (has_last_Java_frame()) {
2101             frame f = last_frame();
2102            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2103           }
2104         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2105       }
2106       _pending_async_exception = NULL;
2107       clear_has_async_exception();
2108     }
2109   }
2110 
2111   if (check_unsafe_error &&
2112       condition == _async_unsafe_access_error && !has_pending_exception()) {
2113     condition = _no_async_condition;  // done
2114     switch (thread_state()) {
2115     case _thread_in_vm: {
2116       JavaThread* THREAD = this;
2117       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2118     }
2119     case _thread_in_native: {
2120       ThreadInVMfromNative tiv(this);
2121       JavaThread* THREAD = this;
2122       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2123     }
2124     case _thread_in_Java: {
2125       ThreadInVMfromJava tiv(this);
2126       JavaThread* THREAD = this;
2127       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2128     }
2129     default:
2130       ShouldNotReachHere();
2131     }
2132   }
2133 
2134   assert(condition == _no_async_condition || has_pending_exception() ||
2135          (!check_unsafe_error && condition == _async_unsafe_access_error),
2136          "must have handled the async condition, if no exception");
2137 }
2138 
2139 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2140   //
2141   // Check for pending external suspend. Internal suspend requests do
2142   // not use handle_special_runtime_exit_condition().
2143   // If JNIEnv proxies are allowed, don't self-suspend if the target
2144   // thread is not the current thread. In older versions of jdbx, jdbx
2145   // threads could call into the VM with another thread's JNIEnv so we
2146   // can be here operating on behalf of a suspended thread (4432884).
2147   bool do_self_suspend = is_external_suspend_with_lock();
2148   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2149     //
2150     // Because thread is external suspended the safepoint code will count
2151     // thread as at a safepoint. This can be odd because we can be here
2152     // as _thread_in_Java which would normally transition to _thread_blocked
2153     // at a safepoint. We would like to mark the thread as _thread_blocked
2154     // before calling java_suspend_self like all other callers of it but
2155     // we must then observe proper safepoint protocol. (We can't leave
2156     // _thread_blocked with a safepoint in progress). However we can be
2157     // here as _thread_in_native_trans so we can't use a normal transition
2158     // constructor/destructor pair because they assert on that type of
2159     // transition. We could do something like:
2160     //
2161     // JavaThreadState state = thread_state();
2162     // set_thread_state(_thread_in_vm);
2163     // {
2164     //   ThreadBlockInVM tbivm(this);
2165     //   java_suspend_self()
2166     // }
2167     // set_thread_state(_thread_in_vm_trans);
2168     // if (safepoint) block;
2169     // set_thread_state(state);
2170     //
2171     // but that is pretty messy. Instead we just go with the way the
2172     // code has worked before and note that this is the only path to
2173     // java_suspend_self that doesn't put the thread in _thread_blocked
2174     // mode.
2175 
2176     frame_anchor()->make_walkable(this);
2177     java_suspend_self();
2178 
2179     // We might be here for reasons in addition to the self-suspend request
2180     // so check for other async requests.
2181   }
2182 
2183   if (check_asyncs) {
2184     check_and_handle_async_exceptions();
2185   }
2186 }
2187 
2188 void JavaThread::send_thread_stop(oop java_throwable)  {
2189   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2190   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2191   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2192 
2193   // Do not throw asynchronous exceptions against the compiler thread
2194   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2195   if (!can_call_java()) return;
2196 
2197   {
2198     // Actually throw the Throwable against the target Thread - however
2199     // only if there is no thread death exception installed already.
2200     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2201       // If the topmost frame is a runtime stub, then we are calling into
2202       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2203       // must deoptimize the caller before continuing, as the compiled  exception handler table
2204       // may not be valid
2205       if (has_last_Java_frame()) {
2206         frame f = last_frame();
2207         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2208           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2209           RegisterMap reg_map(this, UseBiasedLocking);
2210           frame compiled_frame = f.sender(&reg_map);
2211           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2212             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2213           }
2214         }
2215       }
2216 
2217       // Set async. pending exception in thread.
2218       set_pending_async_exception(java_throwable);
2219 
2220       if (log_is_enabled(Info, exceptions)) {
2221          ResourceMark rm;
2222         log_info(exceptions)("Pending Async. exception installed of type: %s",
2223                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2224       }
2225       // for AbortVMOnException flag
2226       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2227     }
2228   }
2229 
2230 
2231   // Interrupt thread so it will wake up from a potential wait()
2232   Thread::interrupt(this);
2233 }
2234 
2235 // External suspension mechanism.
2236 //
2237 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2238 // to any VM_locks and it is at a transition
2239 // Self-suspension will happen on the transition out of the vm.
2240 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2241 //
2242 // Guarantees on return:
2243 //   + Target thread will not execute any new bytecode (that's why we need to
2244 //     force a safepoint)
2245 //   + Target thread will not enter any new monitors
2246 //
2247 void JavaThread::java_suspend() {
2248   { MutexLocker mu(Threads_lock);
2249     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2250       return;
2251     }
2252   }
2253 
2254   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2255     if (!is_external_suspend()) {
2256       // a racing resume has cancelled us; bail out now
2257       return;
2258     }
2259 
2260     // suspend is done
2261     uint32_t debug_bits = 0;
2262     // Warning: is_ext_suspend_completed() may temporarily drop the
2263     // SR_lock to allow the thread to reach a stable thread state if
2264     // it is currently in a transient thread state.
2265     if (is_ext_suspend_completed(false /* !called_by_wait */,
2266                                  SuspendRetryDelay, &debug_bits)) {
2267       return;
2268     }
2269   }
2270 
2271   VM_ForceSafepoint vm_suspend;
2272   VMThread::execute(&vm_suspend);
2273 }
2274 
2275 // Part II of external suspension.
2276 // A JavaThread self suspends when it detects a pending external suspend
2277 // request. This is usually on transitions. It is also done in places
2278 // where continuing to the next transition would surprise the caller,
2279 // e.g., monitor entry.
2280 //
2281 // Returns the number of times that the thread self-suspended.
2282 //
2283 // Note: DO NOT call java_suspend_self() when you just want to block current
2284 //       thread. java_suspend_self() is the second stage of cooperative
2285 //       suspension for external suspend requests and should only be used
2286 //       to complete an external suspend request.
2287 //
2288 int JavaThread::java_suspend_self() {
2289   int ret = 0;
2290 
2291   // we are in the process of exiting so don't suspend
2292   if (is_exiting()) {
2293     clear_external_suspend();
2294     return ret;
2295   }
2296 
2297   assert(_anchor.walkable() ||
2298          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2299          "must have walkable stack");
2300 
2301   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2302 
2303   assert(!this->is_ext_suspended(),
2304          "a thread trying to self-suspend should not already be suspended");
2305 
2306   if (this->is_suspend_equivalent()) {
2307     // If we are self-suspending as a result of the lifting of a
2308     // suspend equivalent condition, then the suspend_equivalent
2309     // flag is not cleared until we set the ext_suspended flag so
2310     // that wait_for_ext_suspend_completion() returns consistent
2311     // results.
2312     this->clear_suspend_equivalent();
2313   }
2314 
2315   // A racing resume may have cancelled us before we grabbed SR_lock
2316   // above. Or another external suspend request could be waiting for us
2317   // by the time we return from SR_lock()->wait(). The thread
2318   // that requested the suspension may already be trying to walk our
2319   // stack and if we return now, we can change the stack out from under
2320   // it. This would be a "bad thing (TM)" and cause the stack walker
2321   // to crash. We stay self-suspended until there are no more pending
2322   // external suspend requests.
2323   while (is_external_suspend()) {
2324     ret++;
2325     this->set_ext_suspended();
2326 
2327     // _ext_suspended flag is cleared by java_resume()
2328     while (is_ext_suspended()) {
2329       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2330     }
2331   }
2332 
2333   return ret;
2334 }
2335 
2336 #ifdef ASSERT
2337 // verify the JavaThread has not yet been published in the Threads::list, and
2338 // hence doesn't need protection from concurrent access at this stage
2339 void JavaThread::verify_not_published() {
2340   if (!Threads_lock->owned_by_self()) {
2341     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2342     assert(!Threads::includes(this),
2343            "java thread shouldn't have been published yet!");
2344   } else {
2345     assert(!Threads::includes(this),
2346            "java thread shouldn't have been published yet!");
2347   }
2348 }
2349 #endif
2350 
2351 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2352 // progress or when _suspend_flags is non-zero.
2353 // Current thread needs to self-suspend if there is a suspend request and/or
2354 // block if a safepoint is in progress.
2355 // Async exception ISN'T checked.
2356 // Note only the ThreadInVMfromNative transition can call this function
2357 // directly and when thread state is _thread_in_native_trans
2358 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2359   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2360 
2361   JavaThread *curJT = JavaThread::current();
2362   bool do_self_suspend = thread->is_external_suspend();
2363 
2364   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2365 
2366   // If JNIEnv proxies are allowed, don't self-suspend if the target
2367   // thread is not the current thread. In older versions of jdbx, jdbx
2368   // threads could call into the VM with another thread's JNIEnv so we
2369   // can be here operating on behalf of a suspended thread (4432884).
2370   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2371     JavaThreadState state = thread->thread_state();
2372 
2373     // We mark this thread_blocked state as a suspend-equivalent so
2374     // that a caller to is_ext_suspend_completed() won't be confused.
2375     // The suspend-equivalent state is cleared by java_suspend_self().
2376     thread->set_suspend_equivalent();
2377 
2378     // If the safepoint code sees the _thread_in_native_trans state, it will
2379     // wait until the thread changes to other thread state. There is no
2380     // guarantee on how soon we can obtain the SR_lock and complete the
2381     // self-suspend request. It would be a bad idea to let safepoint wait for
2382     // too long. Temporarily change the state to _thread_blocked to
2383     // let the VM thread know that this thread is ready for GC. The problem
2384     // of changing thread state is that safepoint could happen just after
2385     // java_suspend_self() returns after being resumed, and VM thread will
2386     // see the _thread_blocked state. We must check for safepoint
2387     // after restoring the state and make sure we won't leave while a safepoint
2388     // is in progress.
2389     thread->set_thread_state(_thread_blocked);
2390     thread->java_suspend_self();
2391     thread->set_thread_state(state);
2392     // Make sure new state is seen by VM thread
2393     if (os::is_MP()) {
2394       if (UseMembar) {
2395         // Force a fence between the write above and read below
2396         OrderAccess::fence();
2397       } else {
2398         // Must use this rather than serialization page in particular on Windows
2399         InterfaceSupport::serialize_memory(thread);
2400       }
2401     }
2402   }
2403 
2404   if (SafepointSynchronize::do_call_back()) {
2405     // If we are safepointing, then block the caller which may not be
2406     // the same as the target thread (see above).
2407     SafepointSynchronize::block(curJT);
2408   }
2409 
2410   if (thread->is_deopt_suspend()) {
2411     thread->clear_deopt_suspend();
2412     RegisterMap map(thread, false);
2413     frame f = thread->last_frame();
2414     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2415       f = f.sender(&map);
2416     }
2417     if (f.id() == thread->must_deopt_id()) {
2418       thread->clear_must_deopt_id();
2419       f.deoptimize(thread);
2420     } else {
2421       fatal("missed deoptimization!");
2422     }
2423   }
2424 }
2425 
2426 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2427 // progress or when _suspend_flags is non-zero.
2428 // Current thread needs to self-suspend if there is a suspend request and/or
2429 // block if a safepoint is in progress.
2430 // Also check for pending async exception (not including unsafe access error).
2431 // Note only the native==>VM/Java barriers can call this function and when
2432 // thread state is _thread_in_native_trans.
2433 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2434   check_safepoint_and_suspend_for_native_trans(thread);
2435 
2436   if (thread->has_async_exception()) {
2437     // We are in _thread_in_native_trans state, don't handle unsafe
2438     // access error since that may block.
2439     thread->check_and_handle_async_exceptions(false);
2440   }
2441 }
2442 
2443 // This is a variant of the normal
2444 // check_special_condition_for_native_trans with slightly different
2445 // semantics for use by critical native wrappers.  It does all the
2446 // normal checks but also performs the transition back into
2447 // thread_in_Java state.  This is required so that critical natives
2448 // can potentially block and perform a GC if they are the last thread
2449 // exiting the GCLocker.
2450 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2451   check_special_condition_for_native_trans(thread);
2452 
2453   // Finish the transition
2454   thread->set_thread_state(_thread_in_Java);
2455 
2456   if (thread->do_critical_native_unlock()) {
2457     ThreadInVMfromJavaNoAsyncException tiv(thread);
2458     GCLocker::unlock_critical(thread);
2459     thread->clear_critical_native_unlock();
2460   }
2461 }
2462 
2463 // We need to guarantee the Threads_lock here, since resumes are not
2464 // allowed during safepoint synchronization
2465 // Can only resume from an external suspension
2466 void JavaThread::java_resume() {
2467   assert_locked_or_safepoint(Threads_lock);
2468 
2469   // Sanity check: thread is gone, has started exiting or the thread
2470   // was not externally suspended.
2471   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2472     return;
2473   }
2474 
2475   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2476 
2477   clear_external_suspend();
2478 
2479   if (is_ext_suspended()) {
2480     clear_ext_suspended();
2481     SR_lock()->notify_all();
2482   }
2483 }
2484 
2485 size_t JavaThread::_stack_red_zone_size = 0;
2486 size_t JavaThread::_stack_yellow_zone_size = 0;
2487 size_t JavaThread::_stack_reserved_zone_size = 0;
2488 size_t JavaThread::_stack_shadow_zone_size = 0;
2489 
2490 void JavaThread::create_stack_guard_pages() {
2491   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2492   address low_addr = stack_end();
2493   size_t len = stack_guard_zone_size();
2494 
2495   int allocate = os::allocate_stack_guard_pages();
2496   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2497 
2498   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2499     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2500     return;
2501   }
2502 
2503   if (os::guard_memory((char *) low_addr, len)) {
2504     _stack_guard_state = stack_guard_enabled;
2505   } else {
2506     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2507       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2508     if (os::uncommit_memory((char *) low_addr, len)) {
2509       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2510     }
2511     return;
2512   }
2513 
2514   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2515     PTR_FORMAT "-" PTR_FORMAT ".",
2516     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2517 
2518 }
2519 
2520 void JavaThread::remove_stack_guard_pages() {
2521   assert(Thread::current() == this, "from different thread");
2522   if (_stack_guard_state == stack_guard_unused) return;
2523   address low_addr = stack_end();
2524   size_t len = stack_guard_zone_size();
2525 
2526   if (os::allocate_stack_guard_pages()) {
2527     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2528       _stack_guard_state = stack_guard_unused;
2529     } else {
2530       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2531         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2532       return;
2533     }
2534   } else {
2535     if (_stack_guard_state == stack_guard_unused) return;
2536     if (os::unguard_memory((char *) low_addr, len)) {
2537       _stack_guard_state = stack_guard_unused;
2538     } else {
2539       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2540         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2541       return;
2542     }
2543   }
2544 
2545   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2546     PTR_FORMAT "-" PTR_FORMAT ".",
2547     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2548 
2549 }
2550 
2551 void JavaThread::enable_stack_reserved_zone() {
2552   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2553   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2554 
2555   // The base notation is from the stack's point of view, growing downward.
2556   // We need to adjust it to work correctly with guard_memory()
2557   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2558 
2559   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2560   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2561 
2562   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2563     _stack_guard_state = stack_guard_enabled;
2564   } else {
2565     warning("Attempt to guard stack reserved zone failed.");
2566   }
2567   enable_register_stack_guard();
2568 }
2569 
2570 void JavaThread::disable_stack_reserved_zone() {
2571   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2572   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2573 
2574   // Simply return if called for a thread that does not use guard pages.
2575   if (_stack_guard_state == stack_guard_unused) return;
2576 
2577   // The base notation is from the stack's point of view, growing downward.
2578   // We need to adjust it to work correctly with guard_memory()
2579   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2580 
2581   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2582     _stack_guard_state = stack_guard_reserved_disabled;
2583   } else {
2584     warning("Attempt to unguard stack reserved zone failed.");
2585   }
2586   disable_register_stack_guard();
2587 }
2588 
2589 void JavaThread::enable_stack_yellow_reserved_zone() {
2590   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2591   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2592 
2593   // The base notation is from the stacks point of view, growing downward.
2594   // We need to adjust it to work correctly with guard_memory()
2595   address base = stack_red_zone_base();
2596 
2597   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2598   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2599 
2600   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2601     _stack_guard_state = stack_guard_enabled;
2602   } else {
2603     warning("Attempt to guard stack yellow zone failed.");
2604   }
2605   enable_register_stack_guard();
2606 }
2607 
2608 void JavaThread::disable_stack_yellow_reserved_zone() {
2609   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2610   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2611 
2612   // Simply return if called for a thread that does not use guard pages.
2613   if (_stack_guard_state == stack_guard_unused) return;
2614 
2615   // The base notation is from the stacks point of view, growing downward.
2616   // We need to adjust it to work correctly with guard_memory()
2617   address base = stack_red_zone_base();
2618 
2619   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2620     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2621   } else {
2622     warning("Attempt to unguard stack yellow zone failed.");
2623   }
2624   disable_register_stack_guard();
2625 }
2626 
2627 void JavaThread::enable_stack_red_zone() {
2628   // The base notation is from the stacks point of view, growing downward.
2629   // We need to adjust it to work correctly with guard_memory()
2630   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2631   address base = stack_red_zone_base() - stack_red_zone_size();
2632 
2633   guarantee(base < stack_base(), "Error calculating stack red zone");
2634   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2635 
2636   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2637     warning("Attempt to guard stack red zone failed.");
2638   }
2639 }
2640 
2641 void JavaThread::disable_stack_red_zone() {
2642   // The base notation is from the stacks point of view, growing downward.
2643   // We need to adjust it to work correctly with guard_memory()
2644   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2645   address base = stack_red_zone_base() - stack_red_zone_size();
2646   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2647     warning("Attempt to unguard stack red zone failed.");
2648   }
2649 }
2650 
2651 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2652   // ignore is there is no stack
2653   if (!has_last_Java_frame()) return;
2654   // traverse the stack frames. Starts from top frame.
2655   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2656     frame* fr = fst.current();
2657     f(fr, fst.register_map());
2658   }
2659 }
2660 
2661 
2662 #ifndef PRODUCT
2663 // Deoptimization
2664 // Function for testing deoptimization
2665 void JavaThread::deoptimize() {
2666   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2667   StackFrameStream fst(this, UseBiasedLocking);
2668   bool deopt = false;           // Dump stack only if a deopt actually happens.
2669   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2670   // Iterate over all frames in the thread and deoptimize
2671   for (; !fst.is_done(); fst.next()) {
2672     if (fst.current()->can_be_deoptimized()) {
2673 
2674       if (only_at) {
2675         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2676         // consists of comma or carriage return separated numbers so
2677         // search for the current bci in that string.
2678         address pc = fst.current()->pc();
2679         nmethod* nm =  (nmethod*) fst.current()->cb();
2680         ScopeDesc* sd = nm->scope_desc_at(pc);
2681         char buffer[8];
2682         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2683         size_t len = strlen(buffer);
2684         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2685         while (found != NULL) {
2686           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2687               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2688             // Check that the bci found is bracketed by terminators.
2689             break;
2690           }
2691           found = strstr(found + 1, buffer);
2692         }
2693         if (!found) {
2694           continue;
2695         }
2696       }
2697 
2698       if (DebugDeoptimization && !deopt) {
2699         deopt = true; // One-time only print before deopt
2700         tty->print_cr("[BEFORE Deoptimization]");
2701         trace_frames();
2702         trace_stack();
2703       }
2704       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2705     }
2706   }
2707 
2708   if (DebugDeoptimization && deopt) {
2709     tty->print_cr("[AFTER Deoptimization]");
2710     trace_frames();
2711   }
2712 }
2713 
2714 
2715 // Make zombies
2716 void JavaThread::make_zombies() {
2717   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2718     if (fst.current()->can_be_deoptimized()) {
2719       // it is a Java nmethod
2720       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2721       nm->make_not_entrant();
2722     }
2723   }
2724 }
2725 #endif // PRODUCT
2726 
2727 
2728 void JavaThread::deoptimized_wrt_marked_nmethods() {
2729   if (!has_last_Java_frame()) return;
2730   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2731   StackFrameStream fst(this, UseBiasedLocking);
2732   for (; !fst.is_done(); fst.next()) {
2733     if (fst.current()->should_be_deoptimized()) {
2734       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2735     }
2736   }
2737 }
2738 
2739 
2740 // If the caller is a NamedThread, then remember, in the current scope,
2741 // the given JavaThread in its _processed_thread field.
2742 class RememberProcessedThread: public StackObj {
2743   NamedThread* _cur_thr;
2744  public:
2745   RememberProcessedThread(JavaThread* jthr) {
2746     Thread* thread = Thread::current();
2747     if (thread->is_Named_thread()) {
2748       _cur_thr = (NamedThread *)thread;
2749       _cur_thr->set_processed_thread(jthr);
2750     } else {
2751       _cur_thr = NULL;
2752     }
2753   }
2754 
2755   ~RememberProcessedThread() {
2756     if (_cur_thr) {
2757       _cur_thr->set_processed_thread(NULL);
2758     }
2759   }
2760 };
2761 
2762 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2763   // Verify that the deferred card marks have been flushed.
2764   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2765 
2766   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2767   // since there may be more than one thread using each ThreadProfiler.
2768 
2769   // Traverse the GCHandles
2770   Thread::oops_do(f, cld_f, cf);
2771 
2772   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2773 
2774   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2775          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2776 
2777   if (has_last_Java_frame()) {
2778     // Record JavaThread to GC thread
2779     RememberProcessedThread rpt(this);
2780 
2781     // Traverse the privileged stack
2782     if (_privileged_stack_top != NULL) {
2783       _privileged_stack_top->oops_do(f);
2784     }
2785 
2786     // traverse the registered growable array
2787     if (_array_for_gc != NULL) {
2788       for (int index = 0; index < _array_for_gc->length(); index++) {
2789         f->do_oop(_array_for_gc->adr_at(index));
2790       }
2791     }
2792 
2793     // Traverse the monitor chunks
2794     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2795       chunk->oops_do(f);
2796     }
2797 
2798     // Traverse the execution stack
2799     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2800       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2801     }
2802   }
2803 
2804   // callee_target is never live across a gc point so NULL it here should
2805   // it still contain a methdOop.
2806 
2807   set_callee_target(NULL);
2808 
2809   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2810   // If we have deferred set_locals there might be oops waiting to be
2811   // written
2812   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2813   if (list != NULL) {
2814     for (int i = 0; i < list->length(); i++) {
2815       list->at(i)->oops_do(f);
2816     }
2817   }
2818 
2819   // Traverse instance variables at the end since the GC may be moving things
2820   // around using this function
2821   f->do_oop((oop*) &_threadObj);
2822   f->do_oop((oop*) &_vm_result);
2823   f->do_oop((oop*) &_exception_oop);
2824   f->do_oop((oop*) &_pending_async_exception);
2825 
2826   if (jvmti_thread_state() != NULL) {
2827     jvmti_thread_state()->oops_do(f);
2828   }
2829 }
2830 
2831 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2832   Thread::nmethods_do(cf);  // (super method is a no-op)
2833 
2834   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2835          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2836 
2837   if (has_last_Java_frame()) {
2838     // Traverse the execution stack
2839     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2840       fst.current()->nmethods_do(cf);
2841     }
2842   }
2843 }
2844 
2845 void JavaThread::metadata_do(void f(Metadata*)) {
2846   if (has_last_Java_frame()) {
2847     // Traverse the execution stack to call f() on the methods in the stack
2848     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2849       fst.current()->metadata_do(f);
2850     }
2851   } else if (is_Compiler_thread()) {
2852     // need to walk ciMetadata in current compile tasks to keep alive.
2853     CompilerThread* ct = (CompilerThread*)this;
2854     if (ct->env() != NULL) {
2855       ct->env()->metadata_do(f);
2856     }
2857     if (ct->task() != NULL) {
2858       ct->task()->metadata_do(f);
2859     }
2860   }
2861 }
2862 
2863 // Printing
2864 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2865   switch (_thread_state) {
2866   case _thread_uninitialized:     return "_thread_uninitialized";
2867   case _thread_new:               return "_thread_new";
2868   case _thread_new_trans:         return "_thread_new_trans";
2869   case _thread_in_native:         return "_thread_in_native";
2870   case _thread_in_native_trans:   return "_thread_in_native_trans";
2871   case _thread_in_vm:             return "_thread_in_vm";
2872   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2873   case _thread_in_Java:           return "_thread_in_Java";
2874   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2875   case _thread_blocked:           return "_thread_blocked";
2876   case _thread_blocked_trans:     return "_thread_blocked_trans";
2877   default:                        return "unknown thread state";
2878   }
2879 }
2880 
2881 #ifndef PRODUCT
2882 void JavaThread::print_thread_state_on(outputStream *st) const {
2883   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2884 };
2885 void JavaThread::print_thread_state() const {
2886   print_thread_state_on(tty);
2887 }
2888 #endif // PRODUCT
2889 
2890 // Called by Threads::print() for VM_PrintThreads operation
2891 void JavaThread::print_on(outputStream *st) const {
2892   st->print("\"%s\" ", get_thread_name());
2893   oop thread_oop = threadObj();
2894   if (thread_oop != NULL) {
2895     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2896     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2897     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2898   }
2899   Thread::print_on(st);
2900   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2901   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2902   if (thread_oop != NULL) {
2903     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2904   }
2905 #ifndef PRODUCT
2906   print_thread_state_on(st);
2907   _safepoint_state->print_on(st);
2908 #endif // PRODUCT
2909   if (is_Compiler_thread()) {
2910     CompilerThread* ct = (CompilerThread*)this;
2911     if (ct->task() != NULL) {
2912       st->print("   Compiling: ");
2913       ct->task()->print(st, NULL, true, false);
2914     } else {
2915       st->print("   No compile task");
2916     }
2917     st->cr();
2918   }
2919 }
2920 
2921 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2922   st->print("%s", get_thread_name_string(buf, buflen));
2923 }
2924 
2925 // Called by fatal error handler. The difference between this and
2926 // JavaThread::print() is that we can't grab lock or allocate memory.
2927 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2928   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2929   oop thread_obj = threadObj();
2930   if (thread_obj != NULL) {
2931     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2932   }
2933   st->print(" [");
2934   st->print("%s", _get_thread_state_name(_thread_state));
2935   if (osthread()) {
2936     st->print(", id=%d", osthread()->thread_id());
2937   }
2938   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2939             p2i(stack_end()), p2i(stack_base()));
2940   st->print("]");
2941   return;
2942 }
2943 
2944 // Verification
2945 
2946 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2947 
2948 void JavaThread::verify() {
2949   // Verify oops in the thread.
2950   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2951 
2952   // Verify the stack frames.
2953   frames_do(frame_verify);
2954 }
2955 
2956 // CR 6300358 (sub-CR 2137150)
2957 // Most callers of this method assume that it can't return NULL but a
2958 // thread may not have a name whilst it is in the process of attaching to
2959 // the VM - see CR 6412693, and there are places where a JavaThread can be
2960 // seen prior to having it's threadObj set (eg JNI attaching threads and
2961 // if vm exit occurs during initialization). These cases can all be accounted
2962 // for such that this method never returns NULL.
2963 const char* JavaThread::get_thread_name() const {
2964 #ifdef ASSERT
2965   // early safepoints can hit while current thread does not yet have TLS
2966   if (!SafepointSynchronize::is_at_safepoint()) {
2967     Thread *cur = Thread::current();
2968     if (!(cur->is_Java_thread() && cur == this)) {
2969       // Current JavaThreads are allowed to get their own name without
2970       // the Threads_lock.
2971       assert_locked_or_safepoint(Threads_lock);
2972     }
2973   }
2974 #endif // ASSERT
2975   return get_thread_name_string();
2976 }
2977 
2978 // Returns a non-NULL representation of this thread's name, or a suitable
2979 // descriptive string if there is no set name
2980 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2981   const char* name_str;
2982   oop thread_obj = threadObj();
2983   if (thread_obj != NULL) {
2984     oop name = java_lang_Thread::name(thread_obj);
2985     if (name != NULL) {
2986       if (buf == NULL) {
2987         name_str = java_lang_String::as_utf8_string(name);
2988       } else {
2989         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2990       }
2991     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2992       name_str = "<no-name - thread is attaching>";
2993     } else {
2994       name_str = Thread::name();
2995     }
2996   } else {
2997     name_str = Thread::name();
2998   }
2999   assert(name_str != NULL, "unexpected NULL thread name");
3000   return name_str;
3001 }
3002 
3003 
3004 const char* JavaThread::get_threadgroup_name() const {
3005   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3006   oop thread_obj = threadObj();
3007   if (thread_obj != NULL) {
3008     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3009     if (thread_group != NULL) {
3010       // ThreadGroup.name can be null
3011       return java_lang_ThreadGroup::name(thread_group);
3012     }
3013   }
3014   return NULL;
3015 }
3016 
3017 const char* JavaThread::get_parent_name() const {
3018   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3019   oop thread_obj = threadObj();
3020   if (thread_obj != NULL) {
3021     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3022     if (thread_group != NULL) {
3023       oop parent = java_lang_ThreadGroup::parent(thread_group);
3024       if (parent != NULL) {
3025         // ThreadGroup.name can be null
3026         return java_lang_ThreadGroup::name(parent);
3027       }
3028     }
3029   }
3030   return NULL;
3031 }
3032 
3033 ThreadPriority JavaThread::java_priority() const {
3034   oop thr_oop = threadObj();
3035   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3036   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3037   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3038   return priority;
3039 }
3040 
3041 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3042 
3043   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3044   // Link Java Thread object <-> C++ Thread
3045 
3046   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3047   // and put it into a new Handle.  The Handle "thread_oop" can then
3048   // be used to pass the C++ thread object to other methods.
3049 
3050   // Set the Java level thread object (jthread) field of the
3051   // new thread (a JavaThread *) to C++ thread object using the
3052   // "thread_oop" handle.
3053 
3054   // Set the thread field (a JavaThread *) of the
3055   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3056 
3057   Handle thread_oop(Thread::current(),
3058                     JNIHandles::resolve_non_null(jni_thread));
3059   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3060          "must be initialized");
3061   set_threadObj(thread_oop());
3062   java_lang_Thread::set_thread(thread_oop(), this);
3063 
3064   if (prio == NoPriority) {
3065     prio = java_lang_Thread::priority(thread_oop());
3066     assert(prio != NoPriority, "A valid priority should be present");
3067   }
3068 
3069   // Push the Java priority down to the native thread; needs Threads_lock
3070   Thread::set_priority(this, prio);
3071 
3072   prepare_ext();
3073 
3074   // Add the new thread to the Threads list and set it in motion.
3075   // We must have threads lock in order to call Threads::add.
3076   // It is crucial that we do not block before the thread is
3077   // added to the Threads list for if a GC happens, then the java_thread oop
3078   // will not be visited by GC.
3079   Threads::add(this);
3080 }
3081 
3082 oop JavaThread::current_park_blocker() {
3083   // Support for JSR-166 locks
3084   oop thread_oop = threadObj();
3085   if (thread_oop != NULL &&
3086       JDK_Version::current().supports_thread_park_blocker()) {
3087     return java_lang_Thread::park_blocker(thread_oop);
3088   }
3089   return NULL;
3090 }
3091 
3092 
3093 void JavaThread::print_stack_on(outputStream* st) {
3094   if (!has_last_Java_frame()) return;
3095   ResourceMark rm;
3096   HandleMark   hm;
3097 
3098   RegisterMap reg_map(this);
3099   vframe* start_vf = last_java_vframe(&reg_map);
3100   int count = 0;
3101   for (vframe* f = start_vf; f; f = f->sender()) {
3102     if (f->is_java_frame()) {
3103       javaVFrame* jvf = javaVFrame::cast(f);
3104       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3105 
3106       // Print out lock information
3107       if (JavaMonitorsInStackTrace) {
3108         jvf->print_lock_info_on(st, count);
3109       }
3110     } else {
3111       // Ignore non-Java frames
3112     }
3113 
3114     // Bail-out case for too deep stacks
3115     count++;
3116     if (MaxJavaStackTraceDepth == count) return;
3117   }
3118 }
3119 
3120 
3121 // JVMTI PopFrame support
3122 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3123   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3124   if (in_bytes(size_in_bytes) != 0) {
3125     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3126     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3127     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3128   }
3129 }
3130 
3131 void* JavaThread::popframe_preserved_args() {
3132   return _popframe_preserved_args;
3133 }
3134 
3135 ByteSize JavaThread::popframe_preserved_args_size() {
3136   return in_ByteSize(_popframe_preserved_args_size);
3137 }
3138 
3139 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3140   int sz = in_bytes(popframe_preserved_args_size());
3141   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3142   return in_WordSize(sz / wordSize);
3143 }
3144 
3145 void JavaThread::popframe_free_preserved_args() {
3146   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3147   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3148   _popframe_preserved_args = NULL;
3149   _popframe_preserved_args_size = 0;
3150 }
3151 
3152 #ifndef PRODUCT
3153 
3154 void JavaThread::trace_frames() {
3155   tty->print_cr("[Describe stack]");
3156   int frame_no = 1;
3157   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3158     tty->print("  %d. ", frame_no++);
3159     fst.current()->print_value_on(tty, this);
3160     tty->cr();
3161   }
3162 }
3163 
3164 class PrintAndVerifyOopClosure: public OopClosure {
3165  protected:
3166   template <class T> inline void do_oop_work(T* p) {
3167     oop obj = oopDesc::load_decode_heap_oop(p);
3168     if (obj == NULL) return;
3169     tty->print(INTPTR_FORMAT ": ", p2i(p));
3170     if (obj->is_oop_or_null()) {
3171       if (obj->is_objArray()) {
3172         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3173       } else {
3174         obj->print();
3175       }
3176     } else {
3177       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3178     }
3179     tty->cr();
3180   }
3181  public:
3182   virtual void do_oop(oop* p) { do_oop_work(p); }
3183   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3184 };
3185 
3186 
3187 static void oops_print(frame* f, const RegisterMap *map) {
3188   PrintAndVerifyOopClosure print;
3189   f->print_value();
3190   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3191 }
3192 
3193 // Print our all the locations that contain oops and whether they are
3194 // valid or not.  This useful when trying to find the oldest frame
3195 // where an oop has gone bad since the frame walk is from youngest to
3196 // oldest.
3197 void JavaThread::trace_oops() {
3198   tty->print_cr("[Trace oops]");
3199   frames_do(oops_print);
3200 }
3201 
3202 
3203 #ifdef ASSERT
3204 // Print or validate the layout of stack frames
3205 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3206   ResourceMark rm;
3207   PRESERVE_EXCEPTION_MARK;
3208   FrameValues values;
3209   int frame_no = 0;
3210   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3211     fst.current()->describe(values, ++frame_no);
3212     if (depth == frame_no) break;
3213   }
3214   if (validate_only) {
3215     values.validate();
3216   } else {
3217     tty->print_cr("[Describe stack layout]");
3218     values.print(this);
3219   }
3220 }
3221 #endif
3222 
3223 void JavaThread::trace_stack_from(vframe* start_vf) {
3224   ResourceMark rm;
3225   int vframe_no = 1;
3226   for (vframe* f = start_vf; f; f = f->sender()) {
3227     if (f->is_java_frame()) {
3228       javaVFrame::cast(f)->print_activation(vframe_no++);
3229     } else {
3230       f->print();
3231     }
3232     if (vframe_no > StackPrintLimit) {
3233       tty->print_cr("...<more frames>...");
3234       return;
3235     }
3236   }
3237 }
3238 
3239 
3240 void JavaThread::trace_stack() {
3241   if (!has_last_Java_frame()) return;
3242   ResourceMark rm;
3243   HandleMark   hm;
3244   RegisterMap reg_map(this);
3245   trace_stack_from(last_java_vframe(&reg_map));
3246 }
3247 
3248 
3249 #endif // PRODUCT
3250 
3251 
3252 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3253   assert(reg_map != NULL, "a map must be given");
3254   frame f = last_frame();
3255   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3256     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3257   }
3258   return NULL;
3259 }
3260 
3261 
3262 Klass* JavaThread::security_get_caller_class(int depth) {
3263   vframeStream vfst(this);
3264   vfst.security_get_caller_frame(depth);
3265   if (!vfst.at_end()) {
3266     return vfst.method()->method_holder();
3267   }
3268   return NULL;
3269 }
3270 
3271 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3272   assert(thread->is_Compiler_thread(), "must be compiler thread");
3273   CompileBroker::compiler_thread_loop();
3274 }
3275 
3276 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3277   NMethodSweeper::sweeper_loop();
3278 }
3279 
3280 // Create a CompilerThread
3281 CompilerThread::CompilerThread(CompileQueue* queue,
3282                                CompilerCounters* counters)
3283                                : JavaThread(&compiler_thread_entry) {
3284   _env   = NULL;
3285   _log   = NULL;
3286   _task  = NULL;
3287   _queue = queue;
3288   _counters = counters;
3289   _buffer_blob = NULL;
3290   _compiler = NULL;
3291 
3292 #ifndef PRODUCT
3293   _ideal_graph_printer = NULL;
3294 #endif
3295 }
3296 
3297 bool CompilerThread::can_call_java() const {
3298   return _compiler != NULL && _compiler->is_jvmci();
3299 }
3300 
3301 // Create sweeper thread
3302 CodeCacheSweeperThread::CodeCacheSweeperThread()
3303 : JavaThread(&sweeper_thread_entry) {
3304   _scanned_nmethod = NULL;
3305 }
3306 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3307   JavaThread::oops_do(f, cld_f, cf);
3308   if (_scanned_nmethod != NULL && cf != NULL) {
3309     // Safepoints can occur when the sweeper is scanning an nmethod so
3310     // process it here to make sure it isn't unloaded in the middle of
3311     // a scan.
3312     cf->do_code_blob(_scanned_nmethod);
3313   }
3314 }
3315 
3316 
3317 // ======= Threads ========
3318 
3319 // The Threads class links together all active threads, and provides
3320 // operations over all threads.  It is protected by its own Mutex
3321 // lock, which is also used in other contexts to protect thread
3322 // operations from having the thread being operated on from exiting
3323 // and going away unexpectedly (e.g., safepoint synchronization)
3324 
3325 JavaThread* Threads::_thread_list = NULL;
3326 int         Threads::_number_of_threads = 0;
3327 int         Threads::_number_of_non_daemon_threads = 0;
3328 int         Threads::_return_code = 0;
3329 int         Threads::_thread_claim_parity = 0;
3330 size_t      JavaThread::_stack_size_at_create = 0;
3331 #ifdef ASSERT
3332 bool        Threads::_vm_complete = false;
3333 #endif
3334 
3335 // All JavaThreads
3336 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3337 
3338 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3339 void Threads::threads_do(ThreadClosure* tc) {
3340   assert_locked_or_safepoint(Threads_lock);
3341   // ALL_JAVA_THREADS iterates through all JavaThreads
3342   ALL_JAVA_THREADS(p) {
3343     tc->do_thread(p);
3344   }
3345   // Someday we could have a table or list of all non-JavaThreads.
3346   // For now, just manually iterate through them.
3347   tc->do_thread(VMThread::vm_thread());
3348   Universe::heap()->gc_threads_do(tc);
3349   WatcherThread *wt = WatcherThread::watcher_thread();
3350   // Strictly speaking, the following NULL check isn't sufficient to make sure
3351   // the data for WatcherThread is still valid upon being examined. However,
3352   // considering that WatchThread terminates when the VM is on the way to
3353   // exit at safepoint, the chance of the above is extremely small. The right
3354   // way to prevent termination of WatcherThread would be to acquire
3355   // Terminator_lock, but we can't do that without violating the lock rank
3356   // checking in some cases.
3357   if (wt != NULL) {
3358     tc->do_thread(wt);
3359   }
3360 
3361   // If CompilerThreads ever become non-JavaThreads, add them here
3362 }
3363 
3364 // The system initialization in the library has three phases.
3365 //
3366 // Phase 1: java.lang.System class initialization
3367 //     java.lang.System is a primordial class loaded and initialized
3368 //     by the VM early during startup.  java.lang.System.<clinit>
3369 //     only does registerNatives and keeps the rest of the class
3370 //     initialization work later until thread initialization completes.
3371 //
3372 //     System.initPhase1 initializes the system properties, the static
3373 //     fields in, out, and err. Set up java signal handlers, OS-specific
3374 //     system settings, and thread group of the main thread.
3375 static void call_initPhase1(TRAPS) {
3376   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3377   instanceKlassHandle klass (THREAD, k);
3378 
3379   JavaValue result(T_VOID);
3380   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3381                                          vmSymbols::void_method_signature(), CHECK);
3382 }
3383 
3384 // Phase 2. Module system initialization
3385 //     This will initialize the module system.  Only java.base classes
3386 //     can be loaded until phase 2 completes.
3387 //
3388 //     Call System.initPhase2 after the compiler initialization and jsr292
3389 //     classes get initialized because module initialization runs a lot of java
3390 //     code, that for performance reasons, should be compiled.  Also, this will
3391 //     enable the startup code to use lambda and other language features in this
3392 //     phase and onward.
3393 //
3394 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3395 static void call_initPhase2(TRAPS) {
3396   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3397   instanceKlassHandle klass (THREAD, k);
3398 
3399   JavaValue result(T_VOID);
3400   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3401                                          vmSymbols::void_method_signature(), CHECK);
3402   universe_post_module_init();
3403 }
3404 
3405 // Phase 3. final setup - set security manager, system class loader and TCCL
3406 //
3407 //     This will instantiate and set the security manager, set the system class
3408 //     loader as well as the thread context class loader.  The security manager
3409 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3410 //     other modules or the application's classpath.
3411 static void call_initPhase3(TRAPS) {
3412   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3413   instanceKlassHandle klass (THREAD, k);
3414 
3415   JavaValue result(T_VOID);
3416   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3417                                          vmSymbols::void_method_signature(), CHECK);
3418 }
3419 
3420 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3421   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3422 
3423   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3424     create_vm_init_libraries();
3425   }
3426 
3427   initialize_class(vmSymbols::java_lang_String(), CHECK);
3428 
3429   // Inject CompactStrings value after the static initializers for String ran.
3430   java_lang_String::set_compact_strings(CompactStrings);
3431 
3432   // Initialize java_lang.System (needed before creating the thread)
3433   initialize_class(vmSymbols::java_lang_System(), CHECK);
3434   // The VM creates & returns objects of this class. Make sure it's initialized.
3435   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3436   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3437   Handle thread_group = create_initial_thread_group(CHECK);
3438   Universe::set_main_thread_group(thread_group());
3439   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3440   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3441   main_thread->set_threadObj(thread_object);
3442   // Set thread status to running since main thread has
3443   // been started and running.
3444   java_lang_Thread::set_thread_status(thread_object,
3445                                       java_lang_Thread::RUNNABLE);
3446 
3447   // The VM creates objects of this class.
3448   initialize_class(vmSymbols::java_lang_reflect_Module(), CHECK);
3449 
3450   // The VM preresolves methods to these classes. Make sure that they get initialized
3451   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3452   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3453 
3454   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3455   call_initPhase1(CHECK);
3456 
3457   // get the Java runtime name after java.lang.System is initialized
3458   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3459   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3460 
3461   // an instance of OutOfMemory exception has been allocated earlier
3462   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3463   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3464   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3465   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3466   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3467   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3468   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3469   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3470 }
3471 
3472 void Threads::initialize_jsr292_core_classes(TRAPS) {
3473   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3474 
3475   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3476   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3477   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3478 }
3479 
3480 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3481   extern void JDK_Version_init();
3482 
3483   // Preinitialize version info.
3484   VM_Version::early_initialize();
3485 
3486   // Check version
3487   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3488 
3489   // Initialize library-based TLS
3490   ThreadLocalStorage::init();
3491 
3492   // Initialize the output stream module
3493   ostream_init();
3494 
3495   // Process java launcher properties.
3496   Arguments::process_sun_java_launcher_properties(args);
3497 
3498   // Initialize the os module
3499   os::init();
3500 
3501   // Record VM creation timing statistics
3502   TraceVmCreationTime create_vm_timer;
3503   create_vm_timer.start();
3504 
3505   // Initialize system properties.
3506   Arguments::init_system_properties();
3507 
3508   // So that JDK version can be used as a discriminator when parsing arguments
3509   JDK_Version_init();
3510 
3511   // Update/Initialize System properties after JDK version number is known
3512   Arguments::init_version_specific_system_properties();
3513 
3514   // Make sure to initialize log configuration *before* parsing arguments
3515   LogConfiguration::initialize(create_vm_timer.begin_time());
3516 
3517   // Parse arguments
3518   jint parse_result = Arguments::parse(args);
3519   if (parse_result != JNI_OK) return parse_result;
3520 
3521   os::init_before_ergo();
3522 
3523   jint ergo_result = Arguments::apply_ergo();
3524   if (ergo_result != JNI_OK) return ergo_result;
3525 
3526   // Final check of all ranges after ergonomics which may change values.
3527   if (!CommandLineFlagRangeList::check_ranges()) {
3528     return JNI_EINVAL;
3529   }
3530 
3531   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3532   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3533   if (!constraint_result) {
3534     return JNI_EINVAL;
3535   }
3536 
3537   if (PauseAtStartup) {
3538     os::pause();
3539   }
3540 
3541   HOTSPOT_VM_INIT_BEGIN();
3542 
3543   // Timing (must come after argument parsing)
3544   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3545 
3546   // Initialize the os module after parsing the args
3547   jint os_init_2_result = os::init_2();
3548   if (os_init_2_result != JNI_OK) return os_init_2_result;
3549 
3550   jint adjust_after_os_result = Arguments::adjust_after_os();
3551   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3552 
3553   // Initialize output stream logging
3554   ostream_init_log();
3555 
3556   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3557   // Must be before create_vm_init_agents()
3558   if (Arguments::init_libraries_at_startup()) {
3559     convert_vm_init_libraries_to_agents();
3560   }
3561 
3562   // Launch -agentlib/-agentpath and converted -Xrun agents
3563   if (Arguments::init_agents_at_startup()) {
3564     create_vm_init_agents();
3565   }
3566 
3567   // Initialize Threads state
3568   _thread_list = NULL;
3569   _number_of_threads = 0;
3570   _number_of_non_daemon_threads = 0;
3571 
3572   // Initialize global data structures and create system classes in heap
3573   vm_init_globals();
3574 
3575 #if INCLUDE_JVMCI
3576   if (JVMCICounterSize > 0) {
3577     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3578     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3579   } else {
3580     JavaThread::_jvmci_old_thread_counters = NULL;
3581   }
3582 #endif // INCLUDE_JVMCI
3583 
3584   // Attach the main thread to this os thread
3585   JavaThread* main_thread = new JavaThread();
3586   main_thread->set_thread_state(_thread_in_vm);
3587   main_thread->initialize_thread_current();
3588   // must do this before set_active_handles
3589   main_thread->record_stack_base_and_size();
3590   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3591 
3592   if (!main_thread->set_as_starting_thread()) {
3593     vm_shutdown_during_initialization(
3594                                       "Failed necessary internal allocation. Out of swap space");
3595     delete main_thread;
3596     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3597     return JNI_ENOMEM;
3598   }
3599 
3600   // Enable guard page *after* os::create_main_thread(), otherwise it would
3601   // crash Linux VM, see notes in os_linux.cpp.
3602   main_thread->create_stack_guard_pages();
3603 
3604   // Initialize Java-Level synchronization subsystem
3605   ObjectMonitor::Initialize();
3606 
3607   // Initialize global modules
3608   jint status = init_globals();
3609   if (status != JNI_OK) {
3610     delete main_thread;
3611     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3612     return status;
3613   }
3614 
3615   if (TRACE_INITIALIZE() != JNI_OK) {
3616     vm_exit_during_initialization("Failed to initialize tracing backend");
3617   }
3618 
3619   // Should be done after the heap is fully created
3620   main_thread->cache_global_variables();
3621 
3622   HandleMark hm;
3623 
3624   { MutexLocker mu(Threads_lock);
3625     Threads::add(main_thread);
3626   }
3627 
3628   // Any JVMTI raw monitors entered in onload will transition into
3629   // real raw monitor. VM is setup enough here for raw monitor enter.
3630   JvmtiExport::transition_pending_onload_raw_monitors();
3631 
3632   // Create the VMThread
3633   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3634 
3635   VMThread::create();
3636     Thread* vmthread = VMThread::vm_thread();
3637 
3638     if (!os::create_thread(vmthread, os::vm_thread)) {
3639       vm_exit_during_initialization("Cannot create VM thread. "
3640                                     "Out of system resources.");
3641     }
3642 
3643     // Wait for the VM thread to become ready, and VMThread::run to initialize
3644     // Monitors can have spurious returns, must always check another state flag
3645     {
3646       MutexLocker ml(Notify_lock);
3647       os::start_thread(vmthread);
3648       while (vmthread->active_handles() == NULL) {
3649         Notify_lock->wait();
3650       }
3651     }
3652   }
3653 
3654   assert(Universe::is_fully_initialized(), "not initialized");
3655   if (VerifyDuringStartup) {
3656     // Make sure we're starting with a clean slate.
3657     VM_Verify verify_op;
3658     VMThread::execute(&verify_op);
3659   }
3660 
3661   Thread* THREAD = Thread::current();
3662 
3663   // At this point, the Universe is initialized, but we have not executed
3664   // any byte code.  Now is a good time (the only time) to dump out the
3665   // internal state of the JVM for sharing.
3666   if (DumpSharedSpaces) {
3667     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3668     ShouldNotReachHere();
3669   }
3670 
3671   // Always call even when there are not JVMTI environments yet, since environments
3672   // may be attached late and JVMTI must track phases of VM execution
3673   JvmtiExport::enter_early_start_phase();
3674 
3675   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3676   JvmtiExport::post_early_vm_start();
3677 
3678   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3679 
3680   // We need this for ClassDataSharing - the initial vm.info property is set
3681   // with the default value of CDS "sharing" which may be reset through
3682   // command line options.
3683   reset_vm_info_property(CHECK_JNI_ERR);
3684 
3685   quicken_jni_functions();
3686 
3687   // No more stub generation allowed after that point.
3688   StubCodeDesc::freeze();
3689 
3690   // Set flag that basic initialization has completed. Used by exceptions and various
3691   // debug stuff, that does not work until all basic classes have been initialized.
3692   set_init_completed();
3693 
3694   LogConfiguration::post_initialize();
3695   Metaspace::post_initialize();
3696 
3697   HOTSPOT_VM_INIT_END();
3698 
3699   // record VM initialization completion time
3700 #if INCLUDE_MANAGEMENT
3701   Management::record_vm_init_completed();
3702 #endif // INCLUDE_MANAGEMENT
3703 
3704   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3705   // set_init_completed has just been called, causing exceptions not to be shortcut
3706   // anymore. We call vm_exit_during_initialization directly instead.
3707 
3708   // Initialize reference pending list locker
3709   bool needs_locker_thread = Universe::heap()->needs_reference_pending_list_locker_thread();
3710   ReferencePendingListLocker::initialize(needs_locker_thread, CHECK_JNI_ERR);
3711 
3712   // Signal Dispatcher needs to be started before VMInit event is posted
3713   os::signal_init();
3714 
3715   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3716   if (!DisableAttachMechanism) {
3717     AttachListener::vm_start();
3718     if (StartAttachListener || AttachListener::init_at_startup()) {
3719       AttachListener::init();
3720     }
3721   }
3722 
3723   // Launch -Xrun agents
3724   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3725   // back-end can launch with -Xdebug -Xrunjdwp.
3726   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3727     create_vm_init_libraries();
3728   }
3729 
3730   if (CleanChunkPoolAsync) {
3731     Chunk::start_chunk_pool_cleaner_task();
3732   }
3733 
3734   // initialize compiler(s)
3735 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3736   CompileBroker::compilation_init(CHECK_JNI_ERR);
3737 #endif
3738 
3739   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3740   // It is done after compilers are initialized, because otherwise compilations of
3741   // signature polymorphic MH intrinsics can be missed
3742   // (see SystemDictionary::find_method_handle_intrinsic).
3743   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3744 
3745   // This will initialize the module system.  Only java.base classes can be
3746   // loaded until phase 2 completes
3747   call_initPhase2(CHECK_JNI_ERR);
3748 
3749   // Always call even when there are not JVMTI environments yet, since environments
3750   // may be attached late and JVMTI must track phases of VM execution
3751   JvmtiExport::enter_start_phase();
3752 
3753   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3754   JvmtiExport::post_vm_start();
3755 
3756   // Final system initialization including security manager and system class loader
3757   call_initPhase3(CHECK_JNI_ERR);
3758 
3759   // cache the system class loader
3760   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3761 
3762   // Always call even when there are not JVMTI environments yet, since environments
3763   // may be attached late and JVMTI must track phases of VM execution
3764   JvmtiExport::enter_live_phase();
3765 
3766   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3767   JvmtiExport::post_vm_initialized();
3768 
3769   if (TRACE_START() != JNI_OK) {
3770     vm_exit_during_initialization("Failed to start tracing backend.");
3771   }
3772 
3773 #if INCLUDE_MANAGEMENT
3774   Management::initialize(THREAD);
3775 
3776   if (HAS_PENDING_EXCEPTION) {
3777     // management agent fails to start possibly due to
3778     // configuration problem and is responsible for printing
3779     // stack trace if appropriate. Simply exit VM.
3780     vm_exit(1);
3781   }
3782 #endif // INCLUDE_MANAGEMENT
3783 
3784   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3785   if (MemProfiling)                   MemProfiler::engage();
3786   StatSampler::engage();
3787   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3788 
3789   BiasedLocking::init();
3790 
3791 #if INCLUDE_RTM_OPT
3792   RTMLockingCounters::init();
3793 #endif
3794 
3795   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3796     call_postVMInitHook(THREAD);
3797     // The Java side of PostVMInitHook.run must deal with all
3798     // exceptions and provide means of diagnosis.
3799     if (HAS_PENDING_EXCEPTION) {
3800       CLEAR_PENDING_EXCEPTION;
3801     }
3802   }
3803 
3804   {
3805     MutexLocker ml(PeriodicTask_lock);
3806     // Make sure the WatcherThread can be started by WatcherThread::start()
3807     // or by dynamic enrollment.
3808     WatcherThread::make_startable();
3809     // Start up the WatcherThread if there are any periodic tasks
3810     // NOTE:  All PeriodicTasks should be registered by now. If they
3811     //   aren't, late joiners might appear to start slowly (we might
3812     //   take a while to process their first tick).
3813     if (PeriodicTask::num_tasks() > 0) {
3814       WatcherThread::start();
3815     }
3816   }
3817 
3818   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3819 
3820   create_vm_timer.end();
3821 #ifdef ASSERT
3822   _vm_complete = true;
3823 #endif
3824   return JNI_OK;
3825 }
3826 
3827 // type for the Agent_OnLoad and JVM_OnLoad entry points
3828 extern "C" {
3829   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3830 }
3831 // Find a command line agent library and return its entry point for
3832 //         -agentlib:  -agentpath:   -Xrun
3833 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3834 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3835                                     const char *on_load_symbols[],
3836                                     size_t num_symbol_entries) {
3837   OnLoadEntry_t on_load_entry = NULL;
3838   void *library = NULL;
3839 
3840   if (!agent->valid()) {
3841     char buffer[JVM_MAXPATHLEN];
3842     char ebuf[1024] = "";
3843     const char *name = agent->name();
3844     const char *msg = "Could not find agent library ";
3845 
3846     // First check to see if agent is statically linked into executable
3847     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3848       library = agent->os_lib();
3849     } else if (agent->is_absolute_path()) {
3850       library = os::dll_load(name, ebuf, sizeof ebuf);
3851       if (library == NULL) {
3852         const char *sub_msg = " in absolute path, with error: ";
3853         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3854         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3855         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3856         // If we can't find the agent, exit.
3857         vm_exit_during_initialization(buf, NULL);
3858         FREE_C_HEAP_ARRAY(char, buf);
3859       }
3860     } else {
3861       // Try to load the agent from the standard dll directory
3862       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3863                              name)) {
3864         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3865       }
3866       if (library == NULL) { // Try the local directory
3867         char ns[1] = {0};
3868         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3869           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3870         }
3871         if (library == NULL) {
3872           const char *sub_msg = " on the library path, with error: ";
3873           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3874           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3875           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3876           // If we can't find the agent, exit.
3877           vm_exit_during_initialization(buf, NULL);
3878           FREE_C_HEAP_ARRAY(char, buf);
3879         }
3880       }
3881     }
3882     agent->set_os_lib(library);
3883     agent->set_valid();
3884   }
3885 
3886   // Find the OnLoad function.
3887   on_load_entry =
3888     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3889                                                           false,
3890                                                           on_load_symbols,
3891                                                           num_symbol_entries));
3892   return on_load_entry;
3893 }
3894 
3895 // Find the JVM_OnLoad entry point
3896 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3897   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3898   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3899 }
3900 
3901 // Find the Agent_OnLoad entry point
3902 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3903   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3904   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3905 }
3906 
3907 // For backwards compatibility with -Xrun
3908 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3909 // treated like -agentpath:
3910 // Must be called before agent libraries are created
3911 void Threads::convert_vm_init_libraries_to_agents() {
3912   AgentLibrary* agent;
3913   AgentLibrary* next;
3914 
3915   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3916     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3917     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3918 
3919     // If there is an JVM_OnLoad function it will get called later,
3920     // otherwise see if there is an Agent_OnLoad
3921     if (on_load_entry == NULL) {
3922       on_load_entry = lookup_agent_on_load(agent);
3923       if (on_load_entry != NULL) {
3924         // switch it to the agent list -- so that Agent_OnLoad will be called,
3925         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3926         Arguments::convert_library_to_agent(agent);
3927       } else {
3928         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3929       }
3930     }
3931   }
3932 }
3933 
3934 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3935 // Invokes Agent_OnLoad
3936 // Called very early -- before JavaThreads exist
3937 void Threads::create_vm_init_agents() {
3938   extern struct JavaVM_ main_vm;
3939   AgentLibrary* agent;
3940 
3941   JvmtiExport::enter_onload_phase();
3942 
3943   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3944     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3945 
3946     if (on_load_entry != NULL) {
3947       // Invoke the Agent_OnLoad function
3948       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3949       if (err != JNI_OK) {
3950         vm_exit_during_initialization("agent library failed to init", agent->name());
3951       }
3952     } else {
3953       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3954     }
3955   }
3956   JvmtiExport::enter_primordial_phase();
3957 }
3958 
3959 extern "C" {
3960   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3961 }
3962 
3963 void Threads::shutdown_vm_agents() {
3964   // Send any Agent_OnUnload notifications
3965   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3966   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3967   extern struct JavaVM_ main_vm;
3968   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3969 
3970     // Find the Agent_OnUnload function.
3971     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3972                                                    os::find_agent_function(agent,
3973                                                    false,
3974                                                    on_unload_symbols,
3975                                                    num_symbol_entries));
3976 
3977     // Invoke the Agent_OnUnload function
3978     if (unload_entry != NULL) {
3979       JavaThread* thread = JavaThread::current();
3980       ThreadToNativeFromVM ttn(thread);
3981       HandleMark hm(thread);
3982       (*unload_entry)(&main_vm);
3983     }
3984   }
3985 }
3986 
3987 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3988 // Invokes JVM_OnLoad
3989 void Threads::create_vm_init_libraries() {
3990   extern struct JavaVM_ main_vm;
3991   AgentLibrary* agent;
3992 
3993   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3994     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3995 
3996     if (on_load_entry != NULL) {
3997       // Invoke the JVM_OnLoad function
3998       JavaThread* thread = JavaThread::current();
3999       ThreadToNativeFromVM ttn(thread);
4000       HandleMark hm(thread);
4001       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4002       if (err != JNI_OK) {
4003         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4004       }
4005     } else {
4006       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4007     }
4008   }
4009 }
4010 
4011 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4012   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4013 
4014   JavaThread* java_thread = NULL;
4015   // Sequential search for now.  Need to do better optimization later.
4016   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4017     oop tobj = thread->threadObj();
4018     if (!thread->is_exiting() &&
4019         tobj != NULL &&
4020         java_tid == java_lang_Thread::thread_id(tobj)) {
4021       java_thread = thread;
4022       break;
4023     }
4024   }
4025   return java_thread;
4026 }
4027 
4028 
4029 // Last thread running calls java.lang.Shutdown.shutdown()
4030 void JavaThread::invoke_shutdown_hooks() {
4031   HandleMark hm(this);
4032 
4033   // We could get here with a pending exception, if so clear it now.
4034   if (this->has_pending_exception()) {
4035     this->clear_pending_exception();
4036   }
4037 
4038   EXCEPTION_MARK;
4039   Klass* k =
4040     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4041                                       THREAD);
4042   if (k != NULL) {
4043     // SystemDictionary::resolve_or_null will return null if there was
4044     // an exception.  If we cannot load the Shutdown class, just don't
4045     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4046     // and finalizers (if runFinalizersOnExit is set) won't be run.
4047     // Note that if a shutdown hook was registered or runFinalizersOnExit
4048     // was called, the Shutdown class would have already been loaded
4049     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4050     instanceKlassHandle shutdown_klass (THREAD, k);
4051     JavaValue result(T_VOID);
4052     JavaCalls::call_static(&result,
4053                            shutdown_klass,
4054                            vmSymbols::shutdown_method_name(),
4055                            vmSymbols::void_method_signature(),
4056                            THREAD);
4057   }
4058   CLEAR_PENDING_EXCEPTION;
4059 }
4060 
4061 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4062 // the program falls off the end of main(). Another VM exit path is through
4063 // vm_exit() when the program calls System.exit() to return a value or when
4064 // there is a serious error in VM. The two shutdown paths are not exactly
4065 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4066 // and VM_Exit op at VM level.
4067 //
4068 // Shutdown sequence:
4069 //   + Shutdown native memory tracking if it is on
4070 //   + Wait until we are the last non-daemon thread to execute
4071 //     <-- every thing is still working at this moment -->
4072 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4073 //        shutdown hooks, run finalizers if finalization-on-exit
4074 //   + Call before_exit(), prepare for VM exit
4075 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4076 //        currently the only user of this mechanism is File.deleteOnExit())
4077 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4078 //        post thread end and vm death events to JVMTI,
4079 //        stop signal thread
4080 //   + Call JavaThread::exit(), it will:
4081 //      > release JNI handle blocks, remove stack guard pages
4082 //      > remove this thread from Threads list
4083 //     <-- no more Java code from this thread after this point -->
4084 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4085 //     the compiler threads at safepoint
4086 //     <-- do not use anything that could get blocked by Safepoint -->
4087 //   + Disable tracing at JNI/JVM barriers
4088 //   + Set _vm_exited flag for threads that are still running native code
4089 //   + Delete this thread
4090 //   + Call exit_globals()
4091 //      > deletes tty
4092 //      > deletes PerfMemory resources
4093 //   + Return to caller
4094 
4095 bool Threads::destroy_vm() {
4096   JavaThread* thread = JavaThread::current();
4097 
4098 #ifdef ASSERT
4099   _vm_complete = false;
4100 #endif
4101   // Wait until we are the last non-daemon thread to execute
4102   { MutexLocker nu(Threads_lock);
4103     while (Threads::number_of_non_daemon_threads() > 1)
4104       // This wait should make safepoint checks, wait without a timeout,
4105       // and wait as a suspend-equivalent condition.
4106       //
4107       // Note: If the FlatProfiler is running and this thread is waiting
4108       // for another non-daemon thread to finish, then the FlatProfiler
4109       // is waiting for the external suspend request on this thread to
4110       // complete. wait_for_ext_suspend_completion() will eventually
4111       // timeout, but that takes time. Making this wait a suspend-
4112       // equivalent condition solves that timeout problem.
4113       //
4114       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4115                          Mutex::_as_suspend_equivalent_flag);
4116   }
4117 
4118   // Hang forever on exit if we are reporting an error.
4119   if (ShowMessageBoxOnError && is_error_reported()) {
4120     os::infinite_sleep();
4121   }
4122   os::wait_for_keypress_at_exit();
4123 
4124   // run Java level shutdown hooks
4125   thread->invoke_shutdown_hooks();
4126 
4127   before_exit(thread);
4128 
4129   thread->exit(true);
4130 
4131   // Stop VM thread.
4132   {
4133     // 4945125 The vm thread comes to a safepoint during exit.
4134     // GC vm_operations can get caught at the safepoint, and the
4135     // heap is unparseable if they are caught. Grab the Heap_lock
4136     // to prevent this. The GC vm_operations will not be able to
4137     // queue until after the vm thread is dead. After this point,
4138     // we'll never emerge out of the safepoint before the VM exits.
4139 
4140     MutexLocker ml(Heap_lock);
4141 
4142     VMThread::wait_for_vm_thread_exit();
4143     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4144     VMThread::destroy();
4145   }
4146 
4147   // clean up ideal graph printers
4148 #if defined(COMPILER2) && !defined(PRODUCT)
4149   IdealGraphPrinter::clean_up();
4150 #endif
4151 
4152   // Now, all Java threads are gone except daemon threads. Daemon threads
4153   // running Java code or in VM are stopped by the Safepoint. However,
4154   // daemon threads executing native code are still running.  But they
4155   // will be stopped at native=>Java/VM barriers. Note that we can't
4156   // simply kill or suspend them, as it is inherently deadlock-prone.
4157 
4158   VM_Exit::set_vm_exited();
4159 
4160   notify_vm_shutdown();
4161 
4162   delete thread;
4163 
4164 #if INCLUDE_JVMCI
4165   if (JVMCICounterSize > 0) {
4166     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4167   }
4168 #endif
4169 
4170   // exit_globals() will delete tty
4171   exit_globals();
4172 
4173   LogConfiguration::finalize();
4174 
4175   return true;
4176 }
4177 
4178 
4179 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4180   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4181   return is_supported_jni_version(version);
4182 }
4183 
4184 
4185 jboolean Threads::is_supported_jni_version(jint version) {
4186   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4187   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4188   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4189   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4190   if (version == JNI_VERSION_9) return JNI_TRUE;
4191   return JNI_FALSE;
4192 }
4193 
4194 
4195 void Threads::add(JavaThread* p, bool force_daemon) {
4196   // The threads lock must be owned at this point
4197   assert_locked_or_safepoint(Threads_lock);
4198 
4199   // See the comment for this method in thread.hpp for its purpose and
4200   // why it is called here.
4201   p->initialize_queues();
4202   p->set_next(_thread_list);
4203   _thread_list = p;
4204   _number_of_threads++;
4205   oop threadObj = p->threadObj();
4206   bool daemon = true;
4207   // Bootstrapping problem: threadObj can be null for initial
4208   // JavaThread (or for threads attached via JNI)
4209   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4210     _number_of_non_daemon_threads++;
4211     daemon = false;
4212   }
4213 
4214   ThreadService::add_thread(p, daemon);
4215 
4216   // Possible GC point.
4217   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4218 }
4219 
4220 void Threads::remove(JavaThread* p) {
4221   // Extra scope needed for Thread_lock, so we can check
4222   // that we do not remove thread without safepoint code notice
4223   { MutexLocker ml(Threads_lock);
4224 
4225     assert(includes(p), "p must be present");
4226 
4227     JavaThread* current = _thread_list;
4228     JavaThread* prev    = NULL;
4229 
4230     while (current != p) {
4231       prev    = current;
4232       current = current->next();
4233     }
4234 
4235     if (prev) {
4236       prev->set_next(current->next());
4237     } else {
4238       _thread_list = p->next();
4239     }
4240     _number_of_threads--;
4241     oop threadObj = p->threadObj();
4242     bool daemon = true;
4243     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4244       _number_of_non_daemon_threads--;
4245       daemon = false;
4246 
4247       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4248       // on destroy_vm will wake up.
4249       if (number_of_non_daemon_threads() == 1) {
4250         Threads_lock->notify_all();
4251       }
4252     }
4253     ThreadService::remove_thread(p, daemon);
4254 
4255     // Make sure that safepoint code disregard this thread. This is needed since
4256     // the thread might mess around with locks after this point. This can cause it
4257     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4258     // of this thread since it is removed from the queue.
4259     p->set_terminated_value();
4260   } // unlock Threads_lock
4261 
4262   // Since Events::log uses a lock, we grab it outside the Threads_lock
4263   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4264 }
4265 
4266 // Threads_lock must be held when this is called (or must be called during a safepoint)
4267 bool Threads::includes(JavaThread* p) {
4268   assert(Threads_lock->is_locked(), "sanity check");
4269   ALL_JAVA_THREADS(q) {
4270     if (q == p) {
4271       return true;
4272     }
4273   }
4274   return false;
4275 }
4276 
4277 // Operations on the Threads list for GC.  These are not explicitly locked,
4278 // but the garbage collector must provide a safe context for them to run.
4279 // In particular, these things should never be called when the Threads_lock
4280 // is held by some other thread. (Note: the Safepoint abstraction also
4281 // uses the Threads_lock to guarantee this property. It also makes sure that
4282 // all threads gets blocked when exiting or starting).
4283 
4284 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4285   ALL_JAVA_THREADS(p) {
4286     p->oops_do(f, cld_f, cf);
4287   }
4288   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4289 }
4290 
4291 void Threads::change_thread_claim_parity() {
4292   // Set the new claim parity.
4293   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4294          "Not in range.");
4295   _thread_claim_parity++;
4296   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4297   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4298          "Not in range.");
4299 }
4300 
4301 #ifdef ASSERT
4302 void Threads::assert_all_threads_claimed() {
4303   ALL_JAVA_THREADS(p) {
4304     const int thread_parity = p->oops_do_parity();
4305     assert((thread_parity == _thread_claim_parity),
4306            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4307   }
4308 }
4309 #endif // ASSERT
4310 
4311 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4312   int cp = Threads::thread_claim_parity();
4313   ALL_JAVA_THREADS(p) {
4314     if (p->claim_oops_do(is_par, cp)) {
4315       p->oops_do(f, cld_f, cf);
4316     }
4317   }
4318   VMThread* vmt = VMThread::vm_thread();
4319   if (vmt->claim_oops_do(is_par, cp)) {
4320     vmt->oops_do(f, cld_f, cf);
4321   }
4322 }
4323 
4324 #if INCLUDE_ALL_GCS
4325 // Used by ParallelScavenge
4326 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4327   ALL_JAVA_THREADS(p) {
4328     q->enqueue(new ThreadRootsTask(p));
4329   }
4330   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4331 }
4332 
4333 // Used by Parallel Old
4334 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4335   ALL_JAVA_THREADS(p) {
4336     q->enqueue(new ThreadRootsMarkingTask(p));
4337   }
4338   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4339 }
4340 #endif // INCLUDE_ALL_GCS
4341 
4342 void Threads::nmethods_do(CodeBlobClosure* cf) {
4343   ALL_JAVA_THREADS(p) {
4344     p->nmethods_do(cf);
4345   }
4346   VMThread::vm_thread()->nmethods_do(cf);
4347 }
4348 
4349 void Threads::metadata_do(void f(Metadata*)) {
4350   ALL_JAVA_THREADS(p) {
4351     p->metadata_do(f);
4352   }
4353 }
4354 
4355 class ThreadHandlesClosure : public ThreadClosure {
4356   void (*_f)(Metadata*);
4357  public:
4358   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4359   virtual void do_thread(Thread* thread) {
4360     thread->metadata_handles_do(_f);
4361   }
4362 };
4363 
4364 void Threads::metadata_handles_do(void f(Metadata*)) {
4365   // Only walk the Handles in Thread.
4366   ThreadHandlesClosure handles_closure(f);
4367   threads_do(&handles_closure);
4368 }
4369 
4370 void Threads::deoptimized_wrt_marked_nmethods() {
4371   ALL_JAVA_THREADS(p) {
4372     p->deoptimized_wrt_marked_nmethods();
4373   }
4374 }
4375 
4376 
4377 // Get count Java threads that are waiting to enter the specified monitor.
4378 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4379                                                          address monitor,
4380                                                          bool doLock) {
4381   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4382          "must grab Threads_lock or be at safepoint");
4383   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4384 
4385   int i = 0;
4386   {
4387     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4388     ALL_JAVA_THREADS(p) {
4389       if (!p->can_call_java()) continue;
4390 
4391       address pending = (address)p->current_pending_monitor();
4392       if (pending == monitor) {             // found a match
4393         if (i < count) result->append(p);   // save the first count matches
4394         i++;
4395       }
4396     }
4397   }
4398   return result;
4399 }
4400 
4401 
4402 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4403                                                       bool doLock) {
4404   assert(doLock ||
4405          Threads_lock->owned_by_self() ||
4406          SafepointSynchronize::is_at_safepoint(),
4407          "must grab Threads_lock or be at safepoint");
4408 
4409   // NULL owner means not locked so we can skip the search
4410   if (owner == NULL) return NULL;
4411 
4412   {
4413     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4414     ALL_JAVA_THREADS(p) {
4415       // first, see if owner is the address of a Java thread
4416       if (owner == (address)p) return p;
4417     }
4418   }
4419   // Cannot assert on lack of success here since this function may be
4420   // used by code that is trying to report useful problem information
4421   // like deadlock detection.
4422   if (UseHeavyMonitors) return NULL;
4423 
4424   // If we didn't find a matching Java thread and we didn't force use of
4425   // heavyweight monitors, then the owner is the stack address of the
4426   // Lock Word in the owning Java thread's stack.
4427   //
4428   JavaThread* the_owner = NULL;
4429   {
4430     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4431     ALL_JAVA_THREADS(q) {
4432       if (q->is_lock_owned(owner)) {
4433         the_owner = q;
4434         break;
4435       }
4436     }
4437   }
4438   // cannot assert on lack of success here; see above comment
4439   return the_owner;
4440 }
4441 
4442 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4443 void Threads::print_on(outputStream* st, bool print_stacks,
4444                        bool internal_format, bool print_concurrent_locks) {
4445   char buf[32];
4446   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4447 
4448   st->print_cr("Full thread dump %s (%s %s):",
4449                Abstract_VM_Version::vm_name(),
4450                Abstract_VM_Version::vm_release(),
4451                Abstract_VM_Version::vm_info_string());
4452   st->cr();
4453 
4454 #if INCLUDE_SERVICES
4455   // Dump concurrent locks
4456   ConcurrentLocksDump concurrent_locks;
4457   if (print_concurrent_locks) {
4458     concurrent_locks.dump_at_safepoint();
4459   }
4460 #endif // INCLUDE_SERVICES
4461 
4462   ALL_JAVA_THREADS(p) {
4463     ResourceMark rm;
4464     p->print_on(st);
4465     if (print_stacks) {
4466       if (internal_format) {
4467         p->trace_stack();
4468       } else {
4469         p->print_stack_on(st);
4470       }
4471     }
4472     st->cr();
4473 #if INCLUDE_SERVICES
4474     if (print_concurrent_locks) {
4475       concurrent_locks.print_locks_on(p, st);
4476     }
4477 #endif // INCLUDE_SERVICES
4478   }
4479 
4480   VMThread::vm_thread()->print_on(st);
4481   st->cr();
4482   Universe::heap()->print_gc_threads_on(st);
4483   WatcherThread* wt = WatcherThread::watcher_thread();
4484   if (wt != NULL) {
4485     wt->print_on(st);
4486     st->cr();
4487   }
4488   st->flush();
4489 }
4490 
4491 // Threads::print_on_error() is called by fatal error handler. It's possible
4492 // that VM is not at safepoint and/or current thread is inside signal handler.
4493 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4494 // memory (even in resource area), it might deadlock the error handler.
4495 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4496                              int buflen) {
4497   bool found_current = false;
4498   st->print_cr("Java Threads: ( => current thread )");
4499   ALL_JAVA_THREADS(thread) {
4500     bool is_current = (current == thread);
4501     found_current = found_current || is_current;
4502 
4503     st->print("%s", is_current ? "=>" : "  ");
4504 
4505     st->print(PTR_FORMAT, p2i(thread));
4506     st->print(" ");
4507     thread->print_on_error(st, buf, buflen);
4508     st->cr();
4509   }
4510   st->cr();
4511 
4512   st->print_cr("Other Threads:");
4513   if (VMThread::vm_thread()) {
4514     bool is_current = (current == VMThread::vm_thread());
4515     found_current = found_current || is_current;
4516     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4517 
4518     st->print(PTR_FORMAT, p2i(VMThread::vm_thread()));
4519     st->print(" ");
4520     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4521     st->cr();
4522   }
4523   WatcherThread* wt = WatcherThread::watcher_thread();
4524   if (wt != NULL) {
4525     bool is_current = (current == wt);
4526     found_current = found_current || is_current;
4527     st->print("%s", is_current ? "=>" : "  ");
4528 
4529     st->print(PTR_FORMAT, p2i(wt));
4530     st->print(" ");
4531     wt->print_on_error(st, buf, buflen);
4532     st->cr();
4533   }
4534   if (!found_current) {
4535     st->cr();
4536     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4537     current->print_on_error(st, buf, buflen);
4538     st->cr();
4539   }
4540   st->cr();
4541   st->print_cr("Threads with active compile tasks:");
4542   print_threads_compiling(st, buf, buflen);
4543 }
4544 
4545 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4546   ALL_JAVA_THREADS(thread) {
4547     if (thread->is_Compiler_thread()) {
4548       CompilerThread* ct = (CompilerThread*) thread;
4549       if (ct->task() != NULL) {
4550         thread->print_name_on_error(st, buf, buflen);
4551         ct->task()->print(st, NULL, true, true);
4552       }
4553     }
4554   }
4555 }
4556 
4557 
4558 // Internal SpinLock and Mutex
4559 // Based on ParkEvent
4560 
4561 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4562 //
4563 // We employ SpinLocks _only for low-contention, fixed-length
4564 // short-duration critical sections where we're concerned
4565 // about native mutex_t or HotSpot Mutex:: latency.
4566 // The mux construct provides a spin-then-block mutual exclusion
4567 // mechanism.
4568 //
4569 // Testing has shown that contention on the ListLock guarding gFreeList
4570 // is common.  If we implement ListLock as a simple SpinLock it's common
4571 // for the JVM to devolve to yielding with little progress.  This is true
4572 // despite the fact that the critical sections protected by ListLock are
4573 // extremely short.
4574 //
4575 // TODO-FIXME: ListLock should be of type SpinLock.
4576 // We should make this a 1st-class type, integrated into the lock
4577 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4578 // should have sufficient padding to avoid false-sharing and excessive
4579 // cache-coherency traffic.
4580 
4581 
4582 typedef volatile int SpinLockT;
4583 
4584 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4585   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4586     return;   // normal fast-path return
4587   }
4588 
4589   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4590   TEVENT(SpinAcquire - ctx);
4591   int ctr = 0;
4592   int Yields = 0;
4593   for (;;) {
4594     while (*adr != 0) {
4595       ++ctr;
4596       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4597         if (Yields > 5) {
4598           os::naked_short_sleep(1);
4599         } else {
4600           os::naked_yield();
4601           ++Yields;
4602         }
4603       } else {
4604         SpinPause();
4605       }
4606     }
4607     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4608   }
4609 }
4610 
4611 void Thread::SpinRelease(volatile int * adr) {
4612   assert(*adr != 0, "invariant");
4613   OrderAccess::fence();      // guarantee at least release consistency.
4614   // Roach-motel semantics.
4615   // It's safe if subsequent LDs and STs float "up" into the critical section,
4616   // but prior LDs and STs within the critical section can't be allowed
4617   // to reorder or float past the ST that releases the lock.
4618   // Loads and stores in the critical section - which appear in program
4619   // order before the store that releases the lock - must also appear
4620   // before the store that releases the lock in memory visibility order.
4621   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4622   // the ST of 0 into the lock-word which releases the lock, so fence
4623   // more than covers this on all platforms.
4624   *adr = 0;
4625 }
4626 
4627 // muxAcquire and muxRelease:
4628 //
4629 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4630 //    The LSB of the word is set IFF the lock is held.
4631 //    The remainder of the word points to the head of a singly-linked list
4632 //    of threads blocked on the lock.
4633 //
4634 // *  The current implementation of muxAcquire-muxRelease uses its own
4635 //    dedicated Thread._MuxEvent instance.  If we're interested in
4636 //    minimizing the peak number of extant ParkEvent instances then
4637 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4638 //    as certain invariants were satisfied.  Specifically, care would need
4639 //    to be taken with regards to consuming unpark() "permits".
4640 //    A safe rule of thumb is that a thread would never call muxAcquire()
4641 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4642 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4643 //    consume an unpark() permit intended for monitorenter, for instance.
4644 //    One way around this would be to widen the restricted-range semaphore
4645 //    implemented in park().  Another alternative would be to provide
4646 //    multiple instances of the PlatformEvent() for each thread.  One
4647 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4648 //
4649 // *  Usage:
4650 //    -- Only as leaf locks
4651 //    -- for short-term locking only as muxAcquire does not perform
4652 //       thread state transitions.
4653 //
4654 // Alternatives:
4655 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4656 //    but with parking or spin-then-park instead of pure spinning.
4657 // *  Use Taura-Oyama-Yonenzawa locks.
4658 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4659 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4660 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4661 //    acquiring threads use timers (ParkTimed) to detect and recover from
4662 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4663 //    boundaries by using placement-new.
4664 // *  Augment MCS with advisory back-link fields maintained with CAS().
4665 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4666 //    The validity of the backlinks must be ratified before we trust the value.
4667 //    If the backlinks are invalid the exiting thread must back-track through the
4668 //    the forward links, which are always trustworthy.
4669 // *  Add a successor indication.  The LockWord is currently encoded as
4670 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4671 //    to provide the usual futile-wakeup optimization.
4672 //    See RTStt for details.
4673 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4674 //
4675 
4676 
4677 typedef volatile intptr_t MutexT;      // Mux Lock-word
4678 enum MuxBits { LOCKBIT = 1 };
4679 
4680 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4681   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4682   if (w == 0) return;
4683   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4684     return;
4685   }
4686 
4687   TEVENT(muxAcquire - Contention);
4688   ParkEvent * const Self = Thread::current()->_MuxEvent;
4689   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4690   for (;;) {
4691     int its = (os::is_MP() ? 100 : 0) + 1;
4692 
4693     // Optional spin phase: spin-then-park strategy
4694     while (--its >= 0) {
4695       w = *Lock;
4696       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4697         return;
4698       }
4699     }
4700 
4701     Self->reset();
4702     Self->OnList = intptr_t(Lock);
4703     // The following fence() isn't _strictly necessary as the subsequent
4704     // CAS() both serializes execution and ratifies the fetched *Lock value.
4705     OrderAccess::fence();
4706     for (;;) {
4707       w = *Lock;
4708       if ((w & LOCKBIT) == 0) {
4709         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4710           Self->OnList = 0;   // hygiene - allows stronger asserts
4711           return;
4712         }
4713         continue;      // Interference -- *Lock changed -- Just retry
4714       }
4715       assert(w & LOCKBIT, "invariant");
4716       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4717       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4718     }
4719 
4720     while (Self->OnList != 0) {
4721       Self->park();
4722     }
4723   }
4724 }
4725 
4726 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4727   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4728   if (w == 0) return;
4729   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4730     return;
4731   }
4732 
4733   TEVENT(muxAcquire - Contention);
4734   ParkEvent * ReleaseAfter = NULL;
4735   if (ev == NULL) {
4736     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4737   }
4738   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4739   for (;;) {
4740     guarantee(ev->OnList == 0, "invariant");
4741     int its = (os::is_MP() ? 100 : 0) + 1;
4742 
4743     // Optional spin phase: spin-then-park strategy
4744     while (--its >= 0) {
4745       w = *Lock;
4746       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4747         if (ReleaseAfter != NULL) {
4748           ParkEvent::Release(ReleaseAfter);
4749         }
4750         return;
4751       }
4752     }
4753 
4754     ev->reset();
4755     ev->OnList = intptr_t(Lock);
4756     // The following fence() isn't _strictly necessary as the subsequent
4757     // CAS() both serializes execution and ratifies the fetched *Lock value.
4758     OrderAccess::fence();
4759     for (;;) {
4760       w = *Lock;
4761       if ((w & LOCKBIT) == 0) {
4762         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4763           ev->OnList = 0;
4764           // We call ::Release while holding the outer lock, thus
4765           // artificially lengthening the critical section.
4766           // Consider deferring the ::Release() until the subsequent unlock(),
4767           // after we've dropped the outer lock.
4768           if (ReleaseAfter != NULL) {
4769             ParkEvent::Release(ReleaseAfter);
4770           }
4771           return;
4772         }
4773         continue;      // Interference -- *Lock changed -- Just retry
4774       }
4775       assert(w & LOCKBIT, "invariant");
4776       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4777       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4778     }
4779 
4780     while (ev->OnList != 0) {
4781       ev->park();
4782     }
4783   }
4784 }
4785 
4786 // Release() must extract a successor from the list and then wake that thread.
4787 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4788 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4789 // Release() would :
4790 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4791 // (B) Extract a successor from the private list "in-hand"
4792 // (C) attempt to CAS() the residual back into *Lock over null.
4793 //     If there were any newly arrived threads and the CAS() would fail.
4794 //     In that case Release() would detach the RATs, re-merge the list in-hand
4795 //     with the RATs and repeat as needed.  Alternately, Release() might
4796 //     detach and extract a successor, but then pass the residual list to the wakee.
4797 //     The wakee would be responsible for reattaching and remerging before it
4798 //     competed for the lock.
4799 //
4800 // Both "pop" and DMR are immune from ABA corruption -- there can be
4801 // multiple concurrent pushers, but only one popper or detacher.
4802 // This implementation pops from the head of the list.  This is unfair,
4803 // but tends to provide excellent throughput as hot threads remain hot.
4804 // (We wake recently run threads first).
4805 //
4806 // All paths through muxRelease() will execute a CAS.
4807 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4808 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4809 // executed within the critical section are complete and globally visible before the
4810 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4811 void Thread::muxRelease(volatile intptr_t * Lock)  {
4812   for (;;) {
4813     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4814     assert(w & LOCKBIT, "invariant");
4815     if (w == LOCKBIT) return;
4816     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4817     assert(List != NULL, "invariant");
4818     assert(List->OnList == intptr_t(Lock), "invariant");
4819     ParkEvent * const nxt = List->ListNext;
4820     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4821 
4822     // The following CAS() releases the lock and pops the head element.
4823     // The CAS() also ratifies the previously fetched lock-word value.
4824     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4825       continue;
4826     }
4827     List->OnList = 0;
4828     OrderAccess::fence();
4829     List->unpark();
4830     return;
4831   }
4832 }
4833 
4834 
4835 void Threads::verify() {
4836   ALL_JAVA_THREADS(p) {
4837     p->verify();
4838   }
4839   VMThread* thread = VMThread::vm_thread();
4840   if (thread != NULL) thread->verify();
4841 }