1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/connode.hpp"
  29 #include "opto/convertnode.hpp"
  30 #include "opto/memnode.hpp"
  31 #include "opto/mulnode.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/subnode.hpp"
  34 
  35 // Portions of code courtesy of Clifford Click
  36 
  37 
  38 //=============================================================================
  39 //------------------------------hash-------------------------------------------
  40 // Hash function over MulNodes.  Needs to be commutative; i.e., I swap
  41 // (commute) inputs to MulNodes willy-nilly so the hash function must return
  42 // the same value in the presence of edge swapping.
  43 uint MulNode::hash() const {
  44   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
  45 }
  46 
  47 //------------------------------Identity---------------------------------------
  48 // Multiplying a one preserves the other argument
  49 Node* MulNode::Identity(PhaseGVN* phase) {
  50   register const Type *one = mul_id();  // The multiplicative identity
  51   if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
  52   if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
  53 
  54   return this;
  55 }
  56 
  57 //------------------------------Ideal------------------------------------------
  58 // We also canonicalize the Node, moving constants to the right input,
  59 // and flatten expressions (so that 1+x+2 becomes x+3).
  60 Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  61   const Type *t1 = phase->type( in(1) );
  62   const Type *t2 = phase->type( in(2) );
  63   Node *progress = NULL;        // Progress flag
  64   // We are OK if right is a constant, or right is a load and
  65   // left is a non-constant.
  66   if( !(t2->singleton() ||
  67         (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
  68     if( t1->singleton() ||       // Left input is a constant?
  69         // Otherwise, sort inputs (commutativity) to help value numbering.
  70         (in(1)->_idx > in(2)->_idx) ) {
  71       swap_edges(1, 2);
  72       const Type *t = t1;
  73       t1 = t2;
  74       t2 = t;
  75       progress = this;            // Made progress
  76     }
  77   }
  78 
  79   // If the right input is a constant, and the left input is a product of a
  80   // constant, flatten the expression tree.
  81   uint op = Opcode();
  82   if( t2->singleton() &&        // Right input is a constant?
  83       op != Op_MulF &&          // Float & double cannot reassociate
  84       op != Op_MulD ) {
  85     if( t2 == Type::TOP ) return NULL;
  86     Node *mul1 = in(1);
  87 #ifdef ASSERT
  88     // Check for dead loop
  89     int   op1 = mul1->Opcode();
  90     if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) ||
  91         ( op1 == mul_opcode() || op1 == add_opcode() ) &&
  92         ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) ||
  93           phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) )
  94       assert(false, "dead loop in MulNode::Ideal");
  95 #endif
  96 
  97     if( mul1->Opcode() == mul_opcode() ) {  // Left input is a multiply?
  98       // Mul of a constant?
  99       const Type *t12 = phase->type( mul1->in(2) );
 100       if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
 101         // Compute new constant; check for overflow
 102         const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12);
 103         if( tcon01->singleton() ) {
 104           // The Mul of the flattened expression
 105           set_req(1, mul1->in(1));
 106           set_req(2, phase->makecon( tcon01 ));
 107           t2 = tcon01;
 108           progress = this;      // Made progress
 109         }
 110       }
 111     }
 112     // If the right input is a constant, and the left input is an add of a
 113     // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
 114     const Node *add1 = in(1);
 115     if( add1->Opcode() == add_opcode() ) {      // Left input is an add?
 116       // Add of a constant?
 117       const Type *t12 = phase->type( add1->in(2) );
 118       if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
 119         assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
 120         // Compute new constant; check for overflow
 121         const Type *tcon01 = mul_ring(t2,t12);
 122         if( tcon01->singleton() ) {
 123 
 124         // Convert (X+con1)*con0 into X*con0
 125           Node *mul = clone();    // mul = ()*con0
 126           mul->set_req(1,add1->in(1));  // mul = X*con0
 127           mul = phase->transform(mul);
 128 
 129           Node *add2 = add1->clone();
 130           add2->set_req(1, mul);        // X*con0 + con0*con1
 131           add2->set_req(2, phase->makecon(tcon01) );
 132           progress = add2;
 133         }
 134       }
 135     } // End of is left input an add
 136   } // End of is right input a Mul
 137 
 138   return progress;
 139 }
 140 
 141 //------------------------------Value-----------------------------------------
 142 const Type* MulNode::Value(PhaseGVN* phase) const {
 143   const Type *t1 = phase->type( in(1) );
 144   const Type *t2 = phase->type( in(2) );
 145   // Either input is TOP ==> the result is TOP
 146   if( t1 == Type::TOP ) return Type::TOP;
 147   if( t2 == Type::TOP ) return Type::TOP;
 148 
 149   // Either input is ZERO ==> the result is ZERO.
 150   // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
 151   int op = Opcode();
 152   if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
 153     const Type *zero = add_id();        // The multiplicative zero
 154     if( t1->higher_equal( zero ) ) return zero;
 155     if( t2->higher_equal( zero ) ) return zero;
 156   }
 157 
 158   // Either input is BOTTOM ==> the result is the local BOTTOM
 159   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
 160     return bottom_type();
 161 
 162 #if defined(IA32)
 163   // Can't trust native compilers to properly fold strict double
 164   // multiplication with round-to-zero on this platform.
 165   if (op == Op_MulD && phase->C->method()->is_strict()) {
 166     return TypeD::DOUBLE;
 167   }
 168 #endif
 169 
 170   return mul_ring(t1,t2);            // Local flavor of type multiplication
 171 }
 172 
 173 
 174 //=============================================================================
 175 //------------------------------Ideal------------------------------------------
 176 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
 177 Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 178   // Swap constant to right
 179   jint con;
 180   if ((con = in(1)->find_int_con(0)) != 0) {
 181     swap_edges(1, 2);
 182     // Finish rest of method to use info in 'con'
 183   } else if ((con = in(2)->find_int_con(0)) == 0) {
 184     return MulNode::Ideal(phase, can_reshape);
 185   }
 186 
 187   // Now we have a constant Node on the right and the constant in con
 188   if( con == 0 ) return NULL;   // By zero is handled by Value call
 189   if( con == 1 ) return NULL;   // By one  is handled by Identity call
 190 
 191   // Check for negative constant; if so negate the final result
 192   bool sign_flip = false;
 193   if( con < 0 ) {
 194     con = -con;
 195     sign_flip = true;
 196   }
 197 
 198   // Get low bit; check for being the only bit
 199   Node *res = NULL;
 200   jint bit1 = con & -con;       // Extract low bit
 201   if( bit1 == con ) {           // Found a power of 2?
 202     res = new LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) );
 203   } else {
 204 
 205     // Check for constant with 2 bits set
 206     jint bit2 = con-bit1;
 207     bit2 = bit2 & -bit2;          // Extract 2nd bit
 208     if( bit2 + bit1 == con ) {    // Found all bits in con?
 209       Node *n1 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) ) );
 210       Node *n2 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(bit2)) ) );
 211       res = new AddINode( n2, n1 );
 212 
 213     } else if (is_power_of_2(con+1)) {
 214       // Sleezy: power-of-2 -1.  Next time be generic.
 215       jint temp = (jint) (con + 1);
 216       Node *n1 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(temp)) ) );
 217       res = new SubINode( n1, in(1) );
 218     } else {
 219       return MulNode::Ideal(phase, can_reshape);
 220     }
 221   }
 222 
 223   if( sign_flip ) {             // Need to negate result?
 224     res = phase->transform(res);// Transform, before making the zero con
 225     res = new SubINode(phase->intcon(0),res);
 226   }
 227 
 228   return res;                   // Return final result
 229 }
 230 
 231 //------------------------------mul_ring---------------------------------------
 232 // Compute the product type of two integer ranges into this node.
 233 const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const {
 234   const TypeInt *r0 = t0->is_int(); // Handy access
 235   const TypeInt *r1 = t1->is_int();
 236 
 237   // Fetch endpoints of all ranges
 238   int32_t lo0 = r0->_lo;
 239   double a = (double)lo0;
 240   int32_t hi0 = r0->_hi;
 241   double b = (double)hi0;
 242   int32_t lo1 = r1->_lo;
 243   double c = (double)lo1;
 244   int32_t hi1 = r1->_hi;
 245   double d = (double)hi1;
 246 
 247   // Compute all endpoints & check for overflow
 248   int32_t A = java_multiply(lo0, lo1);
 249   if( (double)A != a*c ) return TypeInt::INT; // Overflow?
 250   int32_t B = java_multiply(lo0, hi1);
 251   if( (double)B != a*d ) return TypeInt::INT; // Overflow?
 252   int32_t C = java_multiply(hi0, lo1);
 253   if( (double)C != b*c ) return TypeInt::INT; // Overflow?
 254   int32_t D = java_multiply(hi0, hi1);
 255   if( (double)D != b*d ) return TypeInt::INT; // Overflow?
 256 
 257   if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
 258   else { lo0 = B; hi0 = A; }
 259   if( C < D ) {
 260     if( C < lo0 ) lo0 = C;
 261     if( D > hi0 ) hi0 = D;
 262   } else {
 263     if( D < lo0 ) lo0 = D;
 264     if( C > hi0 ) hi0 = C;
 265   }
 266   return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
 267 }
 268 
 269 
 270 //=============================================================================
 271 //------------------------------Ideal------------------------------------------
 272 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
 273 Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 274   // Swap constant to right
 275   jlong con;
 276   if ((con = in(1)->find_long_con(0)) != 0) {
 277     swap_edges(1, 2);
 278     // Finish rest of method to use info in 'con'
 279   } else if ((con = in(2)->find_long_con(0)) == 0) {
 280     return MulNode::Ideal(phase, can_reshape);
 281   }
 282 
 283   // Now we have a constant Node on the right and the constant in con
 284   if( con == CONST64(0) ) return NULL;  // By zero is handled by Value call
 285   if( con == CONST64(1) ) return NULL;  // By one  is handled by Identity call
 286 
 287   // Check for negative constant; if so negate the final result
 288   bool sign_flip = false;
 289   if( con < 0 ) {
 290     con = -con;
 291     sign_flip = true;
 292   }
 293 
 294   // Get low bit; check for being the only bit
 295   Node *res = NULL;
 296   jlong bit1 = con & -con;      // Extract low bit
 297   if( bit1 == con ) {           // Found a power of 2?
 298     res = new LShiftLNode( in(1), phase->intcon(log2_long(bit1)) );
 299   } else {
 300 
 301     // Check for constant with 2 bits set
 302     jlong bit2 = con-bit1;
 303     bit2 = bit2 & -bit2;          // Extract 2nd bit
 304     if( bit2 + bit1 == con ) {    // Found all bits in con?
 305       Node *n1 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(bit1)) ) );
 306       Node *n2 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(bit2)) ) );
 307       res = new AddLNode( n2, n1 );
 308 
 309     } else if (is_power_of_2_long(con+1)) {
 310       // Sleezy: power-of-2 -1.  Next time be generic.
 311       jlong temp = (jlong) (con + 1);
 312       Node *n1 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(temp)) ) );
 313       res = new SubLNode( n1, in(1) );
 314     } else {
 315       return MulNode::Ideal(phase, can_reshape);
 316     }
 317   }
 318 
 319   if( sign_flip ) {             // Need to negate result?
 320     res = phase->transform(res);// Transform, before making the zero con
 321     res = new SubLNode(phase->longcon(0),res);
 322   }
 323 
 324   return res;                   // Return final result
 325 }
 326 
 327 //------------------------------mul_ring---------------------------------------
 328 // Compute the product type of two integer ranges into this node.
 329 const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const {
 330   const TypeLong *r0 = t0->is_long(); // Handy access
 331   const TypeLong *r1 = t1->is_long();
 332 
 333   // Fetch endpoints of all ranges
 334   jlong lo0 = r0->_lo;
 335   double a = (double)lo0;
 336   jlong hi0 = r0->_hi;
 337   double b = (double)hi0;
 338   jlong lo1 = r1->_lo;
 339   double c = (double)lo1;
 340   jlong hi1 = r1->_hi;
 341   double d = (double)hi1;
 342 
 343   // Compute all endpoints & check for overflow
 344   jlong A = java_multiply(lo0, lo1);
 345   if( (double)A != a*c ) return TypeLong::LONG; // Overflow?
 346   jlong B = java_multiply(lo0, hi1);
 347   if( (double)B != a*d ) return TypeLong::LONG; // Overflow?
 348   jlong C = java_multiply(hi0, lo1);
 349   if( (double)C != b*c ) return TypeLong::LONG; // Overflow?
 350   jlong D = java_multiply(hi0, hi1);
 351   if( (double)D != b*d ) return TypeLong::LONG; // Overflow?
 352 
 353   if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
 354   else { lo0 = B; hi0 = A; }
 355   if( C < D ) {
 356     if( C < lo0 ) lo0 = C;
 357     if( D > hi0 ) hi0 = D;
 358   } else {
 359     if( D < lo0 ) lo0 = D;
 360     if( C > hi0 ) hi0 = C;
 361   }
 362   return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
 363 }
 364 
 365 //=============================================================================
 366 //------------------------------mul_ring---------------------------------------
 367 // Compute the product type of two double ranges into this node.
 368 const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
 369   if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
 370   return TypeF::make( t0->getf() * t1->getf() );
 371 }
 372 
 373 //=============================================================================
 374 //------------------------------mul_ring---------------------------------------
 375 // Compute the product type of two double ranges into this node.
 376 const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
 377   if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
 378   // We must be multiplying 2 double constants.
 379   return TypeD::make( t0->getd() * t1->getd() );
 380 }
 381 
 382 //=============================================================================
 383 //------------------------------Value------------------------------------------
 384 const Type* MulHiLNode::Value(PhaseGVN* phase) const {
 385   // Either input is TOP ==> the result is TOP
 386   const Type *t1 = phase->type( in(1) );
 387   const Type *t2 = phase->type( in(2) );
 388   if( t1 == Type::TOP ) return Type::TOP;
 389   if( t2 == Type::TOP ) return Type::TOP;
 390 
 391   // Either input is BOTTOM ==> the result is the local BOTTOM
 392   const Type *bot = bottom_type();
 393   if( (t1 == bot) || (t2 == bot) ||
 394       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 395     return bot;
 396 
 397   // It is not worth trying to constant fold this stuff!
 398   return TypeLong::LONG;
 399 }
 400 
 401 //=============================================================================
 402 //------------------------------mul_ring---------------------------------------
 403 // Supplied function returns the product of the inputs IN THE CURRENT RING.
 404 // For the logical operations the ring's MUL is really a logical AND function.
 405 // This also type-checks the inputs for sanity.  Guaranteed never to
 406 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 407 const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
 408   const TypeInt *r0 = t0->is_int(); // Handy access
 409   const TypeInt *r1 = t1->is_int();
 410   int widen = MAX2(r0->_widen,r1->_widen);
 411 
 412   // If either input is a constant, might be able to trim cases
 413   if( !r0->is_con() && !r1->is_con() )
 414     return TypeInt::INT;        // No constants to be had
 415 
 416   // Both constants?  Return bits
 417   if( r0->is_con() && r1->is_con() )
 418     return TypeInt::make( r0->get_con() & r1->get_con() );
 419 
 420   if( r0->is_con() && r0->get_con() > 0 )
 421     return TypeInt::make(0, r0->get_con(), widen);
 422 
 423   if( r1->is_con() && r1->get_con() > 0 )
 424     return TypeInt::make(0, r1->get_con(), widen);
 425 
 426   if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
 427     return TypeInt::BOOL;
 428   }
 429 
 430   return TypeInt::INT;          // No constants to be had
 431 }
 432 
 433 //------------------------------Identity---------------------------------------
 434 // Masking off the high bits of an unsigned load is not required
 435 Node* AndINode::Identity(PhaseGVN* phase) {
 436 
 437   // x & x => x
 438   if (phase->eqv(in(1), in(2))) return in(1);
 439 
 440   Node* in1 = in(1);
 441   uint op = in1->Opcode();
 442   const TypeInt* t2 = phase->type(in(2))->isa_int();
 443   if (t2 && t2->is_con()) {
 444     int con = t2->get_con();
 445     // Masking off high bits which are always zero is useless.
 446     const TypeInt* t1 = phase->type( in(1) )->isa_int();
 447     if (t1 != NULL && t1->_lo >= 0) {
 448       jint t1_support = right_n_bits(1 + log2_intptr(t1->_hi));
 449       if ((t1_support & con) == t1_support)
 450         return in1;
 451     }
 452     // Masking off the high bits of a unsigned-shift-right is not
 453     // needed either.
 454     if (op == Op_URShiftI) {
 455       const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
 456       if (t12 && t12->is_con()) {  // Shift is by a constant
 457         int shift = t12->get_con();
 458         shift &= BitsPerJavaInteger - 1;  // semantics of Java shifts
 459         int mask = max_juint >> shift;
 460         if ((mask & con) == mask)  // If AND is useless, skip it
 461           return in1;
 462       }
 463     }
 464   }
 465   return MulNode::Identity(phase);
 466 }
 467 
 468 //------------------------------Ideal------------------------------------------
 469 Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 470   // Special case constant AND mask
 471   const TypeInt *t2 = phase->type( in(2) )->isa_int();
 472   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
 473   const int mask = t2->get_con();
 474   Node *load = in(1);
 475   uint lop = load->Opcode();
 476 
 477   // Masking bits off of a Character?  Hi bits are already zero.
 478   if( lop == Op_LoadUS &&
 479       (mask & 0xFFFF0000) )     // Can we make a smaller mask?
 480     return new AndINode(load,phase->intcon(mask&0xFFFF));
 481 
 482   // Masking bits off of a Short?  Loading a Character does some masking
 483   if (can_reshape &&
 484       load->outcnt() == 1 && load->unique_out() == this) {
 485     if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) {
 486       Node* ldus = load->as_Load()->convert_to_unsigned_load(*phase);
 487       ldus = phase->transform(ldus);
 488       return new AndINode(ldus, phase->intcon(mask & 0xFFFF));
 489     }
 490 
 491     // Masking sign bits off of a Byte?  Do an unsigned byte load plus
 492     // an and.
 493     if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) {
 494       Node* ldub = load->as_Load()->convert_to_unsigned_load(*phase);
 495       ldub = phase->transform(ldub);
 496       return new AndINode(ldub, phase->intcon(mask));
 497     }
 498   }
 499 
 500   // Masking off sign bits?  Dont make them!
 501   if( lop == Op_RShiftI ) {
 502     const TypeInt *t12 = phase->type(load->in(2))->isa_int();
 503     if( t12 && t12->is_con() ) { // Shift is by a constant
 504       int shift = t12->get_con();
 505       shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 506       const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
 507       // If the AND'ing of the 2 masks has no bits, then only original shifted
 508       // bits survive.  NO sign-extension bits survive the maskings.
 509       if( (sign_bits_mask & mask) == 0 ) {
 510         // Use zero-fill shift instead
 511         Node *zshift = phase->transform(new URShiftINode(load->in(1),load->in(2)));
 512         return new AndINode( zshift, in(2) );
 513       }
 514     }
 515   }
 516 
 517   // Check for 'negate/and-1', a pattern emitted when someone asks for
 518   // 'mod 2'.  Negate leaves the low order bit unchanged (think: complement
 519   // plus 1) and the mask is of the low order bit.  Skip the negate.
 520   if( lop == Op_SubI && mask == 1 && load->in(1) &&
 521       phase->type(load->in(1)) == TypeInt::ZERO )
 522     return new AndINode( load->in(2), in(2) );
 523 
 524   return MulNode::Ideal(phase, can_reshape);
 525 }
 526 
 527 //=============================================================================
 528 //------------------------------mul_ring---------------------------------------
 529 // Supplied function returns the product of the inputs IN THE CURRENT RING.
 530 // For the logical operations the ring's MUL is really a logical AND function.
 531 // This also type-checks the inputs for sanity.  Guaranteed never to
 532 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 533 const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
 534   const TypeLong *r0 = t0->is_long(); // Handy access
 535   const TypeLong *r1 = t1->is_long();
 536   int widen = MAX2(r0->_widen,r1->_widen);
 537 
 538   // If either input is a constant, might be able to trim cases
 539   if( !r0->is_con() && !r1->is_con() )
 540     return TypeLong::LONG;      // No constants to be had
 541 
 542   // Both constants?  Return bits
 543   if( r0->is_con() && r1->is_con() )
 544     return TypeLong::make( r0->get_con() & r1->get_con() );
 545 
 546   if( r0->is_con() && r0->get_con() > 0 )
 547     return TypeLong::make(CONST64(0), r0->get_con(), widen);
 548 
 549   if( r1->is_con() && r1->get_con() > 0 )
 550     return TypeLong::make(CONST64(0), r1->get_con(), widen);
 551 
 552   return TypeLong::LONG;        // No constants to be had
 553 }
 554 
 555 //------------------------------Identity---------------------------------------
 556 // Masking off the high bits of an unsigned load is not required
 557 Node* AndLNode::Identity(PhaseGVN* phase) {
 558 
 559   // x & x => x
 560   if (phase->eqv(in(1), in(2))) return in(1);
 561 
 562   Node *usr = in(1);
 563   const TypeLong *t2 = phase->type( in(2) )->isa_long();
 564   if( t2 && t2->is_con() ) {
 565     jlong con = t2->get_con();
 566     // Masking off high bits which are always zero is useless.
 567     const TypeLong* t1 = phase->type( in(1) )->isa_long();
 568     if (t1 != NULL && t1->_lo >= 0) {
 569       int bit_count = log2_long(t1->_hi) + 1;
 570       jlong t1_support = jlong(max_julong >> (BitsPerJavaLong - bit_count));
 571       if ((t1_support & con) == t1_support)
 572         return usr;
 573     }
 574     uint lop = usr->Opcode();
 575     // Masking off the high bits of a unsigned-shift-right is not
 576     // needed either.
 577     if( lop == Op_URShiftL ) {
 578       const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
 579       if( t12 && t12->is_con() ) {  // Shift is by a constant
 580         int shift = t12->get_con();
 581         shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 582         jlong mask = max_julong >> shift;
 583         if( (mask&con) == mask )  // If AND is useless, skip it
 584           return usr;
 585       }
 586     }
 587   }
 588   return MulNode::Identity(phase);
 589 }
 590 
 591 //------------------------------Ideal------------------------------------------
 592 Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 593   // Special case constant AND mask
 594   const TypeLong *t2 = phase->type( in(2) )->isa_long();
 595   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
 596   const jlong mask = t2->get_con();
 597 
 598   Node* in1 = in(1);
 599   uint op = in1->Opcode();
 600 
 601   // Are we masking a long that was converted from an int with a mask
 602   // that fits in 32-bits?  Commute them and use an AndINode.  Don't
 603   // convert masks which would cause a sign extension of the integer
 604   // value.  This check includes UI2L masks (0x00000000FFFFFFFF) which
 605   // would be optimized away later in Identity.
 606   if (op == Op_ConvI2L && (mask & UCONST64(0xFFFFFFFF80000000)) == 0) {
 607     Node* andi = new AndINode(in1->in(1), phase->intcon(mask));
 608     andi = phase->transform(andi);
 609     return new ConvI2LNode(andi);
 610   }
 611 
 612   // Masking off sign bits?  Dont make them!
 613   if (op == Op_RShiftL) {
 614     const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
 615     if( t12 && t12->is_con() ) { // Shift is by a constant
 616       int shift = t12->get_con();
 617       shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 618       const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - shift)) -1);
 619       // If the AND'ing of the 2 masks has no bits, then only original shifted
 620       // bits survive.  NO sign-extension bits survive the maskings.
 621       if( (sign_bits_mask & mask) == 0 ) {
 622         // Use zero-fill shift instead
 623         Node *zshift = phase->transform(new URShiftLNode(in1->in(1), in1->in(2)));
 624         return new AndLNode(zshift, in(2));
 625       }
 626     }
 627   }
 628 
 629   return MulNode::Ideal(phase, can_reshape);
 630 }
 631 
 632 //=============================================================================
 633 //------------------------------Identity---------------------------------------
 634 Node* LShiftINode::Identity(PhaseGVN* phase) {
 635   const TypeInt *ti = phase->type( in(2) )->isa_int();  // shift count is an int
 636   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) ? in(1) : this;
 637 }
 638 
 639 //------------------------------Ideal------------------------------------------
 640 // If the right input is a constant, and the left input is an add of a
 641 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
 642 Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 643   const Type *t  = phase->type( in(2) );
 644   if( t == Type::TOP ) return NULL;       // Right input is dead
 645   const TypeInt *t2 = t->isa_int();
 646   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
 647   const int con = t2->get_con() & ( BitsPerInt - 1 );  // masked shift count
 648 
 649   if ( con == 0 )  return NULL; // let Identity() handle 0 shift count
 650 
 651   // Left input is an add of a constant?
 652   Node *add1 = in(1);
 653   int add1_op = add1->Opcode();
 654   if( add1_op == Op_AddI ) {    // Left input is an add?
 655     assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
 656     const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
 657     if( t12 && t12->is_con() ){ // Left input is an add of a con?
 658       // Transform is legal, but check for profit.  Avoid breaking 'i2s'
 659       // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
 660       if( con < 16 ) {
 661         // Compute X << con0
 662         Node *lsh = phase->transform( new LShiftINode( add1->in(1), in(2) ) );
 663         // Compute X<<con0 + (con1<<con0)
 664         return new AddINode( lsh, phase->intcon(t12->get_con() << con));
 665       }
 666     }
 667   }
 668 
 669   // Check for "(x>>c0)<<c0" which just masks off low bits
 670   if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) &&
 671       add1->in(2) == in(2) )
 672     // Convert to "(x & -(1<<c0))"
 673     return new AndINode(add1->in(1),phase->intcon( -(1<<con)));
 674 
 675   // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
 676   if( add1_op == Op_AndI ) {
 677     Node *add2 = add1->in(1);
 678     int add2_op = add2->Opcode();
 679     if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) &&
 680         add2->in(2) == in(2) ) {
 681       // Convert to "(x & (Y<<c0))"
 682       Node *y_sh = phase->transform( new LShiftINode( add1->in(2), in(2) ) );
 683       return new AndINode( add2->in(1), y_sh );
 684     }
 685   }
 686 
 687   // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
 688   // before shifting them away.
 689   const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
 690   if( add1_op == Op_AndI &&
 691       phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
 692     return new LShiftINode( add1->in(1), in(2) );
 693 
 694   return NULL;
 695 }
 696 
 697 //------------------------------Value------------------------------------------
 698 // A LShiftINode shifts its input2 left by input1 amount.
 699 const Type* LShiftINode::Value(PhaseGVN* phase) const {
 700   const Type *t1 = phase->type( in(1) );
 701   const Type *t2 = phase->type( in(2) );
 702   // Either input is TOP ==> the result is TOP
 703   if( t1 == Type::TOP ) return Type::TOP;
 704   if( t2 == Type::TOP ) return Type::TOP;
 705 
 706   // Left input is ZERO ==> the result is ZERO.
 707   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
 708   // Shift by zero does nothing
 709   if( t2 == TypeInt::ZERO ) return t1;
 710 
 711   // Either input is BOTTOM ==> the result is BOTTOM
 712   if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
 713       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 714     return TypeInt::INT;
 715 
 716   const TypeInt *r1 = t1->is_int(); // Handy access
 717   const TypeInt *r2 = t2->is_int(); // Handy access
 718 
 719   if (!r2->is_con())
 720     return TypeInt::INT;
 721 
 722   uint shift = r2->get_con();
 723   shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 724   // Shift by a multiple of 32 does nothing:
 725   if (shift == 0)  return t1;
 726 
 727   // If the shift is a constant, shift the bounds of the type,
 728   // unless this could lead to an overflow.
 729   if (!r1->is_con()) {
 730     jint lo = r1->_lo, hi = r1->_hi;
 731     if (((lo << shift) >> shift) == lo &&
 732         ((hi << shift) >> shift) == hi) {
 733       // No overflow.  The range shifts up cleanly.
 734       return TypeInt::make((jint)lo << (jint)shift,
 735                            (jint)hi << (jint)shift,
 736                            MAX2(r1->_widen,r2->_widen));
 737     }
 738     return TypeInt::INT;
 739   }
 740 
 741   return TypeInt::make( (jint)r1->get_con() << (jint)shift );
 742 }
 743 
 744 //=============================================================================
 745 //------------------------------Identity---------------------------------------
 746 Node* LShiftLNode::Identity(PhaseGVN* phase) {
 747   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
 748   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
 749 }
 750 
 751 //------------------------------Ideal------------------------------------------
 752 // If the right input is a constant, and the left input is an add of a
 753 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
 754 Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 755   const Type *t  = phase->type( in(2) );
 756   if( t == Type::TOP ) return NULL;       // Right input is dead
 757   const TypeInt *t2 = t->isa_int();
 758   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
 759   const int con = t2->get_con() & ( BitsPerLong - 1 );  // masked shift count
 760 
 761   if ( con == 0 ) return NULL;  // let Identity() handle 0 shift count
 762 
 763   // Left input is an add of a constant?
 764   Node *add1 = in(1);
 765   int add1_op = add1->Opcode();
 766   if( add1_op == Op_AddL ) {    // Left input is an add?
 767     // Avoid dead data cycles from dead loops
 768     assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
 769     const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
 770     if( t12 && t12->is_con() ){ // Left input is an add of a con?
 771       // Compute X << con0
 772       Node *lsh = phase->transform( new LShiftLNode( add1->in(1), in(2) ) );
 773       // Compute X<<con0 + (con1<<con0)
 774       return new AddLNode( lsh, phase->longcon(t12->get_con() << con));
 775     }
 776   }
 777 
 778   // Check for "(x>>c0)<<c0" which just masks off low bits
 779   if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) &&
 780       add1->in(2) == in(2) )
 781     // Convert to "(x & -(1<<c0))"
 782     return new AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con)));
 783 
 784   // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
 785   if( add1_op == Op_AndL ) {
 786     Node *add2 = add1->in(1);
 787     int add2_op = add2->Opcode();
 788     if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) &&
 789         add2->in(2) == in(2) ) {
 790       // Convert to "(x & (Y<<c0))"
 791       Node *y_sh = phase->transform( new LShiftLNode( add1->in(2), in(2) ) );
 792       return new AndLNode( add2->in(1), y_sh );
 793     }
 794   }
 795 
 796   // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
 797   // before shifting them away.
 798   const jlong bits_mask = jlong(max_julong >> con);
 799   if( add1_op == Op_AndL &&
 800       phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
 801     return new LShiftLNode( add1->in(1), in(2) );
 802 
 803   return NULL;
 804 }
 805 
 806 //------------------------------Value------------------------------------------
 807 // A LShiftLNode shifts its input2 left by input1 amount.
 808 const Type* LShiftLNode::Value(PhaseGVN* phase) const {
 809   const Type *t1 = phase->type( in(1) );
 810   const Type *t2 = phase->type( in(2) );
 811   // Either input is TOP ==> the result is TOP
 812   if( t1 == Type::TOP ) return Type::TOP;
 813   if( t2 == Type::TOP ) return Type::TOP;
 814 
 815   // Left input is ZERO ==> the result is ZERO.
 816   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
 817   // Shift by zero does nothing
 818   if( t2 == TypeInt::ZERO ) return t1;
 819 
 820   // Either input is BOTTOM ==> the result is BOTTOM
 821   if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
 822       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 823     return TypeLong::LONG;
 824 
 825   const TypeLong *r1 = t1->is_long(); // Handy access
 826   const TypeInt  *r2 = t2->is_int();  // Handy access
 827 
 828   if (!r2->is_con())
 829     return TypeLong::LONG;
 830 
 831   uint shift = r2->get_con();
 832   shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 833   // Shift by a multiple of 64 does nothing:
 834   if (shift == 0)  return t1;
 835 
 836   // If the shift is a constant, shift the bounds of the type,
 837   // unless this could lead to an overflow.
 838   if (!r1->is_con()) {
 839     jlong lo = r1->_lo, hi = r1->_hi;
 840     if (((lo << shift) >> shift) == lo &&
 841         ((hi << shift) >> shift) == hi) {
 842       // No overflow.  The range shifts up cleanly.
 843       return TypeLong::make((jlong)lo << (jint)shift,
 844                             (jlong)hi << (jint)shift,
 845                             MAX2(r1->_widen,r2->_widen));
 846     }
 847     return TypeLong::LONG;
 848   }
 849 
 850   return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
 851 }
 852 
 853 //=============================================================================
 854 //------------------------------Identity---------------------------------------
 855 Node* RShiftINode::Identity(PhaseGVN* phase) {
 856   const TypeInt *t2 = phase->type(in(2))->isa_int();
 857   if( !t2 ) return this;
 858   if ( t2->is_con() && ( t2->get_con() & ( BitsPerInt - 1 ) ) == 0 )
 859     return in(1);
 860 
 861   // Check for useless sign-masking
 862   if( in(1)->Opcode() == Op_LShiftI &&
 863       in(1)->req() == 3 &&
 864       in(1)->in(2) == in(2) &&
 865       t2->is_con() ) {
 866     uint shift = t2->get_con();
 867     shift &= BitsPerJavaInteger-1; // semantics of Java shifts
 868     // Compute masks for which this shifting doesn't change
 869     int lo = (-1 << (BitsPerJavaInteger - shift-1)); // FFFF8000
 870     int hi = ~lo;               // 00007FFF
 871     const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int();
 872     if( !t11 ) return this;
 873     // Does actual value fit inside of mask?
 874     if( lo <= t11->_lo && t11->_hi <= hi )
 875       return in(1)->in(1);      // Then shifting is a nop
 876   }
 877 
 878   return this;
 879 }
 880 
 881 //------------------------------Ideal------------------------------------------
 882 Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 883   // Inputs may be TOP if they are dead.
 884   const TypeInt *t1 = phase->type( in(1) )->isa_int();
 885   if( !t1 ) return NULL;        // Left input is an integer
 886   const TypeInt *t2 = phase->type( in(2) )->isa_int();
 887   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
 888   const TypeInt *t3;  // type of in(1).in(2)
 889   int shift = t2->get_con();
 890   shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 891 
 892   if ( shift == 0 ) return NULL;  // let Identity() handle 0 shift count
 893 
 894   // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
 895   // Such expressions arise normally from shift chains like (byte)(x >> 24).
 896   const Node *mask = in(1);
 897   if( mask->Opcode() == Op_AndI &&
 898       (t3 = phase->type(mask->in(2))->isa_int()) &&
 899       t3->is_con() ) {
 900     Node *x = mask->in(1);
 901     jint maskbits = t3->get_con();
 902     // Convert to "(x >> shift) & (mask >> shift)"
 903     Node *shr_nomask = phase->transform( new RShiftINode(mask->in(1), in(2)) );
 904     return new AndINode(shr_nomask, phase->intcon( maskbits >> shift));
 905   }
 906 
 907   // Check for "(short[i] <<16)>>16" which simply sign-extends
 908   const Node *shl = in(1);
 909   if( shl->Opcode() != Op_LShiftI ) return NULL;
 910 
 911   if( shift == 16 &&
 912       (t3 = phase->type(shl->in(2))->isa_int()) &&
 913       t3->is_con(16) ) {
 914     Node *ld = shl->in(1);
 915     if( ld->Opcode() == Op_LoadS ) {
 916       // Sign extension is just useless here.  Return a RShiftI of zero instead
 917       // returning 'ld' directly.  We cannot return an old Node directly as
 918       // that is the job of 'Identity' calls and Identity calls only work on
 919       // direct inputs ('ld' is an extra Node removed from 'this').  The
 920       // combined optimization requires Identity only return direct inputs.
 921       set_req(1, ld);
 922       set_req(2, phase->intcon(0));
 923       return this;
 924     }
 925     else if( can_reshape &&
 926              ld->Opcode() == Op_LoadUS &&
 927              ld->outcnt() == 1 && ld->unique_out() == shl)
 928       // Replace zero-extension-load with sign-extension-load
 929       return ld->as_Load()->convert_to_signed_load(*phase);
 930   }
 931 
 932   // Check for "(byte[i] <<24)>>24" which simply sign-extends
 933   if( shift == 24 &&
 934       (t3 = phase->type(shl->in(2))->isa_int()) &&
 935       t3->is_con(24) ) {
 936     Node *ld = shl->in(1);
 937     if( ld->Opcode() == Op_LoadB ) {
 938       // Sign extension is just useless here
 939       set_req(1, ld);
 940       set_req(2, phase->intcon(0));
 941       return this;
 942     }
 943   }
 944 
 945   return NULL;
 946 }
 947 
 948 //------------------------------Value------------------------------------------
 949 // A RShiftINode shifts its input2 right by input1 amount.
 950 const Type* RShiftINode::Value(PhaseGVN* phase) const {
 951   const Type *t1 = phase->type( in(1) );
 952   const Type *t2 = phase->type( in(2) );
 953   // Either input is TOP ==> the result is TOP
 954   if( t1 == Type::TOP ) return Type::TOP;
 955   if( t2 == Type::TOP ) return Type::TOP;
 956 
 957   // Left input is ZERO ==> the result is ZERO.
 958   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
 959   // Shift by zero does nothing
 960   if( t2 == TypeInt::ZERO ) return t1;
 961 
 962   // Either input is BOTTOM ==> the result is BOTTOM
 963   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
 964     return TypeInt::INT;
 965 
 966   if (t2 == TypeInt::INT)
 967     return TypeInt::INT;
 968 
 969   const TypeInt *r1 = t1->is_int(); // Handy access
 970   const TypeInt *r2 = t2->is_int(); // Handy access
 971 
 972   // If the shift is a constant, just shift the bounds of the type.
 973   // For example, if the shift is 31, we just propagate sign bits.
 974   if (r2->is_con()) {
 975     uint shift = r2->get_con();
 976     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 977     // Shift by a multiple of 32 does nothing:
 978     if (shift == 0)  return t1;
 979     // Calculate reasonably aggressive bounds for the result.
 980     // This is necessary if we are to correctly type things
 981     // like (x<<24>>24) == ((byte)x).
 982     jint lo = (jint)r1->_lo >> (jint)shift;
 983     jint hi = (jint)r1->_hi >> (jint)shift;
 984     assert(lo <= hi, "must have valid bounds");
 985     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
 986 #ifdef ASSERT
 987     // Make sure we get the sign-capture idiom correct.
 988     if (shift == BitsPerJavaInteger-1) {
 989       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO,    ">>31 of + is  0");
 990       if (r1->_hi <  0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
 991     }
 992 #endif
 993     return ti;
 994   }
 995 
 996   if( !r1->is_con() || !r2->is_con() )
 997     return TypeInt::INT;
 998 
 999   // Signed shift right
1000   return TypeInt::make( r1->get_con() >> (r2->get_con()&31) );
1001 }
1002 
1003 //=============================================================================
1004 //------------------------------Identity---------------------------------------
1005 Node* RShiftLNode::Identity(PhaseGVN* phase) {
1006   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
1007   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
1008 }
1009 
1010 //------------------------------Value------------------------------------------
1011 // A RShiftLNode shifts its input2 right by input1 amount.
1012 const Type* RShiftLNode::Value(PhaseGVN* phase) const {
1013   const Type *t1 = phase->type( in(1) );
1014   const Type *t2 = phase->type( in(2) );
1015   // Either input is TOP ==> the result is TOP
1016   if( t1 == Type::TOP ) return Type::TOP;
1017   if( t2 == Type::TOP ) return Type::TOP;
1018 
1019   // Left input is ZERO ==> the result is ZERO.
1020   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1021   // Shift by zero does nothing
1022   if( t2 == TypeInt::ZERO ) return t1;
1023 
1024   // Either input is BOTTOM ==> the result is BOTTOM
1025   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1026     return TypeLong::LONG;
1027 
1028   if (t2 == TypeInt::INT)
1029     return TypeLong::LONG;
1030 
1031   const TypeLong *r1 = t1->is_long(); // Handy access
1032   const TypeInt  *r2 = t2->is_int (); // Handy access
1033 
1034   // If the shift is a constant, just shift the bounds of the type.
1035   // For example, if the shift is 63, we just propagate sign bits.
1036   if (r2->is_con()) {
1037     uint shift = r2->get_con();
1038     shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
1039     // Shift by a multiple of 64 does nothing:
1040     if (shift == 0)  return t1;
1041     // Calculate reasonably aggressive bounds for the result.
1042     // This is necessary if we are to correctly type things
1043     // like (x<<24>>24) == ((byte)x).
1044     jlong lo = (jlong)r1->_lo >> (jlong)shift;
1045     jlong hi = (jlong)r1->_hi >> (jlong)shift;
1046     assert(lo <= hi, "must have valid bounds");
1047     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1048     #ifdef ASSERT
1049     // Make sure we get the sign-capture idiom correct.
1050     if (shift == (2*BitsPerJavaInteger)-1) {
1051       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO,    ">>63 of + is 0");
1052       if (r1->_hi < 0)  assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
1053     }
1054     #endif
1055     return tl;
1056   }
1057 
1058   return TypeLong::LONG;                // Give up
1059 }
1060 
1061 //=============================================================================
1062 //------------------------------Identity---------------------------------------
1063 Node* URShiftINode::Identity(PhaseGVN* phase) {
1064   const TypeInt *ti = phase->type( in(2) )->isa_int();
1065   if ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) return in(1);
1066 
1067   // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
1068   // Happens during new-array length computation.
1069   // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
1070   Node *add = in(1);
1071   if( add->Opcode() == Op_AddI ) {
1072     const TypeInt *t2  = phase->type(add->in(2))->isa_int();
1073     if( t2 && t2->is_con(wordSize - 1) &&
1074         add->in(1)->Opcode() == Op_LShiftI ) {
1075       // Check that shift_counts are LogBytesPerWord
1076       Node          *lshift_count   = add->in(1)->in(2);
1077       const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
1078       if( t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
1079           t_lshift_count == phase->type(in(2)) ) {
1080         Node          *x   = add->in(1)->in(1);
1081         const TypeInt *t_x = phase->type(x)->isa_int();
1082         if( t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord) ) {
1083           return x;
1084         }
1085       }
1086     }
1087   }
1088 
1089   return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
1090 }
1091 
1092 //------------------------------Ideal------------------------------------------
1093 Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1094   const TypeInt *t2 = phase->type( in(2) )->isa_int();
1095   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
1096   const int con = t2->get_con() & 31; // Shift count is always masked
1097   if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
1098   // We'll be wanting the right-shift amount as a mask of that many bits
1099   const int mask = right_n_bits(BitsPerJavaInteger - con);
1100 
1101   int in1_op = in(1)->Opcode();
1102 
1103   // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
1104   if( in1_op == Op_URShiftI ) {
1105     const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
1106     if( t12 && t12->is_con() ) { // Right input is a constant
1107       assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
1108       const int con2 = t12->get_con() & 31; // Shift count is always masked
1109       const int con3 = con+con2;
1110       if( con3 < 32 )           // Only merge shifts if total is < 32
1111         return new URShiftINode( in(1)->in(1), phase->intcon(con3) );
1112     }
1113   }
1114 
1115   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1116   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1117   // If Q is "X << z" the rounding is useless.  Look for patterns like
1118   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1119   Node *add = in(1);
1120   if( in1_op == Op_AddI ) {
1121     Node *lshl = add->in(1);
1122     if( lshl->Opcode() == Op_LShiftI &&
1123         phase->type(lshl->in(2)) == t2 ) {
1124       Node *y_z = phase->transform( new URShiftINode(add->in(2),in(2)) );
1125       Node *sum = phase->transform( new AddINode( lshl->in(1), y_z ) );
1126       return new AndINode( sum, phase->intcon(mask) );
1127     }
1128   }
1129 
1130   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1131   // This shortens the mask.  Also, if we are extracting a high byte and
1132   // storing it to a buffer, the mask will be removed completely.
1133   Node *andi = in(1);
1134   if( in1_op == Op_AndI ) {
1135     const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
1136     if( t3 && t3->is_con() ) { // Right input is a constant
1137       jint mask2 = t3->get_con();
1138       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1139       Node *newshr = phase->transform( new URShiftINode(andi->in(1), in(2)) );
1140       return new AndINode(newshr, phase->intcon(mask2));
1141       // The negative values are easier to materialize than positive ones.
1142       // A typical case from address arithmetic is ((x & ~15) >> 4).
1143       // It's better to change that to ((x >> 4) & ~0) versus
1144       // ((x >> 4) & 0x0FFFFFFF).  The difference is greatest in LP64.
1145     }
1146   }
1147 
1148   // Check for "(X << z ) >>> z" which simply zero-extends
1149   Node *shl = in(1);
1150   if( in1_op == Op_LShiftI &&
1151       phase->type(shl->in(2)) == t2 )
1152     return new AndINode( shl->in(1), phase->intcon(mask) );
1153 
1154   return NULL;
1155 }
1156 
1157 //------------------------------Value------------------------------------------
1158 // A URShiftINode shifts its input2 right by input1 amount.
1159 const Type* URShiftINode::Value(PhaseGVN* phase) const {
1160   // (This is a near clone of RShiftINode::Value.)
1161   const Type *t1 = phase->type( in(1) );
1162   const Type *t2 = phase->type( in(2) );
1163   // Either input is TOP ==> the result is TOP
1164   if( t1 == Type::TOP ) return Type::TOP;
1165   if( t2 == Type::TOP ) return Type::TOP;
1166 
1167   // Left input is ZERO ==> the result is ZERO.
1168   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1169   // Shift by zero does nothing
1170   if( t2 == TypeInt::ZERO ) return t1;
1171 
1172   // Either input is BOTTOM ==> the result is BOTTOM
1173   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1174     return TypeInt::INT;
1175 
1176   if (t2 == TypeInt::INT)
1177     return TypeInt::INT;
1178 
1179   const TypeInt *r1 = t1->is_int();     // Handy access
1180   const TypeInt *r2 = t2->is_int();     // Handy access
1181 
1182   if (r2->is_con()) {
1183     uint shift = r2->get_con();
1184     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1185     // Shift by a multiple of 32 does nothing:
1186     if (shift == 0)  return t1;
1187     // Calculate reasonably aggressive bounds for the result.
1188     jint lo = (juint)r1->_lo >> (juint)shift;
1189     jint hi = (juint)r1->_hi >> (juint)shift;
1190     if (r1->_hi >= 0 && r1->_lo < 0) {
1191       // If the type has both negative and positive values,
1192       // there are two separate sub-domains to worry about:
1193       // The positive half and the negative half.
1194       jint neg_lo = lo;
1195       jint neg_hi = (juint)-1 >> (juint)shift;
1196       jint pos_lo = (juint) 0 >> (juint)shift;
1197       jint pos_hi = hi;
1198       lo = MIN2(neg_lo, pos_lo);  // == 0
1199       hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1200     }
1201     assert(lo <= hi, "must have valid bounds");
1202     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1203     #ifdef ASSERT
1204     // Make sure we get the sign-capture idiom correct.
1205     if (shift == BitsPerJavaInteger-1) {
1206       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
1207       if (r1->_hi < 0)  assert(ti == TypeInt::ONE,  ">>>31 of - is +1");
1208     }
1209     #endif
1210     return ti;
1211   }
1212 
1213   //
1214   // Do not support shifted oops in info for GC
1215   //
1216   // else if( t1->base() == Type::InstPtr ) {
1217   //
1218   //   const TypeInstPtr *o = t1->is_instptr();
1219   //   if( t1->singleton() )
1220   //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1221   // }
1222   // else if( t1->base() == Type::KlassPtr ) {
1223   //   const TypeKlassPtr *o = t1->is_klassptr();
1224   //   if( t1->singleton() )
1225   //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1226   // }
1227 
1228   return TypeInt::INT;
1229 }
1230 
1231 //=============================================================================
1232 //------------------------------Identity---------------------------------------
1233 Node* URShiftLNode::Identity(PhaseGVN* phase) {
1234   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
1235   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
1236 }
1237 
1238 //------------------------------Ideal------------------------------------------
1239 Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1240   const TypeInt *t2 = phase->type( in(2) )->isa_int();
1241   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
1242   const int con = t2->get_con() & ( BitsPerLong - 1 ); // Shift count is always masked
1243   if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
1244                               // note: mask computation below does not work for 0 shift count
1245   // We'll be wanting the right-shift amount as a mask of that many bits
1246   const jlong mask = jlong(max_julong >> con);
1247 
1248   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1249   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1250   // If Q is "X << z" the rounding is useless.  Look for patterns like
1251   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1252   Node *add = in(1);
1253   if( add->Opcode() == Op_AddL ) {
1254     Node *lshl = add->in(1);
1255     if( lshl->Opcode() == Op_LShiftL &&
1256         phase->type(lshl->in(2)) == t2 ) {
1257       Node *y_z = phase->transform( new URShiftLNode(add->in(2),in(2)) );
1258       Node *sum = phase->transform( new AddLNode( lshl->in(1), y_z ) );
1259       return new AndLNode( sum, phase->longcon(mask) );
1260     }
1261   }
1262 
1263   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1264   // This shortens the mask.  Also, if we are extracting a high byte and
1265   // storing it to a buffer, the mask will be removed completely.
1266   Node *andi = in(1);
1267   if( andi->Opcode() == Op_AndL ) {
1268     const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
1269     if( t3 && t3->is_con() ) { // Right input is a constant
1270       jlong mask2 = t3->get_con();
1271       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1272       Node *newshr = phase->transform( new URShiftLNode(andi->in(1), in(2)) );
1273       return new AndLNode(newshr, phase->longcon(mask2));
1274     }
1275   }
1276 
1277   // Check for "(X << z ) >>> z" which simply zero-extends
1278   Node *shl = in(1);
1279   if( shl->Opcode() == Op_LShiftL &&
1280       phase->type(shl->in(2)) == t2 )
1281     return new AndLNode( shl->in(1), phase->longcon(mask) );
1282 
1283   return NULL;
1284 }
1285 
1286 //------------------------------Value------------------------------------------
1287 // A URShiftINode shifts its input2 right by input1 amount.
1288 const Type* URShiftLNode::Value(PhaseGVN* phase) const {
1289   // (This is a near clone of RShiftLNode::Value.)
1290   const Type *t1 = phase->type( in(1) );
1291   const Type *t2 = phase->type( in(2) );
1292   // Either input is TOP ==> the result is TOP
1293   if( t1 == Type::TOP ) return Type::TOP;
1294   if( t2 == Type::TOP ) return Type::TOP;
1295 
1296   // Left input is ZERO ==> the result is ZERO.
1297   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1298   // Shift by zero does nothing
1299   if( t2 == TypeInt::ZERO ) return t1;
1300 
1301   // Either input is BOTTOM ==> the result is BOTTOM
1302   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1303     return TypeLong::LONG;
1304 
1305   if (t2 == TypeInt::INT)
1306     return TypeLong::LONG;
1307 
1308   const TypeLong *r1 = t1->is_long(); // Handy access
1309   const TypeInt  *r2 = t2->is_int (); // Handy access
1310 
1311   if (r2->is_con()) {
1312     uint shift = r2->get_con();
1313     shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
1314     // Shift by a multiple of 64 does nothing:
1315     if (shift == 0)  return t1;
1316     // Calculate reasonably aggressive bounds for the result.
1317     jlong lo = (julong)r1->_lo >> (juint)shift;
1318     jlong hi = (julong)r1->_hi >> (juint)shift;
1319     if (r1->_hi >= 0 && r1->_lo < 0) {
1320       // If the type has both negative and positive values,
1321       // there are two separate sub-domains to worry about:
1322       // The positive half and the negative half.
1323       jlong neg_lo = lo;
1324       jlong neg_hi = (julong)-1 >> (juint)shift;
1325       jlong pos_lo = (julong) 0 >> (juint)shift;
1326       jlong pos_hi = hi;
1327       //lo = MIN2(neg_lo, pos_lo);  // == 0
1328       lo = neg_lo < pos_lo ? neg_lo : pos_lo;
1329       //hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1330       hi = neg_hi > pos_hi ? neg_hi : pos_hi;
1331     }
1332     assert(lo <= hi, "must have valid bounds");
1333     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1334     #ifdef ASSERT
1335     // Make sure we get the sign-capture idiom correct.
1336     if (shift == BitsPerJavaLong - 1) {
1337       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
1338       if (r1->_hi < 0)  assert(tl == TypeLong::ONE,  ">>>63 of - is +1");
1339     }
1340     #endif
1341     return tl;
1342   }
1343 
1344   return TypeLong::LONG;                // Give up
1345 }