1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1CollectorPolicy.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  34 #include "gc/g1/g1HeapVerifier.hpp"
  35 #include "gc/g1/g1OopClosures.inline.hpp"
  36 #include "gc/g1/g1StringDedup.hpp"
  37 #include "gc/g1/heapRegion.inline.hpp"
  38 #include "gc/g1/heapRegionRemSet.hpp"
  39 #include "gc/g1/heapRegionSet.inline.hpp"
  40 #include "gc/g1/suspendibleThreadSet.hpp"
  41 #include "gc/shared/gcId.hpp"
  42 #include "gc/shared/gcTimer.hpp"
  43 #include "gc/shared/gcTrace.hpp"
  44 #include "gc/shared/gcTraceTime.inline.hpp"
  45 #include "gc/shared/genOopClosures.inline.hpp"
  46 #include "gc/shared/referencePolicy.hpp"
  47 #include "gc/shared/strongRootsScope.hpp"
  48 #include "gc/shared/taskqueue.inline.hpp"
  49 #include "gc/shared/vmGCOperations.hpp"
  50 #include "logging/log.hpp"
  51 #include "memory/allocation.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "oops/oop.inline.hpp"
  54 #include "runtime/atomic.inline.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/prefetch.inline.hpp"
  58 #include "services/memTracker.hpp"
  59 
  60 // Concurrent marking bit map wrapper
  61 
  62 G1CMBitMapRO::G1CMBitMapRO(int shifter) :
  63   _bm(),
  64   _shifter(shifter) {
  65   _bmStartWord = 0;
  66   _bmWordSize = 0;
  67 }
  68 
  69 HeapWord* G1CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  70                                                  const HeapWord* limit) const {
  71   // First we must round addr *up* to a possible object boundary.
  72   addr = (HeapWord*)align_size_up((intptr_t)addr,
  73                                   HeapWordSize << _shifter);
  74   size_t addrOffset = heapWordToOffset(addr);
  75   assert(limit != NULL, "limit must not be NULL");
  76   size_t limitOffset = heapWordToOffset(limit);
  77   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  78   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  79   assert(nextAddr >= addr, "get_next_one postcondition");
  80   assert(nextAddr == limit || isMarked(nextAddr),
  81          "get_next_one postcondition");
  82   return nextAddr;
  83 }
  84 
  85 #ifndef PRODUCT
  86 bool G1CMBitMapRO::covers(MemRegion heap_rs) const {
  87   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  88   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
  89          "size inconsistency");
  90   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
  91          _bmWordSize  == heap_rs.word_size();
  92 }
  93 #endif
  94 
  95 void G1CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  96   _bm.print_on_error(st, prefix);
  97 }
  98 
  99 size_t G1CMBitMap::compute_size(size_t heap_size) {
 100   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 101 }
 102 
 103 size_t G1CMBitMap::mark_distance() {
 104   return MinObjAlignmentInBytes * BitsPerByte;
 105 }
 106 
 107 void G1CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 108   _bmStartWord = heap.start();
 109   _bmWordSize = heap.word_size();
 110 
 111   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 112   _bm.set_size(_bmWordSize >> _shifter);
 113 
 114   storage->set_mapping_changed_listener(&_listener);
 115 }
 116 
 117 void G1CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 118   if (zero_filled) {
 119     return;
 120   }
 121   // We need to clear the bitmap on commit, removing any existing information.
 122   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 123   _bm->clearRange(mr);
 124 }
 125 
 126 // Closure used for clearing the given mark bitmap.
 127 class ClearBitmapHRClosure : public HeapRegionClosure {
 128  private:
 129   G1ConcurrentMark* _cm;
 130   G1CMBitMap* _bitmap;
 131   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 132  public:
 133   ClearBitmapHRClosure(G1ConcurrentMark* cm, G1CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 134     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 135   }
 136 
 137   virtual bool doHeapRegion(HeapRegion* r) {
 138     size_t const chunk_size_in_words = M / HeapWordSize;
 139 
 140     HeapWord* cur = r->bottom();
 141     HeapWord* const end = r->end();
 142 
 143     while (cur < end) {
 144       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 145       _bitmap->clearRange(mr);
 146 
 147       cur += chunk_size_in_words;
 148 
 149       // Abort iteration if after yielding the marking has been aborted.
 150       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 151         return true;
 152       }
 153       // Repeat the asserts from before the start of the closure. We will do them
 154       // as asserts here to minimize their overhead on the product. However, we
 155       // will have them as guarantees at the beginning / end of the bitmap
 156       // clearing to get some checking in the product.
 157       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 158       assert(!_may_yield || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 159     }
 160 
 161     return false;
 162   }
 163 };
 164 
 165 class ParClearNextMarkBitmapTask : public AbstractGangTask {
 166   ClearBitmapHRClosure* _cl;
 167   HeapRegionClaimer     _hrclaimer;
 168   bool                  _suspendible; // If the task is suspendible, workers must join the STS.
 169 
 170 public:
 171   ParClearNextMarkBitmapTask(ClearBitmapHRClosure *cl, uint n_workers, bool suspendible) :
 172       _cl(cl), _suspendible(suspendible), AbstractGangTask("Parallel Clear Bitmap Task"), _hrclaimer(n_workers) {}
 173 
 174   void work(uint worker_id) {
 175     SuspendibleThreadSetJoiner sts_join(_suspendible);
 176     G1CollectedHeap::heap()->heap_region_par_iterate(_cl, worker_id, &_hrclaimer, true);
 177   }
 178 };
 179 
 180 void G1CMBitMap::clearAll() {
 181   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 182   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 183   uint n_workers = g1h->workers()->active_workers();
 184   ParClearNextMarkBitmapTask task(&cl, n_workers, false);
 185   g1h->workers()->run_task(&task);
 186   guarantee(cl.complete(), "Must have completed iteration.");
 187   return;
 188 }
 189 
 190 void G1CMBitMap::clearRange(MemRegion mr) {
 191   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 192   assert(!mr.is_empty(), "unexpected empty region");
 193   // convert address range into offset range
 194   _bm.at_put_range(heapWordToOffset(mr.start()),
 195                    heapWordToOffset(mr.end()), false);
 196 }
 197 
 198 G1CMMarkStack::G1CMMarkStack(G1ConcurrentMark* cm) :
 199   _base(NULL), _cm(cm)
 200 {}
 201 
 202 bool G1CMMarkStack::allocate(size_t capacity) {
 203   // allocate a stack of the requisite depth
 204   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 205   if (!rs.is_reserved()) {
 206     warning("ConcurrentMark MarkStack allocation failure");
 207     return false;
 208   }
 209   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 210   if (!_virtual_space.initialize(rs, rs.size())) {
 211     warning("ConcurrentMark MarkStack backing store failure");
 212     // Release the virtual memory reserved for the marking stack
 213     rs.release();
 214     return false;
 215   }
 216   assert(_virtual_space.committed_size() == rs.size(),
 217          "Didn't reserve backing store for all of G1ConcurrentMark stack?");
 218   _base = (oop*) _virtual_space.low();
 219   setEmpty();
 220   _capacity = (jint) capacity;
 221   _saved_index = -1;
 222   _should_expand = false;
 223   return true;
 224 }
 225 
 226 void G1CMMarkStack::expand() {
 227   // Called, during remark, if we've overflown the marking stack during marking.
 228   assert(isEmpty(), "stack should been emptied while handling overflow");
 229   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 230   // Clear expansion flag
 231   _should_expand = false;
 232   if (_capacity == (jint) MarkStackSizeMax) {
 233     log_trace(gc)("(benign) Can't expand marking stack capacity, at max size limit");
 234     return;
 235   }
 236   // Double capacity if possible
 237   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 238   // Do not give up existing stack until we have managed to
 239   // get the double capacity that we desired.
 240   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 241                                                            sizeof(oop)));
 242   if (rs.is_reserved()) {
 243     // Release the backing store associated with old stack
 244     _virtual_space.release();
 245     // Reinitialize virtual space for new stack
 246     if (!_virtual_space.initialize(rs, rs.size())) {
 247       fatal("Not enough swap for expanded marking stack capacity");
 248     }
 249     _base = (oop*)(_virtual_space.low());
 250     _index = 0;
 251     _capacity = new_capacity;
 252   } else {
 253     // Failed to double capacity, continue;
 254     log_trace(gc)("(benign) Failed to expand marking stack capacity from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
 255                   _capacity / K, new_capacity / K);
 256   }
 257 }
 258 
 259 void G1CMMarkStack::set_should_expand() {
 260   // If we're resetting the marking state because of an
 261   // marking stack overflow, record that we should, if
 262   // possible, expand the stack.
 263   _should_expand = _cm->has_overflown();
 264 }
 265 
 266 G1CMMarkStack::~G1CMMarkStack() {
 267   if (_base != NULL) {
 268     _base = NULL;
 269     _virtual_space.release();
 270   }
 271 }
 272 
 273 void G1CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 274   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 275   jint start = _index;
 276   jint next_index = start + n;
 277   if (next_index > _capacity) {
 278     _overflow = true;
 279     return;
 280   }
 281   // Otherwise.
 282   _index = next_index;
 283   for (int i = 0; i < n; i++) {
 284     int ind = start + i;
 285     assert(ind < _capacity, "By overflow test above.");
 286     _base[ind] = ptr_arr[i];
 287   }
 288 }
 289 
 290 bool G1CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 291   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 292   jint index = _index;
 293   if (index == 0) {
 294     *n = 0;
 295     return false;
 296   } else {
 297     int k = MIN2(max, index);
 298     jint  new_ind = index - k;
 299     for (int j = 0; j < k; j++) {
 300       ptr_arr[j] = _base[new_ind + j];
 301     }
 302     _index = new_ind;
 303     *n = k;
 304     return true;
 305   }
 306 }
 307 
 308 void G1CMMarkStack::note_start_of_gc() {
 309   assert(_saved_index == -1,
 310          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 311   _saved_index = _index;
 312 }
 313 
 314 void G1CMMarkStack::note_end_of_gc() {
 315   // This is intentionally a guarantee, instead of an assert. If we
 316   // accidentally add something to the mark stack during GC, it
 317   // will be a correctness issue so it's better if we crash. we'll
 318   // only check this once per GC anyway, so it won't be a performance
 319   // issue in any way.
 320   guarantee(_saved_index == _index,
 321             "saved index: %d index: %d", _saved_index, _index);
 322   _saved_index = -1;
 323 }
 324 
 325 G1CMRootRegions::G1CMRootRegions() :
 326   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 327   _should_abort(false),  _next_survivor(NULL) { }
 328 
 329 void G1CMRootRegions::init(G1CollectedHeap* g1h, G1ConcurrentMark* cm) {
 330   _young_list = g1h->young_list();
 331   _cm = cm;
 332 }
 333 
 334 void G1CMRootRegions::prepare_for_scan() {
 335   assert(!scan_in_progress(), "pre-condition");
 336 
 337   // Currently, only survivors can be root regions.
 338   assert(_next_survivor == NULL, "pre-condition");
 339   _next_survivor = _young_list->first_survivor_region();
 340   _scan_in_progress = (_next_survivor != NULL);
 341   _should_abort = false;
 342 }
 343 
 344 HeapRegion* G1CMRootRegions::claim_next() {
 345   if (_should_abort) {
 346     // If someone has set the should_abort flag, we return NULL to
 347     // force the caller to bail out of their loop.
 348     return NULL;
 349   }
 350 
 351   // Currently, only survivors can be root regions.
 352   HeapRegion* res = _next_survivor;
 353   if (res != NULL) {
 354     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 355     // Read it again in case it changed while we were waiting for the lock.
 356     res = _next_survivor;
 357     if (res != NULL) {
 358       if (res == _young_list->last_survivor_region()) {
 359         // We just claimed the last survivor so store NULL to indicate
 360         // that we're done.
 361         _next_survivor = NULL;
 362       } else {
 363         _next_survivor = res->get_next_young_region();
 364       }
 365     } else {
 366       // Someone else claimed the last survivor while we were trying
 367       // to take the lock so nothing else to do.
 368     }
 369   }
 370   assert(res == NULL || res->is_survivor(), "post-condition");
 371 
 372   return res;
 373 }
 374 
 375 void G1CMRootRegions::notify_scan_done() {
 376   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 377   _scan_in_progress = false;
 378   RootRegionScan_lock->notify_all();
 379 }
 380 
 381 void G1CMRootRegions::cancel_scan() {
 382   notify_scan_done();
 383 }
 384 
 385 void G1CMRootRegions::scan_finished() {
 386   assert(scan_in_progress(), "pre-condition");
 387 
 388   // Currently, only survivors can be root regions.
 389   if (!_should_abort) {
 390     assert(_next_survivor == NULL, "we should have claimed all survivors");
 391   }
 392   _next_survivor = NULL;
 393 
 394   notify_scan_done();
 395 }
 396 
 397 bool G1CMRootRegions::wait_until_scan_finished() {
 398   if (!scan_in_progress()) return false;
 399 
 400   {
 401     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 402     while (scan_in_progress()) {
 403       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 404     }
 405   }
 406   return true;
 407 }
 408 
 409 uint G1ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 410   return MAX2((n_par_threads + 2) / 4, 1U);
 411 }
 412 
 413 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 414   _g1h(g1h),
 415   _markBitMap1(),
 416   _markBitMap2(),
 417   _parallel_marking_threads(0),
 418   _max_parallel_marking_threads(0),
 419   _sleep_factor(0.0),
 420   _marking_task_overhead(1.0),
 421   _cleanup_list("Cleanup List"),
 422   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 423   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 424             CardTableModRefBS::card_shift,
 425             false /* in_resource_area*/),
 426 
 427   _prevMarkBitMap(&_markBitMap1),
 428   _nextMarkBitMap(&_markBitMap2),
 429 
 430   _markStack(this),
 431   // _finger set in set_non_marking_state
 432 
 433   _max_worker_id(ParallelGCThreads),
 434   // _active_tasks set in set_non_marking_state
 435   // _tasks set inside the constructor
 436   _task_queues(new G1CMTaskQueueSet((int) _max_worker_id)),
 437   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 438 
 439   _has_overflown(false),
 440   _concurrent(false),
 441   _has_aborted(false),
 442   _restart_for_overflow(false),
 443   _concurrent_marking_in_progress(false),
 444   _concurrent_phase_started(false),
 445 
 446   // _verbose_level set below
 447 
 448   _init_times(),
 449   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 450   _cleanup_times(),
 451   _total_counting_time(0.0),
 452   _total_rs_scrub_time(0.0),
 453 
 454   _parallel_workers(NULL),
 455 
 456   _count_card_bitmaps(NULL),
 457   _count_marked_bytes(NULL),
 458   _completed_initialization(false) {
 459 
 460   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 461   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 462 
 463   // Create & start a ConcurrentMark thread.
 464   _cmThread = new ConcurrentMarkThread(this);
 465   assert(cmThread() != NULL, "CM Thread should have been created");
 466   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 467   if (_cmThread->osthread() == NULL) {
 468       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 469   }
 470 
 471   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 472   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 473   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 474 
 475   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 476   satb_qs.set_buffer_size(G1SATBBufferSize);
 477 
 478   _root_regions.init(_g1h, this);
 479 
 480   if (ConcGCThreads > ParallelGCThreads) {
 481     warning("Can't have more ConcGCThreads (%u) "
 482             "than ParallelGCThreads (%u).",
 483             ConcGCThreads, ParallelGCThreads);
 484     return;
 485   }
 486   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 487     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 488     // if both are set
 489     _sleep_factor             = 0.0;
 490     _marking_task_overhead    = 1.0;
 491   } else if (G1MarkingOverheadPercent > 0) {
 492     // We will calculate the number of parallel marking threads based
 493     // on a target overhead with respect to the soft real-time goal
 494     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 495     double overall_cm_overhead =
 496       (double) MaxGCPauseMillis * marking_overhead /
 497       (double) GCPauseIntervalMillis;
 498     double cpu_ratio = 1.0 / (double) os::processor_count();
 499     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 500     double marking_task_overhead =
 501       overall_cm_overhead / marking_thread_num *
 502                                               (double) os::processor_count();
 503     double sleep_factor =
 504                        (1.0 - marking_task_overhead) / marking_task_overhead;
 505 
 506     FLAG_SET_ERGO(uint, ConcGCThreads, (uint) marking_thread_num);
 507     _sleep_factor             = sleep_factor;
 508     _marking_task_overhead    = marking_task_overhead;
 509   } else {
 510     // Calculate the number of parallel marking threads by scaling
 511     // the number of parallel GC threads.
 512     uint marking_thread_num = scale_parallel_threads(ParallelGCThreads);
 513     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 514     _sleep_factor             = 0.0;
 515     _marking_task_overhead    = 1.0;
 516   }
 517 
 518   assert(ConcGCThreads > 0, "Should have been set");
 519   _parallel_marking_threads = ConcGCThreads;
 520   _max_parallel_marking_threads = _parallel_marking_threads;
 521 
 522   _parallel_workers = new WorkGang("G1 Marker",
 523        _max_parallel_marking_threads, false, true);
 524   if (_parallel_workers == NULL) {
 525     vm_exit_during_initialization("Failed necessary allocation.");
 526   } else {
 527     _parallel_workers->initialize_workers();
 528   }
 529 
 530   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 531     size_t mark_stack_size =
 532       MIN2(MarkStackSizeMax,
 533           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 534     // Verify that the calculated value for MarkStackSize is in range.
 535     // It would be nice to use the private utility routine from Arguments.
 536     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 537       warning("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 538               "must be between 1 and " SIZE_FORMAT,
 539               mark_stack_size, MarkStackSizeMax);
 540       return;
 541     }
 542     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 543   } else {
 544     // Verify MarkStackSize is in range.
 545     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 546       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 547         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 548           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 549                   "must be between 1 and " SIZE_FORMAT,
 550                   MarkStackSize, MarkStackSizeMax);
 551           return;
 552         }
 553       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 554         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 555           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 556                   " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 557                   MarkStackSize, MarkStackSizeMax);
 558           return;
 559         }
 560       }
 561     }
 562   }
 563 
 564   if (!_markStack.allocate(MarkStackSize)) {
 565     warning("Failed to allocate CM marking stack");
 566     return;
 567   }
 568 
 569   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_worker_id, mtGC);
 570   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 571 
 572   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 573   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 574 
 575   BitMap::idx_t card_bm_size = _card_bm.size();
 576 
 577   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 578   _active_tasks = _max_worker_id;
 579 
 580   uint max_regions = _g1h->max_regions();
 581   for (uint i = 0; i < _max_worker_id; ++i) {
 582     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 583     task_queue->initialize();
 584     _task_queues->register_queue(i, task_queue);
 585 
 586     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 587     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 588 
 589     _tasks[i] = new G1CMTask(i, this,
 590                              _count_marked_bytes[i],
 591                              &_count_card_bitmaps[i],
 592                              task_queue, _task_queues);
 593 
 594     _accum_task_vtime[i] = 0.0;
 595   }
 596 
 597   // Calculate the card number for the bottom of the heap. Used
 598   // in biasing indexes into the accounting card bitmaps.
 599   _heap_bottom_card_num =
 600     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 601                                 CardTableModRefBS::card_shift);
 602 
 603   // Clear all the liveness counting data
 604   clear_all_count_data();
 605 
 606   // so that the call below can read a sensible value
 607   _heap_start = g1h->reserved_region().start();
 608   set_non_marking_state();
 609   _completed_initialization = true;
 610 }
 611 
 612 void G1ConcurrentMark::reset() {
 613   // Starting values for these two. This should be called in a STW
 614   // phase.
 615   MemRegion reserved = _g1h->g1_reserved();
 616   _heap_start = reserved.start();
 617   _heap_end   = reserved.end();
 618 
 619   // Separated the asserts so that we know which one fires.
 620   assert(_heap_start != NULL, "heap bounds should look ok");
 621   assert(_heap_end != NULL, "heap bounds should look ok");
 622   assert(_heap_start < _heap_end, "heap bounds should look ok");
 623 
 624   // Reset all the marking data structures and any necessary flags
 625   reset_marking_state();
 626 
 627   // We do reset all of them, since different phases will use
 628   // different number of active threads. So, it's easiest to have all
 629   // of them ready.
 630   for (uint i = 0; i < _max_worker_id; ++i) {
 631     _tasks[i]->reset(_nextMarkBitMap);
 632   }
 633 
 634   // we need this to make sure that the flag is on during the evac
 635   // pause with initial mark piggy-backed
 636   set_concurrent_marking_in_progress();
 637 }
 638 
 639 
 640 void G1ConcurrentMark::reset_marking_state(bool clear_overflow) {
 641   _markStack.set_should_expand();
 642   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 643   if (clear_overflow) {
 644     clear_has_overflown();
 645   } else {
 646     assert(has_overflown(), "pre-condition");
 647   }
 648   _finger = _heap_start;
 649 
 650   for (uint i = 0; i < _max_worker_id; ++i) {
 651     G1CMTaskQueue* queue = _task_queues->queue(i);
 652     queue->set_empty();
 653   }
 654 }
 655 
 656 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 657   assert(active_tasks <= _max_worker_id, "we should not have more");
 658 
 659   _active_tasks = active_tasks;
 660   // Need to update the three data structures below according to the
 661   // number of active threads for this phase.
 662   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 663   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 664   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 665 }
 666 
 667 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 668   set_concurrency(active_tasks);
 669 
 670   _concurrent = concurrent;
 671   // We propagate this to all tasks, not just the active ones.
 672   for (uint i = 0; i < _max_worker_id; ++i)
 673     _tasks[i]->set_concurrent(concurrent);
 674 
 675   if (concurrent) {
 676     set_concurrent_marking_in_progress();
 677   } else {
 678     // We currently assume that the concurrent flag has been set to
 679     // false before we start remark. At this point we should also be
 680     // in a STW phase.
 681     assert(!concurrent_marking_in_progress(), "invariant");
 682     assert(out_of_regions(),
 683            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 684            p2i(_finger), p2i(_heap_end));
 685   }
 686 }
 687 
 688 void G1ConcurrentMark::set_non_marking_state() {
 689   // We set the global marking state to some default values when we're
 690   // not doing marking.
 691   reset_marking_state();
 692   _active_tasks = 0;
 693   clear_concurrent_marking_in_progress();
 694 }
 695 
 696 G1ConcurrentMark::~G1ConcurrentMark() {
 697   // The G1ConcurrentMark instance is never freed.
 698   ShouldNotReachHere();
 699 }
 700 
 701 void G1ConcurrentMark::clearNextBitmap() {
 702   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 703 
 704   // Make sure that the concurrent mark thread looks to still be in
 705   // the current cycle.
 706   guarantee(cmThread()->during_cycle(), "invariant");
 707 
 708   // We are finishing up the current cycle by clearing the next
 709   // marking bitmap and getting it ready for the next cycle. During
 710   // this time no other cycle can start. So, let's make sure that this
 711   // is the case.
 712   guarantee(!g1h->collector_state()->mark_in_progress(), "invariant");
 713 
 714   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 715   ParClearNextMarkBitmapTask task(&cl, parallel_marking_threads(), true);
 716   _parallel_workers->run_task(&task);
 717 
 718   // Clear the liveness counting data. If the marking has been aborted, the abort()
 719   // call already did that.
 720   if (cl.complete()) {
 721     clear_all_count_data();
 722   }
 723 
 724   // Repeat the asserts from above.
 725   guarantee(cmThread()->during_cycle(), "invariant");
 726   guarantee(!g1h->collector_state()->mark_in_progress(), "invariant");
 727 }
 728 
 729 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 730   G1CMBitMap* _bitmap;
 731   bool _error;
 732  public:
 733   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 734   }
 735 
 736   virtual bool doHeapRegion(HeapRegion* r) {
 737     // This closure can be called concurrently to the mutator, so we must make sure
 738     // that the result of the getNextMarkedWordAddress() call is compared to the
 739     // value passed to it as limit to detect any found bits.
 740     // end never changes in G1.
 741     HeapWord* end = r->end();
 742     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 743   }
 744 };
 745 
 746 bool G1ConcurrentMark::nextMarkBitmapIsClear() {
 747   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 748   _g1h->heap_region_iterate(&cl);
 749   return cl.complete();
 750 }
 751 
 752 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 753 public:
 754   bool doHeapRegion(HeapRegion* r) {
 755     r->note_start_of_marking();
 756     return false;
 757   }
 758 };
 759 
 760 void G1ConcurrentMark::checkpointRootsInitialPre() {
 761   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 762   G1CollectorPolicy* g1p = g1h->g1_policy();
 763 
 764   _has_aborted = false;
 765 
 766   // Initialize marking structures. This has to be done in a STW phase.
 767   reset();
 768 
 769   // For each region note start of marking.
 770   NoteStartOfMarkHRClosure startcl;
 771   g1h->heap_region_iterate(&startcl);
 772 }
 773 
 774 
 775 void G1ConcurrentMark::checkpointRootsInitialPost() {
 776   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 777 
 778   // Start Concurrent Marking weak-reference discovery.
 779   ReferenceProcessor* rp = g1h->ref_processor_cm();
 780   // enable ("weak") refs discovery
 781   rp->enable_discovery();
 782   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 783 
 784   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 785   // This is the start of  the marking cycle, we're expected all
 786   // threads to have SATB queues with active set to false.
 787   satb_mq_set.set_active_all_threads(true, /* new active value */
 788                                      false /* expected_active */);
 789 
 790   _root_regions.prepare_for_scan();
 791 
 792   // update_g1_committed() will be called at the end of an evac pause
 793   // when marking is on. So, it's also called at the end of the
 794   // initial-mark pause to update the heap end, if the heap expands
 795   // during it. No need to call it here.
 796 }
 797 
 798 /*
 799  * Notice that in the next two methods, we actually leave the STS
 800  * during the barrier sync and join it immediately afterwards. If we
 801  * do not do this, the following deadlock can occur: one thread could
 802  * be in the barrier sync code, waiting for the other thread to also
 803  * sync up, whereas another one could be trying to yield, while also
 804  * waiting for the other threads to sync up too.
 805  *
 806  * Note, however, that this code is also used during remark and in
 807  * this case we should not attempt to leave / enter the STS, otherwise
 808  * we'll either hit an assert (debug / fastdebug) or deadlock
 809  * (product). So we should only leave / enter the STS if we are
 810  * operating concurrently.
 811  *
 812  * Because the thread that does the sync barrier has left the STS, it
 813  * is possible to be suspended for a Full GC or an evacuation pause
 814  * could occur. This is actually safe, since the entering the sync
 815  * barrier is one of the last things do_marking_step() does, and it
 816  * doesn't manipulate any data structures afterwards.
 817  */
 818 
 819 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 820   bool barrier_aborted;
 821   {
 822     SuspendibleThreadSetLeaver sts_leave(concurrent());
 823     barrier_aborted = !_first_overflow_barrier_sync.enter();
 824   }
 825 
 826   // at this point everyone should have synced up and not be doing any
 827   // more work
 828 
 829   if (barrier_aborted) {
 830     // If the barrier aborted we ignore the overflow condition and
 831     // just abort the whole marking phase as quickly as possible.
 832     return;
 833   }
 834 
 835   // If we're executing the concurrent phase of marking, reset the marking
 836   // state; otherwise the marking state is reset after reference processing,
 837   // during the remark pause.
 838   // If we reset here as a result of an overflow during the remark we will
 839   // see assertion failures from any subsequent set_concurrency_and_phase()
 840   // calls.
 841   if (concurrent()) {
 842     // let the task associated with with worker 0 do this
 843     if (worker_id == 0) {
 844       // task 0 is responsible for clearing the global data structures
 845       // We should be here because of an overflow. During STW we should
 846       // not clear the overflow flag since we rely on it being true when
 847       // we exit this method to abort the pause and restart concurrent
 848       // marking.
 849       reset_marking_state(true /* clear_overflow */);
 850 
 851       log_info(gc)("Concurrent Mark reset for overflow");
 852     }
 853   }
 854 
 855   // after this, each task should reset its own data structures then
 856   // then go into the second barrier
 857 }
 858 
 859 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 860   SuspendibleThreadSetLeaver sts_leave(concurrent());
 861   _second_overflow_barrier_sync.enter();
 862 
 863   // at this point everything should be re-initialized and ready to go
 864 }
 865 
 866 class G1CMConcurrentMarkingTask: public AbstractGangTask {
 867 private:
 868   G1ConcurrentMark*     _cm;
 869   ConcurrentMarkThread* _cmt;
 870 
 871 public:
 872   void work(uint worker_id) {
 873     assert(Thread::current()->is_ConcurrentGC_thread(),
 874            "this should only be done by a conc GC thread");
 875     ResourceMark rm;
 876 
 877     double start_vtime = os::elapsedVTime();
 878 
 879     {
 880       SuspendibleThreadSetJoiner sts_join;
 881 
 882       assert(worker_id < _cm->active_tasks(), "invariant");
 883       G1CMTask* the_task = _cm->task(worker_id);
 884       the_task->record_start_time();
 885       if (!_cm->has_aborted()) {
 886         do {
 887           double start_vtime_sec = os::elapsedVTime();
 888           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
 889 
 890           the_task->do_marking_step(mark_step_duration_ms,
 891                                     true  /* do_termination */,
 892                                     false /* is_serial*/);
 893 
 894           double end_vtime_sec = os::elapsedVTime();
 895           double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
 896           _cm->clear_has_overflown();
 897 
 898           _cm->do_yield_check(worker_id);
 899 
 900           jlong sleep_time_ms;
 901           if (!_cm->has_aborted() && the_task->has_aborted()) {
 902             sleep_time_ms =
 903               (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
 904             {
 905               SuspendibleThreadSetLeaver sts_leave;
 906               os::sleep(Thread::current(), sleep_time_ms, false);
 907             }
 908           }
 909         } while (!_cm->has_aborted() && the_task->has_aborted());
 910       }
 911       the_task->record_end_time();
 912       guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
 913     }
 914 
 915     double end_vtime = os::elapsedVTime();
 916     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 917   }
 918 
 919   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm,
 920                             ConcurrentMarkThread* cmt) :
 921       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
 922 
 923   ~G1CMConcurrentMarkingTask() { }
 924 };
 925 
 926 // Calculates the number of active workers for a concurrent
 927 // phase.
 928 uint G1ConcurrentMark::calc_parallel_marking_threads() {
 929   uint n_conc_workers = 0;
 930   if (!UseDynamicNumberOfGCThreads ||
 931       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 932        !ForceDynamicNumberOfGCThreads)) {
 933     n_conc_workers = max_parallel_marking_threads();
 934   } else {
 935     n_conc_workers =
 936       AdaptiveSizePolicy::calc_default_active_workers(
 937                                    max_parallel_marking_threads(),
 938                                    1, /* Minimum workers */
 939                                    parallel_marking_threads(),
 940                                    Threads::number_of_non_daemon_threads());
 941     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
 942     // that scaling has already gone into "_max_parallel_marking_threads".
 943   }
 944   assert(n_conc_workers > 0, "Always need at least 1");
 945   return n_conc_workers;
 946 }
 947 
 948 void G1ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
 949   // Currently, only survivors can be root regions.
 950   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 951   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 952 
 953   const uintx interval = PrefetchScanIntervalInBytes;
 954   HeapWord* curr = hr->bottom();
 955   const HeapWord* end = hr->top();
 956   while (curr < end) {
 957     Prefetch::read(curr, interval);
 958     oop obj = oop(curr);
 959     int size = obj->oop_iterate_size(&cl);
 960     assert(size == obj->size(), "sanity");
 961     curr += size;
 962   }
 963 }
 964 
 965 class G1CMRootRegionScanTask : public AbstractGangTask {
 966 private:
 967   G1ConcurrentMark* _cm;
 968 
 969 public:
 970   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 971     AbstractGangTask("Root Region Scan"), _cm(cm) { }
 972 
 973   void work(uint worker_id) {
 974     assert(Thread::current()->is_ConcurrentGC_thread(),
 975            "this should only be done by a conc GC thread");
 976 
 977     G1CMRootRegions* root_regions = _cm->root_regions();
 978     HeapRegion* hr = root_regions->claim_next();
 979     while (hr != NULL) {
 980       _cm->scanRootRegion(hr, worker_id);
 981       hr = root_regions->claim_next();
 982     }
 983   }
 984 };
 985 
 986 void G1ConcurrentMark::scanRootRegions() {
 987   // scan_in_progress() will have been set to true only if there was
 988   // at least one root region to scan. So, if it's false, we
 989   // should not attempt to do any further work.
 990   if (root_regions()->scan_in_progress()) {
 991     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 992     GCTraceConcTime(Info, gc) tt("Concurrent Root Region Scan");
 993 
 994     _parallel_marking_threads = calc_parallel_marking_threads();
 995     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
 996            "Maximum number of marking threads exceeded");
 997     uint active_workers = MAX2(1U, parallel_marking_threads());
 998 
 999     G1CMRootRegionScanTask task(this);
1000     _parallel_workers->set_active_workers(active_workers);
1001     _parallel_workers->run_task(&task);
1002 
1003     // It's possible that has_aborted() is true here without actually
1004     // aborting the survivor scan earlier. This is OK as it's
1005     // mainly used for sanity checking.
1006     root_regions()->scan_finished();
1007   }
1008 }
1009 
1010 void G1ConcurrentMark::register_concurrent_phase_start(const char* title) {
1011   assert(!_concurrent_phase_started, "Sanity");
1012   _concurrent_phase_started = true;
1013   _g1h->gc_timer_cm()->register_gc_concurrent_start(title);
1014 }
1015 
1016 void G1ConcurrentMark::register_concurrent_phase_end() {
1017   if (_concurrent_phase_started) {
1018     _concurrent_phase_started = false;
1019     _g1h->gc_timer_cm()->register_gc_concurrent_end();
1020   }
1021 }
1022 
1023 void G1ConcurrentMark::markFromRoots() {
1024   // we might be tempted to assert that:
1025   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1026   //        "inconsistent argument?");
1027   // However that wouldn't be right, because it's possible that
1028   // a safepoint is indeed in progress as a younger generation
1029   // stop-the-world GC happens even as we mark in this generation.
1030 
1031   _restart_for_overflow = false;
1032 
1033   // _g1h has _n_par_threads
1034   _parallel_marking_threads = calc_parallel_marking_threads();
1035   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1036     "Maximum number of marking threads exceeded");
1037 
1038   uint active_workers = MAX2(1U, parallel_marking_threads());
1039   assert(active_workers > 0, "Should have been set");
1040 
1041   // Parallel task terminator is set in "set_concurrency_and_phase()"
1042   set_concurrency_and_phase(active_workers, true /* concurrent */);
1043 
1044   G1CMConcurrentMarkingTask markingTask(this, cmThread());
1045   _parallel_workers->set_active_workers(active_workers);
1046   _parallel_workers->run_task(&markingTask);
1047   print_stats();
1048 }
1049 
1050 void G1ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1051   // world is stopped at this checkpoint
1052   assert(SafepointSynchronize::is_at_safepoint(),
1053          "world should be stopped");
1054 
1055   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1056 
1057   // If a full collection has happened, we shouldn't do this.
1058   if (has_aborted()) {
1059     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1060     return;
1061   }
1062 
1063   if (VerifyDuringGC) {
1064     HandleMark hm;  // handle scope
1065     g1h->prepare_for_verify();
1066     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1067   }
1068   g1h->verifier()->check_bitmaps("Remark Start");
1069 
1070   G1CollectorPolicy* g1p = g1h->g1_policy();
1071   g1p->record_concurrent_mark_remark_start();
1072 
1073   double start = os::elapsedTime();
1074 
1075   checkpointRootsFinalWork();
1076 
1077   double mark_work_end = os::elapsedTime();
1078 
1079   weakRefsWork(clear_all_soft_refs);
1080 
1081   if (has_overflown()) {
1082     // Oops.  We overflowed.  Restart concurrent marking.
1083     _restart_for_overflow = true;
1084     log_develop_trace(gc)("Remark led to restart for overflow.");
1085 
1086     // Verify the heap w.r.t. the previous marking bitmap.
1087     if (VerifyDuringGC) {
1088       HandleMark hm;  // handle scope
1089       g1h->prepare_for_verify();
1090       Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (overflow)");
1091     }
1092 
1093     // Clear the marking state because we will be restarting
1094     // marking due to overflowing the global mark stack.
1095     reset_marking_state();
1096   } else {
1097     {
1098       GCTraceTime(Debug, gc) trace("Aggregate Data", g1h->gc_timer_cm());
1099 
1100       // Aggregate the per-task counting data that we have accumulated
1101       // while marking.
1102       aggregate_count_data();
1103     }
1104 
1105     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1106     // We're done with marking.
1107     // This is the end of  the marking cycle, we're expected all
1108     // threads to have SATB queues with active set to true.
1109     satb_mq_set.set_active_all_threads(false, /* new active value */
1110                                        true /* expected_active */);
1111 
1112     if (VerifyDuringGC) {
1113       HandleMark hm;  // handle scope
1114       g1h->prepare_for_verify();
1115       Universe::verify(VerifyOption_G1UseNextMarking, "During GC (after)");
1116     }
1117     g1h->verifier()->check_bitmaps("Remark End");
1118     assert(!restart_for_overflow(), "sanity");
1119     // Completely reset the marking state since marking completed
1120     set_non_marking_state();
1121   }
1122 
1123   // Expand the marking stack, if we have to and if we can.
1124   if (_markStack.should_expand()) {
1125     _markStack.expand();
1126   }
1127 
1128   // Statistics
1129   double now = os::elapsedTime();
1130   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1131   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1132   _remark_times.add((now - start) * 1000.0);
1133 
1134   g1p->record_concurrent_mark_remark_end();
1135 
1136   G1CMIsAliveClosure is_alive(g1h);
1137   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1138 }
1139 
1140 // Base class of the closures that finalize and verify the
1141 // liveness counting data.
1142 class G1CMCountDataClosureBase: public HeapRegionClosure {
1143 protected:
1144   G1CollectedHeap* _g1h;
1145   G1ConcurrentMark* _cm;
1146   CardTableModRefBS* _ct_bs;
1147 
1148   BitMap* _region_bm;
1149   BitMap* _card_bm;
1150 
1151   // Takes a region that's not empty (i.e., it has at least one
1152   // live object in it and sets its corresponding bit on the region
1153   // bitmap to 1.
1154   void set_bit_for_region(HeapRegion* hr) {
1155     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1156     _region_bm->par_at_put(index, true);
1157   }
1158 
1159 public:
1160   G1CMCountDataClosureBase(G1CollectedHeap* g1h,
1161                            BitMap* region_bm, BitMap* card_bm):
1162     _g1h(g1h), _cm(g1h->concurrent_mark()),
1163     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
1164     _region_bm(region_bm), _card_bm(card_bm) { }
1165 };
1166 
1167 // Closure that calculates the # live objects per region. Used
1168 // for verification purposes during the cleanup pause.
1169 class CalcLiveObjectsClosure: public G1CMCountDataClosureBase {
1170   G1CMBitMapRO* _bm;
1171   size_t _region_marked_bytes;
1172 
1173 public:
1174   CalcLiveObjectsClosure(G1CMBitMapRO *bm, G1CollectedHeap* g1h,
1175                          BitMap* region_bm, BitMap* card_bm) :
1176     G1CMCountDataClosureBase(g1h, region_bm, card_bm),
1177     _bm(bm), _region_marked_bytes(0) { }
1178 
1179   bool doHeapRegion(HeapRegion* hr) {
1180     HeapWord* ntams = hr->next_top_at_mark_start();
1181     HeapWord* start = hr->bottom();
1182 
1183     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1184            "Preconditions not met - "
1185            "start: " PTR_FORMAT ", ntams: " PTR_FORMAT ", end: " PTR_FORMAT,
1186            p2i(start), p2i(ntams), p2i(hr->end()));
1187 
1188     // Find the first marked object at or after "start".
1189     start = _bm->getNextMarkedWordAddress(start, ntams);
1190 
1191     size_t marked_bytes = 0;
1192 
1193     while (start < ntams) {
1194       oop obj = oop(start);
1195       int obj_sz = obj->size();
1196       HeapWord* obj_end = start + obj_sz;
1197 
1198       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1199       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1200 
1201       // Note: if we're looking at the last region in heap - obj_end
1202       // could be actually just beyond the end of the heap; end_idx
1203       // will then correspond to a (non-existent) card that is also
1204       // just beyond the heap.
1205       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1206         // end of object is not card aligned - increment to cover
1207         // all the cards spanned by the object
1208         end_idx += 1;
1209       }
1210 
1211       // Set the bits in the card BM for the cards spanned by this object.
1212       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1213 
1214       // Add the size of this object to the number of marked bytes.
1215       marked_bytes += (size_t)obj_sz * HeapWordSize;
1216 
1217       // This will happen if we are handling a humongous object that spans
1218       // several heap regions.
1219       if (obj_end > hr->end()) {
1220         break;
1221       }
1222       // Find the next marked object after this one.
1223       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1224     }
1225 
1226     // Mark the allocated-since-marking portion...
1227     HeapWord* top = hr->top();
1228     if (ntams < top) {
1229       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1230       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1231 
1232       // Note: if we're looking at the last region in heap - top
1233       // could be actually just beyond the end of the heap; end_idx
1234       // will then correspond to a (non-existent) card that is also
1235       // just beyond the heap.
1236       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1237         // end of object is not card aligned - increment to cover
1238         // all the cards spanned by the object
1239         end_idx += 1;
1240       }
1241       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1242 
1243       // This definitely means the region has live objects.
1244       set_bit_for_region(hr);
1245     }
1246 
1247     // Update the live region bitmap.
1248     if (marked_bytes > 0) {
1249       set_bit_for_region(hr);
1250     }
1251 
1252     // Set the marked bytes for the current region so that
1253     // it can be queried by a calling verification routine
1254     _region_marked_bytes = marked_bytes;
1255 
1256     return false;
1257   }
1258 
1259   size_t region_marked_bytes() const { return _region_marked_bytes; }
1260 };
1261 
1262 // Heap region closure used for verifying the counting data
1263 // that was accumulated concurrently and aggregated during
1264 // the remark pause. This closure is applied to the heap
1265 // regions during the STW cleanup pause.
1266 
1267 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1268   G1CollectedHeap* _g1h;
1269   G1ConcurrentMark* _cm;
1270   CalcLiveObjectsClosure _calc_cl;
1271   BitMap* _region_bm;   // Region BM to be verified
1272   BitMap* _card_bm;     // Card BM to be verified
1273 
1274   BitMap* _exp_region_bm; // Expected Region BM values
1275   BitMap* _exp_card_bm;   // Expected card BM values
1276 
1277   int _failures;
1278 
1279 public:
1280   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1281                                 BitMap* region_bm,
1282                                 BitMap* card_bm,
1283                                 BitMap* exp_region_bm,
1284                                 BitMap* exp_card_bm) :
1285     _g1h(g1h), _cm(g1h->concurrent_mark()),
1286     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1287     _region_bm(region_bm), _card_bm(card_bm),
1288     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1289     _failures(0) { }
1290 
1291   int failures() const { return _failures; }
1292 
1293   bool doHeapRegion(HeapRegion* hr) {
1294     int failures = 0;
1295 
1296     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1297     // this region and set the corresponding bits in the expected region
1298     // and card bitmaps.
1299     bool res = _calc_cl.doHeapRegion(hr);
1300     assert(res == false, "should be continuing");
1301 
1302     // Verify the marked bytes for this region.
1303     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1304     size_t act_marked_bytes = hr->next_marked_bytes();
1305 
1306     if (exp_marked_bytes > act_marked_bytes) {
1307       if (hr->is_starts_humongous()) {
1308         // For start_humongous regions, the size of the whole object will be
1309         // in exp_marked_bytes.
1310         HeapRegion* region = hr;
1311         int num_regions;
1312         for (num_regions = 0; region != NULL; num_regions++) {
1313           region = _g1h->next_region_in_humongous(region);
1314         }
1315         if ((num_regions-1) * HeapRegion::GrainBytes >= exp_marked_bytes) {
1316           failures += 1;
1317         } else if (num_regions * HeapRegion::GrainBytes < exp_marked_bytes) {
1318           failures += 1;
1319         }
1320       } else {
1321         // We're not OK if expected marked bytes > actual marked bytes. It means
1322         // we have missed accounting some objects during the actual marking.
1323         failures += 1;
1324       }
1325     }
1326 
1327     // Verify the bit, for this region, in the actual and expected
1328     // (which was just calculated) region bit maps.
1329     // We're not OK if the bit in the calculated expected region
1330     // bitmap is set and the bit in the actual region bitmap is not.
1331     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1332 
1333     bool expected = _exp_region_bm->at(index);
1334     bool actual = _region_bm->at(index);
1335     if (expected && !actual) {
1336       failures += 1;
1337     }
1338 
1339     // Verify that the card bit maps for the cards spanned by the current
1340     // region match. We have an error if we have a set bit in the expected
1341     // bit map and the corresponding bit in the actual bitmap is not set.
1342 
1343     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1344     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1345 
1346     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1347       expected = _exp_card_bm->at(i);
1348       actual = _card_bm->at(i);
1349 
1350       if (expected && !actual) {
1351         failures += 1;
1352       }
1353     }
1354 
1355     _failures += failures;
1356 
1357     // We could stop iteration over the heap when we
1358     // find the first violating region by returning true.
1359     return false;
1360   }
1361 };
1362 
1363 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1364 protected:
1365   G1CollectedHeap* _g1h;
1366   G1ConcurrentMark* _cm;
1367   BitMap* _actual_region_bm;
1368   BitMap* _actual_card_bm;
1369 
1370   uint    _n_workers;
1371 
1372   BitMap* _expected_region_bm;
1373   BitMap* _expected_card_bm;
1374 
1375   int  _failures;
1376 
1377   HeapRegionClaimer _hrclaimer;
1378 
1379 public:
1380   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1381                             BitMap* region_bm, BitMap* card_bm,
1382                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1383     : AbstractGangTask("G1 verify final counting"),
1384       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1385       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1386       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1387       _failures(0),
1388       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1389     assert(VerifyDuringGC, "don't call this otherwise");
1390     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1391     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1392   }
1393 
1394   void work(uint worker_id) {
1395     assert(worker_id < _n_workers, "invariant");
1396 
1397     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1398                                             _actual_region_bm, _actual_card_bm,
1399                                             _expected_region_bm,
1400                                             _expected_card_bm);
1401 
1402     _g1h->heap_region_par_iterate(&verify_cl, worker_id, &_hrclaimer);
1403 
1404     Atomic::add(verify_cl.failures(), &_failures);
1405   }
1406 
1407   int failures() const { return _failures; }
1408 };
1409 
1410 // Closure that finalizes the liveness counting data.
1411 // Used during the cleanup pause.
1412 // Sets the bits corresponding to the interval [NTAMS, top]
1413 // (which contains the implicitly live objects) in the
1414 // card liveness bitmap. Also sets the bit for each region,
1415 // containing live data, in the region liveness bitmap.
1416 
1417 class FinalCountDataUpdateClosure: public G1CMCountDataClosureBase {
1418  public:
1419   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1420                               BitMap* region_bm,
1421                               BitMap* card_bm) :
1422     G1CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1423 
1424   bool doHeapRegion(HeapRegion* hr) {
1425     HeapWord* ntams = hr->next_top_at_mark_start();
1426     HeapWord* top   = hr->top();
1427 
1428     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1429 
1430     // Mark the allocated-since-marking portion...
1431     if (ntams < top) {
1432       // This definitely means the region has live objects.
1433       set_bit_for_region(hr);
1434 
1435       // Now set the bits in the card bitmap for [ntams, top)
1436       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1437       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1438 
1439       // Note: if we're looking at the last region in heap - top
1440       // could be actually just beyond the end of the heap; end_idx
1441       // will then correspond to a (non-existent) card that is also
1442       // just beyond the heap.
1443       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1444         // end of object is not card aligned - increment to cover
1445         // all the cards spanned by the object
1446         end_idx += 1;
1447       }
1448 
1449       assert(end_idx <= _card_bm->size(),
1450              "oob: end_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1451              end_idx, _card_bm->size());
1452       assert(start_idx < _card_bm->size(),
1453              "oob: start_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1454              start_idx, _card_bm->size());
1455 
1456       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1457     }
1458 
1459     // Set the bit for the region if it contains live data
1460     if (hr->next_marked_bytes() > 0) {
1461       set_bit_for_region(hr);
1462     }
1463 
1464     return false;
1465   }
1466 };
1467 
1468 class G1ParFinalCountTask: public AbstractGangTask {
1469 protected:
1470   G1CollectedHeap* _g1h;
1471   G1ConcurrentMark* _cm;
1472   BitMap* _actual_region_bm;
1473   BitMap* _actual_card_bm;
1474 
1475   uint    _n_workers;
1476   HeapRegionClaimer _hrclaimer;
1477 
1478 public:
1479   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1480     : AbstractGangTask("G1 final counting"),
1481       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1482       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1483       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1484   }
1485 
1486   void work(uint worker_id) {
1487     assert(worker_id < _n_workers, "invariant");
1488 
1489     FinalCountDataUpdateClosure final_update_cl(_g1h,
1490                                                 _actual_region_bm,
1491                                                 _actual_card_bm);
1492 
1493     _g1h->heap_region_par_iterate(&final_update_cl, worker_id, &_hrclaimer);
1494   }
1495 };
1496 
1497 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1498   G1CollectedHeap* _g1;
1499   size_t _freed_bytes;
1500   FreeRegionList* _local_cleanup_list;
1501   uint _old_regions_removed;
1502   uint _humongous_regions_removed;
1503   HRRSCleanupTask* _hrrs_cleanup_task;
1504 
1505 public:
1506   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1507                              FreeRegionList* local_cleanup_list,
1508                              HRRSCleanupTask* hrrs_cleanup_task) :
1509     _g1(g1),
1510     _freed_bytes(0),
1511     _local_cleanup_list(local_cleanup_list),
1512     _old_regions_removed(0),
1513     _humongous_regions_removed(0),
1514     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1515 
1516   size_t freed_bytes() { return _freed_bytes; }
1517   const uint old_regions_removed() { return _old_regions_removed; }
1518   const uint humongous_regions_removed() { return _humongous_regions_removed; }
1519 
1520   bool doHeapRegion(HeapRegion *hr) {
1521     if (hr->is_archive()) {
1522       return false;
1523     }
1524     // We use a claim value of zero here because all regions
1525     // were claimed with value 1 in the FinalCount task.
1526     _g1->reset_gc_time_stamps(hr);
1527     hr->note_end_of_marking();
1528 
1529     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1530       _freed_bytes += hr->used();
1531       hr->set_containing_set(NULL);
1532       if (hr->is_humongous()) {
1533         _humongous_regions_removed++;
1534         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1535       } else {
1536         _old_regions_removed++;
1537         _g1->free_region(hr, _local_cleanup_list, true);
1538       }
1539     } else {
1540       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1541     }
1542 
1543     return false;
1544   }
1545 };
1546 
1547 class G1ParNoteEndTask: public AbstractGangTask {
1548   friend class G1NoteEndOfConcMarkClosure;
1549 
1550 protected:
1551   G1CollectedHeap* _g1h;
1552   FreeRegionList* _cleanup_list;
1553   HeapRegionClaimer _hrclaimer;
1554 
1555 public:
1556   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1557       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1558   }
1559 
1560   void work(uint worker_id) {
1561     FreeRegionList local_cleanup_list("Local Cleanup List");
1562     HRRSCleanupTask hrrs_cleanup_task;
1563     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1564                                            &hrrs_cleanup_task);
1565     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1566     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1567 
1568     // Now update the lists
1569     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1570     {
1571       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1572       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1573 
1574       // If we iterate over the global cleanup list at the end of
1575       // cleanup to do this printing we will not guarantee to only
1576       // generate output for the newly-reclaimed regions (the list
1577       // might not be empty at the beginning of cleanup; we might
1578       // still be working on its previous contents). So we do the
1579       // printing here, before we append the new regions to the global
1580       // cleanup list.
1581 
1582       G1HRPrinter* hr_printer = _g1h->hr_printer();
1583       if (hr_printer->is_active()) {
1584         FreeRegionListIterator iter(&local_cleanup_list);
1585         while (iter.more_available()) {
1586           HeapRegion* hr = iter.get_next();
1587           hr_printer->cleanup(hr);
1588         }
1589       }
1590 
1591       _cleanup_list->add_ordered(&local_cleanup_list);
1592       assert(local_cleanup_list.is_empty(), "post-condition");
1593 
1594       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1595     }
1596   }
1597 };
1598 
1599 void G1ConcurrentMark::cleanup() {
1600   // world is stopped at this checkpoint
1601   assert(SafepointSynchronize::is_at_safepoint(),
1602          "world should be stopped");
1603   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1604 
1605   // If a full collection has happened, we shouldn't do this.
1606   if (has_aborted()) {
1607     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1608     return;
1609   }
1610 
1611   g1h->verifier()->verify_region_sets_optional();
1612 
1613   if (VerifyDuringGC) {
1614     HandleMark hm;  // handle scope
1615     g1h->prepare_for_verify();
1616     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1617   }
1618   g1h->verifier()->check_bitmaps("Cleanup Start");
1619 
1620   G1CollectorPolicy* g1p = g1h->g1_policy();
1621   g1p->record_concurrent_mark_cleanup_start();
1622 
1623   double start = os::elapsedTime();
1624 
1625   HeapRegionRemSet::reset_for_cleanup_tasks();
1626 
1627   // Do counting once more with the world stopped for good measure.
1628   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
1629 
1630   g1h->workers()->run_task(&g1_par_count_task);
1631 
1632   if (VerifyDuringGC) {
1633     // Verify that the counting data accumulated during marking matches
1634     // that calculated by walking the marking bitmap.
1635 
1636     // Bitmaps to hold expected values
1637     BitMap expected_region_bm(_region_bm.size(), true);
1638     BitMap expected_card_bm(_card_bm.size(), true);
1639 
1640     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
1641                                                  &_region_bm,
1642                                                  &_card_bm,
1643                                                  &expected_region_bm,
1644                                                  &expected_card_bm);
1645 
1646     g1h->workers()->run_task(&g1_par_verify_task);
1647 
1648     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
1649   }
1650 
1651   size_t start_used_bytes = g1h->used();
1652   g1h->collector_state()->set_mark_in_progress(false);
1653 
1654   double count_end = os::elapsedTime();
1655   double this_final_counting_time = (count_end - start);
1656   _total_counting_time += this_final_counting_time;
1657 
1658   if (log_is_enabled(Trace, gc, liveness)) {
1659     G1PrintRegionLivenessInfoClosure cl("Post-Marking");
1660     _g1h->heap_region_iterate(&cl);
1661   }
1662 
1663   // Install newly created mark bitMap as "prev".
1664   swapMarkBitMaps();
1665 
1666   g1h->reset_gc_time_stamp();
1667 
1668   uint n_workers = _g1h->workers()->active_workers();
1669 
1670   // Note end of marking in all heap regions.
1671   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1672   g1h->workers()->run_task(&g1_par_note_end_task);
1673   g1h->check_gc_time_stamps();
1674 
1675   if (!cleanup_list_is_empty()) {
1676     // The cleanup list is not empty, so we'll have to process it
1677     // concurrently. Notify anyone else that might be wanting free
1678     // regions that there will be more free regions coming soon.
1679     g1h->set_free_regions_coming();
1680   }
1681 
1682   // call below, since it affects the metric by which we sort the heap
1683   // regions.
1684   if (G1ScrubRemSets) {
1685     double rs_scrub_start = os::elapsedTime();
1686     g1h->scrub_rem_set(&_region_bm, &_card_bm);
1687     _total_rs_scrub_time += (os::elapsedTime() - rs_scrub_start);
1688   }
1689 
1690   // this will also free any regions totally full of garbage objects,
1691   // and sort the regions.
1692   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1693 
1694   // Statistics.
1695   double end = os::elapsedTime();
1696   _cleanup_times.add((end - start) * 1000.0);
1697 
1698   // Clean up will have freed any regions completely full of garbage.
1699   // Update the soft reference policy with the new heap occupancy.
1700   Universe::update_heap_info_at_gc();
1701 
1702   if (VerifyDuringGC) {
1703     HandleMark hm;  // handle scope
1704     g1h->prepare_for_verify();
1705     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (after)");
1706   }
1707 
1708   g1h->verifier()->check_bitmaps("Cleanup End");
1709 
1710   g1h->verifier()->verify_region_sets_optional();
1711 
1712   // We need to make this be a "collection" so any collection pause that
1713   // races with it goes around and waits for completeCleanup to finish.
1714   g1h->increment_total_collections();
1715 
1716   // Clean out dead classes and update Metaspace sizes.
1717   if (ClassUnloadingWithConcurrentMark) {
1718     ClassLoaderDataGraph::purge();
1719   }
1720   MetaspaceGC::compute_new_size();
1721 
1722   // We reclaimed old regions so we should calculate the sizes to make
1723   // sure we update the old gen/space data.
1724   g1h->g1mm()->update_sizes();
1725   g1h->allocation_context_stats().update_after_mark();
1726 
1727   g1h->trace_heap_after_concurrent_cycle();
1728 }
1729 
1730 void G1ConcurrentMark::completeCleanup() {
1731   if (has_aborted()) return;
1732 
1733   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1734 
1735   _cleanup_list.verify_optional();
1736   FreeRegionList tmp_free_list("Tmp Free List");
1737 
1738   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1739                                   "cleanup list has %u entries",
1740                                   _cleanup_list.length());
1741 
1742   // No one else should be accessing the _cleanup_list at this point,
1743   // so it is not necessary to take any locks
1744   while (!_cleanup_list.is_empty()) {
1745     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1746     assert(hr != NULL, "Got NULL from a non-empty list");
1747     hr->par_clear();
1748     tmp_free_list.add_ordered(hr);
1749 
1750     // Instead of adding one region at a time to the secondary_free_list,
1751     // we accumulate them in the local list and move them a few at a
1752     // time. This also cuts down on the number of notify_all() calls
1753     // we do during this process. We'll also append the local list when
1754     // _cleanup_list is empty (which means we just removed the last
1755     // region from the _cleanup_list).
1756     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1757         _cleanup_list.is_empty()) {
1758       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1759                                       "appending %u entries to the secondary_free_list, "
1760                                       "cleanup list still has %u entries",
1761                                       tmp_free_list.length(),
1762                                       _cleanup_list.length());
1763 
1764       {
1765         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1766         g1h->secondary_free_list_add(&tmp_free_list);
1767         SecondaryFreeList_lock->notify_all();
1768       }
1769 #ifndef PRODUCT
1770       if (G1StressConcRegionFreeing) {
1771         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1772           os::sleep(Thread::current(), (jlong) 1, false);
1773         }
1774       }
1775 #endif
1776     }
1777   }
1778   assert(tmp_free_list.is_empty(), "post-condition");
1779 }
1780 
1781 // Supporting Object and Oop closures for reference discovery
1782 // and processing in during marking
1783 
1784 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1785   HeapWord* addr = (HeapWord*)obj;
1786   return addr != NULL &&
1787          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1788 }
1789 
1790 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1791 // Uses the G1CMTask associated with a worker thread (for serial reference
1792 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1793 // trace referent objects.
1794 //
1795 // Using the G1CMTask and embedded local queues avoids having the worker
1796 // threads operating on the global mark stack. This reduces the risk
1797 // of overflowing the stack - which we would rather avoid at this late
1798 // state. Also using the tasks' local queues removes the potential
1799 // of the workers interfering with each other that could occur if
1800 // operating on the global stack.
1801 
1802 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1803   G1ConcurrentMark* _cm;
1804   G1CMTask*         _task;
1805   int               _ref_counter_limit;
1806   int               _ref_counter;
1807   bool              _is_serial;
1808  public:
1809   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1810     _cm(cm), _task(task), _is_serial(is_serial),
1811     _ref_counter_limit(G1RefProcDrainInterval) {
1812     assert(_ref_counter_limit > 0, "sanity");
1813     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1814     _ref_counter = _ref_counter_limit;
1815   }
1816 
1817   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1818   virtual void do_oop(      oop* p) { do_oop_work(p); }
1819 
1820   template <class T> void do_oop_work(T* p) {
1821     if (!_cm->has_overflown()) {
1822       oop obj = oopDesc::load_decode_heap_oop(p);
1823       _task->deal_with_reference(obj);
1824       _ref_counter--;
1825 
1826       if (_ref_counter == 0) {
1827         // We have dealt with _ref_counter_limit references, pushing them
1828         // and objects reachable from them on to the local stack (and
1829         // possibly the global stack). Call G1CMTask::do_marking_step() to
1830         // process these entries.
1831         //
1832         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1833         // there's nothing more to do (i.e. we're done with the entries that
1834         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1835         // above) or we overflow.
1836         //
1837         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1838         // flag while there may still be some work to do. (See the comment at
1839         // the beginning of G1CMTask::do_marking_step() for those conditions -
1840         // one of which is reaching the specified time target.) It is only
1841         // when G1CMTask::do_marking_step() returns without setting the
1842         // has_aborted() flag that the marking step has completed.
1843         do {
1844           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1845           _task->do_marking_step(mark_step_duration_ms,
1846                                  false      /* do_termination */,
1847                                  _is_serial);
1848         } while (_task->has_aborted() && !_cm->has_overflown());
1849         _ref_counter = _ref_counter_limit;
1850       }
1851     }
1852   }
1853 };
1854 
1855 // 'Drain' oop closure used by both serial and parallel reference processing.
1856 // Uses the G1CMTask associated with a given worker thread (for serial
1857 // reference processing the G1CMtask for worker 0 is used). Calls the
1858 // do_marking_step routine, with an unbelievably large timeout value,
1859 // to drain the marking data structures of the remaining entries
1860 // added by the 'keep alive' oop closure above.
1861 
1862 class G1CMDrainMarkingStackClosure: public VoidClosure {
1863   G1ConcurrentMark* _cm;
1864   G1CMTask*         _task;
1865   bool              _is_serial;
1866  public:
1867   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1868     _cm(cm), _task(task), _is_serial(is_serial) {
1869     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1870   }
1871 
1872   void do_void() {
1873     do {
1874       // We call G1CMTask::do_marking_step() to completely drain the local
1875       // and global marking stacks of entries pushed by the 'keep alive'
1876       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1877       //
1878       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1879       // if there's nothing more to do (i.e. we've completely drained the
1880       // entries that were pushed as a a result of applying the 'keep alive'
1881       // closure to the entries on the discovered ref lists) or we overflow
1882       // the global marking stack.
1883       //
1884       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1885       // flag while there may still be some work to do. (See the comment at
1886       // the beginning of G1CMTask::do_marking_step() for those conditions -
1887       // one of which is reaching the specified time target.) It is only
1888       // when G1CMTask::do_marking_step() returns without setting the
1889       // has_aborted() flag that the marking step has completed.
1890 
1891       _task->do_marking_step(1000000000.0 /* something very large */,
1892                              true         /* do_termination */,
1893                              _is_serial);
1894     } while (_task->has_aborted() && !_cm->has_overflown());
1895   }
1896 };
1897 
1898 // Implementation of AbstractRefProcTaskExecutor for parallel
1899 // reference processing at the end of G1 concurrent marking
1900 
1901 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
1902 private:
1903   G1CollectedHeap*  _g1h;
1904   G1ConcurrentMark* _cm;
1905   WorkGang*         _workers;
1906   uint              _active_workers;
1907 
1908 public:
1909   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1910                           G1ConcurrentMark* cm,
1911                           WorkGang* workers,
1912                           uint n_workers) :
1913     _g1h(g1h), _cm(cm),
1914     _workers(workers), _active_workers(n_workers) { }
1915 
1916   // Executes the given task using concurrent marking worker threads.
1917   virtual void execute(ProcessTask& task);
1918   virtual void execute(EnqueueTask& task);
1919 };
1920 
1921 class G1CMRefProcTaskProxy: public AbstractGangTask {
1922   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1923   ProcessTask&      _proc_task;
1924   G1CollectedHeap*  _g1h;
1925   G1ConcurrentMark* _cm;
1926 
1927 public:
1928   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1929                        G1CollectedHeap* g1h,
1930                        G1ConcurrentMark* cm) :
1931     AbstractGangTask("Process reference objects in parallel"),
1932     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1933     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1934     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1935   }
1936 
1937   virtual void work(uint worker_id) {
1938     ResourceMark rm;
1939     HandleMark hm;
1940     G1CMTask* task = _cm->task(worker_id);
1941     G1CMIsAliveClosure g1_is_alive(_g1h);
1942     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1943     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1944 
1945     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1946   }
1947 };
1948 
1949 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1950   assert(_workers != NULL, "Need parallel worker threads.");
1951   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1952 
1953   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1954 
1955   // We need to reset the concurrency level before each
1956   // proxy task execution, so that the termination protocol
1957   // and overflow handling in G1CMTask::do_marking_step() knows
1958   // how many workers to wait for.
1959   _cm->set_concurrency(_active_workers);
1960   _workers->run_task(&proc_task_proxy);
1961 }
1962 
1963 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
1964   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1965   EnqueueTask& _enq_task;
1966 
1967 public:
1968   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1969     AbstractGangTask("Enqueue reference objects in parallel"),
1970     _enq_task(enq_task) { }
1971 
1972   virtual void work(uint worker_id) {
1973     _enq_task.work(worker_id);
1974   }
1975 };
1976 
1977 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1978   assert(_workers != NULL, "Need parallel worker threads.");
1979   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1980 
1981   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1982 
1983   // Not strictly necessary but...
1984   //
1985   // We need to reset the concurrency level before each
1986   // proxy task execution, so that the termination protocol
1987   // and overflow handling in G1CMTask::do_marking_step() knows
1988   // how many workers to wait for.
1989   _cm->set_concurrency(_active_workers);
1990   _workers->run_task(&enq_task_proxy);
1991 }
1992 
1993 void G1ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
1994   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
1995 }
1996 
1997 void G1ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
1998   if (has_overflown()) {
1999     // Skip processing the discovered references if we have
2000     // overflown the global marking stack. Reference objects
2001     // only get discovered once so it is OK to not
2002     // de-populate the discovered reference lists. We could have,
2003     // but the only benefit would be that, when marking restarts,
2004     // less reference objects are discovered.
2005     return;
2006   }
2007 
2008   ResourceMark rm;
2009   HandleMark   hm;
2010 
2011   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2012 
2013   // Is alive closure.
2014   G1CMIsAliveClosure g1_is_alive(g1h);
2015 
2016   // Inner scope to exclude the cleaning of the string and symbol
2017   // tables from the displayed time.
2018   {
2019     GCTraceTime(Debug, gc) trace("Reference Processing", g1h->gc_timer_cm());
2020 
2021     ReferenceProcessor* rp = g1h->ref_processor_cm();
2022 
2023     // See the comment in G1CollectedHeap::ref_processing_init()
2024     // about how reference processing currently works in G1.
2025 
2026     // Set the soft reference policy
2027     rp->setup_policy(clear_all_soft_refs);
2028     assert(_markStack.isEmpty(), "mark stack should be empty");
2029 
2030     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2031     // in serial reference processing. Note these closures are also
2032     // used for serially processing (by the the current thread) the
2033     // JNI references during parallel reference processing.
2034     //
2035     // These closures do not need to synchronize with the worker
2036     // threads involved in parallel reference processing as these
2037     // instances are executed serially by the current thread (e.g.
2038     // reference processing is not multi-threaded and is thus
2039     // performed by the current thread instead of a gang worker).
2040     //
2041     // The gang tasks involved in parallel reference processing create
2042     // their own instances of these closures, which do their own
2043     // synchronization among themselves.
2044     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2045     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2046 
2047     // We need at least one active thread. If reference processing
2048     // is not multi-threaded we use the current (VMThread) thread,
2049     // otherwise we use the work gang from the G1CollectedHeap and
2050     // we utilize all the worker threads we can.
2051     bool processing_is_mt = rp->processing_is_mt();
2052     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2053     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2054 
2055     // Parallel processing task executor.
2056     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2057                                               g1h->workers(), active_workers);
2058     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2059 
2060     // Set the concurrency level. The phase was already set prior to
2061     // executing the remark task.
2062     set_concurrency(active_workers);
2063 
2064     // Set the degree of MT processing here.  If the discovery was done MT,
2065     // the number of threads involved during discovery could differ from
2066     // the number of active workers.  This is OK as long as the discovered
2067     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2068     rp->set_active_mt_degree(active_workers);
2069 
2070     // Process the weak references.
2071     const ReferenceProcessorStats& stats =
2072         rp->process_discovered_references(&g1_is_alive,
2073                                           &g1_keep_alive,
2074                                           &g1_drain_mark_stack,
2075                                           executor,
2076                                           g1h->gc_timer_cm());
2077     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2078 
2079     // The do_oop work routines of the keep_alive and drain_marking_stack
2080     // oop closures will set the has_overflown flag if we overflow the
2081     // global marking stack.
2082 
2083     assert(_markStack.overflow() || _markStack.isEmpty(),
2084             "mark stack should be empty (unless it overflowed)");
2085 
2086     if (_markStack.overflow()) {
2087       // This should have been done already when we tried to push an
2088       // entry on to the global mark stack. But let's do it again.
2089       set_has_overflown();
2090     }
2091 
2092     assert(rp->num_q() == active_workers, "why not");
2093 
2094     rp->enqueue_discovered_references(executor);
2095 
2096     rp->verify_no_references_recorded();
2097     assert(!rp->discovery_enabled(), "Post condition");
2098   }
2099 
2100   if (has_overflown()) {
2101     // We can not trust g1_is_alive if the marking stack overflowed
2102     return;
2103   }
2104 
2105   assert(_markStack.isEmpty(), "Marking should have completed");
2106 
2107   // Unload Klasses, String, Symbols, Code Cache, etc.
2108   {
2109     GCTraceTime(Debug, gc) trace("Unloading", g1h->gc_timer_cm());
2110 
2111     if (ClassUnloadingWithConcurrentMark) {
2112       bool purged_classes;
2113 
2114       {
2115         GCTraceTime(Trace, gc) trace("System Dictionary Unloading", g1h->gc_timer_cm());
2116         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
2117       }
2118 
2119       {
2120         GCTraceTime(Trace, gc) trace("Parallel Unloading", g1h->gc_timer_cm());
2121         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2122       }
2123     }
2124 
2125     if (G1StringDedup::is_enabled()) {
2126       GCTraceTime(Trace, gc) trace("String Deduplication Unlink", g1h->gc_timer_cm());
2127       G1StringDedup::unlink(&g1_is_alive);
2128     }
2129   }
2130 }
2131 
2132 void G1ConcurrentMark::swapMarkBitMaps() {
2133   G1CMBitMapRO* temp = _prevMarkBitMap;
2134   _prevMarkBitMap    = (G1CMBitMapRO*)_nextMarkBitMap;
2135   _nextMarkBitMap    = (G1CMBitMap*)  temp;
2136 }
2137 
2138 // Closure for marking entries in SATB buffers.
2139 class G1CMSATBBufferClosure : public SATBBufferClosure {
2140 private:
2141   G1CMTask* _task;
2142   G1CollectedHeap* _g1h;
2143 
2144   // This is very similar to G1CMTask::deal_with_reference, but with
2145   // more relaxed requirements for the argument, so this must be more
2146   // circumspect about treating the argument as an object.
2147   void do_entry(void* entry) const {
2148     _task->increment_refs_reached();
2149     HeapRegion* hr = _g1h->heap_region_containing(entry);
2150     if (entry < hr->next_top_at_mark_start()) {
2151       // Until we get here, we don't know whether entry refers to a valid
2152       // object; it could instead have been a stale reference.
2153       oop obj = static_cast<oop>(entry);
2154       assert(obj->is_oop(true /* ignore mark word */),
2155              "Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj));
2156       _task->make_reference_grey(obj, hr);
2157     }
2158   }
2159 
2160 public:
2161   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
2162     : _task(task), _g1h(g1h) { }
2163 
2164   virtual void do_buffer(void** buffer, size_t size) {
2165     for (size_t i = 0; i < size; ++i) {
2166       do_entry(buffer[i]);
2167     }
2168   }
2169 };
2170 
2171 class G1RemarkThreadsClosure : public ThreadClosure {
2172   G1CMSATBBufferClosure _cm_satb_cl;
2173   G1CMOopClosure _cm_cl;
2174   MarkingCodeBlobClosure _code_cl;
2175   int _thread_parity;
2176 
2177  public:
2178   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
2179     _cm_satb_cl(task, g1h),
2180     _cm_cl(g1h, g1h->concurrent_mark(), task),
2181     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2182     _thread_parity(Threads::thread_claim_parity()) {}
2183 
2184   void do_thread(Thread* thread) {
2185     if (thread->is_Java_thread()) {
2186       if (thread->claim_oops_do(true, _thread_parity)) {
2187         JavaThread* jt = (JavaThread*)thread;
2188 
2189         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2190         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2191         // * Alive if on the stack of an executing method
2192         // * Weakly reachable otherwise
2193         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2194         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2195         jt->nmethods_do(&_code_cl);
2196 
2197         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
2198       }
2199     } else if (thread->is_VM_thread()) {
2200       if (thread->claim_oops_do(true, _thread_parity)) {
2201         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
2202       }
2203     }
2204   }
2205 };
2206 
2207 class G1CMRemarkTask: public AbstractGangTask {
2208 private:
2209   G1ConcurrentMark* _cm;
2210 public:
2211   void work(uint worker_id) {
2212     // Since all available tasks are actually started, we should
2213     // only proceed if we're supposed to be active.
2214     if (worker_id < _cm->active_tasks()) {
2215       G1CMTask* task = _cm->task(worker_id);
2216       task->record_start_time();
2217       {
2218         ResourceMark rm;
2219         HandleMark hm;
2220 
2221         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
2222         Threads::threads_do(&threads_f);
2223       }
2224 
2225       do {
2226         task->do_marking_step(1000000000.0 /* something very large */,
2227                               true         /* do_termination       */,
2228                               false        /* is_serial            */);
2229       } while (task->has_aborted() && !_cm->has_overflown());
2230       // If we overflow, then we do not want to restart. We instead
2231       // want to abort remark and do concurrent marking again.
2232       task->record_end_time();
2233     }
2234   }
2235 
2236   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
2237     AbstractGangTask("Par Remark"), _cm(cm) {
2238     _cm->terminator()->reset_for_reuse(active_workers);
2239   }
2240 };
2241 
2242 void G1ConcurrentMark::checkpointRootsFinalWork() {
2243   ResourceMark rm;
2244   HandleMark   hm;
2245   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2246 
2247   GCTraceTime(Debug, gc) trace("Finalize Marking", g1h->gc_timer_cm());
2248 
2249   g1h->ensure_parsability(false);
2250 
2251   // this is remark, so we'll use up all active threads
2252   uint active_workers = g1h->workers()->active_workers();
2253   set_concurrency_and_phase(active_workers, false /* concurrent */);
2254   // Leave _parallel_marking_threads at it's
2255   // value originally calculated in the G1ConcurrentMark
2256   // constructor and pass values of the active workers
2257   // through the gang in the task.
2258 
2259   {
2260     StrongRootsScope srs(active_workers);
2261 
2262     G1CMRemarkTask remarkTask(this, active_workers);
2263     // We will start all available threads, even if we decide that the
2264     // active_workers will be fewer. The extra ones will just bail out
2265     // immediately.
2266     g1h->workers()->run_task(&remarkTask);
2267   }
2268 
2269   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2270   guarantee(has_overflown() ||
2271             satb_mq_set.completed_buffers_num() == 0,
2272             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
2273             BOOL_TO_STR(has_overflown()),
2274             satb_mq_set.completed_buffers_num());
2275 
2276   print_stats();
2277 }
2278 
2279 void G1ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2280   // Note we are overriding the read-only view of the prev map here, via
2281   // the cast.
2282   ((G1CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2283 }
2284 
2285 HeapRegion*
2286 G1ConcurrentMark::claim_region(uint worker_id) {
2287   // "checkpoint" the finger
2288   HeapWord* finger = _finger;
2289 
2290   // _heap_end will not change underneath our feet; it only changes at
2291   // yield points.
2292   while (finger < _heap_end) {
2293     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2294 
2295     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
2296 
2297     // Above heap_region_containing may return NULL as we always scan claim
2298     // until the end of the heap. In this case, just jump to the next region.
2299     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2300 
2301     // Is the gap between reading the finger and doing the CAS too long?
2302     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2303     if (res == finger && curr_region != NULL) {
2304       // we succeeded
2305       HeapWord*   bottom        = curr_region->bottom();
2306       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2307 
2308       // notice that _finger == end cannot be guaranteed here since,
2309       // someone else might have moved the finger even further
2310       assert(_finger >= end, "the finger should have moved forward");
2311 
2312       if (limit > bottom) {
2313         return curr_region;
2314       } else {
2315         assert(limit == bottom,
2316                "the region limit should be at bottom");
2317         // we return NULL and the caller should try calling
2318         // claim_region() again.
2319         return NULL;
2320       }
2321     } else {
2322       assert(_finger > finger, "the finger should have moved forward");
2323       // read it again
2324       finger = _finger;
2325     }
2326   }
2327 
2328   return NULL;
2329 }
2330 
2331 #ifndef PRODUCT
2332 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
2333 private:
2334   G1CollectedHeap* _g1h;
2335   const char* _phase;
2336   int _info;
2337 
2338 public:
2339   VerifyNoCSetOops(const char* phase, int info = -1) :
2340     _g1h(G1CollectedHeap::heap()),
2341     _phase(phase),
2342     _info(info)
2343   { }
2344 
2345   void operator()(oop obj) const {
2346     guarantee(obj->is_oop(),
2347               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
2348               p2i(obj), _phase, _info);
2349     guarantee(!_g1h->obj_in_cs(obj),
2350               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
2351               p2i(obj), _phase, _info);
2352   }
2353 };
2354 
2355 void G1ConcurrentMark::verify_no_cset_oops() {
2356   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2357   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
2358     return;
2359   }
2360 
2361   // Verify entries on the global mark stack
2362   _markStack.iterate(VerifyNoCSetOops("Stack"));
2363 
2364   // Verify entries on the task queues
2365   for (uint i = 0; i < _max_worker_id; ++i) {
2366     G1CMTaskQueue* queue = _task_queues->queue(i);
2367     queue->iterate(VerifyNoCSetOops("Queue", i));
2368   }
2369 
2370   // Verify the global finger
2371   HeapWord* global_finger = finger();
2372   if (global_finger != NULL && global_finger < _heap_end) {
2373     // Since we always iterate over all regions, we might get a NULL HeapRegion
2374     // here.
2375     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
2376     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
2377               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
2378               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
2379   }
2380 
2381   // Verify the task fingers
2382   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
2383   for (uint i = 0; i < parallel_marking_threads(); ++i) {
2384     G1CMTask* task = _tasks[i];
2385     HeapWord* task_finger = task->finger();
2386     if (task_finger != NULL && task_finger < _heap_end) {
2387       // See above note on the global finger verification.
2388       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
2389       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
2390                 !task_hr->in_collection_set(),
2391                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
2392                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
2393     }
2394   }
2395 }
2396 #endif // PRODUCT
2397 
2398 // Aggregate the counting data that was constructed concurrently
2399 // with marking.
2400 class AggregateCountDataHRClosure: public HeapRegionClosure {
2401   G1CollectedHeap* _g1h;
2402   G1ConcurrentMark* _cm;
2403   CardTableModRefBS* _ct_bs;
2404   BitMap* _cm_card_bm;
2405   uint _max_worker_id;
2406 
2407  public:
2408   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
2409                               BitMap* cm_card_bm,
2410                               uint max_worker_id) :
2411     _g1h(g1h), _cm(g1h->concurrent_mark()),
2412     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
2413     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
2414 
2415   bool doHeapRegion(HeapRegion* hr) {
2416     HeapWord* start = hr->bottom();
2417     HeapWord* limit = hr->next_top_at_mark_start();
2418     HeapWord* end = hr->end();
2419 
2420     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
2421            "Preconditions not met - "
2422            "start: " PTR_FORMAT ", limit: " PTR_FORMAT ", "
2423            "top: " PTR_FORMAT ", end: " PTR_FORMAT,
2424            p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end()));
2425 
2426     assert(hr->next_marked_bytes() == 0, "Precondition");
2427 
2428     if (start == limit) {
2429       // NTAMS of this region has not been set so nothing to do.
2430       return false;
2431     }
2432 
2433     // 'start' should be in the heap.
2434     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
2435     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
2436     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
2437 
2438     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
2439     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
2440     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
2441 
2442     // If ntams is not card aligned then we bump card bitmap index
2443     // for limit so that we get the all the cards spanned by
2444     // the object ending at ntams.
2445     // Note: if this is the last region in the heap then ntams
2446     // could be actually just beyond the end of the the heap;
2447     // limit_idx will then  correspond to a (non-existent) card
2448     // that is also outside the heap.
2449     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
2450       limit_idx += 1;
2451     }
2452 
2453     assert(limit_idx <= end_idx, "or else use atomics");
2454 
2455     // Aggregate the "stripe" in the count data associated with hr.
2456     uint hrm_index = hr->hrm_index();
2457     size_t marked_bytes = 0;
2458 
2459     for (uint i = 0; i < _max_worker_id; i += 1) {
2460       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
2461       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
2462 
2463       // Fetch the marked_bytes in this region for task i and
2464       // add it to the running total for this region.
2465       marked_bytes += marked_bytes_array[hrm_index];
2466 
2467       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
2468       // into the global card bitmap.
2469       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
2470 
2471       while (scan_idx < limit_idx) {
2472         assert(task_card_bm->at(scan_idx) == true, "should be");
2473         _cm_card_bm->set_bit(scan_idx);
2474         assert(_cm_card_bm->at(scan_idx) == true, "should be");
2475 
2476         // BitMap::get_next_one_offset() can handle the case when
2477         // its left_offset parameter is greater than its right_offset
2478         // parameter. It does, however, have an early exit if
2479         // left_offset == right_offset. So let's limit the value
2480         // passed in for left offset here.
2481         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
2482         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
2483       }
2484     }
2485 
2486     // Update the marked bytes for this region.
2487     hr->add_to_marked_bytes(marked_bytes);
2488 
2489     // Next heap region
2490     return false;
2491   }
2492 };
2493 
2494 class G1AggregateCountDataTask: public AbstractGangTask {
2495 protected:
2496   G1CollectedHeap* _g1h;
2497   G1ConcurrentMark* _cm;
2498   BitMap* _cm_card_bm;
2499   uint _max_worker_id;
2500   uint _active_workers;
2501   HeapRegionClaimer _hrclaimer;
2502 
2503 public:
2504   G1AggregateCountDataTask(G1CollectedHeap* g1h,
2505                            G1ConcurrentMark* cm,
2506                            BitMap* cm_card_bm,
2507                            uint max_worker_id,
2508                            uint n_workers) :
2509       AbstractGangTask("Count Aggregation"),
2510       _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
2511       _max_worker_id(max_worker_id),
2512       _active_workers(n_workers),
2513       _hrclaimer(_active_workers) {
2514   }
2515 
2516   void work(uint worker_id) {
2517     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
2518 
2519     _g1h->heap_region_par_iterate(&cl, worker_id, &_hrclaimer);
2520   }
2521 };
2522 
2523 
2524 void G1ConcurrentMark::aggregate_count_data() {
2525   uint n_workers = _g1h->workers()->active_workers();
2526 
2527   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
2528                                            _max_worker_id, n_workers);
2529 
2530   _g1h->workers()->run_task(&g1_par_agg_task);
2531 }
2532 
2533 // Clear the per-worker arrays used to store the per-region counting data
2534 void G1ConcurrentMark::clear_all_count_data() {
2535   // Clear the global card bitmap - it will be filled during
2536   // liveness count aggregation (during remark) and the
2537   // final counting task.
2538   _card_bm.clear();
2539 
2540   // Clear the global region bitmap - it will be filled as part
2541   // of the final counting task.
2542   _region_bm.clear();
2543 
2544   uint max_regions = _g1h->max_regions();
2545   assert(_max_worker_id > 0, "uninitialized");
2546 
2547   for (uint i = 0; i < _max_worker_id; i += 1) {
2548     BitMap* task_card_bm = count_card_bitmap_for(i);
2549     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
2550 
2551     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
2552     assert(marked_bytes_array != NULL, "uninitialized");
2553 
2554     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
2555     task_card_bm->clear();
2556   }
2557 }
2558 
2559 void G1ConcurrentMark::print_stats() {
2560   if (!log_is_enabled(Debug, gc, stats)) {
2561     return;
2562   }
2563   log_debug(gc, stats)("---------------------------------------------------------------------");
2564   for (size_t i = 0; i < _active_tasks; ++i) {
2565     _tasks[i]->print_stats();
2566     log_debug(gc, stats)("---------------------------------------------------------------------");
2567   }
2568 }
2569 
2570 // abandon current marking iteration due to a Full GC
2571 void G1ConcurrentMark::abort() {
2572   if (!cmThread()->during_cycle() || _has_aborted) {
2573     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2574     return;
2575   }
2576 
2577   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2578   // concurrent bitmap clearing.
2579   _nextMarkBitMap->clearAll();
2580 
2581   // Note we cannot clear the previous marking bitmap here
2582   // since VerifyDuringGC verifies the objects marked during
2583   // a full GC against the previous bitmap.
2584 
2585   // Clear the liveness counting data
2586   clear_all_count_data();
2587   // Empty mark stack
2588   reset_marking_state();
2589   for (uint i = 0; i < _max_worker_id; ++i) {
2590     _tasks[i]->clear_region_fields();
2591   }
2592   _first_overflow_barrier_sync.abort();
2593   _second_overflow_barrier_sync.abort();
2594   _has_aborted = true;
2595 
2596   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2597   satb_mq_set.abandon_partial_marking();
2598   // This can be called either during or outside marking, we'll read
2599   // the expected_active value from the SATB queue set.
2600   satb_mq_set.set_active_all_threads(
2601                                  false, /* new active value */
2602                                  satb_mq_set.is_active() /* expected_active */);
2603 
2604   _g1h->trace_heap_after_concurrent_cycle();
2605 
2606   // Close any open concurrent phase timing
2607   register_concurrent_phase_end();
2608 
2609   _g1h->register_concurrent_cycle_end();
2610 }
2611 
2612 static void print_ms_time_info(const char* prefix, const char* name,
2613                                NumberSeq& ns) {
2614   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2615                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2616   if (ns.num() > 0) {
2617     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2618                            prefix, ns.sd(), ns.maximum());
2619   }
2620 }
2621 
2622 void G1ConcurrentMark::print_summary_info() {
2623   LogHandle(gc, marking) log;
2624   if (!log.is_trace()) {
2625     return;
2626   }
2627 
2628   log.trace(" Concurrent marking:");
2629   print_ms_time_info("  ", "init marks", _init_times);
2630   print_ms_time_info("  ", "remarks", _remark_times);
2631   {
2632     print_ms_time_info("     ", "final marks", _remark_mark_times);
2633     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2634 
2635   }
2636   print_ms_time_info("  ", "cleanups", _cleanup_times);
2637   log.trace("    Final counting total time = %8.2f s (avg = %8.2f ms).",
2638             _total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2639   if (G1ScrubRemSets) {
2640     log.trace("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2641               _total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2642   }
2643   log.trace("  Total stop_world time = %8.2f s.",
2644             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2645   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2646             cmThread()->vtime_accum(), cmThread()->vtime_mark_accum());
2647 }
2648 
2649 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2650   _parallel_workers->print_worker_threads_on(st);
2651 }
2652 
2653 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2654   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2655       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
2656   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
2657   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
2658 }
2659 
2660 // We take a break if someone is trying to stop the world.
2661 bool G1ConcurrentMark::do_yield_check(uint worker_id) {
2662   if (SuspendibleThreadSet::should_yield()) {
2663     SuspendibleThreadSet::yield();
2664     return true;
2665   } else {
2666     return false;
2667   }
2668 }
2669 
2670 // Closure for iteration over bitmaps
2671 class G1CMBitMapClosure : public BitMapClosure {
2672 private:
2673   // the bitmap that is being iterated over
2674   G1CMBitMap*                 _nextMarkBitMap;
2675   G1ConcurrentMark*           _cm;
2676   G1CMTask*                   _task;
2677 
2678 public:
2679   G1CMBitMapClosure(G1CMTask *task, G1ConcurrentMark* cm, G1CMBitMap* nextMarkBitMap) :
2680     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
2681 
2682   bool do_bit(size_t offset) {
2683     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
2684     assert(_nextMarkBitMap->isMarked(addr), "invariant");
2685     assert( addr < _cm->finger(), "invariant");
2686     assert(addr >= _task->finger(), "invariant");
2687 
2688     // We move that task's local finger along.
2689     _task->move_finger_to(addr);
2690 
2691     _task->scan_object(oop(addr));
2692     // we only partially drain the local queue and global stack
2693     _task->drain_local_queue(true);
2694     _task->drain_global_stack(true);
2695 
2696     // if the has_aborted flag has been raised, we need to bail out of
2697     // the iteration
2698     return !_task->has_aborted();
2699   }
2700 };
2701 
2702 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2703   ReferenceProcessor* result = g1h->ref_processor_cm();
2704   assert(result != NULL, "CM reference processor should not be NULL");
2705   return result;
2706 }
2707 
2708 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2709                                G1ConcurrentMark* cm,
2710                                G1CMTask* task)
2711   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2712     _g1h(g1h), _cm(cm), _task(task)
2713 { }
2714 
2715 void G1CMTask::setup_for_region(HeapRegion* hr) {
2716   assert(hr != NULL,
2717         "claim_region() should have filtered out NULL regions");
2718   _curr_region  = hr;
2719   _finger       = hr->bottom();
2720   update_region_limit();
2721 }
2722 
2723 void G1CMTask::update_region_limit() {
2724   HeapRegion* hr            = _curr_region;
2725   HeapWord* bottom          = hr->bottom();
2726   HeapWord* limit           = hr->next_top_at_mark_start();
2727 
2728   if (limit == bottom) {
2729     // The region was collected underneath our feet.
2730     // We set the finger to bottom to ensure that the bitmap
2731     // iteration that will follow this will not do anything.
2732     // (this is not a condition that holds when we set the region up,
2733     // as the region is not supposed to be empty in the first place)
2734     _finger = bottom;
2735   } else if (limit >= _region_limit) {
2736     assert(limit >= _finger, "peace of mind");
2737   } else {
2738     assert(limit < _region_limit, "only way to get here");
2739     // This can happen under some pretty unusual circumstances.  An
2740     // evacuation pause empties the region underneath our feet (NTAMS
2741     // at bottom). We then do some allocation in the region (NTAMS
2742     // stays at bottom), followed by the region being used as a GC
2743     // alloc region (NTAMS will move to top() and the objects
2744     // originally below it will be grayed). All objects now marked in
2745     // the region are explicitly grayed, if below the global finger,
2746     // and we do not need in fact to scan anything else. So, we simply
2747     // set _finger to be limit to ensure that the bitmap iteration
2748     // doesn't do anything.
2749     _finger = limit;
2750   }
2751 
2752   _region_limit = limit;
2753 }
2754 
2755 void G1CMTask::giveup_current_region() {
2756   assert(_curr_region != NULL, "invariant");
2757   clear_region_fields();
2758 }
2759 
2760 void G1CMTask::clear_region_fields() {
2761   // Values for these three fields that indicate that we're not
2762   // holding on to a region.
2763   _curr_region   = NULL;
2764   _finger        = NULL;
2765   _region_limit  = NULL;
2766 }
2767 
2768 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2769   if (cm_oop_closure == NULL) {
2770     assert(_cm_oop_closure != NULL, "invariant");
2771   } else {
2772     assert(_cm_oop_closure == NULL, "invariant");
2773   }
2774   _cm_oop_closure = cm_oop_closure;
2775 }
2776 
2777 void G1CMTask::reset(G1CMBitMap* nextMarkBitMap) {
2778   guarantee(nextMarkBitMap != NULL, "invariant");
2779   _nextMarkBitMap                = nextMarkBitMap;
2780   clear_region_fields();
2781 
2782   _calls                         = 0;
2783   _elapsed_time_ms               = 0.0;
2784   _termination_time_ms           = 0.0;
2785   _termination_start_time_ms     = 0.0;
2786 }
2787 
2788 bool G1CMTask::should_exit_termination() {
2789   regular_clock_call();
2790   // This is called when we are in the termination protocol. We should
2791   // quit if, for some reason, this task wants to abort or the global
2792   // stack is not empty (this means that we can get work from it).
2793   return !_cm->mark_stack_empty() || has_aborted();
2794 }
2795 
2796 void G1CMTask::reached_limit() {
2797   assert(_words_scanned >= _words_scanned_limit ||
2798          _refs_reached >= _refs_reached_limit ,
2799          "shouldn't have been called otherwise");
2800   regular_clock_call();
2801 }
2802 
2803 void G1CMTask::regular_clock_call() {
2804   if (has_aborted()) return;
2805 
2806   // First, we need to recalculate the words scanned and refs reached
2807   // limits for the next clock call.
2808   recalculate_limits();
2809 
2810   // During the regular clock call we do the following
2811 
2812   // (1) If an overflow has been flagged, then we abort.
2813   if (_cm->has_overflown()) {
2814     set_has_aborted();
2815     return;
2816   }
2817 
2818   // If we are not concurrent (i.e. we're doing remark) we don't need
2819   // to check anything else. The other steps are only needed during
2820   // the concurrent marking phase.
2821   if (!concurrent()) return;
2822 
2823   // (2) If marking has been aborted for Full GC, then we also abort.
2824   if (_cm->has_aborted()) {
2825     set_has_aborted();
2826     return;
2827   }
2828 
2829   double curr_time_ms = os::elapsedVTime() * 1000.0;
2830 
2831   // (4) We check whether we should yield. If we have to, then we abort.
2832   if (SuspendibleThreadSet::should_yield()) {
2833     // We should yield. To do this we abort the task. The caller is
2834     // responsible for yielding.
2835     set_has_aborted();
2836     return;
2837   }
2838 
2839   // (5) We check whether we've reached our time quota. If we have,
2840   // then we abort.
2841   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2842   if (elapsed_time_ms > _time_target_ms) {
2843     set_has_aborted();
2844     _has_timed_out = true;
2845     return;
2846   }
2847 
2848   // (6) Finally, we check whether there are enough completed STAB
2849   // buffers available for processing. If there are, we abort.
2850   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2851   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2852     // we do need to process SATB buffers, we'll abort and restart
2853     // the marking task to do so
2854     set_has_aborted();
2855     return;
2856   }
2857 }
2858 
2859 void G1CMTask::recalculate_limits() {
2860   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2861   _words_scanned_limit      = _real_words_scanned_limit;
2862 
2863   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2864   _refs_reached_limit       = _real_refs_reached_limit;
2865 }
2866 
2867 void G1CMTask::decrease_limits() {
2868   // This is called when we believe that we're going to do an infrequent
2869   // operation which will increase the per byte scanned cost (i.e. move
2870   // entries to/from the global stack). It basically tries to decrease the
2871   // scanning limit so that the clock is called earlier.
2872 
2873   _words_scanned_limit = _real_words_scanned_limit -
2874     3 * words_scanned_period / 4;
2875   _refs_reached_limit  = _real_refs_reached_limit -
2876     3 * refs_reached_period / 4;
2877 }
2878 
2879 void G1CMTask::move_entries_to_global_stack() {
2880   // local array where we'll store the entries that will be popped
2881   // from the local queue
2882   oop buffer[global_stack_transfer_size];
2883 
2884   int n = 0;
2885   oop obj;
2886   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
2887     buffer[n] = obj;
2888     ++n;
2889   }
2890 
2891   if (n > 0) {
2892     // we popped at least one entry from the local queue
2893 
2894     if (!_cm->mark_stack_push(buffer, n)) {
2895       set_has_aborted();
2896     }
2897   }
2898 
2899   // this operation was quite expensive, so decrease the limits
2900   decrease_limits();
2901 }
2902 
2903 void G1CMTask::get_entries_from_global_stack() {
2904   // local array where we'll store the entries that will be popped
2905   // from the global stack.
2906   oop buffer[global_stack_transfer_size];
2907   int n;
2908   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
2909   assert(n <= global_stack_transfer_size,
2910          "we should not pop more than the given limit");
2911   if (n > 0) {
2912     // yes, we did actually pop at least one entry
2913     for (int i = 0; i < n; ++i) {
2914       bool success = _task_queue->push(buffer[i]);
2915       // We only call this when the local queue is empty or under a
2916       // given target limit. So, we do not expect this push to fail.
2917       assert(success, "invariant");
2918     }
2919   }
2920 
2921   // this operation was quite expensive, so decrease the limits
2922   decrease_limits();
2923 }
2924 
2925 void G1CMTask::drain_local_queue(bool partially) {
2926   if (has_aborted()) return;
2927 
2928   // Decide what the target size is, depending whether we're going to
2929   // drain it partially (so that other tasks can steal if they run out
2930   // of things to do) or totally (at the very end).
2931   size_t target_size;
2932   if (partially) {
2933     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2934   } else {
2935     target_size = 0;
2936   }
2937 
2938   if (_task_queue->size() > target_size) {
2939     oop obj;
2940     bool ret = _task_queue->pop_local(obj);
2941     while (ret) {
2942       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
2943       assert(!_g1h->is_on_master_free_list(
2944                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
2945 
2946       scan_object(obj);
2947 
2948       if (_task_queue->size() <= target_size || has_aborted()) {
2949         ret = false;
2950       } else {
2951         ret = _task_queue->pop_local(obj);
2952       }
2953     }
2954   }
2955 }
2956 
2957 void G1CMTask::drain_global_stack(bool partially) {
2958   if (has_aborted()) return;
2959 
2960   // We have a policy to drain the local queue before we attempt to
2961   // drain the global stack.
2962   assert(partially || _task_queue->size() == 0, "invariant");
2963 
2964   // Decide what the target size is, depending whether we're going to
2965   // drain it partially (so that other tasks can steal if they run out
2966   // of things to do) or totally (at the very end).  Notice that,
2967   // because we move entries from the global stack in chunks or
2968   // because another task might be doing the same, we might in fact
2969   // drop below the target. But, this is not a problem.
2970   size_t target_size;
2971   if (partially) {
2972     target_size = _cm->partial_mark_stack_size_target();
2973   } else {
2974     target_size = 0;
2975   }
2976 
2977   if (_cm->mark_stack_size() > target_size) {
2978     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2979       get_entries_from_global_stack();
2980       drain_local_queue(partially);
2981     }
2982   }
2983 }
2984 
2985 // SATB Queue has several assumptions on whether to call the par or
2986 // non-par versions of the methods. this is why some of the code is
2987 // replicated. We should really get rid of the single-threaded version
2988 // of the code to simplify things.
2989 void G1CMTask::drain_satb_buffers() {
2990   if (has_aborted()) return;
2991 
2992   // We set this so that the regular clock knows that we're in the
2993   // middle of draining buffers and doesn't set the abort flag when it
2994   // notices that SATB buffers are available for draining. It'd be
2995   // very counter productive if it did that. :-)
2996   _draining_satb_buffers = true;
2997 
2998   G1CMSATBBufferClosure satb_cl(this, _g1h);
2999   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3000 
3001   // This keeps claiming and applying the closure to completed buffers
3002   // until we run out of buffers or we need to abort.
3003   while (!has_aborted() &&
3004          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
3005     regular_clock_call();
3006   }
3007 
3008   _draining_satb_buffers = false;
3009 
3010   assert(has_aborted() ||
3011          concurrent() ||
3012          satb_mq_set.completed_buffers_num() == 0, "invariant");
3013 
3014   // again, this was a potentially expensive operation, decrease the
3015   // limits to get the regular clock call early
3016   decrease_limits();
3017 }
3018 
3019 void G1CMTask::print_stats() {
3020   log_debug(gc, stats)("Marking Stats, task = %u, calls = %d",
3021                        _worker_id, _calls);
3022   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3023                        _elapsed_time_ms, _termination_time_ms);
3024   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3025                        _step_times_ms.num(), _step_times_ms.avg(),
3026                        _step_times_ms.sd());
3027   log_debug(gc, stats)("                    max = %1.2lfms, total = %1.2lfms",
3028                        _step_times_ms.maximum(), _step_times_ms.sum());
3029 }
3030 
3031 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, oop& obj) {
3032   return _task_queues->steal(worker_id, hash_seed, obj);
3033 }
3034 
3035 /*****************************************************************************
3036 
3037     The do_marking_step(time_target_ms, ...) method is the building
3038     block of the parallel marking framework. It can be called in parallel
3039     with other invocations of do_marking_step() on different tasks
3040     (but only one per task, obviously) and concurrently with the
3041     mutator threads, or during remark, hence it eliminates the need
3042     for two versions of the code. When called during remark, it will
3043     pick up from where the task left off during the concurrent marking
3044     phase. Interestingly, tasks are also claimable during evacuation
3045     pauses too, since do_marking_step() ensures that it aborts before
3046     it needs to yield.
3047 
3048     The data structures that it uses to do marking work are the
3049     following:
3050 
3051       (1) Marking Bitmap. If there are gray objects that appear only
3052       on the bitmap (this happens either when dealing with an overflow
3053       or when the initial marking phase has simply marked the roots
3054       and didn't push them on the stack), then tasks claim heap
3055       regions whose bitmap they then scan to find gray objects. A
3056       global finger indicates where the end of the last claimed region
3057       is. A local finger indicates how far into the region a task has
3058       scanned. The two fingers are used to determine how to gray an
3059       object (i.e. whether simply marking it is OK, as it will be
3060       visited by a task in the future, or whether it needs to be also
3061       pushed on a stack).
3062 
3063       (2) Local Queue. The local queue of the task which is accessed
3064       reasonably efficiently by the task. Other tasks can steal from
3065       it when they run out of work. Throughout the marking phase, a
3066       task attempts to keep its local queue short but not totally
3067       empty, so that entries are available for stealing by other
3068       tasks. Only when there is no more work, a task will totally
3069       drain its local queue.
3070 
3071       (3) Global Mark Stack. This handles local queue overflow. During
3072       marking only sets of entries are moved between it and the local
3073       queues, as access to it requires a mutex and more fine-grain
3074       interaction with it which might cause contention. If it
3075       overflows, then the marking phase should restart and iterate
3076       over the bitmap to identify gray objects. Throughout the marking
3077       phase, tasks attempt to keep the global mark stack at a small
3078       length but not totally empty, so that entries are available for
3079       popping by other tasks. Only when there is no more work, tasks
3080       will totally drain the global mark stack.
3081 
3082       (4) SATB Buffer Queue. This is where completed SATB buffers are
3083       made available. Buffers are regularly removed from this queue
3084       and scanned for roots, so that the queue doesn't get too
3085       long. During remark, all completed buffers are processed, as
3086       well as the filled in parts of any uncompleted buffers.
3087 
3088     The do_marking_step() method tries to abort when the time target
3089     has been reached. There are a few other cases when the
3090     do_marking_step() method also aborts:
3091 
3092       (1) When the marking phase has been aborted (after a Full GC).
3093 
3094       (2) When a global overflow (on the global stack) has been
3095       triggered. Before the task aborts, it will actually sync up with
3096       the other tasks to ensure that all the marking data structures
3097       (local queues, stacks, fingers etc.)  are re-initialized so that
3098       when do_marking_step() completes, the marking phase can
3099       immediately restart.
3100 
3101       (3) When enough completed SATB buffers are available. The
3102       do_marking_step() method only tries to drain SATB buffers right
3103       at the beginning. So, if enough buffers are available, the
3104       marking step aborts and the SATB buffers are processed at
3105       the beginning of the next invocation.
3106 
3107       (4) To yield. when we have to yield then we abort and yield
3108       right at the end of do_marking_step(). This saves us from a lot
3109       of hassle as, by yielding we might allow a Full GC. If this
3110       happens then objects will be compacted underneath our feet, the
3111       heap might shrink, etc. We save checking for this by just
3112       aborting and doing the yield right at the end.
3113 
3114     From the above it follows that the do_marking_step() method should
3115     be called in a loop (or, otherwise, regularly) until it completes.
3116 
3117     If a marking step completes without its has_aborted() flag being
3118     true, it means it has completed the current marking phase (and
3119     also all other marking tasks have done so and have all synced up).
3120 
3121     A method called regular_clock_call() is invoked "regularly" (in
3122     sub ms intervals) throughout marking. It is this clock method that
3123     checks all the abort conditions which were mentioned above and
3124     decides when the task should abort. A work-based scheme is used to
3125     trigger this clock method: when the number of object words the
3126     marking phase has scanned or the number of references the marking
3127     phase has visited reach a given limit. Additional invocations to
3128     the method clock have been planted in a few other strategic places
3129     too. The initial reason for the clock method was to avoid calling
3130     vtime too regularly, as it is quite expensive. So, once it was in
3131     place, it was natural to piggy-back all the other conditions on it
3132     too and not constantly check them throughout the code.
3133 
3134     If do_termination is true then do_marking_step will enter its
3135     termination protocol.
3136 
3137     The value of is_serial must be true when do_marking_step is being
3138     called serially (i.e. by the VMThread) and do_marking_step should
3139     skip any synchronization in the termination and overflow code.
3140     Examples include the serial remark code and the serial reference
3141     processing closures.
3142 
3143     The value of is_serial must be false when do_marking_step is
3144     being called by any of the worker threads in a work gang.
3145     Examples include the concurrent marking code (CMMarkingTask),
3146     the MT remark code, and the MT reference processing closures.
3147 
3148  *****************************************************************************/
3149 
3150 void G1CMTask::do_marking_step(double time_target_ms,
3151                                bool do_termination,
3152                                bool is_serial) {
3153   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
3154   assert(concurrent() == _cm->concurrent(), "they should be the same");
3155 
3156   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
3157   assert(_task_queues != NULL, "invariant");
3158   assert(_task_queue != NULL, "invariant");
3159   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
3160 
3161   assert(!_claimed,
3162          "only one thread should claim this task at any one time");
3163 
3164   // OK, this doesn't safeguard again all possible scenarios, as it is
3165   // possible for two threads to set the _claimed flag at the same
3166   // time. But it is only for debugging purposes anyway and it will
3167   // catch most problems.
3168   _claimed = true;
3169 
3170   _start_time_ms = os::elapsedVTime() * 1000.0;
3171 
3172   // If do_stealing is true then do_marking_step will attempt to
3173   // steal work from the other G1CMTasks. It only makes sense to
3174   // enable stealing when the termination protocol is enabled
3175   // and do_marking_step() is not being called serially.
3176   bool do_stealing = do_termination && !is_serial;
3177 
3178   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
3179   _time_target_ms = time_target_ms - diff_prediction_ms;
3180 
3181   // set up the variables that are used in the work-based scheme to
3182   // call the regular clock method
3183   _words_scanned = 0;
3184   _refs_reached  = 0;
3185   recalculate_limits();
3186 
3187   // clear all flags
3188   clear_has_aborted();
3189   _has_timed_out = false;
3190   _draining_satb_buffers = false;
3191 
3192   ++_calls;
3193 
3194   // Set up the bitmap and oop closures. Anything that uses them is
3195   // eventually called from this method, so it is OK to allocate these
3196   // statically.
3197   G1CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
3198   G1CMOopClosure    cm_oop_closure(_g1h, _cm, this);
3199   set_cm_oop_closure(&cm_oop_closure);
3200 
3201   if (_cm->has_overflown()) {
3202     // This can happen if the mark stack overflows during a GC pause
3203     // and this task, after a yield point, restarts. We have to abort
3204     // as we need to get into the overflow protocol which happens
3205     // right at the end of this task.
3206     set_has_aborted();
3207   }
3208 
3209   // First drain any available SATB buffers. After this, we will not
3210   // look at SATB buffers before the next invocation of this method.
3211   // If enough completed SATB buffers are queued up, the regular clock
3212   // will abort this task so that it restarts.
3213   drain_satb_buffers();
3214   // ...then partially drain the local queue and the global stack
3215   drain_local_queue(true);
3216   drain_global_stack(true);
3217 
3218   do {
3219     if (!has_aborted() && _curr_region != NULL) {
3220       // This means that we're already holding on to a region.
3221       assert(_finger != NULL, "if region is not NULL, then the finger "
3222              "should not be NULL either");
3223 
3224       // We might have restarted this task after an evacuation pause
3225       // which might have evacuated the region we're holding on to
3226       // underneath our feet. Let's read its limit again to make sure
3227       // that we do not iterate over a region of the heap that
3228       // contains garbage (update_region_limit() will also move
3229       // _finger to the start of the region if it is found empty).
3230       update_region_limit();
3231       // We will start from _finger not from the start of the region,
3232       // as we might be restarting this task after aborting half-way
3233       // through scanning this region. In this case, _finger points to
3234       // the address where we last found a marked object. If this is a
3235       // fresh region, _finger points to start().
3236       MemRegion mr = MemRegion(_finger, _region_limit);
3237 
3238       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
3239              "humongous regions should go around loop once only");
3240 
3241       // Some special cases:
3242       // If the memory region is empty, we can just give up the region.
3243       // If the current region is humongous then we only need to check
3244       // the bitmap for the bit associated with the start of the object,
3245       // scan the object if it's live, and give up the region.
3246       // Otherwise, let's iterate over the bitmap of the part of the region
3247       // that is left.
3248       // If the iteration is successful, give up the region.
3249       if (mr.is_empty()) {
3250         giveup_current_region();
3251         regular_clock_call();
3252       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
3253         if (_nextMarkBitMap->isMarked(mr.start())) {
3254           // The object is marked - apply the closure
3255           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
3256           bitmap_closure.do_bit(offset);
3257         }
3258         // Even if this task aborted while scanning the humongous object
3259         // we can (and should) give up the current region.
3260         giveup_current_region();
3261         regular_clock_call();
3262       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
3263         giveup_current_region();
3264         regular_clock_call();
3265       } else {
3266         assert(has_aborted(), "currently the only way to do so");
3267         // The only way to abort the bitmap iteration is to return
3268         // false from the do_bit() method. However, inside the
3269         // do_bit() method we move the _finger to point to the
3270         // object currently being looked at. So, if we bail out, we
3271         // have definitely set _finger to something non-null.
3272         assert(_finger != NULL, "invariant");
3273 
3274         // Region iteration was actually aborted. So now _finger
3275         // points to the address of the object we last scanned. If we
3276         // leave it there, when we restart this task, we will rescan
3277         // the object. It is easy to avoid this. We move the finger by
3278         // enough to point to the next possible object header (the
3279         // bitmap knows by how much we need to move it as it knows its
3280         // granularity).
3281         assert(_finger < _region_limit, "invariant");
3282         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
3283         // Check if bitmap iteration was aborted while scanning the last object
3284         if (new_finger >= _region_limit) {
3285           giveup_current_region();
3286         } else {
3287           move_finger_to(new_finger);
3288         }
3289       }
3290     }
3291     // At this point we have either completed iterating over the
3292     // region we were holding on to, or we have aborted.
3293 
3294     // We then partially drain the local queue and the global stack.
3295     // (Do we really need this?)
3296     drain_local_queue(true);
3297     drain_global_stack(true);
3298 
3299     // Read the note on the claim_region() method on why it might
3300     // return NULL with potentially more regions available for
3301     // claiming and why we have to check out_of_regions() to determine
3302     // whether we're done or not.
3303     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
3304       // We are going to try to claim a new region. We should have
3305       // given up on the previous one.
3306       // Separated the asserts so that we know which one fires.
3307       assert(_curr_region  == NULL, "invariant");
3308       assert(_finger       == NULL, "invariant");
3309       assert(_region_limit == NULL, "invariant");
3310       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
3311       if (claimed_region != NULL) {
3312         // Yes, we managed to claim one
3313         setup_for_region(claimed_region);
3314         assert(_curr_region == claimed_region, "invariant");
3315       }
3316       // It is important to call the regular clock here. It might take
3317       // a while to claim a region if, for example, we hit a large
3318       // block of empty regions. So we need to call the regular clock
3319       // method once round the loop to make sure it's called
3320       // frequently enough.
3321       regular_clock_call();
3322     }
3323 
3324     if (!has_aborted() && _curr_region == NULL) {
3325       assert(_cm->out_of_regions(),
3326              "at this point we should be out of regions");
3327     }
3328   } while ( _curr_region != NULL && !has_aborted());
3329 
3330   if (!has_aborted()) {
3331     // We cannot check whether the global stack is empty, since other
3332     // tasks might be pushing objects to it concurrently.
3333     assert(_cm->out_of_regions(),
3334            "at this point we should be out of regions");
3335     // Try to reduce the number of available SATB buffers so that
3336     // remark has less work to do.
3337     drain_satb_buffers();
3338   }
3339 
3340   // Since we've done everything else, we can now totally drain the
3341   // local queue and global stack.
3342   drain_local_queue(false);
3343   drain_global_stack(false);
3344 
3345   // Attempt at work stealing from other task's queues.
3346   if (do_stealing && !has_aborted()) {
3347     // We have not aborted. This means that we have finished all that
3348     // we could. Let's try to do some stealing...
3349 
3350     // We cannot check whether the global stack is empty, since other
3351     // tasks might be pushing objects to it concurrently.
3352     assert(_cm->out_of_regions() && _task_queue->size() == 0,
3353            "only way to reach here");
3354     while (!has_aborted()) {
3355       oop obj;
3356       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
3357         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
3358                "any stolen object should be marked");
3359         scan_object(obj);
3360 
3361         // And since we're towards the end, let's totally drain the
3362         // local queue and global stack.
3363         drain_local_queue(false);
3364         drain_global_stack(false);
3365       } else {
3366         break;
3367       }
3368     }
3369   }
3370 
3371   // We still haven't aborted. Now, let's try to get into the
3372   // termination protocol.
3373   if (do_termination && !has_aborted()) {
3374     // We cannot check whether the global stack is empty, since other
3375     // tasks might be concurrently pushing objects on it.
3376     // Separated the asserts so that we know which one fires.
3377     assert(_cm->out_of_regions(), "only way to reach here");
3378     assert(_task_queue->size() == 0, "only way to reach here");
3379     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
3380 
3381     // The G1CMTask class also extends the TerminatorTerminator class,
3382     // hence its should_exit_termination() method will also decide
3383     // whether to exit the termination protocol or not.
3384     bool finished = (is_serial ||
3385                      _cm->terminator()->offer_termination(this));
3386     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
3387     _termination_time_ms +=
3388       termination_end_time_ms - _termination_start_time_ms;
3389 
3390     if (finished) {
3391       // We're all done.
3392 
3393       if (_worker_id == 0) {
3394         // let's allow task 0 to do this
3395         if (concurrent()) {
3396           assert(_cm->concurrent_marking_in_progress(), "invariant");
3397           // we need to set this to false before the next
3398           // safepoint. This way we ensure that the marking phase
3399           // doesn't observe any more heap expansions.
3400           _cm->clear_concurrent_marking_in_progress();
3401         }
3402       }
3403 
3404       // We can now guarantee that the global stack is empty, since
3405       // all other tasks have finished. We separated the guarantees so
3406       // that, if a condition is false, we can immediately find out
3407       // which one.
3408       guarantee(_cm->out_of_regions(), "only way to reach here");
3409       guarantee(_cm->mark_stack_empty(), "only way to reach here");
3410       guarantee(_task_queue->size() == 0, "only way to reach here");
3411       guarantee(!_cm->has_overflown(), "only way to reach here");
3412       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
3413     } else {
3414       // Apparently there's more work to do. Let's abort this task. It
3415       // will restart it and we can hopefully find more things to do.
3416       set_has_aborted();
3417     }
3418   }
3419 
3420   // Mainly for debugging purposes to make sure that a pointer to the
3421   // closure which was statically allocated in this frame doesn't
3422   // escape it by accident.
3423   set_cm_oop_closure(NULL);
3424   double end_time_ms = os::elapsedVTime() * 1000.0;
3425   double elapsed_time_ms = end_time_ms - _start_time_ms;
3426   // Update the step history.
3427   _step_times_ms.add(elapsed_time_ms);
3428 
3429   if (has_aborted()) {
3430     // The task was aborted for some reason.
3431     if (_has_timed_out) {
3432       double diff_ms = elapsed_time_ms - _time_target_ms;
3433       // Keep statistics of how well we did with respect to hitting
3434       // our target only if we actually timed out (if we aborted for
3435       // other reasons, then the results might get skewed).
3436       _marking_step_diffs_ms.add(diff_ms);
3437     }
3438 
3439     if (_cm->has_overflown()) {
3440       // This is the interesting one. We aborted because a global
3441       // overflow was raised. This means we have to restart the
3442       // marking phase and start iterating over regions. However, in
3443       // order to do this we have to make sure that all tasks stop
3444       // what they are doing and re-initialize in a safe manner. We
3445       // will achieve this with the use of two barrier sync points.
3446 
3447       if (!is_serial) {
3448         // We only need to enter the sync barrier if being called
3449         // from a parallel context
3450         _cm->enter_first_sync_barrier(_worker_id);
3451 
3452         // When we exit this sync barrier we know that all tasks have
3453         // stopped doing marking work. So, it's now safe to
3454         // re-initialize our data structures. At the end of this method,
3455         // task 0 will clear the global data structures.
3456       }
3457 
3458       // We clear the local state of this task...
3459       clear_region_fields();
3460 
3461       if (!is_serial) {
3462         // ...and enter the second barrier.
3463         _cm->enter_second_sync_barrier(_worker_id);
3464       }
3465       // At this point, if we're during the concurrent phase of
3466       // marking, everything has been re-initialized and we're
3467       // ready to restart.
3468     }
3469   }
3470 
3471   _claimed = false;
3472 }
3473 
3474 G1CMTask::G1CMTask(uint worker_id,
3475                    G1ConcurrentMark* cm,
3476                    size_t* marked_bytes,
3477                    BitMap* card_bm,
3478                    G1CMTaskQueue* task_queue,
3479                    G1CMTaskQueueSet* task_queues)
3480   : _g1h(G1CollectedHeap::heap()),
3481     _worker_id(worker_id), _cm(cm),
3482     _claimed(false),
3483     _nextMarkBitMap(NULL), _hash_seed(17),
3484     _task_queue(task_queue),
3485     _task_queues(task_queues),
3486     _cm_oop_closure(NULL),
3487     _marked_bytes_array(marked_bytes),
3488     _card_bm(card_bm) {
3489   guarantee(task_queue != NULL, "invariant");
3490   guarantee(task_queues != NULL, "invariant");
3491 
3492   _marking_step_diffs_ms.add(0.5);
3493 }
3494 
3495 // These are formatting macros that are used below to ensure
3496 // consistent formatting. The *_H_* versions are used to format the
3497 // header for a particular value and they should be kept consistent
3498 // with the corresponding macro. Also note that most of the macros add
3499 // the necessary white space (as a prefix) which makes them a bit
3500 // easier to compose.
3501 
3502 // All the output lines are prefixed with this string to be able to
3503 // identify them easily in a large log file.
3504 #define G1PPRL_LINE_PREFIX            "###"
3505 
3506 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
3507 #ifdef _LP64
3508 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
3509 #else // _LP64
3510 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
3511 #endif // _LP64
3512 
3513 // For per-region info
3514 #define G1PPRL_TYPE_FORMAT            "   %-4s"
3515 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
3516 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
3517 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
3518 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
3519 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
3520 
3521 // For summary info
3522 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
3523 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
3524 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
3525 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
3526 
3527 G1PrintRegionLivenessInfoClosure::
3528 G1PrintRegionLivenessInfoClosure(const char* phase_name)
3529   : _total_used_bytes(0), _total_capacity_bytes(0),
3530     _total_prev_live_bytes(0), _total_next_live_bytes(0),
3531     _hum_used_bytes(0), _hum_capacity_bytes(0),
3532     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
3533     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
3534   G1CollectedHeap* g1h = G1CollectedHeap::heap();
3535   MemRegion g1_reserved = g1h->g1_reserved();
3536   double now = os::elapsedTime();
3537 
3538   // Print the header of the output.
3539   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
3540   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
3541                           G1PPRL_SUM_ADDR_FORMAT("reserved")
3542                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
3543                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
3544                           HeapRegion::GrainBytes);
3545   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3546   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3547                           G1PPRL_TYPE_H_FORMAT
3548                           G1PPRL_ADDR_BASE_H_FORMAT
3549                           G1PPRL_BYTE_H_FORMAT
3550                           G1PPRL_BYTE_H_FORMAT
3551                           G1PPRL_BYTE_H_FORMAT
3552                           G1PPRL_DOUBLE_H_FORMAT
3553                           G1PPRL_BYTE_H_FORMAT
3554                           G1PPRL_BYTE_H_FORMAT,
3555                           "type", "address-range",
3556                           "used", "prev-live", "next-live", "gc-eff",
3557                           "remset", "code-roots");
3558   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3559                           G1PPRL_TYPE_H_FORMAT
3560                           G1PPRL_ADDR_BASE_H_FORMAT
3561                           G1PPRL_BYTE_H_FORMAT
3562                           G1PPRL_BYTE_H_FORMAT
3563                           G1PPRL_BYTE_H_FORMAT
3564                           G1PPRL_DOUBLE_H_FORMAT
3565                           G1PPRL_BYTE_H_FORMAT
3566                           G1PPRL_BYTE_H_FORMAT,
3567                           "", "",
3568                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
3569                           "(bytes)", "(bytes)");
3570 }
3571 
3572 // It takes as a parameter a reference to one of the _hum_* fields, it
3573 // deduces the corresponding value for a region in a humongous region
3574 // series (either the region size, or what's left if the _hum_* field
3575 // is < the region size), and updates the _hum_* field accordingly.
3576 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
3577   size_t bytes = 0;
3578   // The > 0 check is to deal with the prev and next live bytes which
3579   // could be 0.
3580   if (*hum_bytes > 0) {
3581     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
3582     *hum_bytes -= bytes;
3583   }
3584   return bytes;
3585 }
3586 
3587 // It deduces the values for a region in a humongous region series
3588 // from the _hum_* fields and updates those accordingly. It assumes
3589 // that that _hum_* fields have already been set up from the "starts
3590 // humongous" region and we visit the regions in address order.
3591 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
3592                                                      size_t* capacity_bytes,
3593                                                      size_t* prev_live_bytes,
3594                                                      size_t* next_live_bytes) {
3595   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
3596   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
3597   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
3598   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
3599   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
3600 }
3601 
3602 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
3603   const char* type       = r->get_type_str();
3604   HeapWord* bottom       = r->bottom();
3605   HeapWord* end          = r->end();
3606   size_t capacity_bytes  = r->capacity();
3607   size_t used_bytes      = r->used();
3608   size_t prev_live_bytes = r->live_bytes();
3609   size_t next_live_bytes = r->next_live_bytes();
3610   double gc_eff          = r->gc_efficiency();
3611   size_t remset_bytes    = r->rem_set()->mem_size();
3612   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3613 
3614   if (r->is_starts_humongous()) {
3615     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
3616            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
3617            "they should have been zeroed after the last time we used them");
3618     // Set up the _hum_* fields.
3619     _hum_capacity_bytes  = capacity_bytes;
3620     _hum_used_bytes      = used_bytes;
3621     _hum_prev_live_bytes = prev_live_bytes;
3622     _hum_next_live_bytes = next_live_bytes;
3623     get_hum_bytes(&used_bytes, &capacity_bytes,
3624                   &prev_live_bytes, &next_live_bytes);
3625     end = bottom + HeapRegion::GrainWords;
3626   } else if (r->is_continues_humongous()) {
3627     get_hum_bytes(&used_bytes, &capacity_bytes,
3628                   &prev_live_bytes, &next_live_bytes);
3629     assert(end == bottom + HeapRegion::GrainWords, "invariant");
3630   }
3631 
3632   _total_used_bytes      += used_bytes;
3633   _total_capacity_bytes  += capacity_bytes;
3634   _total_prev_live_bytes += prev_live_bytes;
3635   _total_next_live_bytes += next_live_bytes;
3636   _total_remset_bytes    += remset_bytes;
3637   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3638 
3639   // Print a line for this particular region.
3640   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3641                           G1PPRL_TYPE_FORMAT
3642                           G1PPRL_ADDR_BASE_FORMAT
3643                           G1PPRL_BYTE_FORMAT
3644                           G1PPRL_BYTE_FORMAT
3645                           G1PPRL_BYTE_FORMAT
3646                           G1PPRL_DOUBLE_FORMAT
3647                           G1PPRL_BYTE_FORMAT
3648                           G1PPRL_BYTE_FORMAT,
3649                           type, p2i(bottom), p2i(end),
3650                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3651                           remset_bytes, strong_code_roots_bytes);
3652 
3653   return false;
3654 }
3655 
3656 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3657   // add static memory usages to remembered set sizes
3658   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3659   // Print the footer of the output.
3660   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3661   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3662                          " SUMMARY"
3663                          G1PPRL_SUM_MB_FORMAT("capacity")
3664                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3665                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3666                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3667                          G1PPRL_SUM_MB_FORMAT("remset")
3668                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3669                          bytes_to_mb(_total_capacity_bytes),
3670                          bytes_to_mb(_total_used_bytes),
3671                          perc(_total_used_bytes, _total_capacity_bytes),
3672                          bytes_to_mb(_total_prev_live_bytes),
3673                          perc(_total_prev_live_bytes, _total_capacity_bytes),
3674                          bytes_to_mb(_total_next_live_bytes),
3675                          perc(_total_next_live_bytes, _total_capacity_bytes),
3676                          bytes_to_mb(_total_remset_bytes),
3677                          bytes_to_mb(_total_strong_code_roots_bytes));
3678 }