1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "assembler_sparc.inline.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "jvm_linux.h"
  34 #include "memory/allocation.inline.hpp"
  35 #include "mutex_linux.inline.hpp"
  36 #include "nativeInst_sparc.hpp"
  37 #include "os_share_linux.hpp"
  38 #include "prims/jniFastGetField.hpp"
  39 #include "prims/jvm.h"
  40 #include "prims/jvm_misc.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/extendedPC.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/interfaceSupport.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/javaCalls.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/osThread.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "runtime/timer.hpp"
  52 #include "thread_linux.inline.hpp"
  53 #include "utilities/events.hpp"
  54 #include "utilities/vmError.hpp"
  55 
  56 // Linux/Sparc has rather obscure naming of registers in sigcontext
  57 // different between 32 and 64 bits
  58 #ifdef _LP64
  59 #define SIG_PC(x) ((x)->sigc_regs.tpc)
  60 #define SIG_NPC(x) ((x)->sigc_regs.tnpc)
  61 #define SIG_REGS(x) ((x)->sigc_regs)
  62 #else
  63 #define SIG_PC(x) ((x)->si_regs.pc)
  64 #define SIG_NPC(x) ((x)->si_regs.npc)
  65 #define SIG_REGS(x) ((x)->si_regs)
  66 #endif
  67 
  68 // those are to reference registers in sigcontext
  69 enum {
  70   CON_G0 = 0,
  71   CON_G1,
  72   CON_G2,
  73   CON_G3,
  74   CON_G4,
  75   CON_G5,
  76   CON_G6,
  77   CON_G7,
  78   CON_O0,
  79   CON_O1,
  80   CON_O2,
  81   CON_O3,
  82   CON_O4,
  83   CON_O5,
  84   CON_O6,
  85   CON_O7,
  86 };
  87 
  88 static inline void set_cont_address(sigcontext* ctx, address addr) {
  89   SIG_PC(ctx)  = (intptr_t)addr;
  90   SIG_NPC(ctx) = (intptr_t)(addr+4);
  91 }
  92 
  93 // For Forte Analyzer AsyncGetCallTrace profiling support - thread is
  94 // currently interrupted by SIGPROF.
  95 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested
  96 // signal frames. Currently we don't do that on Linux, so it's the
  97 // same as os::fetch_frame_from_context().
  98 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
  99                                                 ucontext_t* uc,
 100                                                 intptr_t** ret_sp,
 101                                                 intptr_t** ret_fp) {
 102   assert(thread != NULL, "just checking");
 103   assert(ret_sp != NULL, "just checking");
 104   assert(ret_fp != NULL, "just checking");
 105 
 106   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
 107 }
 108 
 109 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
 110                                         intptr_t** ret_sp,
 111                                         intptr_t** ret_fp) {
 112   ucontext_t* uc = (ucontext_t*) ucVoid;
 113   ExtendedPC  epc;
 114 
 115   if (uc != NULL) {
 116     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
 117     if (ret_sp) {
 118       *ret_sp = os::Linux::ucontext_get_sp(uc);
 119     }
 120     if (ret_fp) {
 121       *ret_fp = os::Linux::ucontext_get_fp(uc);
 122     }
 123   } else {
 124     // construct empty ExtendedPC for return value checking
 125     epc = ExtendedPC(NULL);
 126     if (ret_sp) {
 127       *ret_sp = (intptr_t*) NULL;
 128     }
 129     if (ret_fp) {
 130       *ret_fp = (intptr_t*) NULL;
 131     }
 132   }
 133 
 134   return epc;
 135 }
 136 
 137 frame os::fetch_frame_from_context(void* ucVoid) {
 138   intptr_t* sp;
 139   intptr_t* fp;
 140   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 141   return frame(sp, fp, epc.pc());
 142 }
 143 
 144 frame os::get_sender_for_C_frame(frame* fr) {
 145   return frame(fr->sender_sp(), frame::unpatchable, fr->sender_pc());
 146 }
 147 
 148 frame os::current_frame() {
 149   intptr_t* sp = StubRoutines::Sparc::flush_callers_register_windows_func()();
 150   frame myframe(sp, frame::unpatchable,
 151                 CAST_FROM_FN_PTR(address, os::current_frame));
 152   if (os::is_first_C_frame(&myframe)) {
 153     // stack is not walkable
 154     return frame(NULL, frame::unpatchable, NULL);
 155   } else {
 156     return os::get_sender_for_C_frame(&myframe);
 157   }
 158 }
 159 
 160 address os::current_stack_pointer() {
 161   register void *sp __asm__ ("sp");
 162   return (address)sp;
 163 }
 164 
 165 static void current_stack_region(address* bottom, size_t* size) {
 166   if (os::Linux::is_initial_thread()) {
 167     // initial thread needs special handling because pthread_getattr_np()
 168     // may return bogus value.
 169     *bottom = os::Linux::initial_thread_stack_bottom();
 170     *size = os::Linux::initial_thread_stack_size();
 171   } else {
 172     pthread_attr_t attr;
 173 
 174     int rslt = pthread_getattr_np(pthread_self(), &attr);
 175 
 176     // JVM needs to know exact stack location, abort if it fails
 177     if (rslt != 0) {
 178       if (rslt == ENOMEM) {
 179         vm_exit_out_of_memory(0, "pthread_getattr_np");
 180       } else {
 181         fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
 182       }
 183     }
 184 
 185     if (pthread_attr_getstack(&attr, (void**)bottom, size) != 0) {
 186       fatal("Can not locate current stack attributes!");
 187     }
 188 
 189     pthread_attr_destroy(&attr);
 190   }
 191   assert(os::current_stack_pointer() >= *bottom &&
 192          os::current_stack_pointer() < *bottom + *size, "just checking");
 193 }
 194 
 195 address os::current_stack_base() {
 196   address bottom;
 197   size_t size;
 198   current_stack_region(&bottom, &size);
 199   return bottom + size;
 200 }
 201 
 202 size_t os::current_stack_size() {
 203   // stack size includes normal stack and HotSpot guard pages
 204   address bottom;
 205   size_t size;
 206   current_stack_region(&bottom, &size);
 207   return size;
 208 }
 209 
 210 char* os::non_memory_address_word() {
 211   // Must never look like an address returned by reserve_memory,
 212   // even in its subfields (as defined by the CPU immediate fields,
 213   // if the CPU splits constants across multiple instructions).
 214   // On SPARC, 0 != %hi(any real address), because there is no
 215   // allocation in the first 1Kb of the virtual address space.
 216   return (char*) 0;
 217 }
 218 
 219 void os::initialize_thread(Thread* thr) {}
 220 
 221 void os::print_context(outputStream *st, void *context) {
 222   if (context == NULL) return;
 223 
 224   ucontext_t* uc = (ucontext_t*)context;
 225   sigcontext* sc = (sigcontext*)context;
 226   st->print_cr("Registers:");
 227 
 228   st->print_cr(" G1=" INTPTR_FORMAT " G2=" INTPTR_FORMAT
 229                " G3=" INTPTR_FORMAT " G4=" INTPTR_FORMAT,
 230                SIG_REGS(sc).u_regs[CON_G1],
 231                SIG_REGS(sc).u_regs[CON_G2],
 232                SIG_REGS(sc).u_regs[CON_G3],
 233                SIG_REGS(sc).u_regs[CON_G4]);
 234   st->print_cr(" G5=" INTPTR_FORMAT " G6=" INTPTR_FORMAT
 235                " G7=" INTPTR_FORMAT " Y=" INTPTR_FORMAT,
 236                SIG_REGS(sc).u_regs[CON_G5],
 237                SIG_REGS(sc).u_regs[CON_G6],
 238                SIG_REGS(sc).u_regs[CON_G7],
 239                SIG_REGS(sc).y);
 240   st->print_cr(" O0=" INTPTR_FORMAT " O1=" INTPTR_FORMAT
 241                " O2=" INTPTR_FORMAT " O3=" INTPTR_FORMAT,
 242                SIG_REGS(sc).u_regs[CON_O0],
 243                SIG_REGS(sc).u_regs[CON_O1],
 244                SIG_REGS(sc).u_regs[CON_O2],
 245                SIG_REGS(sc).u_regs[CON_O3]);
 246   st->print_cr(" O4=" INTPTR_FORMAT " O5=" INTPTR_FORMAT
 247                " O6=" INTPTR_FORMAT " O7=" INTPTR_FORMAT,
 248                SIG_REGS(sc).u_regs[CON_O4],
 249                SIG_REGS(sc).u_regs[CON_O5],
 250                SIG_REGS(sc).u_regs[CON_O6],
 251                SIG_REGS(sc).u_regs[CON_O7]);
 252 
 253 
 254   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
 255   st->print_cr(" L0=" INTPTR_FORMAT " L1=" INTPTR_FORMAT
 256                " L2=" INTPTR_FORMAT " L3=" INTPTR_FORMAT,
 257                sp[L0->sp_offset_in_saved_window()],
 258                sp[L1->sp_offset_in_saved_window()],
 259                sp[L2->sp_offset_in_saved_window()],
 260                sp[L3->sp_offset_in_saved_window()]);
 261   st->print_cr(" L4=" INTPTR_FORMAT " L5=" INTPTR_FORMAT
 262                " L6=" INTPTR_FORMAT " L7=" INTPTR_FORMAT,
 263                sp[L4->sp_offset_in_saved_window()],
 264                sp[L5->sp_offset_in_saved_window()],
 265                sp[L6->sp_offset_in_saved_window()],
 266                sp[L7->sp_offset_in_saved_window()]);
 267   st->print_cr(" I0=" INTPTR_FORMAT " I1=" INTPTR_FORMAT
 268                " I2=" INTPTR_FORMAT " I3=" INTPTR_FORMAT,
 269                sp[I0->sp_offset_in_saved_window()],
 270                sp[I1->sp_offset_in_saved_window()],
 271                sp[I2->sp_offset_in_saved_window()],
 272                sp[I3->sp_offset_in_saved_window()]);
 273   st->print_cr(" I4=" INTPTR_FORMAT " I5=" INTPTR_FORMAT
 274                " I6=" INTPTR_FORMAT " I7=" INTPTR_FORMAT,
 275                sp[I4->sp_offset_in_saved_window()],
 276                sp[I5->sp_offset_in_saved_window()],
 277                sp[I6->sp_offset_in_saved_window()],
 278                sp[I7->sp_offset_in_saved_window()]);
 279 
 280   st->print_cr(" PC=" INTPTR_FORMAT " nPC=" INTPTR_FORMAT,
 281                SIG_PC(sc),
 282                SIG_NPC(sc));
 283   st->cr();
 284   st->cr();
 285 
 286   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
 287   print_hex_dump(st, (address)sp, (address)(sp + 32), sizeof(intptr_t));
 288   st->cr();
 289 
 290   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 291   // point to garbage if entry point in an nmethod is corrupted. Leave
 292   // this at the end, and hope for the best.
 293   address pc = os::Linux::ucontext_get_pc(uc);
 294   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
 295   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
 296 }
 297 
 298 
 299 void os::print_register_info(outputStream *st, void *context) {
 300   if (context == NULL) return;
 301 
 302   ucontext_t *uc = (ucontext_t*)context;
 303   sigcontext* sc = (sigcontext*)context;
 304   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
 305 
 306   st->print_cr("Register to memory mapping:");
 307   st->cr();
 308 
 309   // this is only for the "general purpose" registers
 310   st->print("G1="); print_location(st, SIG_REGS(sc).u_regs[CON_G1]);
 311   st->print("G2="); print_location(st, SIG_REGS(sc).u_regs[CON_G2]);
 312   st->print("G3="); print_location(st, SIG_REGS(sc).u_regs[CON_G3]);
 313   st->print("G4="); print_location(st, SIG_REGS(sc).u_regs[CON_G4]);
 314   st->print("G5="); print_location(st, SIG_REGS(sc).u_regs[CON_G5]);
 315   st->print("G6="); print_location(st, SIG_REGS(sc).u_regs[CON_G6]);
 316   st->print("G7="); print_location(st, SIG_REGS(sc).u_regs[CON_G7]);
 317   st->cr();
 318 
 319   st->print("O0="); print_location(st, SIG_REGS(sc).u_regs[CON_O0]);
 320   st->print("O1="); print_location(st, SIG_REGS(sc).u_regs[CON_O1]);
 321   st->print("O2="); print_location(st, SIG_REGS(sc).u_regs[CON_O2]);
 322   st->print("O3="); print_location(st, SIG_REGS(sc).u_regs[CON_O3]);
 323   st->print("O4="); print_location(st, SIG_REGS(sc).u_regs[CON_O4]);
 324   st->print("O5="); print_location(st, SIG_REGS(sc).u_regs[CON_O5]);
 325   st->print("O6="); print_location(st, SIG_REGS(sc).u_regs[CON_O6]);
 326   st->print("O7="); print_location(st, SIG_REGS(sc).u_regs[CON_O7]);
 327   st->cr();
 328 
 329   st->print("L0="); print_location(st, sp[L0->sp_offset_in_saved_window()]);
 330   st->print("L1="); print_location(st, sp[L1->sp_offset_in_saved_window()]);
 331   st->print("L2="); print_location(st, sp[L2->sp_offset_in_saved_window()]);
 332   st->print("L3="); print_location(st, sp[L3->sp_offset_in_saved_window()]);
 333   st->print("L4="); print_location(st, sp[L4->sp_offset_in_saved_window()]);
 334   st->print("L5="); print_location(st, sp[L5->sp_offset_in_saved_window()]);
 335   st->print("L6="); print_location(st, sp[L6->sp_offset_in_saved_window()]);
 336   st->print("L7="); print_location(st, sp[L7->sp_offset_in_saved_window()]);
 337   st->cr();
 338 
 339   st->print("I0="); print_location(st, sp[I0->sp_offset_in_saved_window()]);
 340   st->print("I1="); print_location(st, sp[I1->sp_offset_in_saved_window()]);
 341   st->print("I2="); print_location(st, sp[I2->sp_offset_in_saved_window()]);
 342   st->print("I3="); print_location(st, sp[I3->sp_offset_in_saved_window()]);
 343   st->print("I4="); print_location(st, sp[I4->sp_offset_in_saved_window()]);
 344   st->print("I5="); print_location(st, sp[I5->sp_offset_in_saved_window()]);
 345   st->print("I6="); print_location(st, sp[I6->sp_offset_in_saved_window()]);
 346   st->print("I7="); print_location(st, sp[I7->sp_offset_in_saved_window()]);
 347   st->cr();
 348 }
 349 
 350 
 351 address os::Linux::ucontext_get_pc(ucontext_t* uc) {
 352   return (address) SIG_PC((sigcontext*)uc);
 353 }
 354 
 355 intptr_t* os::Linux::ucontext_get_sp(ucontext_t *uc) {
 356   return (intptr_t*)
 357     ((intptr_t)SIG_REGS((sigcontext*)uc).u_regs[CON_O6] + STACK_BIAS);
 358 }
 359 
 360 // not used on Sparc
 361 intptr_t* os::Linux::ucontext_get_fp(ucontext_t *uc) {
 362   ShouldNotReachHere();
 363   return NULL;
 364 }
 365 
 366 // Utility functions
 367 
 368 extern "C" void Fetch32PFI();
 369 extern "C" void Fetch32Resume();
 370 extern "C" void FetchNPFI();
 371 extern "C" void FetchNResume();
 372 
 373 inline static bool checkPrefetch(sigcontext* uc, address pc) {
 374   if (pc == (address) Fetch32PFI) {
 375     set_cont_address(uc, address(Fetch32Resume));
 376     return true;
 377   }
 378   if (pc == (address) FetchNPFI) {
 379     set_cont_address(uc, address(FetchNResume));
 380     return true;
 381   }
 382   return false;
 383 }
 384 
 385 inline static bool checkOverflow(sigcontext* uc,
 386                                  address pc,
 387                                  address addr,
 388                                  JavaThread* thread,
 389                                  address* stub) {
 390   // check if fault address is within thread stack
 391   if (addr < thread->stack_base() &&
 392       addr >= thread->stack_base() - thread->stack_size()) {
 393     // stack overflow
 394     if (thread->in_stack_yellow_zone(addr)) {
 395       thread->disable_stack_yellow_zone();
 396       if (thread->thread_state() == _thread_in_Java) {
 397         // Throw a stack overflow exception.  Guard pages will be reenabled
 398         // while unwinding the stack.
 399         *stub =
 400           SharedRuntime::continuation_for_implicit_exception(thread,
 401                                                              pc,
 402                                                              SharedRuntime::STACK_OVERFLOW);
 403       } else {
 404         // Thread was in the vm or native code.  Return and try to finish.
 405         return true;
 406       }
 407     } else if (thread->in_stack_red_zone(addr)) {
 408       // Fatal red zone violation.  Disable the guard pages and fall through
 409       // to handle_unexpected_exception way down below.
 410       thread->disable_stack_red_zone();
 411       tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 412 
 413       // This is a likely cause, but hard to verify. Let's just print
 414       // it as a hint.
 415       tty->print_raw_cr("Please check if any of your loaded .so files has "
 416                         "enabled executable stack (see man page execstack(8))");
 417     } else {
 418       // Accessing stack address below sp may cause SEGV if current
 419       // thread has MAP_GROWSDOWN stack. This should only happen when
 420       // current thread was created by user code with MAP_GROWSDOWN flag
 421       // and then attached to VM. See notes in os_linux.cpp.
 422       if (thread->osthread()->expanding_stack() == 0) {
 423         thread->osthread()->set_expanding_stack();
 424         if (os::Linux::manually_expand_stack(thread, addr)) {
 425           thread->osthread()->clear_expanding_stack();
 426           return true;
 427         }
 428         thread->osthread()->clear_expanding_stack();
 429       } else {
 430         fatal("recursive segv. expanding stack.");
 431       }
 432     }
 433   }
 434   return false;
 435 }
 436 
 437 inline static bool checkPollingPage(address pc, address fault, address* stub) {
 438   if (fault == os::get_polling_page()) {
 439     *stub = SharedRuntime::get_poll_stub(pc);
 440     return true;
 441   }
 442   return false;
 443 }
 444 
 445 inline static bool checkByteBuffer(address pc, address* stub) {
 446   // BugId 4454115: A read from a MappedByteBuffer can fault
 447   // here if the underlying file has been truncated.
 448   // Do not crash the VM in such a case.
 449   CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 450   nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
 451   if (nm != NULL && nm->has_unsafe_access()) {
 452     *stub = StubRoutines::handler_for_unsafe_access();
 453     return true;
 454   }
 455   return false;
 456 }
 457 
 458 inline static bool checkVerifyOops(address pc, address fault, address* stub) {
 459   if (pc >= MacroAssembler::_verify_oop_implicit_branch[0]
 460       && pc <  MacroAssembler::_verify_oop_implicit_branch[1] ) {
 461     *stub     =  MacroAssembler::_verify_oop_implicit_branch[2];
 462     warning("fixed up memory fault in +VerifyOops at address "
 463             INTPTR_FORMAT, fault);
 464     return true;
 465   }
 466   return false;
 467 }
 468 
 469 inline static bool checkFPFault(address pc, int code,
 470                                 JavaThread* thread, address* stub) {
 471   if (code == FPE_INTDIV || code == FPE_FLTDIV) {
 472     *stub =
 473       SharedRuntime::
 474       continuation_for_implicit_exception(thread,
 475                                           pc,
 476                                           SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 477     return true;
 478   }
 479   return false;
 480 }
 481 
 482 inline static bool checkNullPointer(address pc, intptr_t fault,
 483                                     JavaThread* thread, address* stub) {
 484   if (!MacroAssembler::needs_explicit_null_check(fault)) {
 485     // Determination of interpreter/vtable stub/compiled code null
 486     // exception
 487     *stub =
 488       SharedRuntime::
 489       continuation_for_implicit_exception(thread, pc,
 490                                           SharedRuntime::IMPLICIT_NULL);
 491     return true;
 492   }
 493   return false;
 494 }
 495 
 496 inline static bool checkFastJNIAccess(address pc, address* stub) {
 497   address addr = JNI_FastGetField::find_slowcase_pc(pc);
 498   if (addr != (address)-1) {
 499     *stub = addr;
 500     return true;
 501   }
 502   return false;
 503 }
 504 
 505 inline static bool checkSerializePage(JavaThread* thread, address addr) {
 506   return os::is_memory_serialize_page(thread, addr);
 507 }
 508 
 509 inline static bool checkZombie(sigcontext* uc, address* pc, address* stub) {
 510   if (nativeInstruction_at(*pc)->is_zombie()) {
 511     // zombie method (ld [%g0],%o7 instruction)
 512     *stub = SharedRuntime::get_handle_wrong_method_stub();
 513 
 514     // At the stub it needs to look like a call from the caller of this
 515     // method (not a call from the segv site).
 516     *pc = (address)SIG_REGS(uc).u_regs[CON_O7];
 517     return true;
 518   }
 519   return false;
 520 }
 521 
 522 inline static bool checkICMiss(sigcontext* uc, address* pc, address* stub) {
 523 #ifdef COMPILER2
 524   if (nativeInstruction_at(*pc)->is_ic_miss_trap()) {
 525 #ifdef ASSERT
 526 #ifdef TIERED
 527     CodeBlob* cb = CodeCache::find_blob_unsafe(*pc);
 528     assert(cb->is_compiled_by_c2(), "Wrong compiler");
 529 #endif // TIERED
 530 #endif // ASSERT
 531     // Inline cache missed and user trap "Tne G0+ST_RESERVED_FOR_USER_0+2" taken.
 532     *stub = SharedRuntime::get_ic_miss_stub();
 533     // At the stub it needs to look like a call from the caller of this
 534     // method (not a call from the segv site).
 535     *pc = (address)SIG_REGS(uc).u_regs[CON_O7];
 536     return true;
 537   }
 538 #endif  // COMPILER2
 539   return false;
 540 }
 541 
 542 extern "C" JNIEXPORT int
 543 JVM_handle_linux_signal(int sig,
 544                         siginfo_t* info,
 545                         void* ucVoid,
 546                         int abort_if_unrecognized) {
 547   // in fact this isn't ucontext_t* at all, but struct sigcontext*
 548   // but Linux porting layer uses ucontext_t, so to minimize code change
 549   // we cast as needed
 550   ucontext_t* ucFake = (ucontext_t*) ucVoid;
 551   sigcontext* uc = (sigcontext*)ucVoid;
 552 
 553   Thread* t = ThreadLocalStorage::get_thread_slow();
 554 
 555   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
 556   // (no destructors can be run)
 557   os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
 558 
 559   SignalHandlerMark shm(t);
 560 
 561   // Note: it's not uncommon that JNI code uses signal/sigset to install
 562   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 563   // or have a SIGILL handler when detecting CPU type). When that happens,
 564   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
 565   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 566   // that do not require siginfo/ucontext first.
 567 
 568   if (sig == SIGPIPE || sig == SIGXFSZ) {
 569     // allow chained handler to go first
 570     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 571       return true;
 572     } else {
 573       if (PrintMiscellaneous && (WizardMode || Verbose)) {
 574         char buf[64];
 575         warning("Ignoring %s - see bugs 4229104 or 646499219",
 576                 os::exception_name(sig, buf, sizeof(buf)));
 577       }
 578       return true;
 579     }
 580   }
 581 
 582   JavaThread* thread = NULL;
 583   VMThread* vmthread = NULL;
 584   if (os::Linux::signal_handlers_are_installed) {
 585     if (t != NULL ){
 586       if(t->is_Java_thread()) {
 587         thread = (JavaThread*)t;
 588       }
 589       else if(t->is_VM_thread()){
 590         vmthread = (VMThread *)t;
 591       }
 592     }
 593   }
 594 
 595   // decide if this trap can be handled by a stub
 596   address stub = NULL;
 597   address pc = NULL;
 598   address npc = NULL;
 599 
 600   //%note os_trap_1
 601   if (info != NULL && uc != NULL && thread != NULL) {
 602     pc = address(SIG_PC(uc));
 603     npc = address(SIG_NPC(uc));
 604 
 605     // Check to see if we caught the safepoint code in the
 606     // process of write protecting the memory serialization page.
 607     // It write enables the page immediately after protecting it
 608     // so we can just return to retry the write.
 609     if ((sig == SIGSEGV) && checkSerializePage(thread, (address)info->si_addr)) {
 610       // Block current thread until the memory serialize page permission restored.
 611       os::block_on_serialize_page_trap();
 612       return 1;
 613     }
 614 
 615     if (checkPrefetch(uc, pc)) {
 616       return 1;
 617     }
 618 
 619     // Handle ALL stack overflow variations here
 620     if (sig == SIGSEGV) {
 621       if (checkOverflow(uc, pc, (address)info->si_addr, thread, &stub)) {
 622         return 1;
 623       }
 624     }
 625 
 626     if (sig == SIGBUS &&
 627         thread->thread_state() == _thread_in_vm &&
 628         thread->doing_unsafe_access()) {
 629       stub = StubRoutines::handler_for_unsafe_access();
 630     }
 631 
 632     if (thread->thread_state() == _thread_in_Java) {
 633       do {
 634         // Java thread running in Java code => find exception handler if any
 635         // a fault inside compiled code, the interpreter, or a stub
 636 
 637         if ((sig == SIGSEGV) && checkPollingPage(pc, (address)info->si_addr, &stub)) {
 638           break;
 639         }
 640 
 641         if ((sig == SIGBUS) && checkByteBuffer(pc, &stub)) {
 642           break;
 643         }
 644 
 645         if ((sig == SIGSEGV || sig == SIGBUS) &&
 646             checkVerifyOops(pc, (address)info->si_addr, &stub)) {
 647           break;
 648         }
 649 
 650         if ((sig == SIGSEGV) && checkZombie(uc, &pc, &stub)) {
 651           break;
 652         }
 653 
 654         if ((sig == SIGILL) && checkICMiss(uc, &pc, &stub)) {
 655           break;
 656         }
 657 
 658         if ((sig == SIGFPE) && checkFPFault(pc, info->si_code, thread, &stub)) {
 659           break;
 660         }
 661 
 662         if ((sig == SIGSEGV) &&
 663             checkNullPointer(pc, (intptr_t)info->si_addr, thread, &stub)) {
 664           break;
 665         }
 666       } while (0);
 667 
 668       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 669       // and the heap gets shrunk before the field access.
 670       if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 671         checkFastJNIAccess(pc, &stub);
 672       }
 673     }
 674 
 675     if (stub != NULL) {
 676       // save all thread context in case we need to restore it
 677       thread->set_saved_exception_pc(pc);
 678       thread->set_saved_exception_npc(npc);
 679       set_cont_address(uc, stub);
 680       return true;
 681     }
 682   }
 683 
 684   // signal-chaining
 685   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 686     return true;
 687   }
 688 
 689   if (!abort_if_unrecognized) {
 690     // caller wants another chance, so give it to him
 691     return false;
 692   }
 693 
 694   if (pc == NULL && uc != NULL) {
 695     pc = os::Linux::ucontext_get_pc((ucontext_t*)uc);
 696   }
 697 
 698   // unmask current signal
 699   sigset_t newset;
 700   sigemptyset(&newset);
 701   sigaddset(&newset, sig);
 702   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 703 
 704   VMError err(t, sig, pc, info, ucVoid);
 705   err.report_and_die();
 706 
 707   ShouldNotReachHere();
 708 }
 709 
 710 void os::Linux::init_thread_fpu_state(void) {
 711   // Nothing to do
 712 }
 713 
 714 int os::Linux::get_fpu_control_word() {
 715   return 0;
 716 }
 717 
 718 void os::Linux::set_fpu_control_word(int fpu) {
 719   // nothing
 720 }
 721 
 722 bool os::is_allocatable(size_t bytes) {
 723 #ifdef _LP64
 724   return true;
 725 #else
 726   if (bytes < 2 * G) {
 727     return true;
 728   }
 729 
 730   char* addr = reserve_memory(bytes, NULL);
 731 
 732   if (addr != NULL) {
 733     release_memory(addr, bytes);
 734   }
 735 
 736   return addr != NULL;
 737 #endif // _LP64
 738 }
 739 
 740 ///////////////////////////////////////////////////////////////////////////////
 741 // thread stack
 742 
 743 size_t os::Linux::min_stack_allowed  = 128 * K;
 744 
 745 // pthread on Ubuntu is always in floating stack mode
 746 bool os::Linux::supports_variable_stack_size() {  return true; }
 747 
 748 // return default stack size for thr_type
 749 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
 750   // default stack size (compiler thread needs larger stack)
 751   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 752   return s;
 753 }
 754 
 755 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
 756   // Creating guard page is very expensive. Java thread has HotSpot
 757   // guard page, only enable glibc guard page for non-Java threads.
 758   return (thr_type == java_thread ? 0 : page_size());
 759 }
 760 
 761 #ifndef PRODUCT
 762 void os::verify_stack_alignment() {
 763 }
 764 #endif