1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/elfFile.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <sys/types.h>
  77 # include <sys/mman.h>
  78 # include <sys/stat.h>
  79 # include <sys/select.h>
  80 # include <pthread.h>
  81 # include <signal.h>
  82 # include <errno.h>
  83 # include <dlfcn.h>
  84 # include <stdio.h>
  85 # include <unistd.h>
  86 # include <sys/resource.h>
  87 # include <pthread.h>
  88 # include <sys/stat.h>
  89 # include <sys/time.h>
  90 # include <sys/times.h>
  91 # include <sys/utsname.h>
  92 # include <sys/socket.h>
  93 # include <sys/wait.h>
  94 # include <pwd.h>
  95 # include <poll.h>
  96 # include <semaphore.h>
  97 # include <fcntl.h>
  98 # include <string.h>
  99 # include <syscall.h>
 100 # include <sys/sysinfo.h>
 101 # include <gnu/libc-version.h>
 102 # include <sys/ipc.h>
 103 # include <sys/shm.h>
 104 # include <link.h>
 105 # include <stdint.h>
 106 # include <inttypes.h>
 107 # include <sys/ioctl.h>
 108 
 109 #ifndef _GNU_SOURCE
 110   #define _GNU_SOURCE
 111   #include <sched.h>
 112   #undef _GNU_SOURCE
 113 #else
 114   #include <sched.h>
 115 #endif
 116 
 117 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 118 // getrusage() is prepared to handle the associated failure.
 119 #ifndef RUSAGE_THREAD
 120   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 121 #endif
 122 
 123 #define MAX_PATH    (2 * K)
 124 
 125 #define MAX_SECS 100000000
 126 
 127 // for timer info max values which include all bits
 128 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 129 
 130 #define LARGEPAGES_BIT (1 << 6)
 131 ////////////////////////////////////////////////////////////////////////////////
 132 // global variables
 133 julong os::Linux::_physical_memory = 0;
 134 
 135 address   os::Linux::_initial_thread_stack_bottom = NULL;
 136 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 137 
 138 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 139 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 140 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 141 Mutex* os::Linux::_createThread_lock = NULL;
 142 pthread_t os::Linux::_main_thread;
 143 int os::Linux::_page_size = -1;
 144 bool os::Linux::_supports_fast_thread_cpu_time = false;
 145 uint32_t os::Linux::_os_version = 0;
 146 const char * os::Linux::_glibc_version = NULL;
 147 const char * os::Linux::_libpthread_version = NULL;
 148 pthread_condattr_t os::Linux::_condattr[1];
 149 
 150 static jlong initial_time_count=0;
 151 
 152 static int clock_tics_per_sec = 100;
 153 
 154 // For diagnostics to print a message once. see run_periodic_checks
 155 static sigset_t check_signal_done;
 156 static bool check_signals = true;
 157 
 158 // Signal number used to suspend/resume a thread
 159 
 160 // do not use any signal number less than SIGSEGV, see 4355769
 161 static int SR_signum = SIGUSR2;
 162 sigset_t SR_sigset;
 163 
 164 // Declarations
 165 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 166 
 167 // utility functions
 168 
 169 static int SR_initialize();
 170 
 171 julong os::available_memory() {
 172   return Linux::available_memory();
 173 }
 174 
 175 julong os::Linux::available_memory() {
 176   // values in struct sysinfo are "unsigned long"
 177   struct sysinfo si;
 178   sysinfo(&si);
 179 
 180   return (julong)si.freeram * si.mem_unit;
 181 }
 182 
 183 julong os::physical_memory() {
 184   return Linux::physical_memory();
 185 }
 186 
 187 // Return true if user is running as root.
 188 
 189 bool os::have_special_privileges() {
 190   static bool init = false;
 191   static bool privileges = false;
 192   if (!init) {
 193     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 194     init = true;
 195   }
 196   return privileges;
 197 }
 198 
 199 
 200 #ifndef SYS_gettid
 201 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 202   #ifdef __ia64__
 203     #define SYS_gettid 1105
 204   #else
 205     #ifdef __i386__
 206       #define SYS_gettid 224
 207     #else
 208       #ifdef __amd64__
 209         #define SYS_gettid 186
 210       #else
 211         #ifdef __sparc__
 212           #define SYS_gettid 143
 213         #else
 214           #error define gettid for the arch
 215         #endif
 216       #endif
 217     #endif
 218   #endif
 219 #endif
 220 
 221 
 222 // pid_t gettid()
 223 //
 224 // Returns the kernel thread id of the currently running thread. Kernel
 225 // thread id is used to access /proc.
 226 pid_t os::Linux::gettid() {
 227   int rslt = syscall(SYS_gettid);
 228   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 229   return (pid_t)rslt;
 230 }
 231 
 232 // Most versions of linux have a bug where the number of processors are
 233 // determined by looking at the /proc file system.  In a chroot environment,
 234 // the system call returns 1.  This causes the VM to act as if it is
 235 // a single processor and elide locking (see is_MP() call).
 236 static bool unsafe_chroot_detected = false;
 237 static const char *unstable_chroot_error = "/proc file system not found.\n"
 238                      "Java may be unstable running multithreaded in a chroot "
 239                      "environment on Linux when /proc filesystem is not mounted.";
 240 
 241 void os::Linux::initialize_system_info() {
 242   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 243   if (processor_count() == 1) {
 244     pid_t pid = os::Linux::gettid();
 245     char fname[32];
 246     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 247     FILE *fp = fopen(fname, "r");
 248     if (fp == NULL) {
 249       unsafe_chroot_detected = true;
 250     } else {
 251       fclose(fp);
 252     }
 253   }
 254   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 255   assert(processor_count() > 0, "linux error");
 256 }
 257 
 258 void os::init_system_properties_values() {
 259   // The next steps are taken in the product version:
 260   //
 261   // Obtain the JAVA_HOME value from the location of libjvm.so.
 262   // This library should be located at:
 263   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 264   //
 265   // If "/jre/lib/" appears at the right place in the path, then we
 266   // assume libjvm.so is installed in a JDK and we use this path.
 267   //
 268   // Otherwise exit with message: "Could not create the Java virtual machine."
 269   //
 270   // The following extra steps are taken in the debugging version:
 271   //
 272   // If "/jre/lib/" does NOT appear at the right place in the path
 273   // instead of exit check for $JAVA_HOME environment variable.
 274   //
 275   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 276   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 277   // it looks like libjvm.so is installed there
 278   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 279   //
 280   // Otherwise exit.
 281   //
 282   // Important note: if the location of libjvm.so changes this
 283   // code needs to be changed accordingly.
 284 
 285   // See ld(1):
 286   //      The linker uses the following search paths to locate required
 287   //      shared libraries:
 288   //        1: ...
 289   //        ...
 290   //        7: The default directories, normally /lib and /usr/lib.
 291 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 292   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 293 #else
 294   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 295 #endif
 296 
 297 // Base path of extensions installed on the system.
 298 #define SYS_EXT_DIR     "/usr/java/packages"
 299 #define EXTENSIONS_DIR  "/lib/ext"
 300 
 301   // Buffer that fits several sprintfs.
 302   // Note that the space for the colon and the trailing null are provided
 303   // by the nulls included by the sizeof operator.
 304   const size_t bufsize =
 305     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 306          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 307   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 308 
 309   // sysclasspath, java_home, dll_dir
 310   {
 311     char *pslash;
 312     os::jvm_path(buf, bufsize);
 313 
 314     // Found the full path to libjvm.so.
 315     // Now cut the path to <java_home>/jre if we can.
 316     pslash = strrchr(buf, '/');
 317     if (pslash != NULL) {
 318       *pslash = '\0';            // Get rid of /libjvm.so.
 319     }
 320     pslash = strrchr(buf, '/');
 321     if (pslash != NULL) {
 322       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 323     }
 324     Arguments::set_dll_dir(buf);
 325 
 326     if (pslash != NULL) {
 327       pslash = strrchr(buf, '/');
 328       if (pslash != NULL) {
 329         *pslash = '\0';        // Get rid of /lib.
 330       }
 331     }
 332     Arguments::set_java_home(buf);
 333     set_boot_path('/', ':');
 334   }
 335 
 336   // Where to look for native libraries.
 337   //
 338   // Note: Due to a legacy implementation, most of the library path
 339   // is set in the launcher. This was to accomodate linking restrictions
 340   // on legacy Linux implementations (which are no longer supported).
 341   // Eventually, all the library path setting will be done here.
 342   //
 343   // However, to prevent the proliferation of improperly built native
 344   // libraries, the new path component /usr/java/packages is added here.
 345   // Eventually, all the library path setting will be done here.
 346   {
 347     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 348     // should always exist (until the legacy problem cited above is
 349     // addressed).
 350     const char *v = ::getenv("LD_LIBRARY_PATH");
 351     const char *v_colon = ":";
 352     if (v == NULL) { v = ""; v_colon = ""; }
 353     // That's +1 for the colon and +1 for the trailing '\0'.
 354     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 355                                                      strlen(v) + 1 +
 356                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 357                                                      mtInternal);
 358     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 359     Arguments::set_library_path(ld_library_path);
 360     FREE_C_HEAP_ARRAY(char, ld_library_path);
 361   }
 362 
 363   // Extensions directories.
 364   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 365   Arguments::set_ext_dirs(buf);
 366 
 367   FREE_C_HEAP_ARRAY(char, buf);
 368 
 369 #undef DEFAULT_LIBPATH
 370 #undef SYS_EXT_DIR
 371 #undef EXTENSIONS_DIR
 372 }
 373 
 374 ////////////////////////////////////////////////////////////////////////////////
 375 // breakpoint support
 376 
 377 void os::breakpoint() {
 378   BREAKPOINT;
 379 }
 380 
 381 extern "C" void breakpoint() {
 382   // use debugger to set breakpoint here
 383 }
 384 
 385 ////////////////////////////////////////////////////////////////////////////////
 386 // signal support
 387 
 388 debug_only(static bool signal_sets_initialized = false);
 389 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 390 
 391 bool os::Linux::is_sig_ignored(int sig) {
 392   struct sigaction oact;
 393   sigaction(sig, (struct sigaction*)NULL, &oact);
 394   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 395                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 396   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 397     return true;
 398   } else {
 399     return false;
 400   }
 401 }
 402 
 403 void os::Linux::signal_sets_init() {
 404   // Should also have an assertion stating we are still single-threaded.
 405   assert(!signal_sets_initialized, "Already initialized");
 406   // Fill in signals that are necessarily unblocked for all threads in
 407   // the VM. Currently, we unblock the following signals:
 408   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 409   //                         by -Xrs (=ReduceSignalUsage));
 410   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 411   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 412   // the dispositions or masks wrt these signals.
 413   // Programs embedding the VM that want to use the above signals for their
 414   // own purposes must, at this time, use the "-Xrs" option to prevent
 415   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 416   // (See bug 4345157, and other related bugs).
 417   // In reality, though, unblocking these signals is really a nop, since
 418   // these signals are not blocked by default.
 419   sigemptyset(&unblocked_sigs);
 420   sigemptyset(&allowdebug_blocked_sigs);
 421   sigaddset(&unblocked_sigs, SIGILL);
 422   sigaddset(&unblocked_sigs, SIGSEGV);
 423   sigaddset(&unblocked_sigs, SIGBUS);
 424   sigaddset(&unblocked_sigs, SIGFPE);
 425 #if defined(PPC64)
 426   sigaddset(&unblocked_sigs, SIGTRAP);
 427 #endif
 428   sigaddset(&unblocked_sigs, SR_signum);
 429 
 430   if (!ReduceSignalUsage) {
 431     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 432       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 433       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 434     }
 435     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 436       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 437       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 438     }
 439     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 440       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 441       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 442     }
 443   }
 444   // Fill in signals that are blocked by all but the VM thread.
 445   sigemptyset(&vm_sigs);
 446   if (!ReduceSignalUsage) {
 447     sigaddset(&vm_sigs, BREAK_SIGNAL);
 448   }
 449   debug_only(signal_sets_initialized = true);
 450 
 451 }
 452 
 453 // These are signals that are unblocked while a thread is running Java.
 454 // (For some reason, they get blocked by default.)
 455 sigset_t* os::Linux::unblocked_signals() {
 456   assert(signal_sets_initialized, "Not initialized");
 457   return &unblocked_sigs;
 458 }
 459 
 460 // These are the signals that are blocked while a (non-VM) thread is
 461 // running Java. Only the VM thread handles these signals.
 462 sigset_t* os::Linux::vm_signals() {
 463   assert(signal_sets_initialized, "Not initialized");
 464   return &vm_sigs;
 465 }
 466 
 467 // These are signals that are blocked during cond_wait to allow debugger in
 468 sigset_t* os::Linux::allowdebug_blocked_signals() {
 469   assert(signal_sets_initialized, "Not initialized");
 470   return &allowdebug_blocked_sigs;
 471 }
 472 
 473 void os::Linux::hotspot_sigmask(Thread* thread) {
 474 
 475   //Save caller's signal mask before setting VM signal mask
 476   sigset_t caller_sigmask;
 477   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 478 
 479   OSThread* osthread = thread->osthread();
 480   osthread->set_caller_sigmask(caller_sigmask);
 481 
 482   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 483 
 484   if (!ReduceSignalUsage) {
 485     if (thread->is_VM_thread()) {
 486       // Only the VM thread handles BREAK_SIGNAL ...
 487       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 488     } else {
 489       // ... all other threads block BREAK_SIGNAL
 490       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 491     }
 492   }
 493 }
 494 
 495 //////////////////////////////////////////////////////////////////////////////
 496 // detecting pthread library
 497 
 498 void os::Linux::libpthread_init() {
 499   // Save glibc and pthread version strings.
 500 #if !defined(_CS_GNU_LIBC_VERSION) || \
 501     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 502   #error "glibc too old (< 2.3.2)"
 503 #endif
 504 
 505   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 506   assert(n > 0, "cannot retrieve glibc version");
 507   char *str = (char *)malloc(n, mtInternal);
 508   confstr(_CS_GNU_LIBC_VERSION, str, n);
 509   os::Linux::set_glibc_version(str);
 510 
 511   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 512   assert(n > 0, "cannot retrieve pthread version");
 513   str = (char *)malloc(n, mtInternal);
 514   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 515   os::Linux::set_libpthread_version(str);
 516 }
 517 
 518 /////////////////////////////////////////////////////////////////////////////
 519 // thread stack expansion
 520 
 521 // os::Linux::manually_expand_stack() takes care of expanding the thread
 522 // stack. Note that this is normally not needed: pthread stacks allocate
 523 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 524 // committed. Therefore it is not necessary to expand the stack manually.
 525 //
 526 // Manually expanding the stack was historically needed on LinuxThreads
 527 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 528 // it is kept to deal with very rare corner cases:
 529 //
 530 // For one, user may run the VM on an own implementation of threads
 531 // whose stacks are - like the old LinuxThreads - implemented using
 532 // mmap(MAP_GROWSDOWN).
 533 //
 534 // Also, this coding may be needed if the VM is running on the primordial
 535 // thread. Normally we avoid running on the primordial thread; however,
 536 // user may still invoke the VM on the primordial thread.
 537 //
 538 // The following historical comment describes the details about running
 539 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 540 
 541 
 542 // Force Linux kernel to expand current thread stack. If "bottom" is close
 543 // to the stack guard, caller should block all signals.
 544 //
 545 // MAP_GROWSDOWN:
 546 //   A special mmap() flag that is used to implement thread stacks. It tells
 547 //   kernel that the memory region should extend downwards when needed. This
 548 //   allows early versions of LinuxThreads to only mmap the first few pages
 549 //   when creating a new thread. Linux kernel will automatically expand thread
 550 //   stack as needed (on page faults).
 551 //
 552 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 553 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 554 //   region, it's hard to tell if the fault is due to a legitimate stack
 555 //   access or because of reading/writing non-exist memory (e.g. buffer
 556 //   overrun). As a rule, if the fault happens below current stack pointer,
 557 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 558 //   application (see Linux kernel fault.c).
 559 //
 560 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 561 //   stack overflow detection.
 562 //
 563 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 564 //   not use MAP_GROWSDOWN.
 565 //
 566 // To get around the problem and allow stack banging on Linux, we need to
 567 // manually expand thread stack after receiving the SIGSEGV.
 568 //
 569 // There are two ways to expand thread stack to address "bottom", we used
 570 // both of them in JVM before 1.5:
 571 //   1. adjust stack pointer first so that it is below "bottom", and then
 572 //      touch "bottom"
 573 //   2. mmap() the page in question
 574 //
 575 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 576 // if current sp is already near the lower end of page 101, and we need to
 577 // call mmap() to map page 100, it is possible that part of the mmap() frame
 578 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 579 // That will destroy the mmap() frame and cause VM to crash.
 580 //
 581 // The following code works by adjusting sp first, then accessing the "bottom"
 582 // page to force a page fault. Linux kernel will then automatically expand the
 583 // stack mapping.
 584 //
 585 // _expand_stack_to() assumes its frame size is less than page size, which
 586 // should always be true if the function is not inlined.
 587 
 588 static void NOINLINE _expand_stack_to(address bottom) {
 589   address sp;
 590   size_t size;
 591   volatile char *p;
 592 
 593   // Adjust bottom to point to the largest address within the same page, it
 594   // gives us a one-page buffer if alloca() allocates slightly more memory.
 595   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 596   bottom += os::Linux::page_size() - 1;
 597 
 598   // sp might be slightly above current stack pointer; if that's the case, we
 599   // will alloca() a little more space than necessary, which is OK. Don't use
 600   // os::current_stack_pointer(), as its result can be slightly below current
 601   // stack pointer, causing us to not alloca enough to reach "bottom".
 602   sp = (address)&sp;
 603 
 604   if (sp > bottom) {
 605     size = sp - bottom;
 606     p = (volatile char *)alloca(size);
 607     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 608     p[0] = '\0';
 609   }
 610 }
 611 
 612 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 613   assert(t!=NULL, "just checking");
 614   assert(t->osthread()->expanding_stack(), "expand should be set");
 615   assert(t->stack_base() != NULL, "stack_base was not initialized");
 616 
 617   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 618     sigset_t mask_all, old_sigset;
 619     sigfillset(&mask_all);
 620     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 621     _expand_stack_to(addr);
 622     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 623     return true;
 624   }
 625   return false;
 626 }
 627 
 628 //////////////////////////////////////////////////////////////////////////////
 629 // create new thread
 630 
 631 // Thread start routine for all newly created threads
 632 static void *thread_native_entry(Thread *thread) {
 633   // Try to randomize the cache line index of hot stack frames.
 634   // This helps when threads of the same stack traces evict each other's
 635   // cache lines. The threads can be either from the same JVM instance, or
 636   // from different JVM instances. The benefit is especially true for
 637   // processors with hyperthreading technology.
 638   static int counter = 0;
 639   int pid = os::current_process_id();
 640   alloca(((pid ^ counter++) & 7) * 128);
 641 
 642   thread->initialize_thread_current();
 643 
 644   OSThread* osthread = thread->osthread();
 645   Monitor* sync = osthread->startThread_lock();
 646 
 647   osthread->set_thread_id(os::current_thread_id());
 648 
 649   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 650     os::current_thread_id(), (uintx) pthread_self());
 651 
 652   if (UseNUMA) {
 653     int lgrp_id = os::numa_get_group_id();
 654     if (lgrp_id != -1) {
 655       thread->set_lgrp_id(lgrp_id);
 656     }
 657   }
 658   // initialize signal mask for this thread
 659   os::Linux::hotspot_sigmask(thread);
 660 
 661   // initialize floating point control register
 662   os::Linux::init_thread_fpu_state();
 663 
 664   // handshaking with parent thread
 665   {
 666     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 667 
 668     // notify parent thread
 669     osthread->set_state(INITIALIZED);
 670     sync->notify_all();
 671 
 672     // wait until os::start_thread()
 673     while (osthread->get_state() == INITIALIZED) {
 674       sync->wait(Mutex::_no_safepoint_check_flag);
 675     }
 676   }
 677 
 678   // call one more level start routine
 679   thread->run();
 680 
 681   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 682     os::current_thread_id(), (uintx) pthread_self());
 683 
 684   // If a thread has not deleted itself ("delete this") as part of its
 685   // termination sequence, we have to ensure thread-local-storage is
 686   // cleared before we actually terminate. No threads should ever be
 687   // deleted asynchronously with respect to their termination.
 688   if (Thread::current_or_null_safe() != NULL) {
 689     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 690     thread->clear_thread_current();
 691   }
 692 
 693   return 0;
 694 }
 695 
 696 bool os::create_thread(Thread* thread, ThreadType thr_type,
 697                        size_t req_stack_size) {
 698   assert(thread->osthread() == NULL, "caller responsible");
 699 
 700   // Allocate the OSThread object
 701   OSThread* osthread = new OSThread(NULL, NULL);
 702   if (osthread == NULL) {
 703     return false;
 704   }
 705 
 706   // set the correct thread state
 707   osthread->set_thread_type(thr_type);
 708 
 709   // Initial state is ALLOCATED but not INITIALIZED
 710   osthread->set_state(ALLOCATED);
 711 
 712   thread->set_osthread(osthread);
 713 
 714   // init thread attributes
 715   pthread_attr_t attr;
 716   pthread_attr_init(&attr);
 717   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 718 
 719   // Calculate stack size if it's not specified by caller.
 720   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 721   // In the Linux NPTL pthread implementation the guard size mechanism
 722   // is not implemented properly. The posix standard requires adding
 723   // the size of the guard pages to the stack size, instead Linux
 724   // takes the space out of 'stacksize'. Thus we adapt the requested
 725   // stack_size by the size of the guard pages to mimick proper
 726   // behaviour. However, be careful not to end up with a size
 727   // of zero due to overflow. Don't add the guard page in that case.
 728   size_t guard_size = os::Linux::default_guard_size(thr_type);
 729   if (stack_size <= SIZE_MAX - guard_size) {
 730     stack_size += guard_size;
 731   }
 732   assert(is_size_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 733 
 734   int status = pthread_attr_setstacksize(&attr, stack_size);
 735   assert_status(status == 0, status, "pthread_attr_setstacksize");
 736 
 737   // Configure glibc guard page.
 738   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 739 
 740   ThreadState state;
 741 
 742   {
 743     pthread_t tid;
 744     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 745 
 746     char buf[64];
 747     if (ret == 0) {
 748       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 749         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 750     } else {
 751       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 752         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 753     }
 754 
 755     pthread_attr_destroy(&attr);
 756 
 757     if (ret != 0) {
 758       // Need to clean up stuff we've allocated so far
 759       thread->set_osthread(NULL);
 760       delete osthread;
 761       return false;
 762     }
 763 
 764     // Store pthread info into the OSThread
 765     osthread->set_pthread_id(tid);
 766 
 767     // Wait until child thread is either initialized or aborted
 768     {
 769       Monitor* sync_with_child = osthread->startThread_lock();
 770       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 771       while ((state = osthread->get_state()) == ALLOCATED) {
 772         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 773       }
 774     }
 775   }
 776 
 777   // Aborted due to thread limit being reached
 778   if (state == ZOMBIE) {
 779     thread->set_osthread(NULL);
 780     delete osthread;
 781     return false;
 782   }
 783 
 784   // The thread is returned suspended (in state INITIALIZED),
 785   // and is started higher up in the call chain
 786   assert(state == INITIALIZED, "race condition");
 787   return true;
 788 }
 789 
 790 /////////////////////////////////////////////////////////////////////////////
 791 // attach existing thread
 792 
 793 // bootstrap the main thread
 794 bool os::create_main_thread(JavaThread* thread) {
 795   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 796   return create_attached_thread(thread);
 797 }
 798 
 799 bool os::create_attached_thread(JavaThread* thread) {
 800 #ifdef ASSERT
 801   thread->verify_not_published();
 802 #endif
 803 
 804   // Allocate the OSThread object
 805   OSThread* osthread = new OSThread(NULL, NULL);
 806 
 807   if (osthread == NULL) {
 808     return false;
 809   }
 810 
 811   // Store pthread info into the OSThread
 812   osthread->set_thread_id(os::Linux::gettid());
 813   osthread->set_pthread_id(::pthread_self());
 814 
 815   // initialize floating point control register
 816   os::Linux::init_thread_fpu_state();
 817 
 818   // Initial thread state is RUNNABLE
 819   osthread->set_state(RUNNABLE);
 820 
 821   thread->set_osthread(osthread);
 822 
 823   if (UseNUMA) {
 824     int lgrp_id = os::numa_get_group_id();
 825     if (lgrp_id != -1) {
 826       thread->set_lgrp_id(lgrp_id);
 827     }
 828   }
 829 
 830   if (os::Linux::is_initial_thread()) {
 831     // If current thread is initial thread, its stack is mapped on demand,
 832     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 833     // the entire stack region to avoid SEGV in stack banging.
 834     // It is also useful to get around the heap-stack-gap problem on SuSE
 835     // kernel (see 4821821 for details). We first expand stack to the top
 836     // of yellow zone, then enable stack yellow zone (order is significant,
 837     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 838     // is no gap between the last two virtual memory regions.
 839 
 840     JavaThread *jt = (JavaThread *)thread;
 841     address addr = jt->stack_reserved_zone_base();
 842     assert(addr != NULL, "initialization problem?");
 843     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 844 
 845     osthread->set_expanding_stack();
 846     os::Linux::manually_expand_stack(jt, addr);
 847     osthread->clear_expanding_stack();
 848   }
 849 
 850   // initialize signal mask for this thread
 851   // and save the caller's signal mask
 852   os::Linux::hotspot_sigmask(thread);
 853 
 854   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 855     os::current_thread_id(), (uintx) pthread_self());
 856 
 857   return true;
 858 }
 859 
 860 void os::pd_start_thread(Thread* thread) {
 861   OSThread * osthread = thread->osthread();
 862   assert(osthread->get_state() != INITIALIZED, "just checking");
 863   Monitor* sync_with_child = osthread->startThread_lock();
 864   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 865   sync_with_child->notify();
 866 }
 867 
 868 // Free Linux resources related to the OSThread
 869 void os::free_thread(OSThread* osthread) {
 870   assert(osthread != NULL, "osthread not set");
 871 
 872   // We are told to free resources of the argument thread,
 873   // but we can only really operate on the current thread.
 874   assert(Thread::current()->osthread() == osthread,
 875          "os::free_thread but not current thread");
 876 
 877 #ifdef ASSERT
 878   sigset_t current;
 879   sigemptyset(&current);
 880   pthread_sigmask(SIG_SETMASK, NULL, &current);
 881   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 882 #endif
 883 
 884   // Restore caller's signal mask
 885   sigset_t sigmask = osthread->caller_sigmask();
 886   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 887 
 888   delete osthread;
 889 }
 890 
 891 //////////////////////////////////////////////////////////////////////////////
 892 // initial thread
 893 
 894 // Check if current thread is the initial thread, similar to Solaris thr_main.
 895 bool os::Linux::is_initial_thread(void) {
 896   char dummy;
 897   // If called before init complete, thread stack bottom will be null.
 898   // Can be called if fatal error occurs before initialization.
 899   if (initial_thread_stack_bottom() == NULL) return false;
 900   assert(initial_thread_stack_bottom() != NULL &&
 901          initial_thread_stack_size()   != 0,
 902          "os::init did not locate initial thread's stack region");
 903   if ((address)&dummy >= initial_thread_stack_bottom() &&
 904       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 905     return true;
 906   } else {
 907     return false;
 908   }
 909 }
 910 
 911 // Find the virtual memory area that contains addr
 912 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 913   FILE *fp = fopen("/proc/self/maps", "r");
 914   if (fp) {
 915     address low, high;
 916     while (!feof(fp)) {
 917       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 918         if (low <= addr && addr < high) {
 919           if (vma_low)  *vma_low  = low;
 920           if (vma_high) *vma_high = high;
 921           fclose(fp);
 922           return true;
 923         }
 924       }
 925       for (;;) {
 926         int ch = fgetc(fp);
 927         if (ch == EOF || ch == (int)'\n') break;
 928       }
 929     }
 930     fclose(fp);
 931   }
 932   return false;
 933 }
 934 
 935 // Locate initial thread stack. This special handling of initial thread stack
 936 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 937 // bogus value for the primordial process thread. While the launcher has created
 938 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 939 // JNI invocation API from a primordial thread.
 940 void os::Linux::capture_initial_stack(size_t max_size) {
 941 
 942   // max_size is either 0 (which means accept OS default for thread stacks) or
 943   // a user-specified value known to be at least the minimum needed. If we
 944   // are actually on the primordial thread we can make it appear that we have a
 945   // smaller max_size stack by inserting the guard pages at that location. But we
 946   // cannot do anything to emulate a larger stack than what has been provided by
 947   // the OS or threading library. In fact if we try to use a stack greater than
 948   // what is set by rlimit then we will crash the hosting process.
 949 
 950   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 951   // If this is "unlimited" then it will be a huge value.
 952   struct rlimit rlim;
 953   getrlimit(RLIMIT_STACK, &rlim);
 954   size_t stack_size = rlim.rlim_cur;
 955 
 956   // 6308388: a bug in ld.so will relocate its own .data section to the
 957   //   lower end of primordial stack; reduce ulimit -s value a little bit
 958   //   so we won't install guard page on ld.so's data section.
 959   stack_size -= 2 * page_size();
 960 
 961   // Try to figure out where the stack base (top) is. This is harder.
 962   //
 963   // When an application is started, glibc saves the initial stack pointer in
 964   // a global variable "__libc_stack_end", which is then used by system
 965   // libraries. __libc_stack_end should be pretty close to stack top. The
 966   // variable is available since the very early days. However, because it is
 967   // a private interface, it could disappear in the future.
 968   //
 969   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 970   // to __libc_stack_end, it is very close to stack top, but isn't the real
 971   // stack top. Note that /proc may not exist if VM is running as a chroot
 972   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 973   // /proc/<pid>/stat could change in the future (though unlikely).
 974   //
 975   // We try __libc_stack_end first. If that doesn't work, look for
 976   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
 977   // as a hint, which should work well in most cases.
 978 
 979   uintptr_t stack_start;
 980 
 981   // try __libc_stack_end first
 982   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
 983   if (p && *p) {
 984     stack_start = *p;
 985   } else {
 986     // see if we can get the start_stack field from /proc/self/stat
 987     FILE *fp;
 988     int pid;
 989     char state;
 990     int ppid;
 991     int pgrp;
 992     int session;
 993     int nr;
 994     int tpgrp;
 995     unsigned long flags;
 996     unsigned long minflt;
 997     unsigned long cminflt;
 998     unsigned long majflt;
 999     unsigned long cmajflt;
1000     unsigned long utime;
1001     unsigned long stime;
1002     long cutime;
1003     long cstime;
1004     long prio;
1005     long nice;
1006     long junk;
1007     long it_real;
1008     uintptr_t start;
1009     uintptr_t vsize;
1010     intptr_t rss;
1011     uintptr_t rsslim;
1012     uintptr_t scodes;
1013     uintptr_t ecode;
1014     int i;
1015 
1016     // Figure what the primordial thread stack base is. Code is inspired
1017     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1018     // followed by command name surrounded by parentheses, state, etc.
1019     char stat[2048];
1020     int statlen;
1021 
1022     fp = fopen("/proc/self/stat", "r");
1023     if (fp) {
1024       statlen = fread(stat, 1, 2047, fp);
1025       stat[statlen] = '\0';
1026       fclose(fp);
1027 
1028       // Skip pid and the command string. Note that we could be dealing with
1029       // weird command names, e.g. user could decide to rename java launcher
1030       // to "java 1.4.2 :)", then the stat file would look like
1031       //                1234 (java 1.4.2 :)) R ... ...
1032       // We don't really need to know the command string, just find the last
1033       // occurrence of ")" and then start parsing from there. See bug 4726580.
1034       char * s = strrchr(stat, ')');
1035 
1036       i = 0;
1037       if (s) {
1038         // Skip blank chars
1039         do { s++; } while (s && isspace(*s));
1040 
1041 #define _UFM UINTX_FORMAT
1042 #define _DFM INTX_FORMAT
1043 
1044         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1045         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1046         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1047                    &state,          // 3  %c
1048                    &ppid,           // 4  %d
1049                    &pgrp,           // 5  %d
1050                    &session,        // 6  %d
1051                    &nr,             // 7  %d
1052                    &tpgrp,          // 8  %d
1053                    &flags,          // 9  %lu
1054                    &minflt,         // 10 %lu
1055                    &cminflt,        // 11 %lu
1056                    &majflt,         // 12 %lu
1057                    &cmajflt,        // 13 %lu
1058                    &utime,          // 14 %lu
1059                    &stime,          // 15 %lu
1060                    &cutime,         // 16 %ld
1061                    &cstime,         // 17 %ld
1062                    &prio,           // 18 %ld
1063                    &nice,           // 19 %ld
1064                    &junk,           // 20 %ld
1065                    &it_real,        // 21 %ld
1066                    &start,          // 22 UINTX_FORMAT
1067                    &vsize,          // 23 UINTX_FORMAT
1068                    &rss,            // 24 INTX_FORMAT
1069                    &rsslim,         // 25 UINTX_FORMAT
1070                    &scodes,         // 26 UINTX_FORMAT
1071                    &ecode,          // 27 UINTX_FORMAT
1072                    &stack_start);   // 28 UINTX_FORMAT
1073       }
1074 
1075 #undef _UFM
1076 #undef _DFM
1077 
1078       if (i != 28 - 2) {
1079         assert(false, "Bad conversion from /proc/self/stat");
1080         // product mode - assume we are the initial thread, good luck in the
1081         // embedded case.
1082         warning("Can't detect initial thread stack location - bad conversion");
1083         stack_start = (uintptr_t) &rlim;
1084       }
1085     } else {
1086       // For some reason we can't open /proc/self/stat (for example, running on
1087       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1088       // most cases, so don't abort:
1089       warning("Can't detect initial thread stack location - no /proc/self/stat");
1090       stack_start = (uintptr_t) &rlim;
1091     }
1092   }
1093 
1094   // Now we have a pointer (stack_start) very close to the stack top, the
1095   // next thing to do is to figure out the exact location of stack top. We
1096   // can find out the virtual memory area that contains stack_start by
1097   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1098   // and its upper limit is the real stack top. (again, this would fail if
1099   // running inside chroot, because /proc may not exist.)
1100 
1101   uintptr_t stack_top;
1102   address low, high;
1103   if (find_vma((address)stack_start, &low, &high)) {
1104     // success, "high" is the true stack top. (ignore "low", because initial
1105     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1106     stack_top = (uintptr_t)high;
1107   } else {
1108     // failed, likely because /proc/self/maps does not exist
1109     warning("Can't detect initial thread stack location - find_vma failed");
1110     // best effort: stack_start is normally within a few pages below the real
1111     // stack top, use it as stack top, and reduce stack size so we won't put
1112     // guard page outside stack.
1113     stack_top = stack_start;
1114     stack_size -= 16 * page_size();
1115   }
1116 
1117   // stack_top could be partially down the page so align it
1118   stack_top = align_size_up(stack_top, page_size());
1119 
1120   // Allowed stack value is minimum of max_size and what we derived from rlimit
1121   if (max_size > 0) {
1122     _initial_thread_stack_size = MIN2(max_size, stack_size);
1123   } else {
1124     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1125     // clamp it at 8MB as we do on Solaris
1126     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1127   }
1128   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1129   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1130 
1131   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1132 
1133   if (log_is_enabled(Info, os, thread)) {
1134     // See if we seem to be on primordial process thread
1135     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1136                       uintptr_t(&rlim) < stack_top;
1137 
1138     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1139                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1140                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1141                          stack_top, intptr_t(_initial_thread_stack_bottom));
1142   }
1143 }
1144 
1145 ////////////////////////////////////////////////////////////////////////////////
1146 // time support
1147 
1148 // Time since start-up in seconds to a fine granularity.
1149 // Used by VMSelfDestructTimer and the MemProfiler.
1150 double os::elapsedTime() {
1151 
1152   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1153 }
1154 
1155 jlong os::elapsed_counter() {
1156   return javaTimeNanos() - initial_time_count;
1157 }
1158 
1159 jlong os::elapsed_frequency() {
1160   return NANOSECS_PER_SEC; // nanosecond resolution
1161 }
1162 
1163 bool os::supports_vtime() { return true; }
1164 bool os::enable_vtime()   { return false; }
1165 bool os::vtime_enabled()  { return false; }
1166 
1167 double os::elapsedVTime() {
1168   struct rusage usage;
1169   int retval = getrusage(RUSAGE_THREAD, &usage);
1170   if (retval == 0) {
1171     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1172   } else {
1173     // better than nothing, but not much
1174     return elapsedTime();
1175   }
1176 }
1177 
1178 jlong os::javaTimeMillis() {
1179   timeval time;
1180   int status = gettimeofday(&time, NULL);
1181   assert(status != -1, "linux error");
1182   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1183 }
1184 
1185 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1186   timeval time;
1187   int status = gettimeofday(&time, NULL);
1188   assert(status != -1, "linux error");
1189   seconds = jlong(time.tv_sec);
1190   nanos = jlong(time.tv_usec) * 1000;
1191 }
1192 
1193 
1194 #ifndef CLOCK_MONOTONIC
1195   #define CLOCK_MONOTONIC (1)
1196 #endif
1197 
1198 void os::Linux::clock_init() {
1199   // we do dlopen's in this particular order due to bug in linux
1200   // dynamical loader (see 6348968) leading to crash on exit
1201   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1202   if (handle == NULL) {
1203     handle = dlopen("librt.so", RTLD_LAZY);
1204   }
1205 
1206   if (handle) {
1207     int (*clock_getres_func)(clockid_t, struct timespec*) =
1208            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1209     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1210            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1211     if (clock_getres_func && clock_gettime_func) {
1212       // See if monotonic clock is supported by the kernel. Note that some
1213       // early implementations simply return kernel jiffies (updated every
1214       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1215       // for nano time (though the monotonic property is still nice to have).
1216       // It's fixed in newer kernels, however clock_getres() still returns
1217       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1218       // resolution for now. Hopefully as people move to new kernels, this
1219       // won't be a problem.
1220       struct timespec res;
1221       struct timespec tp;
1222       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1223           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1224         // yes, monotonic clock is supported
1225         _clock_gettime = clock_gettime_func;
1226         return;
1227       } else {
1228         // close librt if there is no monotonic clock
1229         dlclose(handle);
1230       }
1231     }
1232   }
1233   warning("No monotonic clock was available - timed services may " \
1234           "be adversely affected if the time-of-day clock changes");
1235 }
1236 
1237 #ifndef SYS_clock_getres
1238   #if defined(X86) || defined(PPC64) || defined(S390)
1239     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1240     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1241   #else
1242     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1243     #define sys_clock_getres(x,y)  -1
1244   #endif
1245 #else
1246   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1247 #endif
1248 
1249 void os::Linux::fast_thread_clock_init() {
1250   if (!UseLinuxPosixThreadCPUClocks) {
1251     return;
1252   }
1253   clockid_t clockid;
1254   struct timespec tp;
1255   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1256       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1257 
1258   // Switch to using fast clocks for thread cpu time if
1259   // the sys_clock_getres() returns 0 error code.
1260   // Note, that some kernels may support the current thread
1261   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1262   // returned by the pthread_getcpuclockid().
1263   // If the fast Posix clocks are supported then the sys_clock_getres()
1264   // must return at least tp.tv_sec == 0 which means a resolution
1265   // better than 1 sec. This is extra check for reliability.
1266 
1267   if (pthread_getcpuclockid_func &&
1268       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1269       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1270     _supports_fast_thread_cpu_time = true;
1271     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1272   }
1273 }
1274 
1275 jlong os::javaTimeNanos() {
1276   if (os::supports_monotonic_clock()) {
1277     struct timespec tp;
1278     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1279     assert(status == 0, "gettime error");
1280     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1281     return result;
1282   } else {
1283     timeval time;
1284     int status = gettimeofday(&time, NULL);
1285     assert(status != -1, "linux error");
1286     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1287     return 1000 * usecs;
1288   }
1289 }
1290 
1291 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1292   if (os::supports_monotonic_clock()) {
1293     info_ptr->max_value = ALL_64_BITS;
1294 
1295     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1296     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1297     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1298   } else {
1299     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1300     info_ptr->max_value = ALL_64_BITS;
1301 
1302     // gettimeofday is a real time clock so it skips
1303     info_ptr->may_skip_backward = true;
1304     info_ptr->may_skip_forward = true;
1305   }
1306 
1307   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1308 }
1309 
1310 // Return the real, user, and system times in seconds from an
1311 // arbitrary fixed point in the past.
1312 bool os::getTimesSecs(double* process_real_time,
1313                       double* process_user_time,
1314                       double* process_system_time) {
1315   struct tms ticks;
1316   clock_t real_ticks = times(&ticks);
1317 
1318   if (real_ticks == (clock_t) (-1)) {
1319     return false;
1320   } else {
1321     double ticks_per_second = (double) clock_tics_per_sec;
1322     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1323     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1324     *process_real_time = ((double) real_ticks) / ticks_per_second;
1325 
1326     return true;
1327   }
1328 }
1329 
1330 
1331 char * os::local_time_string(char *buf, size_t buflen) {
1332   struct tm t;
1333   time_t long_time;
1334   time(&long_time);
1335   localtime_r(&long_time, &t);
1336   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1337                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1338                t.tm_hour, t.tm_min, t.tm_sec);
1339   return buf;
1340 }
1341 
1342 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1343   return localtime_r(clock, res);
1344 }
1345 
1346 ////////////////////////////////////////////////////////////////////////////////
1347 // runtime exit support
1348 
1349 // Note: os::shutdown() might be called very early during initialization, or
1350 // called from signal handler. Before adding something to os::shutdown(), make
1351 // sure it is async-safe and can handle partially initialized VM.
1352 void os::shutdown() {
1353 
1354   // allow PerfMemory to attempt cleanup of any persistent resources
1355   perfMemory_exit();
1356 
1357   // needs to remove object in file system
1358   AttachListener::abort();
1359 
1360   // flush buffered output, finish log files
1361   ostream_abort();
1362 
1363   // Check for abort hook
1364   abort_hook_t abort_hook = Arguments::abort_hook();
1365   if (abort_hook != NULL) {
1366     abort_hook();
1367   }
1368 
1369 }
1370 
1371 // Note: os::abort() might be called very early during initialization, or
1372 // called from signal handler. Before adding something to os::abort(), make
1373 // sure it is async-safe and can handle partially initialized VM.
1374 void os::abort(bool dump_core, void* siginfo, const void* context) {
1375   os::shutdown();
1376   if (dump_core) {
1377 #ifndef PRODUCT
1378     fdStream out(defaultStream::output_fd());
1379     out.print_raw("Current thread is ");
1380     char buf[16];
1381     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1382     out.print_raw_cr(buf);
1383     out.print_raw_cr("Dumping core ...");
1384 #endif
1385     ::abort(); // dump core
1386   }
1387 
1388   ::exit(1);
1389 }
1390 
1391 // Die immediately, no exit hook, no abort hook, no cleanup.
1392 void os::die() {
1393   ::abort();
1394 }
1395 
1396 
1397 // This method is a copy of JDK's sysGetLastErrorString
1398 // from src/solaris/hpi/src/system_md.c
1399 
1400 size_t os::lasterror(char *buf, size_t len) {
1401   if (errno == 0)  return 0;
1402 
1403   const char *s = os::strerror(errno);
1404   size_t n = ::strlen(s);
1405   if (n >= len) {
1406     n = len - 1;
1407   }
1408   ::strncpy(buf, s, n);
1409   buf[n] = '\0';
1410   return n;
1411 }
1412 
1413 // thread_id is kernel thread id (similar to Solaris LWP id)
1414 intx os::current_thread_id() { return os::Linux::gettid(); }
1415 int os::current_process_id() {
1416   return ::getpid();
1417 }
1418 
1419 // DLL functions
1420 
1421 const char* os::dll_file_extension() { return ".so"; }
1422 
1423 // This must be hard coded because it's the system's temporary
1424 // directory not the java application's temp directory, ala java.io.tmpdir.
1425 const char* os::get_temp_directory() { return "/tmp"; }
1426 
1427 static bool file_exists(const char* filename) {
1428   struct stat statbuf;
1429   if (filename == NULL || strlen(filename) == 0) {
1430     return false;
1431   }
1432   return os::stat(filename, &statbuf) == 0;
1433 }
1434 
1435 bool os::dll_build_name(char* buffer, size_t buflen,
1436                         const char* pname, const char* fname) {
1437   bool retval = false;
1438   // Copied from libhpi
1439   const size_t pnamelen = pname ? strlen(pname) : 0;
1440 
1441   // Return error on buffer overflow.
1442   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1443     return retval;
1444   }
1445 
1446   if (pnamelen == 0) {
1447     snprintf(buffer, buflen, "lib%s.so", fname);
1448     retval = true;
1449   } else if (strchr(pname, *os::path_separator()) != NULL) {
1450     int n;
1451     char** pelements = split_path(pname, &n);
1452     if (pelements == NULL) {
1453       return false;
1454     }
1455     for (int i = 0; i < n; i++) {
1456       // Really shouldn't be NULL, but check can't hurt
1457       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1458         continue; // skip the empty path values
1459       }
1460       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1461       if (file_exists(buffer)) {
1462         retval = true;
1463         break;
1464       }
1465     }
1466     // release the storage
1467     for (int i = 0; i < n; i++) {
1468       if (pelements[i] != NULL) {
1469         FREE_C_HEAP_ARRAY(char, pelements[i]);
1470       }
1471     }
1472     if (pelements != NULL) {
1473       FREE_C_HEAP_ARRAY(char*, pelements);
1474     }
1475   } else {
1476     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1477     retval = true;
1478   }
1479   return retval;
1480 }
1481 
1482 // check if addr is inside libjvm.so
1483 bool os::address_is_in_vm(address addr) {
1484   static address libjvm_base_addr;
1485   Dl_info dlinfo;
1486 
1487   if (libjvm_base_addr == NULL) {
1488     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1489       libjvm_base_addr = (address)dlinfo.dli_fbase;
1490     }
1491     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1492   }
1493 
1494   if (dladdr((void *)addr, &dlinfo) != 0) {
1495     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1496   }
1497 
1498   return false;
1499 }
1500 
1501 bool os::dll_address_to_function_name(address addr, char *buf,
1502                                       int buflen, int *offset,
1503                                       bool demangle) {
1504   // buf is not optional, but offset is optional
1505   assert(buf != NULL, "sanity check");
1506 
1507   Dl_info dlinfo;
1508 
1509   if (dladdr((void*)addr, &dlinfo) != 0) {
1510     // see if we have a matching symbol
1511     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1512       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1513         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1514       }
1515       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1516       return true;
1517     }
1518     // no matching symbol so try for just file info
1519     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1520       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1521                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1522         return true;
1523       }
1524     }
1525   }
1526 
1527   buf[0] = '\0';
1528   if (offset != NULL) *offset = -1;
1529   return false;
1530 }
1531 
1532 struct _address_to_library_name {
1533   address addr;          // input : memory address
1534   size_t  buflen;        //         size of fname
1535   char*   fname;         // output: library name
1536   address base;          //         library base addr
1537 };
1538 
1539 static int address_to_library_name_callback(struct dl_phdr_info *info,
1540                                             size_t size, void *data) {
1541   int i;
1542   bool found = false;
1543   address libbase = NULL;
1544   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1545 
1546   // iterate through all loadable segments
1547   for (i = 0; i < info->dlpi_phnum; i++) {
1548     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1549     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1550       // base address of a library is the lowest address of its loaded
1551       // segments.
1552       if (libbase == NULL || libbase > segbase) {
1553         libbase = segbase;
1554       }
1555       // see if 'addr' is within current segment
1556       if (segbase <= d->addr &&
1557           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1558         found = true;
1559       }
1560     }
1561   }
1562 
1563   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1564   // so dll_address_to_library_name() can fall through to use dladdr() which
1565   // can figure out executable name from argv[0].
1566   if (found && info->dlpi_name && info->dlpi_name[0]) {
1567     d->base = libbase;
1568     if (d->fname) {
1569       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1570     }
1571     return 1;
1572   }
1573   return 0;
1574 }
1575 
1576 bool os::dll_address_to_library_name(address addr, char* buf,
1577                                      int buflen, int* offset) {
1578   // buf is not optional, but offset is optional
1579   assert(buf != NULL, "sanity check");
1580 
1581   Dl_info dlinfo;
1582   struct _address_to_library_name data;
1583 
1584   // There is a bug in old glibc dladdr() implementation that it could resolve
1585   // to wrong library name if the .so file has a base address != NULL. Here
1586   // we iterate through the program headers of all loaded libraries to find
1587   // out which library 'addr' really belongs to. This workaround can be
1588   // removed once the minimum requirement for glibc is moved to 2.3.x.
1589   data.addr = addr;
1590   data.fname = buf;
1591   data.buflen = buflen;
1592   data.base = NULL;
1593   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1594 
1595   if (rslt) {
1596     // buf already contains library name
1597     if (offset) *offset = addr - data.base;
1598     return true;
1599   }
1600   if (dladdr((void*)addr, &dlinfo) != 0) {
1601     if (dlinfo.dli_fname != NULL) {
1602       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1603     }
1604     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1605       *offset = addr - (address)dlinfo.dli_fbase;
1606     }
1607     return true;
1608   }
1609 
1610   buf[0] = '\0';
1611   if (offset) *offset = -1;
1612   return false;
1613 }
1614 
1615 // Loads .dll/.so and
1616 // in case of error it checks if .dll/.so was built for the
1617 // same architecture as Hotspot is running on
1618 
1619 
1620 // Remember the stack's state. The Linux dynamic linker will change
1621 // the stack to 'executable' at most once, so we must safepoint only once.
1622 bool os::Linux::_stack_is_executable = false;
1623 
1624 // VM operation that loads a library.  This is necessary if stack protection
1625 // of the Java stacks can be lost during loading the library.  If we
1626 // do not stop the Java threads, they can stack overflow before the stacks
1627 // are protected again.
1628 class VM_LinuxDllLoad: public VM_Operation {
1629  private:
1630   const char *_filename;
1631   char *_ebuf;
1632   int _ebuflen;
1633   void *_lib;
1634  public:
1635   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1636     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1637   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1638   void doit() {
1639     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1640     os::Linux::_stack_is_executable = true;
1641   }
1642   void* loaded_library() { return _lib; }
1643 };
1644 
1645 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1646   void * result = NULL;
1647   bool load_attempted = false;
1648 
1649   // Check whether the library to load might change execution rights
1650   // of the stack. If they are changed, the protection of the stack
1651   // guard pages will be lost. We need a safepoint to fix this.
1652   //
1653   // See Linux man page execstack(8) for more info.
1654   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1655     ElfFile ef(filename);
1656     if (!ef.specifies_noexecstack()) {
1657       if (!is_init_completed()) {
1658         os::Linux::_stack_is_executable = true;
1659         // This is OK - No Java threads have been created yet, and hence no
1660         // stack guard pages to fix.
1661         //
1662         // This should happen only when you are building JDK7 using a very
1663         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1664         //
1665         // Dynamic loader will make all stacks executable after
1666         // this function returns, and will not do that again.
1667         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1668       } else {
1669         warning("You have loaded library %s which might have disabled stack guard. "
1670                 "The VM will try to fix the stack guard now.\n"
1671                 "It's highly recommended that you fix the library with "
1672                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1673                 filename);
1674 
1675         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1676         JavaThread *jt = JavaThread::current();
1677         if (jt->thread_state() != _thread_in_native) {
1678           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1679           // that requires ExecStack. Cannot enter safe point. Let's give up.
1680           warning("Unable to fix stack guard. Giving up.");
1681         } else {
1682           if (!LoadExecStackDllInVMThread) {
1683             // This is for the case where the DLL has an static
1684             // constructor function that executes JNI code. We cannot
1685             // load such DLLs in the VMThread.
1686             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1687           }
1688 
1689           ThreadInVMfromNative tiv(jt);
1690           debug_only(VMNativeEntryWrapper vew;)
1691 
1692           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1693           VMThread::execute(&op);
1694           if (LoadExecStackDllInVMThread) {
1695             result = op.loaded_library();
1696           }
1697           load_attempted = true;
1698         }
1699       }
1700     }
1701   }
1702 
1703   if (!load_attempted) {
1704     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1705   }
1706 
1707   if (result != NULL) {
1708     // Successful loading
1709     return result;
1710   }
1711 
1712   Elf32_Ehdr elf_head;
1713   int diag_msg_max_length=ebuflen-strlen(ebuf);
1714   char* diag_msg_buf=ebuf+strlen(ebuf);
1715 
1716   if (diag_msg_max_length==0) {
1717     // No more space in ebuf for additional diagnostics message
1718     return NULL;
1719   }
1720 
1721 
1722   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1723 
1724   if (file_descriptor < 0) {
1725     // Can't open library, report dlerror() message
1726     return NULL;
1727   }
1728 
1729   bool failed_to_read_elf_head=
1730     (sizeof(elf_head)!=
1731      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1732 
1733   ::close(file_descriptor);
1734   if (failed_to_read_elf_head) {
1735     // file i/o error - report dlerror() msg
1736     return NULL;
1737   }
1738 
1739   typedef struct {
1740     Elf32_Half    code;         // Actual value as defined in elf.h
1741     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1742     unsigned char elf_class;    // 32 or 64 bit
1743     unsigned char endianess;    // MSB or LSB
1744     char*         name;         // String representation
1745   } arch_t;
1746 
1747 #ifndef EM_486
1748   #define EM_486          6               /* Intel 80486 */
1749 #endif
1750 #ifndef EM_AARCH64
1751   #define EM_AARCH64    183               /* ARM AARCH64 */
1752 #endif
1753 
1754   static const arch_t arch_array[]={
1755     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1756     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1757     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1758     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1759     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1760     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1761     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1762     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1763 #if defined(VM_LITTLE_ENDIAN)
1764     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1765 #else
1766     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64 LE"},
1767 #endif
1768     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1769     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1770     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1771     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1772     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1773     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1774     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1775     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1776   };
1777 
1778 #if  (defined IA32)
1779   static  Elf32_Half running_arch_code=EM_386;
1780 #elif   (defined AMD64)
1781   static  Elf32_Half running_arch_code=EM_X86_64;
1782 #elif  (defined IA64)
1783   static  Elf32_Half running_arch_code=EM_IA_64;
1784 #elif  (defined __sparc) && (defined _LP64)
1785   static  Elf32_Half running_arch_code=EM_SPARCV9;
1786 #elif  (defined __sparc) && (!defined _LP64)
1787   static  Elf32_Half running_arch_code=EM_SPARC;
1788 #elif  (defined __powerpc64__)
1789   static  Elf32_Half running_arch_code=EM_PPC64;
1790 #elif  (defined __powerpc__)
1791   static  Elf32_Half running_arch_code=EM_PPC;
1792 #elif  (defined AARCH64)
1793   static  Elf32_Half running_arch_code=EM_AARCH64;
1794 #elif  (defined ARM)
1795   static  Elf32_Half running_arch_code=EM_ARM;
1796 #elif  (defined S390)
1797   static  Elf32_Half running_arch_code=EM_S390;
1798 #elif  (defined ALPHA)
1799   static  Elf32_Half running_arch_code=EM_ALPHA;
1800 #elif  (defined MIPSEL)
1801   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1802 #elif  (defined PARISC)
1803   static  Elf32_Half running_arch_code=EM_PARISC;
1804 #elif  (defined MIPS)
1805   static  Elf32_Half running_arch_code=EM_MIPS;
1806 #elif  (defined M68K)
1807   static  Elf32_Half running_arch_code=EM_68K;
1808 #else
1809     #error Method os::dll_load requires that one of following is defined:\
1810         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, __sparc
1811 #endif
1812 
1813   // Identify compatability class for VM's architecture and library's architecture
1814   // Obtain string descriptions for architectures
1815 
1816   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1817   int running_arch_index=-1;
1818 
1819   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1820     if (running_arch_code == arch_array[i].code) {
1821       running_arch_index    = i;
1822     }
1823     if (lib_arch.code == arch_array[i].code) {
1824       lib_arch.compat_class = arch_array[i].compat_class;
1825       lib_arch.name         = arch_array[i].name;
1826     }
1827   }
1828 
1829   assert(running_arch_index != -1,
1830          "Didn't find running architecture code (running_arch_code) in arch_array");
1831   if (running_arch_index == -1) {
1832     // Even though running architecture detection failed
1833     // we may still continue with reporting dlerror() message
1834     return NULL;
1835   }
1836 
1837   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1838     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1839     return NULL;
1840   }
1841 
1842 #ifndef S390
1843   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1844     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1845     return NULL;
1846   }
1847 #endif // !S390
1848 
1849   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1850     if (lib_arch.name!=NULL) {
1851       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1852                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1853                  lib_arch.name, arch_array[running_arch_index].name);
1854     } else {
1855       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1856                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1857                  lib_arch.code,
1858                  arch_array[running_arch_index].name);
1859     }
1860   }
1861 
1862   return NULL;
1863 }
1864 
1865 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1866                                 int ebuflen) {
1867   void * result = ::dlopen(filename, RTLD_LAZY);
1868   if (result == NULL) {
1869     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1870     ebuf[ebuflen-1] = '\0';
1871   }
1872   return result;
1873 }
1874 
1875 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1876                                        int ebuflen) {
1877   void * result = NULL;
1878   if (LoadExecStackDllInVMThread) {
1879     result = dlopen_helper(filename, ebuf, ebuflen);
1880   }
1881 
1882   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1883   // library that requires an executable stack, or which does not have this
1884   // stack attribute set, dlopen changes the stack attribute to executable. The
1885   // read protection of the guard pages gets lost.
1886   //
1887   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1888   // may have been queued at the same time.
1889 
1890   if (!_stack_is_executable) {
1891     JavaThread *jt = Threads::first();
1892 
1893     while (jt) {
1894       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1895           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1896         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1897           warning("Attempt to reguard stack yellow zone failed.");
1898         }
1899       }
1900       jt = jt->next();
1901     }
1902   }
1903 
1904   return result;
1905 }
1906 
1907 void* os::dll_lookup(void* handle, const char* name) {
1908   void* res = dlsym(handle, name);
1909   return res;
1910 }
1911 
1912 void* os::get_default_process_handle() {
1913   return (void*)::dlopen(NULL, RTLD_LAZY);
1914 }
1915 
1916 static bool _print_ascii_file(const char* filename, outputStream* st) {
1917   int fd = ::open(filename, O_RDONLY);
1918   if (fd == -1) {
1919     return false;
1920   }
1921 
1922   char buf[33];
1923   int bytes;
1924   buf[32] = '\0';
1925   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1926     st->print_raw(buf, bytes);
1927   }
1928 
1929   ::close(fd);
1930 
1931   return true;
1932 }
1933 
1934 void os::print_dll_info(outputStream *st) {
1935   st->print_cr("Dynamic libraries:");
1936 
1937   char fname[32];
1938   pid_t pid = os::Linux::gettid();
1939 
1940   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1941 
1942   if (!_print_ascii_file(fname, st)) {
1943     st->print("Can not get library information for pid = %d\n", pid);
1944   }
1945 }
1946 
1947 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1948   FILE *procmapsFile = NULL;
1949 
1950   // Open the procfs maps file for the current process
1951   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1952     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1953     char line[PATH_MAX + 100];
1954 
1955     // Read line by line from 'file'
1956     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1957       u8 base, top, offset, inode;
1958       char permissions[5];
1959       char device[6];
1960       char name[PATH_MAX + 1];
1961 
1962       // Parse fields from line
1963       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1964              &base, &top, permissions, &offset, device, &inode, name);
1965 
1966       // Filter by device id '00:00' so that we only get file system mapped files.
1967       if (strcmp(device, "00:00") != 0) {
1968 
1969         // Call callback with the fields of interest
1970         if(callback(name, (address)base, (address)top, param)) {
1971           // Oops abort, callback aborted
1972           fclose(procmapsFile);
1973           return 1;
1974         }
1975       }
1976     }
1977     fclose(procmapsFile);
1978   }
1979   return 0;
1980 }
1981 
1982 void os::print_os_info_brief(outputStream* st) {
1983   os::Linux::print_distro_info(st);
1984 
1985   os::Posix::print_uname_info(st);
1986 
1987   os::Linux::print_libversion_info(st);
1988 
1989 }
1990 
1991 void os::print_os_info(outputStream* st) {
1992   st->print("OS:");
1993 
1994   os::Linux::print_distro_info(st);
1995 
1996   os::Posix::print_uname_info(st);
1997 
1998   // Print warning if unsafe chroot environment detected
1999   if (unsafe_chroot_detected) {
2000     st->print("WARNING!! ");
2001     st->print_cr("%s", unstable_chroot_error);
2002   }
2003 
2004   os::Linux::print_libversion_info(st);
2005 
2006   os::Posix::print_rlimit_info(st);
2007 
2008   os::Posix::print_load_average(st);
2009 
2010   os::Linux::print_full_memory_info(st);
2011 }
2012 
2013 // Try to identify popular distros.
2014 // Most Linux distributions have a /etc/XXX-release file, which contains
2015 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2016 // file that also contains the OS version string. Some have more than one
2017 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2018 // /etc/redhat-release.), so the order is important.
2019 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2020 // their own specific XXX-release file as well as a redhat-release file.
2021 // Because of this the XXX-release file needs to be searched for before the
2022 // redhat-release file.
2023 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2024 // search for redhat-release / SuSE-release needs to be before lsb-release.
2025 // Since the lsb-release file is the new standard it needs to be searched
2026 // before the older style release files.
2027 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2028 // next to last resort.  The os-release file is a new standard that contains
2029 // distribution information and the system-release file seems to be an old
2030 // standard that has been replaced by the lsb-release and os-release files.
2031 // Searching for the debian_version file is the last resort.  It contains
2032 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2033 // "Debian " is printed before the contents of the debian_version file.
2034 
2035 const char* distro_files[] = {
2036   "/etc/oracle-release",
2037   "/etc/mandriva-release",
2038   "/etc/mandrake-release",
2039   "/etc/sun-release",
2040   "/etc/redhat-release",
2041   "/etc/SuSE-release",
2042   "/etc/lsb-release",
2043   "/etc/turbolinux-release",
2044   "/etc/gentoo-release",
2045   "/etc/ltib-release",
2046   "/etc/angstrom-version",
2047   "/etc/system-release",
2048   "/etc/os-release",
2049   NULL };
2050 
2051 void os::Linux::print_distro_info(outputStream* st) {
2052   for (int i = 0;; i++) {
2053     const char* file = distro_files[i];
2054     if (file == NULL) {
2055       break;  // done
2056     }
2057     // If file prints, we found it.
2058     if (_print_ascii_file(file, st)) {
2059       return;
2060     }
2061   }
2062 
2063   if (file_exists("/etc/debian_version")) {
2064     st->print("Debian ");
2065     _print_ascii_file("/etc/debian_version", st);
2066   } else {
2067     st->print("Linux");
2068   }
2069   st->cr();
2070 }
2071 
2072 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2073   char buf[256];
2074   while (fgets(buf, sizeof(buf), fp)) {
2075     // Edit out extra stuff in expected format
2076     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2077       char* ptr = strstr(buf, "\"");  // the name is in quotes
2078       if (ptr != NULL) {
2079         ptr++; // go beyond first quote
2080         char* nl = strchr(ptr, '\"');
2081         if (nl != NULL) *nl = '\0';
2082         strncpy(distro, ptr, length);
2083       } else {
2084         ptr = strstr(buf, "=");
2085         ptr++; // go beyond equals then
2086         char* nl = strchr(ptr, '\n');
2087         if (nl != NULL) *nl = '\0';
2088         strncpy(distro, ptr, length);
2089       }
2090       return;
2091     } else if (get_first_line) {
2092       char* nl = strchr(buf, '\n');
2093       if (nl != NULL) *nl = '\0';
2094       strncpy(distro, buf, length);
2095       return;
2096     }
2097   }
2098   // print last line and close
2099   char* nl = strchr(buf, '\n');
2100   if (nl != NULL) *nl = '\0';
2101   strncpy(distro, buf, length);
2102 }
2103 
2104 static void parse_os_info(char* distro, size_t length, const char* file) {
2105   FILE* fp = fopen(file, "r");
2106   if (fp != NULL) {
2107     // if suse format, print out first line
2108     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2109     parse_os_info_helper(fp, distro, length, get_first_line);
2110     fclose(fp);
2111   }
2112 }
2113 
2114 void os::get_summary_os_info(char* buf, size_t buflen) {
2115   for (int i = 0;; i++) {
2116     const char* file = distro_files[i];
2117     if (file == NULL) {
2118       break; // ran out of distro_files
2119     }
2120     if (file_exists(file)) {
2121       parse_os_info(buf, buflen, file);
2122       return;
2123     }
2124   }
2125   // special case for debian
2126   if (file_exists("/etc/debian_version")) {
2127     strncpy(buf, "Debian ", buflen);
2128     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2129   } else {
2130     strncpy(buf, "Linux", buflen);
2131   }
2132 }
2133 
2134 void os::Linux::print_libversion_info(outputStream* st) {
2135   // libc, pthread
2136   st->print("libc:");
2137   st->print("%s ", os::Linux::glibc_version());
2138   st->print("%s ", os::Linux::libpthread_version());
2139   st->cr();
2140 }
2141 
2142 void os::Linux::print_full_memory_info(outputStream* st) {
2143   st->print("\n/proc/meminfo:\n");
2144   _print_ascii_file("/proc/meminfo", st);
2145   st->cr();
2146 }
2147 
2148 void os::print_memory_info(outputStream* st) {
2149 
2150   st->print("Memory:");
2151   st->print(" %dk page", os::vm_page_size()>>10);
2152 
2153   // values in struct sysinfo are "unsigned long"
2154   struct sysinfo si;
2155   sysinfo(&si);
2156 
2157   st->print(", physical " UINT64_FORMAT "k",
2158             os::physical_memory() >> 10);
2159   st->print("(" UINT64_FORMAT "k free)",
2160             os::available_memory() >> 10);
2161   st->print(", swap " UINT64_FORMAT "k",
2162             ((jlong)si.totalswap * si.mem_unit) >> 10);
2163   st->print("(" UINT64_FORMAT "k free)",
2164             ((jlong)si.freeswap * si.mem_unit) >> 10);
2165   st->cr();
2166 }
2167 
2168 // Print the first "model name" line and the first "flags" line
2169 // that we find and nothing more. We assume "model name" comes
2170 // before "flags" so if we find a second "model name", then the
2171 // "flags" field is considered missing.
2172 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2173 #if defined(IA32) || defined(AMD64)
2174   // Other platforms have less repetitive cpuinfo files
2175   FILE *fp = fopen("/proc/cpuinfo", "r");
2176   if (fp) {
2177     while (!feof(fp)) {
2178       if (fgets(buf, buflen, fp)) {
2179         // Assume model name comes before flags
2180         bool model_name_printed = false;
2181         if (strstr(buf, "model name") != NULL) {
2182           if (!model_name_printed) {
2183             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2184             st->print_raw(buf);
2185             model_name_printed = true;
2186           } else {
2187             // model name printed but not flags?  Odd, just return
2188             fclose(fp);
2189             return true;
2190           }
2191         }
2192         // print the flags line too
2193         if (strstr(buf, "flags") != NULL) {
2194           st->print_raw(buf);
2195           fclose(fp);
2196           return true;
2197         }
2198       }
2199     }
2200     fclose(fp);
2201   }
2202 #endif // x86 platforms
2203   return false;
2204 }
2205 
2206 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2207   // Only print the model name if the platform provides this as a summary
2208   if (!print_model_name_and_flags(st, buf, buflen)) {
2209     st->print("\n/proc/cpuinfo:\n");
2210     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2211       st->print_cr("  <Not Available>");
2212     }
2213   }
2214 }
2215 
2216 #if defined(AMD64) || defined(IA32) || defined(X32)
2217 const char* search_string = "model name";
2218 #elif defined(PPC64)
2219 const char* search_string = "cpu";
2220 #elif defined(S390)
2221 const char* search_string = "processor";
2222 #elif defined(SPARC)
2223 const char* search_string = "cpu";
2224 #else
2225 const char* search_string = "Processor";
2226 #endif
2227 
2228 // Parses the cpuinfo file for string representing the model name.
2229 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2230   FILE* fp = fopen("/proc/cpuinfo", "r");
2231   if (fp != NULL) {
2232     while (!feof(fp)) {
2233       char buf[256];
2234       if (fgets(buf, sizeof(buf), fp)) {
2235         char* start = strstr(buf, search_string);
2236         if (start != NULL) {
2237           char *ptr = start + strlen(search_string);
2238           char *end = buf + strlen(buf);
2239           while (ptr != end) {
2240              // skip whitespace and colon for the rest of the name.
2241              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2242                break;
2243              }
2244              ptr++;
2245           }
2246           if (ptr != end) {
2247             // reasonable string, get rid of newline and keep the rest
2248             char* nl = strchr(buf, '\n');
2249             if (nl != NULL) *nl = '\0';
2250             strncpy(cpuinfo, ptr, length);
2251             fclose(fp);
2252             return;
2253           }
2254         }
2255       }
2256     }
2257     fclose(fp);
2258   }
2259   // cpuinfo not found or parsing failed, just print generic string.  The entire
2260   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2261 #if   defined(AARCH64)
2262   strncpy(cpuinfo, "AArch64", length);
2263 #elif defined(AMD64)
2264   strncpy(cpuinfo, "x86_64", length);
2265 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2266   strncpy(cpuinfo, "ARM", length);
2267 #elif defined(IA32)
2268   strncpy(cpuinfo, "x86_32", length);
2269 #elif defined(IA64)
2270   strncpy(cpuinfo, "IA64", length);
2271 #elif defined(PPC)
2272   strncpy(cpuinfo, "PPC64", length);
2273 #elif defined(S390)
2274   strncpy(cpuinfo, "S390", length);
2275 #elif defined(SPARC)
2276   strncpy(cpuinfo, "sparcv9", length);
2277 #elif defined(ZERO_LIBARCH)
2278   strncpy(cpuinfo, ZERO_LIBARCH, length);
2279 #else
2280   strncpy(cpuinfo, "unknown", length);
2281 #endif
2282 }
2283 
2284 static void print_signal_handler(outputStream* st, int sig,
2285                                  char* buf, size_t buflen);
2286 
2287 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2288   st->print_cr("Signal Handlers:");
2289   print_signal_handler(st, SIGSEGV, buf, buflen);
2290   print_signal_handler(st, SIGBUS , buf, buflen);
2291   print_signal_handler(st, SIGFPE , buf, buflen);
2292   print_signal_handler(st, SIGPIPE, buf, buflen);
2293   print_signal_handler(st, SIGXFSZ, buf, buflen);
2294   print_signal_handler(st, SIGILL , buf, buflen);
2295   print_signal_handler(st, SR_signum, buf, buflen);
2296   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2297   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2298   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2299   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2300 #if defined(PPC64)
2301   print_signal_handler(st, SIGTRAP, buf, buflen);
2302 #endif
2303 }
2304 
2305 static char saved_jvm_path[MAXPATHLEN] = {0};
2306 
2307 // Find the full path to the current module, libjvm.so
2308 void os::jvm_path(char *buf, jint buflen) {
2309   // Error checking.
2310   if (buflen < MAXPATHLEN) {
2311     assert(false, "must use a large-enough buffer");
2312     buf[0] = '\0';
2313     return;
2314   }
2315   // Lazy resolve the path to current module.
2316   if (saved_jvm_path[0] != 0) {
2317     strcpy(buf, saved_jvm_path);
2318     return;
2319   }
2320 
2321   char dli_fname[MAXPATHLEN];
2322   bool ret = dll_address_to_library_name(
2323                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2324                                          dli_fname, sizeof(dli_fname), NULL);
2325   assert(ret, "cannot locate libjvm");
2326   char *rp = NULL;
2327   if (ret && dli_fname[0] != '\0') {
2328     rp = os::Posix::realpath(dli_fname, buf, buflen);
2329   }
2330   if (rp == NULL) {
2331     return;
2332   }
2333 
2334   if (Arguments::sun_java_launcher_is_altjvm()) {
2335     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2336     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2337     // If "/jre/lib/" appears at the right place in the string, then
2338     // assume we are installed in a JDK and we're done. Otherwise, check
2339     // for a JAVA_HOME environment variable and fix up the path so it
2340     // looks like libjvm.so is installed there (append a fake suffix
2341     // hotspot/libjvm.so).
2342     const char *p = buf + strlen(buf) - 1;
2343     for (int count = 0; p > buf && count < 5; ++count) {
2344       for (--p; p > buf && *p != '/'; --p)
2345         /* empty */ ;
2346     }
2347 
2348     if (strncmp(p, "/jre/lib/", 9) != 0) {
2349       // Look for JAVA_HOME in the environment.
2350       char* java_home_var = ::getenv("JAVA_HOME");
2351       if (java_home_var != NULL && java_home_var[0] != 0) {
2352         char* jrelib_p;
2353         int len;
2354 
2355         // Check the current module name "libjvm.so".
2356         p = strrchr(buf, '/');
2357         if (p == NULL) {
2358           return;
2359         }
2360         assert(strstr(p, "/libjvm") == p, "invalid library name");
2361 
2362         rp = os::Posix::realpath(java_home_var, buf, buflen);
2363         if (rp == NULL) {
2364           return;
2365         }
2366 
2367         // determine if this is a legacy image or modules image
2368         // modules image doesn't have "jre" subdirectory
2369         len = strlen(buf);
2370         assert(len < buflen, "Ran out of buffer room");
2371         jrelib_p = buf + len;
2372         snprintf(jrelib_p, buflen-len, "/jre/lib");
2373         if (0 != access(buf, F_OK)) {
2374           snprintf(jrelib_p, buflen-len, "/lib");
2375         }
2376 
2377         if (0 == access(buf, F_OK)) {
2378           // Use current module name "libjvm.so"
2379           len = strlen(buf);
2380           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2381         } else {
2382           // Go back to path of .so
2383           rp = os::Posix::realpath(dli_fname, buf, buflen);
2384           if (rp == NULL) {
2385             return;
2386           }
2387         }
2388       }
2389     }
2390   }
2391 
2392   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2393   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2394 }
2395 
2396 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2397   // no prefix required, not even "_"
2398 }
2399 
2400 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2401   // no suffix required
2402 }
2403 
2404 ////////////////////////////////////////////////////////////////////////////////
2405 // sun.misc.Signal support
2406 
2407 static volatile jint sigint_count = 0;
2408 
2409 static void UserHandler(int sig, void *siginfo, void *context) {
2410   // 4511530 - sem_post is serialized and handled by the manager thread. When
2411   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2412   // don't want to flood the manager thread with sem_post requests.
2413   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2414     return;
2415   }
2416 
2417   // Ctrl-C is pressed during error reporting, likely because the error
2418   // handler fails to abort. Let VM die immediately.
2419   if (sig == SIGINT && is_error_reported()) {
2420     os::die();
2421   }
2422 
2423   os::signal_notify(sig);
2424 }
2425 
2426 void* os::user_handler() {
2427   return CAST_FROM_FN_PTR(void*, UserHandler);
2428 }
2429 
2430 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2431   struct timespec ts;
2432   // Semaphore's are always associated with CLOCK_REALTIME
2433   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2434   // see unpackTime for discussion on overflow checking
2435   if (sec >= MAX_SECS) {
2436     ts.tv_sec += MAX_SECS;
2437     ts.tv_nsec = 0;
2438   } else {
2439     ts.tv_sec += sec;
2440     ts.tv_nsec += nsec;
2441     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2442       ts.tv_nsec -= NANOSECS_PER_SEC;
2443       ++ts.tv_sec; // note: this must be <= max_secs
2444     }
2445   }
2446 
2447   return ts;
2448 }
2449 
2450 extern "C" {
2451   typedef void (*sa_handler_t)(int);
2452   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2453 }
2454 
2455 void* os::signal(int signal_number, void* handler) {
2456   struct sigaction sigAct, oldSigAct;
2457 
2458   sigfillset(&(sigAct.sa_mask));
2459   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2460   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2461 
2462   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2463     // -1 means registration failed
2464     return (void *)-1;
2465   }
2466 
2467   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2468 }
2469 
2470 void os::signal_raise(int signal_number) {
2471   ::raise(signal_number);
2472 }
2473 
2474 // The following code is moved from os.cpp for making this
2475 // code platform specific, which it is by its very nature.
2476 
2477 // Will be modified when max signal is changed to be dynamic
2478 int os::sigexitnum_pd() {
2479   return NSIG;
2480 }
2481 
2482 // a counter for each possible signal value
2483 static volatile jint pending_signals[NSIG+1] = { 0 };
2484 
2485 // Linux(POSIX) specific hand shaking semaphore.
2486 static sem_t sig_sem;
2487 static PosixSemaphore sr_semaphore;
2488 
2489 void os::signal_init_pd() {
2490   // Initialize signal structures
2491   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2492 
2493   // Initialize signal semaphore
2494   ::sem_init(&sig_sem, 0, 0);
2495 }
2496 
2497 void os::signal_notify(int sig) {
2498   Atomic::inc(&pending_signals[sig]);
2499   ::sem_post(&sig_sem);
2500 }
2501 
2502 static int check_pending_signals(bool wait) {
2503   Atomic::store(0, &sigint_count);
2504   for (;;) {
2505     for (int i = 0; i < NSIG + 1; i++) {
2506       jint n = pending_signals[i];
2507       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2508         return i;
2509       }
2510     }
2511     if (!wait) {
2512       return -1;
2513     }
2514     JavaThread *thread = JavaThread::current();
2515     ThreadBlockInVM tbivm(thread);
2516 
2517     bool threadIsSuspended;
2518     do {
2519       thread->set_suspend_equivalent();
2520       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2521       ::sem_wait(&sig_sem);
2522 
2523       // were we externally suspended while we were waiting?
2524       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2525       if (threadIsSuspended) {
2526         // The semaphore has been incremented, but while we were waiting
2527         // another thread suspended us. We don't want to continue running
2528         // while suspended because that would surprise the thread that
2529         // suspended us.
2530         ::sem_post(&sig_sem);
2531 
2532         thread->java_suspend_self();
2533       }
2534     } while (threadIsSuspended);
2535   }
2536 }
2537 
2538 int os::signal_lookup() {
2539   return check_pending_signals(false);
2540 }
2541 
2542 int os::signal_wait() {
2543   return check_pending_signals(true);
2544 }
2545 
2546 ////////////////////////////////////////////////////////////////////////////////
2547 // Virtual Memory
2548 
2549 int os::vm_page_size() {
2550   // Seems redundant as all get out
2551   assert(os::Linux::page_size() != -1, "must call os::init");
2552   return os::Linux::page_size();
2553 }
2554 
2555 // Solaris allocates memory by pages.
2556 int os::vm_allocation_granularity() {
2557   assert(os::Linux::page_size() != -1, "must call os::init");
2558   return os::Linux::page_size();
2559 }
2560 
2561 // Rationale behind this function:
2562 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2563 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2564 //  samples for JITted code. Here we create private executable mapping over the code cache
2565 //  and then we can use standard (well, almost, as mapping can change) way to provide
2566 //  info for the reporting script by storing timestamp and location of symbol
2567 void linux_wrap_code(char* base, size_t size) {
2568   static volatile jint cnt = 0;
2569 
2570   if (!UseOprofile) {
2571     return;
2572   }
2573 
2574   char buf[PATH_MAX+1];
2575   int num = Atomic::add(1, &cnt);
2576 
2577   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2578            os::get_temp_directory(), os::current_process_id(), num);
2579   unlink(buf);
2580 
2581   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2582 
2583   if (fd != -1) {
2584     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2585     if (rv != (off_t)-1) {
2586       if (::write(fd, "", 1) == 1) {
2587         mmap(base, size,
2588              PROT_READ|PROT_WRITE|PROT_EXEC,
2589              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2590       }
2591     }
2592     ::close(fd);
2593     unlink(buf);
2594   }
2595 }
2596 
2597 static bool recoverable_mmap_error(int err) {
2598   // See if the error is one we can let the caller handle. This
2599   // list of errno values comes from JBS-6843484. I can't find a
2600   // Linux man page that documents this specific set of errno
2601   // values so while this list currently matches Solaris, it may
2602   // change as we gain experience with this failure mode.
2603   switch (err) {
2604   case EBADF:
2605   case EINVAL:
2606   case ENOTSUP:
2607     // let the caller deal with these errors
2608     return true;
2609 
2610   default:
2611     // Any remaining errors on this OS can cause our reserved mapping
2612     // to be lost. That can cause confusion where different data
2613     // structures think they have the same memory mapped. The worst
2614     // scenario is if both the VM and a library think they have the
2615     // same memory mapped.
2616     return false;
2617   }
2618 }
2619 
2620 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2621                                     int err) {
2622   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2623           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2624           os::strerror(err), err);
2625 }
2626 
2627 static void warn_fail_commit_memory(char* addr, size_t size,
2628                                     size_t alignment_hint, bool exec,
2629                                     int err) {
2630   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2631           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2632           alignment_hint, exec, os::strerror(err), err);
2633 }
2634 
2635 // NOTE: Linux kernel does not really reserve the pages for us.
2636 //       All it does is to check if there are enough free pages
2637 //       left at the time of mmap(). This could be a potential
2638 //       problem.
2639 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2640   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2641   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2642                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2643   if (res != (uintptr_t) MAP_FAILED) {
2644     if (UseNUMAInterleaving) {
2645       numa_make_global(addr, size);
2646     }
2647     return 0;
2648   }
2649 
2650   int err = errno;  // save errno from mmap() call above
2651 
2652   if (!recoverable_mmap_error(err)) {
2653     warn_fail_commit_memory(addr, size, exec, err);
2654     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2655   }
2656 
2657   return err;
2658 }
2659 
2660 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2661   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2662 }
2663 
2664 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2665                                   const char* mesg) {
2666   assert(mesg != NULL, "mesg must be specified");
2667   int err = os::Linux::commit_memory_impl(addr, size, exec);
2668   if (err != 0) {
2669     // the caller wants all commit errors to exit with the specified mesg:
2670     warn_fail_commit_memory(addr, size, exec, err);
2671     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2672   }
2673 }
2674 
2675 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2676 #ifndef MAP_HUGETLB
2677   #define MAP_HUGETLB 0x40000
2678 #endif
2679 
2680 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2681 #ifndef MADV_HUGEPAGE
2682   #define MADV_HUGEPAGE 14
2683 #endif
2684 
2685 int os::Linux::commit_memory_impl(char* addr, size_t size,
2686                                   size_t alignment_hint, bool exec) {
2687   int err = os::Linux::commit_memory_impl(addr, size, exec);
2688   if (err == 0) {
2689     realign_memory(addr, size, alignment_hint);
2690   }
2691   return err;
2692 }
2693 
2694 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2695                           bool exec) {
2696   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2697 }
2698 
2699 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2700                                   size_t alignment_hint, bool exec,
2701                                   const char* mesg) {
2702   assert(mesg != NULL, "mesg must be specified");
2703   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2704   if (err != 0) {
2705     // the caller wants all commit errors to exit with the specified mesg:
2706     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2707     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2708   }
2709 }
2710 
2711 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2712   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2713     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2714     // be supported or the memory may already be backed by huge pages.
2715     ::madvise(addr, bytes, MADV_HUGEPAGE);
2716   }
2717 }
2718 
2719 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2720   // This method works by doing an mmap over an existing mmaping and effectively discarding
2721   // the existing pages. However it won't work for SHM-based large pages that cannot be
2722   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2723   // small pages on top of the SHM segment. This method always works for small pages, so we
2724   // allow that in any case.
2725   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2726     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2727   }
2728 }
2729 
2730 void os::numa_make_global(char *addr, size_t bytes) {
2731   Linux::numa_interleave_memory(addr, bytes);
2732 }
2733 
2734 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2735 // bind policy to MPOL_PREFERRED for the current thread.
2736 #define USE_MPOL_PREFERRED 0
2737 
2738 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2739   // To make NUMA and large pages more robust when both enabled, we need to ease
2740   // the requirements on where the memory should be allocated. MPOL_BIND is the
2741   // default policy and it will force memory to be allocated on the specified
2742   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2743   // the specified node, but will not force it. Using this policy will prevent
2744   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2745   // free large pages.
2746   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2747   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2748 }
2749 
2750 bool os::numa_topology_changed() { return false; }
2751 
2752 size_t os::numa_get_groups_num() {
2753   // Return just the number of nodes in which it's possible to allocate memory
2754   // (in numa terminology, configured nodes).
2755   return Linux::numa_num_configured_nodes();
2756 }
2757 
2758 int os::numa_get_group_id() {
2759   int cpu_id = Linux::sched_getcpu();
2760   if (cpu_id != -1) {
2761     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2762     if (lgrp_id != -1) {
2763       return lgrp_id;
2764     }
2765   }
2766   return 0;
2767 }
2768 
2769 int os::Linux::get_existing_num_nodes() {
2770   size_t node;
2771   size_t highest_node_number = Linux::numa_max_node();
2772   int num_nodes = 0;
2773 
2774   // Get the total number of nodes in the system including nodes without memory.
2775   for (node = 0; node <= highest_node_number; node++) {
2776     if (isnode_in_existing_nodes(node)) {
2777       num_nodes++;
2778     }
2779   }
2780   return num_nodes;
2781 }
2782 
2783 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2784   size_t highest_node_number = Linux::numa_max_node();
2785   size_t i = 0;
2786 
2787   // Map all node ids in which is possible to allocate memory. Also nodes are
2788   // not always consecutively available, i.e. available from 0 to the highest
2789   // node number.
2790   for (size_t node = 0; node <= highest_node_number; node++) {
2791     if (Linux::isnode_in_configured_nodes(node)) {
2792       ids[i++] = node;
2793     }
2794   }
2795   return i;
2796 }
2797 
2798 bool os::get_page_info(char *start, page_info* info) {
2799   return false;
2800 }
2801 
2802 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2803                      page_info* page_found) {
2804   return end;
2805 }
2806 
2807 
2808 int os::Linux::sched_getcpu_syscall(void) {
2809   unsigned int cpu = 0;
2810   int retval = -1;
2811 
2812 #if defined(IA32)
2813   #ifndef SYS_getcpu
2814     #define SYS_getcpu 318
2815   #endif
2816   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2817 #elif defined(AMD64)
2818 // Unfortunately we have to bring all these macros here from vsyscall.h
2819 // to be able to compile on old linuxes.
2820   #define __NR_vgetcpu 2
2821   #define VSYSCALL_START (-10UL << 20)
2822   #define VSYSCALL_SIZE 1024
2823   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2824   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2825   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2826   retval = vgetcpu(&cpu, NULL, NULL);
2827 #endif
2828 
2829   return (retval == -1) ? retval : cpu;
2830 }
2831 
2832 // Something to do with the numa-aware allocator needs these symbols
2833 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2834 extern "C" JNIEXPORT void numa_error(char *where) { }
2835 
2836 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2837 // load symbol from base version instead.
2838 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2839   void *f = dlvsym(handle, name, "libnuma_1.1");
2840   if (f == NULL) {
2841     f = dlsym(handle, name);
2842   }
2843   return f;
2844 }
2845 
2846 // Handle request to load libnuma symbol version 1.2 (API v2) only. 
2847 // Return NULL if the symbol is not defined in this particular version. 
2848 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2849   return dlvsym(handle, name, "libnuma_1.2");
2850 }
2851 
2852 
2853 bool os::Linux::libnuma_init() {
2854   // sched_getcpu() should be in libc.
2855   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2856                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2857 
2858   // If it's not, try a direct syscall.
2859   if (sched_getcpu() == -1) {
2860     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2861                                     (void*)&sched_getcpu_syscall));
2862   }
2863 
2864   if (sched_getcpu() != -1) { // Does it work?
2865     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2866     if (handle != NULL) {
2867       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2868                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2869       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2870                                        libnuma_dlsym(handle, "numa_max_node")));
2871       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2872                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2873       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2874                                         libnuma_dlsym(handle, "numa_available")));
2875       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2876                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2877       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2878                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2879       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2880                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2881       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2882                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2883       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2884                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2885       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2886                                        libnuma_dlsym(handle, "numa_distance")));
2887 
2888       if (numa_available() != -1) {
2889         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2890         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2891         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2892         // Create an index -> node mapping, since nodes are not always consecutive
2893         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2894         rebuild_nindex_to_node_map();
2895         // Create a cpu -> node mapping
2896         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2897         rebuild_cpu_to_node_map();
2898         return true;
2899       }
2900     }
2901   }
2902   return false;
2903 }
2904 
2905 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2906   // Creating guard page is very expensive. Java thread has HotSpot
2907   // guard pages, only enable glibc guard page for non-Java threads.
2908   // (Remember: compiler thread is a Java thread, too!)
2909   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2910 }
2911 
2912 void os::Linux::rebuild_nindex_to_node_map() {
2913   int highest_node_number = Linux::numa_max_node();
2914 
2915   nindex_to_node()->clear();
2916   for (int node = 0; node <= highest_node_number; node++) {
2917     if (Linux::isnode_in_existing_nodes(node)) {
2918       nindex_to_node()->append(node);
2919     }
2920   }
2921 }
2922 
2923 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2924 // The table is later used in get_node_by_cpu().
2925 void os::Linux::rebuild_cpu_to_node_map() {
2926   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2927                               // in libnuma (possible values are starting from 16,
2928                               // and continuing up with every other power of 2, but less
2929                               // than the maximum number of CPUs supported by kernel), and
2930                               // is a subject to change (in libnuma version 2 the requirements
2931                               // are more reasonable) we'll just hardcode the number they use
2932                               // in the library.
2933   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2934 
2935   size_t cpu_num = processor_count();
2936   size_t cpu_map_size = NCPUS / BitsPerCLong;
2937   size_t cpu_map_valid_size =
2938     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2939 
2940   cpu_to_node()->clear();
2941   cpu_to_node()->at_grow(cpu_num - 1);
2942 
2943   size_t node_num = get_existing_num_nodes();
2944 
2945   int distance = 0;
2946   int closest_distance = INT_MAX;
2947   int closest_node = 0;
2948   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2949   for (size_t i = 0; i < node_num; i++) {
2950     // Check if node is configured (not a memory-less node). If it is not, find
2951     // the closest configured node.
2952     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
2953       closest_distance = INT_MAX;
2954       // Check distance from all remaining nodes in the system. Ignore distance
2955       // from itself and from another non-configured node.
2956       for (size_t m = 0; m < node_num; m++) {
2957         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
2958           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2959           // If a closest node is found, update. There is always at least one
2960           // configured node in the system so there is always at least one node
2961           // close.
2962           if (distance != 0 && distance < closest_distance) {
2963             closest_distance = distance;
2964             closest_node = nindex_to_node()->at(m);
2965           }
2966         }
2967       }
2968      } else {
2969        // Current node is already a configured node.
2970        closest_node = nindex_to_node()->at(i);
2971      }
2972 
2973     // Get cpus from the original node and map them to the closest node. If node
2974     // is a configured node (not a memory-less node), then original node and
2975     // closest node are the same.
2976     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2977       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2978         if (cpu_map[j] != 0) {
2979           for (size_t k = 0; k < BitsPerCLong; k++) {
2980             if (cpu_map[j] & (1UL << k)) {
2981               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
2982             }
2983           }
2984         }
2985       }
2986     }
2987   }
2988   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2989 }
2990 
2991 int os::Linux::get_node_by_cpu(int cpu_id) {
2992   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2993     return cpu_to_node()->at(cpu_id);
2994   }
2995   return -1;
2996 }
2997 
2998 GrowableArray<int>* os::Linux::_cpu_to_node;
2999 GrowableArray<int>* os::Linux::_nindex_to_node;
3000 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3001 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3002 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3003 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3004 os::Linux::numa_available_func_t os::Linux::_numa_available;
3005 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3006 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3007 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3008 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3009 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3010 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3011 unsigned long* os::Linux::_numa_all_nodes;
3012 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3013 struct bitmask* os::Linux::_numa_nodes_ptr;
3014 
3015 bool os::pd_uncommit_memory(char* addr, size_t size) {
3016   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3017                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3018   return res  != (uintptr_t) MAP_FAILED;
3019 }
3020 
3021 static address get_stack_commited_bottom(address bottom, size_t size) {
3022   address nbot = bottom;
3023   address ntop = bottom + size;
3024 
3025   size_t page_sz = os::vm_page_size();
3026   unsigned pages = size / page_sz;
3027 
3028   unsigned char vec[1];
3029   unsigned imin = 1, imax = pages + 1, imid;
3030   int mincore_return_value = 0;
3031 
3032   assert(imin <= imax, "Unexpected page size");
3033 
3034   while (imin < imax) {
3035     imid = (imax + imin) / 2;
3036     nbot = ntop - (imid * page_sz);
3037 
3038     // Use a trick with mincore to check whether the page is mapped or not.
3039     // mincore sets vec to 1 if page resides in memory and to 0 if page
3040     // is swapped output but if page we are asking for is unmapped
3041     // it returns -1,ENOMEM
3042     mincore_return_value = mincore(nbot, page_sz, vec);
3043 
3044     if (mincore_return_value == -1) {
3045       // Page is not mapped go up
3046       // to find first mapped page
3047       if (errno != EAGAIN) {
3048         assert(errno == ENOMEM, "Unexpected mincore errno");
3049         imax = imid;
3050       }
3051     } else {
3052       // Page is mapped go down
3053       // to find first not mapped page
3054       imin = imid + 1;
3055     }
3056   }
3057 
3058   nbot = nbot + page_sz;
3059 
3060   // Adjust stack bottom one page up if last checked page is not mapped
3061   if (mincore_return_value == -1) {
3062     nbot = nbot + page_sz;
3063   }
3064 
3065   return nbot;
3066 }
3067 
3068 
3069 // Linux uses a growable mapping for the stack, and if the mapping for
3070 // the stack guard pages is not removed when we detach a thread the
3071 // stack cannot grow beyond the pages where the stack guard was
3072 // mapped.  If at some point later in the process the stack expands to
3073 // that point, the Linux kernel cannot expand the stack any further
3074 // because the guard pages are in the way, and a segfault occurs.
3075 //
3076 // However, it's essential not to split the stack region by unmapping
3077 // a region (leaving a hole) that's already part of the stack mapping,
3078 // so if the stack mapping has already grown beyond the guard pages at
3079 // the time we create them, we have to truncate the stack mapping.
3080 // So, we need to know the extent of the stack mapping when
3081 // create_stack_guard_pages() is called.
3082 
3083 // We only need this for stacks that are growable: at the time of
3084 // writing thread stacks don't use growable mappings (i.e. those
3085 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3086 // only applies to the main thread.
3087 
3088 // If the (growable) stack mapping already extends beyond the point
3089 // where we're going to put our guard pages, truncate the mapping at
3090 // that point by munmap()ping it.  This ensures that when we later
3091 // munmap() the guard pages we don't leave a hole in the stack
3092 // mapping. This only affects the main/initial thread
3093 
3094 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3095   if (os::Linux::is_initial_thread()) {
3096     // As we manually grow stack up to bottom inside create_attached_thread(),
3097     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3098     // we don't need to do anything special.
3099     // Check it first, before calling heavy function.
3100     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3101     unsigned char vec[1];
3102 
3103     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3104       // Fallback to slow path on all errors, including EAGAIN
3105       stack_extent = (uintptr_t) get_stack_commited_bottom(
3106                                                            os::Linux::initial_thread_stack_bottom(),
3107                                                            (size_t)addr - stack_extent);
3108     }
3109 
3110     if (stack_extent < (uintptr_t)addr) {
3111       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3112     }
3113   }
3114 
3115   return os::commit_memory(addr, size, !ExecMem);
3116 }
3117 
3118 // If this is a growable mapping, remove the guard pages entirely by
3119 // munmap()ping them.  If not, just call uncommit_memory(). This only
3120 // affects the main/initial thread, but guard against future OS changes
3121 // It's safe to always unmap guard pages for initial thread because we
3122 // always place it right after end of the mapped region
3123 
3124 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3125   uintptr_t stack_extent, stack_base;
3126 
3127   if (os::Linux::is_initial_thread()) {
3128     return ::munmap(addr, size) == 0;
3129   }
3130 
3131   return os::uncommit_memory(addr, size);
3132 }
3133 
3134 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3135 // at 'requested_addr'. If there are existing memory mappings at the same
3136 // location, however, they will be overwritten. If 'fixed' is false,
3137 // 'requested_addr' is only treated as a hint, the return value may or
3138 // may not start from the requested address. Unlike Linux mmap(), this
3139 // function returns NULL to indicate failure.
3140 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3141   char * addr;
3142   int flags;
3143 
3144   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3145   if (fixed) {
3146     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3147     flags |= MAP_FIXED;
3148   }
3149 
3150   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3151   // touch an uncommitted page. Otherwise, the read/write might
3152   // succeed if we have enough swap space to back the physical page.
3153   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3154                        flags, -1, 0);
3155 
3156   return addr == MAP_FAILED ? NULL : addr;
3157 }
3158 
3159 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3160 //   (req_addr != NULL) or with a given alignment.
3161 //  - bytes shall be a multiple of alignment.
3162 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3163 //  - alignment sets the alignment at which memory shall be allocated.
3164 //     It must be a multiple of allocation granularity.
3165 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3166 //  req_addr or NULL.
3167 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3168 
3169   size_t extra_size = bytes;
3170   if (req_addr == NULL && alignment > 0) {
3171     extra_size += alignment;
3172   }
3173 
3174   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3175     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3176     -1, 0);
3177   if (start == MAP_FAILED) {
3178     start = NULL;
3179   } else {
3180     if (req_addr != NULL) {
3181       if (start != req_addr) {
3182         ::munmap(start, extra_size);
3183         start = NULL;
3184       }
3185     } else {
3186       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3187       char* const end_aligned = start_aligned + bytes;
3188       char* const end = start + extra_size;
3189       if (start_aligned > start) {
3190         ::munmap(start, start_aligned - start);
3191       }
3192       if (end_aligned < end) {
3193         ::munmap(end_aligned, end - end_aligned);
3194       }
3195       start = start_aligned;
3196     }
3197   }
3198   return start;
3199 }
3200 
3201 static int anon_munmap(char * addr, size_t size) {
3202   return ::munmap(addr, size) == 0;
3203 }
3204 
3205 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3206                             size_t alignment_hint) {
3207   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3208 }
3209 
3210 bool os::pd_release_memory(char* addr, size_t size) {
3211   return anon_munmap(addr, size);
3212 }
3213 
3214 static bool linux_mprotect(char* addr, size_t size, int prot) {
3215   // Linux wants the mprotect address argument to be page aligned.
3216   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3217 
3218   // According to SUSv3, mprotect() should only be used with mappings
3219   // established by mmap(), and mmap() always maps whole pages. Unaligned
3220   // 'addr' likely indicates problem in the VM (e.g. trying to change
3221   // protection of malloc'ed or statically allocated memory). Check the
3222   // caller if you hit this assert.
3223   assert(addr == bottom, "sanity check");
3224 
3225   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3226   return ::mprotect(bottom, size, prot) == 0;
3227 }
3228 
3229 // Set protections specified
3230 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3231                         bool is_committed) {
3232   unsigned int p = 0;
3233   switch (prot) {
3234   case MEM_PROT_NONE: p = PROT_NONE; break;
3235   case MEM_PROT_READ: p = PROT_READ; break;
3236   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3237   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3238   default:
3239     ShouldNotReachHere();
3240   }
3241   // is_committed is unused.
3242   return linux_mprotect(addr, bytes, p);
3243 }
3244 
3245 bool os::guard_memory(char* addr, size_t size) {
3246   return linux_mprotect(addr, size, PROT_NONE);
3247 }
3248 
3249 bool os::unguard_memory(char* addr, size_t size) {
3250   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3251 }
3252 
3253 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3254                                                     size_t page_size) {
3255   bool result = false;
3256   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3257                  MAP_ANONYMOUS|MAP_PRIVATE,
3258                  -1, 0);
3259   if (p != MAP_FAILED) {
3260     void *aligned_p = align_ptr_up(p, page_size);
3261 
3262     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3263 
3264     munmap(p, page_size * 2);
3265   }
3266 
3267   if (warn && !result) {
3268     warning("TransparentHugePages is not supported by the operating system.");
3269   }
3270 
3271   return result;
3272 }
3273 
3274 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3275   bool result = false;
3276   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3277                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3278                  -1, 0);
3279 
3280   if (p != MAP_FAILED) {
3281     // We don't know if this really is a huge page or not.
3282     FILE *fp = fopen("/proc/self/maps", "r");
3283     if (fp) {
3284       while (!feof(fp)) {
3285         char chars[257];
3286         long x = 0;
3287         if (fgets(chars, sizeof(chars), fp)) {
3288           if (sscanf(chars, "%lx-%*x", &x) == 1
3289               && x == (long)p) {
3290             if (strstr (chars, "hugepage")) {
3291               result = true;
3292               break;
3293             }
3294           }
3295         }
3296       }
3297       fclose(fp);
3298     }
3299     munmap(p, page_size);
3300   }
3301 
3302   if (warn && !result) {
3303     warning("HugeTLBFS is not supported by the operating system.");
3304   }
3305 
3306   return result;
3307 }
3308 
3309 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3310 //
3311 // From the coredump_filter documentation:
3312 //
3313 // - (bit 0) anonymous private memory
3314 // - (bit 1) anonymous shared memory
3315 // - (bit 2) file-backed private memory
3316 // - (bit 3) file-backed shared memory
3317 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3318 //           effective only if the bit 2 is cleared)
3319 // - (bit 5) hugetlb private memory
3320 // - (bit 6) hugetlb shared memory
3321 //
3322 static void set_coredump_filter(void) {
3323   FILE *f;
3324   long cdm;
3325 
3326   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3327     return;
3328   }
3329 
3330   if (fscanf(f, "%lx", &cdm) != 1) {
3331     fclose(f);
3332     return;
3333   }
3334 
3335   rewind(f);
3336 
3337   if ((cdm & LARGEPAGES_BIT) == 0) {
3338     cdm |= LARGEPAGES_BIT;
3339     fprintf(f, "%#lx", cdm);
3340   }
3341 
3342   fclose(f);
3343 }
3344 
3345 // Large page support
3346 
3347 static size_t _large_page_size = 0;
3348 
3349 size_t os::Linux::find_large_page_size() {
3350   size_t large_page_size = 0;
3351 
3352   // large_page_size on Linux is used to round up heap size. x86 uses either
3353   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3354   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3355   // page as large as 256M.
3356   //
3357   // Here we try to figure out page size by parsing /proc/meminfo and looking
3358   // for a line with the following format:
3359   //    Hugepagesize:     2048 kB
3360   //
3361   // If we can't determine the value (e.g. /proc is not mounted, or the text
3362   // format has been changed), we'll use the largest page size supported by
3363   // the processor.
3364 
3365 #ifndef ZERO
3366   large_page_size =
3367     AARCH64_ONLY(2 * M)
3368     AMD64_ONLY(2 * M)
3369     ARM32_ONLY(2 * M)
3370     IA32_ONLY(4 * M)
3371     IA64_ONLY(256 * M)
3372     PPC_ONLY(4 * M)
3373     S390_ONLY(1 * M)
3374     SPARC_ONLY(4 * M);
3375 #endif // ZERO
3376 
3377   FILE *fp = fopen("/proc/meminfo", "r");
3378   if (fp) {
3379     while (!feof(fp)) {
3380       int x = 0;
3381       char buf[16];
3382       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3383         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3384           large_page_size = x * K;
3385           break;
3386         }
3387       } else {
3388         // skip to next line
3389         for (;;) {
3390           int ch = fgetc(fp);
3391           if (ch == EOF || ch == (int)'\n') break;
3392         }
3393       }
3394     }
3395     fclose(fp);
3396   }
3397 
3398   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3399     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3400             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3401             proper_unit_for_byte_size(large_page_size));
3402   }
3403 
3404   return large_page_size;
3405 }
3406 
3407 size_t os::Linux::setup_large_page_size() {
3408   _large_page_size = Linux::find_large_page_size();
3409   const size_t default_page_size = (size_t)Linux::page_size();
3410   if (_large_page_size > default_page_size) {
3411     _page_sizes[0] = _large_page_size;
3412     _page_sizes[1] = default_page_size;
3413     _page_sizes[2] = 0;
3414   }
3415 
3416   return _large_page_size;
3417 }
3418 
3419 bool os::Linux::setup_large_page_type(size_t page_size) {
3420   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3421       FLAG_IS_DEFAULT(UseSHM) &&
3422       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3423 
3424     // The type of large pages has not been specified by the user.
3425 
3426     // Try UseHugeTLBFS and then UseSHM.
3427     UseHugeTLBFS = UseSHM = true;
3428 
3429     // Don't try UseTransparentHugePages since there are known
3430     // performance issues with it turned on. This might change in the future.
3431     UseTransparentHugePages = false;
3432   }
3433 
3434   if (UseTransparentHugePages) {
3435     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3436     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3437       UseHugeTLBFS = false;
3438       UseSHM = false;
3439       return true;
3440     }
3441     UseTransparentHugePages = false;
3442   }
3443 
3444   if (UseHugeTLBFS) {
3445     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3446     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3447       UseSHM = false;
3448       return true;
3449     }
3450     UseHugeTLBFS = false;
3451   }
3452 
3453   return UseSHM;
3454 }
3455 
3456 void os::large_page_init() {
3457   if (!UseLargePages &&
3458       !UseTransparentHugePages &&
3459       !UseHugeTLBFS &&
3460       !UseSHM) {
3461     // Not using large pages.
3462     return;
3463   }
3464 
3465   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3466     // The user explicitly turned off large pages.
3467     // Ignore the rest of the large pages flags.
3468     UseTransparentHugePages = false;
3469     UseHugeTLBFS = false;
3470     UseSHM = false;
3471     return;
3472   }
3473 
3474   size_t large_page_size = Linux::setup_large_page_size();
3475   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3476 
3477   set_coredump_filter();
3478 }
3479 
3480 #ifndef SHM_HUGETLB
3481   #define SHM_HUGETLB 04000
3482 #endif
3483 
3484 #define shm_warning_format(format, ...)              \
3485   do {                                               \
3486     if (UseLargePages &&                             \
3487         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3488          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3489          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3490       warning(format, __VA_ARGS__);                  \
3491     }                                                \
3492   } while (0)
3493 
3494 #define shm_warning(str) shm_warning_format("%s", str)
3495 
3496 #define shm_warning_with_errno(str)                \
3497   do {                                             \
3498     int err = errno;                               \
3499     shm_warning_format(str " (error = %d)", err);  \
3500   } while (0)
3501 
3502 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3503   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3504 
3505   if (!is_size_aligned(alignment, SHMLBA)) {
3506     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3507     return NULL;
3508   }
3509 
3510   // To ensure that we get 'alignment' aligned memory from shmat,
3511   // we pre-reserve aligned virtual memory and then attach to that.
3512 
3513   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3514   if (pre_reserved_addr == NULL) {
3515     // Couldn't pre-reserve aligned memory.
3516     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3517     return NULL;
3518   }
3519 
3520   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3521   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3522 
3523   if ((intptr_t)addr == -1) {
3524     int err = errno;
3525     shm_warning_with_errno("Failed to attach shared memory.");
3526 
3527     assert(err != EACCES, "Unexpected error");
3528     assert(err != EIDRM,  "Unexpected error");
3529     assert(err != EINVAL, "Unexpected error");
3530 
3531     // Since we don't know if the kernel unmapped the pre-reserved memory area
3532     // we can't unmap it, since that would potentially unmap memory that was
3533     // mapped from other threads.
3534     return NULL;
3535   }
3536 
3537   return addr;
3538 }
3539 
3540 static char* shmat_at_address(int shmid, char* req_addr) {
3541   if (!is_ptr_aligned(req_addr, SHMLBA)) {
3542     assert(false, "Requested address needs to be SHMLBA aligned");
3543     return NULL;
3544   }
3545 
3546   char* addr = (char*)shmat(shmid, req_addr, 0);
3547 
3548   if ((intptr_t)addr == -1) {
3549     shm_warning_with_errno("Failed to attach shared memory.");
3550     return NULL;
3551   }
3552 
3553   return addr;
3554 }
3555 
3556 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3557   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3558   if (req_addr != NULL) {
3559     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3560     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3561     return shmat_at_address(shmid, req_addr);
3562   }
3563 
3564   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3565   // return large page size aligned memory addresses when req_addr == NULL.
3566   // However, if the alignment is larger than the large page size, we have
3567   // to manually ensure that the memory returned is 'alignment' aligned.
3568   if (alignment > os::large_page_size()) {
3569     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3570     return shmat_with_alignment(shmid, bytes, alignment);
3571   } else {
3572     return shmat_at_address(shmid, NULL);
3573   }
3574 }
3575 
3576 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3577                                             char* req_addr, bool exec) {
3578   // "exec" is passed in but not used.  Creating the shared image for
3579   // the code cache doesn't have an SHM_X executable permission to check.
3580   assert(UseLargePages && UseSHM, "only for SHM large pages");
3581   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3582   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3583 
3584   if (!is_size_aligned(bytes, os::large_page_size())) {
3585     return NULL; // Fallback to small pages.
3586   }
3587 
3588   // Create a large shared memory region to attach to based on size.
3589   // Currently, size is the total size of the heap.
3590   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3591   if (shmid == -1) {
3592     // Possible reasons for shmget failure:
3593     // 1. shmmax is too small for Java heap.
3594     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3595     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3596     // 2. not enough large page memory.
3597     //    > check available large pages: cat /proc/meminfo
3598     //    > increase amount of large pages:
3599     //          echo new_value > /proc/sys/vm/nr_hugepages
3600     //      Note 1: different Linux may use different name for this property,
3601     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3602     //      Note 2: it's possible there's enough physical memory available but
3603     //            they are so fragmented after a long run that they can't
3604     //            coalesce into large pages. Try to reserve large pages when
3605     //            the system is still "fresh".
3606     shm_warning_with_errno("Failed to reserve shared memory.");
3607     return NULL;
3608   }
3609 
3610   // Attach to the region.
3611   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3612 
3613   // Remove shmid. If shmat() is successful, the actual shared memory segment
3614   // will be deleted when it's detached by shmdt() or when the process
3615   // terminates. If shmat() is not successful this will remove the shared
3616   // segment immediately.
3617   shmctl(shmid, IPC_RMID, NULL);
3618 
3619   return addr;
3620 }
3621 
3622 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3623                                         int error) {
3624   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3625 
3626   bool warn_on_failure = UseLargePages &&
3627       (!FLAG_IS_DEFAULT(UseLargePages) ||
3628        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3629        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3630 
3631   if (warn_on_failure) {
3632     char msg[128];
3633     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3634                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3635     warning("%s", msg);
3636   }
3637 }
3638 
3639 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3640                                                         char* req_addr,
3641                                                         bool exec) {
3642   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3643   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3644   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3645 
3646   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3647   char* addr = (char*)::mmap(req_addr, bytes, prot,
3648                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3649                              -1, 0);
3650 
3651   if (addr == MAP_FAILED) {
3652     warn_on_large_pages_failure(req_addr, bytes, errno);
3653     return NULL;
3654   }
3655 
3656   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3657 
3658   return addr;
3659 }
3660 
3661 // Reserve memory using mmap(MAP_HUGETLB).
3662 //  - bytes shall be a multiple of alignment.
3663 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3664 //  - alignment sets the alignment at which memory shall be allocated.
3665 //     It must be a multiple of allocation granularity.
3666 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3667 //  req_addr or NULL.
3668 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3669                                                          size_t alignment,
3670                                                          char* req_addr,
3671                                                          bool exec) {
3672   size_t large_page_size = os::large_page_size();
3673   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3674 
3675   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3676   assert(is_size_aligned(bytes, alignment), "Must be");
3677 
3678   // First reserve - but not commit - the address range in small pages.
3679   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3680 
3681   if (start == NULL) {
3682     return NULL;
3683   }
3684 
3685   assert(is_ptr_aligned(start, alignment), "Must be");
3686 
3687   char* end = start + bytes;
3688 
3689   // Find the regions of the allocated chunk that can be promoted to large pages.
3690   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3691   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3692 
3693   size_t lp_bytes = lp_end - lp_start;
3694 
3695   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3696 
3697   if (lp_bytes == 0) {
3698     // The mapped region doesn't even span the start and the end of a large page.
3699     // Fall back to allocate a non-special area.
3700     ::munmap(start, end - start);
3701     return NULL;
3702   }
3703 
3704   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3705 
3706   void* result;
3707 
3708   // Commit small-paged leading area.
3709   if (start != lp_start) {
3710     result = ::mmap(start, lp_start - start, prot,
3711                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3712                     -1, 0);
3713     if (result == MAP_FAILED) {
3714       ::munmap(lp_start, end - lp_start);
3715       return NULL;
3716     }
3717   }
3718 
3719   // Commit large-paged area.
3720   result = ::mmap(lp_start, lp_bytes, prot,
3721                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3722                   -1, 0);
3723   if (result == MAP_FAILED) {
3724     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3725     // If the mmap above fails, the large pages region will be unmapped and we
3726     // have regions before and after with small pages. Release these regions.
3727     //
3728     // |  mapped  |  unmapped  |  mapped  |
3729     // ^          ^            ^          ^
3730     // start      lp_start     lp_end     end
3731     //
3732     ::munmap(start, lp_start - start);
3733     ::munmap(lp_end, end - lp_end);
3734     return NULL;
3735   }
3736 
3737   // Commit small-paged trailing area.
3738   if (lp_end != end) {
3739     result = ::mmap(lp_end, end - lp_end, prot,
3740                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3741                     -1, 0);
3742     if (result == MAP_FAILED) {
3743       ::munmap(start, lp_end - start);
3744       return NULL;
3745     }
3746   }
3747 
3748   return start;
3749 }
3750 
3751 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3752                                                    size_t alignment,
3753                                                    char* req_addr,
3754                                                    bool exec) {
3755   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3756   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3757   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3758   assert(is_power_of_2(os::large_page_size()), "Must be");
3759   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3760 
3761   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3762     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3763   } else {
3764     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3765   }
3766 }
3767 
3768 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3769                                  char* req_addr, bool exec) {
3770   assert(UseLargePages, "only for large pages");
3771 
3772   char* addr;
3773   if (UseSHM) {
3774     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3775   } else {
3776     assert(UseHugeTLBFS, "must be");
3777     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3778   }
3779 
3780   if (addr != NULL) {
3781     if (UseNUMAInterleaving) {
3782       numa_make_global(addr, bytes);
3783     }
3784 
3785     // The memory is committed
3786     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3787   }
3788 
3789   return addr;
3790 }
3791 
3792 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3793   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3794   return shmdt(base) == 0;
3795 }
3796 
3797 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3798   return pd_release_memory(base, bytes);
3799 }
3800 
3801 bool os::release_memory_special(char* base, size_t bytes) {
3802   bool res;
3803   if (MemTracker::tracking_level() > NMT_minimal) {
3804     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3805     res = os::Linux::release_memory_special_impl(base, bytes);
3806     if (res) {
3807       tkr.record((address)base, bytes);
3808     }
3809 
3810   } else {
3811     res = os::Linux::release_memory_special_impl(base, bytes);
3812   }
3813   return res;
3814 }
3815 
3816 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3817   assert(UseLargePages, "only for large pages");
3818   bool res;
3819 
3820   if (UseSHM) {
3821     res = os::Linux::release_memory_special_shm(base, bytes);
3822   } else {
3823     assert(UseHugeTLBFS, "must be");
3824     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3825   }
3826   return res;
3827 }
3828 
3829 size_t os::large_page_size() {
3830   return _large_page_size;
3831 }
3832 
3833 // With SysV SHM the entire memory region must be allocated as shared
3834 // memory.
3835 // HugeTLBFS allows application to commit large page memory on demand.
3836 // However, when committing memory with HugeTLBFS fails, the region
3837 // that was supposed to be committed will lose the old reservation
3838 // and allow other threads to steal that memory region. Because of this
3839 // behavior we can't commit HugeTLBFS memory.
3840 bool os::can_commit_large_page_memory() {
3841   return UseTransparentHugePages;
3842 }
3843 
3844 bool os::can_execute_large_page_memory() {
3845   return UseTransparentHugePages || UseHugeTLBFS;
3846 }
3847 
3848 // Reserve memory at an arbitrary address, only if that area is
3849 // available (and not reserved for something else).
3850 
3851 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3852   const int max_tries = 10;
3853   char* base[max_tries];
3854   size_t size[max_tries];
3855   const size_t gap = 0x000000;
3856 
3857   // Assert only that the size is a multiple of the page size, since
3858   // that's all that mmap requires, and since that's all we really know
3859   // about at this low abstraction level.  If we need higher alignment,
3860   // we can either pass an alignment to this method or verify alignment
3861   // in one of the methods further up the call chain.  See bug 5044738.
3862   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3863 
3864   // Repeatedly allocate blocks until the block is allocated at the
3865   // right spot.
3866 
3867   // Linux mmap allows caller to pass an address as hint; give it a try first,
3868   // if kernel honors the hint then we can return immediately.
3869   char * addr = anon_mmap(requested_addr, bytes, false);
3870   if (addr == requested_addr) {
3871     return requested_addr;
3872   }
3873 
3874   if (addr != NULL) {
3875     // mmap() is successful but it fails to reserve at the requested address
3876     anon_munmap(addr, bytes);
3877   }
3878 
3879   int i;
3880   for (i = 0; i < max_tries; ++i) {
3881     base[i] = reserve_memory(bytes);
3882 
3883     if (base[i] != NULL) {
3884       // Is this the block we wanted?
3885       if (base[i] == requested_addr) {
3886         size[i] = bytes;
3887         break;
3888       }
3889 
3890       // Does this overlap the block we wanted? Give back the overlapped
3891       // parts and try again.
3892 
3893       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3894       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3895         unmap_memory(base[i], top_overlap);
3896         base[i] += top_overlap;
3897         size[i] = bytes - top_overlap;
3898       } else {
3899         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3900         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3901           unmap_memory(requested_addr, bottom_overlap);
3902           size[i] = bytes - bottom_overlap;
3903         } else {
3904           size[i] = bytes;
3905         }
3906       }
3907     }
3908   }
3909 
3910   // Give back the unused reserved pieces.
3911 
3912   for (int j = 0; j < i; ++j) {
3913     if (base[j] != NULL) {
3914       unmap_memory(base[j], size[j]);
3915     }
3916   }
3917 
3918   if (i < max_tries) {
3919     return requested_addr;
3920   } else {
3921     return NULL;
3922   }
3923 }
3924 
3925 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3926   return ::read(fd, buf, nBytes);
3927 }
3928 
3929 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3930   return ::pread(fd, buf, nBytes, offset);
3931 }
3932 
3933 // Short sleep, direct OS call.
3934 //
3935 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3936 // sched_yield(2) will actually give up the CPU:
3937 //
3938 //   * Alone on this pariticular CPU, keeps running.
3939 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3940 //     (pre 2.6.39).
3941 //
3942 // So calling this with 0 is an alternative.
3943 //
3944 void os::naked_short_sleep(jlong ms) {
3945   struct timespec req;
3946 
3947   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3948   req.tv_sec = 0;
3949   if (ms > 0) {
3950     req.tv_nsec = (ms % 1000) * 1000000;
3951   } else {
3952     req.tv_nsec = 1;
3953   }
3954 
3955   nanosleep(&req, NULL);
3956 
3957   return;
3958 }
3959 
3960 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3961 void os::infinite_sleep() {
3962   while (true) {    // sleep forever ...
3963     ::sleep(100);   // ... 100 seconds at a time
3964   }
3965 }
3966 
3967 // Used to convert frequent JVM_Yield() to nops
3968 bool os::dont_yield() {
3969   return DontYieldALot;
3970 }
3971 
3972 void os::naked_yield() {
3973   sched_yield();
3974 }
3975 
3976 ////////////////////////////////////////////////////////////////////////////////
3977 // thread priority support
3978 
3979 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3980 // only supports dynamic priority, static priority must be zero. For real-time
3981 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3982 // However, for large multi-threaded applications, SCHED_RR is not only slower
3983 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3984 // of 5 runs - Sep 2005).
3985 //
3986 // The following code actually changes the niceness of kernel-thread/LWP. It
3987 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3988 // not the entire user process, and user level threads are 1:1 mapped to kernel
3989 // threads. It has always been the case, but could change in the future. For
3990 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3991 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3992 
3993 int os::java_to_os_priority[CriticalPriority + 1] = {
3994   19,              // 0 Entry should never be used
3995 
3996    4,              // 1 MinPriority
3997    3,              // 2
3998    2,              // 3
3999 
4000    1,              // 4
4001    0,              // 5 NormPriority
4002   -1,              // 6
4003 
4004   -2,              // 7
4005   -3,              // 8
4006   -4,              // 9 NearMaxPriority
4007 
4008   -5,              // 10 MaxPriority
4009 
4010   -5               // 11 CriticalPriority
4011 };
4012 
4013 static int prio_init() {
4014   if (ThreadPriorityPolicy == 1) {
4015     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4016     // if effective uid is not root. Perhaps, a more elegant way of doing
4017     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4018     if (geteuid() != 0) {
4019       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4020         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4021       }
4022       ThreadPriorityPolicy = 0;
4023     }
4024   }
4025   if (UseCriticalJavaThreadPriority) {
4026     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4027   }
4028   return 0;
4029 }
4030 
4031 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4032   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4033 
4034   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4035   return (ret == 0) ? OS_OK : OS_ERR;
4036 }
4037 
4038 OSReturn os::get_native_priority(const Thread* const thread,
4039                                  int *priority_ptr) {
4040   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4041     *priority_ptr = java_to_os_priority[NormPriority];
4042     return OS_OK;
4043   }
4044 
4045   errno = 0;
4046   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4047   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4048 }
4049 
4050 // Hint to the underlying OS that a task switch would not be good.
4051 // Void return because it's a hint and can fail.
4052 void os::hint_no_preempt() {}
4053 
4054 ////////////////////////////////////////////////////////////////////////////////
4055 // suspend/resume support
4056 
4057 //  the low-level signal-based suspend/resume support is a remnant from the
4058 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4059 //  within hotspot. Now there is a single use-case for this:
4060 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
4061 //      that runs in the watcher thread.
4062 //  The remaining code is greatly simplified from the more general suspension
4063 //  code that used to be used.
4064 //
4065 //  The protocol is quite simple:
4066 //  - suspend:
4067 //      - sends a signal to the target thread
4068 //      - polls the suspend state of the osthread using a yield loop
4069 //      - target thread signal handler (SR_handler) sets suspend state
4070 //        and blocks in sigsuspend until continued
4071 //  - resume:
4072 //      - sets target osthread state to continue
4073 //      - sends signal to end the sigsuspend loop in the SR_handler
4074 //
4075 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4076 //  but is checked for NULL in SR_handler as a thread termination indicator.
4077 
4078 static void resume_clear_context(OSThread *osthread) {
4079   osthread->set_ucontext(NULL);
4080   osthread->set_siginfo(NULL);
4081 }
4082 
4083 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4084                                  ucontext_t* context) {
4085   osthread->set_ucontext(context);
4086   osthread->set_siginfo(siginfo);
4087 }
4088 
4089 // Handler function invoked when a thread's execution is suspended or
4090 // resumed. We have to be careful that only async-safe functions are
4091 // called here (Note: most pthread functions are not async safe and
4092 // should be avoided.)
4093 //
4094 // Note: sigwait() is a more natural fit than sigsuspend() from an
4095 // interface point of view, but sigwait() prevents the signal hander
4096 // from being run. libpthread would get very confused by not having
4097 // its signal handlers run and prevents sigwait()'s use with the
4098 // mutex granting granting signal.
4099 //
4100 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4101 //
4102 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4103   // Save and restore errno to avoid confusing native code with EINTR
4104   // after sigsuspend.
4105   int old_errno = errno;
4106 
4107   Thread* thread = Thread::current_or_null_safe();
4108   assert(thread != NULL, "Missing current thread in SR_handler");
4109 
4110   // On some systems we have seen signal delivery get "stuck" until the signal
4111   // mask is changed as part of thread termination. Check that the current thread
4112   // has not already terminated (via SR_lock()) - else the following assertion
4113   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4114   // destructor has completed.
4115 
4116   if (thread->SR_lock() == NULL) {
4117     return;
4118   }
4119 
4120   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4121 
4122   OSThread* osthread = thread->osthread();
4123 
4124   os::SuspendResume::State current = osthread->sr.state();
4125   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4126     suspend_save_context(osthread, siginfo, context);
4127 
4128     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4129     os::SuspendResume::State state = osthread->sr.suspended();
4130     if (state == os::SuspendResume::SR_SUSPENDED) {
4131       sigset_t suspend_set;  // signals for sigsuspend()
4132       sigemptyset(&suspend_set);
4133       // get current set of blocked signals and unblock resume signal
4134       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4135       sigdelset(&suspend_set, SR_signum);
4136 
4137       sr_semaphore.signal();
4138       // wait here until we are resumed
4139       while (1) {
4140         sigsuspend(&suspend_set);
4141 
4142         os::SuspendResume::State result = osthread->sr.running();
4143         if (result == os::SuspendResume::SR_RUNNING) {
4144           sr_semaphore.signal();
4145           break;
4146         }
4147       }
4148 
4149     } else if (state == os::SuspendResume::SR_RUNNING) {
4150       // request was cancelled, continue
4151     } else {
4152       ShouldNotReachHere();
4153     }
4154 
4155     resume_clear_context(osthread);
4156   } else if (current == os::SuspendResume::SR_RUNNING) {
4157     // request was cancelled, continue
4158   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4159     // ignore
4160   } else {
4161     // ignore
4162   }
4163 
4164   errno = old_errno;
4165 }
4166 
4167 static int SR_initialize() {
4168   struct sigaction act;
4169   char *s;
4170 
4171   // Get signal number to use for suspend/resume
4172   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4173     int sig = ::strtol(s, 0, 10);
4174     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4175         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4176       SR_signum = sig;
4177     } else {
4178       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4179               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4180     }
4181   }
4182 
4183   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4184          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4185 
4186   sigemptyset(&SR_sigset);
4187   sigaddset(&SR_sigset, SR_signum);
4188 
4189   // Set up signal handler for suspend/resume
4190   act.sa_flags = SA_RESTART|SA_SIGINFO;
4191   act.sa_handler = (void (*)(int)) SR_handler;
4192 
4193   // SR_signum is blocked by default.
4194   // 4528190 - We also need to block pthread restart signal (32 on all
4195   // supported Linux platforms). Note that LinuxThreads need to block
4196   // this signal for all threads to work properly. So we don't have
4197   // to use hard-coded signal number when setting up the mask.
4198   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4199 
4200   if (sigaction(SR_signum, &act, 0) == -1) {
4201     return -1;
4202   }
4203 
4204   // Save signal flag
4205   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4206   return 0;
4207 }
4208 
4209 static int sr_notify(OSThread* osthread) {
4210   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4211   assert_status(status == 0, status, "pthread_kill");
4212   return status;
4213 }
4214 
4215 // "Randomly" selected value for how long we want to spin
4216 // before bailing out on suspending a thread, also how often
4217 // we send a signal to a thread we want to resume
4218 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4219 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4220 
4221 // returns true on success and false on error - really an error is fatal
4222 // but this seems the normal response to library errors
4223 static bool do_suspend(OSThread* osthread) {
4224   assert(osthread->sr.is_running(), "thread should be running");
4225   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4226 
4227   // mark as suspended and send signal
4228   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4229     // failed to switch, state wasn't running?
4230     ShouldNotReachHere();
4231     return false;
4232   }
4233 
4234   if (sr_notify(osthread) != 0) {
4235     ShouldNotReachHere();
4236   }
4237 
4238   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4239   while (true) {
4240     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4241       break;
4242     } else {
4243       // timeout
4244       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4245       if (cancelled == os::SuspendResume::SR_RUNNING) {
4246         return false;
4247       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4248         // make sure that we consume the signal on the semaphore as well
4249         sr_semaphore.wait();
4250         break;
4251       } else {
4252         ShouldNotReachHere();
4253         return false;
4254       }
4255     }
4256   }
4257 
4258   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4259   return true;
4260 }
4261 
4262 static void do_resume(OSThread* osthread) {
4263   assert(osthread->sr.is_suspended(), "thread should be suspended");
4264   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4265 
4266   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4267     // failed to switch to WAKEUP_REQUEST
4268     ShouldNotReachHere();
4269     return;
4270   }
4271 
4272   while (true) {
4273     if (sr_notify(osthread) == 0) {
4274       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4275         if (osthread->sr.is_running()) {
4276           return;
4277         }
4278       }
4279     } else {
4280       ShouldNotReachHere();
4281     }
4282   }
4283 
4284   guarantee(osthread->sr.is_running(), "Must be running!");
4285 }
4286 
4287 ///////////////////////////////////////////////////////////////////////////////////
4288 // signal handling (except suspend/resume)
4289 
4290 // This routine may be used by user applications as a "hook" to catch signals.
4291 // The user-defined signal handler must pass unrecognized signals to this
4292 // routine, and if it returns true (non-zero), then the signal handler must
4293 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4294 // routine will never retun false (zero), but instead will execute a VM panic
4295 // routine kill the process.
4296 //
4297 // If this routine returns false, it is OK to call it again.  This allows
4298 // the user-defined signal handler to perform checks either before or after
4299 // the VM performs its own checks.  Naturally, the user code would be making
4300 // a serious error if it tried to handle an exception (such as a null check
4301 // or breakpoint) that the VM was generating for its own correct operation.
4302 //
4303 // This routine may recognize any of the following kinds of signals:
4304 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4305 // It should be consulted by handlers for any of those signals.
4306 //
4307 // The caller of this routine must pass in the three arguments supplied
4308 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4309 // field of the structure passed to sigaction().  This routine assumes that
4310 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4311 //
4312 // Note that the VM will print warnings if it detects conflicting signal
4313 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4314 //
4315 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4316                                                  siginfo_t* siginfo,
4317                                                  void* ucontext,
4318                                                  int abort_if_unrecognized);
4319 
4320 void signalHandler(int sig, siginfo_t* info, void* uc) {
4321   assert(info != NULL && uc != NULL, "it must be old kernel");
4322   int orig_errno = errno;  // Preserve errno value over signal handler.
4323   JVM_handle_linux_signal(sig, info, uc, true);
4324   errno = orig_errno;
4325 }
4326 
4327 
4328 // This boolean allows users to forward their own non-matching signals
4329 // to JVM_handle_linux_signal, harmlessly.
4330 bool os::Linux::signal_handlers_are_installed = false;
4331 
4332 // For signal-chaining
4333 struct sigaction sigact[NSIG];
4334 uint64_t sigs = 0;
4335 #if (64 < NSIG-1)
4336 #error "Not all signals can be encoded in sigs. Adapt its type!"
4337 #endif
4338 bool os::Linux::libjsig_is_loaded = false;
4339 typedef struct sigaction *(*get_signal_t)(int);
4340 get_signal_t os::Linux::get_signal_action = NULL;
4341 
4342 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4343   struct sigaction *actp = NULL;
4344 
4345   if (libjsig_is_loaded) {
4346     // Retrieve the old signal handler from libjsig
4347     actp = (*get_signal_action)(sig);
4348   }
4349   if (actp == NULL) {
4350     // Retrieve the preinstalled signal handler from jvm
4351     actp = get_preinstalled_handler(sig);
4352   }
4353 
4354   return actp;
4355 }
4356 
4357 static bool call_chained_handler(struct sigaction *actp, int sig,
4358                                  siginfo_t *siginfo, void *context) {
4359   // Call the old signal handler
4360   if (actp->sa_handler == SIG_DFL) {
4361     // It's more reasonable to let jvm treat it as an unexpected exception
4362     // instead of taking the default action.
4363     return false;
4364   } else if (actp->sa_handler != SIG_IGN) {
4365     if ((actp->sa_flags & SA_NODEFER) == 0) {
4366       // automaticlly block the signal
4367       sigaddset(&(actp->sa_mask), sig);
4368     }
4369 
4370     sa_handler_t hand = NULL;
4371     sa_sigaction_t sa = NULL;
4372     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4373     // retrieve the chained handler
4374     if (siginfo_flag_set) {
4375       sa = actp->sa_sigaction;
4376     } else {
4377       hand = actp->sa_handler;
4378     }
4379 
4380     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4381       actp->sa_handler = SIG_DFL;
4382     }
4383 
4384     // try to honor the signal mask
4385     sigset_t oset;
4386     sigemptyset(&oset);
4387     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4388 
4389     // call into the chained handler
4390     if (siginfo_flag_set) {
4391       (*sa)(sig, siginfo, context);
4392     } else {
4393       (*hand)(sig);
4394     }
4395 
4396     // restore the signal mask
4397     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4398   }
4399   // Tell jvm's signal handler the signal is taken care of.
4400   return true;
4401 }
4402 
4403 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4404   bool chained = false;
4405   // signal-chaining
4406   if (UseSignalChaining) {
4407     struct sigaction *actp = get_chained_signal_action(sig);
4408     if (actp != NULL) {
4409       chained = call_chained_handler(actp, sig, siginfo, context);
4410     }
4411   }
4412   return chained;
4413 }
4414 
4415 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4416   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4417     return &sigact[sig];
4418   }
4419   return NULL;
4420 }
4421 
4422 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4423   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4424   sigact[sig] = oldAct;
4425   sigs |= (uint64_t)1 << (sig-1);
4426 }
4427 
4428 // for diagnostic
4429 int sigflags[NSIG];
4430 
4431 int os::Linux::get_our_sigflags(int sig) {
4432   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4433   return sigflags[sig];
4434 }
4435 
4436 void os::Linux::set_our_sigflags(int sig, int flags) {
4437   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4438   if (sig > 0 && sig < NSIG) {
4439     sigflags[sig] = flags;
4440   }
4441 }
4442 
4443 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4444   // Check for overwrite.
4445   struct sigaction oldAct;
4446   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4447 
4448   void* oldhand = oldAct.sa_sigaction
4449                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4450                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4451   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4452       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4453       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4454     if (AllowUserSignalHandlers || !set_installed) {
4455       // Do not overwrite; user takes responsibility to forward to us.
4456       return;
4457     } else if (UseSignalChaining) {
4458       // save the old handler in jvm
4459       save_preinstalled_handler(sig, oldAct);
4460       // libjsig also interposes the sigaction() call below and saves the
4461       // old sigaction on it own.
4462     } else {
4463       fatal("Encountered unexpected pre-existing sigaction handler "
4464             "%#lx for signal %d.", (long)oldhand, sig);
4465     }
4466   }
4467 
4468   struct sigaction sigAct;
4469   sigfillset(&(sigAct.sa_mask));
4470   sigAct.sa_handler = SIG_DFL;
4471   if (!set_installed) {
4472     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4473   } else {
4474     sigAct.sa_sigaction = signalHandler;
4475     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4476   }
4477   // Save flags, which are set by ours
4478   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4479   sigflags[sig] = sigAct.sa_flags;
4480 
4481   int ret = sigaction(sig, &sigAct, &oldAct);
4482   assert(ret == 0, "check");
4483 
4484   void* oldhand2  = oldAct.sa_sigaction
4485                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4486                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4487   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4488 }
4489 
4490 // install signal handlers for signals that HotSpot needs to
4491 // handle in order to support Java-level exception handling.
4492 
4493 void os::Linux::install_signal_handlers() {
4494   if (!signal_handlers_are_installed) {
4495     signal_handlers_are_installed = true;
4496 
4497     // signal-chaining
4498     typedef void (*signal_setting_t)();
4499     signal_setting_t begin_signal_setting = NULL;
4500     signal_setting_t end_signal_setting = NULL;
4501     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4502                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4503     if (begin_signal_setting != NULL) {
4504       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4505                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4506       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4507                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4508       libjsig_is_loaded = true;
4509       assert(UseSignalChaining, "should enable signal-chaining");
4510     }
4511     if (libjsig_is_loaded) {
4512       // Tell libjsig jvm is setting signal handlers
4513       (*begin_signal_setting)();
4514     }
4515 
4516     set_signal_handler(SIGSEGV, true);
4517     set_signal_handler(SIGPIPE, true);
4518     set_signal_handler(SIGBUS, true);
4519     set_signal_handler(SIGILL, true);
4520     set_signal_handler(SIGFPE, true);
4521 #if defined(PPC64)
4522     set_signal_handler(SIGTRAP, true);
4523 #endif
4524     set_signal_handler(SIGXFSZ, true);
4525 
4526     if (libjsig_is_loaded) {
4527       // Tell libjsig jvm finishes setting signal handlers
4528       (*end_signal_setting)();
4529     }
4530 
4531     // We don't activate signal checker if libjsig is in place, we trust ourselves
4532     // and if UserSignalHandler is installed all bets are off.
4533     // Log that signal checking is off only if -verbose:jni is specified.
4534     if (CheckJNICalls) {
4535       if (libjsig_is_loaded) {
4536         if (PrintJNIResolving) {
4537           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4538         }
4539         check_signals = false;
4540       }
4541       if (AllowUserSignalHandlers) {
4542         if (PrintJNIResolving) {
4543           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4544         }
4545         check_signals = false;
4546       }
4547     }
4548   }
4549 }
4550 
4551 // This is the fastest way to get thread cpu time on Linux.
4552 // Returns cpu time (user+sys) for any thread, not only for current.
4553 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4554 // It might work on 2.6.10+ with a special kernel/glibc patch.
4555 // For reference, please, see IEEE Std 1003.1-2004:
4556 //   http://www.unix.org/single_unix_specification
4557 
4558 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4559   struct timespec tp;
4560   int rc = os::Linux::clock_gettime(clockid, &tp);
4561   assert(rc == 0, "clock_gettime is expected to return 0 code");
4562 
4563   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4564 }
4565 
4566 void os::Linux::initialize_os_info() {
4567   assert(_os_version == 0, "OS info already initialized");
4568 
4569   struct utsname _uname;
4570 
4571   uint32_t major;
4572   uint32_t minor;
4573   uint32_t fix;
4574 
4575   int rc;
4576 
4577   // Kernel version is unknown if
4578   // verification below fails.
4579   _os_version = 0x01000000;
4580 
4581   rc = uname(&_uname);
4582   if (rc != -1) {
4583 
4584     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4585     if (rc == 3) {
4586 
4587       if (major < 256 && minor < 256 && fix < 256) {
4588         // Kernel version format is as expected,
4589         // set it overriding unknown state.
4590         _os_version = (major << 16) |
4591                       (minor << 8 ) |
4592                       (fix   << 0 ) ;
4593       }
4594     }
4595   }
4596 }
4597 
4598 uint32_t os::Linux::os_version() {
4599   assert(_os_version != 0, "not initialized");
4600   return _os_version & 0x00FFFFFF;
4601 }
4602 
4603 bool os::Linux::os_version_is_known() {
4604   assert(_os_version != 0, "not initialized");
4605   return _os_version & 0x01000000 ? false : true;
4606 }
4607 
4608 /////
4609 // glibc on Linux platform uses non-documented flag
4610 // to indicate, that some special sort of signal
4611 // trampoline is used.
4612 // We will never set this flag, and we should
4613 // ignore this flag in our diagnostic
4614 #ifdef SIGNIFICANT_SIGNAL_MASK
4615   #undef SIGNIFICANT_SIGNAL_MASK
4616 #endif
4617 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4618 
4619 static const char* get_signal_handler_name(address handler,
4620                                            char* buf, int buflen) {
4621   int offset = 0;
4622   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4623   if (found) {
4624     // skip directory names
4625     const char *p1, *p2;
4626     p1 = buf;
4627     size_t len = strlen(os::file_separator());
4628     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4629     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4630   } else {
4631     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4632   }
4633   return buf;
4634 }
4635 
4636 static void print_signal_handler(outputStream* st, int sig,
4637                                  char* buf, size_t buflen) {
4638   struct sigaction sa;
4639 
4640   sigaction(sig, NULL, &sa);
4641 
4642   // See comment for SIGNIFICANT_SIGNAL_MASK define
4643   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4644 
4645   st->print("%s: ", os::exception_name(sig, buf, buflen));
4646 
4647   address handler = (sa.sa_flags & SA_SIGINFO)
4648     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4649     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4650 
4651   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4652     st->print("SIG_DFL");
4653   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4654     st->print("SIG_IGN");
4655   } else {
4656     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4657   }
4658 
4659   st->print(", sa_mask[0]=");
4660   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4661 
4662   address rh = VMError::get_resetted_sighandler(sig);
4663   // May be, handler was resetted by VMError?
4664   if (rh != NULL) {
4665     handler = rh;
4666     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4667   }
4668 
4669   st->print(", sa_flags=");
4670   os::Posix::print_sa_flags(st, sa.sa_flags);
4671 
4672   // Check: is it our handler?
4673   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4674       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4675     // It is our signal handler
4676     // check for flags, reset system-used one!
4677     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4678       st->print(
4679                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4680                 os::Linux::get_our_sigflags(sig));
4681     }
4682   }
4683   st->cr();
4684 }
4685 
4686 
4687 #define DO_SIGNAL_CHECK(sig)                      \
4688   do {                                            \
4689     if (!sigismember(&check_signal_done, sig)) {  \
4690       os::Linux::check_signal_handler(sig);       \
4691     }                                             \
4692   } while (0)
4693 
4694 // This method is a periodic task to check for misbehaving JNI applications
4695 // under CheckJNI, we can add any periodic checks here
4696 
4697 void os::run_periodic_checks() {
4698   if (check_signals == false) return;
4699 
4700   // SEGV and BUS if overridden could potentially prevent
4701   // generation of hs*.log in the event of a crash, debugging
4702   // such a case can be very challenging, so we absolutely
4703   // check the following for a good measure:
4704   DO_SIGNAL_CHECK(SIGSEGV);
4705   DO_SIGNAL_CHECK(SIGILL);
4706   DO_SIGNAL_CHECK(SIGFPE);
4707   DO_SIGNAL_CHECK(SIGBUS);
4708   DO_SIGNAL_CHECK(SIGPIPE);
4709   DO_SIGNAL_CHECK(SIGXFSZ);
4710 #if defined(PPC64)
4711   DO_SIGNAL_CHECK(SIGTRAP);
4712 #endif
4713 
4714   // ReduceSignalUsage allows the user to override these handlers
4715   // see comments at the very top and jvm_solaris.h
4716   if (!ReduceSignalUsage) {
4717     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4718     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4719     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4720     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4721   }
4722 
4723   DO_SIGNAL_CHECK(SR_signum);
4724 }
4725 
4726 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4727 
4728 static os_sigaction_t os_sigaction = NULL;
4729 
4730 void os::Linux::check_signal_handler(int sig) {
4731   char buf[O_BUFLEN];
4732   address jvmHandler = NULL;
4733 
4734 
4735   struct sigaction act;
4736   if (os_sigaction == NULL) {
4737     // only trust the default sigaction, in case it has been interposed
4738     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4739     if (os_sigaction == NULL) return;
4740   }
4741 
4742   os_sigaction(sig, (struct sigaction*)NULL, &act);
4743 
4744 
4745   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4746 
4747   address thisHandler = (act.sa_flags & SA_SIGINFO)
4748     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4749     : CAST_FROM_FN_PTR(address, act.sa_handler);
4750 
4751 
4752   switch (sig) {
4753   case SIGSEGV:
4754   case SIGBUS:
4755   case SIGFPE:
4756   case SIGPIPE:
4757   case SIGILL:
4758   case SIGXFSZ:
4759     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4760     break;
4761 
4762   case SHUTDOWN1_SIGNAL:
4763   case SHUTDOWN2_SIGNAL:
4764   case SHUTDOWN3_SIGNAL:
4765   case BREAK_SIGNAL:
4766     jvmHandler = (address)user_handler();
4767     break;
4768 
4769   default:
4770     if (sig == SR_signum) {
4771       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4772     } else {
4773       return;
4774     }
4775     break;
4776   }
4777 
4778   if (thisHandler != jvmHandler) {
4779     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4780     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4781     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4782     // No need to check this sig any longer
4783     sigaddset(&check_signal_done, sig);
4784     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4785     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4786       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4787                     exception_name(sig, buf, O_BUFLEN));
4788     }
4789   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4790     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4791     tty->print("expected:");
4792     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4793     tty->cr();
4794     tty->print("  found:");
4795     os::Posix::print_sa_flags(tty, act.sa_flags);
4796     tty->cr();
4797     // No need to check this sig any longer
4798     sigaddset(&check_signal_done, sig);
4799   }
4800 
4801   // Dump all the signal
4802   if (sigismember(&check_signal_done, sig)) {
4803     print_signal_handlers(tty, buf, O_BUFLEN);
4804   }
4805 }
4806 
4807 extern void report_error(char* file_name, int line_no, char* title,
4808                          char* format, ...);
4809 
4810 // this is called _before_ the most of global arguments have been parsed
4811 void os::init(void) {
4812   char dummy;   // used to get a guess on initial stack address
4813 //  first_hrtime = gethrtime();
4814 
4815   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4816 
4817   init_random(1234567);
4818 
4819   ThreadCritical::initialize();
4820 
4821   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4822   if (Linux::page_size() == -1) {
4823     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4824           os::strerror(errno));
4825   }
4826   init_page_sizes((size_t) Linux::page_size());
4827 
4828   Linux::initialize_system_info();
4829 
4830   Linux::initialize_os_info();
4831 
4832   // main_thread points to the aboriginal thread
4833   Linux::_main_thread = pthread_self();
4834 
4835   Linux::clock_init();
4836   initial_time_count = javaTimeNanos();
4837 
4838   // pthread_condattr initialization for monotonic clock
4839   int status;
4840   pthread_condattr_t* _condattr = os::Linux::condAttr();
4841   if ((status = pthread_condattr_init(_condattr)) != 0) {
4842     fatal("pthread_condattr_init: %s", os::strerror(status));
4843   }
4844   // Only set the clock if CLOCK_MONOTONIC is available
4845   if (os::supports_monotonic_clock()) {
4846     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4847       if (status == EINVAL) {
4848         warning("Unable to use monotonic clock with relative timed-waits" \
4849                 " - changes to the time-of-day clock may have adverse affects");
4850       } else {
4851         fatal("pthread_condattr_setclock: %s", os::strerror(status));
4852       }
4853     }
4854   }
4855   // else it defaults to CLOCK_REALTIME
4856 
4857   // retrieve entry point for pthread_setname_np
4858   Linux::_pthread_setname_np =
4859     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4860 
4861 }
4862 
4863 // To install functions for atexit system call
4864 extern "C" {
4865   static void perfMemory_exit_helper() {
4866     perfMemory_exit();
4867   }
4868 }
4869 
4870 // this is called _after_ the global arguments have been parsed
4871 jint os::init_2(void) {
4872   Linux::fast_thread_clock_init();
4873 
4874   // Allocate a single page and mark it as readable for safepoint polling
4875   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4876   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4877 
4878   os::set_polling_page(polling_page);
4879   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4880 
4881   if (!UseMembar) {
4882     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4883     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4884     os::set_memory_serialize_page(mem_serialize_page);
4885     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4886   }
4887 
4888   // initialize suspend/resume support - must do this before signal_sets_init()
4889   if (SR_initialize() != 0) {
4890     perror("SR_initialize failed");
4891     return JNI_ERR;
4892   }
4893 
4894   Linux::signal_sets_init();
4895   Linux::install_signal_handlers();
4896 
4897   // Check and sets minimum stack sizes against command line options
4898   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4899     return JNI_ERR;
4900   }
4901   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4902 
4903 #if defined(IA32)
4904   workaround_expand_exec_shield_cs_limit();
4905 #endif
4906 
4907   Linux::libpthread_init();
4908   log_info(os)("HotSpot is running with %s, %s",
4909                Linux::glibc_version(), Linux::libpthread_version());
4910 
4911   if (UseNUMA) {
4912     if (!Linux::libnuma_init()) {
4913       UseNUMA = false;
4914     } else {
4915       if ((Linux::numa_max_node() < 1)) {
4916         // There's only one node(they start from 0), disable NUMA.
4917         UseNUMA = false;
4918       }
4919     }
4920     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4921     // we can make the adaptive lgrp chunk resizing work. If the user specified
4922     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4923     // disable adaptive resizing.
4924     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4925       if (FLAG_IS_DEFAULT(UseNUMA)) {
4926         UseNUMA = false;
4927       } else {
4928         if (FLAG_IS_DEFAULT(UseLargePages) &&
4929             FLAG_IS_DEFAULT(UseSHM) &&
4930             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4931           UseLargePages = false;
4932         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4933           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4934           UseAdaptiveSizePolicy = false;
4935           UseAdaptiveNUMAChunkSizing = false;
4936         }
4937       }
4938     }
4939     if (!UseNUMA && ForceNUMA) {
4940       UseNUMA = true;
4941     }
4942   }
4943 
4944   if (MaxFDLimit) {
4945     // set the number of file descriptors to max. print out error
4946     // if getrlimit/setrlimit fails but continue regardless.
4947     struct rlimit nbr_files;
4948     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4949     if (status != 0) {
4950       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4951     } else {
4952       nbr_files.rlim_cur = nbr_files.rlim_max;
4953       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4954       if (status != 0) {
4955         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4956       }
4957     }
4958   }
4959 
4960   // Initialize lock used to serialize thread creation (see os::create_thread)
4961   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4962 
4963   // at-exit methods are called in the reverse order of their registration.
4964   // atexit functions are called on return from main or as a result of a
4965   // call to exit(3C). There can be only 32 of these functions registered
4966   // and atexit() does not set errno.
4967 
4968   if (PerfAllowAtExitRegistration) {
4969     // only register atexit functions if PerfAllowAtExitRegistration is set.
4970     // atexit functions can be delayed until process exit time, which
4971     // can be problematic for embedded VM situations. Embedded VMs should
4972     // call DestroyJavaVM() to assure that VM resources are released.
4973 
4974     // note: perfMemory_exit_helper atexit function may be removed in
4975     // the future if the appropriate cleanup code can be added to the
4976     // VM_Exit VMOperation's doit method.
4977     if (atexit(perfMemory_exit_helper) != 0) {
4978       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4979     }
4980   }
4981 
4982   // initialize thread priority policy
4983   prio_init();
4984 
4985   return JNI_OK;
4986 }
4987 
4988 // Mark the polling page as unreadable
4989 void os::make_polling_page_unreadable(void) {
4990   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4991     fatal("Could not disable polling page");
4992   }
4993 }
4994 
4995 // Mark the polling page as readable
4996 void os::make_polling_page_readable(void) {
4997   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4998     fatal("Could not enable polling page");
4999   }
5000 }
5001 
5002 // older glibc versions don't have this macro (which expands to
5003 // an optimized bit-counting function) so we have to roll our own
5004 #ifndef CPU_COUNT
5005 
5006 static int _cpu_count(const cpu_set_t* cpus) {
5007   int count = 0;
5008   // only look up to the number of configured processors
5009   for (int i = 0; i < os::processor_count(); i++) {
5010     if (CPU_ISSET(i, cpus)) {
5011       count++;
5012     }
5013   }
5014   return count;
5015 }
5016 
5017 #define CPU_COUNT(cpus) _cpu_count(cpus)
5018 
5019 #endif // CPU_COUNT
5020 
5021 // Get the current number of available processors for this process.
5022 // This value can change at any time during a process's lifetime.
5023 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5024 // If it appears there may be more than 1024 processors then we do a
5025 // dynamic check - see 6515172 for details.
5026 // If anything goes wrong we fallback to returning the number of online
5027 // processors - which can be greater than the number available to the process.
5028 int os::active_processor_count() {
5029   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5030   cpu_set_t* cpus_p = &cpus;
5031   int cpus_size = sizeof(cpu_set_t);
5032 
5033   int configured_cpus = processor_count();  // upper bound on available cpus
5034   int cpu_count = 0;
5035 
5036 // old build platforms may not support dynamic cpu sets
5037 #ifdef CPU_ALLOC
5038 
5039   // To enable easy testing of the dynamic path on different platforms we
5040   // introduce a diagnostic flag: UseCpuAllocPath
5041   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5042     // kernel may use a mask bigger than cpu_set_t
5043     log_trace(os)("active_processor_count: using dynamic path %s"
5044                   "- configured processors: %d",
5045                   UseCpuAllocPath ? "(forced) " : "",
5046                   configured_cpus);
5047     cpus_p = CPU_ALLOC(configured_cpus);
5048     if (cpus_p != NULL) {
5049       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5050       // zero it just to be safe
5051       CPU_ZERO_S(cpus_size, cpus_p);
5052     }
5053     else {
5054        // failed to allocate so fallback to online cpus
5055        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5056        log_trace(os)("active_processor_count: "
5057                      "CPU_ALLOC failed (%s) - using "
5058                      "online processor count: %d",
5059                      os::strerror(errno), online_cpus);
5060        return online_cpus;
5061     }
5062   }
5063   else {
5064     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5065                   configured_cpus);
5066   }
5067 #else // CPU_ALLOC
5068 // these stubs won't be executed
5069 #define CPU_COUNT_S(size, cpus) -1
5070 #define CPU_FREE(cpus)
5071 
5072   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5073                 configured_cpus);
5074 #endif // CPU_ALLOC
5075 
5076   // pid 0 means the current thread - which we have to assume represents the process
5077   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5078     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5079       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5080     }
5081     else {
5082       cpu_count = CPU_COUNT(cpus_p);
5083     }
5084     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5085   }
5086   else {
5087     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5088     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5089             "which may exceed available processors", os::strerror(errno), cpu_count);
5090   }
5091 
5092   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5093     CPU_FREE(cpus_p);
5094   }
5095 
5096   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
5097   return cpu_count;
5098 }
5099 
5100 void os::set_native_thread_name(const char *name) {
5101   if (Linux::_pthread_setname_np) {
5102     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5103     snprintf(buf, sizeof(buf), "%s", name);
5104     buf[sizeof(buf) - 1] = '\0';
5105     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5106     // ERANGE should not happen; all other errors should just be ignored.
5107     assert(rc != ERANGE, "pthread_setname_np failed");
5108   }
5109 }
5110 
5111 bool os::distribute_processes(uint length, uint* distribution) {
5112   // Not yet implemented.
5113   return false;
5114 }
5115 
5116 bool os::bind_to_processor(uint processor_id) {
5117   // Not yet implemented.
5118   return false;
5119 }
5120 
5121 ///
5122 
5123 void os::SuspendedThreadTask::internal_do_task() {
5124   if (do_suspend(_thread->osthread())) {
5125     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5126     do_task(context);
5127     do_resume(_thread->osthread());
5128   }
5129 }
5130 
5131 class PcFetcher : public os::SuspendedThreadTask {
5132  public:
5133   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5134   ExtendedPC result();
5135  protected:
5136   void do_task(const os::SuspendedThreadTaskContext& context);
5137  private:
5138   ExtendedPC _epc;
5139 };
5140 
5141 ExtendedPC PcFetcher::result() {
5142   guarantee(is_done(), "task is not done yet.");
5143   return _epc;
5144 }
5145 
5146 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5147   Thread* thread = context.thread();
5148   OSThread* osthread = thread->osthread();
5149   if (osthread->ucontext() != NULL) {
5150     _epc = os::Linux::ucontext_get_pc((const ucontext_t *) context.ucontext());
5151   } else {
5152     // NULL context is unexpected, double-check this is the VMThread
5153     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5154   }
5155 }
5156 
5157 // Suspends the target using the signal mechanism and then grabs the PC before
5158 // resuming the target. Used by the flat-profiler only
5159 ExtendedPC os::get_thread_pc(Thread* thread) {
5160   // Make sure that it is called by the watcher for the VMThread
5161   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5162   assert(thread->is_VM_thread(), "Can only be called for VMThread");
5163 
5164   PcFetcher fetcher(thread);
5165   fetcher.run();
5166   return fetcher.result();
5167 }
5168 
5169 ////////////////////////////////////////////////////////////////////////////////
5170 // debug support
5171 
5172 bool os::find(address addr, outputStream* st) {
5173   Dl_info dlinfo;
5174   memset(&dlinfo, 0, sizeof(dlinfo));
5175   if (dladdr(addr, &dlinfo) != 0) {
5176     st->print(PTR_FORMAT ": ", p2i(addr));
5177     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5178       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5179                 p2i(addr) - p2i(dlinfo.dli_saddr));
5180     } else if (dlinfo.dli_fbase != NULL) {
5181       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5182     } else {
5183       st->print("<absolute address>");
5184     }
5185     if (dlinfo.dli_fname != NULL) {
5186       st->print(" in %s", dlinfo.dli_fname);
5187     }
5188     if (dlinfo.dli_fbase != NULL) {
5189       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5190     }
5191     st->cr();
5192 
5193     if (Verbose) {
5194       // decode some bytes around the PC
5195       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5196       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5197       address       lowest = (address) dlinfo.dli_sname;
5198       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5199       if (begin < lowest)  begin = lowest;
5200       Dl_info dlinfo2;
5201       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5202           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5203         end = (address) dlinfo2.dli_saddr;
5204       }
5205       Disassembler::decode(begin, end, st);
5206     }
5207     return true;
5208   }
5209   return false;
5210 }
5211 
5212 ////////////////////////////////////////////////////////////////////////////////
5213 // misc
5214 
5215 // This does not do anything on Linux. This is basically a hook for being
5216 // able to use structured exception handling (thread-local exception filters)
5217 // on, e.g., Win32.
5218 void
5219 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5220                          JavaCallArguments* args, Thread* thread) {
5221   f(value, method, args, thread);
5222 }
5223 
5224 void os::print_statistics() {
5225 }
5226 
5227 bool os::message_box(const char* title, const char* message) {
5228   int i;
5229   fdStream err(defaultStream::error_fd());
5230   for (i = 0; i < 78; i++) err.print_raw("=");
5231   err.cr();
5232   err.print_raw_cr(title);
5233   for (i = 0; i < 78; i++) err.print_raw("-");
5234   err.cr();
5235   err.print_raw_cr(message);
5236   for (i = 0; i < 78; i++) err.print_raw("=");
5237   err.cr();
5238 
5239   char buf[16];
5240   // Prevent process from exiting upon "read error" without consuming all CPU
5241   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5242 
5243   return buf[0] == 'y' || buf[0] == 'Y';
5244 }
5245 
5246 int os::stat(const char *path, struct stat *sbuf) {
5247   char pathbuf[MAX_PATH];
5248   if (strlen(path) > MAX_PATH - 1) {
5249     errno = ENAMETOOLONG;
5250     return -1;
5251   }
5252   os::native_path(strcpy(pathbuf, path));
5253   return ::stat(pathbuf, sbuf);
5254 }
5255 
5256 // Is a (classpath) directory empty?
5257 bool os::dir_is_empty(const char* path) {
5258   DIR *dir = NULL;
5259   struct dirent *ptr;
5260 
5261   dir = opendir(path);
5262   if (dir == NULL) return true;
5263 
5264   // Scan the directory
5265   bool result = true;
5266   char buf[sizeof(struct dirent) + MAX_PATH];
5267   while (result && (ptr = ::readdir(dir)) != NULL) {
5268     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5269       result = false;
5270     }
5271   }
5272   closedir(dir);
5273   return result;
5274 }
5275 
5276 // This code originates from JDK's sysOpen and open64_w
5277 // from src/solaris/hpi/src/system_md.c
5278 
5279 int os::open(const char *path, int oflag, int mode) {
5280   if (strlen(path) > MAX_PATH - 1) {
5281     errno = ENAMETOOLONG;
5282     return -1;
5283   }
5284 
5285   // All file descriptors that are opened in the Java process and not
5286   // specifically destined for a subprocess should have the close-on-exec
5287   // flag set.  If we don't set it, then careless 3rd party native code
5288   // might fork and exec without closing all appropriate file descriptors
5289   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5290   // turn might:
5291   //
5292   // - cause end-of-file to fail to be detected on some file
5293   //   descriptors, resulting in mysterious hangs, or
5294   //
5295   // - might cause an fopen in the subprocess to fail on a system
5296   //   suffering from bug 1085341.
5297   //
5298   // (Yes, the default setting of the close-on-exec flag is a Unix
5299   // design flaw)
5300   //
5301   // See:
5302   // 1085341: 32-bit stdio routines should support file descriptors >255
5303   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5304   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5305   //
5306   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5307   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5308   // because it saves a system call and removes a small window where the flag
5309   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5310   // and we fall back to using FD_CLOEXEC (see below).
5311 #ifdef O_CLOEXEC
5312   oflag |= O_CLOEXEC;
5313 #endif
5314 
5315   int fd = ::open64(path, oflag, mode);
5316   if (fd == -1) return -1;
5317 
5318   //If the open succeeded, the file might still be a directory
5319   {
5320     struct stat64 buf64;
5321     int ret = ::fstat64(fd, &buf64);
5322     int st_mode = buf64.st_mode;
5323 
5324     if (ret != -1) {
5325       if ((st_mode & S_IFMT) == S_IFDIR) {
5326         errno = EISDIR;
5327         ::close(fd);
5328         return -1;
5329       }
5330     } else {
5331       ::close(fd);
5332       return -1;
5333     }
5334   }
5335 
5336 #ifdef FD_CLOEXEC
5337   // Validate that the use of the O_CLOEXEC flag on open above worked.
5338   // With recent kernels, we will perform this check exactly once.
5339   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5340   if (!O_CLOEXEC_is_known_to_work) {
5341     int flags = ::fcntl(fd, F_GETFD);
5342     if (flags != -1) {
5343       if ((flags & FD_CLOEXEC) != 0)
5344         O_CLOEXEC_is_known_to_work = 1;
5345       else
5346         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5347     }
5348   }
5349 #endif
5350 
5351   return fd;
5352 }
5353 
5354 
5355 // create binary file, rewriting existing file if required
5356 int os::create_binary_file(const char* path, bool rewrite_existing) {
5357   int oflags = O_WRONLY | O_CREAT;
5358   if (!rewrite_existing) {
5359     oflags |= O_EXCL;
5360   }
5361   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5362 }
5363 
5364 // return current position of file pointer
5365 jlong os::current_file_offset(int fd) {
5366   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5367 }
5368 
5369 // move file pointer to the specified offset
5370 jlong os::seek_to_file_offset(int fd, jlong offset) {
5371   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5372 }
5373 
5374 // This code originates from JDK's sysAvailable
5375 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5376 
5377 int os::available(int fd, jlong *bytes) {
5378   jlong cur, end;
5379   int mode;
5380   struct stat64 buf64;
5381 
5382   if (::fstat64(fd, &buf64) >= 0) {
5383     mode = buf64.st_mode;
5384     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5385       int n;
5386       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5387         *bytes = n;
5388         return 1;
5389       }
5390     }
5391   }
5392   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5393     return 0;
5394   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5395     return 0;
5396   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5397     return 0;
5398   }
5399   *bytes = end - cur;
5400   return 1;
5401 }
5402 
5403 // Map a block of memory.
5404 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5405                         char *addr, size_t bytes, bool read_only,
5406                         bool allow_exec) {
5407   int prot;
5408   int flags = MAP_PRIVATE;
5409 
5410   if (read_only) {
5411     prot = PROT_READ;
5412   } else {
5413     prot = PROT_READ | PROT_WRITE;
5414   }
5415 
5416   if (allow_exec) {
5417     prot |= PROT_EXEC;
5418   }
5419 
5420   if (addr != NULL) {
5421     flags |= MAP_FIXED;
5422   }
5423 
5424   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5425                                      fd, file_offset);
5426   if (mapped_address == MAP_FAILED) {
5427     return NULL;
5428   }
5429   return mapped_address;
5430 }
5431 
5432 
5433 // Remap a block of memory.
5434 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5435                           char *addr, size_t bytes, bool read_only,
5436                           bool allow_exec) {
5437   // same as map_memory() on this OS
5438   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5439                         allow_exec);
5440 }
5441 
5442 
5443 // Unmap a block of memory.
5444 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5445   return munmap(addr, bytes) == 0;
5446 }
5447 
5448 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5449 
5450 static clockid_t thread_cpu_clockid(Thread* thread) {
5451   pthread_t tid = thread->osthread()->pthread_id();
5452   clockid_t clockid;
5453 
5454   // Get thread clockid
5455   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5456   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5457   return clockid;
5458 }
5459 
5460 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5461 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5462 // of a thread.
5463 //
5464 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5465 // the fast estimate available on the platform.
5466 
5467 jlong os::current_thread_cpu_time() {
5468   if (os::Linux::supports_fast_thread_cpu_time()) {
5469     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5470   } else {
5471     // return user + sys since the cost is the same
5472     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5473   }
5474 }
5475 
5476 jlong os::thread_cpu_time(Thread* thread) {
5477   // consistent with what current_thread_cpu_time() returns
5478   if (os::Linux::supports_fast_thread_cpu_time()) {
5479     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5480   } else {
5481     return slow_thread_cpu_time(thread, true /* user + sys */);
5482   }
5483 }
5484 
5485 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5486   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5487     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5488   } else {
5489     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5490   }
5491 }
5492 
5493 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5494   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5495     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5496   } else {
5497     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5498   }
5499 }
5500 
5501 //  -1 on error.
5502 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5503   pid_t  tid = thread->osthread()->thread_id();
5504   char *s;
5505   char stat[2048];
5506   int statlen;
5507   char proc_name[64];
5508   int count;
5509   long sys_time, user_time;
5510   char cdummy;
5511   int idummy;
5512   long ldummy;
5513   FILE *fp;
5514 
5515   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5516   fp = fopen(proc_name, "r");
5517   if (fp == NULL) return -1;
5518   statlen = fread(stat, 1, 2047, fp);
5519   stat[statlen] = '\0';
5520   fclose(fp);
5521 
5522   // Skip pid and the command string. Note that we could be dealing with
5523   // weird command names, e.g. user could decide to rename java launcher
5524   // to "java 1.4.2 :)", then the stat file would look like
5525   //                1234 (java 1.4.2 :)) R ... ...
5526   // We don't really need to know the command string, just find the last
5527   // occurrence of ")" and then start parsing from there. See bug 4726580.
5528   s = strrchr(stat, ')');
5529   if (s == NULL) return -1;
5530 
5531   // Skip blank chars
5532   do { s++; } while (s && isspace(*s));
5533 
5534   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5535                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5536                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5537                  &user_time, &sys_time);
5538   if (count != 13) return -1;
5539   if (user_sys_cpu_time) {
5540     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5541   } else {
5542     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5543   }
5544 }
5545 
5546 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5547   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5548   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5549   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5550   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5551 }
5552 
5553 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5554   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5555   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5556   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5557   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5558 }
5559 
5560 bool os::is_thread_cpu_time_supported() {
5561   return true;
5562 }
5563 
5564 // System loadavg support.  Returns -1 if load average cannot be obtained.
5565 // Linux doesn't yet have a (official) notion of processor sets,
5566 // so just return the system wide load average.
5567 int os::loadavg(double loadavg[], int nelem) {
5568   return ::getloadavg(loadavg, nelem);
5569 }
5570 
5571 void os::pause() {
5572   char filename[MAX_PATH];
5573   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5574     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5575   } else {
5576     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5577   }
5578 
5579   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5580   if (fd != -1) {
5581     struct stat buf;
5582     ::close(fd);
5583     while (::stat(filename, &buf) == 0) {
5584       (void)::poll(NULL, 0, 100);
5585     }
5586   } else {
5587     jio_fprintf(stderr,
5588                 "Could not open pause file '%s', continuing immediately.\n", filename);
5589   }
5590 }
5591 
5592 
5593 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5594 // comment paragraphs are worth repeating here:
5595 //
5596 // Assumption:
5597 //    Only one parker can exist on an event, which is why we allocate
5598 //    them per-thread. Multiple unparkers can coexist.
5599 //
5600 // _Event serves as a restricted-range semaphore.
5601 //   -1 : thread is blocked, i.e. there is a waiter
5602 //    0 : neutral: thread is running or ready,
5603 //        could have been signaled after a wait started
5604 //    1 : signaled - thread is running or ready
5605 //
5606 
5607 // utility to compute the abstime argument to timedwait:
5608 // millis is the relative timeout time
5609 // abstime will be the absolute timeout time
5610 // TODO: replace compute_abstime() with unpackTime()
5611 
5612 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5613   if (millis < 0)  millis = 0;
5614 
5615   jlong seconds = millis / 1000;
5616   millis %= 1000;
5617   if (seconds > 50000000) { // see man cond_timedwait(3T)
5618     seconds = 50000000;
5619   }
5620 
5621   if (os::supports_monotonic_clock()) {
5622     struct timespec now;
5623     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5624     assert_status(status == 0, status, "clock_gettime");
5625     abstime->tv_sec = now.tv_sec  + seconds;
5626     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5627     if (nanos >= NANOSECS_PER_SEC) {
5628       abstime->tv_sec += 1;
5629       nanos -= NANOSECS_PER_SEC;
5630     }
5631     abstime->tv_nsec = nanos;
5632   } else {
5633     struct timeval now;
5634     int status = gettimeofday(&now, NULL);
5635     assert(status == 0, "gettimeofday");
5636     abstime->tv_sec = now.tv_sec  + seconds;
5637     long usec = now.tv_usec + millis * 1000;
5638     if (usec >= 1000000) {
5639       abstime->tv_sec += 1;
5640       usec -= 1000000;
5641     }
5642     abstime->tv_nsec = usec * 1000;
5643   }
5644   return abstime;
5645 }
5646 
5647 void os::PlatformEvent::park() {       // AKA "down()"
5648   // Transitions for _Event:
5649   //   -1 => -1 : illegal
5650   //    1 =>  0 : pass - return immediately
5651   //    0 => -1 : block; then set _Event to 0 before returning
5652 
5653   // Invariant: Only the thread associated with the Event/PlatformEvent
5654   // may call park().
5655   // TODO: assert that _Assoc != NULL or _Assoc == Self
5656   assert(_nParked == 0, "invariant");
5657 
5658   int v;
5659   for (;;) {
5660     v = _Event;
5661     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5662   }
5663   guarantee(v >= 0, "invariant");
5664   if (v == 0) {
5665     // Do this the hard way by blocking ...
5666     int status = pthread_mutex_lock(_mutex);
5667     assert_status(status == 0, status, "mutex_lock");
5668     guarantee(_nParked == 0, "invariant");
5669     ++_nParked;
5670     while (_Event < 0) {
5671       status = pthread_cond_wait(_cond, _mutex);
5672       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5673       // Treat this the same as if the wait was interrupted
5674       if (status == ETIME) { status = EINTR; }
5675       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5676     }
5677     --_nParked;
5678 
5679     _Event = 0;
5680     status = pthread_mutex_unlock(_mutex);
5681     assert_status(status == 0, status, "mutex_unlock");
5682     // Paranoia to ensure our locked and lock-free paths interact
5683     // correctly with each other.
5684     OrderAccess::fence();
5685   }
5686   guarantee(_Event >= 0, "invariant");
5687 }
5688 
5689 int os::PlatformEvent::park(jlong millis) {
5690   // Transitions for _Event:
5691   //   -1 => -1 : illegal
5692   //    1 =>  0 : pass - return immediately
5693   //    0 => -1 : block; then set _Event to 0 before returning
5694 
5695   guarantee(_nParked == 0, "invariant");
5696 
5697   int v;
5698   for (;;) {
5699     v = _Event;
5700     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5701   }
5702   guarantee(v >= 0, "invariant");
5703   if (v != 0) return OS_OK;
5704 
5705   // We do this the hard way, by blocking the thread.
5706   // Consider enforcing a minimum timeout value.
5707   struct timespec abst;
5708   compute_abstime(&abst, millis);
5709 
5710   int ret = OS_TIMEOUT;
5711   int status = pthread_mutex_lock(_mutex);
5712   assert_status(status == 0, status, "mutex_lock");
5713   guarantee(_nParked == 0, "invariant");
5714   ++_nParked;
5715 
5716   // Object.wait(timo) will return because of
5717   // (a) notification
5718   // (b) timeout
5719   // (c) thread.interrupt
5720   //
5721   // Thread.interrupt and object.notify{All} both call Event::set.
5722   // That is, we treat thread.interrupt as a special case of notification.
5723   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5724   // We assume all ETIME returns are valid.
5725   //
5726   // TODO: properly differentiate simultaneous notify+interrupt.
5727   // In that case, we should propagate the notify to another waiter.
5728 
5729   while (_Event < 0) {
5730     status = pthread_cond_timedwait(_cond, _mutex, &abst);
5731     assert_status(status == 0 || status == EINTR ||
5732                   status == ETIME || status == ETIMEDOUT,
5733                   status, "cond_timedwait");
5734     if (!FilterSpuriousWakeups) break;                 // previous semantics
5735     if (status == ETIME || status == ETIMEDOUT) break;
5736     // We consume and ignore EINTR and spurious wakeups.
5737   }
5738   --_nParked;
5739   if (_Event >= 0) {
5740     ret = OS_OK;
5741   }
5742   _Event = 0;
5743   status = pthread_mutex_unlock(_mutex);
5744   assert_status(status == 0, status, "mutex_unlock");
5745   assert(_nParked == 0, "invariant");
5746   // Paranoia to ensure our locked and lock-free paths interact
5747   // correctly with each other.
5748   OrderAccess::fence();
5749   return ret;
5750 }
5751 
5752 void os::PlatformEvent::unpark() {
5753   // Transitions for _Event:
5754   //    0 => 1 : just return
5755   //    1 => 1 : just return
5756   //   -1 => either 0 or 1; must signal target thread
5757   //         That is, we can safely transition _Event from -1 to either
5758   //         0 or 1.
5759   // See also: "Semaphores in Plan 9" by Mullender & Cox
5760   //
5761   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5762   // that it will take two back-to-back park() calls for the owning
5763   // thread to block. This has the benefit of forcing a spurious return
5764   // from the first park() call after an unpark() call which will help
5765   // shake out uses of park() and unpark() without condition variables.
5766 
5767   if (Atomic::xchg(1, &_Event) >= 0) return;
5768 
5769   // Wait for the thread associated with the event to vacate
5770   int status = pthread_mutex_lock(_mutex);
5771   assert_status(status == 0, status, "mutex_lock");
5772   int AnyWaiters = _nParked;
5773   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5774   status = pthread_mutex_unlock(_mutex);
5775   assert_status(status == 0, status, "mutex_unlock");
5776   if (AnyWaiters != 0) {
5777     // Note that we signal() *after* dropping the lock for "immortal" Events.
5778     // This is safe and avoids a common class of  futile wakeups.  In rare
5779     // circumstances this can cause a thread to return prematurely from
5780     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5781     // will simply re-test the condition and re-park itself.
5782     // This provides particular benefit if the underlying platform does not
5783     // provide wait morphing.
5784     status = pthread_cond_signal(_cond);
5785     assert_status(status == 0, status, "cond_signal");
5786   }
5787 }
5788 
5789 
5790 // JSR166
5791 // -------------------------------------------------------
5792 
5793 // The solaris and linux implementations of park/unpark are fairly
5794 // conservative for now, but can be improved. They currently use a
5795 // mutex/condvar pair, plus a a count.
5796 // Park decrements count if > 0, else does a condvar wait.  Unpark
5797 // sets count to 1 and signals condvar.  Only one thread ever waits
5798 // on the condvar. Contention seen when trying to park implies that someone
5799 // is unparking you, so don't wait. And spurious returns are fine, so there
5800 // is no need to track notifications.
5801 
5802 // This code is common to linux and solaris and will be moved to a
5803 // common place in dolphin.
5804 //
5805 // The passed in time value is either a relative time in nanoseconds
5806 // or an absolute time in milliseconds. Either way it has to be unpacked
5807 // into suitable seconds and nanoseconds components and stored in the
5808 // given timespec structure.
5809 // Given time is a 64-bit value and the time_t used in the timespec is only
5810 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5811 // overflow if times way in the future are given. Further on Solaris versions
5812 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5813 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5814 // As it will be 28 years before "now + 100000000" will overflow we can
5815 // ignore overflow and just impose a hard-limit on seconds using the value
5816 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5817 // years from "now".
5818 
5819 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5820   assert(time > 0, "convertTime");
5821   time_t max_secs = 0;
5822 
5823   if (!os::supports_monotonic_clock() || isAbsolute) {
5824     struct timeval now;
5825     int status = gettimeofday(&now, NULL);
5826     assert(status == 0, "gettimeofday");
5827 
5828     max_secs = now.tv_sec + MAX_SECS;
5829 
5830     if (isAbsolute) {
5831       jlong secs = time / 1000;
5832       if (secs > max_secs) {
5833         absTime->tv_sec = max_secs;
5834       } else {
5835         absTime->tv_sec = secs;
5836       }
5837       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5838     } else {
5839       jlong secs = time / NANOSECS_PER_SEC;
5840       if (secs >= MAX_SECS) {
5841         absTime->tv_sec = max_secs;
5842         absTime->tv_nsec = 0;
5843       } else {
5844         absTime->tv_sec = now.tv_sec + secs;
5845         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5846         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5847           absTime->tv_nsec -= NANOSECS_PER_SEC;
5848           ++absTime->tv_sec; // note: this must be <= max_secs
5849         }
5850       }
5851     }
5852   } else {
5853     // must be relative using monotonic clock
5854     struct timespec now;
5855     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5856     assert_status(status == 0, status, "clock_gettime");
5857     max_secs = now.tv_sec + MAX_SECS;
5858     jlong secs = time / NANOSECS_PER_SEC;
5859     if (secs >= MAX_SECS) {
5860       absTime->tv_sec = max_secs;
5861       absTime->tv_nsec = 0;
5862     } else {
5863       absTime->tv_sec = now.tv_sec + secs;
5864       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5865       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5866         absTime->tv_nsec -= NANOSECS_PER_SEC;
5867         ++absTime->tv_sec; // note: this must be <= max_secs
5868       }
5869     }
5870   }
5871   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5872   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5873   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5874   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5875 }
5876 
5877 void Parker::park(bool isAbsolute, jlong time) {
5878   // Ideally we'd do something useful while spinning, such
5879   // as calling unpackTime().
5880 
5881   // Optional fast-path check:
5882   // Return immediately if a permit is available.
5883   // We depend on Atomic::xchg() having full barrier semantics
5884   // since we are doing a lock-free update to _counter.
5885   if (Atomic::xchg(0, &_counter) > 0) return;
5886 
5887   Thread* thread = Thread::current();
5888   assert(thread->is_Java_thread(), "Must be JavaThread");
5889   JavaThread *jt = (JavaThread *)thread;
5890 
5891   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5892   // Check interrupt before trying to wait
5893   if (Thread::is_interrupted(thread, false)) {
5894     return;
5895   }
5896 
5897   // Next, demultiplex/decode time arguments
5898   timespec absTime;
5899   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5900     return;
5901   }
5902   if (time > 0) {
5903     unpackTime(&absTime, isAbsolute, time);
5904   }
5905 
5906 
5907   // Enter safepoint region
5908   // Beware of deadlocks such as 6317397.
5909   // The per-thread Parker:: mutex is a classic leaf-lock.
5910   // In particular a thread must never block on the Threads_lock while
5911   // holding the Parker:: mutex.  If safepoints are pending both the
5912   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5913   ThreadBlockInVM tbivm(jt);
5914 
5915   // Don't wait if cannot get lock since interference arises from
5916   // unblocking.  Also. check interrupt before trying wait
5917   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5918     return;
5919   }
5920 
5921   int status;
5922   if (_counter > 0)  { // no wait needed
5923     _counter = 0;
5924     status = pthread_mutex_unlock(_mutex);
5925     assert_status(status == 0, status, "invariant");
5926     // Paranoia to ensure our locked and lock-free paths interact
5927     // correctly with each other and Java-level accesses.
5928     OrderAccess::fence();
5929     return;
5930   }
5931 
5932 #ifdef ASSERT
5933   // Don't catch signals while blocked; let the running threads have the signals.
5934   // (This allows a debugger to break into the running thread.)
5935   sigset_t oldsigs;
5936   sigemptyset(&oldsigs);
5937   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5938   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5939 #endif
5940 
5941   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5942   jt->set_suspend_equivalent();
5943   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5944 
5945   assert(_cur_index == -1, "invariant");
5946   if (time == 0) {
5947     _cur_index = REL_INDEX; // arbitrary choice when not timed
5948     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5949   } else {
5950     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5951     status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5952   }
5953   _cur_index = -1;
5954   assert_status(status == 0 || status == EINTR ||
5955                 status == ETIME || status == ETIMEDOUT,
5956                 status, "cond_timedwait");
5957 
5958 #ifdef ASSERT
5959   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5960 #endif
5961 
5962   _counter = 0;
5963   status = pthread_mutex_unlock(_mutex);
5964   assert_status(status == 0, status, "invariant");
5965   // Paranoia to ensure our locked and lock-free paths interact
5966   // correctly with each other and Java-level accesses.
5967   OrderAccess::fence();
5968 
5969   // If externally suspended while waiting, re-suspend
5970   if (jt->handle_special_suspend_equivalent_condition()) {
5971     jt->java_suspend_self();
5972   }
5973 }
5974 
5975 void Parker::unpark() {
5976   int status = pthread_mutex_lock(_mutex);
5977   assert_status(status == 0, status, "invariant");
5978   const int s = _counter;
5979   _counter = 1;
5980   // must capture correct index before unlocking
5981   int index = _cur_index;
5982   status = pthread_mutex_unlock(_mutex);
5983   assert_status(status == 0, status, "invariant");
5984   if (s < 1 && index != -1) {
5985     // thread is definitely parked
5986     status = pthread_cond_signal(&_cond[index]);
5987     assert_status(status == 0, status, "invariant");
5988   }
5989 }
5990 
5991 
5992 extern char** environ;
5993 
5994 // Run the specified command in a separate process. Return its exit value,
5995 // or -1 on failure (e.g. can't fork a new process).
5996 // Unlike system(), this function can be called from signal handler. It
5997 // doesn't block SIGINT et al.
5998 int os::fork_and_exec(char* cmd) {
5999   const char * argv[4] = {"sh", "-c", cmd, NULL};
6000 
6001   pid_t pid = fork();
6002 
6003   if (pid < 0) {
6004     // fork failed
6005     return -1;
6006 
6007   } else if (pid == 0) {
6008     // child process
6009 
6010     execve("/bin/sh", (char* const*)argv, environ);
6011 
6012     // execve failed
6013     _exit(-1);
6014 
6015   } else  {
6016     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6017     // care about the actual exit code, for now.
6018 
6019     int status;
6020 
6021     // Wait for the child process to exit.  This returns immediately if
6022     // the child has already exited. */
6023     while (waitpid(pid, &status, 0) < 0) {
6024       switch (errno) {
6025       case ECHILD: return 0;
6026       case EINTR: break;
6027       default: return -1;
6028       }
6029     }
6030 
6031     if (WIFEXITED(status)) {
6032       // The child exited normally; get its exit code.
6033       return WEXITSTATUS(status);
6034     } else if (WIFSIGNALED(status)) {
6035       // The child exited because of a signal
6036       // The best value to return is 0x80 + signal number,
6037       // because that is what all Unix shells do, and because
6038       // it allows callers to distinguish between process exit and
6039       // process death by signal.
6040       return 0x80 + WTERMSIG(status);
6041     } else {
6042       // Unknown exit code; pass it through
6043       return status;
6044     }
6045   }
6046 }
6047 
6048 // is_headless_jre()
6049 //
6050 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
6051 // in order to report if we are running in a headless jre
6052 //
6053 // Since JDK8 xawt/libmawt.so was moved into the same directory
6054 // as libawt.so, and renamed libawt_xawt.so
6055 //
6056 bool os::is_headless_jre() {
6057   struct stat statbuf;
6058   char buf[MAXPATHLEN];
6059   char libmawtpath[MAXPATHLEN];
6060   const char *xawtstr  = "/xawt/libmawt.so";
6061   const char *new_xawtstr = "/libawt_xawt.so";
6062   char *p;
6063 
6064   // Get path to libjvm.so
6065   os::jvm_path(buf, sizeof(buf));
6066 
6067   // Get rid of libjvm.so
6068   p = strrchr(buf, '/');
6069   if (p == NULL) {
6070     return false;
6071   } else {
6072     *p = '\0';
6073   }
6074 
6075   // Get rid of client or server
6076   p = strrchr(buf, '/');
6077   if (p == NULL) {
6078     return false;
6079   } else {
6080     *p = '\0';
6081   }
6082 
6083   // check xawt/libmawt.so
6084   strcpy(libmawtpath, buf);
6085   strcat(libmawtpath, xawtstr);
6086   if (::stat(libmawtpath, &statbuf) == 0) return false;
6087 
6088   // check libawt_xawt.so
6089   strcpy(libmawtpath, buf);
6090   strcat(libmawtpath, new_xawtstr);
6091   if (::stat(libmawtpath, &statbuf) == 0) return false;
6092 
6093   return true;
6094 }
6095 
6096 // Get the default path to the core file
6097 // Returns the length of the string
6098 int os::get_core_path(char* buffer, size_t bufferSize) {
6099   /*
6100    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
6101    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
6102    */
6103   const int core_pattern_len = 129;
6104   char core_pattern[core_pattern_len] = {0};
6105 
6106   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
6107   if (core_pattern_file == -1) {
6108     return -1;
6109   }
6110 
6111   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
6112   ::close(core_pattern_file);
6113   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
6114     return -1;
6115   }
6116   if (core_pattern[ret-1] == '\n') {
6117     core_pattern[ret-1] = '\0';
6118   } else {
6119     core_pattern[ret] = '\0';
6120   }
6121 
6122   char *pid_pos = strstr(core_pattern, "%p");
6123   int written;
6124 
6125   if (core_pattern[0] == '/') {
6126     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
6127   } else {
6128     char cwd[PATH_MAX];
6129 
6130     const char* p = get_current_directory(cwd, PATH_MAX);
6131     if (p == NULL) {
6132       return -1;
6133     }
6134 
6135     if (core_pattern[0] == '|') {
6136       written = jio_snprintf(buffer, bufferSize,
6137                              "\"%s\" (or dumping to %s/core.%d)",
6138                              &core_pattern[1], p, current_process_id());
6139     } else {
6140       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6141     }
6142   }
6143 
6144   if (written < 0) {
6145     return -1;
6146   }
6147 
6148   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6149     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6150 
6151     if (core_uses_pid_file != -1) {
6152       char core_uses_pid = 0;
6153       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6154       ::close(core_uses_pid_file);
6155 
6156       if (core_uses_pid == '1') {
6157         jio_snprintf(buffer + written, bufferSize - written,
6158                                           ".%d", current_process_id());
6159       }
6160     }
6161   }
6162 
6163   return strlen(buffer);
6164 }
6165 
6166 bool os::start_debugging(char *buf, int buflen) {
6167   int len = (int)strlen(buf);
6168   char *p = &buf[len];
6169 
6170   jio_snprintf(p, buflen-len,
6171                "\n\n"
6172                "Do you want to debug the problem?\n\n"
6173                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6174                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6175                "Otherwise, press RETURN to abort...",
6176                os::current_process_id(), os::current_process_id(),
6177                os::current_thread_id(), os::current_thread_id());
6178 
6179   bool yes = os::message_box("Unexpected Error", buf);
6180 
6181   if (yes) {
6182     // yes, user asked VM to launch debugger
6183     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6184                  os::current_process_id(), os::current_process_id());
6185 
6186     os::fork_and_exec(buf);
6187     yes = false;
6188   }
6189   return yes;
6190 }
6191 
6192 
6193 // Java/Compiler thread:
6194 //
6195 //   Low memory addresses
6196 // P0 +------------------------+
6197 //    |                        |\  Java thread created by VM does not have glibc
6198 //    |    glibc guard page    | - guard page, attached Java thread usually has
6199 //    |                        |/  1 glibc guard page.
6200 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6201 //    |                        |\
6202 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6203 //    |                        |/
6204 //    +------------------------+ JavaThread::stack_reserved_zone_base()
6205 //    |                        |\
6206 //    |      Normal Stack      | -
6207 //    |                        |/
6208 // P2 +------------------------+ Thread::stack_base()
6209 //
6210 // Non-Java thread:
6211 //
6212 //   Low memory addresses
6213 // P0 +------------------------+
6214 //    |                        |\
6215 //    |  glibc guard page      | - usually 1 page
6216 //    |                        |/
6217 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6218 //    |                        |\
6219 //    |      Normal Stack      | -
6220 //    |                        |/
6221 // P2 +------------------------+ Thread::stack_base()
6222 //
6223 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6224 //    returned from pthread_attr_getstack().
6225 // ** Due to NPTL implementation error, linux takes the glibc guard page out
6226 //    of the stack size given in pthread_attr. We work around this for
6227 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6228 //
6229 #ifndef ZERO
6230 static void current_stack_region(address * bottom, size_t * size) {
6231   if (os::Linux::is_initial_thread()) {
6232     // initial thread needs special handling because pthread_getattr_np()
6233     // may return bogus value.
6234     *bottom = os::Linux::initial_thread_stack_bottom();
6235     *size   = os::Linux::initial_thread_stack_size();
6236   } else {
6237     pthread_attr_t attr;
6238 
6239     int rslt = pthread_getattr_np(pthread_self(), &attr);
6240 
6241     // JVM needs to know exact stack location, abort if it fails
6242     if (rslt != 0) {
6243       if (rslt == ENOMEM) {
6244         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6245       } else {
6246         fatal("pthread_getattr_np failed with error = %d", rslt);
6247       }
6248     }
6249 
6250     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6251       fatal("Cannot locate current stack attributes!");
6252     }
6253 
6254     // Work around NPTL stack guard error.
6255     size_t guard_size = 0;
6256     rslt = pthread_attr_getguardsize(&attr, &guard_size);
6257     if (rslt != 0) {
6258       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6259     }
6260     *bottom += guard_size;
6261     *size   -= guard_size;
6262 
6263     pthread_attr_destroy(&attr);
6264 
6265   }
6266   assert(os::current_stack_pointer() >= *bottom &&
6267          os::current_stack_pointer() < *bottom + *size, "just checking");
6268 }
6269 
6270 address os::current_stack_base() {
6271   address bottom;
6272   size_t size;
6273   current_stack_region(&bottom, &size);
6274   return (bottom + size);
6275 }
6276 
6277 size_t os::current_stack_size() {
6278   // This stack size includes the usable stack and HotSpot guard pages
6279   // (for the threads that have Hotspot guard pages).
6280   address bottom;
6281   size_t size;
6282   current_stack_region(&bottom, &size);
6283   return size;
6284 }
6285 #endif
6286 
6287 static inline struct timespec get_mtime(const char* filename) {
6288   struct stat st;
6289   int ret = os::stat(filename, &st);
6290   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
6291   return st.st_mtim;
6292 }
6293 
6294 int os::compare_file_modified_times(const char* file1, const char* file2) {
6295   struct timespec filetime1 = get_mtime(file1);
6296   struct timespec filetime2 = get_mtime(file2);
6297   int diff = filetime1.tv_sec - filetime2.tv_sec;
6298   if (diff == 0) {
6299     return filetime1.tv_nsec - filetime2.tv_nsec;
6300   }
6301   return diff;
6302 }
6303 
6304 /////////////// Unit tests ///////////////
6305 
6306 #ifndef PRODUCT
6307 
6308 #define test_log(...)              \
6309   do {                             \
6310     if (VerboseInternalVMTests) {  \
6311       tty->print_cr(__VA_ARGS__);  \
6312       tty->flush();                \
6313     }                              \
6314   } while (false)
6315 
6316 class TestReserveMemorySpecial : AllStatic {
6317  public:
6318   static void small_page_write(void* addr, size_t size) {
6319     size_t page_size = os::vm_page_size();
6320 
6321     char* end = (char*)addr + size;
6322     for (char* p = (char*)addr; p < end; p += page_size) {
6323       *p = 1;
6324     }
6325   }
6326 
6327   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6328     if (!UseHugeTLBFS) {
6329       return;
6330     }
6331 
6332     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6333 
6334     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6335 
6336     if (addr != NULL) {
6337       small_page_write(addr, size);
6338 
6339       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6340     }
6341   }
6342 
6343   static void test_reserve_memory_special_huge_tlbfs_only() {
6344     if (!UseHugeTLBFS) {
6345       return;
6346     }
6347 
6348     size_t lp = os::large_page_size();
6349 
6350     for (size_t size = lp; size <= lp * 10; size += lp) {
6351       test_reserve_memory_special_huge_tlbfs_only(size);
6352     }
6353   }
6354 
6355   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6356     size_t lp = os::large_page_size();
6357     size_t ag = os::vm_allocation_granularity();
6358 
6359     // sizes to test
6360     const size_t sizes[] = {
6361       lp, lp + ag, lp + lp / 2, lp * 2,
6362       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6363       lp * 10, lp * 10 + lp / 2
6364     };
6365     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6366 
6367     // For each size/alignment combination, we test three scenarios:
6368     // 1) with req_addr == NULL
6369     // 2) with a non-null req_addr at which we expect to successfully allocate
6370     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6371     //    expect the allocation to either fail or to ignore req_addr
6372 
6373     // Pre-allocate two areas; they shall be as large as the largest allocation
6374     //  and aligned to the largest alignment we will be testing.
6375     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6376     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6377       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6378       -1, 0);
6379     assert(mapping1 != MAP_FAILED, "should work");
6380 
6381     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6382       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6383       -1, 0);
6384     assert(mapping2 != MAP_FAILED, "should work");
6385 
6386     // Unmap the first mapping, but leave the second mapping intact: the first
6387     // mapping will serve as a value for a "good" req_addr (case 2). The second
6388     // mapping, still intact, as "bad" req_addr (case 3).
6389     ::munmap(mapping1, mapping_size);
6390 
6391     // Case 1
6392     test_log("%s, req_addr NULL:", __FUNCTION__);
6393     test_log("size            align           result");
6394 
6395     for (int i = 0; i < num_sizes; i++) {
6396       const size_t size = sizes[i];
6397       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6398         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6399         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6400                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6401         if (p != NULL) {
6402           assert(is_ptr_aligned(p, alignment), "must be");
6403           small_page_write(p, size);
6404           os::Linux::release_memory_special_huge_tlbfs(p, size);
6405         }
6406       }
6407     }
6408 
6409     // Case 2
6410     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6411     test_log("size            align           req_addr         result");
6412 
6413     for (int i = 0; i < num_sizes; i++) {
6414       const size_t size = sizes[i];
6415       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6416         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6417         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6418         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6419                  size, alignment, p2i(req_addr), p2i(p),
6420                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6421         if (p != NULL) {
6422           assert(p == req_addr, "must be");
6423           small_page_write(p, size);
6424           os::Linux::release_memory_special_huge_tlbfs(p, size);
6425         }
6426       }
6427     }
6428 
6429     // Case 3
6430     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6431     test_log("size            align           req_addr         result");
6432 
6433     for (int i = 0; i < num_sizes; i++) {
6434       const size_t size = sizes[i];
6435       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6436         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6437         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6438         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6439                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6440         // as the area around req_addr contains already existing mappings, the API should always
6441         // return NULL (as per contract, it cannot return another address)
6442         assert(p == NULL, "must be");
6443       }
6444     }
6445 
6446     ::munmap(mapping2, mapping_size);
6447 
6448   }
6449 
6450   static void test_reserve_memory_special_huge_tlbfs() {
6451     if (!UseHugeTLBFS) {
6452       return;
6453     }
6454 
6455     test_reserve_memory_special_huge_tlbfs_only();
6456     test_reserve_memory_special_huge_tlbfs_mixed();
6457   }
6458 
6459   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6460     if (!UseSHM) {
6461       return;
6462     }
6463 
6464     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6465 
6466     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6467 
6468     if (addr != NULL) {
6469       assert(is_ptr_aligned(addr, alignment), "Check");
6470       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6471 
6472       small_page_write(addr, size);
6473 
6474       os::Linux::release_memory_special_shm(addr, size);
6475     }
6476   }
6477 
6478   static void test_reserve_memory_special_shm() {
6479     size_t lp = os::large_page_size();
6480     size_t ag = os::vm_allocation_granularity();
6481 
6482     for (size_t size = ag; size < lp * 3; size += ag) {
6483       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6484         test_reserve_memory_special_shm(size, alignment);
6485       }
6486     }
6487   }
6488 
6489   static void test() {
6490     test_reserve_memory_special_huge_tlbfs();
6491     test_reserve_memory_special_shm();
6492   }
6493 };
6494 
6495 void TestReserveMemorySpecial_test() {
6496   TestReserveMemorySpecial::test();
6497 }
6498 
6499 #endif