1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "code/compiledMethod.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/compiledIC.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/abstractCompiler.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "compiler/disassembler.hpp"
  39 #include "gc/shared/gcLocker.inline.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/interpreterRuntime.hpp"
  42 #include "logging/log.hpp"
  43 #include "memory/metaspaceShared.hpp"
  44 #include "memory/resourceArea.hpp"
  45 #include "memory/universe.hpp"
  46 #include "oops/klass.hpp"
  47 #include "oops/method.inline.hpp"
  48 #include "oops/objArrayKlass.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "prims/forte.hpp"
  51 #include "prims/jvmtiExport.hpp"
  52 #include "prims/methodHandles.hpp"
  53 #include "prims/nativeLookup.hpp"
  54 #include "runtime/arguments.hpp"
  55 #include "runtime/atomic.hpp"
  56 #include "runtime/biasedLocking.hpp"
  57 #include "runtime/compilationPolicy.hpp"
  58 #include "runtime/frame.inline.hpp"
  59 #include "runtime/handles.inline.hpp"
  60 #include "runtime/init.hpp"
  61 #include "runtime/interfaceSupport.inline.hpp"
  62 #include "runtime/java.hpp"
  63 #include "runtime/javaCalls.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/stubRoutines.hpp"
  66 #include "runtime/vframe.inline.hpp"
  67 #include "runtime/vframeArray.hpp"
  68 #include "trace/tracing.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/dtrace.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/hashtable.inline.hpp"
  73 #include "utilities/macros.hpp"
  74 #include "utilities/xmlstream.hpp"
  75 #ifdef COMPILER1
  76 #include "c1/c1_Runtime1.hpp"
  77 #endif
  78 
  79 // Shared stub locations
  80 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  81 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  82 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  83 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  84 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  85 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  86 address             SharedRuntime::_resolve_static_call_entry;
  87 
  88 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  89 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  90 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  91 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  92 
  93 #ifdef COMPILER2
  94 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  95 #endif // COMPILER2
  96 
  97 
  98 //----------------------------generate_stubs-----------------------------------
  99 void SharedRuntime::generate_stubs() {
 100   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 101   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 102   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 103   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 104   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 105   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 106   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 107 
 108 #if COMPILER2_OR_JVMCI
 109   // Vectors are generated only by C2 and JVMCI.
 110   bool support_wide = is_wide_vector(MaxVectorSize);
 111   if (support_wide) {
 112     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 113   }
 114 #endif // COMPILER2_OR_JVMCI
 115   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 116   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 117 
 118   generate_deopt_blob();
 119 
 120 #ifdef COMPILER2
 121   generate_uncommon_trap_blob();
 122 #endif // COMPILER2
 123 }
 124 
 125 #include <math.h>
 126 
 127 // Implementation of SharedRuntime
 128 
 129 #ifndef PRODUCT
 130 // For statistics
 131 int SharedRuntime::_ic_miss_ctr = 0;
 132 int SharedRuntime::_wrong_method_ctr = 0;
 133 int SharedRuntime::_resolve_static_ctr = 0;
 134 int SharedRuntime::_resolve_virtual_ctr = 0;
 135 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 136 int SharedRuntime::_implicit_null_throws = 0;
 137 int SharedRuntime::_implicit_div0_throws = 0;
 138 int SharedRuntime::_throw_null_ctr = 0;
 139 
 140 int SharedRuntime::_nof_normal_calls = 0;
 141 int SharedRuntime::_nof_optimized_calls = 0;
 142 int SharedRuntime::_nof_inlined_calls = 0;
 143 int SharedRuntime::_nof_megamorphic_calls = 0;
 144 int SharedRuntime::_nof_static_calls = 0;
 145 int SharedRuntime::_nof_inlined_static_calls = 0;
 146 int SharedRuntime::_nof_interface_calls = 0;
 147 int SharedRuntime::_nof_optimized_interface_calls = 0;
 148 int SharedRuntime::_nof_inlined_interface_calls = 0;
 149 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 150 int SharedRuntime::_nof_removable_exceptions = 0;
 151 
 152 int SharedRuntime::_new_instance_ctr=0;
 153 int SharedRuntime::_new_array_ctr=0;
 154 int SharedRuntime::_multi1_ctr=0;
 155 int SharedRuntime::_multi2_ctr=0;
 156 int SharedRuntime::_multi3_ctr=0;
 157 int SharedRuntime::_multi4_ctr=0;
 158 int SharedRuntime::_multi5_ctr=0;
 159 int SharedRuntime::_mon_enter_stub_ctr=0;
 160 int SharedRuntime::_mon_exit_stub_ctr=0;
 161 int SharedRuntime::_mon_enter_ctr=0;
 162 int SharedRuntime::_mon_exit_ctr=0;
 163 int SharedRuntime::_partial_subtype_ctr=0;
 164 int SharedRuntime::_jbyte_array_copy_ctr=0;
 165 int SharedRuntime::_jshort_array_copy_ctr=0;
 166 int SharedRuntime::_jint_array_copy_ctr=0;
 167 int SharedRuntime::_jlong_array_copy_ctr=0;
 168 int SharedRuntime::_oop_array_copy_ctr=0;
 169 int SharedRuntime::_checkcast_array_copy_ctr=0;
 170 int SharedRuntime::_unsafe_array_copy_ctr=0;
 171 int SharedRuntime::_generic_array_copy_ctr=0;
 172 int SharedRuntime::_slow_array_copy_ctr=0;
 173 int SharedRuntime::_find_handler_ctr=0;
 174 int SharedRuntime::_rethrow_ctr=0;
 175 
 176 int     SharedRuntime::_ICmiss_index                    = 0;
 177 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 178 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 179 
 180 
 181 void SharedRuntime::trace_ic_miss(address at) {
 182   for (int i = 0; i < _ICmiss_index; i++) {
 183     if (_ICmiss_at[i] == at) {
 184       _ICmiss_count[i]++;
 185       return;
 186     }
 187   }
 188   int index = _ICmiss_index++;
 189   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 190   _ICmiss_at[index] = at;
 191   _ICmiss_count[index] = 1;
 192 }
 193 
 194 void SharedRuntime::print_ic_miss_histogram() {
 195   if (ICMissHistogram) {
 196     tty->print_cr("IC Miss Histogram:");
 197     int tot_misses = 0;
 198     for (int i = 0; i < _ICmiss_index; i++) {
 199       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 200       tot_misses += _ICmiss_count[i];
 201     }
 202     tty->print_cr("Total IC misses: %7d", tot_misses);
 203   }
 204 }
 205 #endif // PRODUCT
 206 
 207 #if INCLUDE_ALL_GCS
 208 
 209 // G1 write-barrier pre: executed before a pointer store.
 210 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 211   if (orig == NULL) {
 212     assert(false, "should be optimized out");
 213     return;
 214   }
 215   assert(oopDesc::is_oop(orig, true /* ignore mark word */), "Error");
 216   // store the original value that was in the field reference
 217   thread->satb_mark_queue().enqueue(orig);
 218 JRT_END
 219 
 220 // G1 write-barrier post: executed after a pointer store.
 221 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 222   thread->dirty_card_queue().enqueue(card_addr);
 223 JRT_END
 224 
 225 #endif // INCLUDE_ALL_GCS
 226 
 227 
 228 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 229   return x * y;
 230 JRT_END
 231 
 232 
 233 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 234   if (x == min_jlong && y == CONST64(-1)) {
 235     return x;
 236   } else {
 237     return x / y;
 238   }
 239 JRT_END
 240 
 241 
 242 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 243   if (x == min_jlong && y == CONST64(-1)) {
 244     return 0;
 245   } else {
 246     return x % y;
 247   }
 248 JRT_END
 249 
 250 
 251 const juint  float_sign_mask  = 0x7FFFFFFF;
 252 const juint  float_infinity   = 0x7F800000;
 253 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 254 const julong double_infinity  = CONST64(0x7FF0000000000000);
 255 
 256 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 257 #ifdef _WIN64
 258   // 64-bit Windows on amd64 returns the wrong values for
 259   // infinity operands.
 260   union { jfloat f; juint i; } xbits, ybits;
 261   xbits.f = x;
 262   ybits.f = y;
 263   // x Mod Infinity == x unless x is infinity
 264   if (((xbits.i & float_sign_mask) != float_infinity) &&
 265        ((ybits.i & float_sign_mask) == float_infinity) ) {
 266     return x;
 267   }
 268   return ((jfloat)fmod_winx64((double)x, (double)y));
 269 #else
 270   return ((jfloat)fmod((double)x,(double)y));
 271 #endif
 272 JRT_END
 273 
 274 
 275 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 276 #ifdef _WIN64
 277   union { jdouble d; julong l; } xbits, ybits;
 278   xbits.d = x;
 279   ybits.d = y;
 280   // x Mod Infinity == x unless x is infinity
 281   if (((xbits.l & double_sign_mask) != double_infinity) &&
 282        ((ybits.l & double_sign_mask) == double_infinity) ) {
 283     return x;
 284   }
 285   return ((jdouble)fmod_winx64((double)x, (double)y));
 286 #else
 287   return ((jdouble)fmod((double)x,(double)y));
 288 #endif
 289 JRT_END
 290 
 291 #ifdef __SOFTFP__
 292 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 293   return x + y;
 294 JRT_END
 295 
 296 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 297   return x - y;
 298 JRT_END
 299 
 300 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 301   return x * y;
 302 JRT_END
 303 
 304 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 305   return x / y;
 306 JRT_END
 307 
 308 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 309   return x + y;
 310 JRT_END
 311 
 312 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 313   return x - y;
 314 JRT_END
 315 
 316 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 317   return x * y;
 318 JRT_END
 319 
 320 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 321   return x / y;
 322 JRT_END
 323 
 324 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 325   return (jfloat)x;
 326 JRT_END
 327 
 328 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 329   return (jdouble)x;
 330 JRT_END
 331 
 332 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 333   return (jdouble)x;
 334 JRT_END
 335 
 336 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 337   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 338 JRT_END
 339 
 340 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 341   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 342 JRT_END
 343 
 344 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 345   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 346 JRT_END
 347 
 348 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 349   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 350 JRT_END
 351 
 352 // Functions to return the opposite of the aeabi functions for nan.
 353 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 354   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 355 JRT_END
 356 
 357 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 358   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 359 JRT_END
 360 
 361 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 362   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 363 JRT_END
 364 
 365 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 366   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 367 JRT_END
 368 
 369 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 370   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 371 JRT_END
 372 
 373 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 374   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 375 JRT_END
 376 
 377 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 378   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 379 JRT_END
 380 
 381 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 382   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 383 JRT_END
 384 
 385 // Intrinsics make gcc generate code for these.
 386 float  SharedRuntime::fneg(float f)   {
 387   return -f;
 388 }
 389 
 390 double SharedRuntime::dneg(double f)  {
 391   return -f;
 392 }
 393 
 394 #endif // __SOFTFP__
 395 
 396 #if defined(__SOFTFP__) || defined(E500V2)
 397 // Intrinsics make gcc generate code for these.
 398 double SharedRuntime::dabs(double f)  {
 399   return (f <= (double)0.0) ? (double)0.0 - f : f;
 400 }
 401 
 402 #endif
 403 
 404 #if defined(__SOFTFP__) || defined(PPC)
 405 double SharedRuntime::dsqrt(double f) {
 406   return sqrt(f);
 407 }
 408 #endif
 409 
 410 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 411   if (g_isnan(x))
 412     return 0;
 413   if (x >= (jfloat) max_jint)
 414     return max_jint;
 415   if (x <= (jfloat) min_jint)
 416     return min_jint;
 417   return (jint) x;
 418 JRT_END
 419 
 420 
 421 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 422   if (g_isnan(x))
 423     return 0;
 424   if (x >= (jfloat) max_jlong)
 425     return max_jlong;
 426   if (x <= (jfloat) min_jlong)
 427     return min_jlong;
 428   return (jlong) x;
 429 JRT_END
 430 
 431 
 432 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 433   if (g_isnan(x))
 434     return 0;
 435   if (x >= (jdouble) max_jint)
 436     return max_jint;
 437   if (x <= (jdouble) min_jint)
 438     return min_jint;
 439   return (jint) x;
 440 JRT_END
 441 
 442 
 443 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 444   if (g_isnan(x))
 445     return 0;
 446   if (x >= (jdouble) max_jlong)
 447     return max_jlong;
 448   if (x <= (jdouble) min_jlong)
 449     return min_jlong;
 450   return (jlong) x;
 451 JRT_END
 452 
 453 
 454 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 455   return (jfloat)x;
 456 JRT_END
 457 
 458 
 459 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 460   return (jfloat)x;
 461 JRT_END
 462 
 463 
 464 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 465   return (jdouble)x;
 466 JRT_END
 467 
 468 // Exception handling across interpreter/compiler boundaries
 469 //
 470 // exception_handler_for_return_address(...) returns the continuation address.
 471 // The continuation address is the entry point of the exception handler of the
 472 // previous frame depending on the return address.
 473 
 474 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 475   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 476   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 477 
 478   // Reset method handle flag.
 479   thread->set_is_method_handle_return(false);
 480 
 481 #if INCLUDE_JVMCI
 482   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 483   // and other exception handler continuations do not read it
 484   thread->set_exception_pc(NULL);
 485 #endif // INCLUDE_JVMCI
 486 
 487   // The fastest case first
 488   CodeBlob* blob = CodeCache::find_blob(return_address);
 489   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 490   if (nm != NULL) {
 491     // Set flag if return address is a method handle call site.
 492     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 493     // native nmethods don't have exception handlers
 494     assert(!nm->is_native_method(), "no exception handler");
 495     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 496     if (nm->is_deopt_pc(return_address)) {
 497       // If we come here because of a stack overflow, the stack may be
 498       // unguarded. Reguard the stack otherwise if we return to the
 499       // deopt blob and the stack bang causes a stack overflow we
 500       // crash.
 501       bool guard_pages_enabled = thread->stack_guards_enabled();
 502       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 503       if (thread->reserved_stack_activation() != thread->stack_base()) {
 504         thread->set_reserved_stack_activation(thread->stack_base());
 505       }
 506       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 507       return SharedRuntime::deopt_blob()->unpack_with_exception();
 508     } else {
 509       return nm->exception_begin();
 510     }
 511   }
 512 
 513   // Entry code
 514   if (StubRoutines::returns_to_call_stub(return_address)) {
 515     return StubRoutines::catch_exception_entry();
 516   }
 517   // Interpreted code
 518   if (Interpreter::contains(return_address)) {
 519     return Interpreter::rethrow_exception_entry();
 520   }
 521 
 522   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 523   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 524 
 525 #ifndef PRODUCT
 526   { ResourceMark rm;
 527     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 528     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 529     tty->print_cr("b) other problem");
 530   }
 531 #endif // PRODUCT
 532 
 533   ShouldNotReachHere();
 534   return NULL;
 535 }
 536 
 537 
 538 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 539   return raw_exception_handler_for_return_address(thread, return_address);
 540 JRT_END
 541 
 542 
 543 address SharedRuntime::get_poll_stub(address pc) {
 544   address stub;
 545   // Look up the code blob
 546   CodeBlob *cb = CodeCache::find_blob(pc);
 547 
 548   // Should be an nmethod
 549   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 550 
 551   // Look up the relocation information
 552   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 553     "safepoint polling: type must be poll");
 554 
 555 #ifdef ASSERT
 556   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 557     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 558     Disassembler::decode(cb);
 559     fatal("Only polling locations are used for safepoint");
 560   }
 561 #endif
 562 
 563   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 564   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 565   if (at_poll_return) {
 566     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 567            "polling page return stub not created yet");
 568     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 569   } else if (has_wide_vectors) {
 570     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 571            "polling page vectors safepoint stub not created yet");
 572     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 573   } else {
 574     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 575            "polling page safepoint stub not created yet");
 576     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 577   }
 578   log_debug(safepoint)("... found polling page %s exception at pc = "
 579                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 580                        at_poll_return ? "return" : "loop",
 581                        (intptr_t)pc, (intptr_t)stub);
 582   return stub;
 583 }
 584 
 585 
 586 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 587   assert(caller.is_interpreted_frame(), "");
 588   int args_size = ArgumentSizeComputer(sig).size() + 1;
 589   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 590   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 591   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 592   return result;
 593 }
 594 
 595 
 596 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 597   if (JvmtiExport::can_post_on_exceptions()) {
 598     vframeStream vfst(thread, true);
 599     methodHandle method = methodHandle(thread, vfst.method());
 600     address bcp = method()->bcp_from(vfst.bci());
 601     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 602   }
 603   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 604 }
 605 
 606 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 607   Handle h_exception = Exceptions::new_exception(thread, name, message);
 608   throw_and_post_jvmti_exception(thread, h_exception);
 609 }
 610 
 611 // The interpreter code to call this tracing function is only
 612 // called/generated when UL is on for redefine, class and has the right level
 613 // and tags. Since obsolete methods are never compiled, we don't have
 614 // to modify the compilers to generate calls to this function.
 615 //
 616 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 617     JavaThread* thread, Method* method))
 618   if (method->is_obsolete()) {
 619     // We are calling an obsolete method, but this is not necessarily
 620     // an error. Our method could have been redefined just after we
 621     // fetched the Method* from the constant pool.
 622     ResourceMark rm;
 623     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 624   }
 625   return 0;
 626 JRT_END
 627 
 628 // ret_pc points into caller; we are returning caller's exception handler
 629 // for given exception
 630 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 631                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 632   assert(cm != NULL, "must exist");
 633   ResourceMark rm;
 634 
 635 #if INCLUDE_JVMCI
 636   if (cm->is_compiled_by_jvmci()) {
 637     // lookup exception handler for this pc
 638     int catch_pco = ret_pc - cm->code_begin();
 639     ExceptionHandlerTable table(cm);
 640     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 641     if (t != NULL) {
 642       return cm->code_begin() + t->pco();
 643     } else {
 644       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 645     }
 646   }
 647 #endif // INCLUDE_JVMCI
 648 
 649   nmethod* nm = cm->as_nmethod();
 650   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 651   // determine handler bci, if any
 652   EXCEPTION_MARK;
 653 
 654   int handler_bci = -1;
 655   int scope_depth = 0;
 656   if (!force_unwind) {
 657     int bci = sd->bci();
 658     bool recursive_exception = false;
 659     do {
 660       bool skip_scope_increment = false;
 661       // exception handler lookup
 662       Klass* ek = exception->klass();
 663       methodHandle mh(THREAD, sd->method());
 664       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 665       if (HAS_PENDING_EXCEPTION) {
 666         recursive_exception = true;
 667         // We threw an exception while trying to find the exception handler.
 668         // Transfer the new exception to the exception handle which will
 669         // be set into thread local storage, and do another lookup for an
 670         // exception handler for this exception, this time starting at the
 671         // BCI of the exception handler which caused the exception to be
 672         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 673         // argument to ensure that the correct exception is thrown (4870175).
 674         recursive_exception_occurred = true;
 675         exception = Handle(THREAD, PENDING_EXCEPTION);
 676         CLEAR_PENDING_EXCEPTION;
 677         if (handler_bci >= 0) {
 678           bci = handler_bci;
 679           handler_bci = -1;
 680           skip_scope_increment = true;
 681         }
 682       }
 683       else {
 684         recursive_exception = false;
 685       }
 686       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 687         sd = sd->sender();
 688         if (sd != NULL) {
 689           bci = sd->bci();
 690         }
 691         ++scope_depth;
 692       }
 693     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 694   }
 695 
 696   // found handling method => lookup exception handler
 697   int catch_pco = ret_pc - nm->code_begin();
 698 
 699   ExceptionHandlerTable table(nm);
 700   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 701   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 702     // Allow abbreviated catch tables.  The idea is to allow a method
 703     // to materialize its exceptions without committing to the exact
 704     // routing of exceptions.  In particular this is needed for adding
 705     // a synthetic handler to unlock monitors when inlining
 706     // synchronized methods since the unlock path isn't represented in
 707     // the bytecodes.
 708     t = table.entry_for(catch_pco, -1, 0);
 709   }
 710 
 711 #ifdef COMPILER1
 712   if (t == NULL && nm->is_compiled_by_c1()) {
 713     assert(nm->unwind_handler_begin() != NULL, "");
 714     return nm->unwind_handler_begin();
 715   }
 716 #endif
 717 
 718   if (t == NULL) {
 719     ttyLocker ttyl;
 720     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 721     tty->print_cr("   Exception:");
 722     exception->print();
 723     tty->cr();
 724     tty->print_cr(" Compiled exception table :");
 725     table.print();
 726     nm->print_code();
 727     guarantee(false, "missing exception handler");
 728     return NULL;
 729   }
 730 
 731   return nm->code_begin() + t->pco();
 732 }
 733 
 734 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 735   // These errors occur only at call sites
 736   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 737 JRT_END
 738 
 739 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 740   // These errors occur only at call sites
 741   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 742 JRT_END
 743 
 744 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 745   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 746 JRT_END
 747 
 748 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 749   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 750 JRT_END
 751 
 752 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 753   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 754   // cache sites (when the callee activation is not yet set up) so we are at a call site
 755   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 756 JRT_END
 757 
 758 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 759   throw_StackOverflowError_common(thread, false);
 760 JRT_END
 761 
 762 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 763   throw_StackOverflowError_common(thread, true);
 764 JRT_END
 765 
 766 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 767   // We avoid using the normal exception construction in this case because
 768   // it performs an upcall to Java, and we're already out of stack space.
 769   Thread* THREAD = thread;
 770   Klass* k = SystemDictionary::StackOverflowError_klass();
 771   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 772   if (delayed) {
 773     java_lang_Throwable::set_message(exception_oop,
 774                                      Universe::delayed_stack_overflow_error_message());
 775   }
 776   Handle exception (thread, exception_oop);
 777   if (StackTraceInThrowable) {
 778     java_lang_Throwable::fill_in_stack_trace(exception);
 779   }
 780   // Increment counter for hs_err file reporting
 781   Atomic::inc(&Exceptions::_stack_overflow_errors);
 782   throw_and_post_jvmti_exception(thread, exception);
 783 }
 784 
 785 #if INCLUDE_JVMCI
 786 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 787   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 788   thread->set_jvmci_implicit_exception_pc(pc);
 789   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 790   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 791 }
 792 #endif // INCLUDE_JVMCI
 793 
 794 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 795                                                            address pc,
 796                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 797 {
 798   address target_pc = NULL;
 799 
 800   if (Interpreter::contains(pc)) {
 801 #ifdef CC_INTERP
 802     // C++ interpreter doesn't throw implicit exceptions
 803     ShouldNotReachHere();
 804 #else
 805     switch (exception_kind) {
 806       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 807       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 808       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 809       default:                      ShouldNotReachHere();
 810     }
 811 #endif // !CC_INTERP
 812   } else {
 813     switch (exception_kind) {
 814       case STACK_OVERFLOW: {
 815         // Stack overflow only occurs upon frame setup; the callee is
 816         // going to be unwound. Dispatch to a shared runtime stub
 817         // which will cause the StackOverflowError to be fabricated
 818         // and processed.
 819         // Stack overflow should never occur during deoptimization:
 820         // the compiled method bangs the stack by as much as the
 821         // interpreter would need in case of a deoptimization. The
 822         // deoptimization blob and uncommon trap blob bang the stack
 823         // in a debug VM to verify the correctness of the compiled
 824         // method stack banging.
 825         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 826         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 827         return StubRoutines::throw_StackOverflowError_entry();
 828       }
 829 
 830       case IMPLICIT_NULL: {
 831         if (VtableStubs::contains(pc)) {
 832           // We haven't yet entered the callee frame. Fabricate an
 833           // exception and begin dispatching it in the caller. Since
 834           // the caller was at a call site, it's safe to destroy all
 835           // caller-saved registers, as these entry points do.
 836           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 837 
 838           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 839           if (vt_stub == NULL) return NULL;
 840 
 841           if (vt_stub->is_abstract_method_error(pc)) {
 842             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 843             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 844             // Instead of throwing the abstract method error here directly, we re-resolve
 845             // and will throw the AbstractMethodError during resolve. As a result, we'll
 846             // get a more detailed error message.
 847             return SharedRuntime::get_handle_wrong_method_stub();
 848           } else {
 849             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 850             // Assert that the signal comes from the expected location in stub code.
 851             assert(vt_stub->is_null_pointer_exception(pc),
 852                    "obtained signal from unexpected location in stub code");
 853             return StubRoutines::throw_NullPointerException_at_call_entry();
 854           }
 855         } else {
 856           CodeBlob* cb = CodeCache::find_blob(pc);
 857 
 858           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 859           if (cb == NULL) return NULL;
 860 
 861           // Exception happened in CodeCache. Must be either:
 862           // 1. Inline-cache check in C2I handler blob,
 863           // 2. Inline-cache check in nmethod, or
 864           // 3. Implicit null exception in nmethod
 865 
 866           if (!cb->is_compiled()) {
 867             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 868             if (!is_in_blob) {
 869               // Allow normal crash reporting to handle this
 870               return NULL;
 871             }
 872             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 873             // There is no handler here, so we will simply unwind.
 874             return StubRoutines::throw_NullPointerException_at_call_entry();
 875           }
 876 
 877           // Otherwise, it's a compiled method.  Consult its exception handlers.
 878           CompiledMethod* cm = (CompiledMethod*)cb;
 879           if (cm->inlinecache_check_contains(pc)) {
 880             // exception happened inside inline-cache check code
 881             // => the nmethod is not yet active (i.e., the frame
 882             // is not set up yet) => use return address pushed by
 883             // caller => don't push another return address
 884             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 885             return StubRoutines::throw_NullPointerException_at_call_entry();
 886           }
 887 
 888           if (cm->method()->is_method_handle_intrinsic()) {
 889             // exception happened inside MH dispatch code, similar to a vtable stub
 890             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 891             return StubRoutines::throw_NullPointerException_at_call_entry();
 892           }
 893 
 894 #ifndef PRODUCT
 895           _implicit_null_throws++;
 896 #endif
 897 #if INCLUDE_JVMCI
 898           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 899             // If there's no PcDesc then we'll die way down inside of
 900             // deopt instead of just getting normal error reporting,
 901             // so only go there if it will succeed.
 902             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 903           } else {
 904 #endif // INCLUDE_JVMCI
 905           assert (cm->is_nmethod(), "Expect nmethod");
 906           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 907 #if INCLUDE_JVMCI
 908           }
 909 #endif // INCLUDE_JVMCI
 910           // If there's an unexpected fault, target_pc might be NULL,
 911           // in which case we want to fall through into the normal
 912           // error handling code.
 913         }
 914 
 915         break; // fall through
 916       }
 917 
 918 
 919       case IMPLICIT_DIVIDE_BY_ZERO: {
 920         CompiledMethod* cm = CodeCache::find_compiled(pc);
 921         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 922 #ifndef PRODUCT
 923         _implicit_div0_throws++;
 924 #endif
 925 #if INCLUDE_JVMCI
 926         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 927           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 928         } else {
 929 #endif // INCLUDE_JVMCI
 930         target_pc = cm->continuation_for_implicit_exception(pc);
 931 #if INCLUDE_JVMCI
 932         }
 933 #endif // INCLUDE_JVMCI
 934         // If there's an unexpected fault, target_pc might be NULL,
 935         // in which case we want to fall through into the normal
 936         // error handling code.
 937         break; // fall through
 938       }
 939 
 940       default: ShouldNotReachHere();
 941     }
 942 
 943     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 944 
 945     if (exception_kind == IMPLICIT_NULL) {
 946 #ifndef PRODUCT
 947       // for AbortVMOnException flag
 948       Exceptions::debug_check_abort("java.lang.NullPointerException");
 949 #endif //PRODUCT
 950       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 951     } else {
 952 #ifndef PRODUCT
 953       // for AbortVMOnException flag
 954       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 955 #endif //PRODUCT
 956       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 957     }
 958     return target_pc;
 959   }
 960 
 961   ShouldNotReachHere();
 962   return NULL;
 963 }
 964 
 965 
 966 /**
 967  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 968  * installed in the native function entry of all native Java methods before
 969  * they get linked to their actual native methods.
 970  *
 971  * \note
 972  * This method actually never gets called!  The reason is because
 973  * the interpreter's native entries call NativeLookup::lookup() which
 974  * throws the exception when the lookup fails.  The exception is then
 975  * caught and forwarded on the return from NativeLookup::lookup() call
 976  * before the call to the native function.  This might change in the future.
 977  */
 978 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 979 {
 980   // We return a bad value here to make sure that the exception is
 981   // forwarded before we look at the return value.
 982   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 983 }
 984 JNI_END
 985 
 986 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 987   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 988 }
 989 
 990 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 991 #if INCLUDE_JVMCI
 992   if (!obj->klass()->has_finalizer()) {
 993     return;
 994   }
 995 #endif // INCLUDE_JVMCI
 996   assert(oopDesc::is_oop(obj), "must be a valid oop");
 997   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 998   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 999 JRT_END
1000 
1001 
1002 jlong SharedRuntime::get_java_tid(Thread* thread) {
1003   if (thread != NULL) {
1004     if (thread->is_Java_thread()) {
1005       oop obj = ((JavaThread*)thread)->threadObj();
1006       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1007     }
1008   }
1009   return 0;
1010 }
1011 
1012 /**
1013  * This function ought to be a void function, but cannot be because
1014  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1015  * 6254741.  Once that is fixed we can remove the dummy return value.
1016  */
1017 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1018   return dtrace_object_alloc_base(Thread::current(), o, size);
1019 }
1020 
1021 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1022   assert(DTraceAllocProbes, "wrong call");
1023   Klass* klass = o->klass();
1024   Symbol* name = klass->name();
1025   HOTSPOT_OBJECT_ALLOC(
1026                    get_java_tid(thread),
1027                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1028   return 0;
1029 }
1030 
1031 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1032     JavaThread* thread, Method* method))
1033   assert(DTraceMethodProbes, "wrong call");
1034   Symbol* kname = method->klass_name();
1035   Symbol* name = method->name();
1036   Symbol* sig = method->signature();
1037   HOTSPOT_METHOD_ENTRY(
1038       get_java_tid(thread),
1039       (char *) kname->bytes(), kname->utf8_length(),
1040       (char *) name->bytes(), name->utf8_length(),
1041       (char *) sig->bytes(), sig->utf8_length());
1042   return 0;
1043 JRT_END
1044 
1045 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1046     JavaThread* thread, Method* method))
1047   assert(DTraceMethodProbes, "wrong call");
1048   Symbol* kname = method->klass_name();
1049   Symbol* name = method->name();
1050   Symbol* sig = method->signature();
1051   HOTSPOT_METHOD_RETURN(
1052       get_java_tid(thread),
1053       (char *) kname->bytes(), kname->utf8_length(),
1054       (char *) name->bytes(), name->utf8_length(),
1055       (char *) sig->bytes(), sig->utf8_length());
1056   return 0;
1057 JRT_END
1058 
1059 
1060 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1061 // for a call current in progress, i.e., arguments has been pushed on stack
1062 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1063 // vtable updates, etc.  Caller frame must be compiled.
1064 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1065   ResourceMark rm(THREAD);
1066 
1067   // last java frame on stack (which includes native call frames)
1068   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1069 
1070   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1071 }
1072 
1073 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1074   CompiledMethod* caller = vfst.nm();
1075 
1076   nmethodLocker caller_lock(caller);
1077 
1078   address pc = vfst.frame_pc();
1079   { // Get call instruction under lock because another thread may be busy patching it.
1080     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1081     return caller->attached_method_before_pc(pc);
1082   }
1083   return NULL;
1084 }
1085 
1086 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1087 // for a call current in progress, i.e., arguments has been pushed on stack
1088 // but callee has not been invoked yet.  Caller frame must be compiled.
1089 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1090                                               vframeStream& vfst,
1091                                               Bytecodes::Code& bc,
1092                                               CallInfo& callinfo, TRAPS) {
1093   Handle receiver;
1094   Handle nullHandle;  //create a handy null handle for exception returns
1095 
1096   assert(!vfst.at_end(), "Java frame must exist");
1097 
1098   // Find caller and bci from vframe
1099   methodHandle caller(THREAD, vfst.method());
1100   int          bci   = vfst.bci();
1101 
1102   Bytecode_invoke bytecode(caller, bci);
1103   int bytecode_index = bytecode.index();
1104 
1105   methodHandle attached_method = extract_attached_method(vfst);
1106   if (attached_method.not_null()) {
1107     methodHandle callee = bytecode.static_target(CHECK_NH);
1108     vmIntrinsics::ID id = callee->intrinsic_id();
1109     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1110     // it attaches statically resolved method to the call site.
1111     if (MethodHandles::is_signature_polymorphic(id) &&
1112         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1113       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1114 
1115       // Adjust invocation mode according to the attached method.
1116       switch (bc) {
1117         case Bytecodes::_invokeinterface:
1118           if (!attached_method->method_holder()->is_interface()) {
1119             bc = Bytecodes::_invokevirtual;
1120           }
1121           break;
1122         case Bytecodes::_invokehandle:
1123           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1124             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1125                                               : Bytecodes::_invokevirtual;
1126           }
1127           break;
1128         default:
1129           break;
1130       }
1131     }
1132   } else {
1133     bc = bytecode.invoke_code();
1134   }
1135 
1136   bool has_receiver = bc != Bytecodes::_invokestatic &&
1137                       bc != Bytecodes::_invokedynamic &&
1138                       bc != Bytecodes::_invokehandle;
1139 
1140   // Find receiver for non-static call
1141   if (has_receiver) {
1142     // This register map must be update since we need to find the receiver for
1143     // compiled frames. The receiver might be in a register.
1144     RegisterMap reg_map2(thread);
1145     frame stubFrame   = thread->last_frame();
1146     // Caller-frame is a compiled frame
1147     frame callerFrame = stubFrame.sender(&reg_map2);
1148 
1149     if (attached_method.is_null()) {
1150       methodHandle callee = bytecode.static_target(CHECK_NH);
1151       if (callee.is_null()) {
1152         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1153       }
1154     }
1155 
1156     // Retrieve from a compiled argument list
1157     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1158 
1159     if (receiver.is_null()) {
1160       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1161     }
1162   }
1163 
1164   // Resolve method
1165   if (attached_method.not_null()) {
1166     // Parameterized by attached method.
1167     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1168   } else {
1169     // Parameterized by bytecode.
1170     constantPoolHandle constants(THREAD, caller->constants());
1171     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1172   }
1173 
1174 #ifdef ASSERT
1175   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1176   if (has_receiver) {
1177     assert(receiver.not_null(), "should have thrown exception");
1178     Klass* receiver_klass = receiver->klass();
1179     Klass* rk = NULL;
1180     if (attached_method.not_null()) {
1181       // In case there's resolved method attached, use its holder during the check.
1182       rk = attached_method->method_holder();
1183     } else {
1184       // Klass is already loaded.
1185       constantPoolHandle constants(THREAD, caller->constants());
1186       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1187     }
1188     Klass* static_receiver_klass = rk;
1189     methodHandle callee = callinfo.selected_method();
1190     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1191            "actual receiver must be subclass of static receiver klass");
1192     if (receiver_klass->is_instance_klass()) {
1193       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1194         tty->print_cr("ERROR: Klass not yet initialized!!");
1195         receiver_klass->print();
1196       }
1197       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1198     }
1199   }
1200 #endif
1201 
1202   return receiver;
1203 }
1204 
1205 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1206   ResourceMark rm(THREAD);
1207   // We need first to check if any Java activations (compiled, interpreted)
1208   // exist on the stack since last JavaCall.  If not, we need
1209   // to get the target method from the JavaCall wrapper.
1210   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1211   methodHandle callee_method;
1212   if (vfst.at_end()) {
1213     // No Java frames were found on stack since we did the JavaCall.
1214     // Hence the stack can only contain an entry_frame.  We need to
1215     // find the target method from the stub frame.
1216     RegisterMap reg_map(thread, false);
1217     frame fr = thread->last_frame();
1218     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1219     fr = fr.sender(&reg_map);
1220     assert(fr.is_entry_frame(), "must be");
1221     // fr is now pointing to the entry frame.
1222     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1223   } else {
1224     Bytecodes::Code bc;
1225     CallInfo callinfo;
1226     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1227     callee_method = callinfo.selected_method();
1228   }
1229   assert(callee_method()->is_method(), "must be");
1230   return callee_method;
1231 }
1232 
1233 // Resolves a call.
1234 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1235                                            bool is_virtual,
1236                                            bool is_optimized, TRAPS) {
1237   methodHandle callee_method;
1238   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1239   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1240     int retry_count = 0;
1241     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1242            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1243       // If has a pending exception then there is no need to re-try to
1244       // resolve this method.
1245       // If the method has been redefined, we need to try again.
1246       // Hack: we have no way to update the vtables of arrays, so don't
1247       // require that java.lang.Object has been updated.
1248 
1249       // It is very unlikely that method is redefined more than 100 times
1250       // in the middle of resolve. If it is looping here more than 100 times
1251       // means then there could be a bug here.
1252       guarantee((retry_count++ < 100),
1253                 "Could not resolve to latest version of redefined method");
1254       // method is redefined in the middle of resolve so re-try.
1255       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1256     }
1257   }
1258   return callee_method;
1259 }
1260 
1261 // Resolves a call.  The compilers generate code for calls that go here
1262 // and are patched with the real destination of the call.
1263 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1264                                            bool is_virtual,
1265                                            bool is_optimized, TRAPS) {
1266 
1267   ResourceMark rm(thread);
1268   RegisterMap cbl_map(thread, false);
1269   frame caller_frame = thread->last_frame().sender(&cbl_map);
1270 
1271   CodeBlob* caller_cb = caller_frame.cb();
1272   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1273   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1274 
1275   // make sure caller is not getting deoptimized
1276   // and removed before we are done with it.
1277   // CLEANUP - with lazy deopt shouldn't need this lock
1278   nmethodLocker caller_lock(caller_nm);
1279 
1280   // determine call info & receiver
1281   // note: a) receiver is NULL for static calls
1282   //       b) an exception is thrown if receiver is NULL for non-static calls
1283   CallInfo call_info;
1284   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1285   Handle receiver = find_callee_info(thread, invoke_code,
1286                                      call_info, CHECK_(methodHandle()));
1287   methodHandle callee_method = call_info.selected_method();
1288 
1289   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1290          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1291          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1292          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1293          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1294 
1295   assert(caller_nm->is_alive(), "It should be alive");
1296 
1297 #ifndef PRODUCT
1298   // tracing/debugging/statistics
1299   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1300                 (is_virtual) ? (&_resolve_virtual_ctr) :
1301                                (&_resolve_static_ctr);
1302   Atomic::inc(addr);
1303 
1304   if (TraceCallFixup) {
1305     ResourceMark rm(thread);
1306     tty->print("resolving %s%s (%s) call to",
1307       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1308       Bytecodes::name(invoke_code));
1309     callee_method->print_short_name(tty);
1310     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1311                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1312   }
1313 #endif
1314 
1315   // JSR 292 key invariant:
1316   // If the resolved method is a MethodHandle invoke target, the call
1317   // site must be a MethodHandle call site, because the lambda form might tail-call
1318   // leaving the stack in a state unknown to either caller or callee
1319   // TODO detune for now but we might need it again
1320 //  assert(!callee_method->is_compiled_lambda_form() ||
1321 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1322 
1323   // Compute entry points. This might require generation of C2I converter
1324   // frames, so we cannot be holding any locks here. Furthermore, the
1325   // computation of the entry points is independent of patching the call.  We
1326   // always return the entry-point, but we only patch the stub if the call has
1327   // not been deoptimized.  Return values: For a virtual call this is an
1328   // (cached_oop, destination address) pair. For a static call/optimized
1329   // virtual this is just a destination address.
1330 
1331   StaticCallInfo static_call_info;
1332   CompiledICInfo virtual_call_info;
1333 
1334   // Make sure the callee nmethod does not get deoptimized and removed before
1335   // we are done patching the code.
1336   CompiledMethod* callee = callee_method->code();
1337 
1338   if (callee != NULL) {
1339     assert(callee->is_compiled(), "must be nmethod for patching");
1340   }
1341 
1342   if (callee != NULL && !callee->is_in_use()) {
1343     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1344     callee = NULL;
1345   }
1346   nmethodLocker nl_callee(callee);
1347 #ifdef ASSERT
1348   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1349 #endif
1350 
1351   bool is_nmethod = caller_nm->is_nmethod();
1352 
1353   if (is_virtual) {
1354     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1355     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1356     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1357     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1358                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1359                      CHECK_(methodHandle()));
1360   } else {
1361     // static call
1362     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1363   }
1364 
1365   // grab lock, check for deoptimization and potentially patch caller
1366   {
1367     MutexLocker ml_patch(CompiledIC_lock);
1368 
1369     // Lock blocks for safepoint during which both nmethods can change state.
1370 
1371     // Now that we are ready to patch if the Method* was redefined then
1372     // don't update call site and let the caller retry.
1373     // Don't update call site if callee nmethod was unloaded or deoptimized.
1374     // Don't update call site if callee nmethod was replaced by an other nmethod
1375     // which may happen when multiply alive nmethod (tiered compilation)
1376     // will be supported.
1377     if (!callee_method->is_old() &&
1378         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1379 #ifdef ASSERT
1380       // We must not try to patch to jump to an already unloaded method.
1381       if (dest_entry_point != 0) {
1382         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1383         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1384                "should not call unloaded nmethod");
1385       }
1386 #endif
1387       if (is_virtual) {
1388         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1389         if (inline_cache->is_clean()) {
1390           inline_cache->set_to_monomorphic(virtual_call_info);
1391         }
1392       } else {
1393         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1394         if (ssc->is_clean()) ssc->set(static_call_info);
1395       }
1396     }
1397 
1398   } // unlock CompiledIC_lock
1399 
1400   return callee_method;
1401 }
1402 
1403 
1404 // Inline caches exist only in compiled code
1405 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1406 #ifdef ASSERT
1407   RegisterMap reg_map(thread, false);
1408   frame stub_frame = thread->last_frame();
1409   assert(stub_frame.is_runtime_frame(), "sanity check");
1410   frame caller_frame = stub_frame.sender(&reg_map);
1411   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1412 #endif /* ASSERT */
1413 
1414   methodHandle callee_method;
1415   JRT_BLOCK
1416     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1417     // Return Method* through TLS
1418     thread->set_vm_result_2(callee_method());
1419   JRT_BLOCK_END
1420   // return compiled code entry point after potential safepoints
1421   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1422   return callee_method->verified_code_entry();
1423 JRT_END
1424 
1425 
1426 // Handle call site that has been made non-entrant
1427 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1428   // 6243940 We might end up in here if the callee is deoptimized
1429   // as we race to call it.  We don't want to take a safepoint if
1430   // the caller was interpreted because the caller frame will look
1431   // interpreted to the stack walkers and arguments are now
1432   // "compiled" so it is much better to make this transition
1433   // invisible to the stack walking code. The i2c path will
1434   // place the callee method in the callee_target. It is stashed
1435   // there because if we try and find the callee by normal means a
1436   // safepoint is possible and have trouble gc'ing the compiled args.
1437   RegisterMap reg_map(thread, false);
1438   frame stub_frame = thread->last_frame();
1439   assert(stub_frame.is_runtime_frame(), "sanity check");
1440   frame caller_frame = stub_frame.sender(&reg_map);
1441 
1442   if (caller_frame.is_interpreted_frame() ||
1443       caller_frame.is_entry_frame()) {
1444     Method* callee = thread->callee_target();
1445     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1446     thread->set_vm_result_2(callee);
1447     thread->set_callee_target(NULL);
1448     return callee->get_c2i_entry();
1449   }
1450 
1451   // Must be compiled to compiled path which is safe to stackwalk
1452   methodHandle callee_method;
1453   JRT_BLOCK
1454     // Force resolving of caller (if we called from compiled frame)
1455     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1456     thread->set_vm_result_2(callee_method());
1457   JRT_BLOCK_END
1458   // return compiled code entry point after potential safepoints
1459   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1460   return callee_method->verified_code_entry();
1461 JRT_END
1462 
1463 // Handle abstract method call
1464 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1465   // Verbose error message for AbstractMethodError.
1466   // Get the called method from the invoke bytecode.
1467   vframeStream vfst(thread, true);
1468   assert(!vfst.at_end(), "Java frame must exist");
1469   methodHandle caller(vfst.method());
1470   Bytecode_invoke invoke(caller, vfst.bci());
1471   DEBUG_ONLY( invoke.verify(); )
1472 
1473   // Find the compiled caller frame.
1474   RegisterMap reg_map(thread);
1475   frame stubFrame = thread->last_frame();
1476   assert(stubFrame.is_runtime_frame(), "must be");
1477   frame callerFrame = stubFrame.sender(&reg_map);
1478   assert(callerFrame.is_compiled_frame(), "must be");
1479 
1480   // Install exception and return forward entry.
1481   address res = StubRoutines::throw_AbstractMethodError_entry();
1482   JRT_BLOCK
1483     methodHandle callee = invoke.static_target(thread);
1484     if (!callee.is_null()) {
1485       oop recv = callerFrame.retrieve_receiver(&reg_map);
1486       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1487       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1488       res = StubRoutines::forward_exception_entry();
1489     }
1490   JRT_BLOCK_END
1491   return res;
1492 JRT_END
1493 
1494 
1495 // resolve a static call and patch code
1496 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1497   methodHandle callee_method;
1498   JRT_BLOCK
1499     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1500     thread->set_vm_result_2(callee_method());
1501   JRT_BLOCK_END
1502   // return compiled code entry point after potential safepoints
1503   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1504   return callee_method->verified_code_entry();
1505 JRT_END
1506 
1507 
1508 // resolve virtual call and update inline cache to monomorphic
1509 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1510   methodHandle callee_method;
1511   JRT_BLOCK
1512     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1513     thread->set_vm_result_2(callee_method());
1514   JRT_BLOCK_END
1515   // return compiled code entry point after potential safepoints
1516   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1517   return callee_method->verified_code_entry();
1518 JRT_END
1519 
1520 
1521 // Resolve a virtual call that can be statically bound (e.g., always
1522 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1523 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1524   methodHandle callee_method;
1525   JRT_BLOCK
1526     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1527     thread->set_vm_result_2(callee_method());
1528   JRT_BLOCK_END
1529   // return compiled code entry point after potential safepoints
1530   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1531   return callee_method->verified_code_entry();
1532 JRT_END
1533 
1534 
1535 
1536 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1537   ResourceMark rm(thread);
1538   CallInfo call_info;
1539   Bytecodes::Code bc;
1540 
1541   // receiver is NULL for static calls. An exception is thrown for NULL
1542   // receivers for non-static calls
1543   Handle receiver = find_callee_info(thread, bc, call_info,
1544                                      CHECK_(methodHandle()));
1545   // Compiler1 can produce virtual call sites that can actually be statically bound
1546   // If we fell thru to below we would think that the site was going megamorphic
1547   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1548   // we'd try and do a vtable dispatch however methods that can be statically bound
1549   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1550   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1551   // plain ic_miss) and the site will be converted to an optimized virtual call site
1552   // never to miss again. I don't believe C2 will produce code like this but if it
1553   // did this would still be the correct thing to do for it too, hence no ifdef.
1554   //
1555   if (call_info.resolved_method()->can_be_statically_bound()) {
1556     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1557     if (TraceCallFixup) {
1558       RegisterMap reg_map(thread, false);
1559       frame caller_frame = thread->last_frame().sender(&reg_map);
1560       ResourceMark rm(thread);
1561       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1562       callee_method->print_short_name(tty);
1563       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1564       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1565     }
1566     return callee_method;
1567   }
1568 
1569   methodHandle callee_method = call_info.selected_method();
1570 
1571   bool should_be_mono = false;
1572 
1573 #ifndef PRODUCT
1574   Atomic::inc(&_ic_miss_ctr);
1575 
1576   // Statistics & Tracing
1577   if (TraceCallFixup) {
1578     ResourceMark rm(thread);
1579     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1580     callee_method->print_short_name(tty);
1581     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1582   }
1583 
1584   if (ICMissHistogram) {
1585     MutexLocker m(VMStatistic_lock);
1586     RegisterMap reg_map(thread, false);
1587     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1588     // produce statistics under the lock
1589     trace_ic_miss(f.pc());
1590   }
1591 #endif
1592 
1593   // install an event collector so that when a vtable stub is created the
1594   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1595   // event can't be posted when the stub is created as locks are held
1596   // - instead the event will be deferred until the event collector goes
1597   // out of scope.
1598   JvmtiDynamicCodeEventCollector event_collector;
1599 
1600   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1601   { MutexLocker ml_patch (CompiledIC_lock);
1602     RegisterMap reg_map(thread, false);
1603     frame caller_frame = thread->last_frame().sender(&reg_map);
1604     CodeBlob* cb = caller_frame.cb();
1605     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1606     if (cb->is_compiled()) {
1607       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1608       bool should_be_mono = false;
1609       if (inline_cache->is_optimized()) {
1610         if (TraceCallFixup) {
1611           ResourceMark rm(thread);
1612           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1613           callee_method->print_short_name(tty);
1614           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1615         }
1616         should_be_mono = true;
1617       } else if (inline_cache->is_icholder_call()) {
1618         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1619         if (ic_oop != NULL) {
1620 
1621           if (receiver()->klass() == ic_oop->holder_klass()) {
1622             // This isn't a real miss. We must have seen that compiled code
1623             // is now available and we want the call site converted to a
1624             // monomorphic compiled call site.
1625             // We can't assert for callee_method->code() != NULL because it
1626             // could have been deoptimized in the meantime
1627             if (TraceCallFixup) {
1628               ResourceMark rm(thread);
1629               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1630               callee_method->print_short_name(tty);
1631               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1632             }
1633             should_be_mono = true;
1634           }
1635         }
1636       }
1637 
1638       if (should_be_mono) {
1639 
1640         // We have a path that was monomorphic but was going interpreted
1641         // and now we have (or had) a compiled entry. We correct the IC
1642         // by using a new icBuffer.
1643         CompiledICInfo info;
1644         Klass* receiver_klass = receiver()->klass();
1645         inline_cache->compute_monomorphic_entry(callee_method,
1646                                                 receiver_klass,
1647                                                 inline_cache->is_optimized(),
1648                                                 false, caller_nm->is_nmethod(),
1649                                                 info, CHECK_(methodHandle()));
1650         inline_cache->set_to_monomorphic(info);
1651       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1652         // Potential change to megamorphic
1653         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1654         if (!successful) {
1655           inline_cache->set_to_clean();
1656         }
1657       } else {
1658         // Either clean or megamorphic
1659       }
1660     } else {
1661       fatal("Unimplemented");
1662     }
1663   } // Release CompiledIC_lock
1664 
1665   return callee_method;
1666 }
1667 
1668 //
1669 // Resets a call-site in compiled code so it will get resolved again.
1670 // This routines handles both virtual call sites, optimized virtual call
1671 // sites, and static call sites. Typically used to change a call sites
1672 // destination from compiled to interpreted.
1673 //
1674 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1675   ResourceMark rm(thread);
1676   RegisterMap reg_map(thread, false);
1677   frame stub_frame = thread->last_frame();
1678   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1679   frame caller = stub_frame.sender(&reg_map);
1680 
1681   // Do nothing if the frame isn't a live compiled frame.
1682   // nmethod could be deoptimized by the time we get here
1683   // so no update to the caller is needed.
1684 
1685   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1686 
1687     address pc = caller.pc();
1688 
1689     // Check for static or virtual call
1690     bool is_static_call = false;
1691     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1692 
1693     // Default call_addr is the location of the "basic" call.
1694     // Determine the address of the call we a reresolving. With
1695     // Inline Caches we will always find a recognizable call.
1696     // With Inline Caches disabled we may or may not find a
1697     // recognizable call. We will always find a call for static
1698     // calls and for optimized virtual calls. For vanilla virtual
1699     // calls it depends on the state of the UseInlineCaches switch.
1700     //
1701     // With Inline Caches disabled we can get here for a virtual call
1702     // for two reasons:
1703     //   1 - calling an abstract method. The vtable for abstract methods
1704     //       will run us thru handle_wrong_method and we will eventually
1705     //       end up in the interpreter to throw the ame.
1706     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1707     //       call and between the time we fetch the entry address and
1708     //       we jump to it the target gets deoptimized. Similar to 1
1709     //       we will wind up in the interprter (thru a c2i with c2).
1710     //
1711     address call_addr = NULL;
1712     {
1713       // Get call instruction under lock because another thread may be
1714       // busy patching it.
1715       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1716       // Location of call instruction
1717       call_addr = caller_nm->call_instruction_address(pc);
1718     }
1719     // Make sure nmethod doesn't get deoptimized and removed until
1720     // this is done with it.
1721     // CLEANUP - with lazy deopt shouldn't need this lock
1722     nmethodLocker nmlock(caller_nm);
1723 
1724     if (call_addr != NULL) {
1725       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1726       int ret = iter.next(); // Get item
1727       if (ret) {
1728         assert(iter.addr() == call_addr, "must find call");
1729         if (iter.type() == relocInfo::static_call_type) {
1730           is_static_call = true;
1731         } else {
1732           assert(iter.type() == relocInfo::virtual_call_type ||
1733                  iter.type() == relocInfo::opt_virtual_call_type
1734                 , "unexpected relocInfo. type");
1735         }
1736       } else {
1737         assert(!UseInlineCaches, "relocation info. must exist for this address");
1738       }
1739 
1740       // Cleaning the inline cache will force a new resolve. This is more robust
1741       // than directly setting it to the new destination, since resolving of calls
1742       // is always done through the same code path. (experience shows that it
1743       // leads to very hard to track down bugs, if an inline cache gets updated
1744       // to a wrong method). It should not be performance critical, since the
1745       // resolve is only done once.
1746 
1747       bool is_nmethod = caller_nm->is_nmethod();
1748       MutexLocker ml(CompiledIC_lock);
1749       if (is_static_call) {
1750         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1751         ssc->set_to_clean();
1752       } else {
1753         // compiled, dispatched call (which used to call an interpreted method)
1754         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1755         inline_cache->set_to_clean();
1756       }
1757     }
1758   }
1759 
1760   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1761 
1762 
1763 #ifndef PRODUCT
1764   Atomic::inc(&_wrong_method_ctr);
1765 
1766   if (TraceCallFixup) {
1767     ResourceMark rm(thread);
1768     tty->print("handle_wrong_method reresolving call to");
1769     callee_method->print_short_name(tty);
1770     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1771   }
1772 #endif
1773 
1774   return callee_method;
1775 }
1776 
1777 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1778   // The faulting unsafe accesses should be changed to throw the error
1779   // synchronously instead. Meanwhile the faulting instruction will be
1780   // skipped over (effectively turning it into a no-op) and an
1781   // asynchronous exception will be raised which the thread will
1782   // handle at a later point. If the instruction is a load it will
1783   // return garbage.
1784 
1785   // Request an async exception.
1786   thread->set_pending_unsafe_access_error();
1787 
1788   // Return address of next instruction to execute.
1789   return next_pc;
1790 }
1791 
1792 #ifdef ASSERT
1793 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1794                                                                 const BasicType* sig_bt,
1795                                                                 const VMRegPair* regs) {
1796   ResourceMark rm;
1797   const int total_args_passed = method->size_of_parameters();
1798   const VMRegPair*    regs_with_member_name = regs;
1799         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1800 
1801   const int member_arg_pos = total_args_passed - 1;
1802   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1803   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1804 
1805   const bool is_outgoing = method->is_method_handle_intrinsic();
1806   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1807 
1808   for (int i = 0; i < member_arg_pos; i++) {
1809     VMReg a =    regs_with_member_name[i].first();
1810     VMReg b = regs_without_member_name[i].first();
1811     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1812   }
1813   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1814 }
1815 #endif
1816 
1817 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1818   if (destination != entry_point) {
1819     CodeBlob* callee = CodeCache::find_blob(destination);
1820     // callee == cb seems weird. It means calling interpreter thru stub.
1821     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1822       // static call or optimized virtual
1823       if (TraceCallFixup) {
1824         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1825         moop->print_short_name(tty);
1826         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1827       }
1828       return true;
1829     } else {
1830       if (TraceCallFixup) {
1831         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1832         moop->print_short_name(tty);
1833         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1834       }
1835       // assert is too strong could also be resolve destinations.
1836       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1837     }
1838   } else {
1839     if (TraceCallFixup) {
1840       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1841       moop->print_short_name(tty);
1842       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1843     }
1844   }
1845   return false;
1846 }
1847 
1848 // ---------------------------------------------------------------------------
1849 // We are calling the interpreter via a c2i. Normally this would mean that
1850 // we were called by a compiled method. However we could have lost a race
1851 // where we went int -> i2c -> c2i and so the caller could in fact be
1852 // interpreted. If the caller is compiled we attempt to patch the caller
1853 // so he no longer calls into the interpreter.
1854 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1855   Method* moop(method);
1856 
1857   address entry_point = moop->from_compiled_entry_no_trampoline();
1858 
1859   // It's possible that deoptimization can occur at a call site which hasn't
1860   // been resolved yet, in which case this function will be called from
1861   // an nmethod that has been patched for deopt and we can ignore the
1862   // request for a fixup.
1863   // Also it is possible that we lost a race in that from_compiled_entry
1864   // is now back to the i2c in that case we don't need to patch and if
1865   // we did we'd leap into space because the callsite needs to use
1866   // "to interpreter" stub in order to load up the Method*. Don't
1867   // ask me how I know this...
1868 
1869   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1870   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1871     return;
1872   }
1873 
1874   // The check above makes sure this is a nmethod.
1875   CompiledMethod* nm = cb->as_compiled_method_or_null();
1876   assert(nm, "must be");
1877 
1878   // Get the return PC for the passed caller PC.
1879   address return_pc = caller_pc + frame::pc_return_offset;
1880 
1881   // There is a benign race here. We could be attempting to patch to a compiled
1882   // entry point at the same time the callee is being deoptimized. If that is
1883   // the case then entry_point may in fact point to a c2i and we'd patch the
1884   // call site with the same old data. clear_code will set code() to NULL
1885   // at the end of it. If we happen to see that NULL then we can skip trying
1886   // to patch. If we hit the window where the callee has a c2i in the
1887   // from_compiled_entry and the NULL isn't present yet then we lose the race
1888   // and patch the code with the same old data. Asi es la vida.
1889 
1890   if (moop->code() == NULL) return;
1891 
1892   if (nm->is_in_use()) {
1893 
1894     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1895     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1896     if (NativeCall::is_call_before(return_pc)) {
1897       ResourceMark mark;
1898       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1899       //
1900       // bug 6281185. We might get here after resolving a call site to a vanilla
1901       // virtual call. Because the resolvee uses the verified entry it may then
1902       // see compiled code and attempt to patch the site by calling us. This would
1903       // then incorrectly convert the call site to optimized and its downhill from
1904       // there. If you're lucky you'll get the assert in the bugid, if not you've
1905       // just made a call site that could be megamorphic into a monomorphic site
1906       // for the rest of its life! Just another racing bug in the life of
1907       // fixup_callers_callsite ...
1908       //
1909       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1910       iter.next();
1911       assert(iter.has_current(), "must have a reloc at java call site");
1912       relocInfo::relocType typ = iter.reloc()->type();
1913       if (typ != relocInfo::static_call_type &&
1914            typ != relocInfo::opt_virtual_call_type &&
1915            typ != relocInfo::static_stub_type) {
1916         return;
1917       }
1918       address destination = call->destination();
1919       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1920         call->set_destination_mt_safe(entry_point);
1921       }
1922     }
1923   }
1924 IRT_END
1925 
1926 
1927 // same as JVM_Arraycopy, but called directly from compiled code
1928 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1929                                                 oopDesc* dest, jint dest_pos,
1930                                                 jint length,
1931                                                 JavaThread* thread)) {
1932 #ifndef PRODUCT
1933   _slow_array_copy_ctr++;
1934 #endif
1935   // Check if we have null pointers
1936   if (src == NULL || dest == NULL) {
1937     THROW(vmSymbols::java_lang_NullPointerException());
1938   }
1939   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1940   // even though the copy_array API also performs dynamic checks to ensure
1941   // that src and dest are truly arrays (and are conformable).
1942   // The copy_array mechanism is awkward and could be removed, but
1943   // the compilers don't call this function except as a last resort,
1944   // so it probably doesn't matter.
1945   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1946                                         (arrayOopDesc*)dest, dest_pos,
1947                                         length, thread);
1948 }
1949 JRT_END
1950 
1951 // The caller of generate_class_cast_message() (or one of its callers)
1952 // must use a ResourceMark in order to correctly free the result.
1953 char* SharedRuntime::generate_class_cast_message(
1954     JavaThread* thread, Klass* caster_klass) {
1955 
1956   // Get target class name from the checkcast instruction
1957   vframeStream vfst(thread, true);
1958   assert(!vfst.at_end(), "Java frame must exist");
1959   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1960   constantPoolHandle cpool(thread, vfst.method()->constants());
1961   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1962   Symbol* target_klass_name = NULL;
1963   if (target_klass == NULL) {
1964     // This klass should be resolved, but just in case, get the name in the klass slot.
1965     target_klass_name = cpool->klass_name_at(cc.index());
1966   }
1967   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1968 }
1969 
1970 
1971 // The caller of generate_class_cast_message() (or one of its callers)
1972 // must use a ResourceMark in order to correctly free the result.
1973 char* SharedRuntime::generate_class_cast_message(
1974     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1975 
1976   const char* caster_name = caster_klass->class_loader_and_module_name();
1977 
1978   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
1979   const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
1980                                                    target_klass->class_loader_and_module_name();
1981 
1982   size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
1983 
1984   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1985   if (message == NULL) {
1986     // Shouldn't happen, but don't cause even more problems if it does
1987     message = const_cast<char*>(caster_klass->external_name());
1988   } else {
1989     jio_snprintf(message,
1990                  msglen,
1991                  "%s cannot be cast to %s",
1992                  caster_name,
1993                  target_name);
1994   }
1995   return message;
1996 }
1997 
1998 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1999   (void) JavaThread::current()->reguard_stack();
2000 JRT_END
2001 
2002 
2003 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2004 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2005   // Disable ObjectSynchronizer::quick_enter() in default config
2006   // on AARCH64 and ARM until JDK-8153107 is resolved.
2007   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
2008       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
2009       !SafepointSynchronize::is_synchronizing()) {
2010     // Only try quick_enter() if we're not trying to reach a safepoint
2011     // so that the calling thread reaches the safepoint more quickly.
2012     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2013   }
2014   // NO_ASYNC required because an async exception on the state transition destructor
2015   // would leave you with the lock held and it would never be released.
2016   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2017   // and the model is that an exception implies the method failed.
2018   JRT_BLOCK_NO_ASYNC
2019   oop obj(_obj);
2020   if (PrintBiasedLockingStatistics) {
2021     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2022   }
2023   Handle h_obj(THREAD, obj);
2024   if (UseBiasedLocking) {
2025     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2026     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2027   } else {
2028     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2029   }
2030   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2031   JRT_BLOCK_END
2032 JRT_END
2033 
2034 // Handles the uncommon cases of monitor unlocking in compiled code
2035 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2036    oop obj(_obj);
2037   assert(JavaThread::current() == THREAD, "invariant");
2038   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2039   // testing was unable to ever fire the assert that guarded it so I have removed it.
2040   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2041 #undef MIGHT_HAVE_PENDING
2042 #ifdef MIGHT_HAVE_PENDING
2043   // Save and restore any pending_exception around the exception mark.
2044   // While the slow_exit must not throw an exception, we could come into
2045   // this routine with one set.
2046   oop pending_excep = NULL;
2047   const char* pending_file;
2048   int pending_line;
2049   if (HAS_PENDING_EXCEPTION) {
2050     pending_excep = PENDING_EXCEPTION;
2051     pending_file  = THREAD->exception_file();
2052     pending_line  = THREAD->exception_line();
2053     CLEAR_PENDING_EXCEPTION;
2054   }
2055 #endif /* MIGHT_HAVE_PENDING */
2056 
2057   {
2058     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2059     EXCEPTION_MARK;
2060     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2061   }
2062 
2063 #ifdef MIGHT_HAVE_PENDING
2064   if (pending_excep != NULL) {
2065     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2066   }
2067 #endif /* MIGHT_HAVE_PENDING */
2068 JRT_END
2069 
2070 #ifndef PRODUCT
2071 
2072 void SharedRuntime::print_statistics() {
2073   ttyLocker ttyl;
2074   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2075 
2076   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2077 
2078   SharedRuntime::print_ic_miss_histogram();
2079 
2080   if (CountRemovableExceptions) {
2081     if (_nof_removable_exceptions > 0) {
2082       Unimplemented(); // this counter is not yet incremented
2083       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2084     }
2085   }
2086 
2087   // Dump the JRT_ENTRY counters
2088   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2089   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2090   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2091   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2092   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2093   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2094   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2095 
2096   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2097   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2098   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2099   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2100   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2101 
2102   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2103   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2104   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2105   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2106   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2107   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2108   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2109   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2110   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2111   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2112   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2113   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2114   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2115   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2116   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2117   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2118 
2119   AdapterHandlerLibrary::print_statistics();
2120 
2121   if (xtty != NULL)  xtty->tail("statistics");
2122 }
2123 
2124 inline double percent(int x, int y) {
2125   return 100.0 * x / MAX2(y, 1);
2126 }
2127 
2128 class MethodArityHistogram {
2129  public:
2130   enum { MAX_ARITY = 256 };
2131  private:
2132   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2133   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2134   static int _max_arity;                      // max. arity seen
2135   static int _max_size;                       // max. arg size seen
2136 
2137   static void add_method_to_histogram(nmethod* nm) {
2138     Method* m = nm->method();
2139     ArgumentCount args(m->signature());
2140     int arity   = args.size() + (m->is_static() ? 0 : 1);
2141     int argsize = m->size_of_parameters();
2142     arity   = MIN2(arity, MAX_ARITY-1);
2143     argsize = MIN2(argsize, MAX_ARITY-1);
2144     int count = nm->method()->compiled_invocation_count();
2145     _arity_histogram[arity]  += count;
2146     _size_histogram[argsize] += count;
2147     _max_arity = MAX2(_max_arity, arity);
2148     _max_size  = MAX2(_max_size, argsize);
2149   }
2150 
2151   void print_histogram_helper(int n, int* histo, const char* name) {
2152     const int N = MIN2(5, n);
2153     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2154     double sum = 0;
2155     double weighted_sum = 0;
2156     int i;
2157     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2158     double rest = sum;
2159     double percent = sum / 100;
2160     for (i = 0; i <= N; i++) {
2161       rest -= histo[i];
2162       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2163     }
2164     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2165     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2166   }
2167 
2168   void print_histogram() {
2169     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2170     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2171     tty->print_cr("\nSame for parameter size (in words):");
2172     print_histogram_helper(_max_size, _size_histogram, "size");
2173     tty->cr();
2174   }
2175 
2176  public:
2177   MethodArityHistogram() {
2178     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2179     _max_arity = _max_size = 0;
2180     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2181     CodeCache::nmethods_do(add_method_to_histogram);
2182     print_histogram();
2183   }
2184 };
2185 
2186 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2187 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2188 int MethodArityHistogram::_max_arity;
2189 int MethodArityHistogram::_max_size;
2190 
2191 void SharedRuntime::print_call_statistics(int comp_total) {
2192   tty->print_cr("Calls from compiled code:");
2193   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2194   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2195   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2196   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2197   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2198   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2199   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2200   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2201   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2202   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2203   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2204   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2205   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2206   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2207   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2208   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2209   tty->cr();
2210   tty->print_cr("Note 1: counter updates are not MT-safe.");
2211   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2212   tty->print_cr("        %% in nested categories are relative to their category");
2213   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2214   tty->cr();
2215 
2216   MethodArityHistogram h;
2217 }
2218 #endif
2219 
2220 
2221 // A simple wrapper class around the calling convention information
2222 // that allows sharing of adapters for the same calling convention.
2223 class AdapterFingerPrint : public CHeapObj<mtCode> {
2224  private:
2225   enum {
2226     _basic_type_bits = 4,
2227     _basic_type_mask = right_n_bits(_basic_type_bits),
2228     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2229     _compact_int_count = 3
2230   };
2231   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2232   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2233 
2234   union {
2235     int  _compact[_compact_int_count];
2236     int* _fingerprint;
2237   } _value;
2238   int _length; // A negative length indicates the fingerprint is in the compact form,
2239                // Otherwise _value._fingerprint is the array.
2240 
2241   // Remap BasicTypes that are handled equivalently by the adapters.
2242   // These are correct for the current system but someday it might be
2243   // necessary to make this mapping platform dependent.
2244   static int adapter_encoding(BasicType in) {
2245     switch (in) {
2246       case T_BOOLEAN:
2247       case T_BYTE:
2248       case T_SHORT:
2249       case T_CHAR:
2250         // There are all promoted to T_INT in the calling convention
2251         return T_INT;
2252 
2253       case T_OBJECT:
2254       case T_ARRAY:
2255         // In other words, we assume that any register good enough for
2256         // an int or long is good enough for a managed pointer.
2257 #ifdef _LP64
2258         return T_LONG;
2259 #else
2260         return T_INT;
2261 #endif
2262 
2263       case T_INT:
2264       case T_LONG:
2265       case T_FLOAT:
2266       case T_DOUBLE:
2267       case T_VOID:
2268         return in;
2269 
2270       default:
2271         ShouldNotReachHere();
2272         return T_CONFLICT;
2273     }
2274   }
2275 
2276  public:
2277   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2278     // The fingerprint is based on the BasicType signature encoded
2279     // into an array of ints with eight entries per int.
2280     int* ptr;
2281     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2282     if (len <= _compact_int_count) {
2283       assert(_compact_int_count == 3, "else change next line");
2284       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2285       // Storing the signature encoded as signed chars hits about 98%
2286       // of the time.
2287       _length = -len;
2288       ptr = _value._compact;
2289     } else {
2290       _length = len;
2291       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2292       ptr = _value._fingerprint;
2293     }
2294 
2295     // Now pack the BasicTypes with 8 per int
2296     int sig_index = 0;
2297     for (int index = 0; index < len; index++) {
2298       int value = 0;
2299       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2300         int bt = ((sig_index < total_args_passed)
2301                   ? adapter_encoding(sig_bt[sig_index++])
2302                   : 0);
2303         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2304         value = (value << _basic_type_bits) | bt;
2305       }
2306       ptr[index] = value;
2307     }
2308   }
2309 
2310   ~AdapterFingerPrint() {
2311     if (_length > 0) {
2312       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2313     }
2314   }
2315 
2316   int value(int index) {
2317     if (_length < 0) {
2318       return _value._compact[index];
2319     }
2320     return _value._fingerprint[index];
2321   }
2322   int length() {
2323     if (_length < 0) return -_length;
2324     return _length;
2325   }
2326 
2327   bool is_compact() {
2328     return _length <= 0;
2329   }
2330 
2331   unsigned int compute_hash() {
2332     int hash = 0;
2333     for (int i = 0; i < length(); i++) {
2334       int v = value(i);
2335       hash = (hash << 8) ^ v ^ (hash >> 5);
2336     }
2337     return (unsigned int)hash;
2338   }
2339 
2340   const char* as_string() {
2341     stringStream st;
2342     st.print("0x");
2343     for (int i = 0; i < length(); i++) {
2344       st.print("%08x", value(i));
2345     }
2346     return st.as_string();
2347   }
2348 
2349   bool equals(AdapterFingerPrint* other) {
2350     if (other->_length != _length) {
2351       return false;
2352     }
2353     if (_length < 0) {
2354       assert(_compact_int_count == 3, "else change next line");
2355       return _value._compact[0] == other->_value._compact[0] &&
2356              _value._compact[1] == other->_value._compact[1] &&
2357              _value._compact[2] == other->_value._compact[2];
2358     } else {
2359       for (int i = 0; i < _length; i++) {
2360         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2361           return false;
2362         }
2363       }
2364     }
2365     return true;
2366   }
2367 };
2368 
2369 
2370 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2371 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2372   friend class AdapterHandlerTableIterator;
2373 
2374  private:
2375 
2376 #ifndef PRODUCT
2377   static int _lookups; // number of calls to lookup
2378   static int _buckets; // number of buckets checked
2379   static int _equals;  // number of buckets checked with matching hash
2380   static int _hits;    // number of successful lookups
2381   static int _compact; // number of equals calls with compact signature
2382 #endif
2383 
2384   AdapterHandlerEntry* bucket(int i) {
2385     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2386   }
2387 
2388  public:
2389   AdapterHandlerTable()
2390     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2391 
2392   // Create a new entry suitable for insertion in the table
2393   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2394     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2395     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2396     if (DumpSharedSpaces) {
2397       ((CDSAdapterHandlerEntry*)entry)->init();
2398     }
2399     return entry;
2400   }
2401 
2402   // Insert an entry into the table
2403   void add(AdapterHandlerEntry* entry) {
2404     int index = hash_to_index(entry->hash());
2405     add_entry(index, entry);
2406   }
2407 
2408   void free_entry(AdapterHandlerEntry* entry) {
2409     entry->deallocate();
2410     BasicHashtable<mtCode>::free_entry(entry);
2411   }
2412 
2413   // Find a entry with the same fingerprint if it exists
2414   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2415     NOT_PRODUCT(_lookups++);
2416     AdapterFingerPrint fp(total_args_passed, sig_bt);
2417     unsigned int hash = fp.compute_hash();
2418     int index = hash_to_index(hash);
2419     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2420       NOT_PRODUCT(_buckets++);
2421       if (e->hash() == hash) {
2422         NOT_PRODUCT(_equals++);
2423         if (fp.equals(e->fingerprint())) {
2424 #ifndef PRODUCT
2425           if (fp.is_compact()) _compact++;
2426           _hits++;
2427 #endif
2428           return e;
2429         }
2430       }
2431     }
2432     return NULL;
2433   }
2434 
2435 #ifndef PRODUCT
2436   void print_statistics() {
2437     ResourceMark rm;
2438     int longest = 0;
2439     int empty = 0;
2440     int total = 0;
2441     int nonempty = 0;
2442     for (int index = 0; index < table_size(); index++) {
2443       int count = 0;
2444       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2445         count++;
2446       }
2447       if (count != 0) nonempty++;
2448       if (count == 0) empty++;
2449       if (count > longest) longest = count;
2450       total += count;
2451     }
2452     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2453                   empty, longest, total, total / (double)nonempty);
2454     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2455                   _lookups, _buckets, _equals, _hits, _compact);
2456   }
2457 #endif
2458 };
2459 
2460 
2461 #ifndef PRODUCT
2462 
2463 int AdapterHandlerTable::_lookups;
2464 int AdapterHandlerTable::_buckets;
2465 int AdapterHandlerTable::_equals;
2466 int AdapterHandlerTable::_hits;
2467 int AdapterHandlerTable::_compact;
2468 
2469 #endif
2470 
2471 class AdapterHandlerTableIterator : public StackObj {
2472  private:
2473   AdapterHandlerTable* _table;
2474   int _index;
2475   AdapterHandlerEntry* _current;
2476 
2477   void scan() {
2478     while (_index < _table->table_size()) {
2479       AdapterHandlerEntry* a = _table->bucket(_index);
2480       _index++;
2481       if (a != NULL) {
2482         _current = a;
2483         return;
2484       }
2485     }
2486   }
2487 
2488  public:
2489   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2490     scan();
2491   }
2492   bool has_next() {
2493     return _current != NULL;
2494   }
2495   AdapterHandlerEntry* next() {
2496     if (_current != NULL) {
2497       AdapterHandlerEntry* result = _current;
2498       _current = _current->next();
2499       if (_current == NULL) scan();
2500       return result;
2501     } else {
2502       return NULL;
2503     }
2504   }
2505 };
2506 
2507 
2508 // ---------------------------------------------------------------------------
2509 // Implementation of AdapterHandlerLibrary
2510 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2511 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2512 const int AdapterHandlerLibrary_size = 16*K;
2513 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2514 
2515 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2516   // Should be called only when AdapterHandlerLibrary_lock is active.
2517   if (_buffer == NULL) // Initialize lazily
2518       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2519   return _buffer;
2520 }
2521 
2522 extern "C" void unexpected_adapter_call() {
2523   ShouldNotCallThis();
2524 }
2525 
2526 void AdapterHandlerLibrary::initialize() {
2527   if (_adapters != NULL) return;
2528   _adapters = new AdapterHandlerTable();
2529 
2530   // Create a special handler for abstract methods.  Abstract methods
2531   // are never compiled so an i2c entry is somewhat meaningless, but
2532   // throw AbstractMethodError just in case.
2533   // Pass wrong_method_abstract for the c2i transitions to return
2534   // AbstractMethodError for invalid invocations.
2535   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2536   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2537                                                               StubRoutines::throw_AbstractMethodError_entry(),
2538                                                               wrong_method_abstract, wrong_method_abstract);
2539 }
2540 
2541 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2542                                                       address i2c_entry,
2543                                                       address c2i_entry,
2544                                                       address c2i_unverified_entry) {
2545   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2546 }
2547 
2548 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2549   AdapterHandlerEntry* entry = get_adapter0(method);
2550   if (method->is_shared()) {
2551     // See comments around Method::link_method()
2552     MutexLocker mu(AdapterHandlerLibrary_lock);
2553     if (method->adapter() == NULL) {
2554       method->update_adapter_trampoline(entry);
2555     }
2556     address trampoline = method->from_compiled_entry();
2557     if (*(int*)trampoline == 0) {
2558       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2559       MacroAssembler _masm(&buffer);
2560       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2561       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2562 
2563       if (PrintInterpreter) {
2564         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2565       }
2566     }
2567   }
2568 
2569   return entry;
2570 }
2571 
2572 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2573   // Use customized signature handler.  Need to lock around updates to
2574   // the AdapterHandlerTable (it is not safe for concurrent readers
2575   // and a single writer: this could be fixed if it becomes a
2576   // problem).
2577 
2578   ResourceMark rm;
2579 
2580   NOT_PRODUCT(int insts_size);
2581   AdapterBlob* new_adapter = NULL;
2582   AdapterHandlerEntry* entry = NULL;
2583   AdapterFingerPrint* fingerprint = NULL;
2584   {
2585     MutexLocker mu(AdapterHandlerLibrary_lock);
2586     // make sure data structure is initialized
2587     initialize();
2588 
2589     if (method->is_abstract()) {
2590       return _abstract_method_handler;
2591     }
2592 
2593     // Fill in the signature array, for the calling-convention call.
2594     int total_args_passed = method->size_of_parameters(); // All args on stack
2595 
2596     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2597     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2598     int i = 0;
2599     if (!method->is_static())  // Pass in receiver first
2600       sig_bt[i++] = T_OBJECT;
2601     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2602       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2603       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2604         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2605     }
2606     assert(i == total_args_passed, "");
2607 
2608     // Lookup method signature's fingerprint
2609     entry = _adapters->lookup(total_args_passed, sig_bt);
2610 
2611 #ifdef ASSERT
2612     AdapterHandlerEntry* shared_entry = NULL;
2613     // Start adapter sharing verification only after the VM is booted.
2614     if (VerifyAdapterSharing && (entry != NULL)) {
2615       shared_entry = entry;
2616       entry = NULL;
2617     }
2618 #endif
2619 
2620     if (entry != NULL) {
2621       return entry;
2622     }
2623 
2624     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2625     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2626 
2627     // Make a C heap allocated version of the fingerprint to store in the adapter
2628     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2629 
2630     // StubRoutines::code2() is initialized after this function can be called. As a result,
2631     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2632     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2633     // stub that ensure that an I2C stub is called from an interpreter frame.
2634     bool contains_all_checks = StubRoutines::code2() != NULL;
2635 
2636     // Create I2C & C2I handlers
2637     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2638     if (buf != NULL) {
2639       CodeBuffer buffer(buf);
2640       short buffer_locs[20];
2641       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2642                                              sizeof(buffer_locs)/sizeof(relocInfo));
2643 
2644       MacroAssembler _masm(&buffer);
2645       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2646                                                      total_args_passed,
2647                                                      comp_args_on_stack,
2648                                                      sig_bt,
2649                                                      regs,
2650                                                      fingerprint);
2651 #ifdef ASSERT
2652       if (VerifyAdapterSharing) {
2653         if (shared_entry != NULL) {
2654           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2655           // Release the one just created and return the original
2656           _adapters->free_entry(entry);
2657           return shared_entry;
2658         } else  {
2659           entry->save_code(buf->code_begin(), buffer.insts_size());
2660         }
2661       }
2662 #endif
2663 
2664       new_adapter = AdapterBlob::create(&buffer);
2665       NOT_PRODUCT(insts_size = buffer.insts_size());
2666     }
2667     if (new_adapter == NULL) {
2668       // CodeCache is full, disable compilation
2669       // Ought to log this but compile log is only per compile thread
2670       // and we're some non descript Java thread.
2671       return NULL; // Out of CodeCache space
2672     }
2673     entry->relocate(new_adapter->content_begin());
2674 #ifndef PRODUCT
2675     // debugging suppport
2676     if (PrintAdapterHandlers || PrintStubCode) {
2677       ttyLocker ttyl;
2678       entry->print_adapter_on(tty);
2679       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2680                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2681                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2682       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2683       if (Verbose || PrintStubCode) {
2684         address first_pc = entry->base_address();
2685         if (first_pc != NULL) {
2686           Disassembler::decode(first_pc, first_pc + insts_size);
2687           tty->cr();
2688         }
2689       }
2690     }
2691 #endif
2692     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2693     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2694     if (contains_all_checks || !VerifyAdapterCalls) {
2695       _adapters->add(entry);
2696     }
2697   }
2698   // Outside of the lock
2699   if (new_adapter != NULL) {
2700     char blob_id[256];
2701     jio_snprintf(blob_id,
2702                  sizeof(blob_id),
2703                  "%s(%s)@" PTR_FORMAT,
2704                  new_adapter->name(),
2705                  fingerprint->as_string(),
2706                  new_adapter->content_begin());
2707     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2708 
2709     if (JvmtiExport::should_post_dynamic_code_generated()) {
2710       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2711     }
2712   }
2713   return entry;
2714 }
2715 
2716 address AdapterHandlerEntry::base_address() {
2717   address base = _i2c_entry;
2718   if (base == NULL)  base = _c2i_entry;
2719   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2720   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2721   return base;
2722 }
2723 
2724 void AdapterHandlerEntry::relocate(address new_base) {
2725   address old_base = base_address();
2726   assert(old_base != NULL, "");
2727   ptrdiff_t delta = new_base - old_base;
2728   if (_i2c_entry != NULL)
2729     _i2c_entry += delta;
2730   if (_c2i_entry != NULL)
2731     _c2i_entry += delta;
2732   if (_c2i_unverified_entry != NULL)
2733     _c2i_unverified_entry += delta;
2734   assert(base_address() == new_base, "");
2735 }
2736 
2737 
2738 void AdapterHandlerEntry::deallocate() {
2739   delete _fingerprint;
2740 #ifdef ASSERT
2741   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2742 #endif
2743 }
2744 
2745 
2746 #ifdef ASSERT
2747 // Capture the code before relocation so that it can be compared
2748 // against other versions.  If the code is captured after relocation
2749 // then relative instructions won't be equivalent.
2750 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2751   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2752   _saved_code_length = length;
2753   memcpy(_saved_code, buffer, length);
2754 }
2755 
2756 
2757 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2758   if (length != _saved_code_length) {
2759     return false;
2760   }
2761 
2762   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2763 }
2764 #endif
2765 
2766 
2767 /**
2768  * Create a native wrapper for this native method.  The wrapper converts the
2769  * Java-compiled calling convention to the native convention, handles
2770  * arguments, and transitions to native.  On return from the native we transition
2771  * back to java blocking if a safepoint is in progress.
2772  */
2773 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2774   ResourceMark rm;
2775   nmethod* nm = NULL;
2776 
2777   assert(method->is_native(), "must be native");
2778   assert(method->is_method_handle_intrinsic() ||
2779          method->has_native_function(), "must have something valid to call!");
2780 
2781   {
2782     // Perform the work while holding the lock, but perform any printing outside the lock
2783     MutexLocker mu(AdapterHandlerLibrary_lock);
2784     // See if somebody beat us to it
2785     if (method->code() != NULL) {
2786       return;
2787     }
2788 
2789     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2790     assert(compile_id > 0, "Must generate native wrapper");
2791 
2792 
2793     ResourceMark rm;
2794     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2795     if (buf != NULL) {
2796       CodeBuffer buffer(buf);
2797       double locs_buf[20];
2798       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2799       MacroAssembler _masm(&buffer);
2800 
2801       // Fill in the signature array, for the calling-convention call.
2802       const int total_args_passed = method->size_of_parameters();
2803 
2804       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2805       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2806       int i=0;
2807       if (!method->is_static())  // Pass in receiver first
2808         sig_bt[i++] = T_OBJECT;
2809       SignatureStream ss(method->signature());
2810       for (; !ss.at_return_type(); ss.next()) {
2811         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2812         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2813           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2814       }
2815       assert(i == total_args_passed, "");
2816       BasicType ret_type = ss.type();
2817 
2818       // Now get the compiled-Java layout as input (or output) arguments.
2819       // NOTE: Stubs for compiled entry points of method handle intrinsics
2820       // are just trampolines so the argument registers must be outgoing ones.
2821       const bool is_outgoing = method->is_method_handle_intrinsic();
2822       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2823 
2824       // Generate the compiled-to-native wrapper code
2825       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2826 
2827       if (nm != NULL) {
2828         method->set_code(method, nm);
2829 
2830         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2831         if (directive->PrintAssemblyOption) {
2832           nm->print_code();
2833         }
2834         DirectivesStack::release(directive);
2835       }
2836     }
2837   } // Unlock AdapterHandlerLibrary_lock
2838 
2839 
2840   // Install the generated code.
2841   if (nm != NULL) {
2842     const char *msg = method->is_static() ? "(static)" : "";
2843     CompileTask::print_ul(nm, msg);
2844     if (PrintCompilation) {
2845       ttyLocker ttyl;
2846       CompileTask::print(tty, nm, msg);
2847     }
2848     nm->post_compiled_method_load_event();
2849   }
2850 }
2851 
2852 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2853   assert(thread == JavaThread::current(), "must be");
2854   // The code is about to enter a JNI lazy critical native method and
2855   // _needs_gc is true, so if this thread is already in a critical
2856   // section then just return, otherwise this thread should block
2857   // until needs_gc has been cleared.
2858   if (thread->in_critical()) {
2859     return;
2860   }
2861   // Lock and unlock a critical section to give the system a chance to block
2862   GCLocker::lock_critical(thread);
2863   GCLocker::unlock_critical(thread);
2864 JRT_END
2865 
2866 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
2867   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2868   assert(obj != NULL, "Should not be null");
2869   oop o(obj);
2870   o = Universe::heap()->pin_object(thread, o);
2871   assert(o != NULL, "Should not be null");
2872   return o;
2873 JRT_END
2874 
2875 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
2876   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2877   assert(obj != NULL, "Should not be null");
2878   oop o(obj);
2879   Universe::heap()->unpin_object(thread, o);
2880 JRT_END
2881 
2882 // -------------------------------------------------------------------------
2883 // Java-Java calling convention
2884 // (what you use when Java calls Java)
2885 
2886 //------------------------------name_for_receiver----------------------------------
2887 // For a given signature, return the VMReg for parameter 0.
2888 VMReg SharedRuntime::name_for_receiver() {
2889   VMRegPair regs;
2890   BasicType sig_bt = T_OBJECT;
2891   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2892   // Return argument 0 register.  In the LP64 build pointers
2893   // take 2 registers, but the VM wants only the 'main' name.
2894   return regs.first();
2895 }
2896 
2897 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2898   // This method is returning a data structure allocating as a
2899   // ResourceObject, so do not put any ResourceMarks in here.
2900   char *s = sig->as_C_string();
2901   int len = (int)strlen(s);
2902   s++; len--;                   // Skip opening paren
2903 
2904   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2905   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2906   int cnt = 0;
2907   if (has_receiver) {
2908     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2909   }
2910 
2911   while (*s != ')') {          // Find closing right paren
2912     switch (*s++) {            // Switch on signature character
2913     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2914     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2915     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2916     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2917     case 'I': sig_bt[cnt++] = T_INT;     break;
2918     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2919     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2920     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2921     case 'V': sig_bt[cnt++] = T_VOID;    break;
2922     case 'L':                   // Oop
2923       while (*s++ != ';');   // Skip signature
2924       sig_bt[cnt++] = T_OBJECT;
2925       break;
2926     case '[': {                 // Array
2927       do {                      // Skip optional size
2928         while (*s >= '0' && *s <= '9') s++;
2929       } while (*s++ == '[');   // Nested arrays?
2930       // Skip element type
2931       if (s[-1] == 'L')
2932         while (*s++ != ';'); // Skip signature
2933       sig_bt[cnt++] = T_ARRAY;
2934       break;
2935     }
2936     default : ShouldNotReachHere();
2937     }
2938   }
2939 
2940   if (has_appendix) {
2941     sig_bt[cnt++] = T_OBJECT;
2942   }
2943 
2944   assert(cnt < 256, "grow table size");
2945 
2946   int comp_args_on_stack;
2947   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2948 
2949   // the calling convention doesn't count out_preserve_stack_slots so
2950   // we must add that in to get "true" stack offsets.
2951 
2952   if (comp_args_on_stack) {
2953     for (int i = 0; i < cnt; i++) {
2954       VMReg reg1 = regs[i].first();
2955       if (reg1->is_stack()) {
2956         // Yuck
2957         reg1 = reg1->bias(out_preserve_stack_slots());
2958       }
2959       VMReg reg2 = regs[i].second();
2960       if (reg2->is_stack()) {
2961         // Yuck
2962         reg2 = reg2->bias(out_preserve_stack_slots());
2963       }
2964       regs[i].set_pair(reg2, reg1);
2965     }
2966   }
2967 
2968   // results
2969   *arg_size = cnt;
2970   return regs;
2971 }
2972 
2973 // OSR Migration Code
2974 //
2975 // This code is used convert interpreter frames into compiled frames.  It is
2976 // called from very start of a compiled OSR nmethod.  A temp array is
2977 // allocated to hold the interesting bits of the interpreter frame.  All
2978 // active locks are inflated to allow them to move.  The displaced headers and
2979 // active interpreter locals are copied into the temp buffer.  Then we return
2980 // back to the compiled code.  The compiled code then pops the current
2981 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2982 // copies the interpreter locals and displaced headers where it wants.
2983 // Finally it calls back to free the temp buffer.
2984 //
2985 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2986 
2987 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2988 
2989   //
2990   // This code is dependent on the memory layout of the interpreter local
2991   // array and the monitors. On all of our platforms the layout is identical
2992   // so this code is shared. If some platform lays the their arrays out
2993   // differently then this code could move to platform specific code or
2994   // the code here could be modified to copy items one at a time using
2995   // frame accessor methods and be platform independent.
2996 
2997   frame fr = thread->last_frame();
2998   assert(fr.is_interpreted_frame(), "");
2999   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3000 
3001   // Figure out how many monitors are active.
3002   int active_monitor_count = 0;
3003   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3004        kptr < fr.interpreter_frame_monitor_begin();
3005        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3006     if (kptr->obj() != NULL) active_monitor_count++;
3007   }
3008 
3009   // QQQ we could place number of active monitors in the array so that compiled code
3010   // could double check it.
3011 
3012   Method* moop = fr.interpreter_frame_method();
3013   int max_locals = moop->max_locals();
3014   // Allocate temp buffer, 1 word per local & 2 per active monitor
3015   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3016   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3017 
3018   // Copy the locals.  Order is preserved so that loading of longs works.
3019   // Since there's no GC I can copy the oops blindly.
3020   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3021   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3022                        (HeapWord*)&buf[0],
3023                        max_locals);
3024 
3025   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3026   int i = max_locals;
3027   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3028        kptr2 < fr.interpreter_frame_monitor_begin();
3029        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3030     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3031       BasicLock *lock = kptr2->lock();
3032       // Inflate so the displaced header becomes position-independent
3033       if (lock->displaced_header()->is_unlocked())
3034         ObjectSynchronizer::inflate_helper(kptr2->obj());
3035       // Now the displaced header is free to move
3036       buf[i++] = (intptr_t)lock->displaced_header();
3037       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3038     }
3039   }
3040   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3041 
3042   return buf;
3043 JRT_END
3044 
3045 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3046   FREE_C_HEAP_ARRAY(intptr_t, buf);
3047 JRT_END
3048 
3049 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3050   AdapterHandlerTableIterator iter(_adapters);
3051   while (iter.has_next()) {
3052     AdapterHandlerEntry* a = iter.next();
3053     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3054   }
3055   return false;
3056 }
3057 
3058 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3059   AdapterHandlerTableIterator iter(_adapters);
3060   while (iter.has_next()) {
3061     AdapterHandlerEntry* a = iter.next();
3062     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3063       st->print("Adapter for signature: ");
3064       a->print_adapter_on(tty);
3065       return;
3066     }
3067   }
3068   assert(false, "Should have found handler");
3069 }
3070 
3071 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3072   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3073                p2i(this), fingerprint()->as_string(),
3074                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3075 
3076 }
3077 
3078 #if INCLUDE_CDS
3079 
3080 void CDSAdapterHandlerEntry::init() {
3081   assert(DumpSharedSpaces, "used during dump time only");
3082   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3083   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3084 };
3085 
3086 #endif // INCLUDE_CDS
3087 
3088 
3089 #ifndef PRODUCT
3090 
3091 void AdapterHandlerLibrary::print_statistics() {
3092   _adapters->print_statistics();
3093 }
3094 
3095 #endif /* PRODUCT */
3096 
3097 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3098   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3099   if (thread->stack_reserved_zone_disabled()) {
3100   thread->enable_stack_reserved_zone();
3101   }
3102   thread->set_reserved_stack_activation(thread->stack_base());
3103 JRT_END
3104 
3105 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3106   ResourceMark rm(thread);
3107   frame activation;
3108   CompiledMethod* nm = NULL;
3109   int count = 1;
3110 
3111   assert(fr.is_java_frame(), "Must start on Java frame");
3112 
3113   while (true) {
3114     Method* method = NULL;
3115     bool found = false;
3116     if (fr.is_interpreted_frame()) {
3117       method = fr.interpreter_frame_method();
3118       if (method != NULL && method->has_reserved_stack_access()) {
3119         found = true;
3120       }
3121     } else {
3122       CodeBlob* cb = fr.cb();
3123       if (cb != NULL && cb->is_compiled()) {
3124         nm = cb->as_compiled_method();
3125         method = nm->method();
3126         // scope_desc_near() must be used, instead of scope_desc_at() because on
3127         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3128         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3129           method = sd->method();
3130           if (method != NULL && method->has_reserved_stack_access()) {
3131             found = true;
3132       }
3133     }
3134       }
3135     }
3136     if (found) {
3137       activation = fr;
3138       warning("Potentially dangerous stack overflow in "
3139               "ReservedStackAccess annotated method %s [%d]",
3140               method->name_and_sig_as_C_string(), count++);
3141       EventReservedStackActivation event;
3142       if (event.should_commit()) {
3143         event.set_method(method);
3144         event.commit();
3145       }
3146     }
3147     if (fr.is_first_java_frame()) {
3148       break;
3149     } else {
3150       fr = fr.java_sender();
3151     }
3152   }
3153   return activation;
3154 }
3155 
3156 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3157   // After any safepoint, just before going back to compiled code,
3158   // we inform the GC that we will be doing initializing writes to
3159   // this object in the future without emitting card-marks, so
3160   // GC may take any compensating steps.
3161 
3162   oop new_obj = thread->vm_result();
3163   if (new_obj == NULL) return;
3164 
3165   BarrierSet *bs = Universe::heap()->barrier_set();
3166   bs->on_slowpath_allocation_exit(thread, new_obj);
3167 }