1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "osContainer_linux.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.inline.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/threadSMR.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/elfFile.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 // put OS-includes here
  78 # include <sys/types.h>
  79 # include <sys/mman.h>
  80 # include <sys/stat.h>
  81 # include <sys/select.h>
  82 # include <pthread.h>
  83 # include <signal.h>
  84 # include <errno.h>
  85 # include <dlfcn.h>
  86 # include <stdio.h>
  87 # include <unistd.h>
  88 # include <sys/resource.h>
  89 # include <pthread.h>
  90 # include <sys/stat.h>
  91 # include <sys/time.h>
  92 # include <sys/times.h>
  93 # include <sys/utsname.h>
  94 # include <sys/socket.h>
  95 # include <sys/wait.h>
  96 # include <pwd.h>
  97 # include <poll.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 #define LARGEPAGES_BIT (1 << 6)
 132 #define DAX_SHARED_BIT (1 << 8)
 133 ////////////////////////////////////////////////////////////////////////////////
 134 // global variables
 135 julong os::Linux::_physical_memory = 0;
 136 
 137 address   os::Linux::_initial_thread_stack_bottom = NULL;
 138 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 139 
 140 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 141 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 142 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 143 Mutex* os::Linux::_createThread_lock = NULL;
 144 pthread_t os::Linux::_main_thread;
 145 int os::Linux::_page_size = -1;
 146 bool os::Linux::_supports_fast_thread_cpu_time = false;
 147 uint32_t os::Linux::_os_version = 0;
 148 const char * os::Linux::_glibc_version = NULL;
 149 const char * os::Linux::_libpthread_version = NULL;
 150 
 151 static jlong initial_time_count=0;
 152 
 153 static int clock_tics_per_sec = 100;
 154 
 155 // If the VM might have been created on the primordial thread, we need to resolve the
 156 // primordial thread stack bounds and check if the current thread might be the
 157 // primordial thread in places. If we know that the primordial thread is never used,
 158 // such as when the VM was created by one of the standard java launchers, we can
 159 // avoid this
 160 static bool suppress_primordial_thread_resolution = false;
 161 
 162 // For diagnostics to print a message once. see run_periodic_checks
 163 static sigset_t check_signal_done;
 164 static bool check_signals = true;
 165 
 166 // Signal number used to suspend/resume a thread
 167 
 168 // do not use any signal number less than SIGSEGV, see 4355769
 169 static int SR_signum = SIGUSR2;
 170 sigset_t SR_sigset;
 171 
 172 // utility functions
 173 
 174 static int SR_initialize();
 175 
 176 julong os::available_memory() {
 177   return Linux::available_memory();
 178 }
 179 
 180 julong os::Linux::available_memory() {
 181   // values in struct sysinfo are "unsigned long"
 182   struct sysinfo si;
 183   julong avail_mem;
 184 
 185   if (OSContainer::is_containerized()) {
 186     jlong mem_limit, mem_usage;
 187     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 188       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 189                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 190     }
 191     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 192       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 193     }
 194     if (mem_limit > 0 && mem_usage > 0 ) {
 195       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 196       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 197       return avail_mem;
 198     }
 199   }
 200 
 201   sysinfo(&si);
 202   avail_mem = (julong)si.freeram * si.mem_unit;
 203   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 204   return avail_mem;
 205 }
 206 
 207 julong os::physical_memory() {
 208   jlong phys_mem = 0;
 209   if (OSContainer::is_containerized()) {
 210     jlong mem_limit;
 211     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 212       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 213       return mem_limit;
 214     }
 215     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 216                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 217   }
 218 
 219   phys_mem = Linux::physical_memory();
 220   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 221   return phys_mem;
 222 }
 223 
 224 // Return true if user is running as root.
 225 
 226 bool os::have_special_privileges() {
 227   static bool init = false;
 228   static bool privileges = false;
 229   if (!init) {
 230     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 231     init = true;
 232   }
 233   return privileges;
 234 }
 235 
 236 
 237 #ifndef SYS_gettid
 238 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 239   #ifdef __ia64__
 240     #define SYS_gettid 1105
 241   #else
 242     #ifdef __i386__
 243       #define SYS_gettid 224
 244     #else
 245       #ifdef __amd64__
 246         #define SYS_gettid 186
 247       #else
 248         #ifdef __sparc__
 249           #define SYS_gettid 143
 250         #else
 251           #error define gettid for the arch
 252         #endif
 253       #endif
 254     #endif
 255   #endif
 256 #endif
 257 
 258 
 259 // pid_t gettid()
 260 //
 261 // Returns the kernel thread id of the currently running thread. Kernel
 262 // thread id is used to access /proc.
 263 pid_t os::Linux::gettid() {
 264   int rslt = syscall(SYS_gettid);
 265   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 266   return (pid_t)rslt;
 267 }
 268 
 269 // Most versions of linux have a bug where the number of processors are
 270 // determined by looking at the /proc file system.  In a chroot environment,
 271 // the system call returns 1.  This causes the VM to act as if it is
 272 // a single processor and elide locking (see is_MP() call).
 273 static bool unsafe_chroot_detected = false;
 274 static const char *unstable_chroot_error = "/proc file system not found.\n"
 275                      "Java may be unstable running multithreaded in a chroot "
 276                      "environment on Linux when /proc filesystem is not mounted.";
 277 
 278 void os::Linux::initialize_system_info() {
 279   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 280   if (processor_count() == 1) {
 281     pid_t pid = os::Linux::gettid();
 282     char fname[32];
 283     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 284     FILE *fp = fopen(fname, "r");
 285     if (fp == NULL) {
 286       unsafe_chroot_detected = true;
 287     } else {
 288       fclose(fp);
 289     }
 290   }
 291   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 292   assert(processor_count() > 0, "linux error");
 293 }
 294 
 295 void os::init_system_properties_values() {
 296   // The next steps are taken in the product version:
 297   //
 298   // Obtain the JAVA_HOME value from the location of libjvm.so.
 299   // This library should be located at:
 300   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 301   //
 302   // If "/jre/lib/" appears at the right place in the path, then we
 303   // assume libjvm.so is installed in a JDK and we use this path.
 304   //
 305   // Otherwise exit with message: "Could not create the Java virtual machine."
 306   //
 307   // The following extra steps are taken in the debugging version:
 308   //
 309   // If "/jre/lib/" does NOT appear at the right place in the path
 310   // instead of exit check for $JAVA_HOME environment variable.
 311   //
 312   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 313   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 314   // it looks like libjvm.so is installed there
 315   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 316   //
 317   // Otherwise exit.
 318   //
 319   // Important note: if the location of libjvm.so changes this
 320   // code needs to be changed accordingly.
 321 
 322   // See ld(1):
 323   //      The linker uses the following search paths to locate required
 324   //      shared libraries:
 325   //        1: ...
 326   //        ...
 327   //        7: The default directories, normally /lib and /usr/lib.
 328 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 329   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 330 #else
 331   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 332 #endif
 333 
 334 // Base path of extensions installed on the system.
 335 #define SYS_EXT_DIR     "/usr/java/packages"
 336 #define EXTENSIONS_DIR  "/lib/ext"
 337 
 338   // Buffer that fits several sprintfs.
 339   // Note that the space for the colon and the trailing null are provided
 340   // by the nulls included by the sizeof operator.
 341   const size_t bufsize =
 342     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 343          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 344   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 345 
 346   // sysclasspath, java_home, dll_dir
 347   {
 348     char *pslash;
 349     os::jvm_path(buf, bufsize);
 350 
 351     // Found the full path to libjvm.so.
 352     // Now cut the path to <java_home>/jre if we can.
 353     pslash = strrchr(buf, '/');
 354     if (pslash != NULL) {
 355       *pslash = '\0';            // Get rid of /libjvm.so.
 356     }
 357     pslash = strrchr(buf, '/');
 358     if (pslash != NULL) {
 359       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 360     }
 361     Arguments::set_dll_dir(buf);
 362 
 363     if (pslash != NULL) {
 364       pslash = strrchr(buf, '/');
 365       if (pslash != NULL) {
 366         *pslash = '\0';        // Get rid of /lib.
 367       }
 368     }
 369     Arguments::set_java_home(buf);
 370     set_boot_path('/', ':');
 371   }
 372 
 373   // Where to look for native libraries.
 374   //
 375   // Note: Due to a legacy implementation, most of the library path
 376   // is set in the launcher. This was to accomodate linking restrictions
 377   // on legacy Linux implementations (which are no longer supported).
 378   // Eventually, all the library path setting will be done here.
 379   //
 380   // However, to prevent the proliferation of improperly built native
 381   // libraries, the new path component /usr/java/packages is added here.
 382   // Eventually, all the library path setting will be done here.
 383   {
 384     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 385     // should always exist (until the legacy problem cited above is
 386     // addressed).
 387     const char *v = ::getenv("LD_LIBRARY_PATH");
 388     const char *v_colon = ":";
 389     if (v == NULL) { v = ""; v_colon = ""; }
 390     // That's +1 for the colon and +1 for the trailing '\0'.
 391     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 392                                                      strlen(v) + 1 +
 393                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 394                                                      mtInternal);
 395     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 396     Arguments::set_library_path(ld_library_path);
 397     FREE_C_HEAP_ARRAY(char, ld_library_path);
 398   }
 399 
 400   // Extensions directories.
 401   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 402   Arguments::set_ext_dirs(buf);
 403 
 404   FREE_C_HEAP_ARRAY(char, buf);
 405 
 406 #undef DEFAULT_LIBPATH
 407 #undef SYS_EXT_DIR
 408 #undef EXTENSIONS_DIR
 409 }
 410 
 411 ////////////////////////////////////////////////////////////////////////////////
 412 // breakpoint support
 413 
 414 void os::breakpoint() {
 415   BREAKPOINT;
 416 }
 417 
 418 extern "C" void breakpoint() {
 419   // use debugger to set breakpoint here
 420 }
 421 
 422 ////////////////////////////////////////////////////////////////////////////////
 423 // signal support
 424 
 425 debug_only(static bool signal_sets_initialized = false);
 426 static sigset_t unblocked_sigs, vm_sigs;
 427 
 428 void os::Linux::signal_sets_init() {
 429   // Should also have an assertion stating we are still single-threaded.
 430   assert(!signal_sets_initialized, "Already initialized");
 431   // Fill in signals that are necessarily unblocked for all threads in
 432   // the VM. Currently, we unblock the following signals:
 433   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 434   //                         by -Xrs (=ReduceSignalUsage));
 435   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 436   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 437   // the dispositions or masks wrt these signals.
 438   // Programs embedding the VM that want to use the above signals for their
 439   // own purposes must, at this time, use the "-Xrs" option to prevent
 440   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 441   // (See bug 4345157, and other related bugs).
 442   // In reality, though, unblocking these signals is really a nop, since
 443   // these signals are not blocked by default.
 444   sigemptyset(&unblocked_sigs);
 445   sigaddset(&unblocked_sigs, SIGILL);
 446   sigaddset(&unblocked_sigs, SIGSEGV);
 447   sigaddset(&unblocked_sigs, SIGBUS);
 448   sigaddset(&unblocked_sigs, SIGFPE);
 449 #if defined(PPC64)
 450   sigaddset(&unblocked_sigs, SIGTRAP);
 451 #endif
 452   sigaddset(&unblocked_sigs, SR_signum);
 453 
 454   if (!ReduceSignalUsage) {
 455     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 456       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 457     }
 458     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 459       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 460     }
 461     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 462       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 463     }
 464   }
 465   // Fill in signals that are blocked by all but the VM thread.
 466   sigemptyset(&vm_sigs);
 467   if (!ReduceSignalUsage) {
 468     sigaddset(&vm_sigs, BREAK_SIGNAL);
 469   }
 470   debug_only(signal_sets_initialized = true);
 471 
 472 }
 473 
 474 // These are signals that are unblocked while a thread is running Java.
 475 // (For some reason, they get blocked by default.)
 476 sigset_t* os::Linux::unblocked_signals() {
 477   assert(signal_sets_initialized, "Not initialized");
 478   return &unblocked_sigs;
 479 }
 480 
 481 // These are the signals that are blocked while a (non-VM) thread is
 482 // running Java. Only the VM thread handles these signals.
 483 sigset_t* os::Linux::vm_signals() {
 484   assert(signal_sets_initialized, "Not initialized");
 485   return &vm_sigs;
 486 }
 487 
 488 void os::Linux::hotspot_sigmask(Thread* thread) {
 489 
 490   //Save caller's signal mask before setting VM signal mask
 491   sigset_t caller_sigmask;
 492   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 493 
 494   OSThread* osthread = thread->osthread();
 495   osthread->set_caller_sigmask(caller_sigmask);
 496 
 497   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 498 
 499   if (!ReduceSignalUsage) {
 500     if (thread->is_VM_thread()) {
 501       // Only the VM thread handles BREAK_SIGNAL ...
 502       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 503     } else {
 504       // ... all other threads block BREAK_SIGNAL
 505       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 506     }
 507   }
 508 }
 509 
 510 //////////////////////////////////////////////////////////////////////////////
 511 // detecting pthread library
 512 
 513 void os::Linux::libpthread_init() {
 514   // Save glibc and pthread version strings.
 515 #if !defined(_CS_GNU_LIBC_VERSION) || \
 516     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 517   #error "glibc too old (< 2.3.2)"
 518 #endif
 519 
 520   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 521   assert(n > 0, "cannot retrieve glibc version");
 522   char *str = (char *)malloc(n, mtInternal);
 523   confstr(_CS_GNU_LIBC_VERSION, str, n);
 524   os::Linux::set_glibc_version(str);
 525 
 526   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 527   assert(n > 0, "cannot retrieve pthread version");
 528   str = (char *)malloc(n, mtInternal);
 529   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 530   os::Linux::set_libpthread_version(str);
 531 }
 532 
 533 /////////////////////////////////////////////////////////////////////////////
 534 // thread stack expansion
 535 
 536 // os::Linux::manually_expand_stack() takes care of expanding the thread
 537 // stack. Note that this is normally not needed: pthread stacks allocate
 538 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 539 // committed. Therefore it is not necessary to expand the stack manually.
 540 //
 541 // Manually expanding the stack was historically needed on LinuxThreads
 542 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 543 // it is kept to deal with very rare corner cases:
 544 //
 545 // For one, user may run the VM on an own implementation of threads
 546 // whose stacks are - like the old LinuxThreads - implemented using
 547 // mmap(MAP_GROWSDOWN).
 548 //
 549 // Also, this coding may be needed if the VM is running on the primordial
 550 // thread. Normally we avoid running on the primordial thread; however,
 551 // user may still invoke the VM on the primordial thread.
 552 //
 553 // The following historical comment describes the details about running
 554 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 555 
 556 
 557 // Force Linux kernel to expand current thread stack. If "bottom" is close
 558 // to the stack guard, caller should block all signals.
 559 //
 560 // MAP_GROWSDOWN:
 561 //   A special mmap() flag that is used to implement thread stacks. It tells
 562 //   kernel that the memory region should extend downwards when needed. This
 563 //   allows early versions of LinuxThreads to only mmap the first few pages
 564 //   when creating a new thread. Linux kernel will automatically expand thread
 565 //   stack as needed (on page faults).
 566 //
 567 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 568 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 569 //   region, it's hard to tell if the fault is due to a legitimate stack
 570 //   access or because of reading/writing non-exist memory (e.g. buffer
 571 //   overrun). As a rule, if the fault happens below current stack pointer,
 572 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 573 //   application (see Linux kernel fault.c).
 574 //
 575 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 576 //   stack overflow detection.
 577 //
 578 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 579 //   not use MAP_GROWSDOWN.
 580 //
 581 // To get around the problem and allow stack banging on Linux, we need to
 582 // manually expand thread stack after receiving the SIGSEGV.
 583 //
 584 // There are two ways to expand thread stack to address "bottom", we used
 585 // both of them in JVM before 1.5:
 586 //   1. adjust stack pointer first so that it is below "bottom", and then
 587 //      touch "bottom"
 588 //   2. mmap() the page in question
 589 //
 590 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 591 // if current sp is already near the lower end of page 101, and we need to
 592 // call mmap() to map page 100, it is possible that part of the mmap() frame
 593 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 594 // That will destroy the mmap() frame and cause VM to crash.
 595 //
 596 // The following code works by adjusting sp first, then accessing the "bottom"
 597 // page to force a page fault. Linux kernel will then automatically expand the
 598 // stack mapping.
 599 //
 600 // _expand_stack_to() assumes its frame size is less than page size, which
 601 // should always be true if the function is not inlined.
 602 
 603 static void NOINLINE _expand_stack_to(address bottom) {
 604   address sp;
 605   size_t size;
 606   volatile char *p;
 607 
 608   // Adjust bottom to point to the largest address within the same page, it
 609   // gives us a one-page buffer if alloca() allocates slightly more memory.
 610   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 611   bottom += os::Linux::page_size() - 1;
 612 
 613   // sp might be slightly above current stack pointer; if that's the case, we
 614   // will alloca() a little more space than necessary, which is OK. Don't use
 615   // os::current_stack_pointer(), as its result can be slightly below current
 616   // stack pointer, causing us to not alloca enough to reach "bottom".
 617   sp = (address)&sp;
 618 
 619   if (sp > bottom) {
 620     size = sp - bottom;
 621     p = (volatile char *)alloca(size);
 622     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 623     p[0] = '\0';
 624   }
 625 }
 626 
 627 void os::Linux::expand_stack_to(address bottom) {
 628   _expand_stack_to(bottom);
 629 }
 630 
 631 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 632   assert(t!=NULL, "just checking");
 633   assert(t->osthread()->expanding_stack(), "expand should be set");
 634   assert(t->stack_base() != NULL, "stack_base was not initialized");
 635 
 636   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 637     sigset_t mask_all, old_sigset;
 638     sigfillset(&mask_all);
 639     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 640     _expand_stack_to(addr);
 641     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 642     return true;
 643   }
 644   return false;
 645 }
 646 
 647 //////////////////////////////////////////////////////////////////////////////
 648 // create new thread
 649 
 650 // Thread start routine for all newly created threads
 651 static void *thread_native_entry(Thread *thread) {
 652   // Try to randomize the cache line index of hot stack frames.
 653   // This helps when threads of the same stack traces evict each other's
 654   // cache lines. The threads can be either from the same JVM instance, or
 655   // from different JVM instances. The benefit is especially true for
 656   // processors with hyperthreading technology.
 657   static int counter = 0;
 658   int pid = os::current_process_id();
 659   alloca(((pid ^ counter++) & 7) * 128);
 660 
 661   thread->initialize_thread_current();
 662 
 663   OSThread* osthread = thread->osthread();
 664   Monitor* sync = osthread->startThread_lock();
 665 
 666   osthread->set_thread_id(os::current_thread_id());
 667 
 668   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 669     os::current_thread_id(), (uintx) pthread_self());
 670 
 671   if (UseNUMA) {
 672     int lgrp_id = os::numa_get_group_id();
 673     if (lgrp_id != -1) {
 674       thread->set_lgrp_id(lgrp_id);
 675     }
 676   }
 677   // initialize signal mask for this thread
 678   os::Linux::hotspot_sigmask(thread);
 679 
 680   // initialize floating point control register
 681   os::Linux::init_thread_fpu_state();
 682 
 683   // handshaking with parent thread
 684   {
 685     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 686 
 687     // notify parent thread
 688     osthread->set_state(INITIALIZED);
 689     sync->notify_all();
 690 
 691     // wait until os::start_thread()
 692     while (osthread->get_state() == INITIALIZED) {
 693       sync->wait(Mutex::_no_safepoint_check_flag);
 694     }
 695   }
 696 
 697   // call one more level start routine
 698   thread->run();
 699 
 700   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 701     os::current_thread_id(), (uintx) pthread_self());
 702 
 703   // If a thread has not deleted itself ("delete this") as part of its
 704   // termination sequence, we have to ensure thread-local-storage is
 705   // cleared before we actually terminate. No threads should ever be
 706   // deleted asynchronously with respect to their termination.
 707   if (Thread::current_or_null_safe() != NULL) {
 708     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 709     thread->clear_thread_current();
 710   }
 711 
 712   return 0;
 713 }
 714 
 715 bool os::create_thread(Thread* thread, ThreadType thr_type,
 716                        size_t req_stack_size) {
 717   assert(thread->osthread() == NULL, "caller responsible");
 718 
 719   // Allocate the OSThread object
 720   OSThread* osthread = new OSThread(NULL, NULL);
 721   if (osthread == NULL) {
 722     return false;
 723   }
 724 
 725   // set the correct thread state
 726   osthread->set_thread_type(thr_type);
 727 
 728   // Initial state is ALLOCATED but not INITIALIZED
 729   osthread->set_state(ALLOCATED);
 730 
 731   thread->set_osthread(osthread);
 732 
 733   // init thread attributes
 734   pthread_attr_t attr;
 735   pthread_attr_init(&attr);
 736   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 737 
 738   // Calculate stack size if it's not specified by caller.
 739   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 740   // In the Linux NPTL pthread implementation the guard size mechanism
 741   // is not implemented properly. The posix standard requires adding
 742   // the size of the guard pages to the stack size, instead Linux
 743   // takes the space out of 'stacksize'. Thus we adapt the requested
 744   // stack_size by the size of the guard pages to mimick proper
 745   // behaviour. However, be careful not to end up with a size
 746   // of zero due to overflow. Don't add the guard page in that case.
 747   size_t guard_size = os::Linux::default_guard_size(thr_type);
 748   if (stack_size <= SIZE_MAX - guard_size) {
 749     stack_size += guard_size;
 750   }
 751   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 752 
 753   int status = pthread_attr_setstacksize(&attr, stack_size);
 754   assert_status(status == 0, status, "pthread_attr_setstacksize");
 755 
 756   // Configure glibc guard page.
 757   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 758 
 759   ThreadState state;
 760 
 761   {
 762     pthread_t tid;
 763     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 764 
 765     char buf[64];
 766     if (ret == 0) {
 767       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 768         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 769     } else {
 770       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 771         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 772     }
 773 
 774     pthread_attr_destroy(&attr);
 775 
 776     if (ret != 0) {
 777       // Need to clean up stuff we've allocated so far
 778       thread->set_osthread(NULL);
 779       delete osthread;
 780       return false;
 781     }
 782 
 783     // Store pthread info into the OSThread
 784     osthread->set_pthread_id(tid);
 785 
 786     // Wait until child thread is either initialized or aborted
 787     {
 788       Monitor* sync_with_child = osthread->startThread_lock();
 789       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 790       while ((state = osthread->get_state()) == ALLOCATED) {
 791         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 792       }
 793     }
 794   }
 795 
 796   // Aborted due to thread limit being reached
 797   if (state == ZOMBIE) {
 798     thread->set_osthread(NULL);
 799     delete osthread;
 800     return false;
 801   }
 802 
 803   // The thread is returned suspended (in state INITIALIZED),
 804   // and is started higher up in the call chain
 805   assert(state == INITIALIZED, "race condition");
 806   return true;
 807 }
 808 
 809 /////////////////////////////////////////////////////////////////////////////
 810 // attach existing thread
 811 
 812 // bootstrap the main thread
 813 bool os::create_main_thread(JavaThread* thread) {
 814   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 815   return create_attached_thread(thread);
 816 }
 817 
 818 bool os::create_attached_thread(JavaThread* thread) {
 819 #ifdef ASSERT
 820   thread->verify_not_published();
 821 #endif
 822 
 823   // Allocate the OSThread object
 824   OSThread* osthread = new OSThread(NULL, NULL);
 825 
 826   if (osthread == NULL) {
 827     return false;
 828   }
 829 
 830   // Store pthread info into the OSThread
 831   osthread->set_thread_id(os::Linux::gettid());
 832   osthread->set_pthread_id(::pthread_self());
 833 
 834   // initialize floating point control register
 835   os::Linux::init_thread_fpu_state();
 836 
 837   // Initial thread state is RUNNABLE
 838   osthread->set_state(RUNNABLE);
 839 
 840   thread->set_osthread(osthread);
 841 
 842   if (UseNUMA) {
 843     int lgrp_id = os::numa_get_group_id();
 844     if (lgrp_id != -1) {
 845       thread->set_lgrp_id(lgrp_id);
 846     }
 847   }
 848 
 849   if (os::is_primordial_thread()) {
 850     // If current thread is primordial thread, its stack is mapped on demand,
 851     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 852     // the entire stack region to avoid SEGV in stack banging.
 853     // It is also useful to get around the heap-stack-gap problem on SuSE
 854     // kernel (see 4821821 for details). We first expand stack to the top
 855     // of yellow zone, then enable stack yellow zone (order is significant,
 856     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 857     // is no gap between the last two virtual memory regions.
 858 
 859     JavaThread *jt = (JavaThread *)thread;
 860     address addr = jt->stack_reserved_zone_base();
 861     assert(addr != NULL, "initialization problem?");
 862     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 863 
 864     osthread->set_expanding_stack();
 865     os::Linux::manually_expand_stack(jt, addr);
 866     osthread->clear_expanding_stack();
 867   }
 868 
 869   // initialize signal mask for this thread
 870   // and save the caller's signal mask
 871   os::Linux::hotspot_sigmask(thread);
 872 
 873   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 874     os::current_thread_id(), (uintx) pthread_self());
 875 
 876   return true;
 877 }
 878 
 879 void os::pd_start_thread(Thread* thread) {
 880   OSThread * osthread = thread->osthread();
 881   assert(osthread->get_state() != INITIALIZED, "just checking");
 882   Monitor* sync_with_child = osthread->startThread_lock();
 883   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 884   sync_with_child->notify();
 885 }
 886 
 887 // Free Linux resources related to the OSThread
 888 void os::free_thread(OSThread* osthread) {
 889   assert(osthread != NULL, "osthread not set");
 890 
 891   // We are told to free resources of the argument thread,
 892   // but we can only really operate on the current thread.
 893   assert(Thread::current()->osthread() == osthread,
 894          "os::free_thread but not current thread");
 895 
 896 #ifdef ASSERT
 897   sigset_t current;
 898   sigemptyset(&current);
 899   pthread_sigmask(SIG_SETMASK, NULL, &current);
 900   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 901 #endif
 902 
 903   // Restore caller's signal mask
 904   sigset_t sigmask = osthread->caller_sigmask();
 905   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 906 
 907   delete osthread;
 908 }
 909 
 910 //////////////////////////////////////////////////////////////////////////////
 911 // primordial thread
 912 
 913 // Check if current thread is the primordial thread, similar to Solaris thr_main.
 914 bool os::is_primordial_thread(void) {
 915   if (suppress_primordial_thread_resolution) {
 916     return false;
 917   }
 918   char dummy;
 919   // If called before init complete, thread stack bottom will be null.
 920   // Can be called if fatal error occurs before initialization.
 921   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
 922   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
 923          os::Linux::initial_thread_stack_size()   != 0,
 924          "os::init did not locate primordial thread's stack region");
 925   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
 926       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
 927                         os::Linux::initial_thread_stack_size()) {
 928     return true;
 929   } else {
 930     return false;
 931   }
 932 }
 933 
 934 // Find the virtual memory area that contains addr
 935 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 936   FILE *fp = fopen("/proc/self/maps", "r");
 937   if (fp) {
 938     address low, high;
 939     while (!feof(fp)) {
 940       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 941         if (low <= addr && addr < high) {
 942           if (vma_low)  *vma_low  = low;
 943           if (vma_high) *vma_high = high;
 944           fclose(fp);
 945           return true;
 946         }
 947       }
 948       for (;;) {
 949         int ch = fgetc(fp);
 950         if (ch == EOF || ch == (int)'\n') break;
 951       }
 952     }
 953     fclose(fp);
 954   }
 955   return false;
 956 }
 957 
 958 // Locate primordial thread stack. This special handling of primordial thread stack
 959 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 960 // bogus value for the primordial process thread. While the launcher has created
 961 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 962 // JNI invocation API from a primordial thread.
 963 void os::Linux::capture_initial_stack(size_t max_size) {
 964 
 965   // max_size is either 0 (which means accept OS default for thread stacks) or
 966   // a user-specified value known to be at least the minimum needed. If we
 967   // are actually on the primordial thread we can make it appear that we have a
 968   // smaller max_size stack by inserting the guard pages at that location. But we
 969   // cannot do anything to emulate a larger stack than what has been provided by
 970   // the OS or threading library. In fact if we try to use a stack greater than
 971   // what is set by rlimit then we will crash the hosting process.
 972 
 973   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 974   // If this is "unlimited" then it will be a huge value.
 975   struct rlimit rlim;
 976   getrlimit(RLIMIT_STACK, &rlim);
 977   size_t stack_size = rlim.rlim_cur;
 978 
 979   // 6308388: a bug in ld.so will relocate its own .data section to the
 980   //   lower end of primordial stack; reduce ulimit -s value a little bit
 981   //   so we won't install guard page on ld.so's data section.
 982   //   But ensure we don't underflow the stack size - allow 1 page spare
 983   if (stack_size >= (size_t)(3 * page_size())) {
 984     stack_size -= 2 * page_size();
 985   }
 986 
 987   // Try to figure out where the stack base (top) is. This is harder.
 988   //
 989   // When an application is started, glibc saves the initial stack pointer in
 990   // a global variable "__libc_stack_end", which is then used by system
 991   // libraries. __libc_stack_end should be pretty close to stack top. The
 992   // variable is available since the very early days. However, because it is
 993   // a private interface, it could disappear in the future.
 994   //
 995   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 996   // to __libc_stack_end, it is very close to stack top, but isn't the real
 997   // stack top. Note that /proc may not exist if VM is running as a chroot
 998   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 999   // /proc/<pid>/stat could change in the future (though unlikely).
1000   //
1001   // We try __libc_stack_end first. If that doesn't work, look for
1002   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1003   // as a hint, which should work well in most cases.
1004 
1005   uintptr_t stack_start;
1006 
1007   // try __libc_stack_end first
1008   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1009   if (p && *p) {
1010     stack_start = *p;
1011   } else {
1012     // see if we can get the start_stack field from /proc/self/stat
1013     FILE *fp;
1014     int pid;
1015     char state;
1016     int ppid;
1017     int pgrp;
1018     int session;
1019     int nr;
1020     int tpgrp;
1021     unsigned long flags;
1022     unsigned long minflt;
1023     unsigned long cminflt;
1024     unsigned long majflt;
1025     unsigned long cmajflt;
1026     unsigned long utime;
1027     unsigned long stime;
1028     long cutime;
1029     long cstime;
1030     long prio;
1031     long nice;
1032     long junk;
1033     long it_real;
1034     uintptr_t start;
1035     uintptr_t vsize;
1036     intptr_t rss;
1037     uintptr_t rsslim;
1038     uintptr_t scodes;
1039     uintptr_t ecode;
1040     int i;
1041 
1042     // Figure what the primordial thread stack base is. Code is inspired
1043     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1044     // followed by command name surrounded by parentheses, state, etc.
1045     char stat[2048];
1046     int statlen;
1047 
1048     fp = fopen("/proc/self/stat", "r");
1049     if (fp) {
1050       statlen = fread(stat, 1, 2047, fp);
1051       stat[statlen] = '\0';
1052       fclose(fp);
1053 
1054       // Skip pid and the command string. Note that we could be dealing with
1055       // weird command names, e.g. user could decide to rename java launcher
1056       // to "java 1.4.2 :)", then the stat file would look like
1057       //                1234 (java 1.4.2 :)) R ... ...
1058       // We don't really need to know the command string, just find the last
1059       // occurrence of ")" and then start parsing from there. See bug 4726580.
1060       char * s = strrchr(stat, ')');
1061 
1062       i = 0;
1063       if (s) {
1064         // Skip blank chars
1065         do { s++; } while (s && isspace(*s));
1066 
1067 #define _UFM UINTX_FORMAT
1068 #define _DFM INTX_FORMAT
1069 
1070         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1071         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1072         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1073                    &state,          // 3  %c
1074                    &ppid,           // 4  %d
1075                    &pgrp,           // 5  %d
1076                    &session,        // 6  %d
1077                    &nr,             // 7  %d
1078                    &tpgrp,          // 8  %d
1079                    &flags,          // 9  %lu
1080                    &minflt,         // 10 %lu
1081                    &cminflt,        // 11 %lu
1082                    &majflt,         // 12 %lu
1083                    &cmajflt,        // 13 %lu
1084                    &utime,          // 14 %lu
1085                    &stime,          // 15 %lu
1086                    &cutime,         // 16 %ld
1087                    &cstime,         // 17 %ld
1088                    &prio,           // 18 %ld
1089                    &nice,           // 19 %ld
1090                    &junk,           // 20 %ld
1091                    &it_real,        // 21 %ld
1092                    &start,          // 22 UINTX_FORMAT
1093                    &vsize,          // 23 UINTX_FORMAT
1094                    &rss,            // 24 INTX_FORMAT
1095                    &rsslim,         // 25 UINTX_FORMAT
1096                    &scodes,         // 26 UINTX_FORMAT
1097                    &ecode,          // 27 UINTX_FORMAT
1098                    &stack_start);   // 28 UINTX_FORMAT
1099       }
1100 
1101 #undef _UFM
1102 #undef _DFM
1103 
1104       if (i != 28 - 2) {
1105         assert(false, "Bad conversion from /proc/self/stat");
1106         // product mode - assume we are the primordial thread, good luck in the
1107         // embedded case.
1108         warning("Can't detect primordial thread stack location - bad conversion");
1109         stack_start = (uintptr_t) &rlim;
1110       }
1111     } else {
1112       // For some reason we can't open /proc/self/stat (for example, running on
1113       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1114       // most cases, so don't abort:
1115       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1116       stack_start = (uintptr_t) &rlim;
1117     }
1118   }
1119 
1120   // Now we have a pointer (stack_start) very close to the stack top, the
1121   // next thing to do is to figure out the exact location of stack top. We
1122   // can find out the virtual memory area that contains stack_start by
1123   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1124   // and its upper limit is the real stack top. (again, this would fail if
1125   // running inside chroot, because /proc may not exist.)
1126 
1127   uintptr_t stack_top;
1128   address low, high;
1129   if (find_vma((address)stack_start, &low, &high)) {
1130     // success, "high" is the true stack top. (ignore "low", because initial
1131     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1132     stack_top = (uintptr_t)high;
1133   } else {
1134     // failed, likely because /proc/self/maps does not exist
1135     warning("Can't detect primordial thread stack location - find_vma failed");
1136     // best effort: stack_start is normally within a few pages below the real
1137     // stack top, use it as stack top, and reduce stack size so we won't put
1138     // guard page outside stack.
1139     stack_top = stack_start;
1140     stack_size -= 16 * page_size();
1141   }
1142 
1143   // stack_top could be partially down the page so align it
1144   stack_top = align_up(stack_top, page_size());
1145 
1146   // Allowed stack value is minimum of max_size and what we derived from rlimit
1147   if (max_size > 0) {
1148     _initial_thread_stack_size = MIN2(max_size, stack_size);
1149   } else {
1150     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1151     // clamp it at 8MB as we do on Solaris
1152     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1153   }
1154   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1155   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1156 
1157   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1158 
1159   if (log_is_enabled(Info, os, thread)) {
1160     // See if we seem to be on primordial process thread
1161     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1162                       uintptr_t(&rlim) < stack_top;
1163 
1164     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1165                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1166                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1167                          stack_top, intptr_t(_initial_thread_stack_bottom));
1168   }
1169 }
1170 
1171 ////////////////////////////////////////////////////////////////////////////////
1172 // time support
1173 
1174 // Time since start-up in seconds to a fine granularity.
1175 // Used by VMSelfDestructTimer and the MemProfiler.
1176 double os::elapsedTime() {
1177 
1178   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1179 }
1180 
1181 jlong os::elapsed_counter() {
1182   return javaTimeNanos() - initial_time_count;
1183 }
1184 
1185 jlong os::elapsed_frequency() {
1186   return NANOSECS_PER_SEC; // nanosecond resolution
1187 }
1188 
1189 bool os::supports_vtime() { return true; }
1190 bool os::enable_vtime()   { return false; }
1191 bool os::vtime_enabled()  { return false; }
1192 
1193 double os::elapsedVTime() {
1194   struct rusage usage;
1195   int retval = getrusage(RUSAGE_THREAD, &usage);
1196   if (retval == 0) {
1197     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1198   } else {
1199     // better than nothing, but not much
1200     return elapsedTime();
1201   }
1202 }
1203 
1204 jlong os::javaTimeMillis() {
1205   timeval time;
1206   int status = gettimeofday(&time, NULL);
1207   assert(status != -1, "linux error");
1208   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1209 }
1210 
1211 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1212   timeval time;
1213   int status = gettimeofday(&time, NULL);
1214   assert(status != -1, "linux error");
1215   seconds = jlong(time.tv_sec);
1216   nanos = jlong(time.tv_usec) * 1000;
1217 }
1218 
1219 
1220 #ifndef CLOCK_MONOTONIC
1221   #define CLOCK_MONOTONIC (1)
1222 #endif
1223 
1224 void os::Linux::clock_init() {
1225   // we do dlopen's in this particular order due to bug in linux
1226   // dynamical loader (see 6348968) leading to crash on exit
1227   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1228   if (handle == NULL) {
1229     handle = dlopen("librt.so", RTLD_LAZY);
1230   }
1231 
1232   if (handle) {
1233     int (*clock_getres_func)(clockid_t, struct timespec*) =
1234            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1235     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1236            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1237     if (clock_getres_func && clock_gettime_func) {
1238       // See if monotonic clock is supported by the kernel. Note that some
1239       // early implementations simply return kernel jiffies (updated every
1240       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1241       // for nano time (though the monotonic property is still nice to have).
1242       // It's fixed in newer kernels, however clock_getres() still returns
1243       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1244       // resolution for now. Hopefully as people move to new kernels, this
1245       // won't be a problem.
1246       struct timespec res;
1247       struct timespec tp;
1248       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1249           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1250         // yes, monotonic clock is supported
1251         _clock_gettime = clock_gettime_func;
1252         return;
1253       } else {
1254         // close librt if there is no monotonic clock
1255         dlclose(handle);
1256       }
1257     }
1258   }
1259   warning("No monotonic clock was available - timed services may " \
1260           "be adversely affected if the time-of-day clock changes");
1261 }
1262 
1263 #ifndef SYS_clock_getres
1264   #if defined(X86) || defined(PPC64) || defined(S390)
1265     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1266     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1267   #else
1268     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1269     #define sys_clock_getres(x,y)  -1
1270   #endif
1271 #else
1272   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1273 #endif
1274 
1275 void os::Linux::fast_thread_clock_init() {
1276   if (!UseLinuxPosixThreadCPUClocks) {
1277     return;
1278   }
1279   clockid_t clockid;
1280   struct timespec tp;
1281   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1282       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1283 
1284   // Switch to using fast clocks for thread cpu time if
1285   // the sys_clock_getres() returns 0 error code.
1286   // Note, that some kernels may support the current thread
1287   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1288   // returned by the pthread_getcpuclockid().
1289   // If the fast Posix clocks are supported then the sys_clock_getres()
1290   // must return at least tp.tv_sec == 0 which means a resolution
1291   // better than 1 sec. This is extra check for reliability.
1292 
1293   if (pthread_getcpuclockid_func &&
1294       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1295       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1296     _supports_fast_thread_cpu_time = true;
1297     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1298   }
1299 }
1300 
1301 jlong os::javaTimeNanos() {
1302   if (os::supports_monotonic_clock()) {
1303     struct timespec tp;
1304     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1305     assert(status == 0, "gettime error");
1306     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1307     return result;
1308   } else {
1309     timeval time;
1310     int status = gettimeofday(&time, NULL);
1311     assert(status != -1, "linux error");
1312     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1313     return 1000 * usecs;
1314   }
1315 }
1316 
1317 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1318   if (os::supports_monotonic_clock()) {
1319     info_ptr->max_value = ALL_64_BITS;
1320 
1321     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1322     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1323     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1324   } else {
1325     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1326     info_ptr->max_value = ALL_64_BITS;
1327 
1328     // gettimeofday is a real time clock so it skips
1329     info_ptr->may_skip_backward = true;
1330     info_ptr->may_skip_forward = true;
1331   }
1332 
1333   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1334 }
1335 
1336 // Return the real, user, and system times in seconds from an
1337 // arbitrary fixed point in the past.
1338 bool os::getTimesSecs(double* process_real_time,
1339                       double* process_user_time,
1340                       double* process_system_time) {
1341   struct tms ticks;
1342   clock_t real_ticks = times(&ticks);
1343 
1344   if (real_ticks == (clock_t) (-1)) {
1345     return false;
1346   } else {
1347     double ticks_per_second = (double) clock_tics_per_sec;
1348     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1349     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1350     *process_real_time = ((double) real_ticks) / ticks_per_second;
1351 
1352     return true;
1353   }
1354 }
1355 
1356 
1357 char * os::local_time_string(char *buf, size_t buflen) {
1358   struct tm t;
1359   time_t long_time;
1360   time(&long_time);
1361   localtime_r(&long_time, &t);
1362   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1363                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1364                t.tm_hour, t.tm_min, t.tm_sec);
1365   return buf;
1366 }
1367 
1368 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1369   return localtime_r(clock, res);
1370 }
1371 
1372 ////////////////////////////////////////////////////////////////////////////////
1373 // runtime exit support
1374 
1375 // Note: os::shutdown() might be called very early during initialization, or
1376 // called from signal handler. Before adding something to os::shutdown(), make
1377 // sure it is async-safe and can handle partially initialized VM.
1378 void os::shutdown() {
1379 
1380   // allow PerfMemory to attempt cleanup of any persistent resources
1381   perfMemory_exit();
1382 
1383   // needs to remove object in file system
1384   AttachListener::abort();
1385 
1386   // flush buffered output, finish log files
1387   ostream_abort();
1388 
1389   // Check for abort hook
1390   abort_hook_t abort_hook = Arguments::abort_hook();
1391   if (abort_hook != NULL) {
1392     abort_hook();
1393   }
1394 
1395 }
1396 
1397 // Note: os::abort() might be called very early during initialization, or
1398 // called from signal handler. Before adding something to os::abort(), make
1399 // sure it is async-safe and can handle partially initialized VM.
1400 void os::abort(bool dump_core, void* siginfo, const void* context) {
1401   os::shutdown();
1402   if (dump_core) {
1403 #ifndef PRODUCT
1404     fdStream out(defaultStream::output_fd());
1405     out.print_raw("Current thread is ");
1406     char buf[16];
1407     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1408     out.print_raw_cr(buf);
1409     out.print_raw_cr("Dumping core ...");
1410 #endif
1411     ::abort(); // dump core
1412   }
1413 
1414   ::exit(1);
1415 }
1416 
1417 // Die immediately, no exit hook, no abort hook, no cleanup.
1418 void os::die() {
1419   ::abort();
1420 }
1421 
1422 
1423 // This method is a copy of JDK's sysGetLastErrorString
1424 // from src/solaris/hpi/src/system_md.c
1425 
1426 size_t os::lasterror(char *buf, size_t len) {
1427   if (errno == 0)  return 0;
1428 
1429   const char *s = os::strerror(errno);
1430   size_t n = ::strlen(s);
1431   if (n >= len) {
1432     n = len - 1;
1433   }
1434   ::strncpy(buf, s, n);
1435   buf[n] = '\0';
1436   return n;
1437 }
1438 
1439 // thread_id is kernel thread id (similar to Solaris LWP id)
1440 intx os::current_thread_id() { return os::Linux::gettid(); }
1441 int os::current_process_id() {
1442   return ::getpid();
1443 }
1444 
1445 // DLL functions
1446 
1447 const char* os::dll_file_extension() { return ".so"; }
1448 
1449 // This must be hard coded because it's the system's temporary
1450 // directory not the java application's temp directory, ala java.io.tmpdir.
1451 const char* os::get_temp_directory() { return "/tmp"; }
1452 
1453 static bool file_exists(const char* filename) {
1454   struct stat statbuf;
1455   if (filename == NULL || strlen(filename) == 0) {
1456     return false;
1457   }
1458   return os::stat(filename, &statbuf) == 0;
1459 }
1460 
1461 // check if addr is inside libjvm.so
1462 bool os::address_is_in_vm(address addr) {
1463   static address libjvm_base_addr;
1464   Dl_info dlinfo;
1465 
1466   if (libjvm_base_addr == NULL) {
1467     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1468       libjvm_base_addr = (address)dlinfo.dli_fbase;
1469     }
1470     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1471   }
1472 
1473   if (dladdr((void *)addr, &dlinfo) != 0) {
1474     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1475   }
1476 
1477   return false;
1478 }
1479 
1480 bool os::dll_address_to_function_name(address addr, char *buf,
1481                                       int buflen, int *offset,
1482                                       bool demangle) {
1483   // buf is not optional, but offset is optional
1484   assert(buf != NULL, "sanity check");
1485 
1486   Dl_info dlinfo;
1487 
1488   if (dladdr((void*)addr, &dlinfo) != 0) {
1489     // see if we have a matching symbol
1490     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1491       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1492         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1493       }
1494       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1495       return true;
1496     }
1497     // no matching symbol so try for just file info
1498     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1499       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1500                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1501         return true;
1502       }
1503     }
1504   }
1505 
1506   buf[0] = '\0';
1507   if (offset != NULL) *offset = -1;
1508   return false;
1509 }
1510 
1511 struct _address_to_library_name {
1512   address addr;          // input : memory address
1513   size_t  buflen;        //         size of fname
1514   char*   fname;         // output: library name
1515   address base;          //         library base addr
1516 };
1517 
1518 static int address_to_library_name_callback(struct dl_phdr_info *info,
1519                                             size_t size, void *data) {
1520   int i;
1521   bool found = false;
1522   address libbase = NULL;
1523   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1524 
1525   // iterate through all loadable segments
1526   for (i = 0; i < info->dlpi_phnum; i++) {
1527     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1528     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1529       // base address of a library is the lowest address of its loaded
1530       // segments.
1531       if (libbase == NULL || libbase > segbase) {
1532         libbase = segbase;
1533       }
1534       // see if 'addr' is within current segment
1535       if (segbase <= d->addr &&
1536           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1537         found = true;
1538       }
1539     }
1540   }
1541 
1542   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1543   // so dll_address_to_library_name() can fall through to use dladdr() which
1544   // can figure out executable name from argv[0].
1545   if (found && info->dlpi_name && info->dlpi_name[0]) {
1546     d->base = libbase;
1547     if (d->fname) {
1548       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1549     }
1550     return 1;
1551   }
1552   return 0;
1553 }
1554 
1555 bool os::dll_address_to_library_name(address addr, char* buf,
1556                                      int buflen, int* offset) {
1557   // buf is not optional, but offset is optional
1558   assert(buf != NULL, "sanity check");
1559 
1560   Dl_info dlinfo;
1561   struct _address_to_library_name data;
1562 
1563   // There is a bug in old glibc dladdr() implementation that it could resolve
1564   // to wrong library name if the .so file has a base address != NULL. Here
1565   // we iterate through the program headers of all loaded libraries to find
1566   // out which library 'addr' really belongs to. This workaround can be
1567   // removed once the minimum requirement for glibc is moved to 2.3.x.
1568   data.addr = addr;
1569   data.fname = buf;
1570   data.buflen = buflen;
1571   data.base = NULL;
1572   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1573 
1574   if (rslt) {
1575     // buf already contains library name
1576     if (offset) *offset = addr - data.base;
1577     return true;
1578   }
1579   if (dladdr((void*)addr, &dlinfo) != 0) {
1580     if (dlinfo.dli_fname != NULL) {
1581       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1582     }
1583     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1584       *offset = addr - (address)dlinfo.dli_fbase;
1585     }
1586     return true;
1587   }
1588 
1589   buf[0] = '\0';
1590   if (offset) *offset = -1;
1591   return false;
1592 }
1593 
1594 // Loads .dll/.so and
1595 // in case of error it checks if .dll/.so was built for the
1596 // same architecture as Hotspot is running on
1597 
1598 
1599 // Remember the stack's state. The Linux dynamic linker will change
1600 // the stack to 'executable' at most once, so we must safepoint only once.
1601 bool os::Linux::_stack_is_executable = false;
1602 
1603 // VM operation that loads a library.  This is necessary if stack protection
1604 // of the Java stacks can be lost during loading the library.  If we
1605 // do not stop the Java threads, they can stack overflow before the stacks
1606 // are protected again.
1607 class VM_LinuxDllLoad: public VM_Operation {
1608  private:
1609   const char *_filename;
1610   char *_ebuf;
1611   int _ebuflen;
1612   void *_lib;
1613  public:
1614   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1615     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1616   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1617   void doit() {
1618     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1619     os::Linux::_stack_is_executable = true;
1620   }
1621   void* loaded_library() { return _lib; }
1622 };
1623 
1624 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1625   void * result = NULL;
1626   bool load_attempted = false;
1627 
1628   // Check whether the library to load might change execution rights
1629   // of the stack. If they are changed, the protection of the stack
1630   // guard pages will be lost. We need a safepoint to fix this.
1631   //
1632   // See Linux man page execstack(8) for more info.
1633   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1634     if (!ElfFile::specifies_noexecstack(filename)) {
1635       if (!is_init_completed()) {
1636         os::Linux::_stack_is_executable = true;
1637         // This is OK - No Java threads have been created yet, and hence no
1638         // stack guard pages to fix.
1639         //
1640         // This should happen only when you are building JDK7 using a very
1641         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1642         //
1643         // Dynamic loader will make all stacks executable after
1644         // this function returns, and will not do that again.
1645         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1646       } else {
1647         warning("You have loaded library %s which might have disabled stack guard. "
1648                 "The VM will try to fix the stack guard now.\n"
1649                 "It's highly recommended that you fix the library with "
1650                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1651                 filename);
1652 
1653         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1654         JavaThread *jt = JavaThread::current();
1655         if (jt->thread_state() != _thread_in_native) {
1656           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1657           // that requires ExecStack. Cannot enter safe point. Let's give up.
1658           warning("Unable to fix stack guard. Giving up.");
1659         } else {
1660           if (!LoadExecStackDllInVMThread) {
1661             // This is for the case where the DLL has an static
1662             // constructor function that executes JNI code. We cannot
1663             // load such DLLs in the VMThread.
1664             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1665           }
1666 
1667           ThreadInVMfromNative tiv(jt);
1668           debug_only(VMNativeEntryWrapper vew;)
1669 
1670           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1671           VMThread::execute(&op);
1672           if (LoadExecStackDllInVMThread) {
1673             result = op.loaded_library();
1674           }
1675           load_attempted = true;
1676         }
1677       }
1678     }
1679   }
1680 
1681   if (!load_attempted) {
1682     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1683   }
1684 
1685   if (result != NULL) {
1686     // Successful loading
1687     return result;
1688   }
1689 
1690   Elf32_Ehdr elf_head;
1691   int diag_msg_max_length=ebuflen-strlen(ebuf);
1692   char* diag_msg_buf=ebuf+strlen(ebuf);
1693 
1694   if (diag_msg_max_length==0) {
1695     // No more space in ebuf for additional diagnostics message
1696     return NULL;
1697   }
1698 
1699 
1700   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1701 
1702   if (file_descriptor < 0) {
1703     // Can't open library, report dlerror() message
1704     return NULL;
1705   }
1706 
1707   bool failed_to_read_elf_head=
1708     (sizeof(elf_head)!=
1709      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1710 
1711   ::close(file_descriptor);
1712   if (failed_to_read_elf_head) {
1713     // file i/o error - report dlerror() msg
1714     return NULL;
1715   }
1716 
1717   typedef struct {
1718     Elf32_Half    code;         // Actual value as defined in elf.h
1719     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1720     unsigned char elf_class;    // 32 or 64 bit
1721     unsigned char endianess;    // MSB or LSB
1722     char*         name;         // String representation
1723   } arch_t;
1724 
1725 #ifndef EM_486
1726   #define EM_486          6               /* Intel 80486 */
1727 #endif
1728 #ifndef EM_AARCH64
1729   #define EM_AARCH64    183               /* ARM AARCH64 */
1730 #endif
1731 
1732   static const arch_t arch_array[]={
1733     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1734     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1735     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1736     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1737     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1738     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1739     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1740     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1741 #if defined(VM_LITTLE_ENDIAN)
1742     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1743     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1744 #else
1745     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1746     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1747 #endif
1748     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1749     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1750     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1751     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1752     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1753     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1754     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1755     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1756   };
1757 
1758 #if  (defined IA32)
1759   static  Elf32_Half running_arch_code=EM_386;
1760 #elif   (defined AMD64)
1761   static  Elf32_Half running_arch_code=EM_X86_64;
1762 #elif  (defined IA64)
1763   static  Elf32_Half running_arch_code=EM_IA_64;
1764 #elif  (defined __sparc) && (defined _LP64)
1765   static  Elf32_Half running_arch_code=EM_SPARCV9;
1766 #elif  (defined __sparc) && (!defined _LP64)
1767   static  Elf32_Half running_arch_code=EM_SPARC;
1768 #elif  (defined __powerpc64__)
1769   static  Elf32_Half running_arch_code=EM_PPC64;
1770 #elif  (defined __powerpc__)
1771   static  Elf32_Half running_arch_code=EM_PPC;
1772 #elif  (defined AARCH64)
1773   static  Elf32_Half running_arch_code=EM_AARCH64;
1774 #elif  (defined ARM)
1775   static  Elf32_Half running_arch_code=EM_ARM;
1776 #elif  (defined S390)
1777   static  Elf32_Half running_arch_code=EM_S390;
1778 #elif  (defined ALPHA)
1779   static  Elf32_Half running_arch_code=EM_ALPHA;
1780 #elif  (defined MIPSEL)
1781   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1782 #elif  (defined PARISC)
1783   static  Elf32_Half running_arch_code=EM_PARISC;
1784 #elif  (defined MIPS)
1785   static  Elf32_Half running_arch_code=EM_MIPS;
1786 #elif  (defined M68K)
1787   static  Elf32_Half running_arch_code=EM_68K;
1788 #elif  (defined SH)
1789   static  Elf32_Half running_arch_code=EM_SH;
1790 #else
1791     #error Method os::dll_load requires that one of following is defined:\
1792         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1793 #endif
1794 
1795   // Identify compatability class for VM's architecture and library's architecture
1796   // Obtain string descriptions for architectures
1797 
1798   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1799   int running_arch_index=-1;
1800 
1801   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1802     if (running_arch_code == arch_array[i].code) {
1803       running_arch_index    = i;
1804     }
1805     if (lib_arch.code == arch_array[i].code) {
1806       lib_arch.compat_class = arch_array[i].compat_class;
1807       lib_arch.name         = arch_array[i].name;
1808     }
1809   }
1810 
1811   assert(running_arch_index != -1,
1812          "Didn't find running architecture code (running_arch_code) in arch_array");
1813   if (running_arch_index == -1) {
1814     // Even though running architecture detection failed
1815     // we may still continue with reporting dlerror() message
1816     return NULL;
1817   }
1818 
1819   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1820     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1821     return NULL;
1822   }
1823 
1824 #ifndef S390
1825   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1826     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1827     return NULL;
1828   }
1829 #endif // !S390
1830 
1831   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1832     if (lib_arch.name!=NULL) {
1833       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1834                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1835                  lib_arch.name, arch_array[running_arch_index].name);
1836     } else {
1837       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1838                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1839                  lib_arch.code,
1840                  arch_array[running_arch_index].name);
1841     }
1842   }
1843 
1844   return NULL;
1845 }
1846 
1847 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1848                                 int ebuflen) {
1849   void * result = ::dlopen(filename, RTLD_LAZY);
1850   if (result == NULL) {
1851     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1852     ebuf[ebuflen-1] = '\0';
1853   }
1854   return result;
1855 }
1856 
1857 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1858                                        int ebuflen) {
1859   void * result = NULL;
1860   if (LoadExecStackDllInVMThread) {
1861     result = dlopen_helper(filename, ebuf, ebuflen);
1862   }
1863 
1864   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1865   // library that requires an executable stack, or which does not have this
1866   // stack attribute set, dlopen changes the stack attribute to executable. The
1867   // read protection of the guard pages gets lost.
1868   //
1869   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1870   // may have been queued at the same time.
1871 
1872   if (!_stack_is_executable) {
1873     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1874       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1875           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1876         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1877           warning("Attempt to reguard stack yellow zone failed.");
1878         }
1879       }
1880     }
1881   }
1882 
1883   return result;
1884 }
1885 
1886 void* os::dll_lookup(void* handle, const char* name) {
1887   void* res = dlsym(handle, name);
1888   return res;
1889 }
1890 
1891 void* os::get_default_process_handle() {
1892   return (void*)::dlopen(NULL, RTLD_LAZY);
1893 }
1894 
1895 static bool _print_ascii_file(const char* filename, outputStream* st) {
1896   int fd = ::open(filename, O_RDONLY);
1897   if (fd == -1) {
1898     return false;
1899   }
1900 
1901   char buf[33];
1902   int bytes;
1903   buf[32] = '\0';
1904   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1905     st->print_raw(buf, bytes);
1906   }
1907 
1908   ::close(fd);
1909 
1910   return true;
1911 }
1912 
1913 void os::print_dll_info(outputStream *st) {
1914   st->print_cr("Dynamic libraries:");
1915 
1916   char fname[32];
1917   pid_t pid = os::Linux::gettid();
1918 
1919   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1920 
1921   if (!_print_ascii_file(fname, st)) {
1922     st->print("Can not get library information for pid = %d\n", pid);
1923   }
1924 }
1925 
1926 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1927   FILE *procmapsFile = NULL;
1928 
1929   // Open the procfs maps file for the current process
1930   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1931     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1932     char line[PATH_MAX + 100];
1933 
1934     // Read line by line from 'file'
1935     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1936       u8 base, top, offset, inode;
1937       char permissions[5];
1938       char device[6];
1939       char name[PATH_MAX + 1];
1940 
1941       // Parse fields from line
1942       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1943              &base, &top, permissions, &offset, device, &inode, name);
1944 
1945       // Filter by device id '00:00' so that we only get file system mapped files.
1946       if (strcmp(device, "00:00") != 0) {
1947 
1948         // Call callback with the fields of interest
1949         if(callback(name, (address)base, (address)top, param)) {
1950           // Oops abort, callback aborted
1951           fclose(procmapsFile);
1952           return 1;
1953         }
1954       }
1955     }
1956     fclose(procmapsFile);
1957   }
1958   return 0;
1959 }
1960 
1961 void os::print_os_info_brief(outputStream* st) {
1962   os::Linux::print_distro_info(st);
1963 
1964   os::Posix::print_uname_info(st);
1965 
1966   os::Linux::print_libversion_info(st);
1967 
1968 }
1969 
1970 void os::print_os_info(outputStream* st) {
1971   st->print("OS:");
1972 
1973   os::Linux::print_distro_info(st);
1974 
1975   os::Posix::print_uname_info(st);
1976 
1977   // Print warning if unsafe chroot environment detected
1978   if (unsafe_chroot_detected) {
1979     st->print("WARNING!! ");
1980     st->print_cr("%s", unstable_chroot_error);
1981   }
1982 
1983   os::Linux::print_libversion_info(st);
1984 
1985   os::Posix::print_rlimit_info(st);
1986 
1987   os::Posix::print_load_average(st);
1988 
1989   os::Linux::print_full_memory_info(st);
1990 
1991   os::Linux::print_container_info(st);
1992 }
1993 
1994 // Try to identify popular distros.
1995 // Most Linux distributions have a /etc/XXX-release file, which contains
1996 // the OS version string. Newer Linux distributions have a /etc/lsb-release
1997 // file that also contains the OS version string. Some have more than one
1998 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1999 // /etc/redhat-release.), so the order is important.
2000 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2001 // their own specific XXX-release file as well as a redhat-release file.
2002 // Because of this the XXX-release file needs to be searched for before the
2003 // redhat-release file.
2004 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2005 // search for redhat-release / SuSE-release needs to be before lsb-release.
2006 // Since the lsb-release file is the new standard it needs to be searched
2007 // before the older style release files.
2008 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2009 // next to last resort.  The os-release file is a new standard that contains
2010 // distribution information and the system-release file seems to be an old
2011 // standard that has been replaced by the lsb-release and os-release files.
2012 // Searching for the debian_version file is the last resort.  It contains
2013 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2014 // "Debian " is printed before the contents of the debian_version file.
2015 
2016 const char* distro_files[] = {
2017   "/etc/oracle-release",
2018   "/etc/mandriva-release",
2019   "/etc/mandrake-release",
2020   "/etc/sun-release",
2021   "/etc/redhat-release",
2022   "/etc/SuSE-release",
2023   "/etc/lsb-release",
2024   "/etc/turbolinux-release",
2025   "/etc/gentoo-release",
2026   "/etc/ltib-release",
2027   "/etc/angstrom-version",
2028   "/etc/system-release",
2029   "/etc/os-release",
2030   NULL };
2031 
2032 void os::Linux::print_distro_info(outputStream* st) {
2033   for (int i = 0;; i++) {
2034     const char* file = distro_files[i];
2035     if (file == NULL) {
2036       break;  // done
2037     }
2038     // If file prints, we found it.
2039     if (_print_ascii_file(file, st)) {
2040       return;
2041     }
2042   }
2043 
2044   if (file_exists("/etc/debian_version")) {
2045     st->print("Debian ");
2046     _print_ascii_file("/etc/debian_version", st);
2047   } else {
2048     st->print("Linux");
2049   }
2050   st->cr();
2051 }
2052 
2053 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2054   char buf[256];
2055   while (fgets(buf, sizeof(buf), fp)) {
2056     // Edit out extra stuff in expected format
2057     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2058       char* ptr = strstr(buf, "\"");  // the name is in quotes
2059       if (ptr != NULL) {
2060         ptr++; // go beyond first quote
2061         char* nl = strchr(ptr, '\"');
2062         if (nl != NULL) *nl = '\0';
2063         strncpy(distro, ptr, length);
2064       } else {
2065         ptr = strstr(buf, "=");
2066         ptr++; // go beyond equals then
2067         char* nl = strchr(ptr, '\n');
2068         if (nl != NULL) *nl = '\0';
2069         strncpy(distro, ptr, length);
2070       }
2071       return;
2072     } else if (get_first_line) {
2073       char* nl = strchr(buf, '\n');
2074       if (nl != NULL) *nl = '\0';
2075       strncpy(distro, buf, length);
2076       return;
2077     }
2078   }
2079   // print last line and close
2080   char* nl = strchr(buf, '\n');
2081   if (nl != NULL) *nl = '\0';
2082   strncpy(distro, buf, length);
2083 }
2084 
2085 static void parse_os_info(char* distro, size_t length, const char* file) {
2086   FILE* fp = fopen(file, "r");
2087   if (fp != NULL) {
2088     // if suse format, print out first line
2089     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2090     parse_os_info_helper(fp, distro, length, get_first_line);
2091     fclose(fp);
2092   }
2093 }
2094 
2095 void os::get_summary_os_info(char* buf, size_t buflen) {
2096   for (int i = 0;; i++) {
2097     const char* file = distro_files[i];
2098     if (file == NULL) {
2099       break; // ran out of distro_files
2100     }
2101     if (file_exists(file)) {
2102       parse_os_info(buf, buflen, file);
2103       return;
2104     }
2105   }
2106   // special case for debian
2107   if (file_exists("/etc/debian_version")) {
2108     strncpy(buf, "Debian ", buflen);
2109     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2110   } else {
2111     strncpy(buf, "Linux", buflen);
2112   }
2113 }
2114 
2115 void os::Linux::print_libversion_info(outputStream* st) {
2116   // libc, pthread
2117   st->print("libc:");
2118   st->print("%s ", os::Linux::glibc_version());
2119   st->print("%s ", os::Linux::libpthread_version());
2120   st->cr();
2121 }
2122 
2123 void os::Linux::print_full_memory_info(outputStream* st) {
2124   st->print("\n/proc/meminfo:\n");
2125   _print_ascii_file("/proc/meminfo", st);
2126   st->cr();
2127 }
2128 
2129 void os::Linux::print_container_info(outputStream* st) {
2130   if (!OSContainer::is_containerized()) {
2131     return;
2132   }
2133 
2134   st->print("container (cgroup) information:\n");
2135 
2136   const char *p_ct = OSContainer::container_type();
2137   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
2138 
2139   char *p = OSContainer::cpu_cpuset_cpus();
2140   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
2141   free(p);
2142 
2143   p = OSContainer::cpu_cpuset_memory_nodes();
2144   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
2145   free(p);
2146 
2147   int i = OSContainer::active_processor_count();
2148   if (i > 0) {
2149     st->print("active_processor_count: %d\n", i);
2150   } else {
2151     st->print("active_processor_count: failed\n");
2152   }
2153 
2154   i = OSContainer::cpu_quota();
2155   st->print("cpu_quota: %d\n", i);
2156 
2157   i = OSContainer::cpu_period();
2158   st->print("cpu_period: %d\n", i);
2159 
2160   i = OSContainer::cpu_shares();
2161   st->print("cpu_shares: %d\n", i);
2162 
2163   jlong j = OSContainer::memory_limit_in_bytes();
2164   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2165 
2166   j = OSContainer::memory_and_swap_limit_in_bytes();
2167   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2168 
2169   j = OSContainer::memory_soft_limit_in_bytes();
2170   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2171 
2172   j = OSContainer::OSContainer::memory_usage_in_bytes();
2173   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2174 
2175   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2176   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2177   st->cr();
2178 }
2179 
2180 void os::print_memory_info(outputStream* st) {
2181 
2182   st->print("Memory:");
2183   st->print(" %dk page", os::vm_page_size()>>10);
2184 
2185   // values in struct sysinfo are "unsigned long"
2186   struct sysinfo si;
2187   sysinfo(&si);
2188 
2189   st->print(", physical " UINT64_FORMAT "k",
2190             os::physical_memory() >> 10);
2191   st->print("(" UINT64_FORMAT "k free)",
2192             os::available_memory() >> 10);
2193   st->print(", swap " UINT64_FORMAT "k",
2194             ((jlong)si.totalswap * si.mem_unit) >> 10);
2195   st->print("(" UINT64_FORMAT "k free)",
2196             ((jlong)si.freeswap * si.mem_unit) >> 10);
2197   st->cr();
2198 }
2199 
2200 // Print the first "model name" line and the first "flags" line
2201 // that we find and nothing more. We assume "model name" comes
2202 // before "flags" so if we find a second "model name", then the
2203 // "flags" field is considered missing.
2204 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2205 #if defined(IA32) || defined(AMD64)
2206   // Other platforms have less repetitive cpuinfo files
2207   FILE *fp = fopen("/proc/cpuinfo", "r");
2208   if (fp) {
2209     while (!feof(fp)) {
2210       if (fgets(buf, buflen, fp)) {
2211         // Assume model name comes before flags
2212         bool model_name_printed = false;
2213         if (strstr(buf, "model name") != NULL) {
2214           if (!model_name_printed) {
2215             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2216             st->print_raw(buf);
2217             model_name_printed = true;
2218           } else {
2219             // model name printed but not flags?  Odd, just return
2220             fclose(fp);
2221             return true;
2222           }
2223         }
2224         // print the flags line too
2225         if (strstr(buf, "flags") != NULL) {
2226           st->print_raw(buf);
2227           fclose(fp);
2228           return true;
2229         }
2230       }
2231     }
2232     fclose(fp);
2233   }
2234 #endif // x86 platforms
2235   return false;
2236 }
2237 
2238 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2239   // Only print the model name if the platform provides this as a summary
2240   if (!print_model_name_and_flags(st, buf, buflen)) {
2241     st->print("\n/proc/cpuinfo:\n");
2242     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2243       st->print_cr("  <Not Available>");
2244     }
2245   }
2246 }
2247 
2248 #if defined(AMD64) || defined(IA32) || defined(X32)
2249 const char* search_string = "model name";
2250 #elif defined(M68K)
2251 const char* search_string = "CPU";
2252 #elif defined(PPC64)
2253 const char* search_string = "cpu";
2254 #elif defined(S390)
2255 const char* search_string = "processor";
2256 #elif defined(SPARC)
2257 const char* search_string = "cpu";
2258 #else
2259 const char* search_string = "Processor";
2260 #endif
2261 
2262 // Parses the cpuinfo file for string representing the model name.
2263 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2264   FILE* fp = fopen("/proc/cpuinfo", "r");
2265   if (fp != NULL) {
2266     while (!feof(fp)) {
2267       char buf[256];
2268       if (fgets(buf, sizeof(buf), fp)) {
2269         char* start = strstr(buf, search_string);
2270         if (start != NULL) {
2271           char *ptr = start + strlen(search_string);
2272           char *end = buf + strlen(buf);
2273           while (ptr != end) {
2274              // skip whitespace and colon for the rest of the name.
2275              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2276                break;
2277              }
2278              ptr++;
2279           }
2280           if (ptr != end) {
2281             // reasonable string, get rid of newline and keep the rest
2282             char* nl = strchr(buf, '\n');
2283             if (nl != NULL) *nl = '\0';
2284             strncpy(cpuinfo, ptr, length);
2285             fclose(fp);
2286             return;
2287           }
2288         }
2289       }
2290     }
2291     fclose(fp);
2292   }
2293   // cpuinfo not found or parsing failed, just print generic string.  The entire
2294   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2295 #if   defined(AARCH64)
2296   strncpy(cpuinfo, "AArch64", length);
2297 #elif defined(AMD64)
2298   strncpy(cpuinfo, "x86_64", length);
2299 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2300   strncpy(cpuinfo, "ARM", length);
2301 #elif defined(IA32)
2302   strncpy(cpuinfo, "x86_32", length);
2303 #elif defined(IA64)
2304   strncpy(cpuinfo, "IA64", length);
2305 #elif defined(PPC)
2306   strncpy(cpuinfo, "PPC64", length);
2307 #elif defined(S390)
2308   strncpy(cpuinfo, "S390", length);
2309 #elif defined(SPARC)
2310   strncpy(cpuinfo, "sparcv9", length);
2311 #elif defined(ZERO_LIBARCH)
2312   strncpy(cpuinfo, ZERO_LIBARCH, length);
2313 #else
2314   strncpy(cpuinfo, "unknown", length);
2315 #endif
2316 }
2317 
2318 static void print_signal_handler(outputStream* st, int sig,
2319                                  char* buf, size_t buflen);
2320 
2321 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2322   st->print_cr("Signal Handlers:");
2323   print_signal_handler(st, SIGSEGV, buf, buflen);
2324   print_signal_handler(st, SIGBUS , buf, buflen);
2325   print_signal_handler(st, SIGFPE , buf, buflen);
2326   print_signal_handler(st, SIGPIPE, buf, buflen);
2327   print_signal_handler(st, SIGXFSZ, buf, buflen);
2328   print_signal_handler(st, SIGILL , buf, buflen);
2329   print_signal_handler(st, SR_signum, buf, buflen);
2330   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2331   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2332   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2333   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2334 #if defined(PPC64)
2335   print_signal_handler(st, SIGTRAP, buf, buflen);
2336 #endif
2337 }
2338 
2339 static char saved_jvm_path[MAXPATHLEN] = {0};
2340 
2341 // Find the full path to the current module, libjvm.so
2342 void os::jvm_path(char *buf, jint buflen) {
2343   // Error checking.
2344   if (buflen < MAXPATHLEN) {
2345     assert(false, "must use a large-enough buffer");
2346     buf[0] = '\0';
2347     return;
2348   }
2349   // Lazy resolve the path to current module.
2350   if (saved_jvm_path[0] != 0) {
2351     strcpy(buf, saved_jvm_path);
2352     return;
2353   }
2354 
2355   char dli_fname[MAXPATHLEN];
2356   bool ret = dll_address_to_library_name(
2357                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2358                                          dli_fname, sizeof(dli_fname), NULL);
2359   assert(ret, "cannot locate libjvm");
2360   char *rp = NULL;
2361   if (ret && dli_fname[0] != '\0') {
2362     rp = os::Posix::realpath(dli_fname, buf, buflen);
2363   }
2364   if (rp == NULL) {
2365     return;
2366   }
2367 
2368   if (Arguments::sun_java_launcher_is_altjvm()) {
2369     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2370     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2371     // If "/jre/lib/" appears at the right place in the string, then
2372     // assume we are installed in a JDK and we're done. Otherwise, check
2373     // for a JAVA_HOME environment variable and fix up the path so it
2374     // looks like libjvm.so is installed there (append a fake suffix
2375     // hotspot/libjvm.so).
2376     const char *p = buf + strlen(buf) - 1;
2377     for (int count = 0; p > buf && count < 5; ++count) {
2378       for (--p; p > buf && *p != '/'; --p)
2379         /* empty */ ;
2380     }
2381 
2382     if (strncmp(p, "/jre/lib/", 9) != 0) {
2383       // Look for JAVA_HOME in the environment.
2384       char* java_home_var = ::getenv("JAVA_HOME");
2385       if (java_home_var != NULL && java_home_var[0] != 0) {
2386         char* jrelib_p;
2387         int len;
2388 
2389         // Check the current module name "libjvm.so".
2390         p = strrchr(buf, '/');
2391         if (p == NULL) {
2392           return;
2393         }
2394         assert(strstr(p, "/libjvm") == p, "invalid library name");
2395 
2396         rp = os::Posix::realpath(java_home_var, buf, buflen);
2397         if (rp == NULL) {
2398           return;
2399         }
2400 
2401         // determine if this is a legacy image or modules image
2402         // modules image doesn't have "jre" subdirectory
2403         len = strlen(buf);
2404         assert(len < buflen, "Ran out of buffer room");
2405         jrelib_p = buf + len;
2406         snprintf(jrelib_p, buflen-len, "/jre/lib");
2407         if (0 != access(buf, F_OK)) {
2408           snprintf(jrelib_p, buflen-len, "/lib");
2409         }
2410 
2411         if (0 == access(buf, F_OK)) {
2412           // Use current module name "libjvm.so"
2413           len = strlen(buf);
2414           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2415         } else {
2416           // Go back to path of .so
2417           rp = os::Posix::realpath(dli_fname, buf, buflen);
2418           if (rp == NULL) {
2419             return;
2420           }
2421         }
2422       }
2423     }
2424   }
2425 
2426   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2427   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2428 }
2429 
2430 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2431   // no prefix required, not even "_"
2432 }
2433 
2434 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2435   // no suffix required
2436 }
2437 
2438 ////////////////////////////////////////////////////////////////////////////////
2439 // sun.misc.Signal support
2440 
2441 static volatile jint sigint_count = 0;
2442 
2443 static void UserHandler(int sig, void *siginfo, void *context) {
2444   // 4511530 - sem_post is serialized and handled by the manager thread. When
2445   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2446   // don't want to flood the manager thread with sem_post requests.
2447   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2448     return;
2449   }
2450 
2451   // Ctrl-C is pressed during error reporting, likely because the error
2452   // handler fails to abort. Let VM die immediately.
2453   if (sig == SIGINT && VMError::is_error_reported()) {
2454     os::die();
2455   }
2456 
2457   os::signal_notify(sig);
2458 }
2459 
2460 void* os::user_handler() {
2461   return CAST_FROM_FN_PTR(void*, UserHandler);
2462 }
2463 
2464 static struct timespec create_semaphore_timespec(unsigned int sec, int nsec) {
2465   struct timespec ts;
2466   // Semaphore's are always associated with CLOCK_REALTIME
2467   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2468   // see os_posix.cpp for discussion on overflow checking
2469   if (sec >= MAX_SECS) {
2470     ts.tv_sec += MAX_SECS;
2471     ts.tv_nsec = 0;
2472   } else {
2473     ts.tv_sec += sec;
2474     ts.tv_nsec += nsec;
2475     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2476       ts.tv_nsec -= NANOSECS_PER_SEC;
2477       ++ts.tv_sec; // note: this must be <= max_secs
2478     }
2479   }
2480 
2481   return ts;
2482 }
2483 
2484 extern "C" {
2485   typedef void (*sa_handler_t)(int);
2486   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2487 }
2488 
2489 void* os::signal(int signal_number, void* handler) {
2490   struct sigaction sigAct, oldSigAct;
2491 
2492   sigfillset(&(sigAct.sa_mask));
2493   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2494   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2495 
2496   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2497     // -1 means registration failed
2498     return (void *)-1;
2499   }
2500 
2501   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2502 }
2503 
2504 void os::signal_raise(int signal_number) {
2505   ::raise(signal_number);
2506 }
2507 
2508 // The following code is moved from os.cpp for making this
2509 // code platform specific, which it is by its very nature.
2510 
2511 // Will be modified when max signal is changed to be dynamic
2512 int os::sigexitnum_pd() {
2513   return NSIG;
2514 }
2515 
2516 // a counter for each possible signal value
2517 static volatile jint pending_signals[NSIG+1] = { 0 };
2518 
2519 // Linux(POSIX) specific hand shaking semaphore.
2520 static Semaphore* sig_sem = NULL;
2521 static PosixSemaphore sr_semaphore;
2522 
2523 static void jdk_misc_signal_init() {
2524   // Initialize signal structures
2525   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2526 
2527   // Initialize signal semaphore
2528   sig_sem = new Semaphore();
2529 }
2530 
2531 void os::signal_notify(int sig) {
2532   if (sig_sem != NULL) {
2533     Atomic::inc(&pending_signals[sig]);
2534     sig_sem->signal();
2535   } else {
2536     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2537     // initialization isn't called.
2538     assert(ReduceSignalUsage, "signal semaphore should be created");
2539   }
2540 }
2541 
2542 static int check_pending_signals() {
2543   Atomic::store(0, &sigint_count);
2544   for (;;) {
2545     for (int i = 0; i < NSIG + 1; i++) {
2546       jint n = pending_signals[i];
2547       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2548         return i;
2549       }
2550     }
2551     JavaThread *thread = JavaThread::current();
2552     ThreadBlockInVM tbivm(thread);
2553 
2554     bool threadIsSuspended;
2555     do {
2556       thread->set_suspend_equivalent();
2557       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2558       sig_sem->wait();
2559 
2560       // were we externally suspended while we were waiting?
2561       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2562       if (threadIsSuspended) {
2563         // The semaphore has been incremented, but while we were waiting
2564         // another thread suspended us. We don't want to continue running
2565         // while suspended because that would surprise the thread that
2566         // suspended us.
2567         sig_sem->signal();
2568 
2569         thread->java_suspend_self();
2570       }
2571     } while (threadIsSuspended);
2572   }
2573 }
2574 
2575 int os::signal_wait() {
2576   return check_pending_signals();
2577 }
2578 
2579 ////////////////////////////////////////////////////////////////////////////////
2580 // Virtual Memory
2581 
2582 int os::vm_page_size() {
2583   // Seems redundant as all get out
2584   assert(os::Linux::page_size() != -1, "must call os::init");
2585   return os::Linux::page_size();
2586 }
2587 
2588 // Solaris allocates memory by pages.
2589 int os::vm_allocation_granularity() {
2590   assert(os::Linux::page_size() != -1, "must call os::init");
2591   return os::Linux::page_size();
2592 }
2593 
2594 // Rationale behind this function:
2595 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2596 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2597 //  samples for JITted code. Here we create private executable mapping over the code cache
2598 //  and then we can use standard (well, almost, as mapping can change) way to provide
2599 //  info for the reporting script by storing timestamp and location of symbol
2600 void linux_wrap_code(char* base, size_t size) {
2601   static volatile jint cnt = 0;
2602 
2603   if (!UseOprofile) {
2604     return;
2605   }
2606 
2607   char buf[PATH_MAX+1];
2608   int num = Atomic::add(1, &cnt);
2609 
2610   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2611            os::get_temp_directory(), os::current_process_id(), num);
2612   unlink(buf);
2613 
2614   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2615 
2616   if (fd != -1) {
2617     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2618     if (rv != (off_t)-1) {
2619       if (::write(fd, "", 1) == 1) {
2620         mmap(base, size,
2621              PROT_READ|PROT_WRITE|PROT_EXEC,
2622              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2623       }
2624     }
2625     ::close(fd);
2626     unlink(buf);
2627   }
2628 }
2629 
2630 static bool recoverable_mmap_error(int err) {
2631   // See if the error is one we can let the caller handle. This
2632   // list of errno values comes from JBS-6843484. I can't find a
2633   // Linux man page that documents this specific set of errno
2634   // values so while this list currently matches Solaris, it may
2635   // change as we gain experience with this failure mode.
2636   switch (err) {
2637   case EBADF:
2638   case EINVAL:
2639   case ENOTSUP:
2640     // let the caller deal with these errors
2641     return true;
2642 
2643   default:
2644     // Any remaining errors on this OS can cause our reserved mapping
2645     // to be lost. That can cause confusion where different data
2646     // structures think they have the same memory mapped. The worst
2647     // scenario is if both the VM and a library think they have the
2648     // same memory mapped.
2649     return false;
2650   }
2651 }
2652 
2653 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2654                                     int err) {
2655   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2656           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2657           os::strerror(err), err);
2658 }
2659 
2660 static void warn_fail_commit_memory(char* addr, size_t size,
2661                                     size_t alignment_hint, bool exec,
2662                                     int err) {
2663   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2664           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2665           alignment_hint, exec, os::strerror(err), err);
2666 }
2667 
2668 // NOTE: Linux kernel does not really reserve the pages for us.
2669 //       All it does is to check if there are enough free pages
2670 //       left at the time of mmap(). This could be a potential
2671 //       problem.
2672 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2673   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2674   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2675                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2676   if (res != (uintptr_t) MAP_FAILED) {
2677     if (UseNUMAInterleaving) {
2678       numa_make_global(addr, size);
2679     }
2680     return 0;
2681   }
2682 
2683   int err = errno;  // save errno from mmap() call above
2684 
2685   if (!recoverable_mmap_error(err)) {
2686     warn_fail_commit_memory(addr, size, exec, err);
2687     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2688   }
2689 
2690   return err;
2691 }
2692 
2693 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2694   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2695 }
2696 
2697 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2698                                   const char* mesg) {
2699   assert(mesg != NULL, "mesg must be specified");
2700   int err = os::Linux::commit_memory_impl(addr, size, exec);
2701   if (err != 0) {
2702     // the caller wants all commit errors to exit with the specified mesg:
2703     warn_fail_commit_memory(addr, size, exec, err);
2704     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2705   }
2706 }
2707 
2708 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2709 #ifndef MAP_HUGETLB
2710   #define MAP_HUGETLB 0x40000
2711 #endif
2712 
2713 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2714 #ifndef MADV_HUGEPAGE
2715   #define MADV_HUGEPAGE 14
2716 #endif
2717 
2718 int os::Linux::commit_memory_impl(char* addr, size_t size,
2719                                   size_t alignment_hint, bool exec) {
2720   int err = os::Linux::commit_memory_impl(addr, size, exec);
2721   if (err == 0) {
2722     realign_memory(addr, size, alignment_hint);
2723   }
2724   return err;
2725 }
2726 
2727 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2728                           bool exec) {
2729   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2730 }
2731 
2732 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2733                                   size_t alignment_hint, bool exec,
2734                                   const char* mesg) {
2735   assert(mesg != NULL, "mesg must be specified");
2736   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2737   if (err != 0) {
2738     // the caller wants all commit errors to exit with the specified mesg:
2739     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2740     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2741   }
2742 }
2743 
2744 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2745   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2746     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2747     // be supported or the memory may already be backed by huge pages.
2748     ::madvise(addr, bytes, MADV_HUGEPAGE);
2749   }
2750 }
2751 
2752 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2753   // This method works by doing an mmap over an existing mmaping and effectively discarding
2754   // the existing pages. However it won't work for SHM-based large pages that cannot be
2755   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2756   // small pages on top of the SHM segment. This method always works for small pages, so we
2757   // allow that in any case.
2758   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2759     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2760   }
2761 }
2762 
2763 void os::numa_make_global(char *addr, size_t bytes) {
2764   Linux::numa_interleave_memory(addr, bytes);
2765 }
2766 
2767 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2768 // bind policy to MPOL_PREFERRED for the current thread.
2769 #define USE_MPOL_PREFERRED 0
2770 
2771 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2772   // To make NUMA and large pages more robust when both enabled, we need to ease
2773   // the requirements on where the memory should be allocated. MPOL_BIND is the
2774   // default policy and it will force memory to be allocated on the specified
2775   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2776   // the specified node, but will not force it. Using this policy will prevent
2777   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2778   // free large pages.
2779   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2780   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2781 }
2782 
2783 bool os::numa_topology_changed() { return false; }
2784 
2785 size_t os::numa_get_groups_num() {
2786   // Return just the number of nodes in which it's possible to allocate memory
2787   // (in numa terminology, configured nodes).
2788   return Linux::numa_num_configured_nodes();
2789 }
2790 
2791 int os::numa_get_group_id() {
2792   int cpu_id = Linux::sched_getcpu();
2793   if (cpu_id != -1) {
2794     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2795     if (lgrp_id != -1) {
2796       return lgrp_id;
2797     }
2798   }
2799   return 0;
2800 }
2801 
2802 int os::Linux::get_existing_num_nodes() {
2803   size_t node;
2804   size_t highest_node_number = Linux::numa_max_node();
2805   int num_nodes = 0;
2806 
2807   // Get the total number of nodes in the system including nodes without memory.
2808   for (node = 0; node <= highest_node_number; node++) {
2809     if (isnode_in_existing_nodes(node)) {
2810       num_nodes++;
2811     }
2812   }
2813   return num_nodes;
2814 }
2815 
2816 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2817   size_t highest_node_number = Linux::numa_max_node();
2818   size_t i = 0;
2819 
2820   // Map all node ids in which is possible to allocate memory. Also nodes are
2821   // not always consecutively available, i.e. available from 0 to the highest
2822   // node number.
2823   for (size_t node = 0; node <= highest_node_number; node++) {
2824     if (Linux::isnode_in_configured_nodes(node)) {
2825       ids[i++] = node;
2826     }
2827   }
2828   return i;
2829 }
2830 
2831 bool os::get_page_info(char *start, page_info* info) {
2832   return false;
2833 }
2834 
2835 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2836                      page_info* page_found) {
2837   return end;
2838 }
2839 
2840 
2841 int os::Linux::sched_getcpu_syscall(void) {
2842   unsigned int cpu = 0;
2843   int retval = -1;
2844 
2845 #if defined(IA32)
2846   #ifndef SYS_getcpu
2847     #define SYS_getcpu 318
2848   #endif
2849   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2850 #elif defined(AMD64)
2851 // Unfortunately we have to bring all these macros here from vsyscall.h
2852 // to be able to compile on old linuxes.
2853   #define __NR_vgetcpu 2
2854   #define VSYSCALL_START (-10UL << 20)
2855   #define VSYSCALL_SIZE 1024
2856   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2857   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2858   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2859   retval = vgetcpu(&cpu, NULL, NULL);
2860 #endif
2861 
2862   return (retval == -1) ? retval : cpu;
2863 }
2864 
2865 void os::Linux::sched_getcpu_init() {
2866   // sched_getcpu() should be in libc.
2867   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2868                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2869 
2870   // If it's not, try a direct syscall.
2871   if (sched_getcpu() == -1) {
2872     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2873                                     (void*)&sched_getcpu_syscall));
2874   }
2875 
2876   if (sched_getcpu() == -1) {
2877     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
2878   }
2879 }
2880 
2881 // Something to do with the numa-aware allocator needs these symbols
2882 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2883 extern "C" JNIEXPORT void numa_error(char *where) { }
2884 
2885 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2886 // load symbol from base version instead.
2887 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2888   void *f = dlvsym(handle, name, "libnuma_1.1");
2889   if (f == NULL) {
2890     f = dlsym(handle, name);
2891   }
2892   return f;
2893 }
2894 
2895 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2896 // Return NULL if the symbol is not defined in this particular version.
2897 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2898   return dlvsym(handle, name, "libnuma_1.2");
2899 }
2900 
2901 bool os::Linux::libnuma_init() {
2902   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2903     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2904     if (handle != NULL) {
2905       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2906                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2907       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2908                                        libnuma_dlsym(handle, "numa_max_node")));
2909       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2910                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2911       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2912                                         libnuma_dlsym(handle, "numa_available")));
2913       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2914                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2915       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2916                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2917       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2918                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2919       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2920                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2921       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2922                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2923       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2924                                        libnuma_dlsym(handle, "numa_distance")));
2925 
2926       if (numa_available() != -1) {
2927         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2928         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2929         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2930         // Create an index -> node mapping, since nodes are not always consecutive
2931         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2932         rebuild_nindex_to_node_map();
2933         // Create a cpu -> node mapping
2934         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2935         rebuild_cpu_to_node_map();
2936         return true;
2937       }
2938     }
2939   }
2940   return false;
2941 }
2942 
2943 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2944   // Creating guard page is very expensive. Java thread has HotSpot
2945   // guard pages, only enable glibc guard page for non-Java threads.
2946   // (Remember: compiler thread is a Java thread, too!)
2947   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2948 }
2949 
2950 void os::Linux::rebuild_nindex_to_node_map() {
2951   int highest_node_number = Linux::numa_max_node();
2952 
2953   nindex_to_node()->clear();
2954   for (int node = 0; node <= highest_node_number; node++) {
2955     if (Linux::isnode_in_existing_nodes(node)) {
2956       nindex_to_node()->append(node);
2957     }
2958   }
2959 }
2960 
2961 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2962 // The table is later used in get_node_by_cpu().
2963 void os::Linux::rebuild_cpu_to_node_map() {
2964   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2965                               // in libnuma (possible values are starting from 16,
2966                               // and continuing up with every other power of 2, but less
2967                               // than the maximum number of CPUs supported by kernel), and
2968                               // is a subject to change (in libnuma version 2 the requirements
2969                               // are more reasonable) we'll just hardcode the number they use
2970                               // in the library.
2971   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2972 
2973   size_t cpu_num = processor_count();
2974   size_t cpu_map_size = NCPUS / BitsPerCLong;
2975   size_t cpu_map_valid_size =
2976     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2977 
2978   cpu_to_node()->clear();
2979   cpu_to_node()->at_grow(cpu_num - 1);
2980 
2981   size_t node_num = get_existing_num_nodes();
2982 
2983   int distance = 0;
2984   int closest_distance = INT_MAX;
2985   int closest_node = 0;
2986   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2987   for (size_t i = 0; i < node_num; i++) {
2988     // Check if node is configured (not a memory-less node). If it is not, find
2989     // the closest configured node.
2990     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
2991       closest_distance = INT_MAX;
2992       // Check distance from all remaining nodes in the system. Ignore distance
2993       // from itself and from another non-configured node.
2994       for (size_t m = 0; m < node_num; m++) {
2995         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
2996           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2997           // If a closest node is found, update. There is always at least one
2998           // configured node in the system so there is always at least one node
2999           // close.
3000           if (distance != 0 && distance < closest_distance) {
3001             closest_distance = distance;
3002             closest_node = nindex_to_node()->at(m);
3003           }
3004         }
3005       }
3006      } else {
3007        // Current node is already a configured node.
3008        closest_node = nindex_to_node()->at(i);
3009      }
3010 
3011     // Get cpus from the original node and map them to the closest node. If node
3012     // is a configured node (not a memory-less node), then original node and
3013     // closest node are the same.
3014     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3015       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3016         if (cpu_map[j] != 0) {
3017           for (size_t k = 0; k < BitsPerCLong; k++) {
3018             if (cpu_map[j] & (1UL << k)) {
3019               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3020             }
3021           }
3022         }
3023       }
3024     }
3025   }
3026   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3027 }
3028 
3029 int os::Linux::get_node_by_cpu(int cpu_id) {
3030   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3031     return cpu_to_node()->at(cpu_id);
3032   }
3033   return -1;
3034 }
3035 
3036 GrowableArray<int>* os::Linux::_cpu_to_node;
3037 GrowableArray<int>* os::Linux::_nindex_to_node;
3038 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3039 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3040 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3041 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3042 os::Linux::numa_available_func_t os::Linux::_numa_available;
3043 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3044 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3045 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3046 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3047 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3048 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3049 unsigned long* os::Linux::_numa_all_nodes;
3050 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3051 struct bitmask* os::Linux::_numa_nodes_ptr;
3052 
3053 bool os::pd_uncommit_memory(char* addr, size_t size) {
3054   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3055                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3056   return res  != (uintptr_t) MAP_FAILED;
3057 }
3058 
3059 static address get_stack_commited_bottom(address bottom, size_t size) {
3060   address nbot = bottom;
3061   address ntop = bottom + size;
3062 
3063   size_t page_sz = os::vm_page_size();
3064   unsigned pages = size / page_sz;
3065 
3066   unsigned char vec[1];
3067   unsigned imin = 1, imax = pages + 1, imid;
3068   int mincore_return_value = 0;
3069 
3070   assert(imin <= imax, "Unexpected page size");
3071 
3072   while (imin < imax) {
3073     imid = (imax + imin) / 2;
3074     nbot = ntop - (imid * page_sz);
3075 
3076     // Use a trick with mincore to check whether the page is mapped or not.
3077     // mincore sets vec to 1 if page resides in memory and to 0 if page
3078     // is swapped output but if page we are asking for is unmapped
3079     // it returns -1,ENOMEM
3080     mincore_return_value = mincore(nbot, page_sz, vec);
3081 
3082     if (mincore_return_value == -1) {
3083       // Page is not mapped go up
3084       // to find first mapped page
3085       if (errno != EAGAIN) {
3086         assert(errno == ENOMEM, "Unexpected mincore errno");
3087         imax = imid;
3088       }
3089     } else {
3090       // Page is mapped go down
3091       // to find first not mapped page
3092       imin = imid + 1;
3093     }
3094   }
3095 
3096   nbot = nbot + page_sz;
3097 
3098   // Adjust stack bottom one page up if last checked page is not mapped
3099   if (mincore_return_value == -1) {
3100     nbot = nbot + page_sz;
3101   }
3102 
3103   return nbot;
3104 }
3105 
3106 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3107   int mincore_return_value;
3108   const size_t stripe = 1024;  // query this many pages each time
3109   unsigned char vec[stripe + 1];
3110   // set a guard
3111   vec[stripe] = 'X';
3112 
3113   const size_t page_sz = os::vm_page_size();
3114   size_t pages = size / page_sz;
3115 
3116   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3117   assert(is_aligned(size, page_sz), "Size must be page aligned");
3118 
3119   committed_start = NULL;
3120 
3121   int loops = (pages + stripe - 1) / stripe;
3122   int committed_pages = 0;
3123   address loop_base = start;
3124   bool found_range = false;
3125 
3126   for (int index = 0; index < loops && !found_range; index ++) {
3127     assert(pages > 0, "Nothing to do");
3128     int pages_to_query = (pages >= stripe) ? stripe : pages;
3129     pages -= pages_to_query;
3130 
3131     // Get stable read
3132     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3133 
3134     // During shutdown, some memory goes away without properly notifying NMT,
3135     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3136     // Bailout and return as not committed for now.
3137     if (mincore_return_value == -1 && errno == ENOMEM) {
3138       return false;
3139     }
3140 
3141     assert(vec[stripe] == 'X', "overflow guard");
3142     assert(mincore_return_value == 0, "Range must be valid");
3143     // Process this stripe
3144     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3145       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3146         // End of current contiguous region
3147         if (committed_start != NULL) {
3148           found_range = true;
3149           break;
3150         }
3151       } else { // committed
3152         // Start of region
3153         if (committed_start == NULL) {
3154           committed_start = loop_base + page_sz * vecIdx;
3155         }
3156         committed_pages ++;
3157       }
3158     }
3159 
3160     loop_base += pages_to_query * page_sz;
3161   }
3162 
3163   if (committed_start != NULL) {
3164     assert(committed_pages > 0, "Must have committed region");
3165     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3166     assert(committed_start >= start && committed_start < start + size, "Out of range");
3167     committed_size = page_sz * committed_pages;
3168     return true;
3169   } else {
3170     assert(committed_pages == 0, "Should not have committed region");
3171     return false;
3172   }
3173 }
3174 
3175 
3176 // Linux uses a growable mapping for the stack, and if the mapping for
3177 // the stack guard pages is not removed when we detach a thread the
3178 // stack cannot grow beyond the pages where the stack guard was
3179 // mapped.  If at some point later in the process the stack expands to
3180 // that point, the Linux kernel cannot expand the stack any further
3181 // because the guard pages are in the way, and a segfault occurs.
3182 //
3183 // However, it's essential not to split the stack region by unmapping
3184 // a region (leaving a hole) that's already part of the stack mapping,
3185 // so if the stack mapping has already grown beyond the guard pages at
3186 // the time we create them, we have to truncate the stack mapping.
3187 // So, we need to know the extent of the stack mapping when
3188 // create_stack_guard_pages() is called.
3189 
3190 // We only need this for stacks that are growable: at the time of
3191 // writing thread stacks don't use growable mappings (i.e. those
3192 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3193 // only applies to the main thread.
3194 
3195 // If the (growable) stack mapping already extends beyond the point
3196 // where we're going to put our guard pages, truncate the mapping at
3197 // that point by munmap()ping it.  This ensures that when we later
3198 // munmap() the guard pages we don't leave a hole in the stack
3199 // mapping. This only affects the main/primordial thread
3200 
3201 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3202   if (os::is_primordial_thread()) {
3203     // As we manually grow stack up to bottom inside create_attached_thread(),
3204     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3205     // we don't need to do anything special.
3206     // Check it first, before calling heavy function.
3207     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3208     unsigned char vec[1];
3209 
3210     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3211       // Fallback to slow path on all errors, including EAGAIN
3212       stack_extent = (uintptr_t) get_stack_commited_bottom(
3213                                                            os::Linux::initial_thread_stack_bottom(),
3214                                                            (size_t)addr - stack_extent);
3215     }
3216 
3217     if (stack_extent < (uintptr_t)addr) {
3218       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3219     }
3220   }
3221 
3222   return os::commit_memory(addr, size, !ExecMem);
3223 }
3224 
3225 // If this is a growable mapping, remove the guard pages entirely by
3226 // munmap()ping them.  If not, just call uncommit_memory(). This only
3227 // affects the main/primordial thread, but guard against future OS changes.
3228 // It's safe to always unmap guard pages for primordial thread because we
3229 // always place it right after end of the mapped region.
3230 
3231 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3232   uintptr_t stack_extent, stack_base;
3233 
3234   if (os::is_primordial_thread()) {
3235     return ::munmap(addr, size) == 0;
3236   }
3237 
3238   return os::uncommit_memory(addr, size);
3239 }
3240 
3241 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3242 // at 'requested_addr'. If there are existing memory mappings at the same
3243 // location, however, they will be overwritten. If 'fixed' is false,
3244 // 'requested_addr' is only treated as a hint, the return value may or
3245 // may not start from the requested address. Unlike Linux mmap(), this
3246 // function returns NULL to indicate failure.
3247 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3248   char * addr;
3249   int flags;
3250 
3251   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3252   if (fixed) {
3253     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3254     flags |= MAP_FIXED;
3255   }
3256 
3257   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3258   // touch an uncommitted page. Otherwise, the read/write might
3259   // succeed if we have enough swap space to back the physical page.
3260   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3261                        flags, -1, 0);
3262 
3263   return addr == MAP_FAILED ? NULL : addr;
3264 }
3265 
3266 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3267 //   (req_addr != NULL) or with a given alignment.
3268 //  - bytes shall be a multiple of alignment.
3269 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3270 //  - alignment sets the alignment at which memory shall be allocated.
3271 //     It must be a multiple of allocation granularity.
3272 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3273 //  req_addr or NULL.
3274 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3275 
3276   size_t extra_size = bytes;
3277   if (req_addr == NULL && alignment > 0) {
3278     extra_size += alignment;
3279   }
3280 
3281   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3282     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3283     -1, 0);
3284   if (start == MAP_FAILED) {
3285     start = NULL;
3286   } else {
3287     if (req_addr != NULL) {
3288       if (start != req_addr) {
3289         ::munmap(start, extra_size);
3290         start = NULL;
3291       }
3292     } else {
3293       char* const start_aligned = align_up(start, alignment);
3294       char* const end_aligned = start_aligned + bytes;
3295       char* const end = start + extra_size;
3296       if (start_aligned > start) {
3297         ::munmap(start, start_aligned - start);
3298       }
3299       if (end_aligned < end) {
3300         ::munmap(end_aligned, end - end_aligned);
3301       }
3302       start = start_aligned;
3303     }
3304   }
3305   return start;
3306 }
3307 
3308 static int anon_munmap(char * addr, size_t size) {
3309   return ::munmap(addr, size) == 0;
3310 }
3311 
3312 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3313                             size_t alignment_hint) {
3314   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3315 }
3316 
3317 bool os::pd_release_memory(char* addr, size_t size) {
3318   return anon_munmap(addr, size);
3319 }
3320 
3321 static bool linux_mprotect(char* addr, size_t size, int prot) {
3322   // Linux wants the mprotect address argument to be page aligned.
3323   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3324 
3325   // According to SUSv3, mprotect() should only be used with mappings
3326   // established by mmap(), and mmap() always maps whole pages. Unaligned
3327   // 'addr' likely indicates problem in the VM (e.g. trying to change
3328   // protection of malloc'ed or statically allocated memory). Check the
3329   // caller if you hit this assert.
3330   assert(addr == bottom, "sanity check");
3331 
3332   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3333   return ::mprotect(bottom, size, prot) == 0;
3334 }
3335 
3336 // Set protections specified
3337 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3338                         bool is_committed) {
3339   unsigned int p = 0;
3340   switch (prot) {
3341   case MEM_PROT_NONE: p = PROT_NONE; break;
3342   case MEM_PROT_READ: p = PROT_READ; break;
3343   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3344   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3345   default:
3346     ShouldNotReachHere();
3347   }
3348   // is_committed is unused.
3349   return linux_mprotect(addr, bytes, p);
3350 }
3351 
3352 bool os::guard_memory(char* addr, size_t size) {
3353   return linux_mprotect(addr, size, PROT_NONE);
3354 }
3355 
3356 bool os::unguard_memory(char* addr, size_t size) {
3357   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3358 }
3359 
3360 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3361                                                     size_t page_size) {
3362   bool result = false;
3363   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3364                  MAP_ANONYMOUS|MAP_PRIVATE,
3365                  -1, 0);
3366   if (p != MAP_FAILED) {
3367     void *aligned_p = align_up(p, page_size);
3368 
3369     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3370 
3371     munmap(p, page_size * 2);
3372   }
3373 
3374   if (warn && !result) {
3375     warning("TransparentHugePages is not supported by the operating system.");
3376   }
3377 
3378   return result;
3379 }
3380 
3381 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3382   bool result = false;
3383   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3384                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3385                  -1, 0);
3386 
3387   if (p != MAP_FAILED) {
3388     // We don't know if this really is a huge page or not.
3389     FILE *fp = fopen("/proc/self/maps", "r");
3390     if (fp) {
3391       while (!feof(fp)) {
3392         char chars[257];
3393         long x = 0;
3394         if (fgets(chars, sizeof(chars), fp)) {
3395           if (sscanf(chars, "%lx-%*x", &x) == 1
3396               && x == (long)p) {
3397             if (strstr (chars, "hugepage")) {
3398               result = true;
3399               break;
3400             }
3401           }
3402         }
3403       }
3404       fclose(fp);
3405     }
3406     munmap(p, page_size);
3407   }
3408 
3409   if (warn && !result) {
3410     warning("HugeTLBFS is not supported by the operating system.");
3411   }
3412 
3413   return result;
3414 }
3415 
3416 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3417 //
3418 // From the coredump_filter documentation:
3419 //
3420 // - (bit 0) anonymous private memory
3421 // - (bit 1) anonymous shared memory
3422 // - (bit 2) file-backed private memory
3423 // - (bit 3) file-backed shared memory
3424 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3425 //           effective only if the bit 2 is cleared)
3426 // - (bit 5) hugetlb private memory
3427 // - (bit 6) hugetlb shared memory
3428 // - (bit 7) dax private memory
3429 // - (bit 8) dax shared memory
3430 //
3431 static void set_coredump_filter(bool largepages, bool dax_shared) {
3432   FILE *f;
3433   long cdm;
3434   bool filter_changed = false;
3435 
3436   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3437     return;
3438   }
3439 
3440   if (fscanf(f, "%lx", &cdm) != 1) {
3441     fclose(f);
3442     return;
3443   }
3444 
3445   rewind(f);
3446 
3447   if (largepages && (cdm & LARGEPAGES_BIT) == 0) {
3448     cdm |= LARGEPAGES_BIT;
3449     filter_changed = true;
3450   }
3451   if (dax_shared && (cdm & DAX_SHARED_BIT) == 0) {
3452     cdm |= DAX_SHARED_BIT;
3453     filter_changed = true;
3454   }
3455   if (filter_changed) {
3456     fprintf(f, "%#lx", cdm);
3457   }
3458 
3459   fclose(f);
3460 }
3461 
3462 // Large page support
3463 
3464 static size_t _large_page_size = 0;
3465 
3466 size_t os::Linux::find_large_page_size() {
3467   size_t large_page_size = 0;
3468 
3469   // large_page_size on Linux is used to round up heap size. x86 uses either
3470   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3471   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3472   // page as large as 256M.
3473   //
3474   // Here we try to figure out page size by parsing /proc/meminfo and looking
3475   // for a line with the following format:
3476   //    Hugepagesize:     2048 kB
3477   //
3478   // If we can't determine the value (e.g. /proc is not mounted, or the text
3479   // format has been changed), we'll use the largest page size supported by
3480   // the processor.
3481 
3482 #ifndef ZERO
3483   large_page_size =
3484     AARCH64_ONLY(2 * M)
3485     AMD64_ONLY(2 * M)
3486     ARM32_ONLY(2 * M)
3487     IA32_ONLY(4 * M)
3488     IA64_ONLY(256 * M)
3489     PPC_ONLY(4 * M)
3490     S390_ONLY(1 * M)
3491     SPARC_ONLY(4 * M);
3492 #endif // ZERO
3493 
3494   FILE *fp = fopen("/proc/meminfo", "r");
3495   if (fp) {
3496     while (!feof(fp)) {
3497       int x = 0;
3498       char buf[16];
3499       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3500         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3501           large_page_size = x * K;
3502           break;
3503         }
3504       } else {
3505         // skip to next line
3506         for (;;) {
3507           int ch = fgetc(fp);
3508           if (ch == EOF || ch == (int)'\n') break;
3509         }
3510       }
3511     }
3512     fclose(fp);
3513   }
3514 
3515   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3516     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3517             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3518             proper_unit_for_byte_size(large_page_size));
3519   }
3520 
3521   return large_page_size;
3522 }
3523 
3524 size_t os::Linux::setup_large_page_size() {
3525   _large_page_size = Linux::find_large_page_size();
3526   const size_t default_page_size = (size_t)Linux::page_size();
3527   if (_large_page_size > default_page_size) {
3528     _page_sizes[0] = _large_page_size;
3529     _page_sizes[1] = default_page_size;
3530     _page_sizes[2] = 0;
3531   }
3532 
3533   return _large_page_size;
3534 }
3535 
3536 bool os::Linux::setup_large_page_type(size_t page_size) {
3537   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3538       FLAG_IS_DEFAULT(UseSHM) &&
3539       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3540 
3541     // The type of large pages has not been specified by the user.
3542 
3543     // Try UseHugeTLBFS and then UseSHM.
3544     UseHugeTLBFS = UseSHM = true;
3545 
3546     // Don't try UseTransparentHugePages since there are known
3547     // performance issues with it turned on. This might change in the future.
3548     UseTransparentHugePages = false;
3549   }
3550 
3551   if (UseTransparentHugePages) {
3552     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3553     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3554       UseHugeTLBFS = false;
3555       UseSHM = false;
3556       return true;
3557     }
3558     UseTransparentHugePages = false;
3559   }
3560 
3561   if (UseHugeTLBFS) {
3562     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3563     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3564       UseSHM = false;
3565       return true;
3566     }
3567     UseHugeTLBFS = false;
3568   }
3569 
3570   return UseSHM;
3571 }
3572 
3573 void os::large_page_init() {
3574   if (!UseLargePages &&
3575       !UseTransparentHugePages &&
3576       !UseHugeTLBFS &&
3577       !UseSHM) {
3578     // Not using large pages.
3579     return;
3580   }
3581 
3582   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3583     // The user explicitly turned off large pages.
3584     // Ignore the rest of the large pages flags.
3585     UseTransparentHugePages = false;
3586     UseHugeTLBFS = false;
3587     UseSHM = false;
3588     return;
3589   }
3590 
3591   size_t large_page_size = Linux::setup_large_page_size();
3592   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3593 
3594   set_coredump_filter(true /*largepages*/, false /*dax_shared*/);
3595 }
3596 
3597 #ifndef SHM_HUGETLB
3598   #define SHM_HUGETLB 04000
3599 #endif
3600 
3601 #define shm_warning_format(format, ...)              \
3602   do {                                               \
3603     if (UseLargePages &&                             \
3604         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3605          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3606          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3607       warning(format, __VA_ARGS__);                  \
3608     }                                                \
3609   } while (0)
3610 
3611 #define shm_warning(str) shm_warning_format("%s", str)
3612 
3613 #define shm_warning_with_errno(str)                \
3614   do {                                             \
3615     int err = errno;                               \
3616     shm_warning_format(str " (error = %d)", err);  \
3617   } while (0)
3618 
3619 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3620   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3621 
3622   if (!is_aligned(alignment, SHMLBA)) {
3623     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3624     return NULL;
3625   }
3626 
3627   // To ensure that we get 'alignment' aligned memory from shmat,
3628   // we pre-reserve aligned virtual memory and then attach to that.
3629 
3630   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3631   if (pre_reserved_addr == NULL) {
3632     // Couldn't pre-reserve aligned memory.
3633     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3634     return NULL;
3635   }
3636 
3637   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3638   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3639 
3640   if ((intptr_t)addr == -1) {
3641     int err = errno;
3642     shm_warning_with_errno("Failed to attach shared memory.");
3643 
3644     assert(err != EACCES, "Unexpected error");
3645     assert(err != EIDRM,  "Unexpected error");
3646     assert(err != EINVAL, "Unexpected error");
3647 
3648     // Since we don't know if the kernel unmapped the pre-reserved memory area
3649     // we can't unmap it, since that would potentially unmap memory that was
3650     // mapped from other threads.
3651     return NULL;
3652   }
3653 
3654   return addr;
3655 }
3656 
3657 static char* shmat_at_address(int shmid, char* req_addr) {
3658   if (!is_aligned(req_addr, SHMLBA)) {
3659     assert(false, "Requested address needs to be SHMLBA aligned");
3660     return NULL;
3661   }
3662 
3663   char* addr = (char*)shmat(shmid, req_addr, 0);
3664 
3665   if ((intptr_t)addr == -1) {
3666     shm_warning_with_errno("Failed to attach shared memory.");
3667     return NULL;
3668   }
3669 
3670   return addr;
3671 }
3672 
3673 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3674   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3675   if (req_addr != NULL) {
3676     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3677     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3678     return shmat_at_address(shmid, req_addr);
3679   }
3680 
3681   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3682   // return large page size aligned memory addresses when req_addr == NULL.
3683   // However, if the alignment is larger than the large page size, we have
3684   // to manually ensure that the memory returned is 'alignment' aligned.
3685   if (alignment > os::large_page_size()) {
3686     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3687     return shmat_with_alignment(shmid, bytes, alignment);
3688   } else {
3689     return shmat_at_address(shmid, NULL);
3690   }
3691 }
3692 
3693 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3694                                             char* req_addr, bool exec) {
3695   // "exec" is passed in but not used.  Creating the shared image for
3696   // the code cache doesn't have an SHM_X executable permission to check.
3697   assert(UseLargePages && UseSHM, "only for SHM large pages");
3698   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3699   assert(is_aligned(req_addr, alignment), "Unaligned address");
3700 
3701   if (!is_aligned(bytes, os::large_page_size())) {
3702     return NULL; // Fallback to small pages.
3703   }
3704 
3705   // Create a large shared memory region to attach to based on size.
3706   // Currently, size is the total size of the heap.
3707   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3708   if (shmid == -1) {
3709     // Possible reasons for shmget failure:
3710     // 1. shmmax is too small for Java heap.
3711     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3712     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3713     // 2. not enough large page memory.
3714     //    > check available large pages: cat /proc/meminfo
3715     //    > increase amount of large pages:
3716     //          echo new_value > /proc/sys/vm/nr_hugepages
3717     //      Note 1: different Linux may use different name for this property,
3718     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3719     //      Note 2: it's possible there's enough physical memory available but
3720     //            they are so fragmented after a long run that they can't
3721     //            coalesce into large pages. Try to reserve large pages when
3722     //            the system is still "fresh".
3723     shm_warning_with_errno("Failed to reserve shared memory.");
3724     return NULL;
3725   }
3726 
3727   // Attach to the region.
3728   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3729 
3730   // Remove shmid. If shmat() is successful, the actual shared memory segment
3731   // will be deleted when it's detached by shmdt() or when the process
3732   // terminates. If shmat() is not successful this will remove the shared
3733   // segment immediately.
3734   shmctl(shmid, IPC_RMID, NULL);
3735 
3736   return addr;
3737 }
3738 
3739 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3740                                         int error) {
3741   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3742 
3743   bool warn_on_failure = UseLargePages &&
3744       (!FLAG_IS_DEFAULT(UseLargePages) ||
3745        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3746        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3747 
3748   if (warn_on_failure) {
3749     char msg[128];
3750     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3751                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3752     warning("%s", msg);
3753   }
3754 }
3755 
3756 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3757                                                         char* req_addr,
3758                                                         bool exec) {
3759   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3760   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3761   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3762 
3763   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3764   char* addr = (char*)::mmap(req_addr, bytes, prot,
3765                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3766                              -1, 0);
3767 
3768   if (addr == MAP_FAILED) {
3769     warn_on_large_pages_failure(req_addr, bytes, errno);
3770     return NULL;
3771   }
3772 
3773   assert(is_aligned(addr, os::large_page_size()), "Must be");
3774 
3775   return addr;
3776 }
3777 
3778 // Reserve memory using mmap(MAP_HUGETLB).
3779 //  - bytes shall be a multiple of alignment.
3780 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3781 //  - alignment sets the alignment at which memory shall be allocated.
3782 //     It must be a multiple of allocation granularity.
3783 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3784 //  req_addr or NULL.
3785 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3786                                                          size_t alignment,
3787                                                          char* req_addr,
3788                                                          bool exec) {
3789   size_t large_page_size = os::large_page_size();
3790   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3791 
3792   assert(is_aligned(req_addr, alignment), "Must be");
3793   assert(is_aligned(bytes, alignment), "Must be");
3794 
3795   // First reserve - but not commit - the address range in small pages.
3796   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3797 
3798   if (start == NULL) {
3799     return NULL;
3800   }
3801 
3802   assert(is_aligned(start, alignment), "Must be");
3803 
3804   char* end = start + bytes;
3805 
3806   // Find the regions of the allocated chunk that can be promoted to large pages.
3807   char* lp_start = align_up(start, large_page_size);
3808   char* lp_end   = align_down(end, large_page_size);
3809 
3810   size_t lp_bytes = lp_end - lp_start;
3811 
3812   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3813 
3814   if (lp_bytes == 0) {
3815     // The mapped region doesn't even span the start and the end of a large page.
3816     // Fall back to allocate a non-special area.
3817     ::munmap(start, end - start);
3818     return NULL;
3819   }
3820 
3821   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3822 
3823   void* result;
3824 
3825   // Commit small-paged leading area.
3826   if (start != lp_start) {
3827     result = ::mmap(start, lp_start - start, prot,
3828                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3829                     -1, 0);
3830     if (result == MAP_FAILED) {
3831       ::munmap(lp_start, end - lp_start);
3832       return NULL;
3833     }
3834   }
3835 
3836   // Commit large-paged area.
3837   result = ::mmap(lp_start, lp_bytes, prot,
3838                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3839                   -1, 0);
3840   if (result == MAP_FAILED) {
3841     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3842     // If the mmap above fails, the large pages region will be unmapped and we
3843     // have regions before and after with small pages. Release these regions.
3844     //
3845     // |  mapped  |  unmapped  |  mapped  |
3846     // ^          ^            ^          ^
3847     // start      lp_start     lp_end     end
3848     //
3849     ::munmap(start, lp_start - start);
3850     ::munmap(lp_end, end - lp_end);
3851     return NULL;
3852   }
3853 
3854   // Commit small-paged trailing area.
3855   if (lp_end != end) {
3856     result = ::mmap(lp_end, end - lp_end, prot,
3857                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3858                     -1, 0);
3859     if (result == MAP_FAILED) {
3860       ::munmap(start, lp_end - start);
3861       return NULL;
3862     }
3863   }
3864 
3865   return start;
3866 }
3867 
3868 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3869                                                    size_t alignment,
3870                                                    char* req_addr,
3871                                                    bool exec) {
3872   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3873   assert(is_aligned(req_addr, alignment), "Must be");
3874   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3875   assert(is_power_of_2(os::large_page_size()), "Must be");
3876   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3877 
3878   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3879     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3880   } else {
3881     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3882   }
3883 }
3884 
3885 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3886                                  char* req_addr, bool exec) {
3887   assert(UseLargePages, "only for large pages");
3888 
3889   char* addr;
3890   if (UseSHM) {
3891     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3892   } else {
3893     assert(UseHugeTLBFS, "must be");
3894     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3895   }
3896 
3897   if (addr != NULL) {
3898     if (UseNUMAInterleaving) {
3899       numa_make_global(addr, bytes);
3900     }
3901 
3902     // The memory is committed
3903     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3904   }
3905 
3906   return addr;
3907 }
3908 
3909 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3910   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3911   return shmdt(base) == 0;
3912 }
3913 
3914 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3915   return pd_release_memory(base, bytes);
3916 }
3917 
3918 bool os::release_memory_special(char* base, size_t bytes) {
3919   bool res;
3920   if (MemTracker::tracking_level() > NMT_minimal) {
3921     Tracker tkr(Tracker::release);
3922     res = os::Linux::release_memory_special_impl(base, bytes);
3923     if (res) {
3924       tkr.record((address)base, bytes);
3925     }
3926 
3927   } else {
3928     res = os::Linux::release_memory_special_impl(base, bytes);
3929   }
3930   return res;
3931 }
3932 
3933 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3934   assert(UseLargePages, "only for large pages");
3935   bool res;
3936 
3937   if (UseSHM) {
3938     res = os::Linux::release_memory_special_shm(base, bytes);
3939   } else {
3940     assert(UseHugeTLBFS, "must be");
3941     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3942   }
3943   return res;
3944 }
3945 
3946 size_t os::large_page_size() {
3947   return _large_page_size;
3948 }
3949 
3950 // With SysV SHM the entire memory region must be allocated as shared
3951 // memory.
3952 // HugeTLBFS allows application to commit large page memory on demand.
3953 // However, when committing memory with HugeTLBFS fails, the region
3954 // that was supposed to be committed will lose the old reservation
3955 // and allow other threads to steal that memory region. Because of this
3956 // behavior we can't commit HugeTLBFS memory.
3957 bool os::can_commit_large_page_memory() {
3958   return UseTransparentHugePages;
3959 }
3960 
3961 bool os::can_execute_large_page_memory() {
3962   return UseTransparentHugePages || UseHugeTLBFS;
3963 }
3964 
3965 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3966   assert(file_desc >= 0, "file_desc is not valid");
3967   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
3968   if (result != NULL) {
3969     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
3970       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
3971     }
3972   }
3973   return result;
3974 }
3975 
3976 // Reserve memory at an arbitrary address, only if that area is
3977 // available (and not reserved for something else).
3978 
3979 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3980   const int max_tries = 10;
3981   char* base[max_tries];
3982   size_t size[max_tries];
3983   const size_t gap = 0x000000;
3984 
3985   // Assert only that the size is a multiple of the page size, since
3986   // that's all that mmap requires, and since that's all we really know
3987   // about at this low abstraction level.  If we need higher alignment,
3988   // we can either pass an alignment to this method or verify alignment
3989   // in one of the methods further up the call chain.  See bug 5044738.
3990   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3991 
3992   // Repeatedly allocate blocks until the block is allocated at the
3993   // right spot.
3994 
3995   // Linux mmap allows caller to pass an address as hint; give it a try first,
3996   // if kernel honors the hint then we can return immediately.
3997   char * addr = anon_mmap(requested_addr, bytes, false);
3998   if (addr == requested_addr) {
3999     return requested_addr;
4000   }
4001 
4002   if (addr != NULL) {
4003     // mmap() is successful but it fails to reserve at the requested address
4004     anon_munmap(addr, bytes);
4005   }
4006 
4007   int i;
4008   for (i = 0; i < max_tries; ++i) {
4009     base[i] = reserve_memory(bytes);
4010 
4011     if (base[i] != NULL) {
4012       // Is this the block we wanted?
4013       if (base[i] == requested_addr) {
4014         size[i] = bytes;
4015         break;
4016       }
4017 
4018       // Does this overlap the block we wanted? Give back the overlapped
4019       // parts and try again.
4020 
4021       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
4022       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
4023         unmap_memory(base[i], top_overlap);
4024         base[i] += top_overlap;
4025         size[i] = bytes - top_overlap;
4026       } else {
4027         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
4028         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
4029           unmap_memory(requested_addr, bottom_overlap);
4030           size[i] = bytes - bottom_overlap;
4031         } else {
4032           size[i] = bytes;
4033         }
4034       }
4035     }
4036   }
4037 
4038   // Give back the unused reserved pieces.
4039 
4040   for (int j = 0; j < i; ++j) {
4041     if (base[j] != NULL) {
4042       unmap_memory(base[j], size[j]);
4043     }
4044   }
4045 
4046   if (i < max_tries) {
4047     return requested_addr;
4048   } else {
4049     return NULL;
4050   }
4051 }
4052 
4053 size_t os::read(int fd, void *buf, unsigned int nBytes) {
4054   return ::read(fd, buf, nBytes);
4055 }
4056 
4057 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4058   return ::pread(fd, buf, nBytes, offset);
4059 }
4060 
4061 // Short sleep, direct OS call.
4062 //
4063 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
4064 // sched_yield(2) will actually give up the CPU:
4065 //
4066 //   * Alone on this pariticular CPU, keeps running.
4067 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4068 //     (pre 2.6.39).
4069 //
4070 // So calling this with 0 is an alternative.
4071 //
4072 void os::naked_short_sleep(jlong ms) {
4073   struct timespec req;
4074 
4075   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4076   req.tv_sec = 0;
4077   if (ms > 0) {
4078     req.tv_nsec = (ms % 1000) * 1000000;
4079   } else {
4080     req.tv_nsec = 1;
4081   }
4082 
4083   nanosleep(&req, NULL);
4084 
4085   return;
4086 }
4087 
4088 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4089 void os::infinite_sleep() {
4090   while (true) {    // sleep forever ...
4091     ::sleep(100);   // ... 100 seconds at a time
4092   }
4093 }
4094 
4095 // Used to convert frequent JVM_Yield() to nops
4096 bool os::dont_yield() {
4097   return DontYieldALot;
4098 }
4099 
4100 void os::naked_yield() {
4101   sched_yield();
4102 }
4103 
4104 ////////////////////////////////////////////////////////////////////////////////
4105 // thread priority support
4106 
4107 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4108 // only supports dynamic priority, static priority must be zero. For real-time
4109 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4110 // However, for large multi-threaded applications, SCHED_RR is not only slower
4111 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4112 // of 5 runs - Sep 2005).
4113 //
4114 // The following code actually changes the niceness of kernel-thread/LWP. It
4115 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4116 // not the entire user process, and user level threads are 1:1 mapped to kernel
4117 // threads. It has always been the case, but could change in the future. For
4118 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4119 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4120 
4121 int os::java_to_os_priority[CriticalPriority + 1] = {
4122   19,              // 0 Entry should never be used
4123 
4124    4,              // 1 MinPriority
4125    3,              // 2
4126    2,              // 3
4127 
4128    1,              // 4
4129    0,              // 5 NormPriority
4130   -1,              // 6
4131 
4132   -2,              // 7
4133   -3,              // 8
4134   -4,              // 9 NearMaxPriority
4135 
4136   -5,              // 10 MaxPriority
4137 
4138   -5               // 11 CriticalPriority
4139 };
4140 
4141 static int prio_init() {
4142   if (ThreadPriorityPolicy == 1) {
4143     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4144     // if effective uid is not root. Perhaps, a more elegant way of doing
4145     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4146     if (geteuid() != 0) {
4147       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4148         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4149       }
4150       ThreadPriorityPolicy = 0;
4151     }
4152   }
4153   if (UseCriticalJavaThreadPriority) {
4154     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4155   }
4156   return 0;
4157 }
4158 
4159 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4160   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4161 
4162   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4163   return (ret == 0) ? OS_OK : OS_ERR;
4164 }
4165 
4166 OSReturn os::get_native_priority(const Thread* const thread,
4167                                  int *priority_ptr) {
4168   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4169     *priority_ptr = java_to_os_priority[NormPriority];
4170     return OS_OK;
4171   }
4172 
4173   errno = 0;
4174   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4175   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4176 }
4177 
4178 // Hint to the underlying OS that a task switch would not be good.
4179 // Void return because it's a hint and can fail.
4180 void os::hint_no_preempt() {}
4181 
4182 ////////////////////////////////////////////////////////////////////////////////
4183 // suspend/resume support
4184 
4185 //  The low-level signal-based suspend/resume support is a remnant from the
4186 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4187 //  within hotspot. Currently used by JFR's OSThreadSampler
4188 //
4189 //  The remaining code is greatly simplified from the more general suspension
4190 //  code that used to be used.
4191 //
4192 //  The protocol is quite simple:
4193 //  - suspend:
4194 //      - sends a signal to the target thread
4195 //      - polls the suspend state of the osthread using a yield loop
4196 //      - target thread signal handler (SR_handler) sets suspend state
4197 //        and blocks in sigsuspend until continued
4198 //  - resume:
4199 //      - sets target osthread state to continue
4200 //      - sends signal to end the sigsuspend loop in the SR_handler
4201 //
4202 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4203 //  but is checked for NULL in SR_handler as a thread termination indicator.
4204 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4205 //
4206 //  Note that resume_clear_context() and suspend_save_context() are needed
4207 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4208 //  which in part is used by:
4209 //    - Forte Analyzer: AsyncGetCallTrace()
4210 //    - StackBanging: get_frame_at_stack_banging_point()
4211 
4212 static void resume_clear_context(OSThread *osthread) {
4213   osthread->set_ucontext(NULL);
4214   osthread->set_siginfo(NULL);
4215 }
4216 
4217 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4218                                  ucontext_t* context) {
4219   osthread->set_ucontext(context);
4220   osthread->set_siginfo(siginfo);
4221 }
4222 
4223 // Handler function invoked when a thread's execution is suspended or
4224 // resumed. We have to be careful that only async-safe functions are
4225 // called here (Note: most pthread functions are not async safe and
4226 // should be avoided.)
4227 //
4228 // Note: sigwait() is a more natural fit than sigsuspend() from an
4229 // interface point of view, but sigwait() prevents the signal hander
4230 // from being run. libpthread would get very confused by not having
4231 // its signal handlers run and prevents sigwait()'s use with the
4232 // mutex granting granting signal.
4233 //
4234 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4235 //
4236 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4237   // Save and restore errno to avoid confusing native code with EINTR
4238   // after sigsuspend.
4239   int old_errno = errno;
4240 
4241   Thread* thread = Thread::current_or_null_safe();
4242   assert(thread != NULL, "Missing current thread in SR_handler");
4243 
4244   // On some systems we have seen signal delivery get "stuck" until the signal
4245   // mask is changed as part of thread termination. Check that the current thread
4246   // has not already terminated (via SR_lock()) - else the following assertion
4247   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4248   // destructor has completed.
4249 
4250   if (thread->SR_lock() == NULL) {
4251     return;
4252   }
4253 
4254   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4255 
4256   OSThread* osthread = thread->osthread();
4257 
4258   os::SuspendResume::State current = osthread->sr.state();
4259   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4260     suspend_save_context(osthread, siginfo, context);
4261 
4262     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4263     os::SuspendResume::State state = osthread->sr.suspended();
4264     if (state == os::SuspendResume::SR_SUSPENDED) {
4265       sigset_t suspend_set;  // signals for sigsuspend()
4266       sigemptyset(&suspend_set);
4267       // get current set of blocked signals and unblock resume signal
4268       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4269       sigdelset(&suspend_set, SR_signum);
4270 
4271       sr_semaphore.signal();
4272       // wait here until we are resumed
4273       while (1) {
4274         sigsuspend(&suspend_set);
4275 
4276         os::SuspendResume::State result = osthread->sr.running();
4277         if (result == os::SuspendResume::SR_RUNNING) {
4278           sr_semaphore.signal();
4279           break;
4280         }
4281       }
4282 
4283     } else if (state == os::SuspendResume::SR_RUNNING) {
4284       // request was cancelled, continue
4285     } else {
4286       ShouldNotReachHere();
4287     }
4288 
4289     resume_clear_context(osthread);
4290   } else if (current == os::SuspendResume::SR_RUNNING) {
4291     // request was cancelled, continue
4292   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4293     // ignore
4294   } else {
4295     // ignore
4296   }
4297 
4298   errno = old_errno;
4299 }
4300 
4301 static int SR_initialize() {
4302   struct sigaction act;
4303   char *s;
4304 
4305   // Get signal number to use for suspend/resume
4306   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4307     int sig = ::strtol(s, 0, 10);
4308     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4309         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4310       SR_signum = sig;
4311     } else {
4312       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4313               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4314     }
4315   }
4316 
4317   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4318          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4319 
4320   sigemptyset(&SR_sigset);
4321   sigaddset(&SR_sigset, SR_signum);
4322 
4323   // Set up signal handler for suspend/resume
4324   act.sa_flags = SA_RESTART|SA_SIGINFO;
4325   act.sa_handler = (void (*)(int)) SR_handler;
4326 
4327   // SR_signum is blocked by default.
4328   // 4528190 - We also need to block pthread restart signal (32 on all
4329   // supported Linux platforms). Note that LinuxThreads need to block
4330   // this signal for all threads to work properly. So we don't have
4331   // to use hard-coded signal number when setting up the mask.
4332   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4333 
4334   if (sigaction(SR_signum, &act, 0) == -1) {
4335     return -1;
4336   }
4337 
4338   // Save signal flag
4339   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4340   return 0;
4341 }
4342 
4343 static int sr_notify(OSThread* osthread) {
4344   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4345   assert_status(status == 0, status, "pthread_kill");
4346   return status;
4347 }
4348 
4349 // "Randomly" selected value for how long we want to spin
4350 // before bailing out on suspending a thread, also how often
4351 // we send a signal to a thread we want to resume
4352 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4353 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4354 
4355 // returns true on success and false on error - really an error is fatal
4356 // but this seems the normal response to library errors
4357 static bool do_suspend(OSThread* osthread) {
4358   assert(osthread->sr.is_running(), "thread should be running");
4359   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4360 
4361   // mark as suspended and send signal
4362   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4363     // failed to switch, state wasn't running?
4364     ShouldNotReachHere();
4365     return false;
4366   }
4367 
4368   if (sr_notify(osthread) != 0) {
4369     ShouldNotReachHere();
4370   }
4371 
4372   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4373   while (true) {
4374     if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4375       break;
4376     } else {
4377       // timeout
4378       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4379       if (cancelled == os::SuspendResume::SR_RUNNING) {
4380         return false;
4381       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4382         // make sure that we consume the signal on the semaphore as well
4383         sr_semaphore.wait();
4384         break;
4385       } else {
4386         ShouldNotReachHere();
4387         return false;
4388       }
4389     }
4390   }
4391 
4392   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4393   return true;
4394 }
4395 
4396 static void do_resume(OSThread* osthread) {
4397   assert(osthread->sr.is_suspended(), "thread should be suspended");
4398   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4399 
4400   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4401     // failed to switch to WAKEUP_REQUEST
4402     ShouldNotReachHere();
4403     return;
4404   }
4405 
4406   while (true) {
4407     if (sr_notify(osthread) == 0) {
4408       if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4409         if (osthread->sr.is_running()) {
4410           return;
4411         }
4412       }
4413     } else {
4414       ShouldNotReachHere();
4415     }
4416   }
4417 
4418   guarantee(osthread->sr.is_running(), "Must be running!");
4419 }
4420 
4421 ///////////////////////////////////////////////////////////////////////////////////
4422 // signal handling (except suspend/resume)
4423 
4424 // This routine may be used by user applications as a "hook" to catch signals.
4425 // The user-defined signal handler must pass unrecognized signals to this
4426 // routine, and if it returns true (non-zero), then the signal handler must
4427 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4428 // routine will never retun false (zero), but instead will execute a VM panic
4429 // routine kill the process.
4430 //
4431 // If this routine returns false, it is OK to call it again.  This allows
4432 // the user-defined signal handler to perform checks either before or after
4433 // the VM performs its own checks.  Naturally, the user code would be making
4434 // a serious error if it tried to handle an exception (such as a null check
4435 // or breakpoint) that the VM was generating for its own correct operation.
4436 //
4437 // This routine may recognize any of the following kinds of signals:
4438 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4439 // It should be consulted by handlers for any of those signals.
4440 //
4441 // The caller of this routine must pass in the three arguments supplied
4442 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4443 // field of the structure passed to sigaction().  This routine assumes that
4444 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4445 //
4446 // Note that the VM will print warnings if it detects conflicting signal
4447 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4448 //
4449 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4450                                                  siginfo_t* siginfo,
4451                                                  void* ucontext,
4452                                                  int abort_if_unrecognized);
4453 
4454 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4455   assert(info != NULL && uc != NULL, "it must be old kernel");
4456   int orig_errno = errno;  // Preserve errno value over signal handler.
4457   JVM_handle_linux_signal(sig, info, uc, true);
4458   errno = orig_errno;
4459 }
4460 
4461 
4462 // This boolean allows users to forward their own non-matching signals
4463 // to JVM_handle_linux_signal, harmlessly.
4464 bool os::Linux::signal_handlers_are_installed = false;
4465 
4466 // For signal-chaining
4467 struct sigaction sigact[NSIG];
4468 uint64_t sigs = 0;
4469 #if (64 < NSIG-1)
4470 #error "Not all signals can be encoded in sigs. Adapt its type!"
4471 #endif
4472 bool os::Linux::libjsig_is_loaded = false;
4473 typedef struct sigaction *(*get_signal_t)(int);
4474 get_signal_t os::Linux::get_signal_action = NULL;
4475 
4476 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4477   struct sigaction *actp = NULL;
4478 
4479   if (libjsig_is_loaded) {
4480     // Retrieve the old signal handler from libjsig
4481     actp = (*get_signal_action)(sig);
4482   }
4483   if (actp == NULL) {
4484     // Retrieve the preinstalled signal handler from jvm
4485     actp = get_preinstalled_handler(sig);
4486   }
4487 
4488   return actp;
4489 }
4490 
4491 static bool call_chained_handler(struct sigaction *actp, int sig,
4492                                  siginfo_t *siginfo, void *context) {
4493   // Call the old signal handler
4494   if (actp->sa_handler == SIG_DFL) {
4495     // It's more reasonable to let jvm treat it as an unexpected exception
4496     // instead of taking the default action.
4497     return false;
4498   } else if (actp->sa_handler != SIG_IGN) {
4499     if ((actp->sa_flags & SA_NODEFER) == 0) {
4500       // automaticlly block the signal
4501       sigaddset(&(actp->sa_mask), sig);
4502     }
4503 
4504     sa_handler_t hand = NULL;
4505     sa_sigaction_t sa = NULL;
4506     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4507     // retrieve the chained handler
4508     if (siginfo_flag_set) {
4509       sa = actp->sa_sigaction;
4510     } else {
4511       hand = actp->sa_handler;
4512     }
4513 
4514     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4515       actp->sa_handler = SIG_DFL;
4516     }
4517 
4518     // try to honor the signal mask
4519     sigset_t oset;
4520     sigemptyset(&oset);
4521     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4522 
4523     // call into the chained handler
4524     if (siginfo_flag_set) {
4525       (*sa)(sig, siginfo, context);
4526     } else {
4527       (*hand)(sig);
4528     }
4529 
4530     // restore the signal mask
4531     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4532   }
4533   // Tell jvm's signal handler the signal is taken care of.
4534   return true;
4535 }
4536 
4537 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4538   bool chained = false;
4539   // signal-chaining
4540   if (UseSignalChaining) {
4541     struct sigaction *actp = get_chained_signal_action(sig);
4542     if (actp != NULL) {
4543       chained = call_chained_handler(actp, sig, siginfo, context);
4544     }
4545   }
4546   return chained;
4547 }
4548 
4549 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4550   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4551     return &sigact[sig];
4552   }
4553   return NULL;
4554 }
4555 
4556 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4557   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4558   sigact[sig] = oldAct;
4559   sigs |= (uint64_t)1 << (sig-1);
4560 }
4561 
4562 // for diagnostic
4563 int sigflags[NSIG];
4564 
4565 int os::Linux::get_our_sigflags(int sig) {
4566   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4567   return sigflags[sig];
4568 }
4569 
4570 void os::Linux::set_our_sigflags(int sig, int flags) {
4571   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4572   if (sig > 0 && sig < NSIG) {
4573     sigflags[sig] = flags;
4574   }
4575 }
4576 
4577 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4578   // Check for overwrite.
4579   struct sigaction oldAct;
4580   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4581 
4582   void* oldhand = oldAct.sa_sigaction
4583                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4584                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4585   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4586       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4587       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4588     if (AllowUserSignalHandlers || !set_installed) {
4589       // Do not overwrite; user takes responsibility to forward to us.
4590       return;
4591     } else if (UseSignalChaining) {
4592       // save the old handler in jvm
4593       save_preinstalled_handler(sig, oldAct);
4594       // libjsig also interposes the sigaction() call below and saves the
4595       // old sigaction on it own.
4596     } else {
4597       fatal("Encountered unexpected pre-existing sigaction handler "
4598             "%#lx for signal %d.", (long)oldhand, sig);
4599     }
4600   }
4601 
4602   struct sigaction sigAct;
4603   sigfillset(&(sigAct.sa_mask));
4604   sigAct.sa_handler = SIG_DFL;
4605   if (!set_installed) {
4606     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4607   } else {
4608     sigAct.sa_sigaction = signalHandler;
4609     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4610   }
4611   // Save flags, which are set by ours
4612   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4613   sigflags[sig] = sigAct.sa_flags;
4614 
4615   int ret = sigaction(sig, &sigAct, &oldAct);
4616   assert(ret == 0, "check");
4617 
4618   void* oldhand2  = oldAct.sa_sigaction
4619                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4620                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4621   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4622 }
4623 
4624 // install signal handlers for signals that HotSpot needs to
4625 // handle in order to support Java-level exception handling.
4626 
4627 void os::Linux::install_signal_handlers() {
4628   if (!signal_handlers_are_installed) {
4629     signal_handlers_are_installed = true;
4630 
4631     // signal-chaining
4632     typedef void (*signal_setting_t)();
4633     signal_setting_t begin_signal_setting = NULL;
4634     signal_setting_t end_signal_setting = NULL;
4635     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4636                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4637     if (begin_signal_setting != NULL) {
4638       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4639                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4640       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4641                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4642       libjsig_is_loaded = true;
4643       assert(UseSignalChaining, "should enable signal-chaining");
4644     }
4645     if (libjsig_is_loaded) {
4646       // Tell libjsig jvm is setting signal handlers
4647       (*begin_signal_setting)();
4648     }
4649 
4650     set_signal_handler(SIGSEGV, true);
4651     set_signal_handler(SIGPIPE, true);
4652     set_signal_handler(SIGBUS, true);
4653     set_signal_handler(SIGILL, true);
4654     set_signal_handler(SIGFPE, true);
4655 #if defined(PPC64)
4656     set_signal_handler(SIGTRAP, true);
4657 #endif
4658     set_signal_handler(SIGXFSZ, true);
4659 
4660     if (libjsig_is_loaded) {
4661       // Tell libjsig jvm finishes setting signal handlers
4662       (*end_signal_setting)();
4663     }
4664 
4665     // We don't activate signal checker if libjsig is in place, we trust ourselves
4666     // and if UserSignalHandler is installed all bets are off.
4667     // Log that signal checking is off only if -verbose:jni is specified.
4668     if (CheckJNICalls) {
4669       if (libjsig_is_loaded) {
4670         if (PrintJNIResolving) {
4671           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4672         }
4673         check_signals = false;
4674       }
4675       if (AllowUserSignalHandlers) {
4676         if (PrintJNIResolving) {
4677           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4678         }
4679         check_signals = false;
4680       }
4681     }
4682   }
4683 }
4684 
4685 // This is the fastest way to get thread cpu time on Linux.
4686 // Returns cpu time (user+sys) for any thread, not only for current.
4687 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4688 // It might work on 2.6.10+ with a special kernel/glibc patch.
4689 // For reference, please, see IEEE Std 1003.1-2004:
4690 //   http://www.unix.org/single_unix_specification
4691 
4692 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4693   struct timespec tp;
4694   int rc = os::Linux::clock_gettime(clockid, &tp);
4695   assert(rc == 0, "clock_gettime is expected to return 0 code");
4696 
4697   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4698 }
4699 
4700 void os::Linux::initialize_os_info() {
4701   assert(_os_version == 0, "OS info already initialized");
4702 
4703   struct utsname _uname;
4704 
4705   uint32_t major;
4706   uint32_t minor;
4707   uint32_t fix;
4708 
4709   int rc;
4710 
4711   // Kernel version is unknown if
4712   // verification below fails.
4713   _os_version = 0x01000000;
4714 
4715   rc = uname(&_uname);
4716   if (rc != -1) {
4717 
4718     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4719     if (rc == 3) {
4720 
4721       if (major < 256 && minor < 256 && fix < 256) {
4722         // Kernel version format is as expected,
4723         // set it overriding unknown state.
4724         _os_version = (major << 16) |
4725                       (minor << 8 ) |
4726                       (fix   << 0 ) ;
4727       }
4728     }
4729   }
4730 }
4731 
4732 uint32_t os::Linux::os_version() {
4733   assert(_os_version != 0, "not initialized");
4734   return _os_version & 0x00FFFFFF;
4735 }
4736 
4737 bool os::Linux::os_version_is_known() {
4738   assert(_os_version != 0, "not initialized");
4739   return _os_version & 0x01000000 ? false : true;
4740 }
4741 
4742 /////
4743 // glibc on Linux platform uses non-documented flag
4744 // to indicate, that some special sort of signal
4745 // trampoline is used.
4746 // We will never set this flag, and we should
4747 // ignore this flag in our diagnostic
4748 #ifdef SIGNIFICANT_SIGNAL_MASK
4749   #undef SIGNIFICANT_SIGNAL_MASK
4750 #endif
4751 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4752 
4753 static const char* get_signal_handler_name(address handler,
4754                                            char* buf, int buflen) {
4755   int offset = 0;
4756   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4757   if (found) {
4758     // skip directory names
4759     const char *p1, *p2;
4760     p1 = buf;
4761     size_t len = strlen(os::file_separator());
4762     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4763     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4764   } else {
4765     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4766   }
4767   return buf;
4768 }
4769 
4770 static void print_signal_handler(outputStream* st, int sig,
4771                                  char* buf, size_t buflen) {
4772   struct sigaction sa;
4773 
4774   sigaction(sig, NULL, &sa);
4775 
4776   // See comment for SIGNIFICANT_SIGNAL_MASK define
4777   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4778 
4779   st->print("%s: ", os::exception_name(sig, buf, buflen));
4780 
4781   address handler = (sa.sa_flags & SA_SIGINFO)
4782     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4783     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4784 
4785   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4786     st->print("SIG_DFL");
4787   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4788     st->print("SIG_IGN");
4789   } else {
4790     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4791   }
4792 
4793   st->print(", sa_mask[0]=");
4794   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4795 
4796   address rh = VMError::get_resetted_sighandler(sig);
4797   // May be, handler was resetted by VMError?
4798   if (rh != NULL) {
4799     handler = rh;
4800     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4801   }
4802 
4803   st->print(", sa_flags=");
4804   os::Posix::print_sa_flags(st, sa.sa_flags);
4805 
4806   // Check: is it our handler?
4807   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4808       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4809     // It is our signal handler
4810     // check for flags, reset system-used one!
4811     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4812       st->print(
4813                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4814                 os::Linux::get_our_sigflags(sig));
4815     }
4816   }
4817   st->cr();
4818 }
4819 
4820 
4821 #define DO_SIGNAL_CHECK(sig)                      \
4822   do {                                            \
4823     if (!sigismember(&check_signal_done, sig)) {  \
4824       os::Linux::check_signal_handler(sig);       \
4825     }                                             \
4826   } while (0)
4827 
4828 // This method is a periodic task to check for misbehaving JNI applications
4829 // under CheckJNI, we can add any periodic checks here
4830 
4831 void os::run_periodic_checks() {
4832   if (check_signals == false) return;
4833 
4834   // SEGV and BUS if overridden could potentially prevent
4835   // generation of hs*.log in the event of a crash, debugging
4836   // such a case can be very challenging, so we absolutely
4837   // check the following for a good measure:
4838   DO_SIGNAL_CHECK(SIGSEGV);
4839   DO_SIGNAL_CHECK(SIGILL);
4840   DO_SIGNAL_CHECK(SIGFPE);
4841   DO_SIGNAL_CHECK(SIGBUS);
4842   DO_SIGNAL_CHECK(SIGPIPE);
4843   DO_SIGNAL_CHECK(SIGXFSZ);
4844 #if defined(PPC64)
4845   DO_SIGNAL_CHECK(SIGTRAP);
4846 #endif
4847 
4848   // ReduceSignalUsage allows the user to override these handlers
4849   // see comments at the very top and jvm_md.h
4850   if (!ReduceSignalUsage) {
4851     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4852     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4853     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4854     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4855   }
4856 
4857   DO_SIGNAL_CHECK(SR_signum);
4858 }
4859 
4860 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4861 
4862 static os_sigaction_t os_sigaction = NULL;
4863 
4864 void os::Linux::check_signal_handler(int sig) {
4865   char buf[O_BUFLEN];
4866   address jvmHandler = NULL;
4867 
4868 
4869   struct sigaction act;
4870   if (os_sigaction == NULL) {
4871     // only trust the default sigaction, in case it has been interposed
4872     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4873     if (os_sigaction == NULL) return;
4874   }
4875 
4876   os_sigaction(sig, (struct sigaction*)NULL, &act);
4877 
4878 
4879   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4880 
4881   address thisHandler = (act.sa_flags & SA_SIGINFO)
4882     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4883     : CAST_FROM_FN_PTR(address, act.sa_handler);
4884 
4885 
4886   switch (sig) {
4887   case SIGSEGV:
4888   case SIGBUS:
4889   case SIGFPE:
4890   case SIGPIPE:
4891   case SIGILL:
4892   case SIGXFSZ:
4893     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4894     break;
4895 
4896   case SHUTDOWN1_SIGNAL:
4897   case SHUTDOWN2_SIGNAL:
4898   case SHUTDOWN3_SIGNAL:
4899   case BREAK_SIGNAL:
4900     jvmHandler = (address)user_handler();
4901     break;
4902 
4903   default:
4904     if (sig == SR_signum) {
4905       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4906     } else {
4907       return;
4908     }
4909     break;
4910   }
4911 
4912   if (thisHandler != jvmHandler) {
4913     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4914     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4915     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4916     // No need to check this sig any longer
4917     sigaddset(&check_signal_done, sig);
4918     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4919     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4920       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4921                     exception_name(sig, buf, O_BUFLEN));
4922     }
4923   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4924     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4925     tty->print("expected:");
4926     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4927     tty->cr();
4928     tty->print("  found:");
4929     os::Posix::print_sa_flags(tty, act.sa_flags);
4930     tty->cr();
4931     // No need to check this sig any longer
4932     sigaddset(&check_signal_done, sig);
4933   }
4934 
4935   // Dump all the signal
4936   if (sigismember(&check_signal_done, sig)) {
4937     print_signal_handlers(tty, buf, O_BUFLEN);
4938   }
4939 }
4940 
4941 extern void report_error(char* file_name, int line_no, char* title,
4942                          char* format, ...);
4943 
4944 // this is called _before_ most of the global arguments have been parsed
4945 void os::init(void) {
4946   char dummy;   // used to get a guess on initial stack address
4947 
4948   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4949 
4950   init_random(1234567);
4951 
4952   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4953   if (Linux::page_size() == -1) {
4954     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4955           os::strerror(errno));
4956   }
4957   init_page_sizes((size_t) Linux::page_size());
4958 
4959   Linux::initialize_system_info();
4960 
4961   Linux::initialize_os_info();
4962 
4963   // _main_thread points to the thread that created/loaded the JVM.
4964   Linux::_main_thread = pthread_self();
4965 
4966   Linux::clock_init();
4967   initial_time_count = javaTimeNanos();
4968 
4969   // retrieve entry point for pthread_setname_np
4970   Linux::_pthread_setname_np =
4971     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4972 
4973   os::Posix::init();
4974 }
4975 
4976 // To install functions for atexit system call
4977 extern "C" {
4978   static void perfMemory_exit_helper() {
4979     perfMemory_exit();
4980   }
4981 }
4982 
4983 void os::pd_init_container_support() {
4984   OSContainer::init();
4985 }
4986 
4987 // this is called _after_ the global arguments have been parsed
4988 jint os::init_2(void) {
4989 
4990   os::Posix::init_2();
4991 
4992   Linux::fast_thread_clock_init();
4993 
4994   // initialize suspend/resume support - must do this before signal_sets_init()
4995   if (SR_initialize() != 0) {
4996     perror("SR_initialize failed");
4997     return JNI_ERR;
4998   }
4999 
5000   Linux::signal_sets_init();
5001   Linux::install_signal_handlers();
5002   // Initialize data for jdk.internal.misc.Signal
5003   if (!ReduceSignalUsage) {
5004     jdk_misc_signal_init();
5005   }
5006 
5007   // Check and sets minimum stack sizes against command line options
5008   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
5009     return JNI_ERR;
5010   }
5011 
5012   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
5013   if (!suppress_primordial_thread_resolution) {
5014     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5015   }
5016 
5017 #if defined(IA32)
5018   workaround_expand_exec_shield_cs_limit();
5019 #endif
5020 
5021   Linux::libpthread_init();
5022   Linux::sched_getcpu_init();
5023   log_info(os)("HotSpot is running with %s, %s",
5024                Linux::glibc_version(), Linux::libpthread_version());
5025 
5026   if (UseNUMA) {
5027     if (!Linux::libnuma_init()) {
5028       UseNUMA = false;
5029     } else {
5030       if ((Linux::numa_max_node() < 1)) {
5031         // There's only one node(they start from 0), disable NUMA.
5032         UseNUMA = false;
5033       }
5034     }
5035 
5036     if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5037       // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5038       // we can make the adaptive lgrp chunk resizing work. If the user specified both
5039       // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5040       // and disable adaptive resizing.
5041       if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5042         warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5043                 "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5044         UseAdaptiveSizePolicy = false;
5045         UseAdaptiveNUMAChunkSizing = false;
5046       }
5047     }
5048 
5049     if (!UseNUMA && ForceNUMA) {
5050       UseNUMA = true;
5051     }
5052   }
5053 
5054   if (MaxFDLimit) {
5055     // set the number of file descriptors to max. print out error
5056     // if getrlimit/setrlimit fails but continue regardless.
5057     struct rlimit nbr_files;
5058     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5059     if (status != 0) {
5060       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5061     } else {
5062       nbr_files.rlim_cur = nbr_files.rlim_max;
5063       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5064       if (status != 0) {
5065         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5066       }
5067     }
5068   }
5069 
5070   // Initialize lock used to serialize thread creation (see os::create_thread)
5071   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5072 
5073   // at-exit methods are called in the reverse order of their registration.
5074   // atexit functions are called on return from main or as a result of a
5075   // call to exit(3C). There can be only 32 of these functions registered
5076   // and atexit() does not set errno.
5077 
5078   if (PerfAllowAtExitRegistration) {
5079     // only register atexit functions if PerfAllowAtExitRegistration is set.
5080     // atexit functions can be delayed until process exit time, which
5081     // can be problematic for embedded VM situations. Embedded VMs should
5082     // call DestroyJavaVM() to assure that VM resources are released.
5083 
5084     // note: perfMemory_exit_helper atexit function may be removed in
5085     // the future if the appropriate cleanup code can be added to the
5086     // VM_Exit VMOperation's doit method.
5087     if (atexit(perfMemory_exit_helper) != 0) {
5088       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5089     }
5090   }
5091 
5092   // initialize thread priority policy
5093   prio_init();
5094 
5095   if (!FLAG_IS_DEFAULT(AllocateHeapAt)) {
5096     set_coredump_filter(false /*largepages*/, true /*dax_shared*/);
5097   }
5098   return JNI_OK;
5099 }
5100 
5101 // Mark the polling page as unreadable
5102 void os::make_polling_page_unreadable(void) {
5103   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5104     fatal("Could not disable polling page");
5105   }
5106 }
5107 
5108 // Mark the polling page as readable
5109 void os::make_polling_page_readable(void) {
5110   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5111     fatal("Could not enable polling page");
5112   }
5113 }
5114 
5115 // older glibc versions don't have this macro (which expands to
5116 // an optimized bit-counting function) so we have to roll our own
5117 #ifndef CPU_COUNT
5118 
5119 static int _cpu_count(const cpu_set_t* cpus) {
5120   int count = 0;
5121   // only look up to the number of configured processors
5122   for (int i = 0; i < os::processor_count(); i++) {
5123     if (CPU_ISSET(i, cpus)) {
5124       count++;
5125     }
5126   }
5127   return count;
5128 }
5129 
5130 #define CPU_COUNT(cpus) _cpu_count(cpus)
5131 
5132 #endif // CPU_COUNT
5133 
5134 // Get the current number of available processors for this process.
5135 // This value can change at any time during a process's lifetime.
5136 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5137 // If it appears there may be more than 1024 processors then we do a
5138 // dynamic check - see 6515172 for details.
5139 // If anything goes wrong we fallback to returning the number of online
5140 // processors - which can be greater than the number available to the process.
5141 int os::Linux::active_processor_count() {
5142   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5143   cpu_set_t* cpus_p = &cpus;
5144   int cpus_size = sizeof(cpu_set_t);
5145 
5146   int configured_cpus = os::processor_count();  // upper bound on available cpus
5147   int cpu_count = 0;
5148 
5149 // old build platforms may not support dynamic cpu sets
5150 #ifdef CPU_ALLOC
5151 
5152   // To enable easy testing of the dynamic path on different platforms we
5153   // introduce a diagnostic flag: UseCpuAllocPath
5154   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5155     // kernel may use a mask bigger than cpu_set_t
5156     log_trace(os)("active_processor_count: using dynamic path %s"
5157                   "- configured processors: %d",
5158                   UseCpuAllocPath ? "(forced) " : "",
5159                   configured_cpus);
5160     cpus_p = CPU_ALLOC(configured_cpus);
5161     if (cpus_p != NULL) {
5162       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5163       // zero it just to be safe
5164       CPU_ZERO_S(cpus_size, cpus_p);
5165     }
5166     else {
5167        // failed to allocate so fallback to online cpus
5168        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5169        log_trace(os)("active_processor_count: "
5170                      "CPU_ALLOC failed (%s) - using "
5171                      "online processor count: %d",
5172                      os::strerror(errno), online_cpus);
5173        return online_cpus;
5174     }
5175   }
5176   else {
5177     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5178                   configured_cpus);
5179   }
5180 #else // CPU_ALLOC
5181 // these stubs won't be executed
5182 #define CPU_COUNT_S(size, cpus) -1
5183 #define CPU_FREE(cpus)
5184 
5185   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5186                 configured_cpus);
5187 #endif // CPU_ALLOC
5188 
5189   // pid 0 means the current thread - which we have to assume represents the process
5190   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5191     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5192       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5193     }
5194     else {
5195       cpu_count = CPU_COUNT(cpus_p);
5196     }
5197     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5198   }
5199   else {
5200     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5201     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5202             "which may exceed available processors", os::strerror(errno), cpu_count);
5203   }
5204 
5205   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5206     CPU_FREE(cpus_p);
5207   }
5208 
5209   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5210   return cpu_count;
5211 }
5212 
5213 // Determine the active processor count from one of
5214 // three different sources:
5215 //
5216 // 1. User option -XX:ActiveProcessorCount
5217 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5218 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5219 //
5220 // Option 1, if specified, will always override.
5221 // If the cgroup subsystem is active and configured, we
5222 // will return the min of the cgroup and option 2 results.
5223 // This is required since tools, such as numactl, that
5224 // alter cpu affinity do not update cgroup subsystem
5225 // cpuset configuration files.
5226 int os::active_processor_count() {
5227   // User has overridden the number of active processors
5228   if (ActiveProcessorCount > 0) {
5229     log_trace(os)("active_processor_count: "
5230                   "active processor count set by user : %d",
5231                   ActiveProcessorCount);
5232     return ActiveProcessorCount;
5233   }
5234 
5235   int active_cpus;
5236   if (OSContainer::is_containerized()) {
5237     active_cpus = OSContainer::active_processor_count();
5238     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5239                    active_cpus);
5240   } else {
5241     active_cpus = os::Linux::active_processor_count();
5242   }
5243 
5244   return active_cpus;
5245 }
5246 
5247 uint os::processor_id() {
5248   const int id = Linux::sched_getcpu();
5249   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5250   return (uint)id;
5251 }
5252 
5253 void os::set_native_thread_name(const char *name) {
5254   if (Linux::_pthread_setname_np) {
5255     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5256     snprintf(buf, sizeof(buf), "%s", name);
5257     buf[sizeof(buf) - 1] = '\0';
5258     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5259     // ERANGE should not happen; all other errors should just be ignored.
5260     assert(rc != ERANGE, "pthread_setname_np failed");
5261   }
5262 }
5263 
5264 bool os::distribute_processes(uint length, uint* distribution) {
5265   // Not yet implemented.
5266   return false;
5267 }
5268 
5269 bool os::bind_to_processor(uint processor_id) {
5270   // Not yet implemented.
5271   return false;
5272 }
5273 
5274 ///
5275 
5276 void os::SuspendedThreadTask::internal_do_task() {
5277   if (do_suspend(_thread->osthread())) {
5278     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5279     do_task(context);
5280     do_resume(_thread->osthread());
5281   }
5282 }
5283 
5284 ////////////////////////////////////////////////////////////////////////////////
5285 // debug support
5286 
5287 bool os::find(address addr, outputStream* st) {
5288   Dl_info dlinfo;
5289   memset(&dlinfo, 0, sizeof(dlinfo));
5290   if (dladdr(addr, &dlinfo) != 0) {
5291     st->print(PTR_FORMAT ": ", p2i(addr));
5292     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5293       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5294                 p2i(addr) - p2i(dlinfo.dli_saddr));
5295     } else if (dlinfo.dli_fbase != NULL) {
5296       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5297     } else {
5298       st->print("<absolute address>");
5299     }
5300     if (dlinfo.dli_fname != NULL) {
5301       st->print(" in %s", dlinfo.dli_fname);
5302     }
5303     if (dlinfo.dli_fbase != NULL) {
5304       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5305     }
5306     st->cr();
5307 
5308     if (Verbose) {
5309       // decode some bytes around the PC
5310       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5311       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5312       address       lowest = (address) dlinfo.dli_sname;
5313       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5314       if (begin < lowest)  begin = lowest;
5315       Dl_info dlinfo2;
5316       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5317           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5318         end = (address) dlinfo2.dli_saddr;
5319       }
5320       Disassembler::decode(begin, end, st);
5321     }
5322     return true;
5323   }
5324   return false;
5325 }
5326 
5327 ////////////////////////////////////////////////////////////////////////////////
5328 // misc
5329 
5330 // This does not do anything on Linux. This is basically a hook for being
5331 // able to use structured exception handling (thread-local exception filters)
5332 // on, e.g., Win32.
5333 void
5334 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5335                          JavaCallArguments* args, Thread* thread) {
5336   f(value, method, args, thread);
5337 }
5338 
5339 void os::print_statistics() {
5340 }
5341 
5342 bool os::message_box(const char* title, const char* message) {
5343   int i;
5344   fdStream err(defaultStream::error_fd());
5345   for (i = 0; i < 78; i++) err.print_raw("=");
5346   err.cr();
5347   err.print_raw_cr(title);
5348   for (i = 0; i < 78; i++) err.print_raw("-");
5349   err.cr();
5350   err.print_raw_cr(message);
5351   for (i = 0; i < 78; i++) err.print_raw("=");
5352   err.cr();
5353 
5354   char buf[16];
5355   // Prevent process from exiting upon "read error" without consuming all CPU
5356   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5357 
5358   return buf[0] == 'y' || buf[0] == 'Y';
5359 }
5360 
5361 int os::stat(const char *path, struct stat *sbuf) {
5362   char pathbuf[MAX_PATH];
5363   if (strlen(path) > MAX_PATH - 1) {
5364     errno = ENAMETOOLONG;
5365     return -1;
5366   }
5367   os::native_path(strcpy(pathbuf, path));
5368   return ::stat(pathbuf, sbuf);
5369 }
5370 
5371 // Is a (classpath) directory empty?
5372 bool os::dir_is_empty(const char* path) {
5373   DIR *dir = NULL;
5374   struct dirent *ptr;
5375 
5376   dir = opendir(path);
5377   if (dir == NULL) return true;
5378 
5379   // Scan the directory
5380   bool result = true;
5381   char buf[sizeof(struct dirent) + MAX_PATH];
5382   while (result && (ptr = ::readdir(dir)) != NULL) {
5383     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5384       result = false;
5385     }
5386   }
5387   closedir(dir);
5388   return result;
5389 }
5390 
5391 // This code originates from JDK's sysOpen and open64_w
5392 // from src/solaris/hpi/src/system_md.c
5393 
5394 int os::open(const char *path, int oflag, int mode) {
5395   if (strlen(path) > MAX_PATH - 1) {
5396     errno = ENAMETOOLONG;
5397     return -1;
5398   }
5399 
5400   // All file descriptors that are opened in the Java process and not
5401   // specifically destined for a subprocess should have the close-on-exec
5402   // flag set.  If we don't set it, then careless 3rd party native code
5403   // might fork and exec without closing all appropriate file descriptors
5404   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5405   // turn might:
5406   //
5407   // - cause end-of-file to fail to be detected on some file
5408   //   descriptors, resulting in mysterious hangs, or
5409   //
5410   // - might cause an fopen in the subprocess to fail on a system
5411   //   suffering from bug 1085341.
5412   //
5413   // (Yes, the default setting of the close-on-exec flag is a Unix
5414   // design flaw)
5415   //
5416   // See:
5417   // 1085341: 32-bit stdio routines should support file descriptors >255
5418   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5419   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5420   //
5421   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5422   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5423   // because it saves a system call and removes a small window where the flag
5424   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5425   // and we fall back to using FD_CLOEXEC (see below).
5426 #ifdef O_CLOEXEC
5427   oflag |= O_CLOEXEC;
5428 #endif
5429 
5430   int fd = ::open64(path, oflag, mode);
5431   if (fd == -1) return -1;
5432 
5433   //If the open succeeded, the file might still be a directory
5434   {
5435     struct stat64 buf64;
5436     int ret = ::fstat64(fd, &buf64);
5437     int st_mode = buf64.st_mode;
5438 
5439     if (ret != -1) {
5440       if ((st_mode & S_IFMT) == S_IFDIR) {
5441         errno = EISDIR;
5442         ::close(fd);
5443         return -1;
5444       }
5445     } else {
5446       ::close(fd);
5447       return -1;
5448     }
5449   }
5450 
5451 #ifdef FD_CLOEXEC
5452   // Validate that the use of the O_CLOEXEC flag on open above worked.
5453   // With recent kernels, we will perform this check exactly once.
5454   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5455   if (!O_CLOEXEC_is_known_to_work) {
5456     int flags = ::fcntl(fd, F_GETFD);
5457     if (flags != -1) {
5458       if ((flags & FD_CLOEXEC) != 0)
5459         O_CLOEXEC_is_known_to_work = 1;
5460       else
5461         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5462     }
5463   }
5464 #endif
5465 
5466   return fd;
5467 }
5468 
5469 
5470 // create binary file, rewriting existing file if required
5471 int os::create_binary_file(const char* path, bool rewrite_existing) {
5472   int oflags = O_WRONLY | O_CREAT;
5473   if (!rewrite_existing) {
5474     oflags |= O_EXCL;
5475   }
5476   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5477 }
5478 
5479 // return current position of file pointer
5480 jlong os::current_file_offset(int fd) {
5481   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5482 }
5483 
5484 // move file pointer to the specified offset
5485 jlong os::seek_to_file_offset(int fd, jlong offset) {
5486   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5487 }
5488 
5489 // This code originates from JDK's sysAvailable
5490 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5491 
5492 int os::available(int fd, jlong *bytes) {
5493   jlong cur, end;
5494   int mode;
5495   struct stat64 buf64;
5496 
5497   if (::fstat64(fd, &buf64) >= 0) {
5498     mode = buf64.st_mode;
5499     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5500       int n;
5501       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5502         *bytes = n;
5503         return 1;
5504       }
5505     }
5506   }
5507   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5508     return 0;
5509   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5510     return 0;
5511   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5512     return 0;
5513   }
5514   *bytes = end - cur;
5515   return 1;
5516 }
5517 
5518 // Map a block of memory.
5519 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5520                         char *addr, size_t bytes, bool read_only,
5521                         bool allow_exec) {
5522   int prot;
5523   int flags = MAP_PRIVATE;
5524 
5525   if (read_only) {
5526     prot = PROT_READ;
5527   } else {
5528     prot = PROT_READ | PROT_WRITE;
5529   }
5530 
5531   if (allow_exec) {
5532     prot |= PROT_EXEC;
5533   }
5534 
5535   if (addr != NULL) {
5536     flags |= MAP_FIXED;
5537   }
5538 
5539   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5540                                      fd, file_offset);
5541   if (mapped_address == MAP_FAILED) {
5542     return NULL;
5543   }
5544   return mapped_address;
5545 }
5546 
5547 
5548 // Remap a block of memory.
5549 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5550                           char *addr, size_t bytes, bool read_only,
5551                           bool allow_exec) {
5552   // same as map_memory() on this OS
5553   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5554                         allow_exec);
5555 }
5556 
5557 
5558 // Unmap a block of memory.
5559 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5560   return munmap(addr, bytes) == 0;
5561 }
5562 
5563 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5564 
5565 static clockid_t thread_cpu_clockid(Thread* thread) {
5566   pthread_t tid = thread->osthread()->pthread_id();
5567   clockid_t clockid;
5568 
5569   // Get thread clockid
5570   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5571   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5572   return clockid;
5573 }
5574 
5575 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5576 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5577 // of a thread.
5578 //
5579 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5580 // the fast estimate available on the platform.
5581 
5582 jlong os::current_thread_cpu_time() {
5583   if (os::Linux::supports_fast_thread_cpu_time()) {
5584     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5585   } else {
5586     // return user + sys since the cost is the same
5587     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5588   }
5589 }
5590 
5591 jlong os::thread_cpu_time(Thread* thread) {
5592   // consistent with what current_thread_cpu_time() returns
5593   if (os::Linux::supports_fast_thread_cpu_time()) {
5594     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5595   } else {
5596     return slow_thread_cpu_time(thread, true /* user + sys */);
5597   }
5598 }
5599 
5600 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5601   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5602     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5603   } else {
5604     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5605   }
5606 }
5607 
5608 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5609   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5610     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5611   } else {
5612     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5613   }
5614 }
5615 
5616 //  -1 on error.
5617 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5618   pid_t  tid = thread->osthread()->thread_id();
5619   char *s;
5620   char stat[2048];
5621   int statlen;
5622   char proc_name[64];
5623   int count;
5624   long sys_time, user_time;
5625   char cdummy;
5626   int idummy;
5627   long ldummy;
5628   FILE *fp;
5629 
5630   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5631   fp = fopen(proc_name, "r");
5632   if (fp == NULL) return -1;
5633   statlen = fread(stat, 1, 2047, fp);
5634   stat[statlen] = '\0';
5635   fclose(fp);
5636 
5637   // Skip pid and the command string. Note that we could be dealing with
5638   // weird command names, e.g. user could decide to rename java launcher
5639   // to "java 1.4.2 :)", then the stat file would look like
5640   //                1234 (java 1.4.2 :)) R ... ...
5641   // We don't really need to know the command string, just find the last
5642   // occurrence of ")" and then start parsing from there. See bug 4726580.
5643   s = strrchr(stat, ')');
5644   if (s == NULL) return -1;
5645 
5646   // Skip blank chars
5647   do { s++; } while (s && isspace(*s));
5648 
5649   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5650                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5651                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5652                  &user_time, &sys_time);
5653   if (count != 13) return -1;
5654   if (user_sys_cpu_time) {
5655     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5656   } else {
5657     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5658   }
5659 }
5660 
5661 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5662   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5663   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5664   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5665   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5666 }
5667 
5668 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5669   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5670   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5671   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5672   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5673 }
5674 
5675 bool os::is_thread_cpu_time_supported() {
5676   return true;
5677 }
5678 
5679 // System loadavg support.  Returns -1 if load average cannot be obtained.
5680 // Linux doesn't yet have a (official) notion of processor sets,
5681 // so just return the system wide load average.
5682 int os::loadavg(double loadavg[], int nelem) {
5683   return ::getloadavg(loadavg, nelem);
5684 }
5685 
5686 void os::pause() {
5687   char filename[MAX_PATH];
5688   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5689     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5690   } else {
5691     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5692   }
5693 
5694   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5695   if (fd != -1) {
5696     struct stat buf;
5697     ::close(fd);
5698     while (::stat(filename, &buf) == 0) {
5699       (void)::poll(NULL, 0, 100);
5700     }
5701   } else {
5702     jio_fprintf(stderr,
5703                 "Could not open pause file '%s', continuing immediately.\n", filename);
5704   }
5705 }
5706 
5707 extern char** environ;
5708 
5709 // Run the specified command in a separate process. Return its exit value,
5710 // or -1 on failure (e.g. can't fork a new process).
5711 // Unlike system(), this function can be called from signal handler. It
5712 // doesn't block SIGINT et al.
5713 int os::fork_and_exec(char* cmd) {
5714   const char * argv[4] = {"sh", "-c", cmd, NULL};
5715 
5716   pid_t pid = fork();
5717 
5718   if (pid < 0) {
5719     // fork failed
5720     return -1;
5721 
5722   } else if (pid == 0) {
5723     // child process
5724 
5725     execve("/bin/sh", (char* const*)argv, environ);
5726 
5727     // execve failed
5728     _exit(-1);
5729 
5730   } else  {
5731     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5732     // care about the actual exit code, for now.
5733 
5734     int status;
5735 
5736     // Wait for the child process to exit.  This returns immediately if
5737     // the child has already exited. */
5738     while (waitpid(pid, &status, 0) < 0) {
5739       switch (errno) {
5740       case ECHILD: return 0;
5741       case EINTR: break;
5742       default: return -1;
5743       }
5744     }
5745 
5746     if (WIFEXITED(status)) {
5747       // The child exited normally; get its exit code.
5748       return WEXITSTATUS(status);
5749     } else if (WIFSIGNALED(status)) {
5750       // The child exited because of a signal
5751       // The best value to return is 0x80 + signal number,
5752       // because that is what all Unix shells do, and because
5753       // it allows callers to distinguish between process exit and
5754       // process death by signal.
5755       return 0x80 + WTERMSIG(status);
5756     } else {
5757       // Unknown exit code; pass it through
5758       return status;
5759     }
5760   }
5761 }
5762 
5763 // Get the default path to the core file
5764 // Returns the length of the string
5765 int os::get_core_path(char* buffer, size_t bufferSize) {
5766   /*
5767    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5768    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5769    */
5770   const int core_pattern_len = 129;
5771   char core_pattern[core_pattern_len] = {0};
5772 
5773   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5774   if (core_pattern_file == -1) {
5775     return -1;
5776   }
5777 
5778   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5779   ::close(core_pattern_file);
5780   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5781     return -1;
5782   }
5783   if (core_pattern[ret-1] == '\n') {
5784     core_pattern[ret-1] = '\0';
5785   } else {
5786     core_pattern[ret] = '\0';
5787   }
5788 
5789   char *pid_pos = strstr(core_pattern, "%p");
5790   int written;
5791 
5792   if (core_pattern[0] == '/') {
5793     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5794   } else {
5795     char cwd[PATH_MAX];
5796 
5797     const char* p = get_current_directory(cwd, PATH_MAX);
5798     if (p == NULL) {
5799       return -1;
5800     }
5801 
5802     if (core_pattern[0] == '|') {
5803       written = jio_snprintf(buffer, bufferSize,
5804                              "\"%s\" (or dumping to %s/core.%d)",
5805                              &core_pattern[1], p, current_process_id());
5806     } else {
5807       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5808     }
5809   }
5810 
5811   if (written < 0) {
5812     return -1;
5813   }
5814 
5815   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5816     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5817 
5818     if (core_uses_pid_file != -1) {
5819       char core_uses_pid = 0;
5820       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5821       ::close(core_uses_pid_file);
5822 
5823       if (core_uses_pid == '1') {
5824         jio_snprintf(buffer + written, bufferSize - written,
5825                                           ".%d", current_process_id());
5826       }
5827     }
5828   }
5829 
5830   return strlen(buffer);
5831 }
5832 
5833 bool os::start_debugging(char *buf, int buflen) {
5834   int len = (int)strlen(buf);
5835   char *p = &buf[len];
5836 
5837   jio_snprintf(p, buflen-len,
5838                "\n\n"
5839                "Do you want to debug the problem?\n\n"
5840                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5841                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5842                "Otherwise, press RETURN to abort...",
5843                os::current_process_id(), os::current_process_id(),
5844                os::current_thread_id(), os::current_thread_id());
5845 
5846   bool yes = os::message_box("Unexpected Error", buf);
5847 
5848   if (yes) {
5849     // yes, user asked VM to launch debugger
5850     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5851                  os::current_process_id(), os::current_process_id());
5852 
5853     os::fork_and_exec(buf);
5854     yes = false;
5855   }
5856   return yes;
5857 }
5858 
5859 
5860 // Java/Compiler thread:
5861 //
5862 //   Low memory addresses
5863 // P0 +------------------------+
5864 //    |                        |\  Java thread created by VM does not have glibc
5865 //    |    glibc guard page    | - guard page, attached Java thread usually has
5866 //    |                        |/  1 glibc guard page.
5867 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5868 //    |                        |\
5869 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5870 //    |                        |/
5871 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5872 //    |                        |\
5873 //    |      Normal Stack      | -
5874 //    |                        |/
5875 // P2 +------------------------+ Thread::stack_base()
5876 //
5877 // Non-Java thread:
5878 //
5879 //   Low memory addresses
5880 // P0 +------------------------+
5881 //    |                        |\
5882 //    |  glibc guard page      | - usually 1 page
5883 //    |                        |/
5884 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5885 //    |                        |\
5886 //    |      Normal Stack      | -
5887 //    |                        |/
5888 // P2 +------------------------+ Thread::stack_base()
5889 //
5890 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5891 //    returned from pthread_attr_getstack().
5892 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5893 //    of the stack size given in pthread_attr. We work around this for
5894 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5895 //
5896 #ifndef ZERO
5897 static void current_stack_region(address * bottom, size_t * size) {
5898   if (os::is_primordial_thread()) {
5899     // primordial thread needs special handling because pthread_getattr_np()
5900     // may return bogus value.
5901     *bottom = os::Linux::initial_thread_stack_bottom();
5902     *size   = os::Linux::initial_thread_stack_size();
5903   } else {
5904     pthread_attr_t attr;
5905 
5906     int rslt = pthread_getattr_np(pthread_self(), &attr);
5907 
5908     // JVM needs to know exact stack location, abort if it fails
5909     if (rslt != 0) {
5910       if (rslt == ENOMEM) {
5911         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5912       } else {
5913         fatal("pthread_getattr_np failed with error = %d", rslt);
5914       }
5915     }
5916 
5917     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5918       fatal("Cannot locate current stack attributes!");
5919     }
5920 
5921     // Work around NPTL stack guard error.
5922     size_t guard_size = 0;
5923     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5924     if (rslt != 0) {
5925       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5926     }
5927     *bottom += guard_size;
5928     *size   -= guard_size;
5929 
5930     pthread_attr_destroy(&attr);
5931 
5932   }
5933   assert(os::current_stack_pointer() >= *bottom &&
5934          os::current_stack_pointer() < *bottom + *size, "just checking");
5935 }
5936 
5937 address os::current_stack_base() {
5938   address bottom;
5939   size_t size;
5940   current_stack_region(&bottom, &size);
5941   return (bottom + size);
5942 }
5943 
5944 size_t os::current_stack_size() {
5945   // This stack size includes the usable stack and HotSpot guard pages
5946   // (for the threads that have Hotspot guard pages).
5947   address bottom;
5948   size_t size;
5949   current_stack_region(&bottom, &size);
5950   return size;
5951 }
5952 #endif
5953 
5954 static inline struct timespec get_mtime(const char* filename) {
5955   struct stat st;
5956   int ret = os::stat(filename, &st);
5957   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5958   return st.st_mtim;
5959 }
5960 
5961 int os::compare_file_modified_times(const char* file1, const char* file2) {
5962   struct timespec filetime1 = get_mtime(file1);
5963   struct timespec filetime2 = get_mtime(file2);
5964   int diff = filetime1.tv_sec - filetime2.tv_sec;
5965   if (diff == 0) {
5966     return filetime1.tv_nsec - filetime2.tv_nsec;
5967   }
5968   return diff;
5969 }
5970 
5971 /////////////// Unit tests ///////////////
5972 
5973 #ifndef PRODUCT
5974 
5975 #define test_log(...)              \
5976   do {                             \
5977     if (VerboseInternalVMTests) {  \
5978       tty->print_cr(__VA_ARGS__);  \
5979       tty->flush();                \
5980     }                              \
5981   } while (false)
5982 
5983 class TestReserveMemorySpecial : AllStatic {
5984  public:
5985   static void small_page_write(void* addr, size_t size) {
5986     size_t page_size = os::vm_page_size();
5987 
5988     char* end = (char*)addr + size;
5989     for (char* p = (char*)addr; p < end; p += page_size) {
5990       *p = 1;
5991     }
5992   }
5993 
5994   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5995     if (!UseHugeTLBFS) {
5996       return;
5997     }
5998 
5999     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6000 
6001     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6002 
6003     if (addr != NULL) {
6004       small_page_write(addr, size);
6005 
6006       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6007     }
6008   }
6009 
6010   static void test_reserve_memory_special_huge_tlbfs_only() {
6011     if (!UseHugeTLBFS) {
6012       return;
6013     }
6014 
6015     size_t lp = os::large_page_size();
6016 
6017     for (size_t size = lp; size <= lp * 10; size += lp) {
6018       test_reserve_memory_special_huge_tlbfs_only(size);
6019     }
6020   }
6021 
6022   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6023     size_t lp = os::large_page_size();
6024     size_t ag = os::vm_allocation_granularity();
6025 
6026     // sizes to test
6027     const size_t sizes[] = {
6028       lp, lp + ag, lp + lp / 2, lp * 2,
6029       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6030       lp * 10, lp * 10 + lp / 2
6031     };
6032     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6033 
6034     // For each size/alignment combination, we test three scenarios:
6035     // 1) with req_addr == NULL
6036     // 2) with a non-null req_addr at which we expect to successfully allocate
6037     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6038     //    expect the allocation to either fail or to ignore req_addr
6039 
6040     // Pre-allocate two areas; they shall be as large as the largest allocation
6041     //  and aligned to the largest alignment we will be testing.
6042     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6043     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6044       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6045       -1, 0);
6046     assert(mapping1 != MAP_FAILED, "should work");
6047 
6048     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6049       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6050       -1, 0);
6051     assert(mapping2 != MAP_FAILED, "should work");
6052 
6053     // Unmap the first mapping, but leave the second mapping intact: the first
6054     // mapping will serve as a value for a "good" req_addr (case 2). The second
6055     // mapping, still intact, as "bad" req_addr (case 3).
6056     ::munmap(mapping1, mapping_size);
6057 
6058     // Case 1
6059     test_log("%s, req_addr NULL:", __FUNCTION__);
6060     test_log("size            align           result");
6061 
6062     for (int i = 0; i < num_sizes; i++) {
6063       const size_t size = sizes[i];
6064       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6065         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6066         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6067                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6068         if (p != NULL) {
6069           assert(is_aligned(p, alignment), "must be");
6070           small_page_write(p, size);
6071           os::Linux::release_memory_special_huge_tlbfs(p, size);
6072         }
6073       }
6074     }
6075 
6076     // Case 2
6077     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6078     test_log("size            align           req_addr         result");
6079 
6080     for (int i = 0; i < num_sizes; i++) {
6081       const size_t size = sizes[i];
6082       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6083         char* const req_addr = align_up(mapping1, alignment);
6084         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6085         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6086                  size, alignment, p2i(req_addr), p2i(p),
6087                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6088         if (p != NULL) {
6089           assert(p == req_addr, "must be");
6090           small_page_write(p, size);
6091           os::Linux::release_memory_special_huge_tlbfs(p, size);
6092         }
6093       }
6094     }
6095 
6096     // Case 3
6097     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6098     test_log("size            align           req_addr         result");
6099 
6100     for (int i = 0; i < num_sizes; i++) {
6101       const size_t size = sizes[i];
6102       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6103         char* const req_addr = align_up(mapping2, alignment);
6104         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6105         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6106                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6107         // as the area around req_addr contains already existing mappings, the API should always
6108         // return NULL (as per contract, it cannot return another address)
6109         assert(p == NULL, "must be");
6110       }
6111     }
6112 
6113     ::munmap(mapping2, mapping_size);
6114 
6115   }
6116 
6117   static void test_reserve_memory_special_huge_tlbfs() {
6118     if (!UseHugeTLBFS) {
6119       return;
6120     }
6121 
6122     test_reserve_memory_special_huge_tlbfs_only();
6123     test_reserve_memory_special_huge_tlbfs_mixed();
6124   }
6125 
6126   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6127     if (!UseSHM) {
6128       return;
6129     }
6130 
6131     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6132 
6133     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6134 
6135     if (addr != NULL) {
6136       assert(is_aligned(addr, alignment), "Check");
6137       assert(is_aligned(addr, os::large_page_size()), "Check");
6138 
6139       small_page_write(addr, size);
6140 
6141       os::Linux::release_memory_special_shm(addr, size);
6142     }
6143   }
6144 
6145   static void test_reserve_memory_special_shm() {
6146     size_t lp = os::large_page_size();
6147     size_t ag = os::vm_allocation_granularity();
6148 
6149     for (size_t size = ag; size < lp * 3; size += ag) {
6150       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6151         test_reserve_memory_special_shm(size, alignment);
6152       }
6153     }
6154   }
6155 
6156   static void test() {
6157     test_reserve_memory_special_huge_tlbfs();
6158     test_reserve_memory_special_shm();
6159   }
6160 };
6161 
6162 void TestReserveMemorySpecial_test() {
6163   TestReserveMemorySpecial::test();
6164 }
6165 
6166 #endif