1 /*
   2  * Copyright (c) 2016, 2020, Red Hat, Inc. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_SHENANDOAH_SHENANDOAHTASKQUEUE_HPP
  26 #define SHARE_GC_SHENANDOAH_SHENANDOAHTASKQUEUE_HPP
  27 
  28 #include "gc/shared/taskTerminator.hpp"
  29 #include "gc/shared/taskqueue.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "runtime/atomic.hpp"
  32 #include "runtime/mutex.hpp"
  33 #include "runtime/thread.hpp"
  34 
  35 template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
  36 class BufferedOverflowTaskQueue: public OverflowTaskQueue<E, F, N>
  37 {
  38 public:
  39   typedef OverflowTaskQueue<E, F, N> taskqueue_t;
  40 
  41   BufferedOverflowTaskQueue() : _buf_empty(true) {};
  42 
  43   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
  44 
  45   // Push task t into the queue. Returns true on success.
  46   inline bool push(E t);
  47 
  48   // Attempt to pop from the queue. Returns true on success.
  49   inline bool pop(E &t);
  50 
  51   inline void clear();
  52 
  53   inline bool is_empty()        const {
  54     return _buf_empty && taskqueue_t::is_empty();
  55   }
  56 
  57 private:
  58   bool _buf_empty;
  59   E _elem;
  60 };
  61 
  62 // ObjArrayChunkedTask
  63 //
  64 // Encodes both regular oops, and the array oops plus chunking data for parallel array processing.
  65 // The design goal is to make the regular oop ops very fast, because that would be the prevailing
  66 // case. On the other hand, it should not block parallel array processing from efficiently dividing
  67 // the array work.
  68 //
  69 // The idea is to steal the bits from the 64-bit oop to encode array data, if needed. For the
  70 // proper divide-and-conquer strategies, we want to encode the "blocking" data. It turns out, the
  71 // most efficient way to do this is to encode the array block as (chunk * 2^pow), where it is assumed
  72 // that the block has the size of 2^pow. This requires for pow to have only 5 bits (2^32) to encode
  73 // all possible arrays.
  74 //
  75 //    |---------oop---------|-pow-|--chunk---|
  76 //    0                    49     54        64
  77 //
  78 // By definition, chunk == 0 means "no chunk", i.e. chunking starts from 1.
  79 //
  80 // This encoding gives a few interesting benefits:
  81 //
  82 // a) Encoding/decoding regular oops is very simple, because the upper bits are zero in that task:
  83 //
  84 //    |---------oop---------|00000|0000000000| // no chunk data
  85 //
  86 //    This helps the most ubiquitous path. The initialization amounts to putting the oop into the word
  87 //    with zero padding. Testing for "chunkedness" is testing for zero with chunk mask.
  88 //
  89 // b) Splitting tasks for divide-and-conquer is possible. Suppose we have chunk <C, P> that covers
  90 // interval [ (C-1)*2^P; C*2^P ). We can then split it into two chunks:
  91 //      <2*C - 1, P-1>, that covers interval [ (2*C - 2)*2^(P-1); (2*C - 1)*2^(P-1) )
  92 //      <2*C, P-1>,     that covers interval [ (2*C - 1)*2^(P-1);       2*C*2^(P-1) )
  93 //
  94 //    Observe that the union of these two intervals is:
  95 //      [ (2*C - 2)*2^(P-1); 2*C*2^(P-1) )
  96 //
  97 //    ...which is the original interval:
  98 //      [ (C-1)*2^P; C*2^P )
  99 //
 100 // c) The divide-and-conquer strategy could even start with chunk <1, round-log2-len(arr)>, and split
 101 //    down in the parallel threads, which alleviates the upfront (serial) splitting costs.
 102 //
 103 // Encoding limitations caused by current bitscales mean:
 104 //    10 bits for chunk: max 1024 blocks per array
 105 //     5 bits for power: max 2^32 array
 106 //    49 bits for   oop: max 512 TB of addressable space
 107 //
 108 // Stealing bits from oop trims down the addressable space. Stealing too few bits for chunk ID limits
 109 // potential parallelism. Stealing too few bits for pow limits the maximum array size that can be handled.
 110 // In future, these might be rebalanced to favor one degree of freedom against another. For example,
 111 // if/when Arrays 2.0 bring 2^64-sized arrays, we might need to steal another bit for power. We could regain
 112 // some bits back if chunks are counted in ObjArrayMarkingStride units.
 113 //
 114 // There is also a fallback version that uses plain fields, when we don't have enough space to steal the
 115 // bits from the native pointer. It is useful to debug the optimized version.
 116 //
 117 
 118 #ifdef _MSC_VER
 119 #pragma warning(push)
 120 // warning C4522: multiple assignment operators specified
 121 #pragma warning( disable:4522 )
 122 #endif
 123 
 124 #ifdef _LP64
 125 #define SHENANDOAH_OPTIMIZED_OBJTASK 1
 126 #else
 127 #define SHENANDOAH_OPTIMIZED_OBJTASK 0
 128 #endif
 129 
 130 #if SHENANDOAH_OPTIMIZED_OBJTASK
 131 class ObjArrayChunkedTask
 132 {
 133 public:
 134   enum {
 135     chunk_bits   = 10,
 136     pow_bits     = 5,
 137     oop_bits     = sizeof(uintptr_t)*8 - chunk_bits - pow_bits
 138   };
 139   enum {
 140     oop_shift    = 0,
 141     pow_shift    = oop_shift + oop_bits,
 142     chunk_shift  = pow_shift + pow_bits
 143   };
 144 
 145 public:
 146   ObjArrayChunkedTask(oop o = NULL) {
 147     assert(decode_oop(encode_oop(o)) ==  o, "oop can be encoded: " PTR_FORMAT, p2i(o));
 148     _obj = encode_oop(o);
 149   }
 150   ObjArrayChunkedTask(oop o, int chunk, int pow) {
 151     assert(decode_oop(encode_oop(o)) == o, "oop can be encoded: " PTR_FORMAT, p2i(o));
 152     assert(decode_chunk(encode_chunk(chunk)) == chunk, "chunk can be encoded: %d", chunk);
 153     assert(decode_pow(encode_pow(pow)) == pow, "pow can be encoded: %d", pow);
 154     _obj = encode_oop(o) | encode_chunk(chunk) | encode_pow(pow);
 155   }
 156   ObjArrayChunkedTask(const ObjArrayChunkedTask& t): _obj(t._obj) { }
 157 
 158   ObjArrayChunkedTask& operator =(const ObjArrayChunkedTask& t) {
 159     _obj = t._obj;
 160     return *this;
 161   }
 162   volatile ObjArrayChunkedTask&
 163   operator =(const volatile ObjArrayChunkedTask& t) volatile {
 164     (void)const_cast<uintptr_t&>(_obj = t._obj);
 165     return *this;
 166   }
 167 
 168   inline oop decode_oop(uintptr_t val) const {
 169     return (oop) reinterpret_cast<void*>((val >> oop_shift) & right_n_bits(oop_bits));
 170   }
 171 
 172   inline int decode_chunk(uintptr_t val) const {
 173     return (int) ((val >> chunk_shift) & right_n_bits(chunk_bits));
 174   }
 175 
 176   inline int decode_pow(uintptr_t val) const {
 177     return (int) ((val >> pow_shift) & right_n_bits(pow_bits));
 178   }
 179 
 180   inline uintptr_t encode_oop(oop obj) const {
 181     return ((uintptr_t)(void*) obj) << oop_shift;
 182   }
 183 
 184   inline uintptr_t encode_chunk(int chunk) const {
 185     return ((uintptr_t) chunk) << chunk_shift;
 186   }
 187 
 188   inline uintptr_t encode_pow(int pow) const {
 189     return ((uintptr_t) pow) << pow_shift;
 190   }
 191 
 192   inline oop obj()   const { return decode_oop(_obj);   }
 193   inline int chunk() const { return decode_chunk(_obj); }
 194   inline int pow()   const { return decode_pow(_obj);   }
 195   inline bool is_not_chunked() const { return (_obj & ~right_n_bits(oop_bits + pow_bits)) == 0; }
 196 
 197   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
 198 
 199   static uintptr_t max_addressable() {
 200     return nth_bit(oop_bits);
 201   }
 202 
 203   static int chunk_size() {
 204     return nth_bit(chunk_bits);
 205   }
 206 
 207 private:
 208   uintptr_t _obj;
 209 };
 210 #else
 211 class ObjArrayChunkedTask
 212 {
 213 public:
 214   enum {
 215     chunk_bits  = 10,
 216     pow_bits    = 5,
 217   };
 218 public:
 219   ObjArrayChunkedTask(oop o = NULL, int chunk = 0, int pow = 0): _obj(o) {
 220     assert(0 <= chunk && chunk < nth_bit(chunk_bits), "chunk is sane: %d", chunk);
 221     assert(0 <= pow && pow < nth_bit(pow_bits), "pow is sane: %d", pow);
 222     _chunk = chunk;
 223     _pow = pow;
 224   }
 225   ObjArrayChunkedTask(const ObjArrayChunkedTask& t): _obj(t._obj), _chunk(t._chunk), _pow(t._pow) { }
 226 
 227   ObjArrayChunkedTask& operator =(const ObjArrayChunkedTask& t) {
 228     _obj = t._obj;
 229     _chunk = t._chunk;
 230     _pow = t._pow;
 231     return *this;
 232   }
 233   volatile ObjArrayChunkedTask&
 234   operator =(const volatile ObjArrayChunkedTask& t) volatile {
 235     (void)const_cast<oop&>(_obj = t._obj);
 236     _chunk = t._chunk;
 237     _pow = t._pow;
 238     return *this;
 239   }
 240 
 241   inline oop obj()   const { return _obj; }
 242   inline int chunk() const { return _chunk; }
 243   inline int pow()  const { return _pow; }
 244 
 245   inline bool is_not_chunked() const { return _chunk == 0; }
 246 
 247   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
 248 
 249   static size_t max_addressable() {
 250     return sizeof(oop);
 251   }
 252 
 253   static int chunk_size() {
 254     return nth_bit(chunk_bits);
 255   }
 256 
 257 private:
 258   oop _obj;
 259   int _chunk;
 260   int _pow;
 261 };
 262 #endif // SHENANDOAH_OPTIMIZED_OBJTASK
 263 
 264 #ifdef _MSC_VER
 265 #pragma warning(pop)
 266 #endif
 267 
 268 typedef ObjArrayChunkedTask ShenandoahMarkTask;
 269 typedef BufferedOverflowTaskQueue<ShenandoahMarkTask, mtGC> ShenandoahBufferedOverflowTaskQueue;
 270 typedef Padded<ShenandoahBufferedOverflowTaskQueue> ShenandoahObjToScanQueue;
 271 
 272 template <class T, MEMFLAGS F>
 273 class ParallelClaimableQueueSet: public GenericTaskQueueSet<T, F> {
 274 private:
 275   DEFINE_PAD_MINUS_SIZE(0, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile jint));
 276   volatile jint     _claimed_index;
 277   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, 0);
 278 
 279   debug_only(uint   _reserved;  )
 280 
 281 public:
 282   using GenericTaskQueueSet<T, F>::size;
 283 
 284 public:
 285   ParallelClaimableQueueSet(int n) : GenericTaskQueueSet<T, F>(n), _claimed_index(0) {
 286     debug_only(_reserved = 0; )
 287   }
 288 
 289   void clear_claimed() { _claimed_index = 0; }
 290   T*   claim_next();
 291 
 292   // reserve queues that not for parallel claiming
 293   void reserve(uint n) {
 294     assert(n <= size(), "Sanity");
 295     _claimed_index = (jint)n;
 296     debug_only(_reserved = n;)
 297   }
 298 
 299   debug_only(uint get_reserved() const { return (uint)_reserved; })
 300 };
 301 
 302 template <class T, MEMFLAGS F>
 303 T* ParallelClaimableQueueSet<T, F>::claim_next() {
 304   jint size = (jint)GenericTaskQueueSet<T, F>::size();
 305 
 306   if (_claimed_index >= size) {
 307     return NULL;
 308   }
 309 
 310   jint index = Atomic::add(&_claimed_index, 1);
 311 
 312   if (index <= size) {
 313     return GenericTaskQueueSet<T, F>::queue((uint)index - 1);
 314   } else {
 315     return NULL;
 316   }
 317 }
 318 
 319 class ShenandoahObjToScanQueueSet: public ParallelClaimableQueueSet<ShenandoahObjToScanQueue, mtGC> {
 320 public:
 321   ShenandoahObjToScanQueueSet(int n) : ParallelClaimableQueueSet<ShenandoahObjToScanQueue, mtGC>(n) {}
 322 
 323   bool is_empty();
 324   void clear();
 325 
 326 #if TASKQUEUE_STATS
 327   static void print_taskqueue_stats_hdr(outputStream* const st);
 328   void print_taskqueue_stats() const;
 329   void reset_taskqueue_stats();
 330 #endif // TASKQUEUE_STATS
 331 };
 332 
 333 class ShenandoahTerminatorTerminator : public TerminatorTerminator {
 334 private:
 335   ShenandoahHeap* _heap;
 336 public:
 337   ShenandoahTerminatorTerminator(ShenandoahHeap* const heap) : _heap(heap) { }
 338   // return true, terminates immediately, even if there's remaining work left
 339   virtual bool should_exit_termination() { return _heap->cancelled_gc(); }
 340 };
 341 
 342 #endif // SHARE_GC_SHENANDOAH_SHENANDOAHTASKQUEUE_HPP