/* * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/shared/gcId.hpp" #include "gc/shared/workgroup.hpp" #include "gc/shared/workerManager.hpp" #include "memory/allocation.hpp" #include "memory/allocation.inline.hpp" #include "runtime/atomic.hpp" #include "runtime/os.hpp" #include "runtime/semaphore.hpp" #include "runtime/thread.inline.hpp" // Definitions of WorkGang methods. // The current implementation will exit if the allocation // of any worker fails. void AbstractWorkGang::initialize_workers() { log_develop_trace(gc, workgang)("Constructing work gang %s with %u threads", name(), total_workers()); _workers = NEW_C_HEAP_ARRAY(AbstractGangWorker*, total_workers(), mtInternal); if (_workers == NULL) { vm_exit_out_of_memory(0, OOM_MALLOC_ERROR, "Cannot create GangWorker array."); } add_workers(true); } AbstractGangWorker* AbstractWorkGang::install_worker(uint worker_id) { AbstractGangWorker* new_worker = allocate_worker(worker_id); set_thread(worker_id, new_worker); return new_worker; } void AbstractWorkGang::add_workers(bool initializing) { add_workers(_active_workers, initializing); } void AbstractWorkGang::add_workers(uint active_workers, bool initializing) { os::ThreadType worker_type; if (are_ConcurrentGC_threads()) { worker_type = os::cgc_thread; } else { worker_type = os::pgc_thread; } uint previous_created_workers = _created_workers; _created_workers = WorkerManager::add_workers(this, active_workers, _total_workers, _created_workers, worker_type, initializing); _active_workers = MIN2(_created_workers, _active_workers); WorkerManager::log_worker_creation(this, previous_created_workers, _active_workers, _created_workers, initializing); } AbstractGangWorker* AbstractWorkGang::worker(uint i) const { // Array index bounds checking. AbstractGangWorker* result = NULL; assert(_workers != NULL, "No workers for indexing"); assert(i < total_workers(), "Worker index out of bounds"); result = _workers[i]; assert(result != NULL, "Indexing to null worker"); return result; } void AbstractWorkGang::print_worker_threads_on(outputStream* st) const { uint workers = created_workers(); for (uint i = 0; i < workers; i++) { worker(i)->print_on(st); st->cr(); } } void AbstractWorkGang::threads_do(ThreadClosure* tc) const { assert(tc != NULL, "Null ThreadClosure"); uint workers = created_workers(); for (uint i = 0; i < workers; i++) { tc->do_thread(worker(i)); } } // WorkGang dispatcher implemented with semaphores. // // Semaphores don't require the worker threads to re-claim the lock when they wake up. // This helps lowering the latency when starting and stopping the worker threads. class SemaphoreGangTaskDispatcher : public GangTaskDispatcher { // The task currently being dispatched to the GangWorkers. AbstractGangTask* _task; volatile uint _started; volatile uint _not_finished; // Semaphore used to start the GangWorkers. Semaphore* _start_semaphore; // Semaphore used to notify the coordinator that all workers are done. Semaphore* _end_semaphore; public: SemaphoreGangTaskDispatcher() : _task(NULL), _started(0), _not_finished(0), _start_semaphore(new Semaphore()), _end_semaphore(new Semaphore()) { } ~SemaphoreGangTaskDispatcher() { delete _start_semaphore; delete _end_semaphore; } void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers) { // No workers are allowed to read the state variables until they have been signaled. _task = task; _not_finished = num_workers; // Dispatch 'num_workers' number of tasks. _start_semaphore->signal(num_workers); // Wait for the last worker to signal the coordinator. _end_semaphore->wait(); // No workers are allowed to read the state variables after the coordinator has been signaled. assert(_not_finished == 0, "%d not finished workers?", _not_finished); _task = NULL; _started = 0; } WorkData worker_wait_for_task() { // Wait for the coordinator to dispatch a task. _start_semaphore->wait(); uint num_started = (uint) Atomic::add(1, (volatile jint*)&_started); // Subtract one to get a zero-indexed worker id. uint worker_id = num_started - 1; return WorkData(_task, worker_id); } void worker_done_with_task() { // Mark that the worker is done with the task. // The worker is not allowed to read the state variables after this line. uint not_finished = (uint) Atomic::add(-1, (volatile jint*)&_not_finished); // The last worker signals to the coordinator that all work is completed. if (not_finished == 0) { _end_semaphore->signal(); } } }; class MutexGangTaskDispatcher : public GangTaskDispatcher { AbstractGangTask* _task; volatile uint _started; volatile uint _finished; volatile uint _num_workers; Monitor* _monitor; public: MutexGangTaskDispatcher() : _task(NULL), _monitor(new Monitor(Monitor::leaf, "WorkGang dispatcher lock", false, Monitor::_safepoint_check_never)), _started(0), _finished(0), _num_workers(0) {} ~MutexGangTaskDispatcher() { delete _monitor; } void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers) { MutexLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag); _task = task; _num_workers = num_workers; // Tell the workers to get to work. _monitor->notify_all(); // Wait for them to finish. while (_finished < _num_workers) { _monitor->wait(/* no_safepoint_check */ true); } _task = NULL; _num_workers = 0; _started = 0; _finished = 0; } WorkData worker_wait_for_task() { MonitorLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag); while (_num_workers == 0 || _started == _num_workers) { _monitor->wait(/* no_safepoint_check */ true); } _started++; // Subtract one to get a zero-indexed worker id. uint worker_id = _started - 1; return WorkData(_task, worker_id); } void worker_done_with_task() { MonitorLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag); _finished++; if (_finished == _num_workers) { // This will wake up all workers and not only the coordinator. _monitor->notify_all(); } } }; static GangTaskDispatcher* create_dispatcher() { if (UseSemaphoreGCThreadsSynchronization) { return new SemaphoreGangTaskDispatcher(); } return new MutexGangTaskDispatcher(); } WorkGang::WorkGang(const char* name, uint workers, bool are_GC_task_threads, bool are_ConcurrentGC_threads) : AbstractWorkGang(name, workers, are_GC_task_threads, are_ConcurrentGC_threads), _dispatcher(create_dispatcher()) { } WorkGang::WorkGang(const char* name, uint workers, bool are_GC_task_threads, bool are_ConcurrentGC_threads, GangTaskDispatcher* dispatcher) : AbstractWorkGang(name, workers, are_GC_task_threads, are_ConcurrentGC_threads), _dispatcher(dispatcher) { } AbstractGangWorker* WorkGang::allocate_worker(uint worker_id) { return new GangWorker(this, worker_id); } void WorkGang::run_task(AbstractGangTask* task) { run_task(task, active_workers()); } void WorkGang::run_task(AbstractGangTask* task, uint num_workers) { guarantee(num_workers <= total_workers(), "Trying to execute task %s with %u workers which is more than the amount of total workers %u.", task->name(), num_workers, total_workers()); guarantee(num_workers > 0, "Trying to execute task %s with zero workers", task->name()); uint old_num_workers = _active_workers; update_active_workers(num_workers); _dispatcher->coordinator_execute_on_workers(task, num_workers); update_active_workers(old_num_workers); } AbstractGangWorker::AbstractGangWorker(AbstractWorkGang* gang, uint id) { _gang = gang; set_id(id); set_name("%s#%d", gang->name(), id); } void AbstractGangWorker::run() { initialize(); loop(); } void AbstractGangWorker::initialize() { this->record_stack_base_and_size(); this->initialize_named_thread(); assert(_gang != NULL, "No gang to run in"); os::set_priority(this, NearMaxPriority); log_develop_trace(gc, workgang)("Running gang worker for gang %s id %u", gang()->name(), id()); // The VM thread should not execute here because MutexLocker's are used // as (opposed to MutexLockerEx's). assert(!Thread::current()->is_VM_thread(), "VM thread should not be part" " of a work gang"); } bool AbstractGangWorker::is_GC_task_thread() const { return gang()->are_GC_task_threads(); } bool AbstractGangWorker::is_ConcurrentGC_thread() const { return gang()->are_ConcurrentGC_threads(); } void AbstractGangWorker::print_on(outputStream* st) const { st->print("\"%s\" ", name()); Thread::print_on(st); st->cr(); } WorkData GangWorker::wait_for_task() { return gang()->dispatcher()->worker_wait_for_task(); } void GangWorker::signal_task_done() { gang()->dispatcher()->worker_done_with_task(); } void GangWorker::run_task(WorkData data) { GCIdMark gc_id_mark(data._task->gc_id()); log_develop_trace(gc, workgang)("Running work gang: %s task: %s worker: %u", name(), data._task->name(), data._worker_id); data._task->work(data._worker_id); log_develop_trace(gc, workgang)("Finished work gang: %s task: %s worker: %u thread: " PTR_FORMAT, name(), data._task->name(), data._worker_id, p2i(Thread::current())); } void GangWorker::loop() { while (true) { WorkData data = wait_for_task(); run_task(data); signal_task_done(); } } // *** WorkGangBarrierSync WorkGangBarrierSync::WorkGangBarrierSync() : _monitor(Mutex::safepoint, "work gang barrier sync", true, Monitor::_safepoint_check_never), _n_workers(0), _n_completed(0), _should_reset(false), _aborted(false) { } WorkGangBarrierSync::WorkGangBarrierSync(uint n_workers, const char* name) : _monitor(Mutex::safepoint, name, true, Monitor::_safepoint_check_never), _n_workers(n_workers), _n_completed(0), _should_reset(false), _aborted(false) { } void WorkGangBarrierSync::set_n_workers(uint n_workers) { _n_workers = n_workers; _n_completed = 0; _should_reset = false; _aborted = false; } bool WorkGangBarrierSync::enter() { MutexLockerEx x(monitor(), Mutex::_no_safepoint_check_flag); if (should_reset()) { // The should_reset() was set and we are the first worker to enter // the sync barrier. We will zero the n_completed() count which // effectively resets the barrier. zero_completed(); set_should_reset(false); } inc_completed(); if (n_completed() == n_workers()) { // At this point we would like to reset the barrier to be ready in // case it is used again. However, we cannot set n_completed() to // 0, even after the notify_all(), given that some other workers // might still be waiting for n_completed() to become == // n_workers(). So, if we set n_completed() to 0, those workers // will get stuck (as they will wake up, see that n_completed() != // n_workers() and go back to sleep). Instead, we raise the // should_reset() flag and the barrier will be reset the first // time a worker enters it again. set_should_reset(true); monitor()->notify_all(); } else { while (n_completed() != n_workers() && !aborted()) { monitor()->wait(/* no_safepoint_check */ true); } } return !aborted(); } void WorkGangBarrierSync::abort() { MutexLockerEx x(monitor(), Mutex::_no_safepoint_check_flag); set_aborted(); monitor()->notify_all(); } // SubTasksDone functions. SubTasksDone::SubTasksDone(uint n) : _n_tasks(n), _tasks(NULL) { _tasks = NEW_C_HEAP_ARRAY(uint, n, mtInternal); guarantee(_tasks != NULL, "alloc failure"); clear(); } bool SubTasksDone::valid() { return _tasks != NULL; } void SubTasksDone::clear() { for (uint i = 0; i < _n_tasks; i++) { _tasks[i] = 0; } _threads_completed = 0; #ifdef ASSERT _claimed = 0; #endif } bool SubTasksDone::is_task_claimed(uint t) { assert(t < _n_tasks, "bad task id."); uint old = _tasks[t]; if (old == 0) { old = Atomic::cmpxchg(1, &_tasks[t], 0); } assert(_tasks[t] == 1, "What else?"); bool res = old != 0; #ifdef ASSERT if (!res) { assert(_claimed < _n_tasks, "Too many tasks claimed; missing clear?"); Atomic::inc((volatile jint*) &_claimed); } #endif return res; } void SubTasksDone::all_tasks_completed(uint n_threads) { jint observed = _threads_completed; jint old; do { old = observed; observed = Atomic::cmpxchg(old+1, &_threads_completed, old); } while (observed != old); // If this was the last thread checking in, clear the tasks. uint adjusted_thread_count = (n_threads == 0 ? 1 : n_threads); if (observed + 1 == (jint)adjusted_thread_count) { clear(); } } SubTasksDone::~SubTasksDone() { if (_tasks != NULL) FREE_C_HEAP_ARRAY(jint, _tasks); } // *** SequentialSubTasksDone void SequentialSubTasksDone::clear() { _n_tasks = _n_claimed = 0; _n_threads = _n_completed = 0; } bool SequentialSubTasksDone::valid() { return _n_threads > 0; } bool SequentialSubTasksDone::is_task_claimed(uint& t) { t = _n_claimed; while (t < _n_tasks) { jint res = Atomic::cmpxchg(t+1, &_n_claimed, t); if (res == (jint)t) { return false; } t = res; } return true; } bool SequentialSubTasksDone::all_tasks_completed() { uint complete = _n_completed; while (true) { uint res = Atomic::cmpxchg(complete+1, &_n_completed, complete); if (res == complete) { break; } complete = res; } if (complete+1 == _n_threads) { clear(); return true; } return false; }