1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Defs.hpp"
  27 #include "c1/c1_Compilation.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "utilities/bitMap.inline.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc_implementation/g1/heapRegion.hpp"
  42 #endif // INCLUDE_ALL_GCS
  43 
  44 #ifdef ASSERT
  45 #define __ gen()->lir(__FILE__, __LINE__)->
  46 #else
  47 #define __ gen()->lir()->
  48 #endif
  49 
  50 #ifndef PATCHED_ADDR
  51 #define PATCHED_ADDR  (max_jint)
  52 #endif
  53 
  54 void PhiResolverState::reset(int max_vregs) {
  55   // Initialize array sizes
  56   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  57   _virtual_operands.trunc_to(0);
  58   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  59   _other_operands.trunc_to(0);
  60   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  61   _vreg_table.trunc_to(0);
  62 }
  63 
  64 
  65 
  66 //--------------------------------------------------------------
  67 // PhiResolver
  68 
  69 // Resolves cycles:
  70 //
  71 //  r1 := r2  becomes  temp := r1
  72 //  r2 := r1           r1 := r2
  73 //                     r2 := temp
  74 // and orders moves:
  75 //
  76 //  r2 := r3  becomes  r1 := r2
  77 //  r1 := r2           r2 := r3
  78 
  79 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  80  : _gen(gen)
  81  , _state(gen->resolver_state())
  82  , _temp(LIR_OprFact::illegalOpr)
  83 {
  84   // reinitialize the shared state arrays
  85   _state.reset(max_vregs);
  86 }
  87 
  88 
  89 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  90   assert(src->is_valid(), "");
  91   assert(dest->is_valid(), "");
  92   __ move(src, dest);
  93 }
  94 
  95 
  96 void PhiResolver::move_temp_to(LIR_Opr dest) {
  97   assert(_temp->is_valid(), "");
  98   emit_move(_temp, dest);
  99   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 100 }
 101 
 102 
 103 void PhiResolver::move_to_temp(LIR_Opr src) {
 104   assert(_temp->is_illegal(), "");
 105   _temp = _gen->new_register(src->type());
 106   emit_move(src, _temp);
 107 }
 108 
 109 
 110 // Traverse assignment graph in depth first order and generate moves in post order
 111 // ie. two assignments: b := c, a := b start with node c:
 112 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 113 // Generates moves in this order: move b to a and move c to b
 114 // ie. cycle a := b, b := a start with node a
 115 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 116 // Generates moves in this order: move b to temp, move a to b, move temp to a
 117 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 118   if (!dest->visited()) {
 119     dest->set_visited();
 120     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 121       move(dest, dest->destination_at(i));
 122     }
 123   } else if (!dest->start_node()) {
 124     // cylce in graph detected
 125     assert(_loop == NULL, "only one loop valid!");
 126     _loop = dest;
 127     move_to_temp(src->operand());
 128     return;
 129   } // else dest is a start node
 130 
 131   if (!dest->assigned()) {
 132     if (_loop == dest) {
 133       move_temp_to(dest->operand());
 134       dest->set_assigned();
 135     } else if (src != NULL) {
 136       emit_move(src->operand(), dest->operand());
 137       dest->set_assigned();
 138     }
 139   }
 140 }
 141 
 142 
 143 PhiResolver::~PhiResolver() {
 144   int i;
 145   // resolve any cycles in moves from and to virtual registers
 146   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 147     ResolveNode* node = virtual_operands()[i];
 148     if (!node->visited()) {
 149       _loop = NULL;
 150       move(NULL, node);
 151       node->set_start_node();
 152       assert(_temp->is_illegal(), "move_temp_to() call missing");
 153     }
 154   }
 155 
 156   // generate move for move from non virtual register to abitrary destination
 157   for (i = other_operands().length() - 1; i >= 0; i --) {
 158     ResolveNode* node = other_operands()[i];
 159     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 160       emit_move(node->operand(), node->destination_at(j)->operand());
 161     }
 162   }
 163 }
 164 
 165 
 166 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 167   ResolveNode* node;
 168   if (opr->is_virtual()) {
 169     int vreg_num = opr->vreg_number();
 170     node = vreg_table().at_grow(vreg_num, NULL);
 171     assert(node == NULL || node->operand() == opr, "");
 172     if (node == NULL) {
 173       node = new ResolveNode(opr);
 174       vreg_table()[vreg_num] = node;
 175     }
 176     // Make sure that all virtual operands show up in the list when
 177     // they are used as the source of a move.
 178     if (source && !virtual_operands().contains(node)) {
 179       virtual_operands().append(node);
 180     }
 181   } else {
 182     assert(source, "");
 183     node = new ResolveNode(opr);
 184     other_operands().append(node);
 185   }
 186   return node;
 187 }
 188 
 189 
 190 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 191   assert(dest->is_virtual(), "");
 192   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 193   assert(src->is_valid(), "");
 194   assert(dest->is_valid(), "");
 195   ResolveNode* source = source_node(src);
 196   source->append(destination_node(dest));
 197 }
 198 
 199 
 200 //--------------------------------------------------------------
 201 // LIRItem
 202 
 203 void LIRItem::set_result(LIR_Opr opr) {
 204   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 205   value()->set_operand(opr);
 206 
 207   if (opr->is_virtual()) {
 208     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 209   }
 210 
 211   _result = opr;
 212 }
 213 
 214 void LIRItem::load_item() {
 215   if (result()->is_illegal()) {
 216     // update the items result
 217     _result = value()->operand();
 218   }
 219   if (!result()->is_register()) {
 220     LIR_Opr reg = _gen->new_register(value()->type());
 221     __ move(result(), reg);
 222     if (result()->is_constant()) {
 223       _result = reg;
 224     } else {
 225       set_result(reg);
 226     }
 227   }
 228 }
 229 
 230 
 231 void LIRItem::load_for_store(BasicType type) {
 232   if (_gen->can_store_as_constant(value(), type)) {
 233     _result = value()->operand();
 234     if (!_result->is_constant()) {
 235       _result = LIR_OprFact::value_type(value()->type());
 236     }
 237   } else if (type == T_BYTE || type == T_BOOLEAN) {
 238     load_byte_item();
 239   } else {
 240     load_item();
 241   }
 242 }
 243 
 244 void LIRItem::load_item_force(LIR_Opr reg) {
 245   LIR_Opr r = result();
 246   if (r != reg) {
 247 #if !defined(ARM) && !defined(E500V2)
 248     if (r->type() != reg->type()) {
 249       // moves between different types need an intervening spill slot
 250       r = _gen->force_to_spill(r, reg->type());
 251     }
 252 #endif
 253     __ move(r, reg);
 254     _result = reg;
 255   }
 256 }
 257 
 258 ciObject* LIRItem::get_jobject_constant() const {
 259   ObjectType* oc = type()->as_ObjectType();
 260   if (oc) {
 261     return oc->constant_value();
 262   }
 263   return NULL;
 264 }
 265 
 266 
 267 jint LIRItem::get_jint_constant() const {
 268   assert(is_constant() && value() != NULL, "");
 269   assert(type()->as_IntConstant() != NULL, "type check");
 270   return type()->as_IntConstant()->value();
 271 }
 272 
 273 
 274 jint LIRItem::get_address_constant() const {
 275   assert(is_constant() && value() != NULL, "");
 276   assert(type()->as_AddressConstant() != NULL, "type check");
 277   return type()->as_AddressConstant()->value();
 278 }
 279 
 280 
 281 jfloat LIRItem::get_jfloat_constant() const {
 282   assert(is_constant() && value() != NULL, "");
 283   assert(type()->as_FloatConstant() != NULL, "type check");
 284   return type()->as_FloatConstant()->value();
 285 }
 286 
 287 
 288 jdouble LIRItem::get_jdouble_constant() const {
 289   assert(is_constant() && value() != NULL, "");
 290   assert(type()->as_DoubleConstant() != NULL, "type check");
 291   return type()->as_DoubleConstant()->value();
 292 }
 293 
 294 
 295 jlong LIRItem::get_jlong_constant() const {
 296   assert(is_constant() && value() != NULL, "");
 297   assert(type()->as_LongConstant() != NULL, "type check");
 298   return type()->as_LongConstant()->value();
 299 }
 300 
 301 
 302 
 303 //--------------------------------------------------------------
 304 
 305 
 306 void LIRGenerator::init() {
 307   _bs = Universe::heap()->barrier_set();
 308 }
 309 
 310 
 311 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 312 #ifndef PRODUCT
 313   if (PrintIRWithLIR) {
 314     block->print();
 315   }
 316 #endif
 317 
 318   // set up the list of LIR instructions
 319   assert(block->lir() == NULL, "LIR list already computed for this block");
 320   _lir = new LIR_List(compilation(), block);
 321   block->set_lir(_lir);
 322 
 323   __ branch_destination(block->label());
 324 
 325   if (LIRTraceExecution &&
 326       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 327       !block->is_set(BlockBegin::exception_entry_flag)) {
 328     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 329     trace_block_entry(block);
 330   }
 331 }
 332 
 333 
 334 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 335 #ifndef PRODUCT
 336   if (PrintIRWithLIR) {
 337     tty->cr();
 338   }
 339 #endif
 340 
 341   // LIR_Opr for unpinned constants shouldn't be referenced by other
 342   // blocks so clear them out after processing the block.
 343   for (int i = 0; i < _unpinned_constants.length(); i++) {
 344     _unpinned_constants.at(i)->clear_operand();
 345   }
 346   _unpinned_constants.trunc_to(0);
 347 
 348   // clear our any registers for other local constants
 349   _constants.trunc_to(0);
 350   _reg_for_constants.trunc_to(0);
 351 }
 352 
 353 
 354 void LIRGenerator::block_do(BlockBegin* block) {
 355   CHECK_BAILOUT();
 356 
 357   block_do_prolog(block);
 358   set_block(block);
 359 
 360   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 361     if (instr->is_pinned()) do_root(instr);
 362   }
 363 
 364   set_block(NULL);
 365   block_do_epilog(block);
 366 }
 367 
 368 
 369 //-------------------------LIRGenerator-----------------------------
 370 
 371 // This is where the tree-walk starts; instr must be root;
 372 void LIRGenerator::do_root(Value instr) {
 373   CHECK_BAILOUT();
 374 
 375   InstructionMark im(compilation(), instr);
 376 
 377   assert(instr->is_pinned(), "use only with roots");
 378   assert(instr->subst() == instr, "shouldn't have missed substitution");
 379 
 380   instr->visit(this);
 381 
 382   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 383          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 384 }
 385 
 386 
 387 // This is called for each node in tree; the walk stops if a root is reached
 388 void LIRGenerator::walk(Value instr) {
 389   InstructionMark im(compilation(), instr);
 390   //stop walk when encounter a root
 391   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 392     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 393   } else {
 394     assert(instr->subst() == instr, "shouldn't have missed substitution");
 395     instr->visit(this);
 396     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 397   }
 398 }
 399 
 400 
 401 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 402   assert(state != NULL, "state must be defined");
 403 
 404 #ifndef PRODUCT
 405   state->verify();
 406 #endif
 407 
 408   ValueStack* s = state;
 409   for_each_state(s) {
 410     if (s->kind() == ValueStack::EmptyExceptionState) {
 411       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 412       continue;
 413     }
 414 
 415     int index;
 416     Value value;
 417     for_each_stack_value(s, index, value) {
 418       assert(value->subst() == value, "missed substitution");
 419       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 420         walk(value);
 421         assert(value->operand()->is_valid(), "must be evaluated now");
 422       }
 423     }
 424 
 425     int bci = s->bci();
 426     IRScope* scope = s->scope();
 427     ciMethod* method = scope->method();
 428 
 429     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 430     if (bci == SynchronizationEntryBCI) {
 431       if (x->as_ExceptionObject() || x->as_Throw()) {
 432         // all locals are dead on exit from the synthetic unlocker
 433         liveness.clear();
 434       } else {
 435         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 436       }
 437     }
 438     if (!liveness.is_valid()) {
 439       // Degenerate or breakpointed method.
 440       bailout("Degenerate or breakpointed method");
 441     } else {
 442       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 443       for_each_local_value(s, index, value) {
 444         assert(value->subst() == value, "missed substition");
 445         if (liveness.at(index) && !value->type()->is_illegal()) {
 446           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 447             walk(value);
 448             assert(value->operand()->is_valid(), "must be evaluated now");
 449           }
 450         } else {
 451           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 452           s->invalidate_local(index);
 453         }
 454       }
 455     }
 456   }
 457 
 458   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 459 }
 460 
 461 
 462 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 463   return state_for(x, x->exception_state());
 464 }
 465 
 466 
 467 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 468   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 469    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 470    * the class. */
 471   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 472     assert(info != NULL, "info must be set if class is not loaded");
 473     __ klass2reg_patch(NULL, r, info);
 474   } else {
 475     // no patching needed
 476     __ metadata2reg(obj->constant_encoding(), r);
 477   }
 478 }
 479 
 480 
 481 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 482                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 483   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 484   if (index->is_constant()) {
 485     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 486                 index->as_jint(), null_check_info);
 487     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 488   } else {
 489     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 490                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 491     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 492   }
 493 }
 494 
 495 
 496 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 497   CodeStub* stub = new RangeCheckStub(info, index, true);
 498   if (index->is_constant()) {
 499     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 500     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 501   } else {
 502     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 503                 java_nio_Buffer::limit_offset(), T_INT, info);
 504     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 505   }
 506   __ move(index, result);
 507 }
 508 
 509 
 510 
 511 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 512   LIR_Opr result_op = result;
 513   LIR_Opr left_op   = left;
 514   LIR_Opr right_op  = right;
 515 
 516   if (TwoOperandLIRForm && left_op != result_op) {
 517     assert(right_op != result_op, "malformed");
 518     __ move(left_op, result_op);
 519     left_op = result_op;
 520   }
 521 
 522   switch(code) {
 523     case Bytecodes::_dadd:
 524     case Bytecodes::_fadd:
 525     case Bytecodes::_ladd:
 526     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 527     case Bytecodes::_fmul:
 528     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 529 
 530     case Bytecodes::_dmul:
 531       {
 532         if (is_strictfp) {
 533           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 534         } else {
 535           __ mul(left_op, right_op, result_op); break;
 536         }
 537       }
 538       break;
 539 
 540     case Bytecodes::_imul:
 541       {
 542         bool    did_strength_reduce = false;
 543 
 544         if (right->is_constant()) {
 545           int c = right->as_jint();
 546           if (is_power_of_2(c)) {
 547             // do not need tmp here
 548             __ shift_left(left_op, exact_log2(c), result_op);
 549             did_strength_reduce = true;
 550           } else {
 551             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 552           }
 553         }
 554         // we couldn't strength reduce so just emit the multiply
 555         if (!did_strength_reduce) {
 556           __ mul(left_op, right_op, result_op);
 557         }
 558       }
 559       break;
 560 
 561     case Bytecodes::_dsub:
 562     case Bytecodes::_fsub:
 563     case Bytecodes::_lsub:
 564     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 565 
 566     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 567     // ldiv and lrem are implemented with a direct runtime call
 568 
 569     case Bytecodes::_ddiv:
 570       {
 571         if (is_strictfp) {
 572           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 573         } else {
 574           __ div (left_op, right_op, result_op); break;
 575         }
 576       }
 577       break;
 578 
 579     case Bytecodes::_drem:
 580     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 581 
 582     default: ShouldNotReachHere();
 583   }
 584 }
 585 
 586 
 587 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 588   arithmetic_op(code, result, left, right, false, tmp);
 589 }
 590 
 591 
 592 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 593   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 594 }
 595 
 596 
 597 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 598   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 599 }
 600 
 601 
 602 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 603   if (TwoOperandLIRForm && value != result_op) {
 604     assert(count != result_op, "malformed");
 605     __ move(value, result_op);
 606     value = result_op;
 607   }
 608 
 609   assert(count->is_constant() || count->is_register(), "must be");
 610   switch(code) {
 611   case Bytecodes::_ishl:
 612   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 613   case Bytecodes::_ishr:
 614   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 615   case Bytecodes::_iushr:
 616   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 617   default: ShouldNotReachHere();
 618   }
 619 }
 620 
 621 
 622 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 623   if (TwoOperandLIRForm && left_op != result_op) {
 624     assert(right_op != result_op, "malformed");
 625     __ move(left_op, result_op);
 626     left_op = result_op;
 627   }
 628 
 629   switch(code) {
 630     case Bytecodes::_iand:
 631     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 632 
 633     case Bytecodes::_ior:
 634     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 635 
 636     case Bytecodes::_ixor:
 637     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 638 
 639     default: ShouldNotReachHere();
 640   }
 641 }
 642 
 643 
 644 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 645   if (!GenerateSynchronizationCode) return;
 646   // for slow path, use debug info for state after successful locking
 647   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 648   __ load_stack_address_monitor(monitor_no, lock);
 649   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 650   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 651 }
 652 
 653 
 654 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 655   if (!GenerateSynchronizationCode) return;
 656   // setup registers
 657   LIR_Opr hdr = lock;
 658   lock = new_hdr;
 659   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 660   __ load_stack_address_monitor(monitor_no, lock);
 661   __ unlock_object(hdr, object, lock, scratch, slow_path);
 662 }
 663 
 664 #ifndef PRODUCT
 665 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 666   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 667     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 668   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 669     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 670   }
 671 }
 672 #endif
 673 
 674 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 675   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 676   // If klass is not loaded we do not know if the klass has finalizers:
 677   if (UseFastNewInstance && klass->is_loaded()
 678       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 679 
 680     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 681 
 682     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 683 
 684     assert(klass->is_loaded(), "must be loaded");
 685     // allocate space for instance
 686     assert(klass->size_helper() >= 0, "illegal instance size");
 687     const int instance_size = align_object_size(klass->size_helper());
 688     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 689                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 690   } else {
 691     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 692     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 693     __ branch_destination(slow_path->continuation());
 694   }
 695 }
 696 
 697 
 698 static bool is_constant_zero(Instruction* inst) {
 699   IntConstant* c = inst->type()->as_IntConstant();
 700   if (c) {
 701     return (c->value() == 0);
 702   }
 703   return false;
 704 }
 705 
 706 
 707 static bool positive_constant(Instruction* inst) {
 708   IntConstant* c = inst->type()->as_IntConstant();
 709   if (c) {
 710     return (c->value() >= 0);
 711   }
 712   return false;
 713 }
 714 
 715 
 716 static ciArrayKlass* as_array_klass(ciType* type) {
 717   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 718     return (ciArrayKlass*)type;
 719   } else {
 720     return NULL;
 721   }
 722 }
 723 
 724 static ciType* phi_declared_type(Phi* phi) {
 725   ciType* t = phi->operand_at(0)->declared_type();
 726   if (t == NULL) {
 727     return NULL;
 728   }
 729   for(int i = 1; i < phi->operand_count(); i++) {
 730     if (t != phi->operand_at(i)->declared_type()) {
 731       return NULL;
 732     }
 733   }
 734   return t;
 735 }
 736 
 737 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 738   Instruction* src     = x->argument_at(0);
 739   Instruction* src_pos = x->argument_at(1);
 740   Instruction* dst     = x->argument_at(2);
 741   Instruction* dst_pos = x->argument_at(3);
 742   Instruction* length  = x->argument_at(4);
 743 
 744   // first try to identify the likely type of the arrays involved
 745   ciArrayKlass* expected_type = NULL;
 746   bool is_exact = false, src_objarray = false, dst_objarray = false;
 747   {
 748     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 749     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 750     Phi* phi;
 751     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 752       src_declared_type = as_array_klass(phi_declared_type(phi));
 753     }
 754     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 755     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 756     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 757       dst_declared_type = as_array_klass(phi_declared_type(phi));
 758     }
 759 
 760     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 761       // the types exactly match so the type is fully known
 762       is_exact = true;
 763       expected_type = src_exact_type;
 764     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 765       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 766       ciArrayKlass* src_type = NULL;
 767       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 768         src_type = (ciArrayKlass*) src_exact_type;
 769       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 770         src_type = (ciArrayKlass*) src_declared_type;
 771       }
 772       if (src_type != NULL) {
 773         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 774           is_exact = true;
 775           expected_type = dst_type;
 776         }
 777       }
 778     }
 779     // at least pass along a good guess
 780     if (expected_type == NULL) expected_type = dst_exact_type;
 781     if (expected_type == NULL) expected_type = src_declared_type;
 782     if (expected_type == NULL) expected_type = dst_declared_type;
 783 
 784     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 785     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 786   }
 787 
 788   // if a probable array type has been identified, figure out if any
 789   // of the required checks for a fast case can be elided.
 790   int flags = LIR_OpArrayCopy::all_flags;
 791 
 792   if (!src_objarray)
 793     flags &= ~LIR_OpArrayCopy::src_objarray;
 794   if (!dst_objarray)
 795     flags &= ~LIR_OpArrayCopy::dst_objarray;
 796 
 797   if (!x->arg_needs_null_check(0))
 798     flags &= ~LIR_OpArrayCopy::src_null_check;
 799   if (!x->arg_needs_null_check(2))
 800     flags &= ~LIR_OpArrayCopy::dst_null_check;
 801 
 802 
 803   if (expected_type != NULL) {
 804     Value length_limit = NULL;
 805 
 806     IfOp* ifop = length->as_IfOp();
 807     if (ifop != NULL) {
 808       // look for expressions like min(v, a.length) which ends up as
 809       //   x > y ? y : x  or  x >= y ? y : x
 810       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 811           ifop->x() == ifop->fval() &&
 812           ifop->y() == ifop->tval()) {
 813         length_limit = ifop->y();
 814       }
 815     }
 816 
 817     // try to skip null checks and range checks
 818     NewArray* src_array = src->as_NewArray();
 819     if (src_array != NULL) {
 820       flags &= ~LIR_OpArrayCopy::src_null_check;
 821       if (length_limit != NULL &&
 822           src_array->length() == length_limit &&
 823           is_constant_zero(src_pos)) {
 824         flags &= ~LIR_OpArrayCopy::src_range_check;
 825       }
 826     }
 827 
 828     NewArray* dst_array = dst->as_NewArray();
 829     if (dst_array != NULL) {
 830       flags &= ~LIR_OpArrayCopy::dst_null_check;
 831       if (length_limit != NULL &&
 832           dst_array->length() == length_limit &&
 833           is_constant_zero(dst_pos)) {
 834         flags &= ~LIR_OpArrayCopy::dst_range_check;
 835       }
 836     }
 837 
 838     // check from incoming constant values
 839     if (positive_constant(src_pos))
 840       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 841     if (positive_constant(dst_pos))
 842       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 843     if (positive_constant(length))
 844       flags &= ~LIR_OpArrayCopy::length_positive_check;
 845 
 846     // see if the range check can be elided, which might also imply
 847     // that src or dst is non-null.
 848     ArrayLength* al = length->as_ArrayLength();
 849     if (al != NULL) {
 850       if (al->array() == src) {
 851         // it's the length of the source array
 852         flags &= ~LIR_OpArrayCopy::length_positive_check;
 853         flags &= ~LIR_OpArrayCopy::src_null_check;
 854         if (is_constant_zero(src_pos))
 855           flags &= ~LIR_OpArrayCopy::src_range_check;
 856       }
 857       if (al->array() == dst) {
 858         // it's the length of the destination array
 859         flags &= ~LIR_OpArrayCopy::length_positive_check;
 860         flags &= ~LIR_OpArrayCopy::dst_null_check;
 861         if (is_constant_zero(dst_pos))
 862           flags &= ~LIR_OpArrayCopy::dst_range_check;
 863       }
 864     }
 865     if (is_exact) {
 866       flags &= ~LIR_OpArrayCopy::type_check;
 867     }
 868   }
 869 
 870   IntConstant* src_int = src_pos->type()->as_IntConstant();
 871   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 872   if (src_int && dst_int) {
 873     int s_offs = src_int->value();
 874     int d_offs = dst_int->value();
 875     if (src_int->value() >= dst_int->value()) {
 876       flags &= ~LIR_OpArrayCopy::overlapping;
 877     }
 878     if (expected_type != NULL) {
 879       BasicType t = expected_type->element_type()->basic_type();
 880       int element_size = type2aelembytes(t);
 881       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 882           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 883         flags &= ~LIR_OpArrayCopy::unaligned;
 884       }
 885     }
 886   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 887     // src and dest positions are the same, or dst is zero so assume
 888     // nonoverlapping copy.
 889     flags &= ~LIR_OpArrayCopy::overlapping;
 890   }
 891 
 892   if (src == dst) {
 893     // moving within a single array so no type checks are needed
 894     if (flags & LIR_OpArrayCopy::type_check) {
 895       flags &= ~LIR_OpArrayCopy::type_check;
 896     }
 897   }
 898   *flagsp = flags;
 899   *expected_typep = (ciArrayKlass*)expected_type;
 900 }
 901 
 902 
 903 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 904   assert(opr->is_register(), "why spill if item is not register?");
 905 
 906   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 907     LIR_Opr result = new_register(T_FLOAT);
 908     set_vreg_flag(result, must_start_in_memory);
 909     assert(opr->is_register(), "only a register can be spilled");
 910     assert(opr->value_type()->is_float(), "rounding only for floats available");
 911     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 912     return result;
 913   }
 914   return opr;
 915 }
 916 
 917 
 918 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 919   assert(type2size[t] == type2size[value->type()],
 920          err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
 921   if (!value->is_register()) {
 922     // force into a register
 923     LIR_Opr r = new_register(value->type());
 924     __ move(value, r);
 925     value = r;
 926   }
 927 
 928   // create a spill location
 929   LIR_Opr tmp = new_register(t);
 930   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 931 
 932   // move from register to spill
 933   __ move(value, tmp);
 934   return tmp;
 935 }
 936 
 937 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 938   if (if_instr->should_profile()) {
 939     ciMethod* method = if_instr->profiled_method();
 940     assert(method != NULL, "method should be set if branch is profiled");
 941     ciMethodData* md = method->method_data_or_null();
 942     assert(md != NULL, "Sanity");
 943     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 944     assert(data != NULL, "must have profiling data");
 945     assert(data->is_BranchData(), "need BranchData for two-way branches");
 946     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 947     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 948     if (if_instr->is_swapped()) {
 949       int t = taken_count_offset;
 950       taken_count_offset = not_taken_count_offset;
 951       not_taken_count_offset = t;
 952     }
 953 
 954     LIR_Opr md_reg = new_register(T_METADATA);
 955     __ metadata2reg(md->constant_encoding(), md_reg);
 956 
 957     LIR_Opr data_offset_reg = new_pointer_register();
 958     __ cmove(lir_cond(cond),
 959              LIR_OprFact::intptrConst(taken_count_offset),
 960              LIR_OprFact::intptrConst(not_taken_count_offset),
 961              data_offset_reg, as_BasicType(if_instr->x()->type()));
 962 
 963     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 964     LIR_Opr data_reg = new_pointer_register();
 965     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 966     __ move(data_addr, data_reg);
 967     // Use leal instead of add to avoid destroying condition codes on x86
 968     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 969     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 970     __ move(data_reg, data_addr);
 971   }
 972 }
 973 
 974 // Phi technique:
 975 // This is about passing live values from one basic block to the other.
 976 // In code generated with Java it is rather rare that more than one
 977 // value is on the stack from one basic block to the other.
 978 // We optimize our technique for efficient passing of one value
 979 // (of type long, int, double..) but it can be extended.
 980 // When entering or leaving a basic block, all registers and all spill
 981 // slots are release and empty. We use the released registers
 982 // and spill slots to pass the live values from one block
 983 // to the other. The topmost value, i.e., the value on TOS of expression
 984 // stack is passed in registers. All other values are stored in spilling
 985 // area. Every Phi has an index which designates its spill slot
 986 // At exit of a basic block, we fill the register(s) and spill slots.
 987 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 988 // and locks necessary registers and spilling slots.
 989 
 990 
 991 // move current value to referenced phi function
 992 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 993   Phi* phi = sux_val->as_Phi();
 994   // cur_val can be null without phi being null in conjunction with inlining
 995   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 996     LIR_Opr operand = cur_val->operand();
 997     if (cur_val->operand()->is_illegal()) {
 998       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
 999              "these can be produced lazily");
1000       operand = operand_for_instruction(cur_val);
1001     }
1002     resolver->move(operand, operand_for_instruction(phi));
1003   }
1004 }
1005 
1006 
1007 // Moves all stack values into their PHI position
1008 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1009   BlockBegin* bb = block();
1010   if (bb->number_of_sux() == 1) {
1011     BlockBegin* sux = bb->sux_at(0);
1012     assert(sux->number_of_preds() > 0, "invalid CFG");
1013 
1014     // a block with only one predecessor never has phi functions
1015     if (sux->number_of_preds() > 1) {
1016       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1017       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1018 
1019       ValueStack* sux_state = sux->state();
1020       Value sux_value;
1021       int index;
1022 
1023       assert(cur_state->scope() == sux_state->scope(), "not matching");
1024       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1025       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1026 
1027       for_each_stack_value(sux_state, index, sux_value) {
1028         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1029       }
1030 
1031       for_each_local_value(sux_state, index, sux_value) {
1032         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1033       }
1034 
1035       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1036     }
1037   }
1038 }
1039 
1040 
1041 LIR_Opr LIRGenerator::new_register(BasicType type) {
1042   int vreg = _virtual_register_number;
1043   // add a little fudge factor for the bailout, since the bailout is
1044   // only checked periodically.  This gives a few extra registers to
1045   // hand out before we really run out, which helps us keep from
1046   // tripping over assertions.
1047   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1048     bailout("out of virtual registers");
1049     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1050       // wrap it around
1051       _virtual_register_number = LIR_OprDesc::vreg_base;
1052     }
1053   }
1054   _virtual_register_number += 1;
1055   return LIR_OprFact::virtual_register(vreg, type);
1056 }
1057 
1058 
1059 // Try to lock using register in hint
1060 LIR_Opr LIRGenerator::rlock(Value instr) {
1061   return new_register(instr->type());
1062 }
1063 
1064 
1065 // does an rlock and sets result
1066 LIR_Opr LIRGenerator::rlock_result(Value x) {
1067   LIR_Opr reg = rlock(x);
1068   set_result(x, reg);
1069   return reg;
1070 }
1071 
1072 
1073 // does an rlock and sets result
1074 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1075   LIR_Opr reg;
1076   switch (type) {
1077   case T_BYTE:
1078   case T_BOOLEAN:
1079     reg = rlock_byte(type);
1080     break;
1081   default:
1082     reg = rlock(x);
1083     break;
1084   }
1085 
1086   set_result(x, reg);
1087   return reg;
1088 }
1089 
1090 
1091 //---------------------------------------------------------------------
1092 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1093   ObjectType* oc = value->type()->as_ObjectType();
1094   if (oc) {
1095     return oc->constant_value();
1096   }
1097   return NULL;
1098 }
1099 
1100 
1101 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1102   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1103   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1104 
1105   // no moves are created for phi functions at the begin of exception
1106   // handlers, so assign operands manually here
1107   for_each_phi_fun(block(), phi,
1108                    operand_for_instruction(phi));
1109 
1110   LIR_Opr thread_reg = getThreadPointer();
1111   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1112                exceptionOopOpr());
1113   __ move_wide(LIR_OprFact::oopConst(NULL),
1114                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1115   __ move_wide(LIR_OprFact::oopConst(NULL),
1116                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1117 
1118   LIR_Opr result = new_register(T_OBJECT);
1119   __ move(exceptionOopOpr(), result);
1120   set_result(x, result);
1121 }
1122 
1123 
1124 //----------------------------------------------------------------------
1125 //----------------------------------------------------------------------
1126 //----------------------------------------------------------------------
1127 //----------------------------------------------------------------------
1128 //                        visitor functions
1129 //----------------------------------------------------------------------
1130 //----------------------------------------------------------------------
1131 //----------------------------------------------------------------------
1132 //----------------------------------------------------------------------
1133 
1134 void LIRGenerator::do_Phi(Phi* x) {
1135   // phi functions are never visited directly
1136   ShouldNotReachHere();
1137 }
1138 
1139 
1140 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1141 void LIRGenerator::do_Constant(Constant* x) {
1142   if (x->state_before() != NULL) {
1143     // Any constant with a ValueStack requires patching so emit the patch here
1144     LIR_Opr reg = rlock_result(x);
1145     CodeEmitInfo* info = state_for(x, x->state_before());
1146     __ oop2reg_patch(NULL, reg, info);
1147   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1148     if (!x->is_pinned()) {
1149       // unpinned constants are handled specially so that they can be
1150       // put into registers when they are used multiple times within a
1151       // block.  After the block completes their operand will be
1152       // cleared so that other blocks can't refer to that register.
1153       set_result(x, load_constant(x));
1154     } else {
1155       LIR_Opr res = x->operand();
1156       if (!res->is_valid()) {
1157         res = LIR_OprFact::value_type(x->type());
1158       }
1159       if (res->is_constant()) {
1160         LIR_Opr reg = rlock_result(x);
1161         __ move(res, reg);
1162       } else {
1163         set_result(x, res);
1164       }
1165     }
1166   } else {
1167     set_result(x, LIR_OprFact::value_type(x->type()));
1168   }
1169 }
1170 
1171 
1172 void LIRGenerator::do_Local(Local* x) {
1173   // operand_for_instruction has the side effect of setting the result
1174   // so there's no need to do it here.
1175   operand_for_instruction(x);
1176 }
1177 
1178 
1179 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1180   Unimplemented();
1181 }
1182 
1183 
1184 void LIRGenerator::do_Return(Return* x) {
1185   if (compilation()->env()->dtrace_method_probes()) {
1186     BasicTypeList signature;
1187     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1188     signature.append(T_METADATA); // Method*
1189     LIR_OprList* args = new LIR_OprList();
1190     args->append(getThreadPointer());
1191     LIR_Opr meth = new_register(T_METADATA);
1192     __ metadata2reg(method()->constant_encoding(), meth);
1193     args->append(meth);
1194     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1195   }
1196 
1197   if (x->type()->is_void()) {
1198     __ return_op(LIR_OprFact::illegalOpr);
1199   } else {
1200     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1201     LIRItem result(x->result(), this);
1202 
1203     result.load_item_force(reg);
1204     __ return_op(result.result());
1205   }
1206   set_no_result(x);
1207 }
1208 
1209 // Examble: ref.get()
1210 // Combination of LoadField and g1 pre-write barrier
1211 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1212 
1213   const int referent_offset = java_lang_ref_Reference::referent_offset;
1214   guarantee(referent_offset > 0, "referent offset not initialized");
1215 
1216   assert(x->number_of_arguments() == 1, "wrong type");
1217 
1218   LIRItem reference(x->argument_at(0), this);
1219   reference.load_item();
1220 
1221   // need to perform the null check on the reference objecy
1222   CodeEmitInfo* info = NULL;
1223   if (x->needs_null_check()) {
1224     info = state_for(x);
1225   }
1226 
1227   LIR_Address* referent_field_adr =
1228     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1229 
1230   LIR_Opr result = rlock_result(x);
1231 
1232   __ load(referent_field_adr, result, info);
1233 
1234   // Register the value in the referent field with the pre-barrier
1235   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1236               result /* pre_val */,
1237               false  /* do_load */,
1238               false  /* patch */,
1239               NULL   /* info */);
1240 }
1241 
1242 // Example: clazz.isInstance(object)
1243 void LIRGenerator::do_isInstance(Intrinsic* x) {
1244   assert(x->number_of_arguments() == 2, "wrong type");
1245 
1246   // TODO could try to substitute this node with an equivalent InstanceOf
1247   // if clazz is known to be a constant Class. This will pick up newly found
1248   // constants after HIR construction. I'll leave this to a future change.
1249 
1250   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1251   // could follow the aastore example in a future change.
1252 
1253   LIRItem clazz(x->argument_at(0), this);
1254   LIRItem object(x->argument_at(1), this);
1255   clazz.load_item();
1256   object.load_item();
1257   LIR_Opr result = rlock_result(x);
1258 
1259   // need to perform null check on clazz
1260   if (x->needs_null_check()) {
1261     CodeEmitInfo* info = state_for(x);
1262     __ null_check(clazz.result(), info);
1263   }
1264 
1265   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1266                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1267                                      x->type(),
1268                                      NULL); // NULL CodeEmitInfo results in a leaf call
1269   __ move(call_result, result);
1270 }
1271 
1272 // Example: object.getClass ()
1273 void LIRGenerator::do_getClass(Intrinsic* x) {
1274   assert(x->number_of_arguments() == 1, "wrong type");
1275 
1276   LIRItem rcvr(x->argument_at(0), this);
1277   rcvr.load_item();
1278   LIR_Opr temp = new_register(T_METADATA);
1279   LIR_Opr result = rlock_result(x);
1280 
1281   // need to perform the null check on the rcvr
1282   CodeEmitInfo* info = NULL;
1283   if (x->needs_null_check()) {
1284     info = state_for(x);
1285   }
1286 
1287   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1288   // meaning of these two is mixed up (see JDK-8026837).
1289   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1290   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1291 }
1292 
1293 
1294 // Example: Thread.currentThread()
1295 void LIRGenerator::do_currentThread(Intrinsic* x) {
1296   assert(x->number_of_arguments() == 0, "wrong type");
1297   LIR_Opr reg = rlock_result(x);
1298   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1299 }
1300 
1301 
1302 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1303   assert(x->number_of_arguments() == 1, "wrong type");
1304   LIRItem receiver(x->argument_at(0), this);
1305 
1306   receiver.load_item();
1307   BasicTypeList signature;
1308   signature.append(T_OBJECT); // receiver
1309   LIR_OprList* args = new LIR_OprList();
1310   args->append(receiver.result());
1311   CodeEmitInfo* info = state_for(x, x->state());
1312   call_runtime(&signature, args,
1313                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1314                voidType, info);
1315 
1316   set_no_result(x);
1317 }
1318 
1319 
1320 //------------------------local access--------------------------------------
1321 
1322 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1323   if (x->operand()->is_illegal()) {
1324     Constant* c = x->as_Constant();
1325     if (c != NULL) {
1326       x->set_operand(LIR_OprFact::value_type(c->type()));
1327     } else {
1328       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1329       // allocate a virtual register for this local or phi
1330       x->set_operand(rlock(x));
1331       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1332     }
1333   }
1334   return x->operand();
1335 }
1336 
1337 
1338 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1339   if (opr->is_virtual()) {
1340     return instruction_for_vreg(opr->vreg_number());
1341   }
1342   return NULL;
1343 }
1344 
1345 
1346 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1347   if (reg_num < _instruction_for_operand.length()) {
1348     return _instruction_for_operand.at(reg_num);
1349   }
1350   return NULL;
1351 }
1352 
1353 
1354 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1355   if (_vreg_flags.size_in_bits() == 0) {
1356     BitMap2D temp(100, num_vreg_flags);
1357     temp.clear();
1358     _vreg_flags = temp;
1359   }
1360   _vreg_flags.at_put_grow(vreg_num, f, true);
1361 }
1362 
1363 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1364   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1365     return false;
1366   }
1367   return _vreg_flags.at(vreg_num, f);
1368 }
1369 
1370 
1371 // Block local constant handling.  This code is useful for keeping
1372 // unpinned constants and constants which aren't exposed in the IR in
1373 // registers.  Unpinned Constant instructions have their operands
1374 // cleared when the block is finished so that other blocks can't end
1375 // up referring to their registers.
1376 
1377 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1378   assert(!x->is_pinned(), "only for unpinned constants");
1379   _unpinned_constants.append(x);
1380   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1381 }
1382 
1383 
1384 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1385   BasicType t = c->type();
1386   for (int i = 0; i < _constants.length(); i++) {
1387     LIR_Const* other = _constants.at(i);
1388     if (t == other->type()) {
1389       switch (t) {
1390       case T_INT:
1391       case T_FLOAT:
1392         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1393         break;
1394       case T_LONG:
1395       case T_DOUBLE:
1396         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1397         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1398         break;
1399       case T_OBJECT:
1400         if (c->as_jobject() != other->as_jobject()) continue;
1401         break;
1402       }
1403       return _reg_for_constants.at(i);
1404     }
1405   }
1406 
1407   LIR_Opr result = new_register(t);
1408   __ move((LIR_Opr)c, result);
1409   _constants.append(c);
1410   _reg_for_constants.append(result);
1411   return result;
1412 }
1413 
1414 // Various barriers
1415 
1416 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1417                                bool do_load, bool patch, CodeEmitInfo* info) {
1418   // Do the pre-write barrier, if any.
1419   switch (_bs->kind()) {
1420 #if INCLUDE_ALL_GCS
1421     case BarrierSet::G1SATBCT:
1422     case BarrierSet::G1SATBCTLogging:
1423       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1424       break;
1425 #endif // INCLUDE_ALL_GCS
1426     case BarrierSet::CardTableModRef:
1427     case BarrierSet::CardTableExtension:
1428       // No pre barriers
1429       break;
1430     case BarrierSet::ModRef:
1431     case BarrierSet::Other:
1432       // No pre barriers
1433       break;
1434     default      :
1435       ShouldNotReachHere();
1436 
1437   }
1438 }
1439 
1440 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1441   switch (_bs->kind()) {
1442 #if INCLUDE_ALL_GCS
1443     case BarrierSet::G1SATBCT:
1444     case BarrierSet::G1SATBCTLogging:
1445       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1446       break;
1447 #endif // INCLUDE_ALL_GCS
1448     case BarrierSet::CardTableModRef:
1449     case BarrierSet::CardTableExtension:
1450       CardTableModRef_post_barrier(addr,  new_val);
1451       break;
1452     case BarrierSet::ModRef:
1453     case BarrierSet::Other:
1454       // No post barriers
1455       break;
1456     default      :
1457       ShouldNotReachHere();
1458     }
1459 }
1460 
1461 ////////////////////////////////////////////////////////////////////////
1462 #if INCLUDE_ALL_GCS
1463 
1464 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1465                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1466   // First we test whether marking is in progress.
1467   BasicType flag_type;
1468   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1469     flag_type = T_INT;
1470   } else {
1471     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1472               "Assumption");
1473     flag_type = T_BYTE;
1474   }
1475   LIR_Opr thrd = getThreadPointer();
1476   LIR_Address* mark_active_flag_addr =
1477     new LIR_Address(thrd,
1478                     in_bytes(JavaThread::satb_mark_queue_offset() +
1479                              PtrQueue::byte_offset_of_active()),
1480                     flag_type);
1481   // Read the marking-in-progress flag.
1482   LIR_Opr flag_val = new_register(T_INT);
1483   __ load(mark_active_flag_addr, flag_val);
1484   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1485 
1486   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1487 
1488   CodeStub* slow;
1489 
1490   if (do_load) {
1491     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1492     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1493 
1494     if (patch)
1495       pre_val_patch_code = lir_patch_normal;
1496 
1497     pre_val = new_register(T_OBJECT);
1498 
1499     if (!addr_opr->is_address()) {
1500       assert(addr_opr->is_register(), "must be");
1501       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1502     }
1503     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1504   } else {
1505     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1506     assert(pre_val->is_register(), "must be");
1507     assert(pre_val->type() == T_OBJECT, "must be an object");
1508     assert(info == NULL, "sanity");
1509 
1510     slow = new G1PreBarrierStub(pre_val);
1511   }
1512 
1513   __ branch(lir_cond_notEqual, T_INT, slow);
1514   __ branch_destination(slow->continuation());
1515 }
1516 
1517 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1518   // If the "new_val" is a constant NULL, no barrier is necessary.
1519   if (new_val->is_constant() &&
1520       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1521 
1522   if (!new_val->is_register()) {
1523     LIR_Opr new_val_reg = new_register(T_OBJECT);
1524     if (new_val->is_constant()) {
1525       __ move(new_val, new_val_reg);
1526     } else {
1527       __ leal(new_val, new_val_reg);
1528     }
1529     new_val = new_val_reg;
1530   }
1531   assert(new_val->is_register(), "must be a register at this point");
1532 
1533   if (addr->is_address()) {
1534     LIR_Address* address = addr->as_address_ptr();
1535     LIR_Opr ptr = new_pointer_register();
1536     if (!address->index()->is_valid() && address->disp() == 0) {
1537       __ move(address->base(), ptr);
1538     } else {
1539       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1540       __ leal(addr, ptr);
1541     }
1542     addr = ptr;
1543   }
1544   assert(addr->is_register(), "must be a register at this point");
1545 
1546   LIR_Opr xor_res = new_pointer_register();
1547   LIR_Opr xor_shift_res = new_pointer_register();
1548   if (TwoOperandLIRForm ) {
1549     __ move(addr, xor_res);
1550     __ logical_xor(xor_res, new_val, xor_res);
1551     __ move(xor_res, xor_shift_res);
1552     __ unsigned_shift_right(xor_shift_res,
1553                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1554                             xor_shift_res,
1555                             LIR_OprDesc::illegalOpr());
1556   } else {
1557     __ logical_xor(addr, new_val, xor_res);
1558     __ unsigned_shift_right(xor_res,
1559                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1560                             xor_shift_res,
1561                             LIR_OprDesc::illegalOpr());
1562   }
1563 
1564   if (!new_val->is_register()) {
1565     LIR_Opr new_val_reg = new_register(T_OBJECT);
1566     __ leal(new_val, new_val_reg);
1567     new_val = new_val_reg;
1568   }
1569   assert(new_val->is_register(), "must be a register at this point");
1570 
1571   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1572 
1573   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1574   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1575   __ branch_destination(slow->continuation());
1576 }
1577 
1578 #endif // INCLUDE_ALL_GCS
1579 ////////////////////////////////////////////////////////////////////////
1580 
1581 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1582 
1583   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1584   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1585   if (addr->is_address()) {
1586     LIR_Address* address = addr->as_address_ptr();
1587     // ptr cannot be an object because we use this barrier for array card marks
1588     // and addr can point in the middle of an array.
1589     LIR_Opr ptr = new_pointer_register();
1590     if (!address->index()->is_valid() && address->disp() == 0) {
1591       __ move(address->base(), ptr);
1592     } else {
1593       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1594       __ leal(addr, ptr);
1595     }
1596     addr = ptr;
1597   }
1598   assert(addr->is_register(), "must be a register at this point");
1599 
1600 #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1601   CardTableModRef_post_barrier_helper(addr, card_table_base);
1602 #else
1603   LIR_Opr tmp = new_pointer_register();
1604   if (TwoOperandLIRForm) {
1605     __ move(addr, tmp);
1606     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1607   } else {
1608     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1609   }
1610   if (can_inline_as_constant(card_table_base)) {
1611     __ move(LIR_OprFact::intConst(0),
1612               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1613   } else {
1614     __ move(LIR_OprFact::intConst(0),
1615               new LIR_Address(tmp, load_constant(card_table_base),
1616                               T_BYTE));
1617   }
1618 #endif
1619 }
1620 
1621 
1622 //------------------------field access--------------------------------------
1623 
1624 // Comment copied form templateTable_i486.cpp
1625 // ----------------------------------------------------------------------------
1626 // Volatile variables demand their effects be made known to all CPU's in
1627 // order.  Store buffers on most chips allow reads & writes to reorder; the
1628 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1629 // memory barrier (i.e., it's not sufficient that the interpreter does not
1630 // reorder volatile references, the hardware also must not reorder them).
1631 //
1632 // According to the new Java Memory Model (JMM):
1633 // (1) All volatiles are serialized wrt to each other.
1634 // ALSO reads & writes act as aquire & release, so:
1635 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1636 // the read float up to before the read.  It's OK for non-volatile memory refs
1637 // that happen before the volatile read to float down below it.
1638 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1639 // that happen BEFORE the write float down to after the write.  It's OK for
1640 // non-volatile memory refs that happen after the volatile write to float up
1641 // before it.
1642 //
1643 // We only put in barriers around volatile refs (they are expensive), not
1644 // _between_ memory refs (that would require us to track the flavor of the
1645 // previous memory refs).  Requirements (2) and (3) require some barriers
1646 // before volatile stores and after volatile loads.  These nearly cover
1647 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1648 // case is placed after volatile-stores although it could just as well go
1649 // before volatile-loads.
1650 
1651 
1652 void LIRGenerator::do_StoreField(StoreField* x) {
1653   bool needs_patching = x->needs_patching();
1654   bool is_volatile = x->field()->is_volatile();
1655   BasicType field_type = x->field_type();
1656   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1657 
1658   CodeEmitInfo* info = NULL;
1659   if (needs_patching) {
1660     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1661     info = state_for(x, x->state_before());
1662   } else if (x->needs_null_check()) {
1663     NullCheck* nc = x->explicit_null_check();
1664     if (nc == NULL) {
1665       info = state_for(x);
1666     } else {
1667       info = state_for(nc);
1668     }
1669   }
1670 
1671 
1672   LIRItem object(x->obj(), this);
1673   LIRItem value(x->value(),  this);
1674 
1675   object.load_item();
1676 
1677   if (is_volatile || needs_patching) {
1678     // load item if field is volatile (fewer special cases for volatiles)
1679     // load item if field not initialized
1680     // load item if field not constant
1681     // because of code patching we cannot inline constants
1682     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1683       value.load_byte_item();
1684     } else  {
1685       value.load_item();
1686     }
1687   } else {
1688     value.load_for_store(field_type);
1689   }
1690 
1691   set_no_result(x);
1692 
1693 #ifndef PRODUCT
1694   if (PrintNotLoaded && needs_patching) {
1695     tty->print_cr("   ###class not loaded at store_%s bci %d",
1696                   x->is_static() ?  "static" : "field", x->printable_bci());
1697   }
1698 #endif
1699 
1700   if (x->needs_null_check() &&
1701       (needs_patching ||
1702        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1703     // emit an explicit null check because the offset is too large
1704     __ null_check(object.result(), new CodeEmitInfo(info));
1705   }
1706 
1707   LIR_Address* address;
1708   if (needs_patching) {
1709     // we need to patch the offset in the instruction so don't allow
1710     // generate_address to try to be smart about emitting the -1.
1711     // Otherwise the patching code won't know how to find the
1712     // instruction to patch.
1713     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1714   } else {
1715     address = generate_address(object.result(), x->offset(), field_type);
1716   }
1717 
1718   if (is_volatile && os::is_MP()) {
1719     __ membar_release();
1720   }
1721 
1722   if (is_oop) {
1723     // Do the pre-write barrier, if any.
1724     pre_barrier(LIR_OprFact::address(address),
1725                 LIR_OprFact::illegalOpr /* pre_val */,
1726                 true /* do_load*/,
1727                 needs_patching,
1728                 (info ? new CodeEmitInfo(info) : NULL));
1729   }
1730 
1731   if (is_volatile && !needs_patching) {
1732     volatile_field_store(value.result(), address, info);
1733   } else {
1734     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1735     __ store(value.result(), address, info, patch_code);
1736   }
1737 
1738   if (is_oop) {
1739     // Store to object so mark the card of the header
1740     post_barrier(object.result(), value.result());
1741   }
1742 
1743   if (is_volatile && os::is_MP()) {
1744     __ membar();
1745   }
1746 }
1747 
1748 
1749 void LIRGenerator::do_LoadField(LoadField* x) {
1750   bool needs_patching = x->needs_patching();
1751   bool is_volatile = x->field()->is_volatile();
1752   BasicType field_type = x->field_type();
1753 
1754   CodeEmitInfo* info = NULL;
1755   if (needs_patching) {
1756     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1757     info = state_for(x, x->state_before());
1758   } else if (x->needs_null_check()) {
1759     NullCheck* nc = x->explicit_null_check();
1760     if (nc == NULL) {
1761       info = state_for(x);
1762     } else {
1763       info = state_for(nc);
1764     }
1765   }
1766 
1767   LIRItem object(x->obj(), this);
1768 
1769   object.load_item();
1770 
1771 #ifndef PRODUCT
1772   if (PrintNotLoaded && needs_patching) {
1773     tty->print_cr("   ###class not loaded at load_%s bci %d",
1774                   x->is_static() ?  "static" : "field", x->printable_bci());
1775   }
1776 #endif
1777 
1778   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1779   if (x->needs_null_check() &&
1780       (needs_patching ||
1781        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1782        stress_deopt)) {
1783     LIR_Opr obj = object.result();
1784     if (stress_deopt) {
1785       obj = new_register(T_OBJECT);
1786       __ move(LIR_OprFact::oopConst(NULL), obj);
1787     }
1788     // emit an explicit null check because the offset is too large
1789     __ null_check(obj, new CodeEmitInfo(info));
1790   }
1791 
1792   LIR_Opr reg = rlock_result(x, field_type);
1793   LIR_Address* address;
1794   if (needs_patching) {
1795     // we need to patch the offset in the instruction so don't allow
1796     // generate_address to try to be smart about emitting the -1.
1797     // Otherwise the patching code won't know how to find the
1798     // instruction to patch.
1799     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1800   } else {
1801     address = generate_address(object.result(), x->offset(), field_type);
1802   }
1803 
1804   if (is_volatile && !needs_patching) {
1805     volatile_field_load(address, reg, info);
1806   } else {
1807     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1808     __ load(address, reg, info, patch_code);
1809   }
1810 
1811   if (is_volatile && os::is_MP()) {
1812     __ membar_acquire();
1813   }
1814 }
1815 
1816 
1817 //------------------------java.nio.Buffer.checkIndex------------------------
1818 
1819 // int java.nio.Buffer.checkIndex(int)
1820 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1821   // NOTE: by the time we are in checkIndex() we are guaranteed that
1822   // the buffer is non-null (because checkIndex is package-private and
1823   // only called from within other methods in the buffer).
1824   assert(x->number_of_arguments() == 2, "wrong type");
1825   LIRItem buf  (x->argument_at(0), this);
1826   LIRItem index(x->argument_at(1), this);
1827   buf.load_item();
1828   index.load_item();
1829 
1830   LIR_Opr result = rlock_result(x);
1831   if (GenerateRangeChecks) {
1832     CodeEmitInfo* info = state_for(x);
1833     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1834     if (index.result()->is_constant()) {
1835       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1836       __ branch(lir_cond_belowEqual, T_INT, stub);
1837     } else {
1838       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1839                   java_nio_Buffer::limit_offset(), T_INT, info);
1840       __ branch(lir_cond_aboveEqual, T_INT, stub);
1841     }
1842     __ move(index.result(), result);
1843   } else {
1844     // Just load the index into the result register
1845     __ move(index.result(), result);
1846   }
1847 }
1848 
1849 
1850 //------------------------array access--------------------------------------
1851 
1852 
1853 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1854   LIRItem array(x->array(), this);
1855   array.load_item();
1856   LIR_Opr reg = rlock_result(x);
1857 
1858   CodeEmitInfo* info = NULL;
1859   if (x->needs_null_check()) {
1860     NullCheck* nc = x->explicit_null_check();
1861     if (nc == NULL) {
1862       info = state_for(x);
1863     } else {
1864       info = state_for(nc);
1865     }
1866     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1867       LIR_Opr obj = new_register(T_OBJECT);
1868       __ move(LIR_OprFact::oopConst(NULL), obj);
1869       __ null_check(obj, new CodeEmitInfo(info));
1870     }
1871   }
1872   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1873 }
1874 
1875 
1876 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1877   bool use_length = x->length() != NULL;
1878   LIRItem array(x->array(), this);
1879   LIRItem index(x->index(), this);
1880   LIRItem length(this);
1881   bool needs_range_check = x->compute_needs_range_check();
1882 
1883   if (use_length && needs_range_check) {
1884     length.set_instruction(x->length());
1885     length.load_item();
1886   }
1887 
1888   array.load_item();
1889   if (index.is_constant() && can_inline_as_constant(x->index())) {
1890     // let it be a constant
1891     index.dont_load_item();
1892   } else {
1893     index.load_item();
1894   }
1895 
1896   CodeEmitInfo* range_check_info = state_for(x);
1897   CodeEmitInfo* null_check_info = NULL;
1898   if (x->needs_null_check()) {
1899     NullCheck* nc = x->explicit_null_check();
1900     if (nc != NULL) {
1901       null_check_info = state_for(nc);
1902     } else {
1903       null_check_info = range_check_info;
1904     }
1905     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1906       LIR_Opr obj = new_register(T_OBJECT);
1907       __ move(LIR_OprFact::oopConst(NULL), obj);
1908       __ null_check(obj, new CodeEmitInfo(null_check_info));
1909     }
1910   }
1911 
1912   // emit array address setup early so it schedules better
1913   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1914 
1915   if (GenerateRangeChecks && needs_range_check) {
1916     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1917       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1918     } else if (use_length) {
1919       // TODO: use a (modified) version of array_range_check that does not require a
1920       //       constant length to be loaded to a register
1921       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1922       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1923     } else {
1924       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1925       // The range check performs the null check, so clear it out for the load
1926       null_check_info = NULL;
1927     }
1928   }
1929 
1930   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1931 }
1932 
1933 
1934 void LIRGenerator::do_NullCheck(NullCheck* x) {
1935   if (x->can_trap()) {
1936     LIRItem value(x->obj(), this);
1937     value.load_item();
1938     CodeEmitInfo* info = state_for(x);
1939     __ null_check(value.result(), info);
1940   }
1941 }
1942 
1943 
1944 void LIRGenerator::do_TypeCast(TypeCast* x) {
1945   LIRItem value(x->obj(), this);
1946   value.load_item();
1947   // the result is the same as from the node we are casting
1948   set_result(x, value.result());
1949 }
1950 
1951 
1952 void LIRGenerator::do_Throw(Throw* x) {
1953   LIRItem exception(x->exception(), this);
1954   exception.load_item();
1955   set_no_result(x);
1956   LIR_Opr exception_opr = exception.result();
1957   CodeEmitInfo* info = state_for(x, x->state());
1958 
1959 #ifndef PRODUCT
1960   if (PrintC1Statistics) {
1961     increment_counter(Runtime1::throw_count_address(), T_INT);
1962   }
1963 #endif
1964 
1965   // check if the instruction has an xhandler in any of the nested scopes
1966   bool unwind = false;
1967   if (info->exception_handlers()->length() == 0) {
1968     // this throw is not inside an xhandler
1969     unwind = true;
1970   } else {
1971     // get some idea of the throw type
1972     bool type_is_exact = true;
1973     ciType* throw_type = x->exception()->exact_type();
1974     if (throw_type == NULL) {
1975       type_is_exact = false;
1976       throw_type = x->exception()->declared_type();
1977     }
1978     if (throw_type != NULL && throw_type->is_instance_klass()) {
1979       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1980       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1981     }
1982   }
1983 
1984   // do null check before moving exception oop into fixed register
1985   // to avoid a fixed interval with an oop during the null check.
1986   // Use a copy of the CodeEmitInfo because debug information is
1987   // different for null_check and throw.
1988   if (GenerateCompilerNullChecks &&
1989       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1990     // if the exception object wasn't created using new then it might be null.
1991     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1992   }
1993 
1994   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1995     // we need to go through the exception lookup path to get JVMTI
1996     // notification done
1997     unwind = false;
1998   }
1999 
2000   // move exception oop into fixed register
2001   __ move(exception_opr, exceptionOopOpr());
2002 
2003   if (unwind) {
2004     __ unwind_exception(exceptionOopOpr());
2005   } else {
2006     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2007   }
2008 }
2009 
2010 
2011 void LIRGenerator::do_RoundFP(RoundFP* x) {
2012   LIRItem input(x->input(), this);
2013   input.load_item();
2014   LIR_Opr input_opr = input.result();
2015   assert(input_opr->is_register(), "why round if value is not in a register?");
2016   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2017   if (input_opr->is_single_fpu()) {
2018     set_result(x, round_item(input_opr)); // This code path not currently taken
2019   } else {
2020     LIR_Opr result = new_register(T_DOUBLE);
2021     set_vreg_flag(result, must_start_in_memory);
2022     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2023     set_result(x, result);
2024   }
2025 }
2026 
2027 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2028 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2029 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2030   LIRItem base(x->base(), this);
2031   LIRItem idx(this);
2032 
2033   base.load_item();
2034   if (x->has_index()) {
2035     idx.set_instruction(x->index());
2036     idx.load_nonconstant();
2037   }
2038 
2039   LIR_Opr reg = rlock_result(x, x->basic_type());
2040 
2041   int   log2_scale = 0;
2042   if (x->has_index()) {
2043     log2_scale = x->log2_scale();
2044   }
2045 
2046   assert(!x->has_index() || idx.value() == x->index(), "should match");
2047 
2048   LIR_Opr base_op = base.result();
2049   LIR_Opr index_op = idx.result();
2050 #ifndef _LP64
2051   if (base_op->type() == T_LONG) {
2052     base_op = new_register(T_INT);
2053     __ convert(Bytecodes::_l2i, base.result(), base_op);
2054   }
2055   if (x->has_index()) {
2056     if (index_op->type() == T_LONG) {
2057       LIR_Opr long_index_op = index_op;
2058       if (index_op->is_constant()) {
2059         long_index_op = new_register(T_LONG);
2060         __ move(index_op, long_index_op);
2061       }
2062       index_op = new_register(T_INT);
2063       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2064     } else {
2065       assert(x->index()->type()->tag() == intTag, "must be");
2066     }
2067   }
2068   // At this point base and index should be all ints.
2069   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2070   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2071 #else
2072   if (x->has_index()) {
2073     if (index_op->type() == T_INT) {
2074       if (!index_op->is_constant()) {
2075         index_op = new_register(T_LONG);
2076         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2077       }
2078     } else {
2079       assert(index_op->type() == T_LONG, "must be");
2080       if (index_op->is_constant()) {
2081         index_op = new_register(T_LONG);
2082         __ move(idx.result(), index_op);
2083       }
2084     }
2085   }
2086   // At this point base is a long non-constant
2087   // Index is a long register or a int constant.
2088   // We allow the constant to stay an int because that would allow us a more compact encoding by
2089   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2090   // move it into a register first.
2091   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2092   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2093                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2094 #endif
2095 
2096   BasicType dst_type = x->basic_type();
2097 
2098   LIR_Address* addr;
2099   if (index_op->is_constant()) {
2100     assert(log2_scale == 0, "must not have a scale");
2101     assert(index_op->type() == T_INT, "only int constants supported");
2102     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2103   } else {
2104 #ifdef X86
2105     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2106 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2107     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2108 #else
2109     if (index_op->is_illegal() || log2_scale == 0) {
2110       addr = new LIR_Address(base_op, index_op, dst_type);
2111     } else {
2112       LIR_Opr tmp = new_pointer_register();
2113       __ shift_left(index_op, log2_scale, tmp);
2114       addr = new LIR_Address(base_op, tmp, dst_type);
2115     }
2116 #endif
2117   }
2118 
2119   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2120     __ unaligned_move(addr, reg);
2121   } else {
2122     if (dst_type == T_OBJECT && x->is_wide()) {
2123       __ move_wide(addr, reg);
2124     } else {
2125       __ move(addr, reg);
2126     }
2127   }
2128 }
2129 
2130 
2131 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2132   int  log2_scale = 0;
2133   BasicType type = x->basic_type();
2134 
2135   if (x->has_index()) {
2136     log2_scale = x->log2_scale();
2137   }
2138 
2139   LIRItem base(x->base(), this);
2140   LIRItem value(x->value(), this);
2141   LIRItem idx(this);
2142 
2143   base.load_item();
2144   if (x->has_index()) {
2145     idx.set_instruction(x->index());
2146     idx.load_item();
2147   }
2148 
2149   if (type == T_BYTE || type == T_BOOLEAN) {
2150     value.load_byte_item();
2151   } else {
2152     value.load_item();
2153   }
2154 
2155   set_no_result(x);
2156 
2157   LIR_Opr base_op = base.result();
2158   LIR_Opr index_op = idx.result();
2159 
2160 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2161   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2162 #else
2163 #ifndef _LP64
2164   if (base_op->type() == T_LONG) {
2165     base_op = new_register(T_INT);
2166     __ convert(Bytecodes::_l2i, base.result(), base_op);
2167   }
2168   if (x->has_index()) {
2169     if (index_op->type() == T_LONG) {
2170       index_op = new_register(T_INT);
2171       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2172     }
2173   }
2174   // At this point base and index should be all ints and not constants
2175   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2176   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2177 #else
2178   if (x->has_index()) {
2179     if (index_op->type() == T_INT) {
2180       index_op = new_register(T_LONG);
2181       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2182     }
2183   }
2184   // At this point base and index are long and non-constant
2185   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2186   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2187 #endif
2188 
2189   if (log2_scale != 0) {
2190     // temporary fix (platform dependent code without shift on Intel would be better)
2191     // TODO: ARM also allows embedded shift in the address
2192     __ shift_left(index_op, log2_scale, index_op);
2193   }
2194 
2195   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2196 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2197   __ move(value.result(), addr);
2198 }
2199 
2200 
2201 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2202   BasicType type = x->basic_type();
2203   LIRItem src(x->object(), this);
2204   LIRItem off(x->offset(), this);
2205 
2206   off.load_item();
2207   src.load_item();
2208 
2209   LIR_Opr value = rlock_result(x, x->basic_type());
2210 
2211   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2212 
2213 #if INCLUDE_ALL_GCS
2214   // We might be reading the value of the referent field of a
2215   // Reference object in order to attach it back to the live
2216   // object graph. If G1 is enabled then we need to record
2217   // the value that is being returned in an SATB log buffer.
2218   //
2219   // We need to generate code similar to the following...
2220   //
2221   // if (offset == java_lang_ref_Reference::referent_offset) {
2222   //   if (src != NULL) {
2223   //     if (klass(src)->reference_type() != REF_NONE) {
2224   //       pre_barrier(..., value, ...);
2225   //     }
2226   //   }
2227   // }
2228 
2229   if (UseG1GC && type == T_OBJECT) {
2230     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2231     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2232     bool gen_source_check = true;    // Assume we need to check the src object for null.
2233     bool gen_type_check = true;      // Assume we need to check the reference_type.
2234 
2235     if (off.is_constant()) {
2236       jlong off_con = (off.type()->is_int() ?
2237                         (jlong) off.get_jint_constant() :
2238                         off.get_jlong_constant());
2239 
2240 
2241       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2242         // The constant offset is something other than referent_offset.
2243         // We can skip generating/checking the remaining guards and
2244         // skip generation of the code stub.
2245         gen_pre_barrier = false;
2246       } else {
2247         // The constant offset is the same as referent_offset -
2248         // we do not need to generate a runtime offset check.
2249         gen_offset_check = false;
2250       }
2251     }
2252 
2253     // We don't need to generate stub if the source object is an array
2254     if (gen_pre_barrier && src.type()->is_array()) {
2255       gen_pre_barrier = false;
2256     }
2257 
2258     if (gen_pre_barrier) {
2259       // We still need to continue with the checks.
2260       if (src.is_constant()) {
2261         ciObject* src_con = src.get_jobject_constant();
2262         guarantee(src_con != NULL, "no source constant");
2263 
2264         if (src_con->is_null_object()) {
2265           // The constant src object is null - We can skip
2266           // generating the code stub.
2267           gen_pre_barrier = false;
2268         } else {
2269           // Non-null constant source object. We still have to generate
2270           // the slow stub - but we don't need to generate the runtime
2271           // null object check.
2272           gen_source_check = false;
2273         }
2274       }
2275     }
2276     if (gen_pre_barrier && !PatchALot) {
2277       // Can the klass of object be statically determined to be
2278       // a sub-class of Reference?
2279       ciType* type = src.value()->declared_type();
2280       if ((type != NULL) && type->is_loaded()) {
2281         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2282           gen_type_check = false;
2283         } else if (type->is_klass() &&
2284                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2285           // Not Reference and not Object klass.
2286           gen_pre_barrier = false;
2287         }
2288       }
2289     }
2290 
2291     if (gen_pre_barrier) {
2292       LabelObj* Lcont = new LabelObj();
2293 
2294       // We can have generate one runtime check here. Let's start with
2295       // the offset check.
2296       if (gen_offset_check) {
2297         // if (offset != referent_offset) -> continue
2298         // If offset is an int then we can do the comparison with the
2299         // referent_offset constant; otherwise we need to move
2300         // referent_offset into a temporary register and generate
2301         // a reg-reg compare.
2302 
2303         LIR_Opr referent_off;
2304 
2305         if (off.type()->is_int()) {
2306           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2307         } else {
2308           assert(off.type()->is_long(), "what else?");
2309           referent_off = new_register(T_LONG);
2310           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2311         }
2312         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2313         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2314       }
2315       if (gen_source_check) {
2316         // offset is a const and equals referent offset
2317         // if (source == null) -> continue
2318         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2319         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2320       }
2321       LIR_Opr src_klass = new_register(T_OBJECT);
2322       if (gen_type_check) {
2323         // We have determined that offset == referent_offset && src != null.
2324         // if (src->_klass->_reference_type == REF_NONE) -> continue
2325         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2326         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2327         LIR_Opr reference_type = new_register(T_INT);
2328         __ move(reference_type_addr, reference_type);
2329         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2330         __ branch(lir_cond_equal, T_INT, Lcont->label());
2331       }
2332       {
2333         // We have determined that src->_klass->_reference_type != REF_NONE
2334         // so register the value in the referent field with the pre-barrier.
2335         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2336                     value  /* pre_val */,
2337                     false  /* do_load */,
2338                     false  /* patch */,
2339                     NULL   /* info */);
2340       }
2341       __ branch_destination(Lcont->label());
2342     }
2343   }
2344 #endif // INCLUDE_ALL_GCS
2345 
2346   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2347 }
2348 
2349 
2350 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2351   BasicType type = x->basic_type();
2352   LIRItem src(x->object(), this);
2353   LIRItem off(x->offset(), this);
2354   LIRItem data(x->value(), this);
2355 
2356   src.load_item();
2357   if (type == T_BOOLEAN || type == T_BYTE) {
2358     data.load_byte_item();
2359   } else {
2360     data.load_item();
2361   }
2362   off.load_item();
2363 
2364   set_no_result(x);
2365 
2366   if (x->is_volatile() && os::is_MP()) __ membar_release();
2367   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2368   if (x->is_volatile() && os::is_MP()) __ membar();
2369 }
2370 
2371 
2372 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2373   LIRItem src(x->object(), this);
2374   LIRItem off(x->offset(), this);
2375 
2376   src.load_item();
2377   if (off.is_constant() && can_inline_as_constant(x->offset())) {
2378     // let it be a constant
2379     off.dont_load_item();
2380   } else {
2381     off.load_item();
2382   }
2383 
2384   set_no_result(x);
2385 
2386   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2387   __ prefetch(addr, is_store);
2388 }
2389 
2390 
2391 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2392   do_UnsafePrefetch(x, false);
2393 }
2394 
2395 
2396 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2397   do_UnsafePrefetch(x, true);
2398 }
2399 
2400 
2401 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2402   int lng = x->length();
2403 
2404   for (int i = 0; i < lng; i++) {
2405     SwitchRange* one_range = x->at(i);
2406     int low_key = one_range->low_key();
2407     int high_key = one_range->high_key();
2408     BlockBegin* dest = one_range->sux();
2409     if (low_key == high_key) {
2410       __ cmp(lir_cond_equal, value, low_key);
2411       __ branch(lir_cond_equal, T_INT, dest);
2412     } else if (high_key - low_key == 1) {
2413       __ cmp(lir_cond_equal, value, low_key);
2414       __ branch(lir_cond_equal, T_INT, dest);
2415       __ cmp(lir_cond_equal, value, high_key);
2416       __ branch(lir_cond_equal, T_INT, dest);
2417     } else {
2418       LabelObj* L = new LabelObj();
2419       __ cmp(lir_cond_less, value, low_key);
2420       __ branch(lir_cond_less, T_INT, L->label());
2421       __ cmp(lir_cond_lessEqual, value, high_key);
2422       __ branch(lir_cond_lessEqual, T_INT, dest);
2423       __ branch_destination(L->label());
2424     }
2425   }
2426   __ jump(default_sux);
2427 }
2428 
2429 
2430 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2431   SwitchRangeList* res = new SwitchRangeList();
2432   int len = x->length();
2433   if (len > 0) {
2434     BlockBegin* sux = x->sux_at(0);
2435     int key = x->lo_key();
2436     BlockBegin* default_sux = x->default_sux();
2437     SwitchRange* range = new SwitchRange(key, sux);
2438     for (int i = 0; i < len; i++, key++) {
2439       BlockBegin* new_sux = x->sux_at(i);
2440       if (sux == new_sux) {
2441         // still in same range
2442         range->set_high_key(key);
2443       } else {
2444         // skip tests which explicitly dispatch to the default
2445         if (sux != default_sux) {
2446           res->append(range);
2447         }
2448         range = new SwitchRange(key, new_sux);
2449       }
2450       sux = new_sux;
2451     }
2452     if (res->length() == 0 || res->last() != range)  res->append(range);
2453   }
2454   return res;
2455 }
2456 
2457 
2458 // we expect the keys to be sorted by increasing value
2459 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2460   SwitchRangeList* res = new SwitchRangeList();
2461   int len = x->length();
2462   if (len > 0) {
2463     BlockBegin* default_sux = x->default_sux();
2464     int key = x->key_at(0);
2465     BlockBegin* sux = x->sux_at(0);
2466     SwitchRange* range = new SwitchRange(key, sux);
2467     for (int i = 1; i < len; i++) {
2468       int new_key = x->key_at(i);
2469       BlockBegin* new_sux = x->sux_at(i);
2470       if (key+1 == new_key && sux == new_sux) {
2471         // still in same range
2472         range->set_high_key(new_key);
2473       } else {
2474         // skip tests which explicitly dispatch to the default
2475         if (range->sux() != default_sux) {
2476           res->append(range);
2477         }
2478         range = new SwitchRange(new_key, new_sux);
2479       }
2480       key = new_key;
2481       sux = new_sux;
2482     }
2483     if (res->length() == 0 || res->last() != range)  res->append(range);
2484   }
2485   return res;
2486 }
2487 
2488 
2489 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2490   LIRItem tag(x->tag(), this);
2491   tag.load_item();
2492   set_no_result(x);
2493 
2494   if (x->is_safepoint()) {
2495     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2496   }
2497 
2498   // move values into phi locations
2499   move_to_phi(x->state());
2500 
2501   int lo_key = x->lo_key();
2502   int hi_key = x->hi_key();
2503   int len = x->length();
2504   LIR_Opr value = tag.result();
2505   if (UseTableRanges) {
2506     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2507   } else {
2508     for (int i = 0; i < len; i++) {
2509       __ cmp(lir_cond_equal, value, i + lo_key);
2510       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2511     }
2512     __ jump(x->default_sux());
2513   }
2514 }
2515 
2516 
2517 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2518   LIRItem tag(x->tag(), this);
2519   tag.load_item();
2520   set_no_result(x);
2521 
2522   if (x->is_safepoint()) {
2523     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2524   }
2525 
2526   // move values into phi locations
2527   move_to_phi(x->state());
2528 
2529   LIR_Opr value = tag.result();
2530   if (UseTableRanges) {
2531     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2532   } else {
2533     int len = x->length();
2534     for (int i = 0; i < len; i++) {
2535       __ cmp(lir_cond_equal, value, x->key_at(i));
2536       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2537     }
2538     __ jump(x->default_sux());
2539   }
2540 }
2541 
2542 
2543 void LIRGenerator::do_Goto(Goto* x) {
2544   set_no_result(x);
2545 
2546   if (block()->next()->as_OsrEntry()) {
2547     // need to free up storage used for OSR entry point
2548     LIR_Opr osrBuffer = block()->next()->operand();
2549     BasicTypeList signature;
2550     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2551     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2552     __ move(osrBuffer, cc->args()->at(0));
2553     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2554                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2555   }
2556 
2557   if (x->is_safepoint()) {
2558     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2559 
2560     // increment backedge counter if needed
2561     CodeEmitInfo* info = state_for(x, state);
2562     increment_backedge_counter(info, x->profiled_bci());
2563     CodeEmitInfo* safepoint_info = state_for(x, state);
2564     __ safepoint(safepoint_poll_register(), safepoint_info);
2565   }
2566 
2567   // Gotos can be folded Ifs, handle this case.
2568   if (x->should_profile()) {
2569     ciMethod* method = x->profiled_method();
2570     assert(method != NULL, "method should be set if branch is profiled");
2571     ciMethodData* md = method->method_data_or_null();
2572     assert(md != NULL, "Sanity");
2573     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2574     assert(data != NULL, "must have profiling data");
2575     int offset;
2576     if (x->direction() == Goto::taken) {
2577       assert(data->is_BranchData(), "need BranchData for two-way branches");
2578       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2579     } else if (x->direction() == Goto::not_taken) {
2580       assert(data->is_BranchData(), "need BranchData for two-way branches");
2581       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2582     } else {
2583       assert(data->is_JumpData(), "need JumpData for branches");
2584       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2585     }
2586     LIR_Opr md_reg = new_register(T_METADATA);
2587     __ metadata2reg(md->constant_encoding(), md_reg);
2588 
2589     increment_counter(new LIR_Address(md_reg, offset,
2590                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2591   }
2592 
2593   // emit phi-instruction move after safepoint since this simplifies
2594   // describing the state as the safepoint.
2595   move_to_phi(x->state());
2596 
2597   __ jump(x->default_sux());
2598 }
2599 
2600 /**
2601  * Emit profiling code if needed for arguments, parameters, return value types
2602  *
2603  * @param md                    MDO the code will update at runtime
2604  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2605  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2606  * @param profiled_k            current profile
2607  * @param obj                   IR node for the object to be profiled
2608  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2609  *                              Set once we find an update to make and use for next ones.
2610  * @param not_null              true if we know obj cannot be null
2611  * @param signature_at_call_k   signature at call for obj
2612  * @param callee_signature_k    signature of callee for obj
2613  *                              at call and callee signatures differ at method handle call
2614  * @return                      the only klass we know will ever be seen at this profile point
2615  */
2616 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2617                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2618                                     ciKlass* callee_signature_k) {
2619   ciKlass* result = NULL;
2620   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2621   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2622   // known not to be null or null bit already set and already set to
2623   // unknown: nothing we can do to improve profiling
2624   if (!do_null && !do_update) {
2625     return result;
2626   }
2627 
2628   ciKlass* exact_klass = NULL;
2629   Compilation* comp = Compilation::current();
2630   if (do_update) {
2631     // try to find exact type, using CHA if possible, so that loading
2632     // the klass from the object can be avoided
2633     ciType* type = obj->exact_type();
2634     if (type == NULL) {
2635       type = obj->declared_type();
2636       type = comp->cha_exact_type(type);
2637     }
2638     assert(type == NULL || type->is_klass(), "type should be class");
2639     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2640 
2641     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2642   }
2643 
2644   if (!do_null && !do_update) {
2645     return result;
2646   }
2647 
2648   ciKlass* exact_signature_k = NULL;
2649   if (do_update) {
2650     // Is the type from the signature exact (the only one possible)?
2651     exact_signature_k = signature_at_call_k->exact_klass();
2652     if (exact_signature_k == NULL) {
2653       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2654     } else {
2655       result = exact_signature_k;
2656       // Known statically. No need to emit any code: prevent
2657       // LIR_Assembler::emit_profile_type() from emitting useless code
2658       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2659     }
2660     // exact_klass and exact_signature_k can be both non NULL but
2661     // different if exact_klass is loaded after the ciObject for
2662     // exact_signature_k is created.
2663     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2664       // sometimes the type of the signature is better than the best type
2665       // the compiler has
2666       exact_klass = exact_signature_k;
2667     }
2668     if (callee_signature_k != NULL &&
2669         callee_signature_k != signature_at_call_k) {
2670       ciKlass* improved_klass = callee_signature_k->exact_klass();
2671       if (improved_klass == NULL) {
2672         improved_klass = comp->cha_exact_type(callee_signature_k);
2673       }
2674       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2675         exact_klass = exact_signature_k;
2676       }
2677     }
2678     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2679   }
2680 
2681   if (!do_null && !do_update) {
2682     return result;
2683   }
2684 
2685   if (mdp == LIR_OprFact::illegalOpr) {
2686     mdp = new_register(T_METADATA);
2687     __ metadata2reg(md->constant_encoding(), mdp);
2688     if (md_base_offset != 0) {
2689       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2690       mdp = new_pointer_register();
2691       __ leal(LIR_OprFact::address(base_type_address), mdp);
2692     }
2693   }
2694   LIRItem value(obj, this);
2695   value.load_item();
2696   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2697                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2698   return result;
2699 }
2700 
2701 // profile parameters on entry to the root of the compilation
2702 void LIRGenerator::profile_parameters(Base* x) {
2703   if (compilation()->profile_parameters()) {
2704     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2705     ciMethodData* md = scope()->method()->method_data_or_null();
2706     assert(md != NULL, "Sanity");
2707 
2708     if (md->parameters_type_data() != NULL) {
2709       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2710       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2711       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2712       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2713         LIR_Opr src = args->at(i);
2714         assert(!src->is_illegal(), "check");
2715         BasicType t = src->type();
2716         if (t == T_OBJECT || t == T_ARRAY) {
2717           intptr_t profiled_k = parameters->type(j);
2718           Local* local = x->state()->local_at(java_index)->as_Local();
2719           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2720                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2721                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2722           // If the profile is known statically set it once for all and do not emit any code
2723           if (exact != NULL) {
2724             md->set_parameter_type(j, exact);
2725           }
2726           j++;
2727         }
2728         java_index += type2size[t];
2729       }
2730     }
2731   }
2732 }
2733 
2734 void LIRGenerator::do_Base(Base* x) {
2735   __ std_entry(LIR_OprFact::illegalOpr);
2736   // Emit moves from physical registers / stack slots to virtual registers
2737   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2738   IRScope* irScope = compilation()->hir()->top_scope();
2739   int java_index = 0;
2740   for (int i = 0; i < args->length(); i++) {
2741     LIR_Opr src = args->at(i);
2742     assert(!src->is_illegal(), "check");
2743     BasicType t = src->type();
2744 
2745     // Types which are smaller than int are passed as int, so
2746     // correct the type which passed.
2747     switch (t) {
2748     case T_BYTE:
2749     case T_BOOLEAN:
2750     case T_SHORT:
2751     case T_CHAR:
2752       t = T_INT;
2753       break;
2754     }
2755 
2756     LIR_Opr dest = new_register(t);
2757     __ move(src, dest);
2758 
2759     // Assign new location to Local instruction for this local
2760     Local* local = x->state()->local_at(java_index)->as_Local();
2761     assert(local != NULL, "Locals for incoming arguments must have been created");
2762 #ifndef __SOFTFP__
2763     // The java calling convention passes double as long and float as int.
2764     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2765 #endif // __SOFTFP__
2766     local->set_operand(dest);
2767     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2768     java_index += type2size[t];
2769   }
2770 
2771   if (compilation()->env()->dtrace_method_probes()) {
2772     BasicTypeList signature;
2773     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2774     signature.append(T_METADATA); // Method*
2775     LIR_OprList* args = new LIR_OprList();
2776     args->append(getThreadPointer());
2777     LIR_Opr meth = new_register(T_METADATA);
2778     __ metadata2reg(method()->constant_encoding(), meth);
2779     args->append(meth);
2780     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2781   }
2782 
2783   if (method()->is_synchronized()) {
2784     LIR_Opr obj;
2785     if (method()->is_static()) {
2786       obj = new_register(T_OBJECT);
2787       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2788     } else {
2789       Local* receiver = x->state()->local_at(0)->as_Local();
2790       assert(receiver != NULL, "must already exist");
2791       obj = receiver->operand();
2792     }
2793     assert(obj->is_valid(), "must be valid");
2794 
2795     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2796       LIR_Opr lock = new_register(T_INT);
2797       __ load_stack_address_monitor(0, lock);
2798 
2799       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2800       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2801 
2802       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2803       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2804     }
2805   }
2806 
2807   // increment invocation counters if needed
2808   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2809     profile_parameters(x);
2810     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2811     increment_invocation_counter(info);
2812   }
2813 
2814   // all blocks with a successor must end with an unconditional jump
2815   // to the successor even if they are consecutive
2816   __ jump(x->default_sux());
2817 }
2818 
2819 
2820 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2821   // construct our frame and model the production of incoming pointer
2822   // to the OSR buffer.
2823   __ osr_entry(LIR_Assembler::osrBufferPointer());
2824   LIR_Opr result = rlock_result(x);
2825   __ move(LIR_Assembler::osrBufferPointer(), result);
2826 }
2827 
2828 
2829 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2830   assert(args->length() == arg_list->length(),
2831          err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
2832   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2833     LIRItem* param = args->at(i);
2834     LIR_Opr loc = arg_list->at(i);
2835     if (loc->is_register()) {
2836       param->load_item_force(loc);
2837     } else {
2838       LIR_Address* addr = loc->as_address_ptr();
2839       param->load_for_store(addr->type());
2840       if (addr->type() == T_OBJECT) {
2841         __ move_wide(param->result(), addr);
2842       } else
2843         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2844           __ unaligned_move(param->result(), addr);
2845         } else {
2846           __ move(param->result(), addr);
2847         }
2848     }
2849   }
2850 
2851   if (x->has_receiver()) {
2852     LIRItem* receiver = args->at(0);
2853     LIR_Opr loc = arg_list->at(0);
2854     if (loc->is_register()) {
2855       receiver->load_item_force(loc);
2856     } else {
2857       assert(loc->is_address(), "just checking");
2858       receiver->load_for_store(T_OBJECT);
2859       __ move_wide(receiver->result(), loc->as_address_ptr());
2860     }
2861   }
2862 }
2863 
2864 
2865 // Visits all arguments, returns appropriate items without loading them
2866 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2867   LIRItemList* argument_items = new LIRItemList();
2868   if (x->has_receiver()) {
2869     LIRItem* receiver = new LIRItem(x->receiver(), this);
2870     argument_items->append(receiver);
2871   }
2872   for (int i = 0; i < x->number_of_arguments(); i++) {
2873     LIRItem* param = new LIRItem(x->argument_at(i), this);
2874     argument_items->append(param);
2875   }
2876   return argument_items;
2877 }
2878 
2879 
2880 // The invoke with receiver has following phases:
2881 //   a) traverse and load/lock receiver;
2882 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2883 //   c) push receiver on stack
2884 //   d) load each of the items and push on stack
2885 //   e) unlock receiver
2886 //   f) move receiver into receiver-register %o0
2887 //   g) lock result registers and emit call operation
2888 //
2889 // Before issuing a call, we must spill-save all values on stack
2890 // that are in caller-save register. "spill-save" moves those registers
2891 // either in a free callee-save register or spills them if no free
2892 // callee save register is available.
2893 //
2894 // The problem is where to invoke spill-save.
2895 // - if invoked between e) and f), we may lock callee save
2896 //   register in "spill-save" that destroys the receiver register
2897 //   before f) is executed
2898 // - if we rearrange f) to be earlier (by loading %o0) it
2899 //   may destroy a value on the stack that is currently in %o0
2900 //   and is waiting to be spilled
2901 // - if we keep the receiver locked while doing spill-save,
2902 //   we cannot spill it as it is spill-locked
2903 //
2904 void LIRGenerator::do_Invoke(Invoke* x) {
2905   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2906 
2907   LIR_OprList* arg_list = cc->args();
2908   LIRItemList* args = invoke_visit_arguments(x);
2909   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2910 
2911   // setup result register
2912   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2913   if (x->type() != voidType) {
2914     result_register = result_register_for(x->type());
2915   }
2916 
2917   CodeEmitInfo* info = state_for(x, x->state());
2918 
2919   invoke_load_arguments(x, args, arg_list);
2920 
2921   if (x->has_receiver()) {
2922     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2923     receiver = args->at(0)->result();
2924   }
2925 
2926   // emit invoke code
2927   bool optimized = x->target_is_loaded() && x->target_is_final();
2928   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2929 
2930   // JSR 292
2931   // Preserve the SP over MethodHandle call sites, if needed.
2932   ciMethod* target = x->target();
2933   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2934                                   target->is_method_handle_intrinsic() ||
2935                                   target->is_compiled_lambda_form());
2936   if (is_method_handle_invoke) {
2937     info->set_is_method_handle_invoke(true);
2938     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2939         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2940     }
2941   }
2942 
2943   switch (x->code()) {
2944     case Bytecodes::_invokestatic:
2945       __ call_static(target, result_register,
2946                      SharedRuntime::get_resolve_static_call_stub(),
2947                      arg_list, info);
2948       break;
2949     case Bytecodes::_invokespecial:
2950     case Bytecodes::_invokevirtual:
2951     case Bytecodes::_invokeinterface:
2952       // for final target we still produce an inline cache, in order
2953       // to be able to call mixed mode
2954       if (x->code() == Bytecodes::_invokespecial || optimized) {
2955         __ call_opt_virtual(target, receiver, result_register,
2956                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2957                             arg_list, info);
2958       } else if (x->vtable_index() < 0) {
2959         __ call_icvirtual(target, receiver, result_register,
2960                           SharedRuntime::get_resolve_virtual_call_stub(),
2961                           arg_list, info);
2962       } else {
2963         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2964         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2965         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2966       }
2967       break;
2968     case Bytecodes::_invokedynamic: {
2969       __ call_dynamic(target, receiver, result_register,
2970                       SharedRuntime::get_resolve_static_call_stub(),
2971                       arg_list, info);
2972       break;
2973     }
2974     default:
2975       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
2976       break;
2977   }
2978 
2979   // JSR 292
2980   // Restore the SP after MethodHandle call sites, if needed.
2981   if (is_method_handle_invoke
2982       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2983     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2984   }
2985 
2986   if (x->type()->is_float() || x->type()->is_double()) {
2987     // Force rounding of results from non-strictfp when in strictfp
2988     // scope (or when we don't know the strictness of the callee, to
2989     // be safe.)
2990     if (method()->is_strict()) {
2991       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2992         result_register = round_item(result_register);
2993       }
2994     }
2995   }
2996 
2997   if (result_register->is_valid()) {
2998     LIR_Opr result = rlock_result(x);
2999     __ move(result_register, result);
3000   }
3001 }
3002 
3003 
3004 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3005   assert(x->number_of_arguments() == 1, "wrong type");
3006   LIRItem value       (x->argument_at(0), this);
3007   LIR_Opr reg = rlock_result(x);
3008   value.load_item();
3009   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3010   __ move(tmp, reg);
3011 }
3012 
3013 
3014 
3015 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3016 void LIRGenerator::do_IfOp(IfOp* x) {
3017 #ifdef ASSERT
3018   {
3019     ValueTag xtag = x->x()->type()->tag();
3020     ValueTag ttag = x->tval()->type()->tag();
3021     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3022     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3023     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3024   }
3025 #endif
3026 
3027   LIRItem left(x->x(), this);
3028   LIRItem right(x->y(), this);
3029   left.load_item();
3030   if (can_inline_as_constant(right.value())) {
3031     right.dont_load_item();
3032   } else {
3033     right.load_item();
3034   }
3035 
3036   LIRItem t_val(x->tval(), this);
3037   LIRItem f_val(x->fval(), this);
3038   t_val.dont_load_item();
3039   f_val.dont_load_item();
3040   LIR_Opr reg = rlock_result(x);
3041 
3042   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3043   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3044 }
3045 
3046 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
3047     assert(x->number_of_arguments() == expected_arguments, "wrong type");
3048     LIR_Opr reg = result_register_for(x->type());
3049     __ call_runtime_leaf(routine, getThreadTemp(),
3050                          reg, new LIR_OprList());
3051     LIR_Opr result = rlock_result(x);
3052     __ move(reg, result);
3053 }
3054 
3055 #ifdef TRACE_HAVE_INTRINSICS
3056 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
3057     LIR_Opr thread = getThreadPointer();
3058     LIR_Opr osthread = new_pointer_register();
3059     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
3060     size_t thread_id_size = OSThread::thread_id_size();
3061     if (thread_id_size == (size_t) BytesPerLong) {
3062       LIR_Opr id = new_register(T_LONG);
3063       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
3064       __ convert(Bytecodes::_l2i, id, rlock_result(x));
3065     } else if (thread_id_size == (size_t) BytesPerInt) {
3066       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
3067     } else {
3068       ShouldNotReachHere();
3069     }
3070 }
3071 
3072 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3073     CodeEmitInfo* info = state_for(x);
3074     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3075     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
3076     assert(info != NULL, "must have info");
3077     LIRItem arg(x->argument_at(1), this);
3078     arg.load_item();
3079     LIR_Opr klass = new_pointer_register();
3080     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
3081     LIR_Opr id = new_register(T_LONG);
3082     ByteSize offset = TRACE_ID_OFFSET;
3083     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3084     __ move(trace_id_addr, id);
3085     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3086     __ store(id, trace_id_addr);
3087     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
3088     __ move(id, rlock_result(x));
3089 }
3090 #endif
3091 
3092 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3093   switch (x->id()) {
3094   case vmIntrinsics::_intBitsToFloat      :
3095   case vmIntrinsics::_doubleToRawLongBits :
3096   case vmIntrinsics::_longBitsToDouble    :
3097   case vmIntrinsics::_floatToRawIntBits   : {
3098     do_FPIntrinsics(x);
3099     break;
3100   }
3101 
3102 #ifdef TRACE_HAVE_INTRINSICS
3103   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
3104   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
3105   case vmIntrinsics::_counterTime:
3106     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
3107     break;
3108 #endif
3109 
3110   case vmIntrinsics::_currentTimeMillis:
3111     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
3112     break;
3113 
3114   case vmIntrinsics::_nanoTime:
3115     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
3116     break;
3117 
3118   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3119   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3120   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3121   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3122 
3123   case vmIntrinsics::_dlog:           // fall through
3124   case vmIntrinsics::_dlog10:         // fall through
3125   case vmIntrinsics::_dabs:           // fall through
3126   case vmIntrinsics::_dsqrt:          // fall through
3127   case vmIntrinsics::_dtan:           // fall through
3128   case vmIntrinsics::_dsin :          // fall through
3129   case vmIntrinsics::_dcos :          // fall through
3130   case vmIntrinsics::_dexp :          // fall through
3131   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3132   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3133 
3134   // java.nio.Buffer.checkIndex
3135   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3136 
3137   case vmIntrinsics::_compareAndSwapObject:
3138     do_CompareAndSwap(x, objectType);
3139     break;
3140   case vmIntrinsics::_compareAndSwapInt:
3141     do_CompareAndSwap(x, intType);
3142     break;
3143   case vmIntrinsics::_compareAndSwapLong:
3144     do_CompareAndSwap(x, longType);
3145     break;
3146 
3147   case vmIntrinsics::_loadFence :
3148     if (os::is_MP()) __ membar_acquire();
3149     break;
3150   case vmIntrinsics::_storeFence:
3151     if (os::is_MP()) __ membar_release();
3152     break;
3153   case vmIntrinsics::_fullFence :
3154     if (os::is_MP()) __ membar();
3155     break;
3156 
3157   case vmIntrinsics::_Reference_get:
3158     do_Reference_get(x);
3159     break;
3160 
3161   case vmIntrinsics::_updateCRC32:
3162   case vmIntrinsics::_updateBytesCRC32:
3163   case vmIntrinsics::_updateByteBufferCRC32:
3164     do_update_CRC32(x);
3165     break;
3166 
3167   default: ShouldNotReachHere(); break;
3168   }
3169 }
3170 
3171 void LIRGenerator::profile_arguments(ProfileCall* x) {
3172   if (compilation()->profile_arguments()) {
3173     int bci = x->bci_of_invoke();
3174     ciMethodData* md = x->method()->method_data_or_null();
3175     ciProfileData* data = md->bci_to_data(bci);
3176     if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3177         (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3178       ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3179       int base_offset = md->byte_offset_of_slot(data, extra);
3180       LIR_Opr mdp = LIR_OprFact::illegalOpr;
3181       ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3182 
3183       Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3184       int start = 0;
3185       int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3186       if (x->inlined() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3187         // first argument is not profiled at call (method handle invoke)
3188         assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3189         start = 1;
3190       }
3191       ciSignature* callee_signature = x->callee()->signature();
3192       // method handle call to virtual method
3193       bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3194       ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3195 
3196       bool ignored_will_link;
3197       ciSignature* signature_at_call = NULL;
3198       x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3199       ciSignatureStream signature_at_call_stream(signature_at_call);
3200 
3201       // if called through method handle invoke, some arguments may have been popped
3202       for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3203         int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3204         ciKlass* exact = profile_type(md, base_offset, off,
3205                                       args->type(i), x->profiled_arg_at(i+start), mdp,
3206                                       !x->arg_needs_null_check(i+start),
3207                                       signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3208         if (exact != NULL) {
3209           md->set_argument_type(bci, i, exact);
3210         }
3211       }
3212     } else {
3213 #ifdef ASSERT
3214       Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3215       int n = x->nb_profiled_args();
3216       assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3217                                                   (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3218              "only at JSR292 bytecodes");
3219 #endif
3220     }
3221   }
3222 }
3223 
3224 // profile parameters on entry to an inlined method
3225 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3226   if (compilation()->profile_parameters() && x->inlined()) {
3227     ciMethodData* md = x->callee()->method_data_or_null();
3228     if (md != NULL) {
3229       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3230       if (parameters_type_data != NULL) {
3231         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3232         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3233         bool has_receiver = !x->callee()->is_static();
3234         ciSignature* sig = x->callee()->signature();
3235         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3236         int i = 0; // to iterate on the Instructions
3237         Value arg = x->recv();
3238         bool not_null = false;
3239         int bci = x->bci_of_invoke();
3240         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3241         // The first parameter is the receiver so that's what we start
3242         // with if it exists. One exception is method handle call to
3243         // virtual method: the receiver is in the args list
3244         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3245           i = 1;
3246           arg = x->profiled_arg_at(0);
3247           not_null = !x->arg_needs_null_check(0);
3248         }
3249         int k = 0; // to iterate on the profile data
3250         for (;;) {
3251           intptr_t profiled_k = parameters->type(k);
3252           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3253                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3254                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3255           // If the profile is known statically set it once for all and do not emit any code
3256           if (exact != NULL) {
3257             md->set_parameter_type(k, exact);
3258           }
3259           k++;
3260           if (k >= parameters_type_data->number_of_parameters()) {
3261 #ifdef ASSERT
3262             int extra = 0;
3263             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3264                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3265                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3266               extra += 1;
3267             }
3268             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3269 #endif
3270             break;
3271           }
3272           arg = x->profiled_arg_at(i);
3273           not_null = !x->arg_needs_null_check(i);
3274           i++;
3275         }
3276       }
3277     }
3278   }
3279 }
3280 
3281 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3282   // Need recv in a temporary register so it interferes with the other temporaries
3283   LIR_Opr recv = LIR_OprFact::illegalOpr;
3284   LIR_Opr mdo = new_register(T_OBJECT);
3285   // tmp is used to hold the counters on SPARC
3286   LIR_Opr tmp = new_pointer_register();
3287 
3288   if (x->nb_profiled_args() > 0) {
3289     profile_arguments(x);
3290   }
3291 
3292   // profile parameters on inlined method entry including receiver
3293   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3294     profile_parameters_at_call(x);
3295   }
3296 
3297   if (x->recv() != NULL) {
3298     LIRItem value(x->recv(), this);
3299     value.load_item();
3300     recv = new_register(T_OBJECT);
3301     __ move(value.result(), recv);
3302   }
3303   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3304 }
3305 
3306 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3307   int bci = x->bci_of_invoke();
3308   ciMethodData* md = x->method()->method_data_or_null();
3309   ciProfileData* data = md->bci_to_data(bci);
3310   assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3311   ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3312   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3313 
3314   bool ignored_will_link;
3315   ciSignature* signature_at_call = NULL;
3316   x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3317 
3318   // The offset within the MDO of the entry to update may be too large
3319   // to be used in load/store instructions on some platforms. So have
3320   // profile_type() compute the address of the profile in a register.
3321   ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3322                                 ret->type(), x->ret(), mdp,
3323                                 !x->needs_null_check(),
3324                                 signature_at_call->return_type()->as_klass(),
3325                                 x->callee()->signature()->return_type()->as_klass());
3326   if (exact != NULL) {
3327     md->set_return_type(bci, exact);
3328   }
3329 }
3330 
3331 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3332   // We can safely ignore accessors here, since c2 will inline them anyway,
3333   // accessors are also always mature.
3334   if (!x->inlinee()->is_accessor()) {
3335     CodeEmitInfo* info = state_for(x, x->state(), true);
3336     // Notify the runtime very infrequently only to take care of counter overflows
3337     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
3338   }
3339 }
3340 
3341 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3342   int freq_log;
3343   int level = compilation()->env()->comp_level();
3344   if (level == CompLevel_limited_profile) {
3345     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3346   } else if (level == CompLevel_full_profile) {
3347     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3348   } else {
3349     ShouldNotReachHere();
3350   }
3351   // Increment the appropriate invocation/backedge counter and notify the runtime.
3352   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
3353 }
3354 
3355 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3356                                                 ciMethod *method, int frequency,
3357                                                 int bci, bool backedge, bool notify) {
3358   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3359   int level = _compilation->env()->comp_level();
3360   assert(level > CompLevel_simple, "Shouldn't be here");
3361 
3362   int offset = -1;
3363   LIR_Opr counter_holder;
3364   if (level == CompLevel_limited_profile) {
3365     MethodCounters* counters_adr = method->ensure_method_counters();
3366     if (counters_adr == NULL) {
3367       bailout("method counters allocation failed");
3368       return;
3369     }
3370     counter_holder = new_pointer_register();
3371     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3372     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3373                                  MethodCounters::invocation_counter_offset());
3374   } else if (level == CompLevel_full_profile) {
3375     counter_holder = new_register(T_METADATA);
3376     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3377                                  MethodData::invocation_counter_offset());
3378     ciMethodData* md = method->method_data_or_null();
3379     assert(md != NULL, "Sanity");
3380     __ metadata2reg(md->constant_encoding(), counter_holder);
3381   } else {
3382     ShouldNotReachHere();
3383   }
3384   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3385   LIR_Opr result = new_register(T_INT);
3386   __ load(counter, result);
3387   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3388   __ store(result, counter);
3389   if (notify) {
3390     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3391     LIR_Opr meth = new_register(T_METADATA);
3392     __ metadata2reg(method->constant_encoding(), meth);
3393     __ logical_and(result, mask, result);
3394     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3395     // The bci for info can point to cmp for if's we want the if bci
3396     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3397     __ branch(lir_cond_equal, T_INT, overflow);
3398     __ branch_destination(overflow->continuation());
3399   }
3400 }
3401 
3402 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3403   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3404   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3405 
3406   if (x->pass_thread()) {
3407     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3408     args->append(getThreadPointer());
3409   }
3410 
3411   for (int i = 0; i < x->number_of_arguments(); i++) {
3412     Value a = x->argument_at(i);
3413     LIRItem* item = new LIRItem(a, this);
3414     item->load_item();
3415     args->append(item->result());
3416     signature->append(as_BasicType(a->type()));
3417   }
3418 
3419   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3420   if (x->type() == voidType) {
3421     set_no_result(x);
3422   } else {
3423     __ move(result, rlock_result(x));
3424   }
3425 }
3426 
3427 #ifdef ASSERT
3428 void LIRGenerator::do_Assert(Assert *x) {
3429   ValueTag tag = x->x()->type()->tag();
3430   If::Condition cond = x->cond();
3431 
3432   LIRItem xitem(x->x(), this);
3433   LIRItem yitem(x->y(), this);
3434   LIRItem* xin = &xitem;
3435   LIRItem* yin = &yitem;
3436 
3437   assert(tag == intTag, "Only integer assertions are valid!");
3438 
3439   xin->load_item();
3440   yin->dont_load_item();
3441 
3442   set_no_result(x);
3443 
3444   LIR_Opr left = xin->result();
3445   LIR_Opr right = yin->result();
3446 
3447   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3448 }
3449 #endif
3450 
3451 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3452 
3453 
3454   Instruction *a = x->x();
3455   Instruction *b = x->y();
3456   if (!a || StressRangeCheckElimination) {
3457     assert(!b || StressRangeCheckElimination, "B must also be null");
3458 
3459     CodeEmitInfo *info = state_for(x, x->state());
3460     CodeStub* stub = new PredicateFailedStub(info);
3461 
3462     __ jump(stub);
3463   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3464     int a_int = a->type()->as_IntConstant()->value();
3465     int b_int = b->type()->as_IntConstant()->value();
3466 
3467     bool ok = false;
3468 
3469     switch(x->cond()) {
3470       case Instruction::eql: ok = (a_int == b_int); break;
3471       case Instruction::neq: ok = (a_int != b_int); break;
3472       case Instruction::lss: ok = (a_int < b_int); break;
3473       case Instruction::leq: ok = (a_int <= b_int); break;
3474       case Instruction::gtr: ok = (a_int > b_int); break;
3475       case Instruction::geq: ok = (a_int >= b_int); break;
3476       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3477       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3478       default: ShouldNotReachHere();
3479     }
3480 
3481     if (ok) {
3482 
3483       CodeEmitInfo *info = state_for(x, x->state());
3484       CodeStub* stub = new PredicateFailedStub(info);
3485 
3486       __ jump(stub);
3487     }
3488   } else {
3489 
3490     ValueTag tag = x->x()->type()->tag();
3491     If::Condition cond = x->cond();
3492     LIRItem xitem(x->x(), this);
3493     LIRItem yitem(x->y(), this);
3494     LIRItem* xin = &xitem;
3495     LIRItem* yin = &yitem;
3496 
3497     assert(tag == intTag, "Only integer deoptimizations are valid!");
3498 
3499     xin->load_item();
3500     yin->dont_load_item();
3501     set_no_result(x);
3502 
3503     LIR_Opr left = xin->result();
3504     LIR_Opr right = yin->result();
3505 
3506     CodeEmitInfo *info = state_for(x, x->state());
3507     CodeStub* stub = new PredicateFailedStub(info);
3508 
3509     __ cmp(lir_cond(cond), left, right);
3510     __ branch(lir_cond(cond), right->type(), stub);
3511   }
3512 }
3513 
3514 
3515 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3516   LIRItemList args(1);
3517   LIRItem value(arg1, this);
3518   args.append(&value);
3519   BasicTypeList signature;
3520   signature.append(as_BasicType(arg1->type()));
3521 
3522   return call_runtime(&signature, &args, entry, result_type, info);
3523 }
3524 
3525 
3526 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3527   LIRItemList args(2);
3528   LIRItem value1(arg1, this);
3529   LIRItem value2(arg2, this);
3530   args.append(&value1);
3531   args.append(&value2);
3532   BasicTypeList signature;
3533   signature.append(as_BasicType(arg1->type()));
3534   signature.append(as_BasicType(arg2->type()));
3535 
3536   return call_runtime(&signature, &args, entry, result_type, info);
3537 }
3538 
3539 
3540 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3541                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3542   // get a result register
3543   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3544   LIR_Opr result = LIR_OprFact::illegalOpr;
3545   if (result_type->tag() != voidTag) {
3546     result = new_register(result_type);
3547     phys_reg = result_register_for(result_type);
3548   }
3549 
3550   // move the arguments into the correct location
3551   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3552   assert(cc->length() == args->length(), "argument mismatch");
3553   for (int i = 0; i < args->length(); i++) {
3554     LIR_Opr arg = args->at(i);
3555     LIR_Opr loc = cc->at(i);
3556     if (loc->is_register()) {
3557       __ move(arg, loc);
3558     } else {
3559       LIR_Address* addr = loc->as_address_ptr();
3560 //           if (!can_store_as_constant(arg)) {
3561 //             LIR_Opr tmp = new_register(arg->type());
3562 //             __ move(arg, tmp);
3563 //             arg = tmp;
3564 //           }
3565       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3566         __ unaligned_move(arg, addr);
3567       } else {
3568         __ move(arg, addr);
3569       }
3570     }
3571   }
3572 
3573   if (info) {
3574     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3575   } else {
3576     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3577   }
3578   if (result->is_valid()) {
3579     __ move(phys_reg, result);
3580   }
3581   return result;
3582 }
3583 
3584 
3585 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3586                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3587   // get a result register
3588   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3589   LIR_Opr result = LIR_OprFact::illegalOpr;
3590   if (result_type->tag() != voidTag) {
3591     result = new_register(result_type);
3592     phys_reg = result_register_for(result_type);
3593   }
3594 
3595   // move the arguments into the correct location
3596   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3597 
3598   assert(cc->length() == args->length(), "argument mismatch");
3599   for (int i = 0; i < args->length(); i++) {
3600     LIRItem* arg = args->at(i);
3601     LIR_Opr loc = cc->at(i);
3602     if (loc->is_register()) {
3603       arg->load_item_force(loc);
3604     } else {
3605       LIR_Address* addr = loc->as_address_ptr();
3606       arg->load_for_store(addr->type());
3607       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3608         __ unaligned_move(arg->result(), addr);
3609       } else {
3610         __ move(arg->result(), addr);
3611       }
3612     }
3613   }
3614 
3615   if (info) {
3616     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3617   } else {
3618     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3619   }
3620   if (result->is_valid()) {
3621     __ move(phys_reg, result);
3622   }
3623   return result;
3624 }
3625 
3626 void LIRGenerator::do_MemBar(MemBar* x) {
3627   if (os::is_MP()) {
3628     LIR_Code code = x->code();
3629     switch(code) {
3630       case lir_membar_acquire   : __ membar_acquire(); break;
3631       case lir_membar_release   : __ membar_release(); break;
3632       case lir_membar           : __ membar(); break;
3633       case lir_membar_loadload  : __ membar_loadload(); break;
3634       case lir_membar_storestore: __ membar_storestore(); break;
3635       case lir_membar_loadstore : __ membar_loadstore(); break;
3636       case lir_membar_storeload : __ membar_storeload(); break;
3637       default                   : ShouldNotReachHere(); break;
3638     }
3639   }
3640 }