1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/interpreterRuntime.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/forte.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiRedefineClassesTrace.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "prims/nativeLookup.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/hashtable.inline.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/xmlstream.hpp"
  61 #ifdef TARGET_ARCH_x86
  62 # include "nativeInst_x86.hpp"
  63 # include "vmreg_x86.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_sparc
  66 # include "nativeInst_sparc.hpp"
  67 # include "vmreg_sparc.inline.hpp"
  68 #endif
  69 #ifdef TARGET_ARCH_zero
  70 # include "nativeInst_zero.hpp"
  71 # include "vmreg_zero.inline.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_arm
  74 # include "nativeInst_arm.hpp"
  75 # include "vmreg_arm.inline.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_ppc
  78 # include "nativeInst_ppc.hpp"
  79 # include "vmreg_ppc.inline.hpp"
  80 #endif
  81 #ifdef COMPILER1
  82 #include "c1/c1_Runtime1.hpp"
  83 #endif
  84 
  85 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  86 
  87 // Shared stub locations
  88 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  89 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  90 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  92 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  93 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  94 
  95 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  97 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  98 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  99 
 100 #ifdef COMPILER2
 101 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 102 #endif // COMPILER2
 103 
 104 
 105 //----------------------------generate_stubs-----------------------------------
 106 void SharedRuntime::generate_stubs() {
 107   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 108   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 109   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 110   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 111   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 112   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 113 
 114 #ifdef COMPILER2
 115   // Vectors are generated only by C2.
 116   if (is_wide_vector(MaxVectorSize)) {
 117     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 118   }
 119 #endif // COMPILER2
 120   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 121   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 122 
 123   generate_deopt_blob();
 124 
 125 #ifdef COMPILER2
 126   generate_uncommon_trap_blob();
 127 #endif // COMPILER2
 128 }
 129 
 130 #include <math.h>
 131 
 132 #ifndef USDT2
 133 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
 134 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
 135                       char*, int, char*, int, char*, int);
 136 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
 137                       char*, int, char*, int, char*, int);
 138 #endif /* !USDT2 */
 139 
 140 // Implementation of SharedRuntime
 141 
 142 #ifndef PRODUCT
 143 // For statistics
 144 int SharedRuntime::_ic_miss_ctr = 0;
 145 int SharedRuntime::_wrong_method_ctr = 0;
 146 int SharedRuntime::_resolve_static_ctr = 0;
 147 int SharedRuntime::_resolve_virtual_ctr = 0;
 148 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 149 int SharedRuntime::_implicit_null_throws = 0;
 150 int SharedRuntime::_implicit_div0_throws = 0;
 151 int SharedRuntime::_throw_null_ctr = 0;
 152 
 153 int SharedRuntime::_nof_normal_calls = 0;
 154 int SharedRuntime::_nof_optimized_calls = 0;
 155 int SharedRuntime::_nof_inlined_calls = 0;
 156 int SharedRuntime::_nof_megamorphic_calls = 0;
 157 int SharedRuntime::_nof_static_calls = 0;
 158 int SharedRuntime::_nof_inlined_static_calls = 0;
 159 int SharedRuntime::_nof_interface_calls = 0;
 160 int SharedRuntime::_nof_optimized_interface_calls = 0;
 161 int SharedRuntime::_nof_inlined_interface_calls = 0;
 162 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 163 int SharedRuntime::_nof_removable_exceptions = 0;
 164 
 165 int SharedRuntime::_new_instance_ctr=0;
 166 int SharedRuntime::_new_array_ctr=0;
 167 int SharedRuntime::_multi1_ctr=0;
 168 int SharedRuntime::_multi2_ctr=0;
 169 int SharedRuntime::_multi3_ctr=0;
 170 int SharedRuntime::_multi4_ctr=0;
 171 int SharedRuntime::_multi5_ctr=0;
 172 int SharedRuntime::_mon_enter_stub_ctr=0;
 173 int SharedRuntime::_mon_exit_stub_ctr=0;
 174 int SharedRuntime::_mon_enter_ctr=0;
 175 int SharedRuntime::_mon_exit_ctr=0;
 176 int SharedRuntime::_partial_subtype_ctr=0;
 177 int SharedRuntime::_jbyte_array_copy_ctr=0;
 178 int SharedRuntime::_jshort_array_copy_ctr=0;
 179 int SharedRuntime::_jint_array_copy_ctr=0;
 180 int SharedRuntime::_jlong_array_copy_ctr=0;
 181 int SharedRuntime::_oop_array_copy_ctr=0;
 182 int SharedRuntime::_checkcast_array_copy_ctr=0;
 183 int SharedRuntime::_unsafe_array_copy_ctr=0;
 184 int SharedRuntime::_generic_array_copy_ctr=0;
 185 int SharedRuntime::_slow_array_copy_ctr=0;
 186 int SharedRuntime::_find_handler_ctr=0;
 187 int SharedRuntime::_rethrow_ctr=0;
 188 
 189 int     SharedRuntime::_ICmiss_index                    = 0;
 190 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 191 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 192 
 193 
 194 void SharedRuntime::trace_ic_miss(address at) {
 195   for (int i = 0; i < _ICmiss_index; i++) {
 196     if (_ICmiss_at[i] == at) {
 197       _ICmiss_count[i]++;
 198       return;
 199     }
 200   }
 201   int index = _ICmiss_index++;
 202   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 203   _ICmiss_at[index] = at;
 204   _ICmiss_count[index] = 1;
 205 }
 206 
 207 void SharedRuntime::print_ic_miss_histogram() {
 208   if (ICMissHistogram) {
 209     tty->print_cr ("IC Miss Histogram:");
 210     int tot_misses = 0;
 211     for (int i = 0; i < _ICmiss_index; i++) {
 212       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 213       tot_misses += _ICmiss_count[i];
 214     }
 215     tty->print_cr ("Total IC misses: %7d", tot_misses);
 216   }
 217 }
 218 #endif // PRODUCT
 219 
 220 #if INCLUDE_ALL_GCS
 221 
 222 // G1 write-barrier pre: executed before a pointer store.
 223 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 224   if (orig == NULL) {
 225     assert(false, "should be optimized out");
 226     return;
 227   }
 228   assert(orig->is_oop(true /* ignore mark word */), "Error");
 229   // store the original value that was in the field reference
 230   thread->satb_mark_queue().enqueue(orig);
 231 JRT_END
 232 
 233 // G1 write-barrier post: executed after a pointer store.
 234 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 235   thread->dirty_card_queue().enqueue(card_addr);
 236 JRT_END
 237 
 238 #endif // INCLUDE_ALL_GCS
 239 
 240 
 241 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 242   return x * y;
 243 JRT_END
 244 
 245 
 246 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 247   if (x == min_jlong && y == CONST64(-1)) {
 248     return x;
 249   } else {
 250     return x / y;
 251   }
 252 JRT_END
 253 
 254 
 255 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 256   if (x == min_jlong && y == CONST64(-1)) {
 257     return 0;
 258   } else {
 259     return x % y;
 260   }
 261 JRT_END
 262 
 263 
 264 const juint  float_sign_mask  = 0x7FFFFFFF;
 265 const juint  float_infinity   = 0x7F800000;
 266 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 267 const julong double_infinity  = CONST64(0x7FF0000000000000);
 268 
 269 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 270 #ifdef _WIN64
 271   // 64-bit Windows on amd64 returns the wrong values for
 272   // infinity operands.
 273   union { jfloat f; juint i; } xbits, ybits;
 274   xbits.f = x;
 275   ybits.f = y;
 276   // x Mod Infinity == x unless x is infinity
 277   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 278        ((ybits.i & float_sign_mask) == float_infinity) ) {
 279     return x;
 280   }
 281 #endif
 282   return ((jfloat)fmod((double)x,(double)y));
 283 JRT_END
 284 
 285 
 286 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 287 #ifdef _WIN64
 288   union { jdouble d; julong l; } xbits, ybits;
 289   xbits.d = x;
 290   ybits.d = y;
 291   // x Mod Infinity == x unless x is infinity
 292   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 293        ((ybits.l & double_sign_mask) == double_infinity) ) {
 294     return x;
 295   }
 296 #endif
 297   return ((jdouble)fmod((double)x,(double)y));
 298 JRT_END
 299 
 300 #ifdef __SOFTFP__
 301 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 302   return x + y;
 303 JRT_END
 304 
 305 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 306   return x - y;
 307 JRT_END
 308 
 309 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 310   return x * y;
 311 JRT_END
 312 
 313 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 314   return x / y;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 318   return x + y;
 319 JRT_END
 320 
 321 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 322   return x - y;
 323 JRT_END
 324 
 325 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 326   return x * y;
 327 JRT_END
 328 
 329 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 330   return x / y;
 331 JRT_END
 332 
 333 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 334   return (jfloat)x;
 335 JRT_END
 336 
 337 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 338   return (jdouble)x;
 339 JRT_END
 340 
 341 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 342   return (jdouble)x;
 343 JRT_END
 344 
 345 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 346   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 347 JRT_END
 348 
 349 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 350   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 351 JRT_END
 352 
 353 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 354   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 355 JRT_END
 356 
 357 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 358   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 359 JRT_END
 360 
 361 // Functions to return the opposite of the aeabi functions for nan.
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 363   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 367   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 371   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 375   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 379   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 380 JRT_END
 381 
 382 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 383   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 384 JRT_END
 385 
 386 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 387   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 388 JRT_END
 389 
 390 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 391   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 392 JRT_END
 393 
 394 // Intrinsics make gcc generate code for these.
 395 float  SharedRuntime::fneg(float f)   {
 396   return -f;
 397 }
 398 
 399 double SharedRuntime::dneg(double f)  {
 400   return -f;
 401 }
 402 
 403 #endif // __SOFTFP__
 404 
 405 #if defined(__SOFTFP__) || defined(E500V2)
 406 // Intrinsics make gcc generate code for these.
 407 double SharedRuntime::dabs(double f)  {
 408   return (f <= (double)0.0) ? (double)0.0 - f : f;
 409 }
 410 
 411 #endif
 412 
 413 #if defined(__SOFTFP__) || defined(PPC32)
 414 double SharedRuntime::dsqrt(double f) {
 415   return sqrt(f);
 416 }
 417 #endif
 418 
 419 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 420   if (g_isnan(x))
 421     return 0;
 422   if (x >= (jfloat) max_jint)
 423     return max_jint;
 424   if (x <= (jfloat) min_jint)
 425     return min_jint;
 426   return (jint) x;
 427 JRT_END
 428 
 429 
 430 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 431   if (g_isnan(x))
 432     return 0;
 433   if (x >= (jfloat) max_jlong)
 434     return max_jlong;
 435   if (x <= (jfloat) min_jlong)
 436     return min_jlong;
 437   return (jlong) x;
 438 JRT_END
 439 
 440 
 441 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 442   if (g_isnan(x))
 443     return 0;
 444   if (x >= (jdouble) max_jint)
 445     return max_jint;
 446   if (x <= (jdouble) min_jint)
 447     return min_jint;
 448   return (jint) x;
 449 JRT_END
 450 
 451 
 452 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 453   if (g_isnan(x))
 454     return 0;
 455   if (x >= (jdouble) max_jlong)
 456     return max_jlong;
 457   if (x <= (jdouble) min_jlong)
 458     return min_jlong;
 459   return (jlong) x;
 460 JRT_END
 461 
 462 
 463 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 464   return (jfloat)x;
 465 JRT_END
 466 
 467 
 468 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 469   return (jfloat)x;
 470 JRT_END
 471 
 472 
 473 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 474   return (jdouble)x;
 475 JRT_END
 476 
 477 // Exception handling accross interpreter/compiler boundaries
 478 //
 479 // exception_handler_for_return_address(...) returns the continuation address.
 480 // The continuation address is the entry point of the exception handler of the
 481 // previous frame depending on the return address.
 482 
 483 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 484   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 485   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 486 
 487   // Reset method handle flag.
 488   thread->set_is_method_handle_return(false);
 489 
 490   // The fastest case first
 491   CodeBlob* blob = CodeCache::find_blob(return_address);
 492   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 493   if (nm != NULL) {
 494     // Set flag if return address is a method handle call site.
 495     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 496     // native nmethods don't have exception handlers
 497     assert(!nm->is_native_method(), "no exception handler");
 498     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 499     if (nm->is_deopt_pc(return_address)) {
 500       // If we come here because of a stack overflow, the stack may be
 501       // unguarded. Reguard the stack otherwise if we return to the
 502       // deopt blob and the stack bang causes a stack overflow we
 503       // crash.
 504       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 505       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 506       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 507       return SharedRuntime::deopt_blob()->unpack_with_exception();
 508     } else {
 509       return nm->exception_begin();
 510     }
 511   }
 512 
 513   // Entry code
 514   if (StubRoutines::returns_to_call_stub(return_address)) {
 515     return StubRoutines::catch_exception_entry();
 516   }
 517   // Interpreted code
 518   if (Interpreter::contains(return_address)) {
 519     return Interpreter::rethrow_exception_entry();
 520   }
 521 
 522   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 523   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 524 
 525 #ifndef PRODUCT
 526   { ResourceMark rm;
 527     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 528     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 529     tty->print_cr("b) other problem");
 530   }
 531 #endif // PRODUCT
 532 
 533   ShouldNotReachHere();
 534   return NULL;
 535 }
 536 
 537 
 538 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 539   return raw_exception_handler_for_return_address(thread, return_address);
 540 JRT_END
 541 
 542 
 543 address SharedRuntime::get_poll_stub(address pc) {
 544   address stub;
 545   // Look up the code blob
 546   CodeBlob *cb = CodeCache::find_blob(pc);
 547 
 548   // Should be an nmethod
 549   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 550 
 551   // Look up the relocation information
 552   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 553     "safepoint polling: type must be poll" );
 554 
 555   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 556     "Only polling locations are used for safepoint");
 557 
 558   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 559   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 560   if (at_poll_return) {
 561     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 562            "polling page return stub not created yet");
 563     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 564   } else if (has_wide_vectors) {
 565     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 566            "polling page vectors safepoint stub not created yet");
 567     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 568   } else {
 569     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 570            "polling page safepoint stub not created yet");
 571     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 572   }
 573 #ifndef PRODUCT
 574   if( TraceSafepoint ) {
 575     char buf[256];
 576     jio_snprintf(buf, sizeof(buf),
 577                  "... found polling page %s exception at pc = "
 578                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 579                  at_poll_return ? "return" : "loop",
 580                  (intptr_t)pc, (intptr_t)stub);
 581     tty->print_raw_cr(buf);
 582   }
 583 #endif // PRODUCT
 584   return stub;
 585 }
 586 
 587 
 588 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 589   assert(caller.is_interpreted_frame(), "");
 590   int args_size = ArgumentSizeComputer(sig).size() + 1;
 591   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 592   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 593   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 594   return result;
 595 }
 596 
 597 
 598 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 599   if (JvmtiExport::can_post_on_exceptions()) {
 600     vframeStream vfst(thread, true);
 601     methodHandle method = methodHandle(thread, vfst.method());
 602     address bcp = method()->bcp_from(vfst.bci());
 603     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 604   }
 605   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 606 }
 607 
 608 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 609   Handle h_exception = Exceptions::new_exception(thread, name, message);
 610   throw_and_post_jvmti_exception(thread, h_exception);
 611 }
 612 
 613 // The interpreter code to call this tracing function is only
 614 // called/generated when TraceRedefineClasses has the right bits
 615 // set. Since obsolete methods are never compiled, we don't have
 616 // to modify the compilers to generate calls to this function.
 617 //
 618 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 619     JavaThread* thread, Method* method))
 620   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 621 
 622   if (method->is_obsolete()) {
 623     // We are calling an obsolete method, but this is not necessarily
 624     // an error. Our method could have been redefined just after we
 625     // fetched the Method* from the constant pool.
 626 
 627     // RC_TRACE macro has an embedded ResourceMark
 628     RC_TRACE_WITH_THREAD(0x00001000, thread,
 629                          ("calling obsolete method '%s'",
 630                           method->name_and_sig_as_C_string()));
 631     if (RC_TRACE_ENABLED(0x00002000)) {
 632       // this option is provided to debug calls to obsolete methods
 633       guarantee(false, "faulting at call to an obsolete method.");
 634     }
 635   }
 636   return 0;
 637 JRT_END
 638 
 639 // ret_pc points into caller; we are returning caller's exception handler
 640 // for given exception
 641 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 642                                                     bool force_unwind, bool top_frame_only) {
 643   assert(nm != NULL, "must exist");
 644   ResourceMark rm;
 645 
 646   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 647   // determine handler bci, if any
 648   EXCEPTION_MARK;
 649 
 650   int handler_bci = -1;
 651   int scope_depth = 0;
 652   if (!force_unwind) {
 653     int bci = sd->bci();
 654     bool recursive_exception = false;
 655     do {
 656       bool skip_scope_increment = false;
 657       // exception handler lookup
 658       KlassHandle ek (THREAD, exception->klass());
 659       methodHandle mh(THREAD, sd->method());
 660       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 661       if (HAS_PENDING_EXCEPTION) {
 662         recursive_exception = true;
 663         // We threw an exception while trying to find the exception handler.
 664         // Transfer the new exception to the exception handle which will
 665         // be set into thread local storage, and do another lookup for an
 666         // exception handler for this exception, this time starting at the
 667         // BCI of the exception handler which caused the exception to be
 668         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 669         // argument to ensure that the correct exception is thrown (4870175).
 670         exception = Handle(THREAD, PENDING_EXCEPTION);
 671         CLEAR_PENDING_EXCEPTION;
 672         if (handler_bci >= 0) {
 673           bci = handler_bci;
 674           handler_bci = -1;
 675           skip_scope_increment = true;
 676         }
 677       }
 678       else {
 679         recursive_exception = false;
 680       }
 681       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 682         sd = sd->sender();
 683         if (sd != NULL) {
 684           bci = sd->bci();
 685         }
 686         ++scope_depth;
 687       }
 688     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 689   }
 690 
 691   // found handling method => lookup exception handler
 692   int catch_pco = ret_pc - nm->code_begin();
 693 
 694   ExceptionHandlerTable table(nm);
 695   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 696   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 697     // Allow abbreviated catch tables.  The idea is to allow a method
 698     // to materialize its exceptions without committing to the exact
 699     // routing of exceptions.  In particular this is needed for adding
 700     // a synthethic handler to unlock monitors when inlining
 701     // synchonized methods since the unlock path isn't represented in
 702     // the bytecodes.
 703     t = table.entry_for(catch_pco, -1, 0);
 704   }
 705 
 706 #ifdef COMPILER1
 707   if (t == NULL && nm->is_compiled_by_c1()) {
 708     assert(nm->unwind_handler_begin() != NULL, "");
 709     return nm->unwind_handler_begin();
 710   }
 711 #endif
 712 
 713   if (t == NULL) {
 714     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 715     tty->print_cr("   Exception:");
 716     exception->print();
 717     tty->cr();
 718     tty->print_cr(" Compiled exception table :");
 719     table.print();
 720     nm->print_code();
 721     guarantee(false, "missing exception handler");
 722     return NULL;
 723   }
 724 
 725   return nm->code_begin() + t->pco();
 726 }
 727 
 728 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 729   // These errors occur only at call sites
 730   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 731 JRT_END
 732 
 733 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 734   // These errors occur only at call sites
 735   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 736 JRT_END
 737 
 738 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 739   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 740 JRT_END
 741 
 742 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 743   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 744 JRT_END
 745 
 746 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 747   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 748   // cache sites (when the callee activation is not yet set up) so we are at a call site
 749   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 750 JRT_END
 751 
 752 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 753   // We avoid using the normal exception construction in this case because
 754   // it performs an upcall to Java, and we're already out of stack space.
 755   Klass* k = SystemDictionary::StackOverflowError_klass();
 756   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 757   Handle exception (thread, exception_oop);
 758   if (StackTraceInThrowable) {
 759     java_lang_Throwable::fill_in_stack_trace(exception);
 760   }
 761   throw_and_post_jvmti_exception(thread, exception);
 762 JRT_END
 763 
 764 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 765                                                            address pc,
 766                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 767 {
 768   address target_pc = NULL;
 769 
 770   if (Interpreter::contains(pc)) {
 771 #ifdef CC_INTERP
 772     // C++ interpreter doesn't throw implicit exceptions
 773     ShouldNotReachHere();
 774 #else
 775     switch (exception_kind) {
 776       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 777       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 778       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 779       default:                      ShouldNotReachHere();
 780     }
 781 #endif // !CC_INTERP
 782   } else {
 783     switch (exception_kind) {
 784       case STACK_OVERFLOW: {
 785         // Stack overflow only occurs upon frame setup; the callee is
 786         // going to be unwound. Dispatch to a shared runtime stub
 787         // which will cause the StackOverflowError to be fabricated
 788         // and processed.
 789         // Stack overflow should never occur during deoptimization:
 790         // the compiled method bangs the stack by as much as the
 791         // interpreter would need in case of a deoptimization. The
 792         // deoptimization blob and uncommon trap blob bang the stack
 793         // in a debug VM to verify the correctness of the compiled
 794         // method stack banging.
 795         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 796         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 797         return StubRoutines::throw_StackOverflowError_entry();
 798       }
 799 
 800       case IMPLICIT_NULL: {
 801         if (VtableStubs::contains(pc)) {
 802           // We haven't yet entered the callee frame. Fabricate an
 803           // exception and begin dispatching it in the caller. Since
 804           // the caller was at a call site, it's safe to destroy all
 805           // caller-saved registers, as these entry points do.
 806           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 807 
 808           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 809           if (vt_stub == NULL) return NULL;
 810 
 811           if (vt_stub->is_abstract_method_error(pc)) {
 812             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 813             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 814             return StubRoutines::throw_AbstractMethodError_entry();
 815           } else {
 816             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 817             return StubRoutines::throw_NullPointerException_at_call_entry();
 818           }
 819         } else {
 820           CodeBlob* cb = CodeCache::find_blob(pc);
 821 
 822           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 823           if (cb == NULL) return NULL;
 824 
 825           // Exception happened in CodeCache. Must be either:
 826           // 1. Inline-cache check in C2I handler blob,
 827           // 2. Inline-cache check in nmethod, or
 828           // 3. Implict null exception in nmethod
 829 
 830           if (!cb->is_nmethod()) {
 831             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 832             if (!is_in_blob) {
 833               cb->print();
 834               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
 835             }
 836             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 837             // There is no handler here, so we will simply unwind.
 838             return StubRoutines::throw_NullPointerException_at_call_entry();
 839           }
 840 
 841           // Otherwise, it's an nmethod.  Consult its exception handlers.
 842           nmethod* nm = (nmethod*)cb;
 843           if (nm->inlinecache_check_contains(pc)) {
 844             // exception happened inside inline-cache check code
 845             // => the nmethod is not yet active (i.e., the frame
 846             // is not set up yet) => use return address pushed by
 847             // caller => don't push another return address
 848             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 849             return StubRoutines::throw_NullPointerException_at_call_entry();
 850           }
 851 
 852           if (nm->method()->is_method_handle_intrinsic()) {
 853             // exception happened inside MH dispatch code, similar to a vtable stub
 854             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 855             return StubRoutines::throw_NullPointerException_at_call_entry();
 856           }
 857 
 858 #ifndef PRODUCT
 859           _implicit_null_throws++;
 860 #endif
 861           target_pc = nm->continuation_for_implicit_exception(pc);
 862           // If there's an unexpected fault, target_pc might be NULL,
 863           // in which case we want to fall through into the normal
 864           // error handling code.
 865         }
 866 
 867         break; // fall through
 868       }
 869 
 870 
 871       case IMPLICIT_DIVIDE_BY_ZERO: {
 872         nmethod* nm = CodeCache::find_nmethod(pc);
 873         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 874 #ifndef PRODUCT
 875         _implicit_div0_throws++;
 876 #endif
 877         target_pc = nm->continuation_for_implicit_exception(pc);
 878         // If there's an unexpected fault, target_pc might be NULL,
 879         // in which case we want to fall through into the normal
 880         // error handling code.
 881         break; // fall through
 882       }
 883 
 884       default: ShouldNotReachHere();
 885     }
 886 
 887     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 888 
 889     // for AbortVMOnException flag
 890     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 891     if (exception_kind == IMPLICIT_NULL) {
 892       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 893     } else {
 894       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 895     }
 896     return target_pc;
 897   }
 898 
 899   ShouldNotReachHere();
 900   return NULL;
 901 }
 902 
 903 
 904 /**
 905  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 906  * installed in the native function entry of all native Java methods before
 907  * they get linked to their actual native methods.
 908  *
 909  * \note
 910  * This method actually never gets called!  The reason is because
 911  * the interpreter's native entries call NativeLookup::lookup() which
 912  * throws the exception when the lookup fails.  The exception is then
 913  * caught and forwarded on the return from NativeLookup::lookup() call
 914  * before the call to the native function.  This might change in the future.
 915  */
 916 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 917 {
 918   // We return a bad value here to make sure that the exception is
 919   // forwarded before we look at the return value.
 920   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 921 }
 922 JNI_END
 923 
 924 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 925   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 926 }
 927 
 928 
 929 #ifndef PRODUCT
 930 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 931   const frame f = thread->last_frame();
 932   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 933 #ifndef PRODUCT
 934   methodHandle mh(THREAD, f.interpreter_frame_method());
 935   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 936 #endif // !PRODUCT
 937   return preserve_this_value;
 938 JRT_END
 939 #endif // !PRODUCT
 940 
 941 
 942 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 943   os::yield_all(attempts);
 944 JRT_END
 945 
 946 
 947 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 948   assert(obj->is_oop(), "must be a valid oop");
 949   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 950   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 951 JRT_END
 952 
 953 
 954 jlong SharedRuntime::get_java_tid(Thread* thread) {
 955   if (thread != NULL) {
 956     if (thread->is_Java_thread()) {
 957       oop obj = ((JavaThread*)thread)->threadObj();
 958       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 959     }
 960   }
 961   return 0;
 962 }
 963 
 964 /**
 965  * This function ought to be a void function, but cannot be because
 966  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 967  * 6254741.  Once that is fixed we can remove the dummy return value.
 968  */
 969 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 970   return dtrace_object_alloc_base(Thread::current(), o, size);
 971 }
 972 
 973 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 974   assert(DTraceAllocProbes, "wrong call");
 975   Klass* klass = o->klass();
 976   Symbol* name = klass->name();
 977 #ifndef USDT2
 978   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 979                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 980 #else /* USDT2 */
 981   HOTSPOT_OBJECT_ALLOC(
 982                    get_java_tid(thread),
 983                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 984 #endif /* USDT2 */
 985   return 0;
 986 }
 987 
 988 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 989     JavaThread* thread, Method* method))
 990   assert(DTraceMethodProbes, "wrong call");
 991   Symbol* kname = method->klass_name();
 992   Symbol* name = method->name();
 993   Symbol* sig = method->signature();
 994 #ifndef USDT2
 995   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 996       kname->bytes(), kname->utf8_length(),
 997       name->bytes(), name->utf8_length(),
 998       sig->bytes(), sig->utf8_length());
 999 #else /* USDT2 */
1000   HOTSPOT_METHOD_ENTRY(
1001       get_java_tid(thread),
1002       (char *) kname->bytes(), kname->utf8_length(),
1003       (char *) name->bytes(), name->utf8_length(),
1004       (char *) sig->bytes(), sig->utf8_length());
1005 #endif /* USDT2 */
1006   return 0;
1007 JRT_END
1008 
1009 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1010     JavaThread* thread, Method* method))
1011   assert(DTraceMethodProbes, "wrong call");
1012   Symbol* kname = method->klass_name();
1013   Symbol* name = method->name();
1014   Symbol* sig = method->signature();
1015 #ifndef USDT2
1016   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
1017       kname->bytes(), kname->utf8_length(),
1018       name->bytes(), name->utf8_length(),
1019       sig->bytes(), sig->utf8_length());
1020 #else /* USDT2 */
1021   HOTSPOT_METHOD_RETURN(
1022       get_java_tid(thread),
1023       (char *) kname->bytes(), kname->utf8_length(),
1024       (char *) name->bytes(), name->utf8_length(),
1025       (char *) sig->bytes(), sig->utf8_length());
1026 #endif /* USDT2 */
1027   return 0;
1028 JRT_END
1029 
1030 
1031 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1032 // for a call current in progress, i.e., arguments has been pushed on stack
1033 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1034 // vtable updates, etc.  Caller frame must be compiled.
1035 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1036   ResourceMark rm(THREAD);
1037 
1038   // last java frame on stack (which includes native call frames)
1039   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1040 
1041   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1042 }
1043 
1044 
1045 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1046 // for a call current in progress, i.e., arguments has been pushed on stack
1047 // but callee has not been invoked yet.  Caller frame must be compiled.
1048 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1049                                               vframeStream& vfst,
1050                                               Bytecodes::Code& bc,
1051                                               CallInfo& callinfo, TRAPS) {
1052   Handle receiver;
1053   Handle nullHandle;  //create a handy null handle for exception returns
1054 
1055   assert(!vfst.at_end(), "Java frame must exist");
1056 
1057   // Find caller and bci from vframe
1058   methodHandle caller(THREAD, vfst.method());
1059   int          bci   = vfst.bci();
1060 
1061   // Find bytecode
1062   Bytecode_invoke bytecode(caller, bci);
1063   bc = bytecode.invoke_code();
1064   int bytecode_index = bytecode.index();
1065 
1066   // Find receiver for non-static call
1067   if (bc != Bytecodes::_invokestatic &&
1068       bc != Bytecodes::_invokedynamic &&
1069       bc != Bytecodes::_invokehandle) {
1070     // This register map must be update since we need to find the receiver for
1071     // compiled frames. The receiver might be in a register.
1072     RegisterMap reg_map2(thread);
1073     frame stubFrame   = thread->last_frame();
1074     // Caller-frame is a compiled frame
1075     frame callerFrame = stubFrame.sender(&reg_map2);
1076 
1077     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1078     if (callee.is_null()) {
1079       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1080     }
1081     // Retrieve from a compiled argument list
1082     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1083 
1084     if (receiver.is_null()) {
1085       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1086     }
1087   }
1088 
1089   // Resolve method. This is parameterized by bytecode.
1090   constantPoolHandle constants(THREAD, caller->constants());
1091   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1092   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1093 
1094 #ifdef ASSERT
1095   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1096   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1097     assert(receiver.not_null(), "should have thrown exception");
1098     KlassHandle receiver_klass(THREAD, receiver->klass());
1099     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1100                             // klass is already loaded
1101     KlassHandle static_receiver_klass(THREAD, rk);
1102     // Method handle invokes might have been optimized to a direct call
1103     // so don't check for the receiver class.
1104     // FIXME this weakens the assert too much
1105     methodHandle callee = callinfo.selected_method();
1106     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1107            callee->is_method_handle_intrinsic() ||
1108            callee->is_compiled_lambda_form(),
1109            "actual receiver must be subclass of static receiver klass");
1110     if (receiver_klass->oop_is_instance()) {
1111       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1112         tty->print_cr("ERROR: Klass not yet initialized!!");
1113         receiver_klass()->print();
1114       }
1115       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1116     }
1117   }
1118 #endif
1119 
1120   return receiver;
1121 }
1122 
1123 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1124   ResourceMark rm(THREAD);
1125   // We need first to check if any Java activations (compiled, interpreted)
1126   // exist on the stack since last JavaCall.  If not, we need
1127   // to get the target method from the JavaCall wrapper.
1128   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1129   methodHandle callee_method;
1130   if (vfst.at_end()) {
1131     // No Java frames were found on stack since we did the JavaCall.
1132     // Hence the stack can only contain an entry_frame.  We need to
1133     // find the target method from the stub frame.
1134     RegisterMap reg_map(thread, false);
1135     frame fr = thread->last_frame();
1136     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1137     fr = fr.sender(&reg_map);
1138     assert(fr.is_entry_frame(), "must be");
1139     // fr is now pointing to the entry frame.
1140     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1141     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1142   } else {
1143     Bytecodes::Code bc;
1144     CallInfo callinfo;
1145     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1146     callee_method = callinfo.selected_method();
1147   }
1148   assert(callee_method()->is_method(), "must be");
1149   return callee_method;
1150 }
1151 
1152 // Resolves a call.
1153 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1154                                            bool is_virtual,
1155                                            bool is_optimized, TRAPS) {
1156   methodHandle callee_method;
1157   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1158   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1159     int retry_count = 0;
1160     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1161            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1162       // If has a pending exception then there is no need to re-try to
1163       // resolve this method.
1164       // If the method has been redefined, we need to try again.
1165       // Hack: we have no way to update the vtables of arrays, so don't
1166       // require that java.lang.Object has been updated.
1167 
1168       // It is very unlikely that method is redefined more than 100 times
1169       // in the middle of resolve. If it is looping here more than 100 times
1170       // means then there could be a bug here.
1171       guarantee((retry_count++ < 100),
1172                 "Could not resolve to latest version of redefined method");
1173       // method is redefined in the middle of resolve so re-try.
1174       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1175     }
1176   }
1177   return callee_method;
1178 }
1179 
1180 // Resolves a call.  The compilers generate code for calls that go here
1181 // and are patched with the real destination of the call.
1182 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1183                                            bool is_virtual,
1184                                            bool is_optimized, TRAPS) {
1185 
1186   ResourceMark rm(thread);
1187   RegisterMap cbl_map(thread, false);
1188   frame caller_frame = thread->last_frame().sender(&cbl_map);
1189 
1190   CodeBlob* caller_cb = caller_frame.cb();
1191   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1192   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1193 
1194   // make sure caller is not getting deoptimized
1195   // and removed before we are done with it.
1196   // CLEANUP - with lazy deopt shouldn't need this lock
1197   nmethodLocker caller_lock(caller_nm);
1198 
1199   // determine call info & receiver
1200   // note: a) receiver is NULL for static calls
1201   //       b) an exception is thrown if receiver is NULL for non-static calls
1202   CallInfo call_info;
1203   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1204   Handle receiver = find_callee_info(thread, invoke_code,
1205                                      call_info, CHECK_(methodHandle()));
1206   methodHandle callee_method = call_info.selected_method();
1207 
1208   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1209          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1210          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1211          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1212 
1213   assert(caller_nm->is_alive(), "It should be alive");
1214 
1215 #ifndef PRODUCT
1216   // tracing/debugging/statistics
1217   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1218                 (is_virtual) ? (&_resolve_virtual_ctr) :
1219                                (&_resolve_static_ctr);
1220   Atomic::inc(addr);
1221 
1222   if (TraceCallFixup) {
1223     ResourceMark rm(thread);
1224     tty->print("resolving %s%s (%s) call to",
1225       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1226       Bytecodes::name(invoke_code));
1227     callee_method->print_short_name(tty);
1228     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1229   }
1230 #endif
1231 
1232   // JSR 292 key invariant:
1233   // If the resolved method is a MethodHandle invoke target, the call
1234   // site must be a MethodHandle call site, because the lambda form might tail-call
1235   // leaving the stack in a state unknown to either caller or callee
1236   // TODO detune for now but we might need it again
1237 //  assert(!callee_method->is_compiled_lambda_form() ||
1238 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1239 
1240   // Compute entry points. This might require generation of C2I converter
1241   // frames, so we cannot be holding any locks here. Furthermore, the
1242   // computation of the entry points is independent of patching the call.  We
1243   // always return the entry-point, but we only patch the stub if the call has
1244   // not been deoptimized.  Return values: For a virtual call this is an
1245   // (cached_oop, destination address) pair. For a static call/optimized
1246   // virtual this is just a destination address.
1247 
1248   StaticCallInfo static_call_info;
1249   CompiledICInfo virtual_call_info;
1250 
1251   // Make sure the callee nmethod does not get deoptimized and removed before
1252   // we are done patching the code.
1253   nmethod* callee_nm = callee_method->code();
1254   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1255     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1256     callee_nm = NULL;
1257   }
1258   nmethodLocker nl_callee(callee_nm);
1259 #ifdef ASSERT
1260   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1261 #endif
1262 
1263   if (is_virtual) {
1264     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1265     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1266     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1267     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1268                      is_optimized, static_bound, virtual_call_info,
1269                      CHECK_(methodHandle()));
1270   } else {
1271     // static call
1272     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1273   }
1274 
1275   // grab lock, check for deoptimization and potentially patch caller
1276   {
1277     MutexLocker ml_patch(CompiledIC_lock);
1278 
1279     // Lock blocks for safepoint during which both nmethods can change state.
1280 
1281     // Now that we are ready to patch if the Method* was redefined then
1282     // don't update call site and let the caller retry.
1283     // Don't update call site if callee nmethod was unloaded or deoptimized.
1284     // Don't update call site if callee nmethod was replaced by an other nmethod
1285     // which may happen when multiply alive nmethod (tiered compilation)
1286     // will be supported.
1287     if (!callee_method->is_old() &&
1288         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1289 #ifdef ASSERT
1290       // We must not try to patch to jump to an already unloaded method.
1291       if (dest_entry_point != 0) {
1292         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1293         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1294                "should not call unloaded nmethod");
1295       }
1296 #endif
1297       if (is_virtual) {
1298         nmethod* nm = callee_nm;
1299         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
1300         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1301         if (inline_cache->is_clean()) {
1302           inline_cache->set_to_monomorphic(virtual_call_info);
1303         }
1304       } else {
1305         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1306         if (ssc->is_clean()) ssc->set(static_call_info);
1307       }
1308     }
1309 
1310   } // unlock CompiledIC_lock
1311 
1312   return callee_method;
1313 }
1314 
1315 
1316 // Inline caches exist only in compiled code
1317 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1318 #ifdef ASSERT
1319   RegisterMap reg_map(thread, false);
1320   frame stub_frame = thread->last_frame();
1321   assert(stub_frame.is_runtime_frame(), "sanity check");
1322   frame caller_frame = stub_frame.sender(&reg_map);
1323   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1324 #endif /* ASSERT */
1325 
1326   methodHandle callee_method;
1327   JRT_BLOCK
1328     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1329     // Return Method* through TLS
1330     thread->set_vm_result_2(callee_method());
1331   JRT_BLOCK_END
1332   // return compiled code entry point after potential safepoints
1333   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1334   return callee_method->verified_code_entry();
1335 JRT_END
1336 
1337 
1338 // Handle call site that has been made non-entrant
1339 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1340   // 6243940 We might end up in here if the callee is deoptimized
1341   // as we race to call it.  We don't want to take a safepoint if
1342   // the caller was interpreted because the caller frame will look
1343   // interpreted to the stack walkers and arguments are now
1344   // "compiled" so it is much better to make this transition
1345   // invisible to the stack walking code. The i2c path will
1346   // place the callee method in the callee_target. It is stashed
1347   // there because if we try and find the callee by normal means a
1348   // safepoint is possible and have trouble gc'ing the compiled args.
1349   RegisterMap reg_map(thread, false);
1350   frame stub_frame = thread->last_frame();
1351   assert(stub_frame.is_runtime_frame(), "sanity check");
1352   frame caller_frame = stub_frame.sender(&reg_map);
1353 
1354   if (caller_frame.is_interpreted_frame() ||
1355       caller_frame.is_entry_frame()) {
1356     Method* callee = thread->callee_target();
1357     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1358     thread->set_vm_result_2(callee);
1359     thread->set_callee_target(NULL);
1360     return callee->get_c2i_entry();
1361   }
1362 
1363   // Must be compiled to compiled path which is safe to stackwalk
1364   methodHandle callee_method;
1365   JRT_BLOCK
1366     // Force resolving of caller (if we called from compiled frame)
1367     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1368     thread->set_vm_result_2(callee_method());
1369   JRT_BLOCK_END
1370   // return compiled code entry point after potential safepoints
1371   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1372   return callee_method->verified_code_entry();
1373 JRT_END
1374 
1375 // Handle abstract method call
1376 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1377   return StubRoutines::throw_AbstractMethodError_entry();
1378 JRT_END
1379 
1380 
1381 // resolve a static call and patch code
1382 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1383   methodHandle callee_method;
1384   JRT_BLOCK
1385     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1386     thread->set_vm_result_2(callee_method());
1387   JRT_BLOCK_END
1388   // return compiled code entry point after potential safepoints
1389   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1390   return callee_method->verified_code_entry();
1391 JRT_END
1392 
1393 
1394 // resolve virtual call and update inline cache to monomorphic
1395 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1396   methodHandle callee_method;
1397   JRT_BLOCK
1398     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1399     thread->set_vm_result_2(callee_method());
1400   JRT_BLOCK_END
1401   // return compiled code entry point after potential safepoints
1402   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1403   return callee_method->verified_code_entry();
1404 JRT_END
1405 
1406 
1407 // Resolve a virtual call that can be statically bound (e.g., always
1408 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1409 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1410   methodHandle callee_method;
1411   JRT_BLOCK
1412     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1413     thread->set_vm_result_2(callee_method());
1414   JRT_BLOCK_END
1415   // return compiled code entry point after potential safepoints
1416   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1417   return callee_method->verified_code_entry();
1418 JRT_END
1419 
1420 
1421 
1422 
1423 
1424 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1425   ResourceMark rm(thread);
1426   CallInfo call_info;
1427   Bytecodes::Code bc;
1428 
1429   // receiver is NULL for static calls. An exception is thrown for NULL
1430   // receivers for non-static calls
1431   Handle receiver = find_callee_info(thread, bc, call_info,
1432                                      CHECK_(methodHandle()));
1433   // Compiler1 can produce virtual call sites that can actually be statically bound
1434   // If we fell thru to below we would think that the site was going megamorphic
1435   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1436   // we'd try and do a vtable dispatch however methods that can be statically bound
1437   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1438   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1439   // plain ic_miss) and the site will be converted to an optimized virtual call site
1440   // never to miss again. I don't believe C2 will produce code like this but if it
1441   // did this would still be the correct thing to do for it too, hence no ifdef.
1442   //
1443   if (call_info.resolved_method()->can_be_statically_bound()) {
1444     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1445     if (TraceCallFixup) {
1446       RegisterMap reg_map(thread, false);
1447       frame caller_frame = thread->last_frame().sender(&reg_map);
1448       ResourceMark rm(thread);
1449       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1450       callee_method->print_short_name(tty);
1451       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1452       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1453     }
1454     return callee_method;
1455   }
1456 
1457   methodHandle callee_method = call_info.selected_method();
1458 
1459   bool should_be_mono = false;
1460 
1461 #ifndef PRODUCT
1462   Atomic::inc(&_ic_miss_ctr);
1463 
1464   // Statistics & Tracing
1465   if (TraceCallFixup) {
1466     ResourceMark rm(thread);
1467     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1468     callee_method->print_short_name(tty);
1469     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1470   }
1471 
1472   if (ICMissHistogram) {
1473     MutexLocker m(VMStatistic_lock);
1474     RegisterMap reg_map(thread, false);
1475     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1476     // produce statistics under the lock
1477     trace_ic_miss(f.pc());
1478   }
1479 #endif
1480 
1481   // install an event collector so that when a vtable stub is created the
1482   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1483   // event can't be posted when the stub is created as locks are held
1484   // - instead the event will be deferred until the event collector goes
1485   // out of scope.
1486   JvmtiDynamicCodeEventCollector event_collector;
1487 
1488   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1489   { MutexLocker ml_patch (CompiledIC_lock);
1490     RegisterMap reg_map(thread, false);
1491     frame caller_frame = thread->last_frame().sender(&reg_map);
1492     CodeBlob* cb = caller_frame.cb();
1493     if (cb->is_nmethod()) {
1494       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1495       bool should_be_mono = false;
1496       if (inline_cache->is_optimized()) {
1497         if (TraceCallFixup) {
1498           ResourceMark rm(thread);
1499           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1500           callee_method->print_short_name(tty);
1501           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1502         }
1503         should_be_mono = true;
1504       } else if (inline_cache->is_icholder_call()) {
1505         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1506         if ( ic_oop != NULL) {
1507 
1508           if (receiver()->klass() == ic_oop->holder_klass()) {
1509             // This isn't a real miss. We must have seen that compiled code
1510             // is now available and we want the call site converted to a
1511             // monomorphic compiled call site.
1512             // We can't assert for callee_method->code() != NULL because it
1513             // could have been deoptimized in the meantime
1514             if (TraceCallFixup) {
1515               ResourceMark rm(thread);
1516               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1517               callee_method->print_short_name(tty);
1518               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1519             }
1520             should_be_mono = true;
1521           }
1522         }
1523       }
1524 
1525       if (should_be_mono) {
1526 
1527         // We have a path that was monomorphic but was going interpreted
1528         // and now we have (or had) a compiled entry. We correct the IC
1529         // by using a new icBuffer.
1530         CompiledICInfo info;
1531         KlassHandle receiver_klass(THREAD, receiver()->klass());
1532         inline_cache->compute_monomorphic_entry(callee_method,
1533                                                 receiver_klass,
1534                                                 inline_cache->is_optimized(),
1535                                                 false,
1536                                                 info, CHECK_(methodHandle()));
1537         inline_cache->set_to_monomorphic(info);
1538       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1539         // Potential change to megamorphic
1540         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1541         if (!successful) {
1542           inline_cache->set_to_clean();
1543         }
1544       } else {
1545         // Either clean or megamorphic
1546       }
1547     }
1548   } // Release CompiledIC_lock
1549 
1550   return callee_method;
1551 }
1552 
1553 //
1554 // Resets a call-site in compiled code so it will get resolved again.
1555 // This routines handles both virtual call sites, optimized virtual call
1556 // sites, and static call sites. Typically used to change a call sites
1557 // destination from compiled to interpreted.
1558 //
1559 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1560   ResourceMark rm(thread);
1561   RegisterMap reg_map(thread, false);
1562   frame stub_frame = thread->last_frame();
1563   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1564   frame caller = stub_frame.sender(&reg_map);
1565 
1566   // Do nothing if the frame isn't a live compiled frame.
1567   // nmethod could be deoptimized by the time we get here
1568   // so no update to the caller is needed.
1569 
1570   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1571 
1572     address pc = caller.pc();
1573 
1574     // Default call_addr is the location of the "basic" call.
1575     // Determine the address of the call we a reresolving. With
1576     // Inline Caches we will always find a recognizable call.
1577     // With Inline Caches disabled we may or may not find a
1578     // recognizable call. We will always find a call for static
1579     // calls and for optimized virtual calls. For vanilla virtual
1580     // calls it depends on the state of the UseInlineCaches switch.
1581     //
1582     // With Inline Caches disabled we can get here for a virtual call
1583     // for two reasons:
1584     //   1 - calling an abstract method. The vtable for abstract methods
1585     //       will run us thru handle_wrong_method and we will eventually
1586     //       end up in the interpreter to throw the ame.
1587     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1588     //       call and between the time we fetch the entry address and
1589     //       we jump to it the target gets deoptimized. Similar to 1
1590     //       we will wind up in the interprter (thru a c2i with c2).
1591     //
1592     address call_addr = NULL;
1593     {
1594       // Get call instruction under lock because another thread may be
1595       // busy patching it.
1596       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1597       // Location of call instruction
1598       if (NativeCall::is_call_before(pc)) {
1599         NativeCall *ncall = nativeCall_before(pc);
1600         call_addr = ncall->instruction_address();
1601       }
1602     }
1603 
1604     // Check for static or virtual call
1605     bool is_static_call = false;
1606     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1607     // Make sure nmethod doesn't get deoptimized and removed until
1608     // this is done with it.
1609     // CLEANUP - with lazy deopt shouldn't need this lock
1610     nmethodLocker nmlock(caller_nm);
1611 
1612     if (call_addr != NULL) {
1613       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1614       int ret = iter.next(); // Get item
1615       if (ret) {
1616         assert(iter.addr() == call_addr, "must find call");
1617         if (iter.type() == relocInfo::static_call_type) {
1618           is_static_call = true;
1619         } else {
1620           assert(iter.type() == relocInfo::virtual_call_type ||
1621                  iter.type() == relocInfo::opt_virtual_call_type
1622                 , "unexpected relocInfo. type");
1623         }
1624       } else {
1625         assert(!UseInlineCaches, "relocation info. must exist for this address");
1626       }
1627 
1628       // Cleaning the inline cache will force a new resolve. This is more robust
1629       // than directly setting it to the new destination, since resolving of calls
1630       // is always done through the same code path. (experience shows that it
1631       // leads to very hard to track down bugs, if an inline cache gets updated
1632       // to a wrong method). It should not be performance critical, since the
1633       // resolve is only done once.
1634 
1635       MutexLocker ml(CompiledIC_lock);
1636       if (is_static_call) {
1637         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1638         ssc->set_to_clean();
1639       } else {
1640         // compiled, dispatched call (which used to call an interpreted method)
1641         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1642         inline_cache->set_to_clean();
1643       }
1644     }
1645 
1646   }
1647 
1648   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1649 
1650 
1651 #ifndef PRODUCT
1652   Atomic::inc(&_wrong_method_ctr);
1653 
1654   if (TraceCallFixup) {
1655     ResourceMark rm(thread);
1656     tty->print("handle_wrong_method reresolving call to");
1657     callee_method->print_short_name(tty);
1658     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1659   }
1660 #endif
1661 
1662   return callee_method;
1663 }
1664 
1665 #ifdef ASSERT
1666 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1667                                                                 const BasicType* sig_bt,
1668                                                                 const VMRegPair* regs) {
1669   ResourceMark rm;
1670   const int total_args_passed = method->size_of_parameters();
1671   const VMRegPair*    regs_with_member_name = regs;
1672         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1673 
1674   const int member_arg_pos = total_args_passed - 1;
1675   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1676   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1677 
1678   const bool is_outgoing = method->is_method_handle_intrinsic();
1679   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1680 
1681   for (int i = 0; i < member_arg_pos; i++) {
1682     VMReg a =    regs_with_member_name[i].first();
1683     VMReg b = regs_without_member_name[i].first();
1684     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1685   }
1686   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1687 }
1688 #endif
1689 
1690 // ---------------------------------------------------------------------------
1691 // We are calling the interpreter via a c2i. Normally this would mean that
1692 // we were called by a compiled method. However we could have lost a race
1693 // where we went int -> i2c -> c2i and so the caller could in fact be
1694 // interpreted. If the caller is compiled we attempt to patch the caller
1695 // so he no longer calls into the interpreter.
1696 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1697   Method* moop(method);
1698 
1699   address entry_point = moop->from_compiled_entry();
1700 
1701   // It's possible that deoptimization can occur at a call site which hasn't
1702   // been resolved yet, in which case this function will be called from
1703   // an nmethod that has been patched for deopt and we can ignore the
1704   // request for a fixup.
1705   // Also it is possible that we lost a race in that from_compiled_entry
1706   // is now back to the i2c in that case we don't need to patch and if
1707   // we did we'd leap into space because the callsite needs to use
1708   // "to interpreter" stub in order to load up the Method*. Don't
1709   // ask me how I know this...
1710 
1711   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1712   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1713     return;
1714   }
1715 
1716   // The check above makes sure this is a nmethod.
1717   nmethod* nm = cb->as_nmethod_or_null();
1718   assert(nm, "must be");
1719 
1720   // Get the return PC for the passed caller PC.
1721   address return_pc = caller_pc + frame::pc_return_offset;
1722 
1723   // There is a benign race here. We could be attempting to patch to a compiled
1724   // entry point at the same time the callee is being deoptimized. If that is
1725   // the case then entry_point may in fact point to a c2i and we'd patch the
1726   // call site with the same old data. clear_code will set code() to NULL
1727   // at the end of it. If we happen to see that NULL then we can skip trying
1728   // to patch. If we hit the window where the callee has a c2i in the
1729   // from_compiled_entry and the NULL isn't present yet then we lose the race
1730   // and patch the code with the same old data. Asi es la vida.
1731 
1732   if (moop->code() == NULL) return;
1733 
1734   if (nm->is_in_use()) {
1735 
1736     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1737     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1738     if (NativeCall::is_call_before(return_pc)) {
1739       NativeCall *call = nativeCall_before(return_pc);
1740       //
1741       // bug 6281185. We might get here after resolving a call site to a vanilla
1742       // virtual call. Because the resolvee uses the verified entry it may then
1743       // see compiled code and attempt to patch the site by calling us. This would
1744       // then incorrectly convert the call site to optimized and its downhill from
1745       // there. If you're lucky you'll get the assert in the bugid, if not you've
1746       // just made a call site that could be megamorphic into a monomorphic site
1747       // for the rest of its life! Just another racing bug in the life of
1748       // fixup_callers_callsite ...
1749       //
1750       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1751       iter.next();
1752       assert(iter.has_current(), "must have a reloc at java call site");
1753       relocInfo::relocType typ = iter.reloc()->type();
1754       if ( typ != relocInfo::static_call_type &&
1755            typ != relocInfo::opt_virtual_call_type &&
1756            typ != relocInfo::static_stub_type) {
1757         return;
1758       }
1759       address destination = call->destination();
1760       if (destination != entry_point) {
1761         CodeBlob* callee = CodeCache::find_blob(destination);
1762         // callee == cb seems weird. It means calling interpreter thru stub.
1763         if (callee == cb || callee->is_adapter_blob()) {
1764           // static call or optimized virtual
1765           if (TraceCallFixup) {
1766             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1767             moop->print_short_name(tty);
1768             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1769           }
1770           call->set_destination_mt_safe(entry_point);
1771         } else {
1772           if (TraceCallFixup) {
1773             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1774             moop->print_short_name(tty);
1775             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1776           }
1777           // assert is too strong could also be resolve destinations.
1778           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1779         }
1780       } else {
1781           if (TraceCallFixup) {
1782             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1783             moop->print_short_name(tty);
1784             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1785           }
1786       }
1787     }
1788   }
1789 IRT_END
1790 
1791 
1792 // same as JVM_Arraycopy, but called directly from compiled code
1793 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1794                                                 oopDesc* dest, jint dest_pos,
1795                                                 jint length,
1796                                                 JavaThread* thread)) {
1797 #ifndef PRODUCT
1798   _slow_array_copy_ctr++;
1799 #endif
1800   // Check if we have null pointers
1801   if (src == NULL || dest == NULL) {
1802     THROW(vmSymbols::java_lang_NullPointerException());
1803   }
1804   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1805   // even though the copy_array API also performs dynamic checks to ensure
1806   // that src and dest are truly arrays (and are conformable).
1807   // The copy_array mechanism is awkward and could be removed, but
1808   // the compilers don't call this function except as a last resort,
1809   // so it probably doesn't matter.
1810   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
1811                                         (arrayOopDesc*)dest, dest_pos,
1812                                         length, thread);
1813 }
1814 JRT_END
1815 
1816 char* SharedRuntime::generate_class_cast_message(
1817     JavaThread* thread, const char* objName) {
1818 
1819   // Get target class name from the checkcast instruction
1820   vframeStream vfst(thread, true);
1821   assert(!vfst.at_end(), "Java frame must exist");
1822   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1823   Klass* targetKlass = vfst.method()->constants()->klass_at(
1824     cc.index(), thread);
1825   return generate_class_cast_message(objName, targetKlass->external_name());
1826 }
1827 
1828 char* SharedRuntime::generate_class_cast_message(
1829     const char* objName, const char* targetKlassName, const char* desc) {
1830   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1831 
1832   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1833   if (NULL == message) {
1834     // Shouldn't happen, but don't cause even more problems if it does
1835     message = const_cast<char*>(objName);
1836   } else {
1837     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1838   }
1839   return message;
1840 }
1841 
1842 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1843   (void) JavaThread::current()->reguard_stack();
1844 JRT_END
1845 
1846 
1847 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1848 #ifndef PRODUCT
1849 int SharedRuntime::_monitor_enter_ctr=0;
1850 #endif
1851 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1852   oop obj(_obj);
1853 #ifndef PRODUCT
1854   _monitor_enter_ctr++;             // monitor enter slow
1855 #endif
1856   if (PrintBiasedLockingStatistics) {
1857     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1858   }
1859   Handle h_obj(THREAD, obj);
1860   if (UseBiasedLocking) {
1861     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1862     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1863   } else {
1864     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1865   }
1866   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1867 JRT_END
1868 
1869 #ifndef PRODUCT
1870 int SharedRuntime::_monitor_exit_ctr=0;
1871 #endif
1872 // Handles the uncommon cases of monitor unlocking in compiled code
1873 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1874    oop obj(_obj);
1875 #ifndef PRODUCT
1876   _monitor_exit_ctr++;              // monitor exit slow
1877 #endif
1878   Thread* THREAD = JavaThread::current();
1879   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1880   // testing was unable to ever fire the assert that guarded it so I have removed it.
1881   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1882 #undef MIGHT_HAVE_PENDING
1883 #ifdef MIGHT_HAVE_PENDING
1884   // Save and restore any pending_exception around the exception mark.
1885   // While the slow_exit must not throw an exception, we could come into
1886   // this routine with one set.
1887   oop pending_excep = NULL;
1888   const char* pending_file;
1889   int pending_line;
1890   if (HAS_PENDING_EXCEPTION) {
1891     pending_excep = PENDING_EXCEPTION;
1892     pending_file  = THREAD->exception_file();
1893     pending_line  = THREAD->exception_line();
1894     CLEAR_PENDING_EXCEPTION;
1895   }
1896 #endif /* MIGHT_HAVE_PENDING */
1897 
1898   {
1899     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1900     EXCEPTION_MARK;
1901     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1902   }
1903 
1904 #ifdef MIGHT_HAVE_PENDING
1905   if (pending_excep != NULL) {
1906     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1907   }
1908 #endif /* MIGHT_HAVE_PENDING */
1909 JRT_END
1910 
1911 #ifndef PRODUCT
1912 
1913 void SharedRuntime::print_statistics() {
1914   ttyLocker ttyl;
1915   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1916 
1917   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1918   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1919   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1920 
1921   SharedRuntime::print_ic_miss_histogram();
1922 
1923   if (CountRemovableExceptions) {
1924     if (_nof_removable_exceptions > 0) {
1925       Unimplemented(); // this counter is not yet incremented
1926       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1927     }
1928   }
1929 
1930   // Dump the JRT_ENTRY counters
1931   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1932   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1933   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1934   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1935   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1936   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1937   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1938 
1939   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1940   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1941   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1942   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1943   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1944 
1945   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1946   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1947   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1948   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1949   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1950   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1951   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1952   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1953   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1954   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1955   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1956   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1957   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1958   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1959   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1960   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1961 
1962   AdapterHandlerLibrary::print_statistics();
1963 
1964   if (xtty != NULL)  xtty->tail("statistics");
1965 }
1966 
1967 inline double percent(int x, int y) {
1968   return 100.0 * x / MAX2(y, 1);
1969 }
1970 
1971 class MethodArityHistogram {
1972  public:
1973   enum { MAX_ARITY = 256 };
1974  private:
1975   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1976   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1977   static int _max_arity;                      // max. arity seen
1978   static int _max_size;                       // max. arg size seen
1979 
1980   static void add_method_to_histogram(nmethod* nm) {
1981     Method* m = nm->method();
1982     ArgumentCount args(m->signature());
1983     int arity   = args.size() + (m->is_static() ? 0 : 1);
1984     int argsize = m->size_of_parameters();
1985     arity   = MIN2(arity, MAX_ARITY-1);
1986     argsize = MIN2(argsize, MAX_ARITY-1);
1987     int count = nm->method()->compiled_invocation_count();
1988     _arity_histogram[arity]  += count;
1989     _size_histogram[argsize] += count;
1990     _max_arity = MAX2(_max_arity, arity);
1991     _max_size  = MAX2(_max_size, argsize);
1992   }
1993 
1994   void print_histogram_helper(int n, int* histo, const char* name) {
1995     const int N = MIN2(5, n);
1996     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1997     double sum = 0;
1998     double weighted_sum = 0;
1999     int i;
2000     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2001     double rest = sum;
2002     double percent = sum / 100;
2003     for (i = 0; i <= N; i++) {
2004       rest -= histo[i];
2005       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2006     }
2007     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2008     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2009   }
2010 
2011   void print_histogram() {
2012     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2013     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2014     tty->print_cr("\nSame for parameter size (in words):");
2015     print_histogram_helper(_max_size, _size_histogram, "size");
2016     tty->cr();
2017   }
2018 
2019  public:
2020   MethodArityHistogram() {
2021     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2022     _max_arity = _max_size = 0;
2023     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2024     CodeCache::nmethods_do(add_method_to_histogram);
2025     print_histogram();
2026   }
2027 };
2028 
2029 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2030 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2031 int MethodArityHistogram::_max_arity;
2032 int MethodArityHistogram::_max_size;
2033 
2034 void SharedRuntime::print_call_statistics(int comp_total) {
2035   tty->print_cr("Calls from compiled code:");
2036   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2037   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2038   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2039   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2040   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2041   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2042   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2043   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2044   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2045   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2046   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2047   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2048   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2049   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2050   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2051   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2052   tty->cr();
2053   tty->print_cr("Note 1: counter updates are not MT-safe.");
2054   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2055   tty->print_cr("        %% in nested categories are relative to their category");
2056   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2057   tty->cr();
2058 
2059   MethodArityHistogram h;
2060 }
2061 #endif
2062 
2063 
2064 // A simple wrapper class around the calling convention information
2065 // that allows sharing of adapters for the same calling convention.
2066 class AdapterFingerPrint : public CHeapObj<mtCode> {
2067  private:
2068   enum {
2069     _basic_type_bits = 4,
2070     _basic_type_mask = right_n_bits(_basic_type_bits),
2071     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2072     _compact_int_count = 3
2073   };
2074   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2075   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2076 
2077   union {
2078     int  _compact[_compact_int_count];
2079     int* _fingerprint;
2080   } _value;
2081   int _length; // A negative length indicates the fingerprint is in the compact form,
2082                // Otherwise _value._fingerprint is the array.
2083 
2084   // Remap BasicTypes that are handled equivalently by the adapters.
2085   // These are correct for the current system but someday it might be
2086   // necessary to make this mapping platform dependent.
2087   static int adapter_encoding(BasicType in) {
2088     switch(in) {
2089       case T_BOOLEAN:
2090       case T_BYTE:
2091       case T_SHORT:
2092       case T_CHAR:
2093         // There are all promoted to T_INT in the calling convention
2094         return T_INT;
2095 
2096       case T_OBJECT:
2097       case T_ARRAY:
2098         // In other words, we assume that any register good enough for
2099         // an int or long is good enough for a managed pointer.
2100 #ifdef _LP64
2101         return T_LONG;
2102 #else
2103         return T_INT;
2104 #endif
2105 
2106       case T_INT:
2107       case T_LONG:
2108       case T_FLOAT:
2109       case T_DOUBLE:
2110       case T_VOID:
2111         return in;
2112 
2113       default:
2114         ShouldNotReachHere();
2115         return T_CONFLICT;
2116     }
2117   }
2118 
2119  public:
2120   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2121     // The fingerprint is based on the BasicType signature encoded
2122     // into an array of ints with eight entries per int.
2123     int* ptr;
2124     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2125     if (len <= _compact_int_count) {
2126       assert(_compact_int_count == 3, "else change next line");
2127       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2128       // Storing the signature encoded as signed chars hits about 98%
2129       // of the time.
2130       _length = -len;
2131       ptr = _value._compact;
2132     } else {
2133       _length = len;
2134       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2135       ptr = _value._fingerprint;
2136     }
2137 
2138     // Now pack the BasicTypes with 8 per int
2139     int sig_index = 0;
2140     for (int index = 0; index < len; index++) {
2141       int value = 0;
2142       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2143         int bt = ((sig_index < total_args_passed)
2144                   ? adapter_encoding(sig_bt[sig_index++])
2145                   : 0);
2146         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2147         value = (value << _basic_type_bits) | bt;
2148       }
2149       ptr[index] = value;
2150     }
2151   }
2152 
2153   ~AdapterFingerPrint() {
2154     if (_length > 0) {
2155       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2156     }
2157   }
2158 
2159   int value(int index) {
2160     if (_length < 0) {
2161       return _value._compact[index];
2162     }
2163     return _value._fingerprint[index];
2164   }
2165   int length() {
2166     if (_length < 0) return -_length;
2167     return _length;
2168   }
2169 
2170   bool is_compact() {
2171     return _length <= 0;
2172   }
2173 
2174   unsigned int compute_hash() {
2175     int hash = 0;
2176     for (int i = 0; i < length(); i++) {
2177       int v = value(i);
2178       hash = (hash << 8) ^ v ^ (hash >> 5);
2179     }
2180     return (unsigned int)hash;
2181   }
2182 
2183   const char* as_string() {
2184     stringStream st;
2185     st.print("0x");
2186     for (int i = 0; i < length(); i++) {
2187       st.print("%08x", value(i));
2188     }
2189     return st.as_string();
2190   }
2191 
2192   bool equals(AdapterFingerPrint* other) {
2193     if (other->_length != _length) {
2194       return false;
2195     }
2196     if (_length < 0) {
2197       assert(_compact_int_count == 3, "else change next line");
2198       return _value._compact[0] == other->_value._compact[0] &&
2199              _value._compact[1] == other->_value._compact[1] &&
2200              _value._compact[2] == other->_value._compact[2];
2201     } else {
2202       for (int i = 0; i < _length; i++) {
2203         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2204           return false;
2205         }
2206       }
2207     }
2208     return true;
2209   }
2210 };
2211 
2212 
2213 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2214 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2215   friend class AdapterHandlerTableIterator;
2216 
2217  private:
2218 
2219 #ifndef PRODUCT
2220   static int _lookups; // number of calls to lookup
2221   static int _buckets; // number of buckets checked
2222   static int _equals;  // number of buckets checked with matching hash
2223   static int _hits;    // number of successful lookups
2224   static int _compact; // number of equals calls with compact signature
2225 #endif
2226 
2227   AdapterHandlerEntry* bucket(int i) {
2228     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2229   }
2230 
2231  public:
2232   AdapterHandlerTable()
2233     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2234 
2235   // Create a new entry suitable for insertion in the table
2236   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2237     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2238     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2239     return entry;
2240   }
2241 
2242   // Insert an entry into the table
2243   void add(AdapterHandlerEntry* entry) {
2244     int index = hash_to_index(entry->hash());
2245     add_entry(index, entry);
2246   }
2247 
2248   void free_entry(AdapterHandlerEntry* entry) {
2249     entry->deallocate();
2250     BasicHashtable<mtCode>::free_entry(entry);
2251   }
2252 
2253   // Find a entry with the same fingerprint if it exists
2254   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2255     NOT_PRODUCT(_lookups++);
2256     AdapterFingerPrint fp(total_args_passed, sig_bt);
2257     unsigned int hash = fp.compute_hash();
2258     int index = hash_to_index(hash);
2259     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2260       NOT_PRODUCT(_buckets++);
2261       if (e->hash() == hash) {
2262         NOT_PRODUCT(_equals++);
2263         if (fp.equals(e->fingerprint())) {
2264 #ifndef PRODUCT
2265           if (fp.is_compact()) _compact++;
2266           _hits++;
2267 #endif
2268           return e;
2269         }
2270       }
2271     }
2272     return NULL;
2273   }
2274 
2275 #ifndef PRODUCT
2276   void print_statistics() {
2277     ResourceMark rm;
2278     int longest = 0;
2279     int empty = 0;
2280     int total = 0;
2281     int nonempty = 0;
2282     for (int index = 0; index < table_size(); index++) {
2283       int count = 0;
2284       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2285         count++;
2286       }
2287       if (count != 0) nonempty++;
2288       if (count == 0) empty++;
2289       if (count > longest) longest = count;
2290       total += count;
2291     }
2292     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2293                   empty, longest, total, total / (double)nonempty);
2294     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2295                   _lookups, _buckets, _equals, _hits, _compact);
2296   }
2297 #endif
2298 };
2299 
2300 
2301 #ifndef PRODUCT
2302 
2303 int AdapterHandlerTable::_lookups;
2304 int AdapterHandlerTable::_buckets;
2305 int AdapterHandlerTable::_equals;
2306 int AdapterHandlerTable::_hits;
2307 int AdapterHandlerTable::_compact;
2308 
2309 #endif
2310 
2311 class AdapterHandlerTableIterator : public StackObj {
2312  private:
2313   AdapterHandlerTable* _table;
2314   int _index;
2315   AdapterHandlerEntry* _current;
2316 
2317   void scan() {
2318     while (_index < _table->table_size()) {
2319       AdapterHandlerEntry* a = _table->bucket(_index);
2320       _index++;
2321       if (a != NULL) {
2322         _current = a;
2323         return;
2324       }
2325     }
2326   }
2327 
2328  public:
2329   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2330     scan();
2331   }
2332   bool has_next() {
2333     return _current != NULL;
2334   }
2335   AdapterHandlerEntry* next() {
2336     if (_current != NULL) {
2337       AdapterHandlerEntry* result = _current;
2338       _current = _current->next();
2339       if (_current == NULL) scan();
2340       return result;
2341     } else {
2342       return NULL;
2343     }
2344   }
2345 };
2346 
2347 
2348 // ---------------------------------------------------------------------------
2349 // Implementation of AdapterHandlerLibrary
2350 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2351 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2352 const int AdapterHandlerLibrary_size = 16*K;
2353 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2354 
2355 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2356   // Should be called only when AdapterHandlerLibrary_lock is active.
2357   if (_buffer == NULL) // Initialize lazily
2358       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2359   return _buffer;
2360 }
2361 
2362 void AdapterHandlerLibrary::initialize() {
2363   if (_adapters != NULL) return;
2364   _adapters = new AdapterHandlerTable();
2365 
2366   // Create a special handler for abstract methods.  Abstract methods
2367   // are never compiled so an i2c entry is somewhat meaningless, but
2368   // throw AbstractMethodError just in case.
2369   // Pass wrong_method_abstract for the c2i transitions to return
2370   // AbstractMethodError for invalid invocations.
2371   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2372   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2373                                                               StubRoutines::throw_AbstractMethodError_entry(),
2374                                                               wrong_method_abstract, wrong_method_abstract);
2375 }
2376 
2377 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2378                                                       address i2c_entry,
2379                                                       address c2i_entry,
2380                                                       address c2i_unverified_entry) {
2381   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2382 }
2383 
2384 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2385   // Use customized signature handler.  Need to lock around updates to
2386   // the AdapterHandlerTable (it is not safe for concurrent readers
2387   // and a single writer: this could be fixed if it becomes a
2388   // problem).
2389 
2390   // Get the address of the ic_miss handlers before we grab the
2391   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2392   // was caused by the initialization of the stubs happening
2393   // while we held the lock and then notifying jvmti while
2394   // holding it. This just forces the initialization to be a little
2395   // earlier.
2396   address ic_miss = SharedRuntime::get_ic_miss_stub();
2397   assert(ic_miss != NULL, "must have handler");
2398 
2399   ResourceMark rm;
2400 
2401   NOT_PRODUCT(int insts_size);
2402   AdapterBlob* new_adapter = NULL;
2403   AdapterHandlerEntry* entry = NULL;
2404   AdapterFingerPrint* fingerprint = NULL;
2405   {
2406     MutexLocker mu(AdapterHandlerLibrary_lock);
2407     // make sure data structure is initialized
2408     initialize();
2409 
2410     if (method->is_abstract()) {
2411       return _abstract_method_handler;
2412     }
2413 
2414     // Fill in the signature array, for the calling-convention call.
2415     int total_args_passed = method->size_of_parameters(); // All args on stack
2416 
2417     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2418     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2419     int i = 0;
2420     if (!method->is_static())  // Pass in receiver first
2421       sig_bt[i++] = T_OBJECT;
2422     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2423       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2424       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2425         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2426     }
2427     assert(i == total_args_passed, "");
2428 
2429     // Lookup method signature's fingerprint
2430     entry = _adapters->lookup(total_args_passed, sig_bt);
2431 
2432 #ifdef ASSERT
2433     AdapterHandlerEntry* shared_entry = NULL;
2434     // Start adapter sharing verification only after the VM is booted.
2435     if (VerifyAdapterSharing && (entry != NULL)) {
2436       shared_entry = entry;
2437       entry = NULL;
2438     }
2439 #endif
2440 
2441     if (entry != NULL) {
2442       return entry;
2443     }
2444 
2445     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2446     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2447 
2448     // Make a C heap allocated version of the fingerprint to store in the adapter
2449     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2450 
2451     // StubRoutines::code2() is initialized after this function can be called. As a result,
2452     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2453     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2454     // stub that ensure that an I2C stub is called from an interpreter frame.
2455     bool contains_all_checks = StubRoutines::code2() != NULL;
2456 
2457     // Create I2C & C2I handlers
2458     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2459     if (buf != NULL) {
2460       CodeBuffer buffer(buf);
2461       short buffer_locs[20];
2462       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2463                                              sizeof(buffer_locs)/sizeof(relocInfo));
2464 
2465       MacroAssembler _masm(&buffer);
2466       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2467                                                      total_args_passed,
2468                                                      comp_args_on_stack,
2469                                                      sig_bt,
2470                                                      regs,
2471                                                      fingerprint);
2472 #ifdef ASSERT
2473       if (VerifyAdapterSharing) {
2474         if (shared_entry != NULL) {
2475           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2476           // Release the one just created and return the original
2477           _adapters->free_entry(entry);
2478           return shared_entry;
2479         } else  {
2480           entry->save_code(buf->code_begin(), buffer.insts_size());
2481         }
2482       }
2483 #endif
2484 
2485       new_adapter = AdapterBlob::create(&buffer);
2486       NOT_PRODUCT(insts_size = buffer.insts_size());
2487     }
2488     if (new_adapter == NULL) {
2489       // CodeCache is full, disable compilation
2490       // Ought to log this but compile log is only per compile thread
2491       // and we're some non descript Java thread.
2492       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2493       CompileBroker::handle_full_code_cache();
2494       return NULL; // Out of CodeCache space
2495     }
2496     entry->relocate(new_adapter->content_begin());
2497 #ifndef PRODUCT
2498     // debugging suppport
2499     if (PrintAdapterHandlers || PrintStubCode) {
2500       ttyLocker ttyl;
2501       entry->print_adapter_on(tty);
2502       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2503                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2504                     method->signature()->as_C_string(), insts_size);
2505       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2506       if (Verbose || PrintStubCode) {
2507         address first_pc = entry->base_address();
2508         if (first_pc != NULL) {
2509           Disassembler::decode(first_pc, first_pc + insts_size);
2510           tty->cr();
2511         }
2512       }
2513     }
2514 #endif
2515     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2516     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2517     if (contains_all_checks || !VerifyAdapterCalls) {
2518       _adapters->add(entry);
2519     }
2520   }
2521   // Outside of the lock
2522   if (new_adapter != NULL) {
2523     char blob_id[256];
2524     jio_snprintf(blob_id,
2525                  sizeof(blob_id),
2526                  "%s(%s)@" PTR_FORMAT,
2527                  new_adapter->name(),
2528                  fingerprint->as_string(),
2529                  new_adapter->content_begin());
2530     Forte::register_stub(blob_id, new_adapter->content_begin(),new_adapter->content_end());
2531 
2532     if (JvmtiExport::should_post_dynamic_code_generated()) {
2533       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2534     }
2535   }
2536   return entry;
2537 }
2538 
2539 address AdapterHandlerEntry::base_address() {
2540   address base = _i2c_entry;
2541   if (base == NULL)  base = _c2i_entry;
2542   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2543   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2544   return base;
2545 }
2546 
2547 void AdapterHandlerEntry::relocate(address new_base) {
2548   address old_base = base_address();
2549   assert(old_base != NULL, "");
2550   ptrdiff_t delta = new_base - old_base;
2551   if (_i2c_entry != NULL)
2552     _i2c_entry += delta;
2553   if (_c2i_entry != NULL)
2554     _c2i_entry += delta;
2555   if (_c2i_unverified_entry != NULL)
2556     _c2i_unverified_entry += delta;
2557   assert(base_address() == new_base, "");
2558 }
2559 
2560 
2561 void AdapterHandlerEntry::deallocate() {
2562   delete _fingerprint;
2563 #ifdef ASSERT
2564   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2565 #endif
2566 }
2567 
2568 
2569 #ifdef ASSERT
2570 // Capture the code before relocation so that it can be compared
2571 // against other versions.  If the code is captured after relocation
2572 // then relative instructions won't be equivalent.
2573 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2574   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2575   _saved_code_length = length;
2576   memcpy(_saved_code, buffer, length);
2577 }
2578 
2579 
2580 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2581   if (length != _saved_code_length) {
2582     return false;
2583   }
2584 
2585   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2586 }
2587 #endif
2588 
2589 
2590 /**
2591  * Create a native wrapper for this native method.  The wrapper converts the
2592  * Java-compiled calling convention to the native convention, handles
2593  * arguments, and transitions to native.  On return from the native we transition
2594  * back to java blocking if a safepoint is in progress.
2595  */
2596 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2597   ResourceMark rm;
2598   nmethod* nm = NULL;
2599 
2600   assert(method->is_native(), "must be native");
2601   assert(method->is_method_handle_intrinsic() ||
2602          method->has_native_function(), "must have something valid to call!");
2603 
2604   {
2605     // Perform the work while holding the lock, but perform any printing outside the lock
2606     MutexLocker mu(AdapterHandlerLibrary_lock);
2607     // See if somebody beat us to it
2608     nm = method->code();
2609     if (nm != NULL) {
2610       return;
2611     }
2612 
2613     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2614     assert(compile_id > 0, "Must generate native wrapper");
2615 
2616 
2617     ResourceMark rm;
2618     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2619     if (buf != NULL) {
2620       CodeBuffer buffer(buf);
2621       double locs_buf[20];
2622       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2623       MacroAssembler _masm(&buffer);
2624 
2625       // Fill in the signature array, for the calling-convention call.
2626       const int total_args_passed = method->size_of_parameters();
2627 
2628       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2629       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2630       int i=0;
2631       if( !method->is_static() )  // Pass in receiver first
2632         sig_bt[i++] = T_OBJECT;
2633       SignatureStream ss(method->signature());
2634       for( ; !ss.at_return_type(); ss.next()) {
2635         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2636         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2637           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2638       }
2639       assert(i == total_args_passed, "");
2640       BasicType ret_type = ss.type();
2641 
2642       // Now get the compiled-Java layout as input (or output) arguments.
2643       // NOTE: Stubs for compiled entry points of method handle intrinsics
2644       // are just trampolines so the argument registers must be outgoing ones.
2645       const bool is_outgoing = method->is_method_handle_intrinsic();
2646       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2647 
2648       // Generate the compiled-to-native wrapper code
2649       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2650 
2651       if (nm != NULL) {
2652         method->set_code(method, nm);
2653       }
2654     }
2655   } // Unlock AdapterHandlerLibrary_lock
2656 
2657 
2658   // Install the generated code.
2659   if (nm != NULL) {
2660     if (PrintCompilation) {
2661       ttyLocker ttyl;
2662       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2663     }
2664     nm->post_compiled_method_load_event();
2665   } else {
2666     // CodeCache is full, disable compilation
2667     CompileBroker::handle_full_code_cache();
2668   }
2669 }
2670 
2671 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2672   assert(thread == JavaThread::current(), "must be");
2673   // The code is about to enter a JNI lazy critical native method and
2674   // _needs_gc is true, so if this thread is already in a critical
2675   // section then just return, otherwise this thread should block
2676   // until needs_gc has been cleared.
2677   if (thread->in_critical()) {
2678     return;
2679   }
2680   // Lock and unlock a critical section to give the system a chance to block
2681   GC_locker::lock_critical(thread);
2682   GC_locker::unlock_critical(thread);
2683 JRT_END
2684 
2685 #ifdef HAVE_DTRACE_H
2686 /**
2687  * Create a dtrace nmethod for this method.  The wrapper converts the
2688  * Java-compiled calling convention to the native convention, makes a dummy call
2689  * (actually nops for the size of the call instruction, which become a trap if
2690  * probe is enabled), and finally returns to the caller. Since this all looks like a
2691  * leaf, no thread transition is needed.
2692  */
2693 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2694   ResourceMark rm;
2695   nmethod* nm = NULL;
2696 
2697   if (PrintCompilation) {
2698     ttyLocker ttyl;
2699     tty->print("---   n  ");
2700     method->print_short_name(tty);
2701     if (method->is_static()) {
2702       tty->print(" (static)");
2703     }
2704     tty->cr();
2705   }
2706 
2707   {
2708     // perform the work while holding the lock, but perform any printing
2709     // outside the lock
2710     MutexLocker mu(AdapterHandlerLibrary_lock);
2711     // See if somebody beat us to it
2712     nm = method->code();
2713     if (nm) {
2714       return nm;
2715     }
2716 
2717     ResourceMark rm;
2718 
2719     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2720     if (buf != NULL) {
2721       CodeBuffer buffer(buf);
2722       // Need a few relocation entries
2723       double locs_buf[20];
2724       buffer.insts()->initialize_shared_locs(
2725         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2726       MacroAssembler _masm(&buffer);
2727 
2728       // Generate the compiled-to-native wrapper code
2729       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2730     }
2731   }
2732   return nm;
2733 }
2734 
2735 // the dtrace method needs to convert java lang string to utf8 string.
2736 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2737   typeArrayOop jlsValue  = java_lang_String::value(src);
2738   int          jlsOffset = java_lang_String::offset(src);
2739   int          jlsLen    = java_lang_String::length(src);
2740   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2741                                            jlsValue->char_at_addr(jlsOffset);
2742   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2743   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2744 }
2745 #endif // ndef HAVE_DTRACE_H
2746 
2747 int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) {
2748   int argcnt = in_args_count;
2749   if (CCallingConventionRequiresIntsAsLongs) {
2750     for (int in = 0; in < in_args_count; in++) {
2751       BasicType bt = in_sig_bt[in];
2752       switch (bt) {
2753         case T_BOOLEAN:
2754         case T_CHAR:
2755         case T_BYTE:
2756         case T_SHORT:
2757         case T_INT:
2758           argcnt++;
2759           break;
2760         default:
2761           break;
2762       }
2763     }
2764   } else {
2765     assert(0, "This should not be needed on this platform");
2766   }
2767 
2768   return argcnt;
2769 }
2770 
2771 void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count,
2772                                              BasicType*& in_sig_bt, VMRegPair*& in_regs) {
2773   if (CCallingConventionRequiresIntsAsLongs) {
2774     VMRegPair *new_in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt);
2775     BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
2776 
2777     int argcnt = 0;
2778     for (int in = 0; in < in_args_count; in++, argcnt++) {
2779       BasicType bt  = in_sig_bt[in];
2780       VMRegPair reg = in_regs[in];
2781       switch (bt) {
2782         case T_BOOLEAN:
2783         case T_CHAR:
2784         case T_BYTE:
2785         case T_SHORT:
2786         case T_INT:
2787           // Convert (bt) to (T_LONG,bt).
2788           new_in_sig_bt[argcnt  ] = T_LONG;
2789           new_in_sig_bt[argcnt+1] = bt;
2790           assert(reg.first()->is_valid() && !reg.second()->is_valid(), "");
2791           new_in_regs[argcnt  ].set2(reg.first());
2792           new_in_regs[argcnt+1].set_bad();
2793           argcnt++;
2794           break;
2795         default:
2796           // No conversion needed.
2797           new_in_sig_bt[argcnt] = bt;
2798           new_in_regs[argcnt]   = reg;
2799           break;
2800       }
2801     }
2802     assert(argcnt == i2l_argcnt, "must match");
2803 
2804     in_regs = new_in_regs;
2805     in_sig_bt = new_in_sig_bt;
2806     in_args_count = i2l_argcnt;
2807   } else {
2808     assert(0, "This should not be needed on this platform");
2809   }
2810 }
2811 
2812 // -------------------------------------------------------------------------
2813 // Java-Java calling convention
2814 // (what you use when Java calls Java)
2815 
2816 //------------------------------name_for_receiver----------------------------------
2817 // For a given signature, return the VMReg for parameter 0.
2818 VMReg SharedRuntime::name_for_receiver() {
2819   VMRegPair regs;
2820   BasicType sig_bt = T_OBJECT;
2821   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2822   // Return argument 0 register.  In the LP64 build pointers
2823   // take 2 registers, but the VM wants only the 'main' name.
2824   return regs.first();
2825 }
2826 
2827 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2828   // This method is returning a data structure allocating as a
2829   // ResourceObject, so do not put any ResourceMarks in here.
2830   char *s = sig->as_C_string();
2831   int len = (int)strlen(s);
2832   s++; len--;                   // Skip opening paren
2833   char *t = s+len;
2834   while( *(--t) != ')' ) ;      // Find close paren
2835 
2836   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2837   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2838   int cnt = 0;
2839   if (has_receiver) {
2840     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2841   }
2842 
2843   while( s < t ) {
2844     switch( *s++ ) {            // Switch on signature character
2845     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2846     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2847     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2848     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2849     case 'I': sig_bt[cnt++] = T_INT;     break;
2850     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2851     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2852     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2853     case 'V': sig_bt[cnt++] = T_VOID;    break;
2854     case 'L':                   // Oop
2855       while( *s++ != ';'  ) ;   // Skip signature
2856       sig_bt[cnt++] = T_OBJECT;
2857       break;
2858     case '[': {                 // Array
2859       do {                      // Skip optional size
2860         while( *s >= '0' && *s <= '9' ) s++;
2861       } while( *s++ == '[' );   // Nested arrays?
2862       // Skip element type
2863       if( s[-1] == 'L' )
2864         while( *s++ != ';'  ) ; // Skip signature
2865       sig_bt[cnt++] = T_ARRAY;
2866       break;
2867     }
2868     default : ShouldNotReachHere();
2869     }
2870   }
2871 
2872   if (has_appendix) {
2873     sig_bt[cnt++] = T_OBJECT;
2874   }
2875 
2876   assert( cnt < 256, "grow table size" );
2877 
2878   int comp_args_on_stack;
2879   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2880 
2881   // the calling convention doesn't count out_preserve_stack_slots so
2882   // we must add that in to get "true" stack offsets.
2883 
2884   if (comp_args_on_stack) {
2885     for (int i = 0; i < cnt; i++) {
2886       VMReg reg1 = regs[i].first();
2887       if( reg1->is_stack()) {
2888         // Yuck
2889         reg1 = reg1->bias(out_preserve_stack_slots());
2890       }
2891       VMReg reg2 = regs[i].second();
2892       if( reg2->is_stack()) {
2893         // Yuck
2894         reg2 = reg2->bias(out_preserve_stack_slots());
2895       }
2896       regs[i].set_pair(reg2, reg1);
2897     }
2898   }
2899 
2900   // results
2901   *arg_size = cnt;
2902   return regs;
2903 }
2904 
2905 // OSR Migration Code
2906 //
2907 // This code is used convert interpreter frames into compiled frames.  It is
2908 // called from very start of a compiled OSR nmethod.  A temp array is
2909 // allocated to hold the interesting bits of the interpreter frame.  All
2910 // active locks are inflated to allow them to move.  The displaced headers and
2911 // active interpeter locals are copied into the temp buffer.  Then we return
2912 // back to the compiled code.  The compiled code then pops the current
2913 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2914 // copies the interpreter locals and displaced headers where it wants.
2915 // Finally it calls back to free the temp buffer.
2916 //
2917 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2918 
2919 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2920 
2921   //
2922   // This code is dependent on the memory layout of the interpreter local
2923   // array and the monitors. On all of our platforms the layout is identical
2924   // so this code is shared. If some platform lays the their arrays out
2925   // differently then this code could move to platform specific code or
2926   // the code here could be modified to copy items one at a time using
2927   // frame accessor methods and be platform independent.
2928 
2929   frame fr = thread->last_frame();
2930   assert( fr.is_interpreted_frame(), "" );
2931   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2932 
2933   // Figure out how many monitors are active.
2934   int active_monitor_count = 0;
2935   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2936        kptr < fr.interpreter_frame_monitor_begin();
2937        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2938     if( kptr->obj() != NULL ) active_monitor_count++;
2939   }
2940 
2941   // QQQ we could place number of active monitors in the array so that compiled code
2942   // could double check it.
2943 
2944   Method* moop = fr.interpreter_frame_method();
2945   int max_locals = moop->max_locals();
2946   // Allocate temp buffer, 1 word per local & 2 per active monitor
2947   int buf_size_words = max_locals + active_monitor_count*2;
2948   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2949 
2950   // Copy the locals.  Order is preserved so that loading of longs works.
2951   // Since there's no GC I can copy the oops blindly.
2952   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2953   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2954                        (HeapWord*)&buf[0],
2955                        max_locals);
2956 
2957   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2958   int i = max_locals;
2959   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2960        kptr2 < fr.interpreter_frame_monitor_begin();
2961        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2962     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2963       BasicLock *lock = kptr2->lock();
2964       // Inflate so the displaced header becomes position-independent
2965       if (lock->displaced_header()->is_unlocked())
2966         ObjectSynchronizer::inflate_helper(kptr2->obj());
2967       // Now the displaced header is free to move
2968       buf[i++] = (intptr_t)lock->displaced_header();
2969       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2970     }
2971   }
2972   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2973 
2974   return buf;
2975 JRT_END
2976 
2977 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2978   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
2979 JRT_END
2980 
2981 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2982   AdapterHandlerTableIterator iter(_adapters);
2983   while (iter.has_next()) {
2984     AdapterHandlerEntry* a = iter.next();
2985     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2986   }
2987   return false;
2988 }
2989 
2990 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2991   AdapterHandlerTableIterator iter(_adapters);
2992   while (iter.has_next()) {
2993     AdapterHandlerEntry* a = iter.next();
2994     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2995       st->print("Adapter for signature: ");
2996       a->print_adapter_on(tty);
2997       return;
2998     }
2999   }
3000   assert(false, "Should have found handler");
3001 }
3002 
3003 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3004   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3005                (intptr_t) this, fingerprint()->as_string(),
3006                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
3007 
3008 }
3009 
3010 #ifndef PRODUCT
3011 
3012 void AdapterHandlerLibrary::print_statistics() {
3013   _adapters->print_statistics();
3014 }
3015 
3016 #endif /* PRODUCT */