1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  28 #include "gc/g1/heapRegion.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/cardTableModRefBS.hpp"
  31 #include "gc/shared/collectedHeap.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/convertnode.hpp"
  35 #include "opto/graphKit.hpp"
  36 #include "opto/idealKit.hpp"
  37 #include "opto/intrinsicnode.hpp"
  38 #include "opto/locknode.hpp"
  39 #include "opto/machnode.hpp"
  40 #include "opto/opaquenode.hpp"
  41 #include "opto/parse.hpp"
  42 #include "opto/rootnode.hpp"
  43 #include "opto/runtime.hpp"
  44 #include "runtime/deoptimization.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 
  47 //----------------------------GraphKit-----------------------------------------
  48 // Main utility constructor.
  49 GraphKit::GraphKit(JVMState* jvms)
  50   : Phase(Phase::Parser),
  51     _env(C->env()),
  52     _gvn(*C->initial_gvn())
  53 {
  54   _exceptions = jvms->map()->next_exception();
  55   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  56   set_jvms(jvms);
  57 }
  58 
  59 // Private constructor for parser.
  60 GraphKit::GraphKit()
  61   : Phase(Phase::Parser),
  62     _env(C->env()),
  63     _gvn(*C->initial_gvn())
  64 {
  65   _exceptions = NULL;
  66   set_map(NULL);
  67   debug_only(_sp = -99);
  68   debug_only(set_bci(-99));
  69 }
  70 
  71 
  72 
  73 //---------------------------clean_stack---------------------------------------
  74 // Clear away rubbish from the stack area of the JVM state.
  75 // This destroys any arguments that may be waiting on the stack.
  76 void GraphKit::clean_stack(int from_sp) {
  77   SafePointNode* map      = this->map();
  78   JVMState*      jvms     = this->jvms();
  79   int            stk_size = jvms->stk_size();
  80   int            stkoff   = jvms->stkoff();
  81   Node*          top      = this->top();
  82   for (int i = from_sp; i < stk_size; i++) {
  83     if (map->in(stkoff + i) != top) {
  84       map->set_req(stkoff + i, top);
  85     }
  86   }
  87 }
  88 
  89 
  90 //--------------------------------sync_jvms-----------------------------------
  91 // Make sure our current jvms agrees with our parse state.
  92 JVMState* GraphKit::sync_jvms() const {
  93   JVMState* jvms = this->jvms();
  94   jvms->set_bci(bci());       // Record the new bci in the JVMState
  95   jvms->set_sp(sp());         // Record the new sp in the JVMState
  96   assert(jvms_in_sync(), "jvms is now in sync");
  97   return jvms;
  98 }
  99 
 100 //--------------------------------sync_jvms_for_reexecute---------------------
 101 // Make sure our current jvms agrees with our parse state.  This version
 102 // uses the reexecute_sp for reexecuting bytecodes.
 103 JVMState* GraphKit::sync_jvms_for_reexecute() {
 104   JVMState* jvms = this->jvms();
 105   jvms->set_bci(bci());          // Record the new bci in the JVMState
 106   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 107   return jvms;
 108 }
 109 
 110 #ifdef ASSERT
 111 bool GraphKit::jvms_in_sync() const {
 112   Parse* parse = is_Parse();
 113   if (parse == NULL) {
 114     if (bci() !=      jvms()->bci())          return false;
 115     if (sp()  != (int)jvms()->sp())           return false;
 116     return true;
 117   }
 118   if (jvms()->method() != parse->method())    return false;
 119   if (jvms()->bci()    != parse->bci())       return false;
 120   int jvms_sp = jvms()->sp();
 121   if (jvms_sp          != parse->sp())        return false;
 122   int jvms_depth = jvms()->depth();
 123   if (jvms_depth       != parse->depth())     return false;
 124   return true;
 125 }
 126 
 127 // Local helper checks for special internal merge points
 128 // used to accumulate and merge exception states.
 129 // They are marked by the region's in(0) edge being the map itself.
 130 // Such merge points must never "escape" into the parser at large,
 131 // until they have been handed to gvn.transform.
 132 static bool is_hidden_merge(Node* reg) {
 133   if (reg == NULL)  return false;
 134   if (reg->is_Phi()) {
 135     reg = reg->in(0);
 136     if (reg == NULL)  return false;
 137   }
 138   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 139 }
 140 
 141 void GraphKit::verify_map() const {
 142   if (map() == NULL)  return;  // null map is OK
 143   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 144   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 145   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 146 }
 147 
 148 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 149   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 150   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 151 }
 152 #endif
 153 
 154 //---------------------------stop_and_kill_map---------------------------------
 155 // Set _map to NULL, signalling a stop to further bytecode execution.
 156 // First smash the current map's control to a constant, to mark it dead.
 157 void GraphKit::stop_and_kill_map() {
 158   SafePointNode* dead_map = stop();
 159   if (dead_map != NULL) {
 160     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
 161     assert(dead_map->is_killed(), "must be so marked");
 162   }
 163 }
 164 
 165 
 166 //--------------------------------stopped--------------------------------------
 167 // Tell if _map is NULL, or control is top.
 168 bool GraphKit::stopped() {
 169   if (map() == NULL)           return true;
 170   else if (control() == top()) return true;
 171   else                         return false;
 172 }
 173 
 174 
 175 //-----------------------------has_ex_handler----------------------------------
 176 // Tell if this method or any caller method has exception handlers.
 177 bool GraphKit::has_ex_handler() {
 178   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 179     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 180       return true;
 181     }
 182   }
 183   return false;
 184 }
 185 
 186 //------------------------------save_ex_oop------------------------------------
 187 // Save an exception without blowing stack contents or other JVM state.
 188 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 189   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 190   ex_map->add_req(ex_oop);
 191   debug_only(verify_exception_state(ex_map));
 192 }
 193 
 194 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 195   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 196   Node* ex_oop = ex_map->in(ex_map->req()-1);
 197   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 198   return ex_oop;
 199 }
 200 
 201 //-----------------------------saved_ex_oop------------------------------------
 202 // Recover a saved exception from its map.
 203 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 204   return common_saved_ex_oop(ex_map, false);
 205 }
 206 
 207 //--------------------------clear_saved_ex_oop---------------------------------
 208 // Erase a previously saved exception from its map.
 209 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 210   return common_saved_ex_oop(ex_map, true);
 211 }
 212 
 213 #ifdef ASSERT
 214 //---------------------------has_saved_ex_oop----------------------------------
 215 // Erase a previously saved exception from its map.
 216 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 217   return ex_map->req() == ex_map->jvms()->endoff()+1;
 218 }
 219 #endif
 220 
 221 //-------------------------make_exception_state--------------------------------
 222 // Turn the current JVM state into an exception state, appending the ex_oop.
 223 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 224   sync_jvms();
 225   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 226   set_saved_ex_oop(ex_map, ex_oop);
 227   return ex_map;
 228 }
 229 
 230 
 231 //--------------------------add_exception_state--------------------------------
 232 // Add an exception to my list of exceptions.
 233 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 234   if (ex_map == NULL || ex_map->control() == top()) {
 235     return;
 236   }
 237 #ifdef ASSERT
 238   verify_exception_state(ex_map);
 239   if (has_exceptions()) {
 240     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 241   }
 242 #endif
 243 
 244   // If there is already an exception of exactly this type, merge with it.
 245   // In particular, null-checks and other low-level exceptions common up here.
 246   Node*       ex_oop  = saved_ex_oop(ex_map);
 247   const Type* ex_type = _gvn.type(ex_oop);
 248   if (ex_oop == top()) {
 249     // No action needed.
 250     return;
 251   }
 252   assert(ex_type->isa_instptr(), "exception must be an instance");
 253   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 254     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 255     // We check sp also because call bytecodes can generate exceptions
 256     // both before and after arguments are popped!
 257     if (ex_type2 == ex_type
 258         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 259       combine_exception_states(ex_map, e2);
 260       return;
 261     }
 262   }
 263 
 264   // No pre-existing exception of the same type.  Chain it on the list.
 265   push_exception_state(ex_map);
 266 }
 267 
 268 //-----------------------add_exception_states_from-----------------------------
 269 void GraphKit::add_exception_states_from(JVMState* jvms) {
 270   SafePointNode* ex_map = jvms->map()->next_exception();
 271   if (ex_map != NULL) {
 272     jvms->map()->set_next_exception(NULL);
 273     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 274       next_map = ex_map->next_exception();
 275       ex_map->set_next_exception(NULL);
 276       add_exception_state(ex_map);
 277     }
 278   }
 279 }
 280 
 281 //-----------------------transfer_exceptions_into_jvms-------------------------
 282 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 283   if (map() == NULL) {
 284     // We need a JVMS to carry the exceptions, but the map has gone away.
 285     // Create a scratch JVMS, cloned from any of the exception states...
 286     if (has_exceptions()) {
 287       _map = _exceptions;
 288       _map = clone_map();
 289       _map->set_next_exception(NULL);
 290       clear_saved_ex_oop(_map);
 291       debug_only(verify_map());
 292     } else {
 293       // ...or created from scratch
 294       JVMState* jvms = new (C) JVMState(_method, NULL);
 295       jvms->set_bci(_bci);
 296       jvms->set_sp(_sp);
 297       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
 298       set_jvms(jvms);
 299       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 300       set_all_memory(top());
 301       while (map()->req() < jvms->endoff())  map()->add_req(top());
 302     }
 303     // (This is a kludge, in case you didn't notice.)
 304     set_control(top());
 305   }
 306   JVMState* jvms = sync_jvms();
 307   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 308   jvms->map()->set_next_exception(_exceptions);
 309   _exceptions = NULL;   // done with this set of exceptions
 310   return jvms;
 311 }
 312 
 313 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 314   assert(is_hidden_merge(dstphi), "must be a special merge node");
 315   assert(is_hidden_merge(srcphi), "must be a special merge node");
 316   uint limit = srcphi->req();
 317   for (uint i = PhiNode::Input; i < limit; i++) {
 318     dstphi->add_req(srcphi->in(i));
 319   }
 320 }
 321 static inline void add_one_req(Node* dstphi, Node* src) {
 322   assert(is_hidden_merge(dstphi), "must be a special merge node");
 323   assert(!is_hidden_merge(src), "must not be a special merge node");
 324   dstphi->add_req(src);
 325 }
 326 
 327 //-----------------------combine_exception_states------------------------------
 328 // This helper function combines exception states by building phis on a
 329 // specially marked state-merging region.  These regions and phis are
 330 // untransformed, and can build up gradually.  The region is marked by
 331 // having a control input of its exception map, rather than NULL.  Such
 332 // regions do not appear except in this function, and in use_exception_state.
 333 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 334   if (failing())  return;  // dying anyway...
 335   JVMState* ex_jvms = ex_map->_jvms;
 336   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 337   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 338   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 339   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 340   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 341   assert(ex_map->req() == phi_map->req(), "matching maps");
 342   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 343   Node*         hidden_merge_mark = root();
 344   Node*         region  = phi_map->control();
 345   MergeMemNode* phi_mem = phi_map->merged_memory();
 346   MergeMemNode* ex_mem  = ex_map->merged_memory();
 347   if (region->in(0) != hidden_merge_mark) {
 348     // The control input is not (yet) a specially-marked region in phi_map.
 349     // Make it so, and build some phis.
 350     region = new RegionNode(2);
 351     _gvn.set_type(region, Type::CONTROL);
 352     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 353     region->init_req(1, phi_map->control());
 354     phi_map->set_control(region);
 355     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 356     record_for_igvn(io_phi);
 357     _gvn.set_type(io_phi, Type::ABIO);
 358     phi_map->set_i_o(io_phi);
 359     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 360       Node* m = mms.memory();
 361       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 362       record_for_igvn(m_phi);
 363       _gvn.set_type(m_phi, Type::MEMORY);
 364       mms.set_memory(m_phi);
 365     }
 366   }
 367 
 368   // Either or both of phi_map and ex_map might already be converted into phis.
 369   Node* ex_control = ex_map->control();
 370   // if there is special marking on ex_map also, we add multiple edges from src
 371   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 372   // how wide was the destination phi_map, originally?
 373   uint orig_width = region->req();
 374 
 375   if (add_multiple) {
 376     add_n_reqs(region, ex_control);
 377     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 378   } else {
 379     // ex_map has no merges, so we just add single edges everywhere
 380     add_one_req(region, ex_control);
 381     add_one_req(phi_map->i_o(), ex_map->i_o());
 382   }
 383   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 384     if (mms.is_empty()) {
 385       // get a copy of the base memory, and patch some inputs into it
 386       const TypePtr* adr_type = mms.adr_type(C);
 387       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 388       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 389       mms.set_memory(phi);
 390       // Prepare to append interesting stuff onto the newly sliced phi:
 391       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 392     }
 393     // Append stuff from ex_map:
 394     if (add_multiple) {
 395       add_n_reqs(mms.memory(), mms.memory2());
 396     } else {
 397       add_one_req(mms.memory(), mms.memory2());
 398     }
 399   }
 400   uint limit = ex_map->req();
 401   for (uint i = TypeFunc::Parms; i < limit; i++) {
 402     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 403     if (i == tos)  i = ex_jvms->monoff();
 404     Node* src = ex_map->in(i);
 405     Node* dst = phi_map->in(i);
 406     if (src != dst) {
 407       PhiNode* phi;
 408       if (dst->in(0) != region) {
 409         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 410         record_for_igvn(phi);
 411         _gvn.set_type(phi, phi->type());
 412         phi_map->set_req(i, dst);
 413         // Prepare to append interesting stuff onto the new phi:
 414         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 415       } else {
 416         assert(dst->is_Phi(), "nobody else uses a hidden region");
 417         phi = dst->as_Phi();
 418       }
 419       if (add_multiple && src->in(0) == ex_control) {
 420         // Both are phis.
 421         add_n_reqs(dst, src);
 422       } else {
 423         while (dst->req() < region->req())  add_one_req(dst, src);
 424       }
 425       const Type* srctype = _gvn.type(src);
 426       if (phi->type() != srctype) {
 427         const Type* dsttype = phi->type()->meet_speculative(srctype);
 428         if (phi->type() != dsttype) {
 429           phi->set_type(dsttype);
 430           _gvn.set_type(phi, dsttype);
 431         }
 432       }
 433     }
 434   }
 435   phi_map->merge_replaced_nodes_with(ex_map);
 436 }
 437 
 438 //--------------------------use_exception_state--------------------------------
 439 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 440   if (failing()) { stop(); return top(); }
 441   Node* region = phi_map->control();
 442   Node* hidden_merge_mark = root();
 443   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 444   Node* ex_oop = clear_saved_ex_oop(phi_map);
 445   if (region->in(0) == hidden_merge_mark) {
 446     // Special marking for internal ex-states.  Process the phis now.
 447     region->set_req(0, region);  // now it's an ordinary region
 448     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 449     // Note: Setting the jvms also sets the bci and sp.
 450     set_control(_gvn.transform(region));
 451     uint tos = jvms()->stkoff() + sp();
 452     for (uint i = 1; i < tos; i++) {
 453       Node* x = phi_map->in(i);
 454       if (x->in(0) == region) {
 455         assert(x->is_Phi(), "expected a special phi");
 456         phi_map->set_req(i, _gvn.transform(x));
 457       }
 458     }
 459     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 460       Node* x = mms.memory();
 461       if (x->in(0) == region) {
 462         assert(x->is_Phi(), "nobody else uses a hidden region");
 463         mms.set_memory(_gvn.transform(x));
 464       }
 465     }
 466     if (ex_oop->in(0) == region) {
 467       assert(ex_oop->is_Phi(), "expected a special phi");
 468       ex_oop = _gvn.transform(ex_oop);
 469     }
 470   } else {
 471     set_jvms(phi_map->jvms());
 472   }
 473 
 474   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 475   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 476   return ex_oop;
 477 }
 478 
 479 //---------------------------------java_bc-------------------------------------
 480 Bytecodes::Code GraphKit::java_bc() const {
 481   ciMethod* method = this->method();
 482   int       bci    = this->bci();
 483   if (method != NULL && bci != InvocationEntryBci)
 484     return method->java_code_at_bci(bci);
 485   else
 486     return Bytecodes::_illegal;
 487 }
 488 
 489 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 490                                                           bool must_throw) {
 491     // if the exception capability is set, then we will generate code
 492     // to check the JavaThread.should_post_on_exceptions flag to see
 493     // if we actually need to report exception events (for this
 494     // thread).  If we don't need to report exception events, we will
 495     // take the normal fast path provided by add_exception_events.  If
 496     // exception event reporting is enabled for this thread, we will
 497     // take the uncommon_trap in the BuildCutout below.
 498 
 499     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 500     Node* jthread = _gvn.transform(new ThreadLocalNode());
 501     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 502     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
 503 
 504     // Test the should_post_on_exceptions_flag vs. 0
 505     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
 506     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 507 
 508     // Branch to slow_path if should_post_on_exceptions_flag was true
 509     { BuildCutout unless(this, tst, PROB_MAX);
 510       // Do not try anything fancy if we're notifying the VM on every throw.
 511       // Cf. case Bytecodes::_athrow in parse2.cpp.
 512       uncommon_trap(reason, Deoptimization::Action_none,
 513                     (ciKlass*)NULL, (char*)NULL, must_throw);
 514     }
 515 
 516 }
 517 
 518 //------------------------------builtin_throw----------------------------------
 519 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 520   bool must_throw = true;
 521 
 522   if (env()->jvmti_can_post_on_exceptions()) {
 523     // check if we must post exception events, take uncommon trap if so
 524     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 525     // here if should_post_on_exceptions is false
 526     // continue on with the normal codegen
 527   }
 528 
 529   // If this particular condition has not yet happened at this
 530   // bytecode, then use the uncommon trap mechanism, and allow for
 531   // a future recompilation if several traps occur here.
 532   // If the throw is hot, try to use a more complicated inline mechanism
 533   // which keeps execution inside the compiled code.
 534   bool treat_throw_as_hot = false;
 535   ciMethodData* md = method()->method_data();
 536 
 537   if (ProfileTraps) {
 538     if (too_many_traps(reason)) {
 539       treat_throw_as_hot = true;
 540     }
 541     // (If there is no MDO at all, assume it is early in
 542     // execution, and that any deopts are part of the
 543     // startup transient, and don't need to be remembered.)
 544 
 545     // Also, if there is a local exception handler, treat all throws
 546     // as hot if there has been at least one in this method.
 547     if (C->trap_count(reason) != 0
 548         && method()->method_data()->trap_count(reason) != 0
 549         && has_ex_handler()) {
 550         treat_throw_as_hot = true;
 551     }
 552   }
 553 
 554   // If this throw happens frequently, an uncommon trap might cause
 555   // a performance pothole.  If there is a local exception handler,
 556   // and if this particular bytecode appears to be deoptimizing often,
 557   // let us handle the throw inline, with a preconstructed instance.
 558   // Note:   If the deopt count has blown up, the uncommon trap
 559   // runtime is going to flush this nmethod, not matter what.
 560   if (treat_throw_as_hot
 561       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 562     // If the throw is local, we use a pre-existing instance and
 563     // punt on the backtrace.  This would lead to a missing backtrace
 564     // (a repeat of 4292742) if the backtrace object is ever asked
 565     // for its backtrace.
 566     // Fixing this remaining case of 4292742 requires some flavor of
 567     // escape analysis.  Leave that for the future.
 568     ciInstance* ex_obj = NULL;
 569     switch (reason) {
 570     case Deoptimization::Reason_null_check:
 571       ex_obj = env()->NullPointerException_instance();
 572       break;
 573     case Deoptimization::Reason_div0_check:
 574       ex_obj = env()->ArithmeticException_instance();
 575       break;
 576     case Deoptimization::Reason_range_check:
 577       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 578       break;
 579     case Deoptimization::Reason_class_check:
 580       if (java_bc() == Bytecodes::_aastore) {
 581         ex_obj = env()->ArrayStoreException_instance();
 582       } else {
 583         ex_obj = env()->ClassCastException_instance();
 584       }
 585       break;
 586     }
 587     if (failing()) { stop(); return; }  // exception allocation might fail
 588     if (ex_obj != NULL) {
 589       // Cheat with a preallocated exception object.
 590       if (C->log() != NULL)
 591         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 592                        Deoptimization::trap_reason_name(reason));
 593       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 594       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
 595 
 596       // Clear the detail message of the preallocated exception object.
 597       // Weblogic sometimes mutates the detail message of exceptions
 598       // using reflection.
 599       int offset = java_lang_Throwable::get_detailMessage_offset();
 600       const TypePtr* adr_typ = ex_con->add_offset(offset);
 601 
 602       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 603       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 604       // Conservatively release stores of object references.
 605       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release);
 606 
 607       add_exception_state(make_exception_state(ex_node));
 608       return;
 609     }
 610   }
 611 
 612   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 613   // It won't be much cheaper than bailing to the interp., since we'll
 614   // have to pass up all the debug-info, and the runtime will have to
 615   // create the stack trace.
 616 
 617   // Usual case:  Bail to interpreter.
 618   // Reserve the right to recompile if we haven't seen anything yet.
 619 
 620   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL;
 621   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 622   if (treat_throw_as_hot
 623       && (method()->method_data()->trap_recompiled_at(bci(), m)
 624           || C->too_many_traps(reason))) {
 625     // We cannot afford to take more traps here.  Suffer in the interpreter.
 626     if (C->log() != NULL)
 627       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 628                      Deoptimization::trap_reason_name(reason),
 629                      C->trap_count(reason));
 630     action = Deoptimization::Action_none;
 631   }
 632 
 633   // "must_throw" prunes the JVM state to include only the stack, if there
 634   // are no local exception handlers.  This should cut down on register
 635   // allocation time and code size, by drastically reducing the number
 636   // of in-edges on the call to the uncommon trap.
 637 
 638   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 639 }
 640 
 641 
 642 //----------------------------PreserveJVMState---------------------------------
 643 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 644   debug_only(kit->verify_map());
 645   _kit    = kit;
 646   _map    = kit->map();   // preserve the map
 647   _sp     = kit->sp();
 648   kit->set_map(clone_map ? kit->clone_map() : NULL);
 649 #ifdef ASSERT
 650   _bci    = kit->bci();
 651   Parse* parser = kit->is_Parse();
 652   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 653   _block  = block;
 654 #endif
 655 }
 656 PreserveJVMState::~PreserveJVMState() {
 657   GraphKit* kit = _kit;
 658 #ifdef ASSERT
 659   assert(kit->bci() == _bci, "bci must not shift");
 660   Parse* parser = kit->is_Parse();
 661   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 662   assert(block == _block,    "block must not shift");
 663 #endif
 664   kit->set_map(_map);
 665   kit->set_sp(_sp);
 666 }
 667 
 668 
 669 //-----------------------------BuildCutout-------------------------------------
 670 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 671   : PreserveJVMState(kit)
 672 {
 673   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 674   SafePointNode* outer_map = _map;   // preserved map is caller's
 675   SafePointNode* inner_map = kit->map();
 676   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 677   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
 678   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
 679 }
 680 BuildCutout::~BuildCutout() {
 681   GraphKit* kit = _kit;
 682   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 683 }
 684 
 685 //---------------------------PreserveReexecuteState----------------------------
 686 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 687   assert(!kit->stopped(), "must call stopped() before");
 688   _kit    =    kit;
 689   _sp     =    kit->sp();
 690   _reexecute = kit->jvms()->_reexecute;
 691 }
 692 PreserveReexecuteState::~PreserveReexecuteState() {
 693   if (_kit->stopped()) return;
 694   _kit->jvms()->_reexecute = _reexecute;
 695   _kit->set_sp(_sp);
 696 }
 697 
 698 //------------------------------clone_map--------------------------------------
 699 // Implementation of PreserveJVMState
 700 //
 701 // Only clone_map(...) here. If this function is only used in the
 702 // PreserveJVMState class we may want to get rid of this extra
 703 // function eventually and do it all there.
 704 
 705 SafePointNode* GraphKit::clone_map() {
 706   if (map() == NULL)  return NULL;
 707 
 708   // Clone the memory edge first
 709   Node* mem = MergeMemNode::make(map()->memory());
 710   gvn().set_type_bottom(mem);
 711 
 712   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 713   JVMState* jvms = this->jvms();
 714   JVMState* clonejvms = jvms->clone_shallow(C);
 715   clonemap->set_memory(mem);
 716   clonemap->set_jvms(clonejvms);
 717   clonejvms->set_map(clonemap);
 718   record_for_igvn(clonemap);
 719   gvn().set_type_bottom(clonemap);
 720   return clonemap;
 721 }
 722 
 723 
 724 //-----------------------------set_map_clone-----------------------------------
 725 void GraphKit::set_map_clone(SafePointNode* m) {
 726   _map = m;
 727   _map = clone_map();
 728   _map->set_next_exception(NULL);
 729   debug_only(verify_map());
 730 }
 731 
 732 
 733 //----------------------------kill_dead_locals---------------------------------
 734 // Detect any locals which are known to be dead, and force them to top.
 735 void GraphKit::kill_dead_locals() {
 736   // Consult the liveness information for the locals.  If any
 737   // of them are unused, then they can be replaced by top().  This
 738   // should help register allocation time and cut down on the size
 739   // of the deoptimization information.
 740 
 741   // This call is made from many of the bytecode handling
 742   // subroutines called from the Big Switch in do_one_bytecode.
 743   // Every bytecode which might include a slow path is responsible
 744   // for killing its dead locals.  The more consistent we
 745   // are about killing deads, the fewer useless phis will be
 746   // constructed for them at various merge points.
 747 
 748   // bci can be -1 (InvocationEntryBci).  We return the entry
 749   // liveness for the method.
 750 
 751   if (method() == NULL || method()->code_size() == 0) {
 752     // We are building a graph for a call to a native method.
 753     // All locals are live.
 754     return;
 755   }
 756 
 757   ResourceMark rm;
 758 
 759   // Consult the liveness information for the locals.  If any
 760   // of them are unused, then they can be replaced by top().  This
 761   // should help register allocation time and cut down on the size
 762   // of the deoptimization information.
 763   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 764 
 765   int len = (int)live_locals.size();
 766   assert(len <= jvms()->loc_size(), "too many live locals");
 767   for (int local = 0; local < len; local++) {
 768     if (!live_locals.at(local)) {
 769       set_local(local, top());
 770     }
 771   }
 772 }
 773 
 774 #ifdef ASSERT
 775 //-------------------------dead_locals_are_killed------------------------------
 776 // Return true if all dead locals are set to top in the map.
 777 // Used to assert "clean" debug info at various points.
 778 bool GraphKit::dead_locals_are_killed() {
 779   if (method() == NULL || method()->code_size() == 0) {
 780     // No locals need to be dead, so all is as it should be.
 781     return true;
 782   }
 783 
 784   // Make sure somebody called kill_dead_locals upstream.
 785   ResourceMark rm;
 786   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 787     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 788     SafePointNode* map = jvms->map();
 789     ciMethod* method = jvms->method();
 790     int       bci    = jvms->bci();
 791     if (jvms == this->jvms()) {
 792       bci = this->bci();  // it might not yet be synched
 793     }
 794     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 795     int len = (int)live_locals.size();
 796     if (!live_locals.is_valid() || len == 0)
 797       // This method is trivial, or is poisoned by a breakpoint.
 798       return true;
 799     assert(len == jvms->loc_size(), "live map consistent with locals map");
 800     for (int local = 0; local < len; local++) {
 801       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 802         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 803           tty->print_cr("Zombie local %d: ", local);
 804           jvms->dump();
 805         }
 806         return false;
 807       }
 808     }
 809   }
 810   return true;
 811 }
 812 
 813 #endif //ASSERT
 814 
 815 // Helper function for enforcing certain bytecodes to reexecute if
 816 // deoptimization happens
 817 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 818   ciMethod* cur_method = jvms->method();
 819   int       cur_bci   = jvms->bci();
 820   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 821     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 822     return Interpreter::bytecode_should_reexecute(code) ||
 823            is_anewarray && code == Bytecodes::_multianewarray;
 824     // Reexecute _multianewarray bytecode which was replaced with
 825     // sequence of [a]newarray. See Parse::do_multianewarray().
 826     //
 827     // Note: interpreter should not have it set since this optimization
 828     // is limited by dimensions and guarded by flag so in some cases
 829     // multianewarray() runtime calls will be generated and
 830     // the bytecode should not be reexecutes (stack will not be reset).
 831   } else
 832     return false;
 833 }
 834 
 835 // Helper function for adding JVMState and debug information to node
 836 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 837   // Add the safepoint edges to the call (or other safepoint).
 838 
 839   // Make sure dead locals are set to top.  This
 840   // should help register allocation time and cut down on the size
 841   // of the deoptimization information.
 842   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 843 
 844   // Walk the inline list to fill in the correct set of JVMState's
 845   // Also fill in the associated edges for each JVMState.
 846 
 847   // If the bytecode needs to be reexecuted we need to put
 848   // the arguments back on the stack.
 849   const bool should_reexecute = jvms()->should_reexecute();
 850   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 851 
 852   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 853   // undefined if the bci is different.  This is normal for Parse but it
 854   // should not happen for LibraryCallKit because only one bci is processed.
 855   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 856          "in LibraryCallKit the reexecute bit should not change");
 857 
 858   // If we are guaranteed to throw, we can prune everything but the
 859   // input to the current bytecode.
 860   bool can_prune_locals = false;
 861   uint stack_slots_not_pruned = 0;
 862   int inputs = 0, depth = 0;
 863   if (must_throw) {
 864     assert(method() == youngest_jvms->method(), "sanity");
 865     if (compute_stack_effects(inputs, depth)) {
 866       can_prune_locals = true;
 867       stack_slots_not_pruned = inputs;
 868     }
 869   }
 870 
 871   if (env()->should_retain_local_variables()) {
 872     // At any safepoint, this method can get breakpointed, which would
 873     // then require an immediate deoptimization.
 874     can_prune_locals = false;  // do not prune locals
 875     stack_slots_not_pruned = 0;
 876   }
 877 
 878   // do not scribble on the input jvms
 879   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 880   call->set_jvms(out_jvms); // Start jvms list for call node
 881 
 882   // For a known set of bytecodes, the interpreter should reexecute them if
 883   // deoptimization happens. We set the reexecute state for them here
 884   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 885       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 886     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 887   }
 888 
 889   // Presize the call:
 890   DEBUG_ONLY(uint non_debug_edges = call->req());
 891   call->add_req_batch(top(), youngest_jvms->debug_depth());
 892   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 893 
 894   // Set up edges so that the call looks like this:
 895   //  Call [state:] ctl io mem fptr retadr
 896   //       [parms:] parm0 ... parmN
 897   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 898   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 899   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 900   // Note that caller debug info precedes callee debug info.
 901 
 902   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 903   uint debug_ptr = call->req();
 904 
 905   // Loop over the map input edges associated with jvms, add them
 906   // to the call node, & reset all offsets to match call node array.
 907   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 908     uint debug_end   = debug_ptr;
 909     uint debug_start = debug_ptr - in_jvms->debug_size();
 910     debug_ptr = debug_start;  // back up the ptr
 911 
 912     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 913     uint j, k, l;
 914     SafePointNode* in_map = in_jvms->map();
 915     out_jvms->set_map(call);
 916 
 917     if (can_prune_locals) {
 918       assert(in_jvms->method() == out_jvms->method(), "sanity");
 919       // If the current throw can reach an exception handler in this JVMS,
 920       // then we must keep everything live that can reach that handler.
 921       // As a quick and dirty approximation, we look for any handlers at all.
 922       if (in_jvms->method()->has_exception_handlers()) {
 923         can_prune_locals = false;
 924       }
 925     }
 926 
 927     // Add the Locals
 928     k = in_jvms->locoff();
 929     l = in_jvms->loc_size();
 930     out_jvms->set_locoff(p);
 931     if (!can_prune_locals) {
 932       for (j = 0; j < l; j++)
 933         call->set_req(p++, in_map->in(k+j));
 934     } else {
 935       p += l;  // already set to top above by add_req_batch
 936     }
 937 
 938     // Add the Expression Stack
 939     k = in_jvms->stkoff();
 940     l = in_jvms->sp();
 941     out_jvms->set_stkoff(p);
 942     if (!can_prune_locals) {
 943       for (j = 0; j < l; j++)
 944         call->set_req(p++, in_map->in(k+j));
 945     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 946       // Divide stack into {S0,...,S1}, where S0 is set to top.
 947       uint s1 = stack_slots_not_pruned;
 948       stack_slots_not_pruned = 0;  // for next iteration
 949       if (s1 > l)  s1 = l;
 950       uint s0 = l - s1;
 951       p += s0;  // skip the tops preinstalled by add_req_batch
 952       for (j = s0; j < l; j++)
 953         call->set_req(p++, in_map->in(k+j));
 954     } else {
 955       p += l;  // already set to top above by add_req_batch
 956     }
 957 
 958     // Add the Monitors
 959     k = in_jvms->monoff();
 960     l = in_jvms->mon_size();
 961     out_jvms->set_monoff(p);
 962     for (j = 0; j < l; j++)
 963       call->set_req(p++, in_map->in(k+j));
 964 
 965     // Copy any scalar object fields.
 966     k = in_jvms->scloff();
 967     l = in_jvms->scl_size();
 968     out_jvms->set_scloff(p);
 969     for (j = 0; j < l; j++)
 970       call->set_req(p++, in_map->in(k+j));
 971 
 972     // Finish the new jvms.
 973     out_jvms->set_endoff(p);
 974 
 975     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 976     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 977     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 978     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 979     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 980     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 981 
 982     // Update the two tail pointers in parallel.
 983     out_jvms = out_jvms->caller();
 984     in_jvms  = in_jvms->caller();
 985   }
 986 
 987   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 988 
 989   // Test the correctness of JVMState::debug_xxx accessors:
 990   assert(call->jvms()->debug_start() == non_debug_edges, "");
 991   assert(call->jvms()->debug_end()   == call->req(), "");
 992   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
 993 }
 994 
 995 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
 996   Bytecodes::Code code = java_bc();
 997   if (code == Bytecodes::_wide) {
 998     code = method()->java_code_at_bci(bci() + 1);
 999   }
1000 
1001   BasicType rtype = T_ILLEGAL;
1002   int       rsize = 0;
1003 
1004   if (code != Bytecodes::_illegal) {
1005     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1006     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1007     if (rtype < T_CONFLICT)
1008       rsize = type2size[rtype];
1009   }
1010 
1011   switch (code) {
1012   case Bytecodes::_illegal:
1013     return false;
1014 
1015   case Bytecodes::_ldc:
1016   case Bytecodes::_ldc_w:
1017   case Bytecodes::_ldc2_w:
1018     inputs = 0;
1019     break;
1020 
1021   case Bytecodes::_dup:         inputs = 1;  break;
1022   case Bytecodes::_dup_x1:      inputs = 2;  break;
1023   case Bytecodes::_dup_x2:      inputs = 3;  break;
1024   case Bytecodes::_dup2:        inputs = 2;  break;
1025   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1026   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1027   case Bytecodes::_swap:        inputs = 2;  break;
1028   case Bytecodes::_arraylength: inputs = 1;  break;
1029 
1030   case Bytecodes::_getstatic:
1031   case Bytecodes::_putstatic:
1032   case Bytecodes::_getfield:
1033   case Bytecodes::_putfield:
1034     {
1035       bool ignored_will_link;
1036       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1037       int      size  = field->type()->size();
1038       bool is_get = (depth >= 0), is_static = (depth & 1);
1039       inputs = (is_static ? 0 : 1);
1040       if (is_get) {
1041         depth = size - inputs;
1042       } else {
1043         inputs += size;        // putxxx pops the value from the stack
1044         depth = - inputs;
1045       }
1046     }
1047     break;
1048 
1049   case Bytecodes::_invokevirtual:
1050   case Bytecodes::_invokespecial:
1051   case Bytecodes::_invokestatic:
1052   case Bytecodes::_invokedynamic:
1053   case Bytecodes::_invokeinterface:
1054     {
1055       bool ignored_will_link;
1056       ciSignature* declared_signature = NULL;
1057       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1058       assert(declared_signature != NULL, "cannot be null");
1059       inputs   = declared_signature->arg_size_for_bc(code);
1060       int size = declared_signature->return_type()->size();
1061       depth = size - inputs;
1062     }
1063     break;
1064 
1065   case Bytecodes::_multianewarray:
1066     {
1067       ciBytecodeStream iter(method());
1068       iter.reset_to_bci(bci());
1069       iter.next();
1070       inputs = iter.get_dimensions();
1071       assert(rsize == 1, "");
1072       depth = rsize - inputs;
1073     }
1074     break;
1075 
1076   case Bytecodes::_ireturn:
1077   case Bytecodes::_lreturn:
1078   case Bytecodes::_freturn:
1079   case Bytecodes::_dreturn:
1080   case Bytecodes::_areturn:
1081     assert(rsize = -depth, "");
1082     inputs = rsize;
1083     break;
1084 
1085   case Bytecodes::_jsr:
1086   case Bytecodes::_jsr_w:
1087     inputs = 0;
1088     depth  = 1;                  // S.B. depth=1, not zero
1089     break;
1090 
1091   default:
1092     // bytecode produces a typed result
1093     inputs = rsize - depth;
1094     assert(inputs >= 0, "");
1095     break;
1096   }
1097 
1098 #ifdef ASSERT
1099   // spot check
1100   int outputs = depth + inputs;
1101   assert(outputs >= 0, "sanity");
1102   switch (code) {
1103   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1104   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1105   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1106   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1107   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1108   }
1109 #endif //ASSERT
1110 
1111   return true;
1112 }
1113 
1114 
1115 
1116 //------------------------------basic_plus_adr---------------------------------
1117 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1118   // short-circuit a common case
1119   if (offset == intcon(0))  return ptr;
1120   return _gvn.transform( new AddPNode(base, ptr, offset) );
1121 }
1122 
1123 Node* GraphKit::ConvI2L(Node* offset) {
1124   // short-circuit a common case
1125   jint offset_con = find_int_con(offset, Type::OffsetBot);
1126   if (offset_con != Type::OffsetBot) {
1127     return longcon((jlong) offset_con);
1128   }
1129   return _gvn.transform( new ConvI2LNode(offset));
1130 }
1131 
1132 Node* GraphKit::ConvI2UL(Node* offset) {
1133   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1134   if (offset_con != (juint) Type::OffsetBot) {
1135     return longcon((julong) offset_con);
1136   }
1137   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1138   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1139   return _gvn.transform( new AndLNode(conv, mask) );
1140 }
1141 
1142 Node* GraphKit::ConvL2I(Node* offset) {
1143   // short-circuit a common case
1144   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1145   if (offset_con != (jlong)Type::OffsetBot) {
1146     return intcon((int) offset_con);
1147   }
1148   return _gvn.transform( new ConvL2INode(offset));
1149 }
1150 
1151 //-------------------------load_object_klass-----------------------------------
1152 Node* GraphKit::load_object_klass(Node* obj) {
1153   // Special-case a fresh allocation to avoid building nodes:
1154   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1155   if (akls != NULL)  return akls;
1156   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1157   return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1158 }
1159 
1160 //-------------------------load_array_length-----------------------------------
1161 Node* GraphKit::load_array_length(Node* array) {
1162   // Special-case a fresh allocation to avoid building nodes:
1163   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1164   Node *alen;
1165   if (alloc == NULL) {
1166     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1167     alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1168   } else {
1169     alen = alloc->Ideal_length();
1170     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1171     if (ccast != alen) {
1172       alen = _gvn.transform(ccast);
1173     }
1174   }
1175   return alen;
1176 }
1177 
1178 //------------------------------do_null_check----------------------------------
1179 // Helper function to do a NULL pointer check.  Returned value is
1180 // the incoming address with NULL casted away.  You are allowed to use the
1181 // not-null value only if you are control dependent on the test.
1182 #ifndef PRODUCT
1183 extern int explicit_null_checks_inserted,
1184            explicit_null_checks_elided;
1185 #endif
1186 Node* GraphKit::null_check_common(Node* value, BasicType type,
1187                                   // optional arguments for variations:
1188                                   bool assert_null,
1189                                   Node* *null_control,
1190                                   bool speculative) {
1191   assert(!assert_null || null_control == NULL, "not both at once");
1192   if (stopped())  return top();
1193   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
1194     // For some performance testing, we may wish to suppress null checking.
1195     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
1196     return value;
1197   }
1198   NOT_PRODUCT(explicit_null_checks_inserted++);
1199 
1200   // Construct NULL check
1201   Node *chk = NULL;
1202   switch(type) {
1203     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1204     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1205     case T_ARRAY  : // fall through
1206       type = T_OBJECT;  // simplify further tests
1207     case T_OBJECT : {
1208       const Type *t = _gvn.type( value );
1209 
1210       const TypeOopPtr* tp = t->isa_oopptr();
1211       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1212           // Only for do_null_check, not any of its siblings:
1213           && !assert_null && null_control == NULL) {
1214         // Usually, any field access or invocation on an unloaded oop type
1215         // will simply fail to link, since the statically linked class is
1216         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1217         // the static class is loaded but the sharper oop type is not.
1218         // Rather than checking for this obscure case in lots of places,
1219         // we simply observe that a null check on an unloaded class
1220         // will always be followed by a nonsense operation, so we
1221         // can just issue the uncommon trap here.
1222         // Our access to the unloaded class will only be correct
1223         // after it has been loaded and initialized, which requires
1224         // a trip through the interpreter.
1225 #ifndef PRODUCT
1226         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1227 #endif
1228         uncommon_trap(Deoptimization::Reason_unloaded,
1229                       Deoptimization::Action_reinterpret,
1230                       tp->klass(), "!loaded");
1231         return top();
1232       }
1233 
1234       if (assert_null) {
1235         // See if the type is contained in NULL_PTR.
1236         // If so, then the value is already null.
1237         if (t->higher_equal(TypePtr::NULL_PTR)) {
1238           NOT_PRODUCT(explicit_null_checks_elided++);
1239           return value;           // Elided null assert quickly!
1240         }
1241       } else {
1242         // See if mixing in the NULL pointer changes type.
1243         // If so, then the NULL pointer was not allowed in the original
1244         // type.  In other words, "value" was not-null.
1245         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1246           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1247           NOT_PRODUCT(explicit_null_checks_elided++);
1248           return value;           // Elided null check quickly!
1249         }
1250       }
1251       chk = new CmpPNode( value, null() );
1252       break;
1253     }
1254 
1255     default:
1256       fatal("unexpected type: %s", type2name(type));
1257   }
1258   assert(chk != NULL, "sanity check");
1259   chk = _gvn.transform(chk);
1260 
1261   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1262   BoolNode *btst = new BoolNode( chk, btest);
1263   Node   *tst = _gvn.transform( btst );
1264 
1265   //-----------
1266   // if peephole optimizations occurred, a prior test existed.
1267   // If a prior test existed, maybe it dominates as we can avoid this test.
1268   if (tst != btst && type == T_OBJECT) {
1269     // At this point we want to scan up the CFG to see if we can
1270     // find an identical test (and so avoid this test altogether).
1271     Node *cfg = control();
1272     int depth = 0;
1273     while( depth < 16 ) {       // Limit search depth for speed
1274       if( cfg->Opcode() == Op_IfTrue &&
1275           cfg->in(0)->in(1) == tst ) {
1276         // Found prior test.  Use "cast_not_null" to construct an identical
1277         // CastPP (and hence hash to) as already exists for the prior test.
1278         // Return that casted value.
1279         if (assert_null) {
1280           replace_in_map(value, null());
1281           return null();  // do not issue the redundant test
1282         }
1283         Node *oldcontrol = control();
1284         set_control(cfg);
1285         Node *res = cast_not_null(value);
1286         set_control(oldcontrol);
1287         NOT_PRODUCT(explicit_null_checks_elided++);
1288         return res;
1289       }
1290       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1291       if (cfg == NULL)  break;  // Quit at region nodes
1292       depth++;
1293     }
1294   }
1295 
1296   //-----------
1297   // Branch to failure if null
1298   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1299   Deoptimization::DeoptReason reason;
1300   if (assert_null) {
1301     reason = Deoptimization::Reason_null_assert;
1302   } else if (type == T_OBJECT) {
1303     reason = Deoptimization::reason_null_check(speculative);
1304   } else {
1305     reason = Deoptimization::Reason_div0_check;
1306   }
1307   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1308   // ciMethodData::has_trap_at will return a conservative -1 if any
1309   // must-be-null assertion has failed.  This could cause performance
1310   // problems for a method after its first do_null_assert failure.
1311   // Consider using 'Reason_class_check' instead?
1312 
1313   // To cause an implicit null check, we set the not-null probability
1314   // to the maximum (PROB_MAX).  For an explicit check the probability
1315   // is set to a smaller value.
1316   if (null_control != NULL || too_many_traps(reason)) {
1317     // probability is less likely
1318     ok_prob =  PROB_LIKELY_MAG(3);
1319   } else if (!assert_null &&
1320              (ImplicitNullCheckThreshold > 0) &&
1321              method() != NULL &&
1322              (method()->method_data()->trap_count(reason)
1323               >= (uint)ImplicitNullCheckThreshold)) {
1324     ok_prob =  PROB_LIKELY_MAG(3);
1325   }
1326 
1327   if (null_control != NULL) {
1328     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1329     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1330     set_control(      _gvn.transform( new IfTrueNode(iff)));
1331 #ifndef PRODUCT
1332     if (null_true == top()) {
1333       explicit_null_checks_elided++;
1334     }
1335 #endif
1336     (*null_control) = null_true;
1337   } else {
1338     BuildCutout unless(this, tst, ok_prob);
1339     // Check for optimizer eliding test at parse time
1340     if (stopped()) {
1341       // Failure not possible; do not bother making uncommon trap.
1342       NOT_PRODUCT(explicit_null_checks_elided++);
1343     } else if (assert_null) {
1344       uncommon_trap(reason,
1345                     Deoptimization::Action_make_not_entrant,
1346                     NULL, "assert_null");
1347     } else {
1348       replace_in_map(value, zerocon(type));
1349       builtin_throw(reason);
1350     }
1351   }
1352 
1353   // Must throw exception, fall-thru not possible?
1354   if (stopped()) {
1355     return top();               // No result
1356   }
1357 
1358   if (assert_null) {
1359     // Cast obj to null on this path.
1360     replace_in_map(value, zerocon(type));
1361     return zerocon(type);
1362   }
1363 
1364   // Cast obj to not-null on this path, if there is no null_control.
1365   // (If there is a null_control, a non-null value may come back to haunt us.)
1366   if (type == T_OBJECT) {
1367     Node* cast = cast_not_null(value, false);
1368     if (null_control == NULL || (*null_control) == top())
1369       replace_in_map(value, cast);
1370     value = cast;
1371   }
1372 
1373   return value;
1374 }
1375 
1376 
1377 //------------------------------cast_not_null----------------------------------
1378 // Cast obj to not-null on this path
1379 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1380   const Type *t = _gvn.type(obj);
1381   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1382   // Object is already not-null?
1383   if( t == t_not_null ) return obj;
1384 
1385   Node *cast = new CastPPNode(obj,t_not_null);
1386   cast->init_req(0, control());
1387   cast = _gvn.transform( cast );
1388 
1389   // Scan for instances of 'obj' in the current JVM mapping.
1390   // These instances are known to be not-null after the test.
1391   if (do_replace_in_map)
1392     replace_in_map(obj, cast);
1393 
1394   return cast;                  // Return casted value
1395 }
1396 
1397 
1398 //--------------------------replace_in_map-------------------------------------
1399 void GraphKit::replace_in_map(Node* old, Node* neww) {
1400   if (old == neww) {
1401     return;
1402   }
1403 
1404   map()->replace_edge(old, neww);
1405 
1406   // Note: This operation potentially replaces any edge
1407   // on the map.  This includes locals, stack, and monitors
1408   // of the current (innermost) JVM state.
1409 
1410   // don't let inconsistent types from profiling escape this
1411   // method
1412 
1413   const Type* told = _gvn.type(old);
1414   const Type* tnew = _gvn.type(neww);
1415 
1416   if (!tnew->higher_equal(told)) {
1417     return;
1418   }
1419 
1420   map()->record_replaced_node(old, neww);
1421 }
1422 
1423 
1424 //=============================================================================
1425 //--------------------------------memory---------------------------------------
1426 Node* GraphKit::memory(uint alias_idx) {
1427   MergeMemNode* mem = merged_memory();
1428   Node* p = mem->memory_at(alias_idx);
1429   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1430   return p;
1431 }
1432 
1433 //-----------------------------reset_memory------------------------------------
1434 Node* GraphKit::reset_memory() {
1435   Node* mem = map()->memory();
1436   // do not use this node for any more parsing!
1437   debug_only( map()->set_memory((Node*)NULL) );
1438   return _gvn.transform( mem );
1439 }
1440 
1441 //------------------------------set_all_memory---------------------------------
1442 void GraphKit::set_all_memory(Node* newmem) {
1443   Node* mergemem = MergeMemNode::make(newmem);
1444   gvn().set_type_bottom(mergemem);
1445   map()->set_memory(mergemem);
1446 }
1447 
1448 //------------------------------set_all_memory_call----------------------------
1449 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1450   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1451   set_all_memory(newmem);
1452 }
1453 
1454 //=============================================================================
1455 //
1456 // parser factory methods for MemNodes
1457 //
1458 // These are layered on top of the factory methods in LoadNode and StoreNode,
1459 // and integrate with the parser's memory state and _gvn engine.
1460 //
1461 
1462 // factory methods in "int adr_idx"
1463 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1464                           int adr_idx,
1465                           MemNode::MemOrd mo,
1466                           LoadNode::ControlDependency control_dependency,
1467                           bool require_atomic_access,
1468                           bool unaligned,
1469                           bool mismatched) {
1470   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1471   const TypePtr* adr_type = NULL; // debug-mode-only argument
1472   debug_only(adr_type = C->get_adr_type(adr_idx));
1473   Node* mem = memory(adr_idx);
1474   Node* ld;
1475   if (require_atomic_access && bt == T_LONG) {
1476     ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1477   } else if (require_atomic_access && bt == T_DOUBLE) {
1478     ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1479   } else {
1480     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, unaligned, mismatched);
1481   }
1482   ld = _gvn.transform(ld);
1483   if ((bt == T_OBJECT) && C->do_escape_analysis() || C->eliminate_boxing()) {
1484     // Improve graph before escape analysis and boxing elimination.
1485     record_for_igvn(ld);
1486   }
1487   return ld;
1488 }
1489 
1490 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1491                                 int adr_idx,
1492                                 MemNode::MemOrd mo,
1493                                 bool require_atomic_access,
1494                                 bool unaligned,
1495                                 bool mismatched) {
1496   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1497   const TypePtr* adr_type = NULL;
1498   debug_only(adr_type = C->get_adr_type(adr_idx));
1499   Node *mem = memory(adr_idx);
1500   Node* st;
1501   if (require_atomic_access && bt == T_LONG) {
1502     st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1503   } else if (require_atomic_access && bt == T_DOUBLE) {
1504     st = StoreDNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1505   } else {
1506     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
1507   }
1508   if (unaligned) {
1509     st->as_Store()->set_unaligned_access();
1510   }
1511   if (mismatched) {
1512     st->as_Store()->set_mismatched_access();
1513   }
1514   st = _gvn.transform(st);
1515   set_memory(st, adr_idx);
1516   // Back-to-back stores can only remove intermediate store with DU info
1517   // so push on worklist for optimizer.
1518   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1519     record_for_igvn(st);
1520 
1521   return st;
1522 }
1523 
1524 
1525 void GraphKit::pre_barrier(bool do_load,
1526                            Node* ctl,
1527                            Node* obj,
1528                            Node* adr,
1529                            uint  adr_idx,
1530                            Node* val,
1531                            const TypeOopPtr* val_type,
1532                            Node* pre_val,
1533                            BasicType bt) {
1534 
1535   BarrierSet* bs = Universe::heap()->barrier_set();
1536   set_control(ctl);
1537   switch (bs->kind()) {
1538     case BarrierSet::G1SATBCTLogging:
1539       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1540       break;
1541 
1542     case BarrierSet::CardTableForRS:
1543     case BarrierSet::CardTableExtension:
1544     case BarrierSet::ModRef:
1545       break;
1546 
1547     default      :
1548       ShouldNotReachHere();
1549 
1550   }
1551 }
1552 
1553 bool GraphKit::can_move_pre_barrier() const {
1554   BarrierSet* bs = Universe::heap()->barrier_set();
1555   switch (bs->kind()) {
1556     case BarrierSet::G1SATBCTLogging:
1557       return true; // Can move it if no safepoint
1558 
1559     case BarrierSet::CardTableForRS:
1560     case BarrierSet::CardTableExtension:
1561     case BarrierSet::ModRef:
1562       return true; // There is no pre-barrier
1563 
1564     default      :
1565       ShouldNotReachHere();
1566   }
1567   return false;
1568 }
1569 
1570 void GraphKit::post_barrier(Node* ctl,
1571                             Node* store,
1572                             Node* obj,
1573                             Node* adr,
1574                             uint  adr_idx,
1575                             Node* val,
1576                             BasicType bt,
1577                             bool use_precise) {
1578   BarrierSet* bs = Universe::heap()->barrier_set();
1579   set_control(ctl);
1580   switch (bs->kind()) {
1581     case BarrierSet::G1SATBCTLogging:
1582       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1583       break;
1584 
1585     case BarrierSet::CardTableForRS:
1586     case BarrierSet::CardTableExtension:
1587       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1588       break;
1589 
1590     case BarrierSet::ModRef:
1591       break;
1592 
1593     default      :
1594       ShouldNotReachHere();
1595 
1596   }
1597 }
1598 
1599 Node* GraphKit::store_oop(Node* ctl,
1600                           Node* obj,
1601                           Node* adr,
1602                           const TypePtr* adr_type,
1603                           Node* val,
1604                           const TypeOopPtr* val_type,
1605                           BasicType bt,
1606                           bool use_precise,
1607                           MemNode::MemOrd mo,
1608                           bool mismatched) {
1609   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1610   // could be delayed during Parse (for example, in adjust_map_after_if()).
1611   // Execute transformation here to avoid barrier generation in such case.
1612   if (_gvn.type(val) == TypePtr::NULL_PTR)
1613     val = _gvn.makecon(TypePtr::NULL_PTR);
1614 
1615   set_control(ctl);
1616   if (stopped()) return top(); // Dead path ?
1617 
1618   assert(bt == T_OBJECT, "sanity");
1619   assert(val != NULL, "not dead path");
1620   uint adr_idx = C->get_alias_index(adr_type);
1621   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1622 
1623   pre_barrier(true /* do_load */,
1624               control(), obj, adr, adr_idx, val, val_type,
1625               NULL /* pre_val */,
1626               bt);
1627 
1628   Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo, mismatched);
1629   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1630   return store;
1631 }
1632 
1633 // Could be an array or object we don't know at compile time (unsafe ref.)
1634 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1635                              Node* obj,   // containing obj
1636                              Node* adr,  // actual adress to store val at
1637                              const TypePtr* adr_type,
1638                              Node* val,
1639                              BasicType bt,
1640                              MemNode::MemOrd mo,
1641                              bool mismatched) {
1642   Compile::AliasType* at = C->alias_type(adr_type);
1643   const TypeOopPtr* val_type = NULL;
1644   if (adr_type->isa_instptr()) {
1645     if (at->field() != NULL) {
1646       // known field.  This code is a copy of the do_put_xxx logic.
1647       ciField* field = at->field();
1648       if (!field->type()->is_loaded()) {
1649         val_type = TypeInstPtr::BOTTOM;
1650       } else {
1651         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1652       }
1653     }
1654   } else if (adr_type->isa_aryptr()) {
1655     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1656   }
1657   if (val_type == NULL) {
1658     val_type = TypeInstPtr::BOTTOM;
1659   }
1660   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo, mismatched);
1661 }
1662 
1663 
1664 //-------------------------array_element_address-------------------------
1665 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1666                                       const TypeInt* sizetype, Node* ctrl) {
1667   uint shift  = exact_log2(type2aelembytes(elembt));
1668   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1669 
1670   // short-circuit a common case (saves lots of confusing waste motion)
1671   jint idx_con = find_int_con(idx, -1);
1672   if (idx_con >= 0) {
1673     intptr_t offset = header + ((intptr_t)idx_con << shift);
1674     return basic_plus_adr(ary, offset);
1675   }
1676 
1677   // must be correct type for alignment purposes
1678   Node* base  = basic_plus_adr(ary, header);
1679   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1680   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1681   return basic_plus_adr(ary, base, scale);
1682 }
1683 
1684 //-------------------------load_array_element-------------------------
1685 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1686   const Type* elemtype = arytype->elem();
1687   BasicType elembt = elemtype->array_element_basic_type();
1688   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1689   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1690   return ld;
1691 }
1692 
1693 //-------------------------set_arguments_for_java_call-------------------------
1694 // Arguments (pre-popped from the stack) are taken from the JVMS.
1695 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1696   // Add the call arguments:
1697   uint nargs = call->method()->arg_size();
1698   for (uint i = 0; i < nargs; i++) {
1699     Node* arg = argument(i);
1700     call->init_req(i + TypeFunc::Parms, arg);
1701   }
1702 }
1703 
1704 //---------------------------set_edges_for_java_call---------------------------
1705 // Connect a newly created call into the current JVMS.
1706 // A return value node (if any) is returned from set_edges_for_java_call.
1707 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1708 
1709   // Add the predefined inputs:
1710   call->init_req( TypeFunc::Control, control() );
1711   call->init_req( TypeFunc::I_O    , i_o() );
1712   call->init_req( TypeFunc::Memory , reset_memory() );
1713   call->init_req( TypeFunc::FramePtr, frameptr() );
1714   call->init_req( TypeFunc::ReturnAdr, top() );
1715 
1716   add_safepoint_edges(call, must_throw);
1717 
1718   Node* xcall = _gvn.transform(call);
1719 
1720   if (xcall == top()) {
1721     set_control(top());
1722     return;
1723   }
1724   assert(xcall == call, "call identity is stable");
1725 
1726   // Re-use the current map to produce the result.
1727 
1728   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1729   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1730   set_all_memory_call(xcall, separate_io_proj);
1731 
1732   //return xcall;   // no need, caller already has it
1733 }
1734 
1735 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1736   if (stopped())  return top();  // maybe the call folded up?
1737 
1738   // Capture the return value, if any.
1739   Node* ret;
1740   if (call->method() == NULL ||
1741       call->method()->return_type()->basic_type() == T_VOID)
1742         ret = top();
1743   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1744 
1745   // Note:  Since any out-of-line call can produce an exception,
1746   // we always insert an I_O projection from the call into the result.
1747 
1748   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1749 
1750   if (separate_io_proj) {
1751     // The caller requested separate projections be used by the fall
1752     // through and exceptional paths, so replace the projections for
1753     // the fall through path.
1754     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1755     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1756   }
1757   return ret;
1758 }
1759 
1760 //--------------------set_predefined_input_for_runtime_call--------------------
1761 // Reading and setting the memory state is way conservative here.
1762 // The real problem is that I am not doing real Type analysis on memory,
1763 // so I cannot distinguish card mark stores from other stores.  Across a GC
1764 // point the Store Barrier and the card mark memory has to agree.  I cannot
1765 // have a card mark store and its barrier split across the GC point from
1766 // either above or below.  Here I get that to happen by reading ALL of memory.
1767 // A better answer would be to separate out card marks from other memory.
1768 // For now, return the input memory state, so that it can be reused
1769 // after the call, if this call has restricted memory effects.
1770 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1771   // Set fixed predefined input arguments
1772   Node* memory = reset_memory();
1773   call->init_req( TypeFunc::Control,   control()  );
1774   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1775   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1776   call->init_req( TypeFunc::FramePtr,  frameptr() );
1777   call->init_req( TypeFunc::ReturnAdr, top()      );
1778   return memory;
1779 }
1780 
1781 //-------------------set_predefined_output_for_runtime_call--------------------
1782 // Set control and memory (not i_o) from the call.
1783 // If keep_mem is not NULL, use it for the output state,
1784 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1785 // If hook_mem is NULL, this call produces no memory effects at all.
1786 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1787 // then only that memory slice is taken from the call.
1788 // In the last case, we must put an appropriate memory barrier before
1789 // the call, so as to create the correct anti-dependencies on loads
1790 // preceding the call.
1791 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1792                                                       Node* keep_mem,
1793                                                       const TypePtr* hook_mem) {
1794   // no i/o
1795   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
1796   if (keep_mem) {
1797     // First clone the existing memory state
1798     set_all_memory(keep_mem);
1799     if (hook_mem != NULL) {
1800       // Make memory for the call
1801       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
1802       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1803       // We also use hook_mem to extract specific effects from arraycopy stubs.
1804       set_memory(mem, hook_mem);
1805     }
1806     // ...else the call has NO memory effects.
1807 
1808     // Make sure the call advertises its memory effects precisely.
1809     // This lets us build accurate anti-dependences in gcm.cpp.
1810     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1811            "call node must be constructed correctly");
1812   } else {
1813     assert(hook_mem == NULL, "");
1814     // This is not a "slow path" call; all memory comes from the call.
1815     set_all_memory_call(call);
1816   }
1817 }
1818 
1819 
1820 // Replace the call with the current state of the kit.
1821 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1822   JVMState* ejvms = NULL;
1823   if (has_exceptions()) {
1824     ejvms = transfer_exceptions_into_jvms();
1825   }
1826 
1827   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1828   ReplacedNodes replaced_nodes_exception;
1829   Node* ex_ctl = top();
1830 
1831   SafePointNode* final_state = stop();
1832 
1833   // Find all the needed outputs of this call
1834   CallProjections callprojs;
1835   call->extract_projections(&callprojs, true);
1836 
1837   Node* init_mem = call->in(TypeFunc::Memory);
1838   Node* final_mem = final_state->in(TypeFunc::Memory);
1839   Node* final_ctl = final_state->in(TypeFunc::Control);
1840   Node* final_io = final_state->in(TypeFunc::I_O);
1841 
1842   // Replace all the old call edges with the edges from the inlining result
1843   if (callprojs.fallthrough_catchproj != NULL) {
1844     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1845   }
1846   if (callprojs.fallthrough_memproj != NULL) {
1847     if (final_mem->is_MergeMem()) {
1848       // Parser's exits MergeMem was not transformed but may be optimized
1849       final_mem = _gvn.transform(final_mem);
1850     }
1851     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1852   }
1853   if (callprojs.fallthrough_ioproj != NULL) {
1854     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1855   }
1856 
1857   // Replace the result with the new result if it exists and is used
1858   if (callprojs.resproj != NULL && result != NULL) {
1859     C->gvn_replace_by(callprojs.resproj, result);
1860   }
1861 
1862   if (ejvms == NULL) {
1863     // No exception edges to simply kill off those paths
1864     if (callprojs.catchall_catchproj != NULL) {
1865       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1866     }
1867     if (callprojs.catchall_memproj != NULL) {
1868       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1869     }
1870     if (callprojs.catchall_ioproj != NULL) {
1871       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1872     }
1873     // Replace the old exception object with top
1874     if (callprojs.exobj != NULL) {
1875       C->gvn_replace_by(callprojs.exobj, C->top());
1876     }
1877   } else {
1878     GraphKit ekit(ejvms);
1879 
1880     // Load my combined exception state into the kit, with all phis transformed:
1881     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1882     replaced_nodes_exception = ex_map->replaced_nodes();
1883 
1884     Node* ex_oop = ekit.use_exception_state(ex_map);
1885 
1886     if (callprojs.catchall_catchproj != NULL) {
1887       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1888       ex_ctl = ekit.control();
1889     }
1890     if (callprojs.catchall_memproj != NULL) {
1891       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1892     }
1893     if (callprojs.catchall_ioproj != NULL) {
1894       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1895     }
1896 
1897     // Replace the old exception object with the newly created one
1898     if (callprojs.exobj != NULL) {
1899       C->gvn_replace_by(callprojs.exobj, ex_oop);
1900     }
1901   }
1902 
1903   // Disconnect the call from the graph
1904   call->disconnect_inputs(NULL, C);
1905   C->gvn_replace_by(call, C->top());
1906 
1907   // Clean up any MergeMems that feed other MergeMems since the
1908   // optimizer doesn't like that.
1909   if (final_mem->is_MergeMem()) {
1910     Node_List wl;
1911     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1912       Node* m = i.get();
1913       if (m->is_MergeMem() && !wl.contains(m)) {
1914         wl.push(m);
1915       }
1916     }
1917     while (wl.size()  > 0) {
1918       _gvn.transform(wl.pop());
1919     }
1920   }
1921 
1922   if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
1923     replaced_nodes.apply(C, final_ctl);
1924   }
1925   if (!ex_ctl->is_top() && do_replaced_nodes) {
1926     replaced_nodes_exception.apply(C, ex_ctl);
1927   }
1928 }
1929 
1930 
1931 //------------------------------increment_counter------------------------------
1932 // for statistics: increment a VM counter by 1
1933 
1934 void GraphKit::increment_counter(address counter_addr) {
1935   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1936   increment_counter(adr1);
1937 }
1938 
1939 void GraphKit::increment_counter(Node* counter_addr) {
1940   int adr_type = Compile::AliasIdxRaw;
1941   Node* ctrl = control();
1942   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
1943   Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1)));
1944   store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
1945 }
1946 
1947 
1948 //------------------------------uncommon_trap----------------------------------
1949 // Bail out to the interpreter in mid-method.  Implemented by calling the
1950 // uncommon_trap blob.  This helper function inserts a runtime call with the
1951 // right debug info.
1952 void GraphKit::uncommon_trap(int trap_request,
1953                              ciKlass* klass, const char* comment,
1954                              bool must_throw,
1955                              bool keep_exact_action) {
1956   if (failing())  stop();
1957   if (stopped())  return; // trap reachable?
1958 
1959   // Note:  If ProfileTraps is true, and if a deopt. actually
1960   // occurs here, the runtime will make sure an MDO exists.  There is
1961   // no need to call method()->ensure_method_data() at this point.
1962 
1963   // Set the stack pointer to the right value for reexecution:
1964   set_sp(reexecute_sp());
1965 
1966 #ifdef ASSERT
1967   if (!must_throw) {
1968     // Make sure the stack has at least enough depth to execute
1969     // the current bytecode.
1970     int inputs, ignored_depth;
1971     if (compute_stack_effects(inputs, ignored_depth)) {
1972       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
1973              Bytecodes::name(java_bc()), sp(), inputs);
1974     }
1975   }
1976 #endif
1977 
1978   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
1979   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
1980 
1981   switch (action) {
1982   case Deoptimization::Action_maybe_recompile:
1983   case Deoptimization::Action_reinterpret:
1984     // Temporary fix for 6529811 to allow virtual calls to be sure they
1985     // get the chance to go from mono->bi->mega
1986     if (!keep_exact_action &&
1987         Deoptimization::trap_request_index(trap_request) < 0 &&
1988         too_many_recompiles(reason)) {
1989       // This BCI is causing too many recompilations.
1990       if (C->log() != NULL) {
1991         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
1992                 Deoptimization::trap_reason_name(reason),
1993                 Deoptimization::trap_action_name(action));
1994       }
1995       action = Deoptimization::Action_none;
1996       trap_request = Deoptimization::make_trap_request(reason, action);
1997     } else {
1998       C->set_trap_can_recompile(true);
1999     }
2000     break;
2001   case Deoptimization::Action_make_not_entrant:
2002     C->set_trap_can_recompile(true);
2003     break;
2004 #ifdef ASSERT
2005   case Deoptimization::Action_none:
2006   case Deoptimization::Action_make_not_compilable:
2007     break;
2008   default:
2009     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2010     break;
2011 #endif
2012   }
2013 
2014   if (TraceOptoParse) {
2015     char buf[100];
2016     tty->print_cr("Uncommon trap %s at bci:%d",
2017                   Deoptimization::format_trap_request(buf, sizeof(buf),
2018                                                       trap_request), bci());
2019   }
2020 
2021   CompileLog* log = C->log();
2022   if (log != NULL) {
2023     int kid = (klass == NULL)? -1: log->identify(klass);
2024     log->begin_elem("uncommon_trap bci='%d'", bci());
2025     char buf[100];
2026     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2027                                                           trap_request));
2028     if (kid >= 0)         log->print(" klass='%d'", kid);
2029     if (comment != NULL)  log->print(" comment='%s'", comment);
2030     log->end_elem();
2031   }
2032 
2033   // Make sure any guarding test views this path as very unlikely
2034   Node *i0 = control()->in(0);
2035   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2036     IfNode *iff = i0->as_If();
2037     float f = iff->_prob;   // Get prob
2038     if (control()->Opcode() == Op_IfTrue) {
2039       if (f > PROB_UNLIKELY_MAG(4))
2040         iff->_prob = PROB_MIN;
2041     } else {
2042       if (f < PROB_LIKELY_MAG(4))
2043         iff->_prob = PROB_MAX;
2044     }
2045   }
2046 
2047   // Clear out dead values from the debug info.
2048   kill_dead_locals();
2049 
2050   // Now insert the uncommon trap subroutine call
2051   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2052   const TypePtr* no_memory_effects = NULL;
2053   // Pass the index of the class to be loaded
2054   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2055                                  (must_throw ? RC_MUST_THROW : 0),
2056                                  OptoRuntime::uncommon_trap_Type(),
2057                                  call_addr, "uncommon_trap", no_memory_effects,
2058                                  intcon(trap_request));
2059   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2060          "must extract request correctly from the graph");
2061   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2062 
2063   call->set_req(TypeFunc::ReturnAdr, returnadr());
2064   // The debug info is the only real input to this call.
2065 
2066   // Halt-and-catch fire here.  The above call should never return!
2067   HaltNode* halt = new HaltNode(control(), frameptr());
2068   _gvn.set_type_bottom(halt);
2069   root()->add_req(halt);
2070 
2071   stop_and_kill_map();
2072 }
2073 
2074 
2075 //--------------------------just_allocated_object------------------------------
2076 // Report the object that was just allocated.
2077 // It must be the case that there are no intervening safepoints.
2078 // We use this to determine if an object is so "fresh" that
2079 // it does not require card marks.
2080 Node* GraphKit::just_allocated_object(Node* current_control) {
2081   if (C->recent_alloc_ctl() == current_control)
2082     return C->recent_alloc_obj();
2083   return NULL;
2084 }
2085 
2086 
2087 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2088   // (Note:  TypeFunc::make has a cache that makes this fast.)
2089   const TypeFunc* tf    = TypeFunc::make(dest_method);
2090   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2091   for (int j = 0; j < nargs; j++) {
2092     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2093     if( targ->basic_type() == T_DOUBLE ) {
2094       // If any parameters are doubles, they must be rounded before
2095       // the call, dstore_rounding does gvn.transform
2096       Node *arg = argument(j);
2097       arg = dstore_rounding(arg);
2098       set_argument(j, arg);
2099     }
2100   }
2101 }
2102 
2103 /**
2104  * Record profiling data exact_kls for Node n with the type system so
2105  * that it can propagate it (speculation)
2106  *
2107  * @param n          node that the type applies to
2108  * @param exact_kls  type from profiling
2109  * @param maybe_null did profiling see null?
2110  *
2111  * @return           node with improved type
2112  */
2113 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, bool maybe_null) {
2114   const Type* current_type = _gvn.type(n);
2115   assert(UseTypeSpeculation, "type speculation must be on");
2116 
2117   const TypePtr* speculative = current_type->speculative();
2118 
2119   // Should the klass from the profile be recorded in the speculative type?
2120   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2121     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2122     const TypeOopPtr* xtype = tklass->as_instance_type();
2123     assert(xtype->klass_is_exact(), "Should be exact");
2124     // Any reason to believe n is not null (from this profiling or a previous one)?
2125     const TypePtr* ptr = (maybe_null && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2126     // record the new speculative type's depth
2127     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2128     speculative = speculative->with_inline_depth(jvms()->depth());
2129   } else if (current_type->would_improve_ptr(maybe_null)) {
2130     // Profiling report that null was never seen so we can change the
2131     // speculative type to non null ptr.
2132     assert(!maybe_null, "nothing to improve");
2133     if (speculative == NULL) {
2134       speculative = TypePtr::NOTNULL;
2135     } else {
2136       const TypePtr* ptr = TypePtr::NOTNULL;
2137       speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2138     }
2139   }
2140 
2141   if (speculative != current_type->speculative()) {
2142     // Build a type with a speculative type (what we think we know
2143     // about the type but will need a guard when we use it)
2144     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2145     // We're changing the type, we need a new CheckCast node to carry
2146     // the new type. The new type depends on the control: what
2147     // profiling tells us is only valid from here as far as we can
2148     // tell.
2149     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2150     cast = _gvn.transform(cast);
2151     replace_in_map(n, cast);
2152     n = cast;
2153   }
2154 
2155   return n;
2156 }
2157 
2158 /**
2159  * Record profiling data from receiver profiling at an invoke with the
2160  * type system so that it can propagate it (speculation)
2161  *
2162  * @param n  receiver node
2163  *
2164  * @return   node with improved type
2165  */
2166 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2167   if (!UseTypeSpeculation) {
2168     return n;
2169   }
2170   ciKlass* exact_kls = profile_has_unique_klass();
2171   bool maybe_null = true;
2172   if (java_bc() == Bytecodes::_checkcast ||
2173       java_bc() == Bytecodes::_instanceof ||
2174       java_bc() == Bytecodes::_aastore) {
2175     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2176     bool maybe_null = data == NULL ? true : data->as_BitData()->null_seen();
2177   }
2178   return record_profile_for_speculation(n, exact_kls, maybe_null);
2179   return n;
2180 }
2181 
2182 /**
2183  * Record profiling data from argument profiling at an invoke with the
2184  * type system so that it can propagate it (speculation)
2185  *
2186  * @param dest_method  target method for the call
2187  * @param bc           what invoke bytecode is this?
2188  */
2189 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2190   if (!UseTypeSpeculation) {
2191     return;
2192   }
2193   const TypeFunc* tf    = TypeFunc::make(dest_method);
2194   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2195   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2196   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2197     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2198     if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2199       bool maybe_null = true;
2200       ciKlass* better_type = NULL;
2201       if (method()->argument_profiled_type(bci(), i, better_type, maybe_null)) {
2202         record_profile_for_speculation(argument(j), better_type, maybe_null);
2203       }
2204       i++;
2205     }
2206   }
2207 }
2208 
2209 /**
2210  * Record profiling data from parameter profiling at an invoke with
2211  * the type system so that it can propagate it (speculation)
2212  */
2213 void GraphKit::record_profiled_parameters_for_speculation() {
2214   if (!UseTypeSpeculation) {
2215     return;
2216   }
2217   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2218     if (_gvn.type(local(i))->isa_oopptr()) {
2219       bool maybe_null = true;
2220       ciKlass* better_type = NULL;
2221       if (method()->parameter_profiled_type(j, better_type, maybe_null)) {
2222         record_profile_for_speculation(local(i), better_type, maybe_null);
2223       }
2224       j++;
2225     }
2226   }
2227 }
2228 
2229 /**
2230  * Record profiling data from return value profiling at an invoke with
2231  * the type system so that it can propagate it (speculation)
2232  */
2233 void GraphKit::record_profiled_return_for_speculation() {
2234   if (!UseTypeSpeculation) {
2235     return;
2236   }
2237   bool maybe_null = true;
2238   ciKlass* better_type = NULL;
2239   if (method()->return_profiled_type(bci(), better_type, maybe_null)) {
2240     // If profiling reports a single type for the return value,
2241     // feed it to the type system so it can propagate it as a
2242     // speculative type
2243     record_profile_for_speculation(stack(sp()-1), better_type, maybe_null);
2244   }
2245 }
2246 
2247 void GraphKit::round_double_result(ciMethod* dest_method) {
2248   // A non-strict method may return a double value which has an extended
2249   // exponent, but this must not be visible in a caller which is 'strict'
2250   // If a strict caller invokes a non-strict callee, round a double result
2251 
2252   BasicType result_type = dest_method->return_type()->basic_type();
2253   assert( method() != NULL, "must have caller context");
2254   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2255     // Destination method's return value is on top of stack
2256     // dstore_rounding() does gvn.transform
2257     Node *result = pop_pair();
2258     result = dstore_rounding(result);
2259     push_pair(result);
2260   }
2261 }
2262 
2263 // rounding for strict float precision conformance
2264 Node* GraphKit::precision_rounding(Node* n) {
2265   return UseStrictFP && _method->flags().is_strict()
2266     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2267     ? _gvn.transform( new RoundFloatNode(0, n) )
2268     : n;
2269 }
2270 
2271 // rounding for strict double precision conformance
2272 Node* GraphKit::dprecision_rounding(Node *n) {
2273   return UseStrictFP && _method->flags().is_strict()
2274     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2275     ? _gvn.transform( new RoundDoubleNode(0, n) )
2276     : n;
2277 }
2278 
2279 // rounding for non-strict double stores
2280 Node* GraphKit::dstore_rounding(Node* n) {
2281   return Matcher::strict_fp_requires_explicit_rounding
2282     && UseSSE <= 1
2283     ? _gvn.transform( new RoundDoubleNode(0, n) )
2284     : n;
2285 }
2286 
2287 //=============================================================================
2288 // Generate a fast path/slow path idiom.  Graph looks like:
2289 // [foo] indicates that 'foo' is a parameter
2290 //
2291 //              [in]     NULL
2292 //                 \    /
2293 //                  CmpP
2294 //                  Bool ne
2295 //                   If
2296 //                  /  \
2297 //              True    False-<2>
2298 //              / |
2299 //             /  cast_not_null
2300 //           Load  |    |   ^
2301 //        [fast_test]   |   |
2302 // gvn to   opt_test    |   |
2303 //          /    \      |  <1>
2304 //      True     False  |
2305 //        |         \\  |
2306 //   [slow_call]     \[fast_result]
2307 //    Ctl   Val       \      \
2308 //     |               \      \
2309 //    Catch       <1>   \      \
2310 //   /    \        ^     \      \
2311 //  Ex    No_Ex    |      \      \
2312 //  |       \   \  |       \ <2>  \
2313 //  ...      \  [slow_res] |  |    \   [null_result]
2314 //            \         \--+--+---  |  |
2315 //             \           | /    \ | /
2316 //              --------Region     Phi
2317 //
2318 //=============================================================================
2319 // Code is structured as a series of driver functions all called 'do_XXX' that
2320 // call a set of helper functions.  Helper functions first, then drivers.
2321 
2322 //------------------------------null_check_oop---------------------------------
2323 // Null check oop.  Set null-path control into Region in slot 3.
2324 // Make a cast-not-nullness use the other not-null control.  Return cast.
2325 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2326                                bool never_see_null,
2327                                bool safe_for_replace,
2328                                bool speculative) {
2329   // Initial NULL check taken path
2330   (*null_control) = top();
2331   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2332 
2333   // Generate uncommon_trap:
2334   if (never_see_null && (*null_control) != top()) {
2335     // If we see an unexpected null at a check-cast we record it and force a
2336     // recompile; the offending check-cast will be compiled to handle NULLs.
2337     // If we see more than one offending BCI, then all checkcasts in the
2338     // method will be compiled to handle NULLs.
2339     PreserveJVMState pjvms(this);
2340     set_control(*null_control);
2341     replace_in_map(value, null());
2342     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2343     uncommon_trap(reason,
2344                   Deoptimization::Action_make_not_entrant);
2345     (*null_control) = top();    // NULL path is dead
2346   }
2347   if ((*null_control) == top() && safe_for_replace) {
2348     replace_in_map(value, cast);
2349   }
2350 
2351   // Cast away null-ness on the result
2352   return cast;
2353 }
2354 
2355 //------------------------------opt_iff----------------------------------------
2356 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2357 // Return slow-path control.
2358 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2359   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2360 
2361   // Fast path taken; set region slot 2
2362   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2363   region->init_req(2,fast_taken); // Capture fast-control
2364 
2365   // Fast path not-taken, i.e. slow path
2366   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2367   return slow_taken;
2368 }
2369 
2370 //-----------------------------make_runtime_call-------------------------------
2371 Node* GraphKit::make_runtime_call(int flags,
2372                                   const TypeFunc* call_type, address call_addr,
2373                                   const char* call_name,
2374                                   const TypePtr* adr_type,
2375                                   // The following parms are all optional.
2376                                   // The first NULL ends the list.
2377                                   Node* parm0, Node* parm1,
2378                                   Node* parm2, Node* parm3,
2379                                   Node* parm4, Node* parm5,
2380                                   Node* parm6, Node* parm7) {
2381   // Slow-path call
2382   bool is_leaf = !(flags & RC_NO_LEAF);
2383   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2384   if (call_name == NULL) {
2385     assert(!is_leaf, "must supply name for leaf");
2386     call_name = OptoRuntime::stub_name(call_addr);
2387   }
2388   CallNode* call;
2389   if (!is_leaf) {
2390     call = new CallStaticJavaNode(call_type, call_addr, call_name,
2391                                            bci(), adr_type);
2392   } else if (flags & RC_NO_FP) {
2393     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2394   } else {
2395     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2396   }
2397 
2398   // The following is similar to set_edges_for_java_call,
2399   // except that the memory effects of the call are restricted to AliasIdxRaw.
2400 
2401   // Slow path call has no side-effects, uses few values
2402   bool wide_in  = !(flags & RC_NARROW_MEM);
2403   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2404 
2405   Node* prev_mem = NULL;
2406   if (wide_in) {
2407     prev_mem = set_predefined_input_for_runtime_call(call);
2408   } else {
2409     assert(!wide_out, "narrow in => narrow out");
2410     Node* narrow_mem = memory(adr_type);
2411     prev_mem = reset_memory();
2412     map()->set_memory(narrow_mem);
2413     set_predefined_input_for_runtime_call(call);
2414   }
2415 
2416   // Hook each parm in order.  Stop looking at the first NULL.
2417   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2418   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2419   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2420   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2421   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2422   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2423   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2424   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2425     /* close each nested if ===> */  } } } } } } } }
2426   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2427 
2428   if (!is_leaf) {
2429     // Non-leaves can block and take safepoints:
2430     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2431   }
2432   // Non-leaves can throw exceptions:
2433   if (has_io) {
2434     call->set_req(TypeFunc::I_O, i_o());
2435   }
2436 
2437   if (flags & RC_UNCOMMON) {
2438     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2439     // (An "if" probability corresponds roughly to an unconditional count.
2440     // Sort of.)
2441     call->set_cnt(PROB_UNLIKELY_MAG(4));
2442   }
2443 
2444   Node* c = _gvn.transform(call);
2445   assert(c == call, "cannot disappear");
2446 
2447   if (wide_out) {
2448     // Slow path call has full side-effects.
2449     set_predefined_output_for_runtime_call(call);
2450   } else {
2451     // Slow path call has few side-effects, and/or sets few values.
2452     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2453   }
2454 
2455   if (has_io) {
2456     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2457   }
2458   return call;
2459 
2460 }
2461 
2462 //------------------------------merge_memory-----------------------------------
2463 // Merge memory from one path into the current memory state.
2464 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2465   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2466     Node* old_slice = mms.force_memory();
2467     Node* new_slice = mms.memory2();
2468     if (old_slice != new_slice) {
2469       PhiNode* phi;
2470       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2471         if (mms.is_empty()) {
2472           // clone base memory Phi's inputs for this memory slice
2473           assert(old_slice == mms.base_memory(), "sanity");
2474           phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C));
2475           _gvn.set_type(phi, Type::MEMORY);
2476           for (uint i = 1; i < phi->req(); i++) {
2477             phi->init_req(i, old_slice->in(i));
2478           }
2479         } else {
2480           phi = old_slice->as_Phi(); // Phi was generated already
2481         }
2482       } else {
2483         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2484         _gvn.set_type(phi, Type::MEMORY);
2485       }
2486       phi->set_req(new_path, new_slice);
2487       mms.set_memory(phi);
2488     }
2489   }
2490 }
2491 
2492 //------------------------------make_slow_call_ex------------------------------
2493 // Make the exception handler hookups for the slow call
2494 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2495   if (stopped())  return;
2496 
2497   // Make a catch node with just two handlers:  fall-through and catch-all
2498   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2499   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2500   Node* norm = _gvn.transform( new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2501   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2502 
2503   { PreserveJVMState pjvms(this);
2504     set_control(excp);
2505     set_i_o(i_o);
2506 
2507     if (excp != top()) {
2508       if (deoptimize) {
2509         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2510         uncommon_trap(Deoptimization::Reason_unhandled,
2511                       Deoptimization::Action_none);
2512       } else {
2513         // Create an exception state also.
2514         // Use an exact type if the caller has specified a specific exception.
2515         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2516         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2517         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2518       }
2519     }
2520   }
2521 
2522   // Get the no-exception control from the CatchNode.
2523   set_control(norm);
2524 }
2525 
2526 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN* gvn, BasicType bt) {
2527   Node* cmp = NULL;
2528   switch(bt) {
2529   case T_INT: cmp = new CmpINode(in1, in2); break;
2530   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2531   default: fatal("unexpected comparison type %s", type2name(bt));
2532   }
2533   gvn->transform(cmp);
2534   Node* bol = gvn->transform(new BoolNode(cmp, test));
2535   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2536   gvn->transform(iff);
2537   if (!bol->is_Con()) gvn->record_for_igvn(iff);
2538   return iff;
2539 }
2540 
2541 
2542 //-------------------------------gen_subtype_check-----------------------------
2543 // Generate a subtyping check.  Takes as input the subtype and supertype.
2544 // Returns 2 values: sets the default control() to the true path and returns
2545 // the false path.  Only reads invariant memory; sets no (visible) memory.
2546 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2547 // but that's not exposed to the optimizer.  This call also doesn't take in an
2548 // Object; if you wish to check an Object you need to load the Object's class
2549 // prior to coming here.
2550 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, MergeMemNode* mem, PhaseGVN* gvn) {
2551   Compile* C = gvn->C;
2552 
2553   if ((*ctrl)->is_top()) {
2554     return C->top();
2555   }
2556 
2557   // Fast check for identical types, perhaps identical constants.
2558   // The types can even be identical non-constants, in cases
2559   // involving Array.newInstance, Object.clone, etc.
2560   if (subklass == superklass)
2561     return C->top();             // false path is dead; no test needed.
2562 
2563   if (gvn->type(superklass)->singleton()) {
2564     ciKlass* superk = gvn->type(superklass)->is_klassptr()->klass();
2565     ciKlass* subk   = gvn->type(subklass)->is_klassptr()->klass();
2566 
2567     // In the common case of an exact superklass, try to fold up the
2568     // test before generating code.  You may ask, why not just generate
2569     // the code and then let it fold up?  The answer is that the generated
2570     // code will necessarily include null checks, which do not always
2571     // completely fold away.  If they are also needless, then they turn
2572     // into a performance loss.  Example:
2573     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2574     // Here, the type of 'fa' is often exact, so the store check
2575     // of fa[1]=x will fold up, without testing the nullness of x.
2576     switch (C->static_subtype_check(superk, subk)) {
2577     case Compile::SSC_always_false:
2578       {
2579         Node* always_fail = *ctrl;
2580         *ctrl = gvn->C->top();
2581         return always_fail;
2582       }
2583     case Compile::SSC_always_true:
2584       return C->top();
2585     case Compile::SSC_easy_test:
2586       {
2587         // Just do a direct pointer compare and be done.
2588         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2589         *ctrl = gvn->transform(new IfTrueNode(iff));
2590         return gvn->transform(new IfFalseNode(iff));
2591       }
2592     case Compile::SSC_full_test:
2593       break;
2594     default:
2595       ShouldNotReachHere();
2596     }
2597   }
2598 
2599   // %%% Possible further optimization:  Even if the superklass is not exact,
2600   // if the subklass is the unique subtype of the superklass, the check
2601   // will always succeed.  We could leave a dependency behind to ensure this.
2602 
2603   // First load the super-klass's check-offset
2604   Node *p1 = gvn->transform(new AddPNode(superklass, superklass, gvn->MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2605   Node* m = mem->memory_at(C->get_alias_index(gvn->type(p1)->is_ptr()));
2606   Node *chk_off = gvn->transform(new LoadINode(NULL, m, p1, gvn->type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2607   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2608   bool might_be_cache = (gvn->find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2609 
2610   // Load from the sub-klass's super-class display list, or a 1-word cache of
2611   // the secondary superclass list, or a failing value with a sentinel offset
2612   // if the super-klass is an interface or exceptionally deep in the Java
2613   // hierarchy and we have to scan the secondary superclass list the hard way.
2614   // Worst-case type is a little odd: NULL is allowed as a result (usually
2615   // klass loads can never produce a NULL).
2616   Node *chk_off_X = chk_off;
2617 #ifdef _LP64
2618   chk_off_X = gvn->transform(new ConvI2LNode(chk_off_X));
2619 #endif
2620   Node *p2 = gvn->transform(new AddPNode(subklass,subklass,chk_off_X));
2621   // For some types like interfaces the following loadKlass is from a 1-word
2622   // cache which is mutable so can't use immutable memory.  Other
2623   // types load from the super-class display table which is immutable.
2624   m = mem->memory_at(C->get_alias_index(gvn->type(p2)->is_ptr()));
2625   Node *kmem = might_be_cache ? m : C->immutable_memory();
2626   Node *nkls = gvn->transform(LoadKlassNode::make(*gvn, NULL, kmem, p2, gvn->type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL));
2627 
2628   // Compile speed common case: ARE a subtype and we canNOT fail
2629   if( superklass == nkls )
2630     return C->top();             // false path is dead; no test needed.
2631 
2632   // See if we get an immediate positive hit.  Happens roughly 83% of the
2633   // time.  Test to see if the value loaded just previously from the subklass
2634   // is exactly the superklass.
2635   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2636   Node *iftrue1 = gvn->transform( new IfTrueNode (iff1));
2637   *ctrl = gvn->transform(new IfFalseNode(iff1));
2638 
2639   // Compile speed common case: Check for being deterministic right now.  If
2640   // chk_off is a constant and not equal to cacheoff then we are NOT a
2641   // subklass.  In this case we need exactly the 1 test above and we can
2642   // return those results immediately.
2643   if (!might_be_cache) {
2644     Node* not_subtype_ctrl = *ctrl;
2645     *ctrl = iftrue1; // We need exactly the 1 test above
2646     return not_subtype_ctrl;
2647   }
2648 
2649   // Gather the various success & failures here
2650   RegionNode *r_ok_subtype = new RegionNode(4);
2651   gvn->record_for_igvn(r_ok_subtype);
2652   RegionNode *r_not_subtype = new RegionNode(3);
2653   gvn->record_for_igvn(r_not_subtype);
2654 
2655   r_ok_subtype->init_req(1, iftrue1);
2656 
2657   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2658   // is roughly 63% of the remaining cases).  Test to see if the loaded
2659   // check-offset points into the subklass display list or the 1-element
2660   // cache.  If it points to the display (and NOT the cache) and the display
2661   // missed then it's not a subtype.
2662   Node *cacheoff = gvn->intcon(cacheoff_con);
2663   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2664   r_not_subtype->init_req(1, gvn->transform(new IfTrueNode (iff2)));
2665   *ctrl = gvn->transform(new IfFalseNode(iff2));
2666 
2667   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2668   // No performance impact (too rare) but allows sharing of secondary arrays
2669   // which has some footprint reduction.
2670   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2671   r_ok_subtype->init_req(2, gvn->transform(new IfTrueNode(iff3)));
2672   *ctrl = gvn->transform(new IfFalseNode(iff3));
2673 
2674   // -- Roads not taken here: --
2675   // We could also have chosen to perform the self-check at the beginning
2676   // of this code sequence, as the assembler does.  This would not pay off
2677   // the same way, since the optimizer, unlike the assembler, can perform
2678   // static type analysis to fold away many successful self-checks.
2679   // Non-foldable self checks work better here in second position, because
2680   // the initial primary superclass check subsumes a self-check for most
2681   // types.  An exception would be a secondary type like array-of-interface,
2682   // which does not appear in its own primary supertype display.
2683   // Finally, we could have chosen to move the self-check into the
2684   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2685   // dependent manner.  But it is worthwhile to have the check here,
2686   // where it can be perhaps be optimized.  The cost in code space is
2687   // small (register compare, branch).
2688 
2689   // Now do a linear scan of the secondary super-klass array.  Again, no real
2690   // performance impact (too rare) but it's gotta be done.
2691   // Since the code is rarely used, there is no penalty for moving it
2692   // out of line, and it can only improve I-cache density.
2693   // The decision to inline or out-of-line this final check is platform
2694   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2695   Node* psc = gvn->transform(
2696     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2697 
2698   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2699   r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4)));
2700   r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4)));
2701 
2702   // Return false path; set default control to true path.
2703   *ctrl = gvn->transform(r_ok_subtype);
2704   return gvn->transform(r_not_subtype);
2705 }
2706 
2707 // Profile-driven exact type check:
2708 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2709                                     float prob,
2710                                     Node* *casted_receiver) {
2711   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2712   Node* recv_klass = load_object_klass(receiver);
2713   Node* want_klass = makecon(tklass);
2714   Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass) );
2715   Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) );
2716   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2717   set_control( _gvn.transform( new IfTrueNode (iff) ));
2718   Node* fail = _gvn.transform( new IfFalseNode(iff) );
2719 
2720   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2721   assert(recv_xtype->klass_is_exact(), "");
2722 
2723   // Subsume downstream occurrences of receiver with a cast to
2724   // recv_xtype, since now we know what the type will be.
2725   Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
2726   (*casted_receiver) = _gvn.transform(cast);
2727   // (User must make the replace_in_map call.)
2728 
2729   return fail;
2730 }
2731 
2732 
2733 //------------------------------seems_never_null-------------------------------
2734 // Use null_seen information if it is available from the profile.
2735 // If we see an unexpected null at a type check we record it and force a
2736 // recompile; the offending check will be recompiled to handle NULLs.
2737 // If we see several offending BCIs, then all checks in the
2738 // method will be recompiled.
2739 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2740   speculating = !_gvn.type(obj)->speculative_maybe_null();
2741   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2742   if (UncommonNullCast               // Cutout for this technique
2743       && obj != null()               // And not the -Xcomp stupid case?
2744       && !too_many_traps(reason)
2745       ) {
2746     if (speculating) {
2747       return true;
2748     }
2749     if (data == NULL)
2750       // Edge case:  no mature data.  Be optimistic here.
2751       return true;
2752     // If the profile has not seen a null, assume it won't happen.
2753     assert(java_bc() == Bytecodes::_checkcast ||
2754            java_bc() == Bytecodes::_instanceof ||
2755            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2756     return !data->as_BitData()->null_seen();
2757   }
2758   speculating = false;
2759   return false;
2760 }
2761 
2762 //------------------------maybe_cast_profiled_receiver-------------------------
2763 // If the profile has seen exactly one type, narrow to exactly that type.
2764 // Subsequent type checks will always fold up.
2765 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2766                                              ciKlass* require_klass,
2767                                              ciKlass* spec_klass,
2768                                              bool safe_for_replace) {
2769   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2770 
2771   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL);
2772 
2773   // Make sure we haven't already deoptimized from this tactic.
2774   if (too_many_traps(reason) || too_many_recompiles(reason))
2775     return NULL;
2776 
2777   // (No, this isn't a call, but it's enough like a virtual call
2778   // to use the same ciMethod accessor to get the profile info...)
2779   // If we have a speculative type use it instead of profiling (which
2780   // may not help us)
2781   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2782   if (exact_kls != NULL) {// no cast failures here
2783     if (require_klass == NULL ||
2784         C->static_subtype_check(require_klass, exact_kls) == Compile::SSC_always_true) {
2785       // If we narrow the type to match what the type profile sees or
2786       // the speculative type, we can then remove the rest of the
2787       // cast.
2788       // This is a win, even if the exact_kls is very specific,
2789       // because downstream operations, such as method calls,
2790       // will often benefit from the sharper type.
2791       Node* exact_obj = not_null_obj; // will get updated in place...
2792       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2793                                             &exact_obj);
2794       { PreserveJVMState pjvms(this);
2795         set_control(slow_ctl);
2796         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2797       }
2798       if (safe_for_replace) {
2799         replace_in_map(not_null_obj, exact_obj);
2800       }
2801       return exact_obj;
2802     }
2803     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
2804   }
2805 
2806   return NULL;
2807 }
2808 
2809 /**
2810  * Cast obj to type and emit guard unless we had too many traps here
2811  * already
2812  *
2813  * @param obj       node being casted
2814  * @param type      type to cast the node to
2815  * @param not_null  true if we know node cannot be null
2816  */
2817 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2818                                         ciKlass* type,
2819                                         bool not_null) {
2820   if (stopped()) {
2821     return obj;
2822   }
2823 
2824   // type == NULL if profiling tells us this object is always null
2825   if (type != NULL) {
2826     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
2827     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
2828 
2829     if (!too_many_traps(null_reason) && !too_many_recompiles(null_reason) &&
2830         !too_many_traps(class_reason) &&
2831         !too_many_recompiles(class_reason)) {
2832       Node* not_null_obj = NULL;
2833       // not_null is true if we know the object is not null and
2834       // there's no need for a null check
2835       if (!not_null) {
2836         Node* null_ctl = top();
2837         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
2838         assert(null_ctl->is_top(), "no null control here");
2839       } else {
2840         not_null_obj = obj;
2841       }
2842 
2843       Node* exact_obj = not_null_obj;
2844       ciKlass* exact_kls = type;
2845       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2846                                             &exact_obj);
2847       {
2848         PreserveJVMState pjvms(this);
2849         set_control(slow_ctl);
2850         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
2851       }
2852       replace_in_map(not_null_obj, exact_obj);
2853       obj = exact_obj;
2854     }
2855   } else {
2856     if (!too_many_traps(Deoptimization::Reason_null_assert) &&
2857         !too_many_recompiles(Deoptimization::Reason_null_assert)) {
2858       Node* exact_obj = null_assert(obj);
2859       replace_in_map(obj, exact_obj);
2860       obj = exact_obj;
2861     }
2862   }
2863   return obj;
2864 }
2865 
2866 //-------------------------------gen_instanceof--------------------------------
2867 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2868 // and the reflective instance-of call.
2869 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
2870   kill_dead_locals();           // Benefit all the uncommon traps
2871   assert( !stopped(), "dead parse path should be checked in callers" );
2872   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2873          "must check for not-null not-dead klass in callers");
2874 
2875   // Make the merge point
2876   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2877   RegionNode* region = new RegionNode(PATH_LIMIT);
2878   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
2879   C->set_has_split_ifs(true); // Has chance for split-if optimization
2880 
2881   ciProfileData* data = NULL;
2882   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2883     data = method()->method_data()->bci_to_data(bci());
2884   }
2885   bool speculative_not_null = false;
2886   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2887                          && seems_never_null(obj, data, speculative_not_null));
2888 
2889   // Null check; get casted pointer; set region slot 3
2890   Node* null_ctl = top();
2891   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
2892 
2893   // If not_null_obj is dead, only null-path is taken
2894   if (stopped()) {              // Doing instance-of on a NULL?
2895     set_control(null_ctl);
2896     return intcon(0);
2897   }
2898   region->init_req(_null_path, null_ctl);
2899   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2900   if (null_ctl == top()) {
2901     // Do this eagerly, so that pattern matches like is_diamond_phi
2902     // will work even during parsing.
2903     assert(_null_path == PATH_LIMIT-1, "delete last");
2904     region->del_req(_null_path);
2905     phi   ->del_req(_null_path);
2906   }
2907 
2908   // Do we know the type check always succeed?
2909   bool known_statically = false;
2910   if (_gvn.type(superklass)->singleton()) {
2911     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2912     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
2913     if (subk != NULL && subk->is_loaded()) {
2914       int static_res = C->static_subtype_check(superk, subk);
2915       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
2916     }
2917   }
2918 
2919   if (known_statically && UseTypeSpeculation) {
2920     // If we know the type check always succeeds then we don't use the
2921     // profiling data at this bytecode. Don't lose it, feed it to the
2922     // type system as a speculative type.
2923     not_null_obj = record_profiled_receiver_for_speculation(not_null_obj);
2924   } else {
2925     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2926     // We may not have profiling here or it may not help us. If we
2927     // have a speculative type use it to perform an exact cast.
2928     ciKlass* spec_obj_type = obj_type->speculative_type();
2929     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
2930       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
2931       if (stopped()) {            // Profile disagrees with this path.
2932         set_control(null_ctl);    // Null is the only remaining possibility.
2933         return intcon(0);
2934       }
2935       if (cast_obj != NULL) {
2936         not_null_obj = cast_obj;
2937       }
2938     }
2939   }
2940 
2941   // Load the object's klass
2942   Node* obj_klass = load_object_klass(not_null_obj);
2943 
2944   // Generate the subtype check
2945   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2946 
2947   // Plug in the success path to the general merge in slot 1.
2948   region->init_req(_obj_path, control());
2949   phi   ->init_req(_obj_path, intcon(1));
2950 
2951   // Plug in the failing path to the general merge in slot 2.
2952   region->init_req(_fail_path, not_subtype_ctrl);
2953   phi   ->init_req(_fail_path, intcon(0));
2954 
2955   // Return final merged results
2956   set_control( _gvn.transform(region) );
2957   record_for_igvn(region);
2958   return _gvn.transform(phi);
2959 }
2960 
2961 //-------------------------------gen_checkcast---------------------------------
2962 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
2963 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
2964 // uncommon-trap paths work.  Adjust stack after this call.
2965 // If failure_control is supplied and not null, it is filled in with
2966 // the control edge for the cast failure.  Otherwise, an appropriate
2967 // uncommon trap or exception is thrown.
2968 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
2969                               Node* *failure_control) {
2970   kill_dead_locals();           // Benefit all the uncommon traps
2971   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
2972   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
2973 
2974   // Fast cutout:  Check the case that the cast is vacuously true.
2975   // This detects the common cases where the test will short-circuit
2976   // away completely.  We do this before we perform the null check,
2977   // because if the test is going to turn into zero code, we don't
2978   // want a residual null check left around.  (Causes a slowdown,
2979   // for example, in some objArray manipulations, such as a[i]=a[j].)
2980   if (tk->singleton()) {
2981     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
2982     if (objtp != NULL && objtp->klass() != NULL) {
2983       switch (C->static_subtype_check(tk->klass(), objtp->klass())) {
2984       case Compile::SSC_always_true:
2985         // If we know the type check always succeed then we don't use
2986         // the profiling data at this bytecode. Don't lose it, feed it
2987         // to the type system as a speculative type.
2988         return record_profiled_receiver_for_speculation(obj);
2989       case Compile::SSC_always_false:
2990         // It needs a null check because a null will *pass* the cast check.
2991         // A non-null value will always produce an exception.
2992         return null_assert(obj);
2993       }
2994     }
2995   }
2996 
2997   ciProfileData* data = NULL;
2998   bool safe_for_replace = false;
2999   if (failure_control == NULL) {        // use MDO in regular case only
3000     assert(java_bc() == Bytecodes::_aastore ||
3001            java_bc() == Bytecodes::_checkcast,
3002            "interpreter profiles type checks only for these BCs");
3003     data = method()->method_data()->bci_to_data(bci());
3004     safe_for_replace = true;
3005   }
3006 
3007   // Make the merge point
3008   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3009   RegionNode* region = new RegionNode(PATH_LIMIT);
3010   Node*       phi    = new PhiNode(region, toop);
3011   C->set_has_split_ifs(true); // Has chance for split-if optimization
3012 
3013   // Use null-cast information if it is available
3014   bool speculative_not_null = false;
3015   bool never_see_null = ((failure_control == NULL)  // regular case only
3016                          && seems_never_null(obj, data, speculative_not_null));
3017 
3018   // Null check; get casted pointer; set region slot 3
3019   Node* null_ctl = top();
3020   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3021 
3022   // If not_null_obj is dead, only null-path is taken
3023   if (stopped()) {              // Doing instance-of on a NULL?
3024     set_control(null_ctl);
3025     return null();
3026   }
3027   region->init_req(_null_path, null_ctl);
3028   phi   ->init_req(_null_path, null());  // Set null path value
3029   if (null_ctl == top()) {
3030     // Do this eagerly, so that pattern matches like is_diamond_phi
3031     // will work even during parsing.
3032     assert(_null_path == PATH_LIMIT-1, "delete last");
3033     region->del_req(_null_path);
3034     phi   ->del_req(_null_path);
3035   }
3036 
3037   Node* cast_obj = NULL;
3038   if (tk->klass_is_exact()) {
3039     // The following optimization tries to statically cast the speculative type of the object
3040     // (for example obtained during profiling) to the type of the superklass and then do a
3041     // dynamic check that the type of the object is what we expect. To work correctly
3042     // for checkcast and aastore the type of superklass should be exact.
3043     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3044     // We may not have profiling here or it may not help us. If we have
3045     // a speculative type use it to perform an exact cast.
3046     ciKlass* spec_obj_type = obj_type->speculative_type();
3047     if (spec_obj_type != NULL || data != NULL) {
3048       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3049       if (cast_obj != NULL) {
3050         if (failure_control != NULL) // failure is now impossible
3051           (*failure_control) = top();
3052         // adjust the type of the phi to the exact klass:
3053         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3054       }
3055     }
3056   }
3057 
3058   if (cast_obj == NULL) {
3059     // Load the object's klass
3060     Node* obj_klass = load_object_klass(not_null_obj);
3061 
3062     // Generate the subtype check
3063     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3064 
3065     // Plug in success path into the merge
3066     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3067     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3068     if (failure_control == NULL) {
3069       if (not_subtype_ctrl != top()) { // If failure is possible
3070         PreserveJVMState pjvms(this);
3071         set_control(not_subtype_ctrl);
3072         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3073       }
3074     } else {
3075       (*failure_control) = not_subtype_ctrl;
3076     }
3077   }
3078 
3079   region->init_req(_obj_path, control());
3080   phi   ->init_req(_obj_path, cast_obj);
3081 
3082   // A merge of NULL or Casted-NotNull obj
3083   Node* res = _gvn.transform(phi);
3084 
3085   // Note I do NOT always 'replace_in_map(obj,result)' here.
3086   //  if( tk->klass()->can_be_primary_super()  )
3087     // This means that if I successfully store an Object into an array-of-String
3088     // I 'forget' that the Object is really now known to be a String.  I have to
3089     // do this because we don't have true union types for interfaces - if I store
3090     // a Baz into an array-of-Interface and then tell the optimizer it's an
3091     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3092     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3093   //  replace_in_map( obj, res );
3094 
3095   // Return final merged results
3096   set_control( _gvn.transform(region) );
3097   record_for_igvn(region);
3098   return res;
3099 }
3100 
3101 //------------------------------next_monitor-----------------------------------
3102 // What number should be given to the next monitor?
3103 int GraphKit::next_monitor() {
3104   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3105   int next = current + C->sync_stack_slots();
3106   // Keep the toplevel high water mark current:
3107   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3108   return current;
3109 }
3110 
3111 //------------------------------insert_mem_bar---------------------------------
3112 // Memory barrier to avoid floating things around
3113 // The membar serves as a pinch point between both control and all memory slices.
3114 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3115   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3116   mb->init_req(TypeFunc::Control, control());
3117   mb->init_req(TypeFunc::Memory,  reset_memory());
3118   Node* membar = _gvn.transform(mb);
3119   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3120   set_all_memory_call(membar);
3121   return membar;
3122 }
3123 
3124 //-------------------------insert_mem_bar_volatile----------------------------
3125 // Memory barrier to avoid floating things around
3126 // The membar serves as a pinch point between both control and memory(alias_idx).
3127 // If you want to make a pinch point on all memory slices, do not use this
3128 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3129 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3130   // When Parse::do_put_xxx updates a volatile field, it appends a series
3131   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3132   // The first membar is on the same memory slice as the field store opcode.
3133   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3134   // All the other membars (for other volatile slices, including AliasIdxBot,
3135   // which stands for all unknown volatile slices) are control-dependent
3136   // on the first membar.  This prevents later volatile loads or stores
3137   // from sliding up past the just-emitted store.
3138 
3139   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3140   mb->set_req(TypeFunc::Control,control());
3141   if (alias_idx == Compile::AliasIdxBot) {
3142     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3143   } else {
3144     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3145     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3146   }
3147   Node* membar = _gvn.transform(mb);
3148   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3149   if (alias_idx == Compile::AliasIdxBot) {
3150     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3151   } else {
3152     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3153   }
3154   return membar;
3155 }
3156 
3157 void GraphKit::insert_store_load_for_barrier() {
3158   Node* mem = reset_memory();
3159   MemBarNode* mb = MemBarNode::make(C, Op_MemBarVolatile, Compile::AliasIdxBot);
3160   mb->init_req(TypeFunc::Control, control());
3161   mb->init_req(TypeFunc::Memory, mem);
3162   Node* membar = _gvn.transform(mb);
3163   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3164   Node* newmem = _gvn.transform(new ProjNode(membar, TypeFunc::Memory));
3165   set_all_memory(mem);
3166   set_memory(newmem, Compile::AliasIdxRaw);
3167 }
3168 
3169 
3170 //------------------------------shared_lock------------------------------------
3171 // Emit locking code.
3172 FastLockNode* GraphKit::shared_lock(Node* obj) {
3173   // bci is either a monitorenter bc or InvocationEntryBci
3174   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3175   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3176 
3177   if( !GenerateSynchronizationCode )
3178     return NULL;                // Not locking things?
3179   if (stopped())                // Dead monitor?
3180     return NULL;
3181 
3182   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3183 
3184   // Box the stack location
3185   Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3186   Node* mem = reset_memory();
3187 
3188   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3189   if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
3190     // Create the counters for this fast lock.
3191     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3192   }
3193 
3194   // Create the rtm counters for this fast lock if needed.
3195   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3196 
3197   // Add monitor to debug info for the slow path.  If we block inside the
3198   // slow path and de-opt, we need the monitor hanging around
3199   map()->push_monitor( flock );
3200 
3201   const TypeFunc *tf = LockNode::lock_type();
3202   LockNode *lock = new LockNode(C, tf);
3203 
3204   lock->init_req( TypeFunc::Control, control() );
3205   lock->init_req( TypeFunc::Memory , mem );
3206   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3207   lock->init_req( TypeFunc::FramePtr, frameptr() );
3208   lock->init_req( TypeFunc::ReturnAdr, top() );
3209 
3210   lock->init_req(TypeFunc::Parms + 0, obj);
3211   lock->init_req(TypeFunc::Parms + 1, box);
3212   lock->init_req(TypeFunc::Parms + 2, flock);
3213   add_safepoint_edges(lock);
3214 
3215   lock = _gvn.transform( lock )->as_Lock();
3216 
3217   // lock has no side-effects, sets few values
3218   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3219 
3220   insert_mem_bar(Op_MemBarAcquireLock);
3221 
3222   // Add this to the worklist so that the lock can be eliminated
3223   record_for_igvn(lock);
3224 
3225 #ifndef PRODUCT
3226   if (PrintLockStatistics) {
3227     // Update the counter for this lock.  Don't bother using an atomic
3228     // operation since we don't require absolute accuracy.
3229     lock->create_lock_counter(map()->jvms());
3230     increment_counter(lock->counter()->addr());
3231   }
3232 #endif
3233 
3234   return flock;
3235 }
3236 
3237 
3238 //------------------------------shared_unlock----------------------------------
3239 // Emit unlocking code.
3240 void GraphKit::shared_unlock(Node* box, Node* obj) {
3241   // bci is either a monitorenter bc or InvocationEntryBci
3242   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3243   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3244 
3245   if( !GenerateSynchronizationCode )
3246     return;
3247   if (stopped()) {               // Dead monitor?
3248     map()->pop_monitor();        // Kill monitor from debug info
3249     return;
3250   }
3251 
3252   // Memory barrier to avoid floating things down past the locked region
3253   insert_mem_bar(Op_MemBarReleaseLock);
3254 
3255   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3256   UnlockNode *unlock = new UnlockNode(C, tf);
3257 #ifdef ASSERT
3258   unlock->set_dbg_jvms(sync_jvms());
3259 #endif
3260   uint raw_idx = Compile::AliasIdxRaw;
3261   unlock->init_req( TypeFunc::Control, control() );
3262   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3263   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3264   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3265   unlock->init_req( TypeFunc::ReturnAdr, top() );
3266 
3267   unlock->init_req(TypeFunc::Parms + 0, obj);
3268   unlock->init_req(TypeFunc::Parms + 1, box);
3269   unlock = _gvn.transform(unlock)->as_Unlock();
3270 
3271   Node* mem = reset_memory();
3272 
3273   // unlock has no side-effects, sets few values
3274   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3275 
3276   // Kill monitor from debug info
3277   map()->pop_monitor( );
3278 }
3279 
3280 //-------------------------------get_layout_helper-----------------------------
3281 // If the given klass is a constant or known to be an array,
3282 // fetch the constant layout helper value into constant_value
3283 // and return (Node*)NULL.  Otherwise, load the non-constant
3284 // layout helper value, and return the node which represents it.
3285 // This two-faced routine is useful because allocation sites
3286 // almost always feature constant types.
3287 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3288   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3289   if (!StressReflectiveCode && inst_klass != NULL) {
3290     ciKlass* klass = inst_klass->klass();
3291     bool    xklass = inst_klass->klass_is_exact();
3292     if (xklass || klass->is_array_klass()) {
3293       jint lhelper = klass->layout_helper();
3294       if (lhelper != Klass::_lh_neutral_value) {
3295         constant_value = lhelper;
3296         return (Node*) NULL;
3297       }
3298     }
3299   }
3300   constant_value = Klass::_lh_neutral_value;  // put in a known value
3301   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3302   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3303 }
3304 
3305 // We just put in an allocate/initialize with a big raw-memory effect.
3306 // Hook selected additional alias categories on the initialization.
3307 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3308                                 MergeMemNode* init_in_merge,
3309                                 Node* init_out_raw) {
3310   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3311   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3312 
3313   Node* prevmem = kit.memory(alias_idx);
3314   init_in_merge->set_memory_at(alias_idx, prevmem);
3315   kit.set_memory(init_out_raw, alias_idx);
3316 }
3317 
3318 //---------------------------set_output_for_allocation-------------------------
3319 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3320                                           const TypeOopPtr* oop_type,
3321                                           bool deoptimize_on_exception) {
3322   int rawidx = Compile::AliasIdxRaw;
3323   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3324   add_safepoint_edges(alloc);
3325   Node* allocx = _gvn.transform(alloc);
3326   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3327   // create memory projection for i_o
3328   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3329   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3330 
3331   // create a memory projection as for the normal control path
3332   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3333   set_memory(malloc, rawidx);
3334 
3335   // a normal slow-call doesn't change i_o, but an allocation does
3336   // we create a separate i_o projection for the normal control path
3337   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3338   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3339 
3340   // put in an initialization barrier
3341   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3342                                                  rawoop)->as_Initialize();
3343   assert(alloc->initialization() == init,  "2-way macro link must work");
3344   assert(init ->allocation()     == alloc, "2-way macro link must work");
3345   {
3346     // Extract memory strands which may participate in the new object's
3347     // initialization, and source them from the new InitializeNode.
3348     // This will allow us to observe initializations when they occur,
3349     // and link them properly (as a group) to the InitializeNode.
3350     assert(init->in(InitializeNode::Memory) == malloc, "");
3351     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3352     init->set_req(InitializeNode::Memory, minit_in);
3353     record_for_igvn(minit_in); // fold it up later, if possible
3354     Node* minit_out = memory(rawidx);
3355     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3356     if (oop_type->isa_aryptr()) {
3357       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3358       int            elemidx  = C->get_alias_index(telemref);
3359       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3360     } else if (oop_type->isa_instptr()) {
3361       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3362       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3363         ciField* field = ik->nonstatic_field_at(i);
3364         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3365           continue;  // do not bother to track really large numbers of fields
3366         // Find (or create) the alias category for this field:
3367         int fieldidx = C->alias_type(field)->index();
3368         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3369       }
3370     }
3371   }
3372 
3373   // Cast raw oop to the real thing...
3374   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3375   javaoop = _gvn.transform(javaoop);
3376   C->set_recent_alloc(control(), javaoop);
3377   assert(just_allocated_object(control()) == javaoop, "just allocated");
3378 
3379 #ifdef ASSERT
3380   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3381     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3382            "Ideal_allocation works");
3383     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3384            "Ideal_allocation works");
3385     if (alloc->is_AllocateArray()) {
3386       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3387              "Ideal_allocation works");
3388       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3389              "Ideal_allocation works");
3390     } else {
3391       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3392     }
3393   }
3394 #endif //ASSERT
3395 
3396   return javaoop;
3397 }
3398 
3399 //---------------------------new_instance--------------------------------------
3400 // This routine takes a klass_node which may be constant (for a static type)
3401 // or may be non-constant (for reflective code).  It will work equally well
3402 // for either, and the graph will fold nicely if the optimizer later reduces
3403 // the type to a constant.
3404 // The optional arguments are for specialized use by intrinsics:
3405 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3406 //  - If 'return_size_val', report the the total object size to the caller.
3407 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3408 Node* GraphKit::new_instance(Node* klass_node,
3409                              Node* extra_slow_test,
3410                              Node* *return_size_val,
3411                              bool deoptimize_on_exception) {
3412   // Compute size in doublewords
3413   // The size is always an integral number of doublewords, represented
3414   // as a positive bytewise size stored in the klass's layout_helper.
3415   // The layout_helper also encodes (in a low bit) the need for a slow path.
3416   jint  layout_con = Klass::_lh_neutral_value;
3417   Node* layout_val = get_layout_helper(klass_node, layout_con);
3418   int   layout_is_con = (layout_val == NULL);
3419 
3420   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3421   // Generate the initial go-slow test.  It's either ALWAYS (return a
3422   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3423   // case) a computed value derived from the layout_helper.
3424   Node* initial_slow_test = NULL;
3425   if (layout_is_con) {
3426     assert(!StressReflectiveCode, "stress mode does not use these paths");
3427     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3428     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3429   } else {   // reflective case
3430     // This reflective path is used by Unsafe.allocateInstance.
3431     // (It may be stress-tested by specifying StressReflectiveCode.)
3432     // Basically, we want to get into the VM is there's an illegal argument.
3433     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3434     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3435     if (extra_slow_test != intcon(0)) {
3436       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3437     }
3438     // (Macro-expander will further convert this to a Bool, if necessary.)
3439   }
3440 
3441   // Find the size in bytes.  This is easy; it's the layout_helper.
3442   // The size value must be valid even if the slow path is taken.
3443   Node* size = NULL;
3444   if (layout_is_con) {
3445     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3446   } else {   // reflective case
3447     // This reflective path is used by clone and Unsafe.allocateInstance.
3448     size = ConvI2X(layout_val);
3449 
3450     // Clear the low bits to extract layout_helper_size_in_bytes:
3451     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3452     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3453     size = _gvn.transform( new AndXNode(size, mask) );
3454   }
3455   if (return_size_val != NULL) {
3456     (*return_size_val) = size;
3457   }
3458 
3459   // This is a precise notnull oop of the klass.
3460   // (Actually, it need not be precise if this is a reflective allocation.)
3461   // It's what we cast the result to.
3462   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3463   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3464   const TypeOopPtr* oop_type = tklass->as_instance_type();
3465 
3466   // Now generate allocation code
3467 
3468   // The entire memory state is needed for slow path of the allocation
3469   // since GC and deoptimization can happened.
3470   Node *mem = reset_memory();
3471   set_all_memory(mem); // Create new memory state
3472 
3473   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3474                                          control(), mem, i_o(),
3475                                          size, klass_node,
3476                                          initial_slow_test);
3477 
3478   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3479 }
3480 
3481 //-------------------------------new_array-------------------------------------
3482 // helper for both newarray and anewarray
3483 // The 'length' parameter is (obviously) the length of the array.
3484 // See comments on new_instance for the meaning of the other arguments.
3485 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3486                           Node* length,         // number of array elements
3487                           int   nargs,          // number of arguments to push back for uncommon trap
3488                           Node* *return_size_val,
3489                           bool deoptimize_on_exception) {
3490   jint  layout_con = Klass::_lh_neutral_value;
3491   Node* layout_val = get_layout_helper(klass_node, layout_con);
3492   int   layout_is_con = (layout_val == NULL);
3493 
3494   if (!layout_is_con && !StressReflectiveCode &&
3495       !too_many_traps(Deoptimization::Reason_class_check)) {
3496     // This is a reflective array creation site.
3497     // Optimistically assume that it is a subtype of Object[],
3498     // so that we can fold up all the address arithmetic.
3499     layout_con = Klass::array_layout_helper(T_OBJECT);
3500     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3501     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3502     { BuildCutout unless(this, bol_lh, PROB_MAX);
3503       inc_sp(nargs);
3504       uncommon_trap(Deoptimization::Reason_class_check,
3505                     Deoptimization::Action_maybe_recompile);
3506     }
3507     layout_val = NULL;
3508     layout_is_con = true;
3509   }
3510 
3511   // Generate the initial go-slow test.  Make sure we do not overflow
3512   // if length is huge (near 2Gig) or negative!  We do not need
3513   // exact double-words here, just a close approximation of needed
3514   // double-words.  We can't add any offset or rounding bits, lest we
3515   // take a size -1 of bytes and make it positive.  Use an unsigned
3516   // compare, so negative sizes look hugely positive.
3517   int fast_size_limit = FastAllocateSizeLimit;
3518   if (layout_is_con) {
3519     assert(!StressReflectiveCode, "stress mode does not use these paths");
3520     // Increase the size limit if we have exact knowledge of array type.
3521     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3522     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3523   }
3524 
3525   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3526   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3527 
3528   // --- Size Computation ---
3529   // array_size = round_to_heap(array_header + (length << elem_shift));
3530   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
3531   // and round_to(x, y) == ((x + y-1) & ~(y-1))
3532   // The rounding mask is strength-reduced, if possible.
3533   int round_mask = MinObjAlignmentInBytes - 1;
3534   Node* header_size = NULL;
3535   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3536   // (T_BYTE has the weakest alignment and size restrictions...)
3537   if (layout_is_con) {
3538     int       hsize  = Klass::layout_helper_header_size(layout_con);
3539     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3540     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3541     if ((round_mask & ~right_n_bits(eshift)) == 0)
3542       round_mask = 0;  // strength-reduce it if it goes away completely
3543     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3544     assert(header_size_min <= hsize, "generic minimum is smallest");
3545     header_size_min = hsize;
3546     header_size = intcon(hsize + round_mask);
3547   } else {
3548     Node* hss   = intcon(Klass::_lh_header_size_shift);
3549     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3550     Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
3551     hsize       = _gvn.transform( new AndINode(hsize, hsm) );
3552     Node* mask  = intcon(round_mask);
3553     header_size = _gvn.transform( new AddINode(hsize, mask) );
3554   }
3555 
3556   Node* elem_shift = NULL;
3557   if (layout_is_con) {
3558     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3559     if (eshift != 0)
3560       elem_shift = intcon(eshift);
3561   } else {
3562     // There is no need to mask or shift this value.
3563     // The semantics of LShiftINode include an implicit mask to 0x1F.
3564     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3565     elem_shift = layout_val;
3566   }
3567 
3568   // Transition to native address size for all offset calculations:
3569   Node* lengthx = ConvI2X(length);
3570   Node* headerx = ConvI2X(header_size);
3571 #ifdef _LP64
3572   { const TypeInt* tilen = _gvn.find_int_type(length);
3573     if (tilen != NULL && tilen->_lo < 0) {
3574       // Add a manual constraint to a positive range.  Cf. array_element_address.
3575       jint size_max = fast_size_limit;
3576       if (size_max > tilen->_hi)  size_max = tilen->_hi;
3577       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
3578 
3579       // Only do a narrow I2L conversion if the range check passed.
3580       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
3581       _gvn.transform(iff);
3582       RegionNode* region = new RegionNode(3);
3583       _gvn.set_type(region, Type::CONTROL);
3584       lengthx = new PhiNode(region, TypeLong::LONG);
3585       _gvn.set_type(lengthx, TypeLong::LONG);
3586 
3587       // Range check passed. Use ConvI2L node with narrow type.
3588       Node* passed = IfFalse(iff);
3589       region->init_req(1, passed);
3590       // Make I2L conversion control dependent to prevent it from
3591       // floating above the range check during loop optimizations.
3592       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
3593 
3594       // Range check failed. Use ConvI2L with wide type because length may be invalid.
3595       region->init_req(2, IfTrue(iff));
3596       lengthx->init_req(2, ConvI2X(length));
3597 
3598       set_control(region);
3599       record_for_igvn(region);
3600       record_for_igvn(lengthx);
3601     }
3602   }
3603 #endif
3604 
3605   // Combine header size (plus rounding) and body size.  Then round down.
3606   // This computation cannot overflow, because it is used only in two
3607   // places, one where the length is sharply limited, and the other
3608   // after a successful allocation.
3609   Node* abody = lengthx;
3610   if (elem_shift != NULL)
3611     abody     = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
3612   Node* size  = _gvn.transform( new AddXNode(headerx, abody) );
3613   if (round_mask != 0) {
3614     Node* mask = MakeConX(~round_mask);
3615     size       = _gvn.transform( new AndXNode(size, mask) );
3616   }
3617   // else if round_mask == 0, the size computation is self-rounding
3618 
3619   if (return_size_val != NULL) {
3620     // This is the size
3621     (*return_size_val) = size;
3622   }
3623 
3624   // Now generate allocation code
3625 
3626   // The entire memory state is needed for slow path of the allocation
3627   // since GC and deoptimization can happened.
3628   Node *mem = reset_memory();
3629   set_all_memory(mem); // Create new memory state
3630 
3631   if (initial_slow_test->is_Bool()) {
3632     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3633     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3634   }
3635 
3636   // Create the AllocateArrayNode and its result projections
3637   AllocateArrayNode* alloc
3638     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3639                             control(), mem, i_o(),
3640                             size, klass_node,
3641                             initial_slow_test,
3642                             length);
3643 
3644   // Cast to correct type.  Note that the klass_node may be constant or not,
3645   // and in the latter case the actual array type will be inexact also.
3646   // (This happens via a non-constant argument to inline_native_newArray.)
3647   // In any case, the value of klass_node provides the desired array type.
3648   const TypeInt* length_type = _gvn.find_int_type(length);
3649   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3650   if (ary_type->isa_aryptr() && length_type != NULL) {
3651     // Try to get a better type than POS for the size
3652     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3653   }
3654 
3655   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3656 
3657   // Cast length on remaining path to be as narrow as possible
3658   if (map()->find_edge(length) >= 0) {
3659     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3660     if (ccast != length) {
3661       _gvn.set_type_bottom(ccast);
3662       record_for_igvn(ccast);
3663       replace_in_map(length, ccast);
3664     }
3665   }
3666 
3667   return javaoop;
3668 }
3669 
3670 // The following "Ideal_foo" functions are placed here because they recognize
3671 // the graph shapes created by the functions immediately above.
3672 
3673 //---------------------------Ideal_allocation----------------------------------
3674 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3675 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3676   if (ptr == NULL) {     // reduce dumb test in callers
3677     return NULL;
3678   }
3679   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3680     ptr = ptr->in(1);
3681     if (ptr == NULL) return NULL;
3682   }
3683   // Return NULL for allocations with several casts:
3684   //   j.l.reflect.Array.newInstance(jobject, jint)
3685   //   Object.clone()
3686   // to keep more precise type from last cast.
3687   if (ptr->is_Proj()) {
3688     Node* allo = ptr->in(0);
3689     if (allo != NULL && allo->is_Allocate()) {
3690       return allo->as_Allocate();
3691     }
3692   }
3693   // Report failure to match.
3694   return NULL;
3695 }
3696 
3697 // Fancy version which also strips off an offset (and reports it to caller).
3698 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3699                                              intptr_t& offset) {
3700   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3701   if (base == NULL)  return NULL;
3702   return Ideal_allocation(base, phase);
3703 }
3704 
3705 // Trace Initialize <- Proj[Parm] <- Allocate
3706 AllocateNode* InitializeNode::allocation() {
3707   Node* rawoop = in(InitializeNode::RawAddress);
3708   if (rawoop->is_Proj()) {
3709     Node* alloc = rawoop->in(0);
3710     if (alloc->is_Allocate()) {
3711       return alloc->as_Allocate();
3712     }
3713   }
3714   return NULL;
3715 }
3716 
3717 // Trace Allocate -> Proj[Parm] -> Initialize
3718 InitializeNode* AllocateNode::initialization() {
3719   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3720   if (rawoop == NULL)  return NULL;
3721   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3722     Node* init = rawoop->fast_out(i);
3723     if (init->is_Initialize()) {
3724       assert(init->as_Initialize()->allocation() == this, "2-way link");
3725       return init->as_Initialize();
3726     }
3727   }
3728   return NULL;
3729 }
3730 
3731 //----------------------------- loop predicates ---------------------------
3732 
3733 //------------------------------add_predicate_impl----------------------------
3734 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3735   // Too many traps seen?
3736   if (too_many_traps(reason)) {
3737 #ifdef ASSERT
3738     if (TraceLoopPredicate) {
3739       int tc = C->trap_count(reason);
3740       tty->print("too many traps=%s tcount=%d in ",
3741                     Deoptimization::trap_reason_name(reason), tc);
3742       method()->print(); // which method has too many predicate traps
3743       tty->cr();
3744     }
3745 #endif
3746     // We cannot afford to take more traps here,
3747     // do not generate predicate.
3748     return;
3749   }
3750 
3751   Node *cont    = _gvn.intcon(1);
3752   Node* opq     = _gvn.transform(new Opaque1Node(C, cont));
3753   Node *bol     = _gvn.transform(new Conv2BNode(opq));
3754   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3755   Node* iffalse = _gvn.transform(new IfFalseNode(iff));
3756   C->add_predicate_opaq(opq);
3757   {
3758     PreserveJVMState pjvms(this);
3759     set_control(iffalse);
3760     inc_sp(nargs);
3761     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3762   }
3763   Node* iftrue = _gvn.transform(new IfTrueNode(iff));
3764   set_control(iftrue);
3765 }
3766 
3767 //------------------------------add_predicate---------------------------------
3768 void GraphKit::add_predicate(int nargs) {
3769   if (UseLoopPredicate) {
3770     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3771   }
3772   // loop's limit check predicate should be near the loop.
3773   if (LoopLimitCheck) {
3774     add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3775   }
3776 }
3777 
3778 //----------------------------- store barriers ----------------------------
3779 #define __ ideal.
3780 
3781 void GraphKit::sync_kit(IdealKit& ideal) {
3782   set_all_memory(__ merged_memory());
3783   set_i_o(__ i_o());
3784   set_control(__ ctrl());
3785 }
3786 
3787 void GraphKit::final_sync(IdealKit& ideal) {
3788   // Final sync IdealKit and graphKit.
3789   sync_kit(ideal);
3790 }
3791 
3792 Node* GraphKit::byte_map_base_node() {
3793   // Get base of card map
3794   CardTableModRefBS* ct =
3795     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
3796   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust users of this code");
3797   if (ct->byte_map_base != NULL) {
3798     return makecon(TypeRawPtr::make((address)ct->byte_map_base));
3799   } else {
3800     return null();
3801   }
3802 }
3803 
3804 // vanilla/CMS post barrier
3805 // Insert a write-barrier store.  This is to let generational GC work; we have
3806 // to flag all oop-stores before the next GC point.
3807 void GraphKit::write_barrier_post(Node* oop_store,
3808                                   Node* obj,
3809                                   Node* adr,
3810                                   uint  adr_idx,
3811                                   Node* val,
3812                                   bool use_precise) {
3813   // No store check needed if we're storing a NULL or an old object
3814   // (latter case is probably a string constant). The concurrent
3815   // mark sweep garbage collector, however, needs to have all nonNull
3816   // oop updates flagged via card-marks.
3817   if (val != NULL && val->is_Con()) {
3818     // must be either an oop or NULL
3819     const Type* t = val->bottom_type();
3820     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3821       // stores of null never (?) need barriers
3822       return;
3823   }
3824 
3825   if (use_ReduceInitialCardMarks()
3826       && obj == just_allocated_object(control())) {
3827     // We can skip marks on a freshly-allocated object in Eden.
3828     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
3829     // That routine informs GC to take appropriate compensating steps,
3830     // upon a slow-path allocation, so as to make this card-mark
3831     // elision safe.
3832     return;
3833   }
3834 
3835   if (!use_precise) {
3836     // All card marks for a (non-array) instance are in one place:
3837     adr = obj;
3838   }
3839   // (Else it's an array (or unknown), and we want more precise card marks.)
3840   assert(adr != NULL, "");
3841 
3842   IdealKit ideal(this, true);
3843 
3844   // Convert the pointer to an int prior to doing math on it
3845   Node* cast = __ CastPX(__ ctrl(), adr);
3846 
3847   // Divide by card size
3848   assert(Universe::heap()->barrier_set()->is_a(BarrierSet::CardTableModRef),
3849          "Only one we handle so far.");
3850   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3851 
3852   // Combine card table base and card offset
3853   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3854 
3855   // Get the alias_index for raw card-mark memory
3856   int adr_type = Compile::AliasIdxRaw;
3857   Node*   zero = __ ConI(0); // Dirty card value
3858   BasicType bt = T_BYTE;
3859 
3860   if (UseConcMarkSweepGC && UseCondCardMark) {
3861     insert_store_load_for_barrier();
3862     __ sync_kit(this);
3863   }
3864 
3865   if (UseCondCardMark) {
3866     // The classic GC reference write barrier is typically implemented
3867     // as a store into the global card mark table.  Unfortunately
3868     // unconditional stores can result in false sharing and excessive
3869     // coherence traffic as well as false transactional aborts.
3870     // UseCondCardMark enables MP "polite" conditional card mark
3871     // stores.  In theory we could relax the load from ctrl() to
3872     // no_ctrl, but that doesn't buy much latitude.
3873     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
3874     __ if_then(card_val, BoolTest::ne, zero);
3875   }
3876 
3877   // Smash zero into card
3878   if( !UseConcMarkSweepGC ) {
3879     __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::unordered);
3880   } else {
3881     // Specialized path for CM store barrier
3882     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3883   }
3884 
3885   if (UseCondCardMark) {
3886     __ end_if();
3887   }
3888 
3889   // Final sync IdealKit and GraphKit.
3890   final_sync(ideal);
3891 }
3892 /*
3893  * Determine if the G1 pre-barrier can be removed. The pre-barrier is
3894  * required by SATB to make sure all objects live at the start of the
3895  * marking are kept alive, all reference updates need to any previous
3896  * reference stored before writing.
3897  *
3898  * If the previous value is NULL there is no need to save the old value.
3899  * References that are NULL are filtered during runtime by the barrier
3900  * code to avoid unnecessary queuing.
3901  *
3902  * However in the case of newly allocated objects it might be possible to
3903  * prove that the reference about to be overwritten is NULL during compile
3904  * time and avoid adding the barrier code completely.
3905  *
3906  * The compiler needs to determine that the object in which a field is about
3907  * to be written is newly allocated, and that no prior store to the same field
3908  * has happened since the allocation.
3909  *
3910  * Returns true if the pre-barrier can be removed
3911  */
3912 bool GraphKit::g1_can_remove_pre_barrier(PhaseTransform* phase, Node* adr,
3913                                          BasicType bt, uint adr_idx) {
3914   intptr_t offset = 0;
3915   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
3916   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
3917 
3918   if (offset == Type::OffsetBot) {
3919     return false; // cannot unalias unless there are precise offsets
3920   }
3921 
3922   if (alloc == NULL) {
3923     return false; // No allocation found
3924   }
3925 
3926   intptr_t size_in_bytes = type2aelembytes(bt);
3927 
3928   Node* mem = memory(adr_idx); // start searching here...
3929 
3930   for (int cnt = 0; cnt < 50; cnt++) {
3931 
3932     if (mem->is_Store()) {
3933 
3934       Node* st_adr = mem->in(MemNode::Address);
3935       intptr_t st_offset = 0;
3936       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
3937 
3938       if (st_base == NULL) {
3939         break; // inscrutable pointer
3940       }
3941 
3942       // Break we have found a store with same base and offset as ours so break
3943       if (st_base == base && st_offset == offset) {
3944         break;
3945       }
3946 
3947       if (st_offset != offset && st_offset != Type::OffsetBot) {
3948         const int MAX_STORE = BytesPerLong;
3949         if (st_offset >= offset + size_in_bytes ||
3950             st_offset <= offset - MAX_STORE ||
3951             st_offset <= offset - mem->as_Store()->memory_size()) {
3952           // Success:  The offsets are provably independent.
3953           // (You may ask, why not just test st_offset != offset and be done?
3954           // The answer is that stores of different sizes can co-exist
3955           // in the same sequence of RawMem effects.  We sometimes initialize
3956           // a whole 'tile' of array elements with a single jint or jlong.)
3957           mem = mem->in(MemNode::Memory);
3958           continue; // advance through independent store memory
3959         }
3960       }
3961 
3962       if (st_base != base
3963           && MemNode::detect_ptr_independence(base, alloc, st_base,
3964                                               AllocateNode::Ideal_allocation(st_base, phase),
3965                                               phase)) {
3966         // Success:  The bases are provably independent.
3967         mem = mem->in(MemNode::Memory);
3968         continue; // advance through independent store memory
3969       }
3970     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
3971 
3972       InitializeNode* st_init = mem->in(0)->as_Initialize();
3973       AllocateNode* st_alloc = st_init->allocation();
3974 
3975       // Make sure that we are looking at the same allocation site.
3976       // The alloc variable is guaranteed to not be null here from earlier check.
3977       if (alloc == st_alloc) {
3978         // Check that the initialization is storing NULL so that no previous store
3979         // has been moved up and directly write a reference
3980         Node* captured_store = st_init->find_captured_store(offset,
3981                                                             type2aelembytes(T_OBJECT),
3982                                                             phase);
3983         if (captured_store == NULL || captured_store == st_init->zero_memory()) {
3984           return true;
3985         }
3986       }
3987     }
3988 
3989     // Unless there is an explicit 'continue', we must bail out here,
3990     // because 'mem' is an inscrutable memory state (e.g., a call).
3991     break;
3992   }
3993 
3994   return false;
3995 }
3996 
3997 // G1 pre/post barriers
3998 void GraphKit::g1_write_barrier_pre(bool do_load,
3999                                     Node* obj,
4000                                     Node* adr,
4001                                     uint alias_idx,
4002                                     Node* val,
4003                                     const TypeOopPtr* val_type,
4004                                     Node* pre_val,
4005                                     BasicType bt) {
4006 
4007   // Some sanity checks
4008   // Note: val is unused in this routine.
4009 
4010   if (do_load) {
4011     // We need to generate the load of the previous value
4012     assert(obj != NULL, "must have a base");
4013     assert(adr != NULL, "where are loading from?");
4014     assert(pre_val == NULL, "loaded already?");
4015     assert(val_type != NULL, "need a type");
4016 
4017     if (use_ReduceInitialCardMarks()
4018         && g1_can_remove_pre_barrier(&_gvn, adr, bt, alias_idx)) {
4019       return;
4020     }
4021 
4022   } else {
4023     // In this case both val_type and alias_idx are unused.
4024     assert(pre_val != NULL, "must be loaded already");
4025     // Nothing to be done if pre_val is null.
4026     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
4027     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
4028   }
4029   assert(bt == T_OBJECT, "or we shouldn't be here");
4030 
4031   IdealKit ideal(this, true);
4032 
4033   Node* tls = __ thread(); // ThreadLocalStorage
4034 
4035   Node* no_ctrl = NULL;
4036   Node* no_base = __ top();
4037   Node* zero  = __ ConI(0);
4038   Node* zeroX = __ ConX(0);
4039 
4040   float likely  = PROB_LIKELY(0.999);
4041   float unlikely  = PROB_UNLIKELY(0.999);
4042 
4043   BasicType active_type = in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
4044   assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 || in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "flag width");
4045 
4046   // Offsets into the thread
4047   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
4048                                           SATBMarkQueue::byte_offset_of_active());
4049   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
4050                                           SATBMarkQueue::byte_offset_of_index());
4051   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
4052                                           SATBMarkQueue::byte_offset_of_buf());
4053 
4054   // Now the actual pointers into the thread
4055   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
4056   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
4057   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
4058 
4059   // Now some of the values
4060   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
4061 
4062   // if (!marking)
4063   __ if_then(marking, BoolTest::ne, zero, unlikely); {
4064     BasicType index_bt = TypeX_X->basic_type();
4065     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size.");
4066     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
4067 
4068     if (do_load) {
4069       // load original value
4070       // alias_idx correct??
4071       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
4072     }
4073 
4074     // if (pre_val != NULL)
4075     __ if_then(pre_val, BoolTest::ne, null()); {
4076       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4077 
4078       // is the queue for this thread full?
4079       __ if_then(index, BoolTest::ne, zeroX, likely); {
4080 
4081         // decrement the index
4082         Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4083 
4084         // Now get the buffer location we will log the previous value into and store it
4085         Node *log_addr = __ AddP(no_base, buffer, next_index);
4086         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
4087         // update the index
4088         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
4089 
4090       } __ else_(); {
4091 
4092         // logging buffer is full, call the runtime
4093         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
4094         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
4095       } __ end_if();  // (!index)
4096     } __ end_if();  // (pre_val != NULL)
4097   } __ end_if();  // (!marking)
4098 
4099   // Final sync IdealKit and GraphKit.
4100   final_sync(ideal);
4101 }
4102 
4103 /*
4104  * G1 similar to any GC with a Young Generation requires a way to keep track of
4105  * references from Old Generation to Young Generation to make sure all live
4106  * objects are found. G1 also requires to keep track of object references
4107  * between different regions to enable evacuation of old regions, which is done
4108  * as part of mixed collections. References are tracked in remembered sets and
4109  * is continuously updated as reference are written to with the help of the
4110  * post-barrier.
4111  *
4112  * To reduce the number of updates to the remembered set the post-barrier
4113  * filters updates to fields in objects located in the Young Generation,
4114  * the same region as the reference, when the NULL is being written or
4115  * if the card is already marked as dirty by an earlier write.
4116  *
4117  * Under certain circumstances it is possible to avoid generating the
4118  * post-barrier completely if it is possible during compile time to prove
4119  * the object is newly allocated and that no safepoint exists between the
4120  * allocation and the store.
4121  *
4122  * In the case of slow allocation the allocation code must handle the barrier
4123  * as part of the allocation in the case the allocated object is not located
4124  * in the nursery, this would happen for humongous objects. This is similar to
4125  * how CMS is required to handle this case, see the comments for the method
4126  * CollectedHeap::new_store_pre_barrier and OptoRuntime::new_store_pre_barrier.
4127  * A deferred card mark is required for these objects and handled in the above
4128  * mentioned methods.
4129  *
4130  * Returns true if the post barrier can be removed
4131  */
4132 bool GraphKit::g1_can_remove_post_barrier(PhaseTransform* phase, Node* store,
4133                                           Node* adr) {
4134   intptr_t      offset = 0;
4135   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
4136   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
4137 
4138   if (offset == Type::OffsetBot) {
4139     return false; // cannot unalias unless there are precise offsets
4140   }
4141 
4142   if (alloc == NULL) {
4143      return false; // No allocation found
4144   }
4145 
4146   // Start search from Store node
4147   Node* mem = store->in(MemNode::Control);
4148   if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
4149 
4150     InitializeNode* st_init = mem->in(0)->as_Initialize();
4151     AllocateNode*  st_alloc = st_init->allocation();
4152 
4153     // Make sure we are looking at the same allocation
4154     if (alloc == st_alloc) {
4155       return true;
4156     }
4157   }
4158 
4159   return false;
4160 }
4161 
4162 //
4163 // Update the card table and add card address to the queue
4164 //
4165 void GraphKit::g1_mark_card(IdealKit& ideal,
4166                             Node* card_adr,
4167                             Node* oop_store,
4168                             uint oop_alias_idx,
4169                             Node* index,
4170                             Node* index_adr,
4171                             Node* buffer,
4172                             const TypeFunc* tf) {
4173 
4174   Node* zero  = __ ConI(0);
4175   Node* zeroX = __ ConX(0);
4176   Node* no_base = __ top();
4177   BasicType card_bt = T_BYTE;
4178   // Smash zero into card. MUST BE ORDERED WRT TO STORE
4179   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
4180 
4181   //  Now do the queue work
4182   __ if_then(index, BoolTest::ne, zeroX); {
4183 
4184     Node* next_index = _gvn.transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
4185     Node* log_addr = __ AddP(no_base, buffer, next_index);
4186 
4187     // Order, see storeCM.
4188     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
4189     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
4190 
4191   } __ else_(); {
4192     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
4193   } __ end_if();
4194 
4195 }
4196 
4197 void GraphKit::g1_write_barrier_post(Node* oop_store,
4198                                      Node* obj,
4199                                      Node* adr,
4200                                      uint alias_idx,
4201                                      Node* val,
4202                                      BasicType bt,
4203                                      bool use_precise) {
4204   // If we are writing a NULL then we need no post barrier
4205 
4206   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
4207     // Must be NULL
4208     const Type* t = val->bottom_type();
4209     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
4210     // No post barrier if writing NULLx
4211     return;
4212   }
4213 
4214   if (use_ReduceInitialCardMarks() && obj == just_allocated_object(control())) {
4215     // We can skip marks on a freshly-allocated object in Eden.
4216     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
4217     // That routine informs GC to take appropriate compensating steps,
4218     // upon a slow-path allocation, so as to make this card-mark
4219     // elision safe.
4220     return;
4221   }
4222 
4223   if (use_ReduceInitialCardMarks()
4224       && g1_can_remove_post_barrier(&_gvn, oop_store, adr)) {
4225     return;
4226   }
4227 
4228   if (!use_precise) {
4229     // All card marks for a (non-array) instance are in one place:
4230     adr = obj;
4231   }
4232   // (Else it's an array (or unknown), and we want more precise card marks.)
4233   assert(adr != NULL, "");
4234 
4235   IdealKit ideal(this, true);
4236 
4237   Node* tls = __ thread(); // ThreadLocalStorage
4238 
4239   Node* no_base = __ top();
4240   float likely  = PROB_LIKELY(0.999);
4241   float unlikely  = PROB_UNLIKELY(0.999);
4242   Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val());
4243   Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val());
4244   Node* zeroX = __ ConX(0);
4245 
4246   // Get the alias_index for raw card-mark memory
4247   const TypePtr* card_type = TypeRawPtr::BOTTOM;
4248 
4249   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
4250 
4251   // Offsets into the thread
4252   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
4253                                      DirtyCardQueue::byte_offset_of_index());
4254   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
4255                                      DirtyCardQueue::byte_offset_of_buf());
4256 
4257   // Pointers into the thread
4258 
4259   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
4260   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
4261 
4262   // Now some values
4263   // Use ctrl to avoid hoisting these values past a safepoint, which could
4264   // potentially reset these fields in the JavaThread.
4265   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
4266   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
4267 
4268   // Convert the store obj pointer to an int prior to doing math on it
4269   // Must use ctrl to prevent "integerized oop" existing across safepoint
4270   Node* cast =  __ CastPX(__ ctrl(), adr);
4271 
4272   // Divide pointer by card size
4273   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
4274 
4275   // Combine card table base and card offset
4276   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
4277 
4278   // If we know the value being stored does it cross regions?
4279 
4280   if (val != NULL) {
4281     // Does the store cause us to cross regions?
4282 
4283     // Should be able to do an unsigned compare of region_size instead of
4284     // and extra shift. Do we have an unsigned compare??
4285     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
4286     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
4287 
4288     // if (xor_res == 0) same region so skip
4289     __ if_then(xor_res, BoolTest::ne, zeroX); {
4290 
4291       // No barrier if we are storing a NULL
4292       __ if_then(val, BoolTest::ne, null(), unlikely); {
4293 
4294         // Ok must mark the card if not already dirty
4295 
4296         // load the original value of the card
4297         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4298 
4299         __ if_then(card_val, BoolTest::ne, young_card); {
4300           sync_kit(ideal);
4301           insert_store_load_for_barrier();
4302           __ sync_kit(this);
4303 
4304           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4305           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
4306             g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4307           } __ end_if();
4308         } __ end_if();
4309       } __ end_if();
4310     } __ end_if();
4311   } else {
4312     // Object.clone() instrinsic uses this path.
4313     g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4314   }
4315 
4316   // Final sync IdealKit and GraphKit.
4317   final_sync(ideal);
4318 }
4319 #undef __
4320 
4321 
4322 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
4323   Node* len = load_array_length(load_String_value(ctrl, str));
4324   Node* coder = load_String_coder(ctrl, str);
4325   // Divide length by 2 if coder is UTF16
4326   return _gvn.transform(new RShiftINode(len, coder));
4327 }
4328 
4329 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
4330   int value_offset = java_lang_String::value_offset_in_bytes();
4331   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4332                                                      false, NULL, 0);
4333   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4334   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4335                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4336                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
4337   int value_field_idx = C->get_alias_index(value_field_type);
4338   Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset),
4339                          value_type, T_OBJECT, value_field_idx, MemNode::unordered);
4340   // String.value field is known to be @Stable.
4341   if (UseImplicitStableValues) {
4342     load = cast_array_to_stable(load, value_type);
4343   }
4344   return load;
4345 }
4346 
4347 Node* GraphKit::load_String_coder(Node* ctrl, Node* str) {
4348   if (java_lang_String::has_coder_field()) {
4349     if (!CompactStrings) {
4350       return intcon(java_lang_String::CODER_UTF16);
4351     }
4352     int coder_offset = java_lang_String::coder_offset_in_bytes();
4353     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4354                                                        false, NULL, 0);
4355     const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4356     int coder_field_idx = C->get_alias_index(coder_field_type);
4357     return make_load(ctrl, basic_plus_adr(str, str, coder_offset),
4358                      TypeInt::BYTE, T_BYTE, coder_field_idx, MemNode::unordered);
4359   } else {
4360     return intcon(0); // false
4361   }
4362 }
4363 
4364 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
4365   int value_offset = java_lang_String::value_offset_in_bytes();
4366   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4367                                                      false, NULL, 0);
4368   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4369   store_oop_to_object(ctrl, str,  basic_plus_adr(str, value_offset), value_field_type,
4370       value, TypeAryPtr::BYTES, T_OBJECT, MemNode::unordered);
4371 }
4372 
4373 void GraphKit::store_String_coder(Node* ctrl, Node* str, Node* value) {
4374   int coder_offset = java_lang_String::coder_offset_in_bytes();
4375   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4376                                                      false, NULL, 0);
4377   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4378   int coder_field_idx = C->get_alias_index(coder_field_type);
4379   store_to_memory(ctrl, basic_plus_adr(str, coder_offset),
4380                   value, T_BYTE, coder_field_idx, MemNode::unordered);
4381 }
4382 
4383 // Capture src and dst memory state with a MergeMemNode
4384 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4385   if (src_type == dst_type) {
4386     // Types are equal, we don't need a MergeMemNode
4387     return memory(src_type);
4388   }
4389   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4390   record_for_igvn(merge); // fold it up later, if possible
4391   int src_idx = C->get_alias_index(src_type);
4392   int dst_idx = C->get_alias_index(dst_type);
4393   merge->set_memory_at(src_idx, memory(src_idx));
4394   merge->set_memory_at(dst_idx, memory(dst_idx));
4395   return merge;
4396 }
4397 
4398 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4399   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4400   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4401   // If input and output memory types differ, capture both states to preserve
4402   // the dependency between preceding and subsequent loads/stores.
4403   // For example, the following program:
4404   //  StoreB
4405   //  compress_string
4406   //  LoadB
4407   // has this memory graph (use->def):
4408   //  LoadB -> compress_string -> CharMem
4409   //             ... -> StoreB -> ByteMem
4410   // The intrinsic hides the dependency between LoadB and StoreB, causing
4411   // the load to read from memory not containing the result of the StoreB.
4412   // The correct memory graph should look like this:
4413   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4414   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4415   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4416   Node* res_mem = _gvn.transform(new SCMemProjNode(str));
4417   set_memory(res_mem, TypeAryPtr::BYTES);
4418   return str;
4419 }
4420 
4421 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4422   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4423   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4424   // Capture src and dst memory (see comment in 'compress_string').
4425   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4426   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4427   set_memory(_gvn.transform(str), dst_type);
4428 }
4429 
4430 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4431   /**
4432    * int i_char = start;
4433    * for (int i_byte = 0; i_byte < count; i_byte++) {
4434    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
4435    * }
4436    */
4437   add_predicate();
4438   RegionNode* head = new RegionNode(3);
4439   head->init_req(1, control());
4440   gvn().set_type(head, Type::CONTROL);
4441   record_for_igvn(head);
4442 
4443   Node* i_byte = new PhiNode(head, TypeInt::INT);
4444   i_byte->init_req(1, intcon(0));
4445   gvn().set_type(i_byte, TypeInt::INT);
4446   record_for_igvn(i_byte);
4447 
4448   Node* i_char = new PhiNode(head, TypeInt::INT);
4449   i_char->init_req(1, start);
4450   gvn().set_type(i_char, TypeInt::INT);
4451   record_for_igvn(i_char);
4452 
4453   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4454   gvn().set_type(mem, Type::MEMORY);
4455   record_for_igvn(mem);
4456   set_control(head);
4457   set_memory(mem, TypeAryPtr::BYTES);
4458   Node* ch = load_array_element(control(), src, i_byte, TypeAryPtr::BYTES);
4459   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4460                              AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
4461                              false, false, true /* mismatched */);
4462 
4463   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4464   head->init_req(2, IfTrue(iff));
4465   mem->init_req(2, st);
4466   i_byte->init_req(2, AddI(i_byte, intcon(1)));
4467   i_char->init_req(2, AddI(i_char, intcon(2)));
4468 
4469   set_control(IfFalse(iff));
4470   set_memory(st, TypeAryPtr::BYTES);
4471 }
4472 
4473 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
4474   // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
4475   // assumption of CCP analysis.
4476   return _gvn.transform(new CastPPNode(ary, ary_type->cast_to_stable(true)));
4477 }