1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/callGenerator.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/countbitsnode.hpp"
  39 #include "opto/intrinsicnode.hpp"
  40 #include "opto/idealKit.hpp"
  41 #include "opto/mathexactnode.hpp"
  42 #include "opto/movenode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/opaquenode.hpp"
  46 #include "opto/parse.hpp"
  47 #include "opto/runtime.hpp"
  48 #include "opto/subnode.hpp"
  49 #include "prims/nativeLookup.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "trace/traceMacros.hpp"
  52 
  53 class LibraryIntrinsic : public InlineCallGenerator {
  54   // Extend the set of intrinsics known to the runtime:
  55  public:
  56  private:
  57   bool             _is_virtual;
  58   bool             _does_virtual_dispatch;
  59   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  60   int8_t           _last_predicate; // Last generated predicate
  61   vmIntrinsics::ID _intrinsic_id;
  62 
  63  public:
  64   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  65     : InlineCallGenerator(m),
  66       _is_virtual(is_virtual),
  67       _does_virtual_dispatch(does_virtual_dispatch),
  68       _predicates_count((int8_t)predicates_count),
  69       _last_predicate((int8_t)-1),
  70       _intrinsic_id(id)
  71   {
  72   }
  73   virtual bool is_intrinsic() const { return true; }
  74   virtual bool is_virtual()   const { return _is_virtual; }
  75   virtual bool is_predicated() const { return _predicates_count > 0; }
  76   virtual int  predicates_count() const { return _predicates_count; }
  77   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  78   virtual JVMState* generate(JVMState* jvms);
  79   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  80   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  81 };
  82 
  83 
  84 // Local helper class for LibraryIntrinsic:
  85 class LibraryCallKit : public GraphKit {
  86  private:
  87   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  88   Node*             _result;        // the result node, if any
  89   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  90 
  91   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  92 
  93  public:
  94   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  95     : GraphKit(jvms),
  96       _intrinsic(intrinsic),
  97       _result(NULL)
  98   {
  99     // Check if this is a root compile.  In that case we don't have a caller.
 100     if (!jvms->has_method()) {
 101       _reexecute_sp = sp();
 102     } else {
 103       // Find out how many arguments the interpreter needs when deoptimizing
 104       // and save the stack pointer value so it can used by uncommon_trap.
 105       // We find the argument count by looking at the declared signature.
 106       bool ignored_will_link;
 107       ciSignature* declared_signature = NULL;
 108       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 109       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 110       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 111     }
 112   }
 113 
 114   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 115 
 116   ciMethod*         caller()    const    { return jvms()->method(); }
 117   int               bci()       const    { return jvms()->bci(); }
 118   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 119   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 120   ciMethod*         callee()    const    { return _intrinsic->method(); }
 121 
 122   bool  try_to_inline(int predicate);
 123   Node* try_to_predicate(int predicate);
 124 
 125   void push_result() {
 126     // Push the result onto the stack.
 127     if (!stopped() && result() != NULL) {
 128       BasicType bt = result()->bottom_type()->basic_type();
 129       push_node(bt, result());
 130     }
 131   }
 132 
 133  private:
 134   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 135     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 136   }
 137 
 138   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 139   void  set_result(RegionNode* region, PhiNode* value);
 140   Node*     result() { return _result; }
 141 
 142   virtual int reexecute_sp() { return _reexecute_sp; }
 143 
 144   // Helper functions to inline natives
 145   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 146   Node* generate_slow_guard(Node* test, RegionNode* region);
 147   Node* generate_fair_guard(Node* test, RegionNode* region);
 148   Node* generate_negative_guard(Node* index, RegionNode* region,
 149                                 // resulting CastII of index:
 150                                 Node* *pos_index = NULL);
 151   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 152                              Node* array_length,
 153                              RegionNode* region);
 154   Node* generate_current_thread(Node* &tls_output);
 155   Node* load_mirror_from_klass(Node* klass);
 156   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 157                                       RegionNode* region, int null_path,
 158                                       int offset);
 159   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 160                                RegionNode* region, int null_path) {
 161     int offset = java_lang_Class::klass_offset_in_bytes();
 162     return load_klass_from_mirror_common(mirror, never_see_null,
 163                                          region, null_path,
 164                                          offset);
 165   }
 166   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 167                                      RegionNode* region, int null_path) {
 168     int offset = java_lang_Class::array_klass_offset_in_bytes();
 169     return load_klass_from_mirror_common(mirror, never_see_null,
 170                                          region, null_path,
 171                                          offset);
 172   }
 173   Node* generate_access_flags_guard(Node* kls,
 174                                     int modifier_mask, int modifier_bits,
 175                                     RegionNode* region);
 176   Node* generate_interface_guard(Node* kls, RegionNode* region);
 177   Node* generate_array_guard(Node* kls, RegionNode* region) {
 178     return generate_array_guard_common(kls, region, false, false);
 179   }
 180   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 181     return generate_array_guard_common(kls, region, false, true);
 182   }
 183   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 184     return generate_array_guard_common(kls, region, true, false);
 185   }
 186   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 187     return generate_array_guard_common(kls, region, true, true);
 188   }
 189   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 190                                     bool obj_array, bool not_array);
 191   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 192   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 193                                      bool is_virtual = false, bool is_static = false);
 194   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 195     return generate_method_call(method_id, false, true);
 196   }
 197   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 198     return generate_method_call(method_id, true, false);
 199   }
 200   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 201 
 202   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 203   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 204   bool inline_string_compareTo();
 205   bool inline_string_indexOf();
 206   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 207   bool inline_string_equals();
 208   Node* round_double_node(Node* n);
 209   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 210   bool inline_math_native(vmIntrinsics::ID id);
 211   bool inline_trig(vmIntrinsics::ID id);
 212   bool inline_math(vmIntrinsics::ID id);
 213   template <typename OverflowOp>
 214   bool inline_math_overflow(Node* arg1, Node* arg2);
 215   void inline_math_mathExact(Node* math, Node* test);
 216   bool inline_math_addExactI(bool is_increment);
 217   bool inline_math_addExactL(bool is_increment);
 218   bool inline_math_multiplyExactI();
 219   bool inline_math_multiplyExactL();
 220   bool inline_math_negateExactI();
 221   bool inline_math_negateExactL();
 222   bool inline_math_subtractExactI(bool is_decrement);
 223   bool inline_math_subtractExactL(bool is_decrement);
 224   bool inline_exp();
 225   bool inline_pow();
 226   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 227   bool inline_min_max(vmIntrinsics::ID id);
 228   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 229   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 230   int classify_unsafe_addr(Node* &base, Node* &offset);
 231   Node* make_unsafe_address(Node* base, Node* offset);
 232   // Helper for inline_unsafe_access.
 233   // Generates the guards that check whether the result of
 234   // Unsafe.getObject should be recorded in an SATB log buffer.
 235   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 236   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 237   static bool klass_needs_init_guard(Node* kls);
 238   bool inline_unsafe_allocate();
 239   bool inline_unsafe_copyMemory();
 240   bool inline_native_currentThread();
 241 #ifdef TRACE_HAVE_INTRINSICS
 242   bool inline_native_classID();
 243   bool inline_native_threadID();
 244 #endif
 245   bool inline_native_time_funcs(address method, const char* funcName);
 246   bool inline_native_isInterrupted();
 247   bool inline_native_Class_query(vmIntrinsics::ID id);
 248   bool inline_native_subtype_check();
 249 
 250   bool inline_native_newArray();
 251   bool inline_native_getLength();
 252   bool inline_array_copyOf(bool is_copyOfRange);
 253   bool inline_array_equals();
 254   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 255   bool inline_native_clone(bool is_virtual);
 256   bool inline_native_Reflection_getCallerClass();
 257   // Helper function for inlining native object hash method
 258   bool inline_native_hashcode(bool is_virtual, bool is_static);
 259   bool inline_native_getClass();
 260 
 261   // Helper functions for inlining arraycopy
 262   bool inline_arraycopy();
 263   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 264                                                 RegionNode* slow_region);
 265   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 266   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
 267 
 268   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 269   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 270   bool inline_unsafe_ordered_store(BasicType type);
 271   bool inline_unsafe_fence(vmIntrinsics::ID id);
 272   bool inline_fp_conversions(vmIntrinsics::ID id);
 273   bool inline_number_methods(vmIntrinsics::ID id);
 274   bool inline_reference_get();
 275   bool inline_Class_cast();
 276   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 277   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 278   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 279   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 280   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 281   bool inline_ghash_processBlocks();
 282   bool inline_sha_implCompress(vmIntrinsics::ID id);
 283   bool inline_digestBase_implCompressMB(int predicate);
 284   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 285                                  bool long_state, address stubAddr, const char *stubName,
 286                                  Node* src_start, Node* ofs, Node* limit);
 287   Node* get_state_from_sha_object(Node *sha_object);
 288   Node* get_state_from_sha5_object(Node *sha_object);
 289   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 290   bool inline_encodeISOArray();
 291   bool inline_updateCRC32();
 292   bool inline_updateBytesCRC32();
 293   bool inline_updateByteBufferCRC32();
 294   bool inline_multiplyToLen();
 295   bool inline_squareToLen();
 296   bool inline_mulAdd();
 297 
 298   bool inline_profileBoolean();
 299   bool inline_isCompileConstant();
 300 };
 301 
 302 
 303 //---------------------------make_vm_intrinsic----------------------------
 304 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 305   vmIntrinsics::ID id = m->intrinsic_id();
 306   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 307 
 308   ccstr disable_intr = NULL;
 309 
 310   if ((DisableIntrinsic[0] != '\0'
 311        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
 312       (method_has_option_value("DisableIntrinsic", disable_intr)
 313        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
 314     // disabled by a user request on the command line:
 315     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 316     return NULL;
 317   }
 318 
 319   if (!m->is_loaded()) {
 320     // do not attempt to inline unloaded methods
 321     return NULL;
 322   }
 323 
 324   // Only a few intrinsics implement a virtual dispatch.
 325   // They are expensive calls which are also frequently overridden.
 326   if (is_virtual) {
 327     switch (id) {
 328     case vmIntrinsics::_hashCode:
 329     case vmIntrinsics::_clone:
 330       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 331       break;
 332     default:
 333       return NULL;
 334     }
 335   }
 336 
 337   // -XX:-InlineNatives disables nearly all intrinsics:
 338   if (!InlineNatives) {
 339     switch (id) {
 340     case vmIntrinsics::_indexOf:
 341     case vmIntrinsics::_compareTo:
 342     case vmIntrinsics::_equals:
 343     case vmIntrinsics::_equalsC:
 344     case vmIntrinsics::_getAndAddInt:
 345     case vmIntrinsics::_getAndAddLong:
 346     case vmIntrinsics::_getAndSetInt:
 347     case vmIntrinsics::_getAndSetLong:
 348     case vmIntrinsics::_getAndSetObject:
 349     case vmIntrinsics::_loadFence:
 350     case vmIntrinsics::_storeFence:
 351     case vmIntrinsics::_fullFence:
 352       break;  // InlineNatives does not control String.compareTo
 353     case vmIntrinsics::_Reference_get:
 354       break;  // InlineNatives does not control Reference.get
 355     default:
 356       return NULL;
 357     }
 358   }
 359 
 360   int predicates = 0;
 361   bool does_virtual_dispatch = false;
 362 
 363   switch (id) {
 364   case vmIntrinsics::_compareTo:
 365     if (!SpecialStringCompareTo)  return NULL;
 366     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 367     break;
 368   case vmIntrinsics::_indexOf:
 369     if (!SpecialStringIndexOf)  return NULL;
 370     break;
 371   case vmIntrinsics::_equals:
 372     if (!SpecialStringEquals)  return NULL;
 373     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 374     break;
 375   case vmIntrinsics::_equalsC:
 376     if (!SpecialArraysEquals)  return NULL;
 377     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 378     break;
 379   case vmIntrinsics::_arraycopy:
 380     if (!InlineArrayCopy)  return NULL;
 381     break;
 382   case vmIntrinsics::_copyMemory:
 383     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 384     if (!InlineArrayCopy)  return NULL;
 385     break;
 386   case vmIntrinsics::_hashCode:
 387     if (!InlineObjectHash)  return NULL;
 388     does_virtual_dispatch = true;
 389     break;
 390   case vmIntrinsics::_clone:
 391     does_virtual_dispatch = true;
 392   case vmIntrinsics::_copyOf:
 393   case vmIntrinsics::_copyOfRange:
 394     if (!InlineObjectCopy)  return NULL;
 395     // These also use the arraycopy intrinsic mechanism:
 396     if (!InlineArrayCopy)  return NULL;
 397     break;
 398   case vmIntrinsics::_encodeISOArray:
 399     if (!SpecialEncodeISOArray)  return NULL;
 400     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 401     break;
 402   case vmIntrinsics::_checkIndex:
 403     // We do not intrinsify this.  The optimizer does fine with it.
 404     return NULL;
 405 
 406   case vmIntrinsics::_getCallerClass:
 407     if (!InlineReflectionGetCallerClass)  return NULL;
 408     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 409     break;
 410 
 411   case vmIntrinsics::_bitCount_i:
 412     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 413     break;
 414 
 415   case vmIntrinsics::_bitCount_l:
 416     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 417     break;
 418 
 419   case vmIntrinsics::_numberOfLeadingZeros_i:
 420     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 421     break;
 422 
 423   case vmIntrinsics::_numberOfLeadingZeros_l:
 424     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 425     break;
 426 
 427   case vmIntrinsics::_numberOfTrailingZeros_i:
 428     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 429     break;
 430 
 431   case vmIntrinsics::_numberOfTrailingZeros_l:
 432     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 433     break;
 434 
 435   case vmIntrinsics::_reverseBytes_c:
 436     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 437     break;
 438   case vmIntrinsics::_reverseBytes_s:
 439     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 440     break;
 441   case vmIntrinsics::_reverseBytes_i:
 442     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 443     break;
 444   case vmIntrinsics::_reverseBytes_l:
 445     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 446     break;
 447 
 448   case vmIntrinsics::_Reference_get:
 449     // Use the intrinsic version of Reference.get() so that the value in
 450     // the referent field can be registered by the G1 pre-barrier code.
 451     // Also add memory barrier to prevent commoning reads from this field
 452     // across safepoint since GC can change it value.
 453     break;
 454 
 455   case vmIntrinsics::_compareAndSwapObject:
 456 #ifdef _LP64
 457     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 458 #endif
 459     break;
 460 
 461   case vmIntrinsics::_compareAndSwapLong:
 462     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 463     break;
 464 
 465   case vmIntrinsics::_getAndAddInt:
 466     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 467     break;
 468 
 469   case vmIntrinsics::_getAndAddLong:
 470     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 471     break;
 472 
 473   case vmIntrinsics::_getAndSetInt:
 474     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 475     break;
 476 
 477   case vmIntrinsics::_getAndSetLong:
 478     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 479     break;
 480 
 481   case vmIntrinsics::_getAndSetObject:
 482 #ifdef _LP64
 483     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 484     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 485     break;
 486 #else
 487     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 488     break;
 489 #endif
 490 
 491   case vmIntrinsics::_aescrypt_encryptBlock:
 492   case vmIntrinsics::_aescrypt_decryptBlock:
 493     if (!UseAESIntrinsics) return NULL;
 494     break;
 495 
 496   case vmIntrinsics::_multiplyToLen:
 497     if (!UseMultiplyToLenIntrinsic) return NULL;
 498     break;
 499 
 500   case vmIntrinsics::_squareToLen:
 501     if (!UseSquareToLenIntrinsic) return NULL;
 502     break;
 503 
 504   case vmIntrinsics::_mulAdd:
 505     if (!UseMulAddIntrinsic) return NULL;
 506     break;
 507 
 508   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 509   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 510     if (!UseAESIntrinsics) return NULL;
 511     // these two require the predicated logic
 512     predicates = 1;
 513     break;
 514 
 515   case vmIntrinsics::_sha_implCompress:
 516     if (!UseSHA1Intrinsics) return NULL;
 517     break;
 518 
 519   case vmIntrinsics::_sha2_implCompress:
 520     if (!UseSHA256Intrinsics) return NULL;
 521     break;
 522 
 523   case vmIntrinsics::_sha5_implCompress:
 524     if (!UseSHA512Intrinsics) return NULL;
 525     break;
 526 
 527   case vmIntrinsics::_digestBase_implCompressMB:
 528     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 529     predicates = 3;
 530     break;
 531 
 532   case vmIntrinsics::_ghash_processBlocks:
 533     if (!UseGHASHIntrinsics) return NULL;
 534     break;
 535 
 536   case vmIntrinsics::_updateCRC32:
 537   case vmIntrinsics::_updateBytesCRC32:
 538   case vmIntrinsics::_updateByteBufferCRC32:
 539     if (!UseCRC32Intrinsics) return NULL;
 540     break;
 541 
 542   case vmIntrinsics::_incrementExactI:
 543   case vmIntrinsics::_addExactI:
 544     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 545     break;
 546   case vmIntrinsics::_incrementExactL:
 547   case vmIntrinsics::_addExactL:
 548     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 549     break;
 550   case vmIntrinsics::_decrementExactI:
 551   case vmIntrinsics::_subtractExactI:
 552     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 553     break;
 554   case vmIntrinsics::_decrementExactL:
 555   case vmIntrinsics::_subtractExactL:
 556     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 557     break;
 558   case vmIntrinsics::_negateExactI:
 559     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 560     break;
 561   case vmIntrinsics::_negateExactL:
 562     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 563     break;
 564   case vmIntrinsics::_multiplyExactI:
 565     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 566     break;
 567   case vmIntrinsics::_multiplyExactL:
 568     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 569     break;
 570 
 571   case vmIntrinsics::_getShortUnaligned:
 572   case vmIntrinsics::_getCharUnaligned:
 573   case vmIntrinsics::_getIntUnaligned:
 574   case vmIntrinsics::_getLongUnaligned:
 575   case vmIntrinsics::_putShortUnaligned:
 576   case vmIntrinsics::_putCharUnaligned:
 577   case vmIntrinsics::_putIntUnaligned:
 578   case vmIntrinsics::_putLongUnaligned:
 579     if (!UseUnalignedAccesses) return NULL;
 580     break;
 581 
 582  default:
 583     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 584     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 585     break;
 586   }
 587 
 588   // -XX:-InlineClassNatives disables natives from the Class class.
 589   // The flag applies to all reflective calls, notably Array.newArray
 590   // (visible to Java programmers as Array.newInstance).
 591   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 592       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 593     if (!InlineClassNatives)  return NULL;
 594   }
 595 
 596   // -XX:-InlineThreadNatives disables natives from the Thread class.
 597   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 598     if (!InlineThreadNatives)  return NULL;
 599   }
 600 
 601   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 602   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 603       m->holder()->name() == ciSymbol::java_lang_Float() ||
 604       m->holder()->name() == ciSymbol::java_lang_Double()) {
 605     if (!InlineMathNatives)  return NULL;
 606   }
 607 
 608   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 609   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 610     if (!InlineUnsafeOps)  return NULL;
 611   }
 612 
 613   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 614 }
 615 
 616 //----------------------register_library_intrinsics-----------------------
 617 // Initialize this file's data structures, for each Compile instance.
 618 void Compile::register_library_intrinsics() {
 619   // Nothing to do here.
 620 }
 621 
 622 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 623   LibraryCallKit kit(jvms, this);
 624   Compile* C = kit.C;
 625   int nodes = C->unique();
 626 #ifndef PRODUCT
 627   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 628     char buf[1000];
 629     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 630     tty->print_cr("Intrinsic %s", str);
 631   }
 632 #endif
 633   ciMethod* callee = kit.callee();
 634   const int bci    = kit.bci();
 635 
 636   // Try to inline the intrinsic.
 637   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 638       kit.try_to_inline(_last_predicate)) {
 639     if (C->print_intrinsics() || C->print_inlining()) {
 640       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 641     }
 642     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 643     if (C->log()) {
 644       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 645                      vmIntrinsics::name_at(intrinsic_id()),
 646                      (is_virtual() ? " virtual='1'" : ""),
 647                      C->unique() - nodes);
 648     }
 649     // Push the result from the inlined method onto the stack.
 650     kit.push_result();
 651     C->print_inlining_update(this);
 652     return kit.transfer_exceptions_into_jvms();
 653   }
 654 
 655   // The intrinsic bailed out
 656   if (C->print_intrinsics() || C->print_inlining()) {
 657     if (jvms->has_method()) {
 658       // Not a root compile.
 659       const char* msg;
 660       if (callee->intrinsic_candidate()) {
 661         msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 662       } else {
 663         msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 664                            : "failed to inline (intrinsic), method not annotated";
 665       }
 666       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 667     } else {
 668       // Root compile
 669       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 670                vmIntrinsics::name_at(intrinsic_id()),
 671                (is_virtual() ? " (virtual)" : ""), bci);
 672     }
 673   }
 674   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 675   C->print_inlining_update(this);
 676   return NULL;
 677 }
 678 
 679 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 680   LibraryCallKit kit(jvms, this);
 681   Compile* C = kit.C;
 682   int nodes = C->unique();
 683   _last_predicate = predicate;
 684 #ifndef PRODUCT
 685   assert(is_predicated() && predicate < predicates_count(), "sanity");
 686   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 687     char buf[1000];
 688     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 689     tty->print_cr("Predicate for intrinsic %s", str);
 690   }
 691 #endif
 692   ciMethod* callee = kit.callee();
 693   const int bci    = kit.bci();
 694 
 695   Node* slow_ctl = kit.try_to_predicate(predicate);
 696   if (!kit.failing()) {
 697     if (C->print_intrinsics() || C->print_inlining()) {
 698       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 699     }
 700     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 701     if (C->log()) {
 702       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 703                      vmIntrinsics::name_at(intrinsic_id()),
 704                      (is_virtual() ? " virtual='1'" : ""),
 705                      C->unique() - nodes);
 706     }
 707     return slow_ctl; // Could be NULL if the check folds.
 708   }
 709 
 710   // The intrinsic bailed out
 711   if (C->print_intrinsics() || C->print_inlining()) {
 712     if (jvms->has_method()) {
 713       // Not a root compile.
 714       const char* msg = "failed to generate predicate for intrinsic";
 715       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 716     } else {
 717       // Root compile
 718       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 719                                         vmIntrinsics::name_at(intrinsic_id()),
 720                                         (is_virtual() ? " (virtual)" : ""), bci);
 721     }
 722   }
 723   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 724   return NULL;
 725 }
 726 
 727 bool LibraryCallKit::try_to_inline(int predicate) {
 728   // Handle symbolic names for otherwise undistinguished boolean switches:
 729   const bool is_store       = true;
 730   const bool is_native_ptr  = true;
 731   const bool is_static      = true;
 732   const bool is_volatile    = true;
 733 
 734   if (!jvms()->has_method()) {
 735     // Root JVMState has a null method.
 736     assert(map()->memory()->Opcode() == Op_Parm, "");
 737     // Insert the memory aliasing node
 738     set_all_memory(reset_memory());
 739   }
 740   assert(merged_memory(), "");
 741 
 742 
 743   switch (intrinsic_id()) {
 744   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 745   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 746   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 747 
 748   case vmIntrinsics::_dsin:
 749   case vmIntrinsics::_dcos:
 750   case vmIntrinsics::_dtan:
 751   case vmIntrinsics::_dabs:
 752   case vmIntrinsics::_datan2:
 753   case vmIntrinsics::_dsqrt:
 754   case vmIntrinsics::_dexp:
 755   case vmIntrinsics::_dlog:
 756   case vmIntrinsics::_dlog10:
 757   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 758 
 759   case vmIntrinsics::_min:
 760   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 761 
 762   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 763   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 764   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 765   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 766   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 767   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 768   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 769   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 770   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 771   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 772   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 773   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 774 
 775   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 776 
 777   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 778   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 779   case vmIntrinsics::_equals:                   return inline_string_equals();
 780 
 781   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 782   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 783   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 784   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 785   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 786   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 787   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 788   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 789   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 790 
 791   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 792   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 793   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 794   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 795   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 796   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 797   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 798   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 799   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 800 
 801   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 802   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 803   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 804   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 805   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 806   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 807   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 808   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 809 
 810   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 811   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 812   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 813   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 814   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 815   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 816   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 817   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 818 
 819   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 820   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 821   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 822   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 823   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 824   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 825   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 826   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 827   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 828 
 829   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 830   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 831   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 832   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 833   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 834   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 835   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 836   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 837   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 838 
 839   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 840   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 841   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 842   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 843 
 844   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 845   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 846   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 847   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 848 
 849   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 850   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 851   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 852 
 853   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 854   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 855   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 856 
 857   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 858   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 859   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 860   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 861   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 862 
 863   case vmIntrinsics::_loadFence:
 864   case vmIntrinsics::_storeFence:
 865   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 866 
 867   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 868   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 869 
 870 #ifdef TRACE_HAVE_INTRINSICS
 871   case vmIntrinsics::_classID:                  return inline_native_classID();
 872   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 873   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 874 #endif
 875   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 876   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 877   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 878   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 879   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 880   case vmIntrinsics::_getLength:                return inline_native_getLength();
 881   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 882   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 883   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 884   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 885 
 886   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 887 
 888   case vmIntrinsics::_isInstance:
 889   case vmIntrinsics::_getModifiers:
 890   case vmIntrinsics::_isInterface:
 891   case vmIntrinsics::_isArray:
 892   case vmIntrinsics::_isPrimitive:
 893   case vmIntrinsics::_getSuperclass:
 894   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 895 
 896   case vmIntrinsics::_floatToRawIntBits:
 897   case vmIntrinsics::_floatToIntBits:
 898   case vmIntrinsics::_intBitsToFloat:
 899   case vmIntrinsics::_doubleToRawLongBits:
 900   case vmIntrinsics::_doubleToLongBits:
 901   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 902 
 903   case vmIntrinsics::_numberOfLeadingZeros_i:
 904   case vmIntrinsics::_numberOfLeadingZeros_l:
 905   case vmIntrinsics::_numberOfTrailingZeros_i:
 906   case vmIntrinsics::_numberOfTrailingZeros_l:
 907   case vmIntrinsics::_bitCount_i:
 908   case vmIntrinsics::_bitCount_l:
 909   case vmIntrinsics::_reverseBytes_i:
 910   case vmIntrinsics::_reverseBytes_l:
 911   case vmIntrinsics::_reverseBytes_s:
 912   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 913 
 914   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 915 
 916   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 917 
 918   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 919 
 920   case vmIntrinsics::_aescrypt_encryptBlock:
 921   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 922 
 923   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 924   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 925     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 926 
 927   case vmIntrinsics::_sha_implCompress:
 928   case vmIntrinsics::_sha2_implCompress:
 929   case vmIntrinsics::_sha5_implCompress:
 930     return inline_sha_implCompress(intrinsic_id());
 931 
 932   case vmIntrinsics::_digestBase_implCompressMB:
 933     return inline_digestBase_implCompressMB(predicate);
 934 
 935   case vmIntrinsics::_multiplyToLen:
 936     return inline_multiplyToLen();
 937 
 938   case vmIntrinsics::_squareToLen:
 939     return inline_squareToLen();
 940 
 941   case vmIntrinsics::_mulAdd:
 942     return inline_mulAdd();
 943 
 944   case vmIntrinsics::_ghash_processBlocks:
 945     return inline_ghash_processBlocks();
 946 
 947   case vmIntrinsics::_encodeISOArray:
 948     return inline_encodeISOArray();
 949 
 950   case vmIntrinsics::_updateCRC32:
 951     return inline_updateCRC32();
 952   case vmIntrinsics::_updateBytesCRC32:
 953     return inline_updateBytesCRC32();
 954   case vmIntrinsics::_updateByteBufferCRC32:
 955     return inline_updateByteBufferCRC32();
 956 
 957   case vmIntrinsics::_profileBoolean:
 958     return inline_profileBoolean();
 959   case vmIntrinsics::_isCompileConstant:
 960     return inline_isCompileConstant();
 961 
 962   default:
 963     // If you get here, it may be that someone has added a new intrinsic
 964     // to the list in vmSymbols.hpp without implementing it here.
 965 #ifndef PRODUCT
 966     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 967       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 968                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 969     }
 970 #endif
 971     return false;
 972   }
 973 }
 974 
 975 Node* LibraryCallKit::try_to_predicate(int predicate) {
 976   if (!jvms()->has_method()) {
 977     // Root JVMState has a null method.
 978     assert(map()->memory()->Opcode() == Op_Parm, "");
 979     // Insert the memory aliasing node
 980     set_all_memory(reset_memory());
 981   }
 982   assert(merged_memory(), "");
 983 
 984   switch (intrinsic_id()) {
 985   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 986     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 987   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 988     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 989   case vmIntrinsics::_digestBase_implCompressMB:
 990     return inline_digestBase_implCompressMB_predicate(predicate);
 991 
 992   default:
 993     // If you get here, it may be that someone has added a new intrinsic
 994     // to the list in vmSymbols.hpp without implementing it here.
 995 #ifndef PRODUCT
 996     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 997       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 998                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 999     }
1000 #endif
1001     Node* slow_ctl = control();
1002     set_control(top()); // No fast path instrinsic
1003     return slow_ctl;
1004   }
1005 }
1006 
1007 //------------------------------set_result-------------------------------
1008 // Helper function for finishing intrinsics.
1009 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
1010   record_for_igvn(region);
1011   set_control(_gvn.transform(region));
1012   set_result( _gvn.transform(value));
1013   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
1014 }
1015 
1016 //------------------------------generate_guard---------------------------
1017 // Helper function for generating guarded fast-slow graph structures.
1018 // The given 'test', if true, guards a slow path.  If the test fails
1019 // then a fast path can be taken.  (We generally hope it fails.)
1020 // In all cases, GraphKit::control() is updated to the fast path.
1021 // The returned value represents the control for the slow path.
1022 // The return value is never 'top'; it is either a valid control
1023 // or NULL if it is obvious that the slow path can never be taken.
1024 // Also, if region and the slow control are not NULL, the slow edge
1025 // is appended to the region.
1026 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
1027   if (stopped()) {
1028     // Already short circuited.
1029     return NULL;
1030   }
1031 
1032   // Build an if node and its projections.
1033   // If test is true we take the slow path, which we assume is uncommon.
1034   if (_gvn.type(test) == TypeInt::ZERO) {
1035     // The slow branch is never taken.  No need to build this guard.
1036     return NULL;
1037   }
1038 
1039   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
1040 
1041   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
1042   if (if_slow == top()) {
1043     // The slow branch is never taken.  No need to build this guard.
1044     return NULL;
1045   }
1046 
1047   if (region != NULL)
1048     region->add_req(if_slow);
1049 
1050   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
1051   set_control(if_fast);
1052 
1053   return if_slow;
1054 }
1055 
1056 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1057   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1058 }
1059 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1060   return generate_guard(test, region, PROB_FAIR);
1061 }
1062 
1063 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1064                                                      Node* *pos_index) {
1065   if (stopped())
1066     return NULL;                // already stopped
1067   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1068     return NULL;                // index is already adequately typed
1069   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1070   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1071   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1072   if (is_neg != NULL && pos_index != NULL) {
1073     // Emulate effect of Parse::adjust_map_after_if.
1074     Node* ccast = new CastIINode(index, TypeInt::POS);
1075     ccast->set_req(0, control());
1076     (*pos_index) = _gvn.transform(ccast);
1077   }
1078   return is_neg;
1079 }
1080 
1081 // Make sure that 'position' is a valid limit index, in [0..length].
1082 // There are two equivalent plans for checking this:
1083 //   A. (offset + copyLength)  unsigned<=  arrayLength
1084 //   B. offset  <=  (arrayLength - copyLength)
1085 // We require that all of the values above, except for the sum and
1086 // difference, are already known to be non-negative.
1087 // Plan A is robust in the face of overflow, if offset and copyLength
1088 // are both hugely positive.
1089 //
1090 // Plan B is less direct and intuitive, but it does not overflow at
1091 // all, since the difference of two non-negatives is always
1092 // representable.  Whenever Java methods must perform the equivalent
1093 // check they generally use Plan B instead of Plan A.
1094 // For the moment we use Plan A.
1095 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1096                                                   Node* subseq_length,
1097                                                   Node* array_length,
1098                                                   RegionNode* region) {
1099   if (stopped())
1100     return NULL;                // already stopped
1101   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1102   if (zero_offset && subseq_length->eqv_uncast(array_length))
1103     return NULL;                // common case of whole-array copy
1104   Node* last = subseq_length;
1105   if (!zero_offset)             // last += offset
1106     last = _gvn.transform(new AddINode(last, offset));
1107   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1108   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1109   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1110   return is_over;
1111 }
1112 
1113 
1114 //--------------------------generate_current_thread--------------------
1115 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1116   ciKlass*    thread_klass = env()->Thread_klass();
1117   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1118   Node* thread = _gvn.transform(new ThreadLocalNode());
1119   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1120   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1121   tls_output = thread;
1122   return threadObj;
1123 }
1124 
1125 
1126 //------------------------------make_string_method_node------------------------
1127 // Helper method for String intrinsic functions. This version is called
1128 // with str1 and str2 pointing to String object nodes.
1129 //
1130 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1131   Node* no_ctrl = NULL;
1132 
1133   // Get start addr of string
1134   Node* str1_value   = load_String_value(no_ctrl, str1);
1135   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1136   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1137 
1138   // Get length of string 1
1139   Node* str1_len  = load_String_length(no_ctrl, str1);
1140 
1141   Node* str2_value   = load_String_value(no_ctrl, str2);
1142   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1143   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1144 
1145   Node* str2_len = NULL;
1146   Node* result = NULL;
1147 
1148   switch (opcode) {
1149   case Op_StrIndexOf:
1150     // Get length of string 2
1151     str2_len = load_String_length(no_ctrl, str2);
1152 
1153     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1154                                 str1_start, str1_len, str2_start, str2_len);
1155     break;
1156   case Op_StrComp:
1157     // Get length of string 2
1158     str2_len = load_String_length(no_ctrl, str2);
1159 
1160     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1161                              str1_start, str1_len, str2_start, str2_len);
1162     break;
1163   case Op_StrEquals:
1164     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1165                                str1_start, str2_start, str1_len);
1166     break;
1167   default:
1168     ShouldNotReachHere();
1169     return NULL;
1170   }
1171 
1172   // All these intrinsics have checks.
1173   C->set_has_split_ifs(true); // Has chance for split-if optimization
1174 
1175   return _gvn.transform(result);
1176 }
1177 
1178 // Helper method for String intrinsic functions. This version is called
1179 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1180 // to Int nodes containing the lenghts of str1 and str2.
1181 //
1182 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1183   Node* result = NULL;
1184   switch (opcode) {
1185   case Op_StrIndexOf:
1186     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1187                                 str1_start, cnt1, str2_start, cnt2);
1188     break;
1189   case Op_StrComp:
1190     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1191                              str1_start, cnt1, str2_start, cnt2);
1192     break;
1193   case Op_StrEquals:
1194     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1195                                str1_start, str2_start, cnt1);
1196     break;
1197   default:
1198     ShouldNotReachHere();
1199     return NULL;
1200   }
1201 
1202   // All these intrinsics have checks.
1203   C->set_has_split_ifs(true); // Has chance for split-if optimization
1204 
1205   return _gvn.transform(result);
1206 }
1207 
1208 //------------------------------inline_string_compareTo------------------------
1209 // public int java.lang.String.compareTo(String anotherString);
1210 bool LibraryCallKit::inline_string_compareTo() {
1211   Node* receiver = null_check(argument(0));
1212   Node* arg      = null_check(argument(1));
1213   if (stopped()) {
1214     return true;
1215   }
1216   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1217   return true;
1218 }
1219 
1220 //------------------------------inline_string_equals------------------------
1221 bool LibraryCallKit::inline_string_equals() {
1222   Node* receiver = null_check_receiver();
1223   // NOTE: Do not null check argument for String.equals() because spec
1224   // allows to specify NULL as argument.
1225   Node* argument = this->argument(1);
1226   if (stopped()) {
1227     return true;
1228   }
1229 
1230   // paths (plus control) merge
1231   RegionNode* region = new RegionNode(5);
1232   Node* phi = new PhiNode(region, TypeInt::BOOL);
1233 
1234   // does source == target string?
1235   Node* cmp = _gvn.transform(new CmpPNode(receiver, argument));
1236   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1237 
1238   Node* if_eq = generate_slow_guard(bol, NULL);
1239   if (if_eq != NULL) {
1240     // receiver == argument
1241     phi->init_req(2, intcon(1));
1242     region->init_req(2, if_eq);
1243   }
1244 
1245   // get String klass for instanceOf
1246   ciInstanceKlass* klass = env()->String_klass();
1247 
1248   if (!stopped()) {
1249     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1250     Node* cmp  = _gvn.transform(new CmpINode(inst, intcon(1)));
1251     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1252 
1253     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1254     //instanceOf == true, fallthrough
1255 
1256     if (inst_false != NULL) {
1257       phi->init_req(3, intcon(0));
1258       region->init_req(3, inst_false);
1259     }
1260   }
1261 
1262   if (!stopped()) {
1263     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1264 
1265     // Properly cast the argument to String
1266     argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type));
1267     // This path is taken only when argument's type is String:NotNull.
1268     argument = cast_not_null(argument, false);
1269 
1270     Node* no_ctrl = NULL;
1271 
1272     // Get start addr of receiver
1273     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1274     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1275     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1276 
1277     // Get length of receiver
1278     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1279 
1280     // Get start addr of argument
1281     Node* argument_val    = load_String_value(no_ctrl, argument);
1282     Node* argument_offset = load_String_offset(no_ctrl, argument);
1283     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1284 
1285     // Get length of argument
1286     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1287 
1288     // Check for receiver count != argument count
1289     Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt));
1290     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1291     Node* if_ne = generate_slow_guard(bol, NULL);
1292     if (if_ne != NULL) {
1293       phi->init_req(4, intcon(0));
1294       region->init_req(4, if_ne);
1295     }
1296 
1297     // Check for count == 0 is done by assembler code for StrEquals.
1298 
1299     if (!stopped()) {
1300       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1301       phi->init_req(1, equals);
1302       region->init_req(1, control());
1303     }
1304   }
1305 
1306   // post merge
1307   set_control(_gvn.transform(region));
1308   record_for_igvn(region);
1309 
1310   set_result(_gvn.transform(phi));
1311   return true;
1312 }
1313 
1314 //------------------------------inline_array_equals----------------------------
1315 bool LibraryCallKit::inline_array_equals() {
1316   Node* arg1 = argument(0);
1317   Node* arg2 = argument(1);
1318   set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1319   return true;
1320 }
1321 
1322 // Java version of String.indexOf(constant string)
1323 // class StringDecl {
1324 //   StringDecl(char[] ca) {
1325 //     offset = 0;
1326 //     count = ca.length;
1327 //     value = ca;
1328 //   }
1329 //   int offset;
1330 //   int count;
1331 //   char[] value;
1332 // }
1333 //
1334 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1335 //                             int targetOffset, int cache_i, int md2) {
1336 //   int cache = cache_i;
1337 //   int sourceOffset = string_object.offset;
1338 //   int sourceCount = string_object.count;
1339 //   int targetCount = target_object.length;
1340 //
1341 //   int targetCountLess1 = targetCount - 1;
1342 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1343 //
1344 //   char[] source = string_object.value;
1345 //   char[] target = target_object;
1346 //   int lastChar = target[targetCountLess1];
1347 //
1348 //  outer_loop:
1349 //   for (int i = sourceOffset; i < sourceEnd; ) {
1350 //     int src = source[i + targetCountLess1];
1351 //     if (src == lastChar) {
1352 //       // With random strings and a 4-character alphabet,
1353 //       // reverse matching at this point sets up 0.8% fewer
1354 //       // frames, but (paradoxically) makes 0.3% more probes.
1355 //       // Since those probes are nearer the lastChar probe,
1356 //       // there is may be a net D$ win with reverse matching.
1357 //       // But, reversing loop inhibits unroll of inner loop
1358 //       // for unknown reason.  So, does running outer loop from
1359 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1360 //       for (int j = 0; j < targetCountLess1; j++) {
1361 //         if (target[targetOffset + j] != source[i+j]) {
1362 //           if ((cache & (1 << source[i+j])) == 0) {
1363 //             if (md2 < j+1) {
1364 //               i += j+1;
1365 //               continue outer_loop;
1366 //             }
1367 //           }
1368 //           i += md2;
1369 //           continue outer_loop;
1370 //         }
1371 //       }
1372 //       return i - sourceOffset;
1373 //     }
1374 //     if ((cache & (1 << src)) == 0) {
1375 //       i += targetCountLess1;
1376 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1377 //     i++;
1378 //   }
1379 //   return -1;
1380 // }
1381 
1382 //------------------------------string_indexOf------------------------
1383 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1384                                      jint cache_i, jint md2_i) {
1385 
1386   Node* no_ctrl  = NULL;
1387   float likely   = PROB_LIKELY(0.9);
1388   float unlikely = PROB_UNLIKELY(0.9);
1389 
1390   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1391 
1392   Node* source        = load_String_value(no_ctrl, string_object);
1393   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1394   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1395 
1396   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1397   jint target_length = target_array->length();
1398   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1399   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1400 
1401   // String.value field is known to be @Stable.
1402   if (UseImplicitStableValues) {
1403     target = cast_array_to_stable(target, target_type);
1404   }
1405 
1406   IdealKit kit(this, false, true);
1407 #define __ kit.
1408   Node* zero             = __ ConI(0);
1409   Node* one              = __ ConI(1);
1410   Node* cache            = __ ConI(cache_i);
1411   Node* md2              = __ ConI(md2_i);
1412   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1413   Node* targetCountLess1 = __ ConI(target_length - 1);
1414   Node* targetOffset     = __ ConI(targetOffset_i);
1415   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1416 
1417   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1418   Node* outer_loop = __ make_label(2 /* goto */);
1419   Node* return_    = __ make_label(1);
1420 
1421   __ set(rtn,__ ConI(-1));
1422   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1423        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1424        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1425        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1426        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1427          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1428               Node* tpj = __ AddI(targetOffset, __ value(j));
1429               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1430               Node* ipj  = __ AddI(__ value(i), __ value(j));
1431               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1432               __ if_then(targ, BoolTest::ne, src2); {
1433                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1434                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1435                     __ increment(i, __ AddI(__ value(j), one));
1436                     __ goto_(outer_loop);
1437                   } __ end_if(); __ dead(j);
1438                 }__ end_if(); __ dead(j);
1439                 __ increment(i, md2);
1440                 __ goto_(outer_loop);
1441               }__ end_if();
1442               __ increment(j, one);
1443          }__ end_loop(); __ dead(j);
1444          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1445          __ goto_(return_);
1446        }__ end_if();
1447        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1448          __ increment(i, targetCountLess1);
1449        }__ end_if();
1450        __ increment(i, one);
1451        __ bind(outer_loop);
1452   }__ end_loop(); __ dead(i);
1453   __ bind(return_);
1454 
1455   // Final sync IdealKit and GraphKit.
1456   final_sync(kit);
1457   Node* result = __ value(rtn);
1458 #undef __
1459   C->set_has_loops(true);
1460   return result;
1461 }
1462 
1463 //------------------------------inline_string_indexOf------------------------
1464 bool LibraryCallKit::inline_string_indexOf() {
1465   Node* receiver = argument(0);
1466   Node* arg      = argument(1);
1467 
1468   Node* result;
1469   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1470       UseSSE42Intrinsics) {
1471     // Generate SSE4.2 version of indexOf
1472     // We currently only have match rules that use SSE4.2
1473 
1474     receiver = null_check(receiver);
1475     arg      = null_check(arg);
1476     if (stopped()) {
1477       return true;
1478     }
1479 
1480     // Make the merge point
1481     RegionNode* result_rgn = new RegionNode(4);
1482     Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1483     Node* no_ctrl  = NULL;
1484 
1485     // Get start addr of source string
1486     Node* source = load_String_value(no_ctrl, receiver);
1487     Node* source_offset = load_String_offset(no_ctrl, receiver);
1488     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1489 
1490     // Get length of source string
1491     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1492 
1493     // Get start addr of substring
1494     Node* substr = load_String_value(no_ctrl, arg);
1495     Node* substr_offset = load_String_offset(no_ctrl, arg);
1496     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1497 
1498     // Get length of source string
1499     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1500 
1501     // Check for substr count > string count
1502     Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt));
1503     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1504     Node* if_gt = generate_slow_guard(bol, NULL);
1505     if (if_gt != NULL) {
1506       result_phi->init_req(2, intcon(-1));
1507       result_rgn->init_req(2, if_gt);
1508     }
1509 
1510     if (!stopped()) {
1511       // Check for substr count == 0
1512       cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0)));
1513       bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1514       Node* if_zero = generate_slow_guard(bol, NULL);
1515       if (if_zero != NULL) {
1516         result_phi->init_req(3, intcon(0));
1517         result_rgn->init_req(3, if_zero);
1518       }
1519     }
1520 
1521     if (!stopped()) {
1522       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1523       result_phi->init_req(1, result);
1524       result_rgn->init_req(1, control());
1525     }
1526     set_control(_gvn.transform(result_rgn));
1527     record_for_igvn(result_rgn);
1528     result = _gvn.transform(result_phi);
1529 
1530   } else { // Use LibraryCallKit::string_indexOf
1531     // don't intrinsify if argument isn't a constant string.
1532     if (!arg->is_Con()) {
1533      return false;
1534     }
1535     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1536     if (str_type == NULL) {
1537       return false;
1538     }
1539     ciInstanceKlass* klass = env()->String_klass();
1540     ciObject* str_const = str_type->const_oop();
1541     if (str_const == NULL || str_const->klass() != klass) {
1542       return false;
1543     }
1544     ciInstance* str = str_const->as_instance();
1545     assert(str != NULL, "must be instance");
1546 
1547     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1548     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1549 
1550     int o;
1551     int c;
1552     if (java_lang_String::has_offset_field()) {
1553       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1554       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1555     } else {
1556       o = 0;
1557       c = pat->length();
1558     }
1559 
1560     // constant strings have no offset and count == length which
1561     // simplifies the resulting code somewhat so lets optimize for that.
1562     if (o != 0 || c != pat->length()) {
1563      return false;
1564     }
1565 
1566     receiver = null_check(receiver, T_OBJECT);
1567     // NOTE: No null check on the argument is needed since it's a constant String oop.
1568     if (stopped()) {
1569       return true;
1570     }
1571 
1572     // The null string as a pattern always returns 0 (match at beginning of string)
1573     if (c == 0) {
1574       set_result(intcon(0));
1575       return true;
1576     }
1577 
1578     // Generate default indexOf
1579     jchar lastChar = pat->char_at(o + (c - 1));
1580     int cache = 0;
1581     int i;
1582     for (i = 0; i < c - 1; i++) {
1583       assert(i < pat->length(), "out of range");
1584       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1585     }
1586 
1587     int md2 = c;
1588     for (i = 0; i < c - 1; i++) {
1589       assert(i < pat->length(), "out of range");
1590       if (pat->char_at(o + i) == lastChar) {
1591         md2 = (c - 1) - i;
1592       }
1593     }
1594 
1595     result = string_indexOf(receiver, pat, o, cache, md2);
1596   }
1597   set_result(result);
1598   return true;
1599 }
1600 
1601 //--------------------------round_double_node--------------------------------
1602 // Round a double node if necessary.
1603 Node* LibraryCallKit::round_double_node(Node* n) {
1604   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1605     n = _gvn.transform(new RoundDoubleNode(0, n));
1606   return n;
1607 }
1608 
1609 //------------------------------inline_math-----------------------------------
1610 // public static double Math.abs(double)
1611 // public static double Math.sqrt(double)
1612 // public static double Math.log(double)
1613 // public static double Math.log10(double)
1614 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1615   Node* arg = round_double_node(argument(0));
1616   Node* n;
1617   switch (id) {
1618   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1619   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1620   case vmIntrinsics::_dlog:   n = new LogDNode(C, control(),   arg);  break;
1621   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1622   default:  fatal_unexpected_iid(id);  break;
1623   }
1624   set_result(_gvn.transform(n));
1625   return true;
1626 }
1627 
1628 //------------------------------inline_trig----------------------------------
1629 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1630 // argument reduction which will turn into a fast/slow diamond.
1631 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1632   Node* arg = round_double_node(argument(0));
1633   Node* n = NULL;
1634 
1635   switch (id) {
1636   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1637   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1638   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1639   default:  fatal_unexpected_iid(id);  break;
1640   }
1641   n = _gvn.transform(n);
1642 
1643   // Rounding required?  Check for argument reduction!
1644   if (Matcher::strict_fp_requires_explicit_rounding) {
1645     static const double     pi_4 =  0.7853981633974483;
1646     static const double neg_pi_4 = -0.7853981633974483;
1647     // pi/2 in 80-bit extended precision
1648     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1649     // -pi/2 in 80-bit extended precision
1650     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1651     // Cutoff value for using this argument reduction technique
1652     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1653     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1654 
1655     // Pseudocode for sin:
1656     // if (x <= Math.PI / 4.0) {
1657     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1658     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1659     // } else {
1660     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1661     // }
1662     // return StrictMath.sin(x);
1663 
1664     // Pseudocode for cos:
1665     // if (x <= Math.PI / 4.0) {
1666     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1667     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1668     // } else {
1669     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1670     // }
1671     // return StrictMath.cos(x);
1672 
1673     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1674     // requires a special machine instruction to load it.  Instead we'll try
1675     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1676     // probably do the math inside the SIN encoding.
1677 
1678     // Make the merge point
1679     RegionNode* r = new RegionNode(3);
1680     Node* phi = new PhiNode(r, Type::DOUBLE);
1681 
1682     // Flatten arg so we need only 1 test
1683     Node *abs = _gvn.transform(new AbsDNode(arg));
1684     // Node for PI/4 constant
1685     Node *pi4 = makecon(TypeD::make(pi_4));
1686     // Check PI/4 : abs(arg)
1687     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1688     // Check: If PI/4 < abs(arg) then go slow
1689     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1690     // Branch either way
1691     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1692     set_control(opt_iff(r,iff));
1693 
1694     // Set fast path result
1695     phi->init_req(2, n);
1696 
1697     // Slow path - non-blocking leaf call
1698     Node* call = NULL;
1699     switch (id) {
1700     case vmIntrinsics::_dsin:
1701       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1702                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1703                                "Sin", NULL, arg, top());
1704       break;
1705     case vmIntrinsics::_dcos:
1706       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1707                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1708                                "Cos", NULL, arg, top());
1709       break;
1710     case vmIntrinsics::_dtan:
1711       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1712                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1713                                "Tan", NULL, arg, top());
1714       break;
1715     }
1716     assert(control()->in(0) == call, "");
1717     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1718     r->init_req(1, control());
1719     phi->init_req(1, slow_result);
1720 
1721     // Post-merge
1722     set_control(_gvn.transform(r));
1723     record_for_igvn(r);
1724     n = _gvn.transform(phi);
1725 
1726     C->set_has_split_ifs(true); // Has chance for split-if optimization
1727   }
1728   set_result(n);
1729   return true;
1730 }
1731 
1732 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1733   //-------------------
1734   //result=(result.isNaN())? funcAddr():result;
1735   // Check: If isNaN() by checking result!=result? then either trap
1736   // or go to runtime
1737   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1738   // Build the boolean node
1739   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1740 
1741   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1742     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1743       // The pow or exp intrinsic returned a NaN, which requires a call
1744       // to the runtime.  Recompile with the runtime call.
1745       uncommon_trap(Deoptimization::Reason_intrinsic,
1746                     Deoptimization::Action_make_not_entrant);
1747     }
1748     return result;
1749   } else {
1750     // If this inlining ever returned NaN in the past, we compile a call
1751     // to the runtime to properly handle corner cases
1752 
1753     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1754     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1755     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1756 
1757     if (!if_slow->is_top()) {
1758       RegionNode* result_region = new RegionNode(3);
1759       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1760 
1761       result_region->init_req(1, if_fast);
1762       result_val->init_req(1, result);
1763 
1764       set_control(if_slow);
1765 
1766       const TypePtr* no_memory_effects = NULL;
1767       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1768                                    no_memory_effects,
1769                                    x, top(), y, y ? top() : NULL);
1770       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1771 #ifdef ASSERT
1772       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1773       assert(value_top == top(), "second value must be top");
1774 #endif
1775 
1776       result_region->init_req(2, control());
1777       result_val->init_req(2, value);
1778       set_control(_gvn.transform(result_region));
1779       return _gvn.transform(result_val);
1780     } else {
1781       return result;
1782     }
1783   }
1784 }
1785 
1786 //------------------------------inline_exp-------------------------------------
1787 // Inline exp instructions, if possible.  The Intel hardware only misses
1788 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1789 bool LibraryCallKit::inline_exp() {
1790   Node* arg = round_double_node(argument(0));
1791   Node* n   = _gvn.transform(new ExpDNode(C, control(), arg));
1792 
1793   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1794   set_result(n);
1795 
1796   C->set_has_split_ifs(true); // Has chance for split-if optimization
1797   return true;
1798 }
1799 
1800 //------------------------------inline_pow-------------------------------------
1801 // Inline power instructions, if possible.
1802 bool LibraryCallKit::inline_pow() {
1803   // Pseudocode for pow
1804   // if (y == 2) {
1805   //   return x * x;
1806   // } else {
1807   //   if (x <= 0.0) {
1808   //     long longy = (long)y;
1809   //     if ((double)longy == y) { // if y is long
1810   //       if (y + 1 == y) longy = 0; // huge number: even
1811   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1812   //     } else {
1813   //       result = NaN;
1814   //     }
1815   //   } else {
1816   //     result = DPow(x,y);
1817   //   }
1818   //   if (result != result)?  {
1819   //     result = uncommon_trap() or runtime_call();
1820   //   }
1821   //   return result;
1822   // }
1823 
1824   Node* x = round_double_node(argument(0));
1825   Node* y = round_double_node(argument(2));
1826 
1827   Node* result = NULL;
1828 
1829   Node*   const_two_node = makecon(TypeD::make(2.0));
1830   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1831   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1832   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1833   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1834   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1835 
1836   RegionNode* region_node = new RegionNode(3);
1837   region_node->init_req(1, if_true);
1838 
1839   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1840   // special case for x^y where y == 2, we can convert it to x * x
1841   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1842 
1843   // set control to if_false since we will now process the false branch
1844   set_control(if_false);
1845 
1846   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1847     // Short form: skip the fancy tests and just check for NaN result.
1848     result = _gvn.transform(new PowDNode(C, control(), x, y));
1849   } else {
1850     // If this inlining ever returned NaN in the past, include all
1851     // checks + call to the runtime.
1852 
1853     // Set the merge point for If node with condition of (x <= 0.0)
1854     // There are four possible paths to region node and phi node
1855     RegionNode *r = new RegionNode(4);
1856     Node *phi = new PhiNode(r, Type::DOUBLE);
1857 
1858     // Build the first if node: if (x <= 0.0)
1859     // Node for 0 constant
1860     Node *zeronode = makecon(TypeD::ZERO);
1861     // Check x:0
1862     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1863     // Check: If (x<=0) then go complex path
1864     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1865     // Branch either way
1866     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1867     // Fast path taken; set region slot 3
1868     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1869     r->init_req(3,fast_taken); // Capture fast-control
1870 
1871     // Fast path not-taken, i.e. slow path
1872     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1873 
1874     // Set fast path result
1875     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1876     phi->init_req(3, fast_result);
1877 
1878     // Complex path
1879     // Build the second if node (if y is long)
1880     // Node for (long)y
1881     Node *longy = _gvn.transform(new ConvD2LNode(y));
1882     // Node for (double)((long) y)
1883     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1884     // Check (double)((long) y) : y
1885     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1886     // Check if (y isn't long) then go to slow path
1887 
1888     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1889     // Branch either way
1890     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1891     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1892 
1893     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1894 
1895     // Calculate DPow(abs(x), y)*(1 & (long)y)
1896     // Node for constant 1
1897     Node *conone = longcon(1);
1898     // 1& (long)y
1899     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1900 
1901     // A huge number is always even. Detect a huge number by checking
1902     // if y + 1 == y and set integer to be tested for parity to 0.
1903     // Required for corner case:
1904     // (long)9.223372036854776E18 = max_jlong
1905     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1906     // max_jlong is odd but 9.223372036854776E18 is even
1907     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1908     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1909     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1910     Node* correctedsign = NULL;
1911     if (ConditionalMoveLimit != 0) {
1912       correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1913     } else {
1914       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1915       RegionNode *r = new RegionNode(3);
1916       Node *phi = new PhiNode(r, TypeLong::LONG);
1917       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1918       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1919       phi->init_req(1, signnode);
1920       phi->init_req(2, longcon(0));
1921       correctedsign = _gvn.transform(phi);
1922       ylong_path = _gvn.transform(r);
1923       record_for_igvn(r);
1924     }
1925 
1926     // zero node
1927     Node *conzero = longcon(0);
1928     // Check (1&(long)y)==0?
1929     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1930     // Check if (1&(long)y)!=0?, if so the result is negative
1931     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1932     // abs(x)
1933     Node *absx=_gvn.transform(new AbsDNode(x));
1934     // abs(x)^y
1935     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1936     // -abs(x)^y
1937     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1938     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1939     Node *signresult = NULL;
1940     if (ConditionalMoveLimit != 0) {
1941       signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1942     } else {
1943       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1944       RegionNode *r = new RegionNode(3);
1945       Node *phi = new PhiNode(r, Type::DOUBLE);
1946       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1947       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1948       phi->init_req(1, absxpowy);
1949       phi->init_req(2, negabsxpowy);
1950       signresult = _gvn.transform(phi);
1951       ylong_path = _gvn.transform(r);
1952       record_for_igvn(r);
1953     }
1954     // Set complex path fast result
1955     r->init_req(2, ylong_path);
1956     phi->init_req(2, signresult);
1957 
1958     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1959     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1960     r->init_req(1,slow_path);
1961     phi->init_req(1,slow_result);
1962 
1963     // Post merge
1964     set_control(_gvn.transform(r));
1965     record_for_igvn(r);
1966     result = _gvn.transform(phi);
1967   }
1968 
1969   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1970 
1971   // control from finish_pow_exp is now input to the region node
1972   region_node->set_req(2, control());
1973   // the result from finish_pow_exp is now input to the phi node
1974   phi_node->init_req(2, result);
1975   set_control(_gvn.transform(region_node));
1976   record_for_igvn(region_node);
1977   set_result(_gvn.transform(phi_node));
1978 
1979   C->set_has_split_ifs(true); // Has chance for split-if optimization
1980   return true;
1981 }
1982 
1983 //------------------------------runtime_math-----------------------------
1984 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1985   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1986          "must be (DD)D or (D)D type");
1987 
1988   // Inputs
1989   Node* a = round_double_node(argument(0));
1990   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1991 
1992   const TypePtr* no_memory_effects = NULL;
1993   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1994                                  no_memory_effects,
1995                                  a, top(), b, b ? top() : NULL);
1996   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1997 #ifdef ASSERT
1998   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1999   assert(value_top == top(), "second value must be top");
2000 #endif
2001 
2002   set_result(value);
2003   return true;
2004 }
2005 
2006 //------------------------------inline_math_native-----------------------------
2007 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
2008 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
2009   switch (id) {
2010     // These intrinsics are not properly supported on all hardware
2011   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
2012     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
2013   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
2014     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
2015   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
2016     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
2017 
2018   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
2019     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
2020   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
2021     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
2022 
2023     // These intrinsics are supported on all hardware
2024   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
2025   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
2026 
2027   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
2028     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
2029   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
2030     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
2031 #undef FN_PTR
2032 
2033    // These intrinsics are not yet correctly implemented
2034   case vmIntrinsics::_datan2:
2035     return false;
2036 
2037   default:
2038     fatal_unexpected_iid(id);
2039     return false;
2040   }
2041 }
2042 
2043 static bool is_simple_name(Node* n) {
2044   return (n->req() == 1         // constant
2045           || (n->is_Type() && n->as_Type()->type()->singleton())
2046           || n->is_Proj()       // parameter or return value
2047           || n->is_Phi()        // local of some sort
2048           );
2049 }
2050 
2051 //----------------------------inline_min_max-----------------------------------
2052 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2053   set_result(generate_min_max(id, argument(0), argument(1)));
2054   return true;
2055 }
2056 
2057 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2058   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2059   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2060   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2061   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2062 
2063   {
2064     PreserveJVMState pjvms(this);
2065     PreserveReexecuteState preexecs(this);
2066     jvms()->set_should_reexecute(true);
2067 
2068     set_control(slow_path);
2069     set_i_o(i_o());
2070 
2071     uncommon_trap(Deoptimization::Reason_intrinsic,
2072                   Deoptimization::Action_none);
2073   }
2074 
2075   set_control(fast_path);
2076   set_result(math);
2077 }
2078 
2079 template <typename OverflowOp>
2080 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2081   typedef typename OverflowOp::MathOp MathOp;
2082 
2083   MathOp* mathOp = new MathOp(arg1, arg2);
2084   Node* operation = _gvn.transform( mathOp );
2085   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2086   inline_math_mathExact(operation, ofcheck);
2087   return true;
2088 }
2089 
2090 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2091   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2092 }
2093 
2094 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2095   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2096 }
2097 
2098 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2099   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2100 }
2101 
2102 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2103   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2104 }
2105 
2106 bool LibraryCallKit::inline_math_negateExactI() {
2107   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2108 }
2109 
2110 bool LibraryCallKit::inline_math_negateExactL() {
2111   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2112 }
2113 
2114 bool LibraryCallKit::inline_math_multiplyExactI() {
2115   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2116 }
2117 
2118 bool LibraryCallKit::inline_math_multiplyExactL() {
2119   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2120 }
2121 
2122 Node*
2123 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2124   // These are the candidate return value:
2125   Node* xvalue = x0;
2126   Node* yvalue = y0;
2127 
2128   if (xvalue == yvalue) {
2129     return xvalue;
2130   }
2131 
2132   bool want_max = (id == vmIntrinsics::_max);
2133 
2134   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2135   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2136   if (txvalue == NULL || tyvalue == NULL)  return top();
2137   // This is not really necessary, but it is consistent with a
2138   // hypothetical MaxINode::Value method:
2139   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2140 
2141   // %%% This folding logic should (ideally) be in a different place.
2142   // Some should be inside IfNode, and there to be a more reliable
2143   // transformation of ?: style patterns into cmoves.  We also want
2144   // more powerful optimizations around cmove and min/max.
2145 
2146   // Try to find a dominating comparison of these guys.
2147   // It can simplify the index computation for Arrays.copyOf
2148   // and similar uses of System.arraycopy.
2149   // First, compute the normalized version of CmpI(x, y).
2150   int   cmp_op = Op_CmpI;
2151   Node* xkey = xvalue;
2152   Node* ykey = yvalue;
2153   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2154   if (ideal_cmpxy->is_Cmp()) {
2155     // E.g., if we have CmpI(length - offset, count),
2156     // it might idealize to CmpI(length, count + offset)
2157     cmp_op = ideal_cmpxy->Opcode();
2158     xkey = ideal_cmpxy->in(1);
2159     ykey = ideal_cmpxy->in(2);
2160   }
2161 
2162   // Start by locating any relevant comparisons.
2163   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2164   Node* cmpxy = NULL;
2165   Node* cmpyx = NULL;
2166   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2167     Node* cmp = start_from->fast_out(k);
2168     if (cmp->outcnt() > 0 &&            // must have prior uses
2169         cmp->in(0) == NULL &&           // must be context-independent
2170         cmp->Opcode() == cmp_op) {      // right kind of compare
2171       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2172       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2173     }
2174   }
2175 
2176   const int NCMPS = 2;
2177   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2178   int cmpn;
2179   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2180     if (cmps[cmpn] != NULL)  break;     // find a result
2181   }
2182   if (cmpn < NCMPS) {
2183     // Look for a dominating test that tells us the min and max.
2184     int depth = 0;                // Limit search depth for speed
2185     Node* dom = control();
2186     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2187       if (++depth >= 100)  break;
2188       Node* ifproj = dom;
2189       if (!ifproj->is_Proj())  continue;
2190       Node* iff = ifproj->in(0);
2191       if (!iff->is_If())  continue;
2192       Node* bol = iff->in(1);
2193       if (!bol->is_Bool())  continue;
2194       Node* cmp = bol->in(1);
2195       if (cmp == NULL)  continue;
2196       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2197         if (cmps[cmpn] == cmp)  break;
2198       if (cmpn == NCMPS)  continue;
2199       BoolTest::mask btest = bol->as_Bool()->_test._test;
2200       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2201       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2202       // At this point, we know that 'x btest y' is true.
2203       switch (btest) {
2204       case BoolTest::eq:
2205         // They are proven equal, so we can collapse the min/max.
2206         // Either value is the answer.  Choose the simpler.
2207         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2208           return yvalue;
2209         return xvalue;
2210       case BoolTest::lt:          // x < y
2211       case BoolTest::le:          // x <= y
2212         return (want_max ? yvalue : xvalue);
2213       case BoolTest::gt:          // x > y
2214       case BoolTest::ge:          // x >= y
2215         return (want_max ? xvalue : yvalue);
2216       }
2217     }
2218   }
2219 
2220   // We failed to find a dominating test.
2221   // Let's pick a test that might GVN with prior tests.
2222   Node*          best_bol   = NULL;
2223   BoolTest::mask best_btest = BoolTest::illegal;
2224   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2225     Node* cmp = cmps[cmpn];
2226     if (cmp == NULL)  continue;
2227     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2228       Node* bol = cmp->fast_out(j);
2229       if (!bol->is_Bool())  continue;
2230       BoolTest::mask btest = bol->as_Bool()->_test._test;
2231       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2232       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2233       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2234         best_bol   = bol->as_Bool();
2235         best_btest = btest;
2236       }
2237     }
2238   }
2239 
2240   Node* answer_if_true  = NULL;
2241   Node* answer_if_false = NULL;
2242   switch (best_btest) {
2243   default:
2244     if (cmpxy == NULL)
2245       cmpxy = ideal_cmpxy;
2246     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2247     // and fall through:
2248   case BoolTest::lt:          // x < y
2249   case BoolTest::le:          // x <= y
2250     answer_if_true  = (want_max ? yvalue : xvalue);
2251     answer_if_false = (want_max ? xvalue : yvalue);
2252     break;
2253   case BoolTest::gt:          // x > y
2254   case BoolTest::ge:          // x >= y
2255     answer_if_true  = (want_max ? xvalue : yvalue);
2256     answer_if_false = (want_max ? yvalue : xvalue);
2257     break;
2258   }
2259 
2260   jint hi, lo;
2261   if (want_max) {
2262     // We can sharpen the minimum.
2263     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2264     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2265   } else {
2266     // We can sharpen the maximum.
2267     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2268     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2269   }
2270 
2271   // Use a flow-free graph structure, to avoid creating excess control edges
2272   // which could hinder other optimizations.
2273   // Since Math.min/max is often used with arraycopy, we want
2274   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2275   Node* cmov = CMoveNode::make(NULL, best_bol,
2276                                answer_if_false, answer_if_true,
2277                                TypeInt::make(lo, hi, widen));
2278 
2279   return _gvn.transform(cmov);
2280 
2281   /*
2282   // This is not as desirable as it may seem, since Min and Max
2283   // nodes do not have a full set of optimizations.
2284   // And they would interfere, anyway, with 'if' optimizations
2285   // and with CMoveI canonical forms.
2286   switch (id) {
2287   case vmIntrinsics::_min:
2288     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2289   case vmIntrinsics::_max:
2290     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2291   default:
2292     ShouldNotReachHere();
2293   }
2294   */
2295 }
2296 
2297 inline int
2298 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2299   const TypePtr* base_type = TypePtr::NULL_PTR;
2300   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2301   if (base_type == NULL) {
2302     // Unknown type.
2303     return Type::AnyPtr;
2304   } else if (base_type == TypePtr::NULL_PTR) {
2305     // Since this is a NULL+long form, we have to switch to a rawptr.
2306     base   = _gvn.transform(new CastX2PNode(offset));
2307     offset = MakeConX(0);
2308     return Type::RawPtr;
2309   } else if (base_type->base() == Type::RawPtr) {
2310     return Type::RawPtr;
2311   } else if (base_type->isa_oopptr()) {
2312     // Base is never null => always a heap address.
2313     if (base_type->ptr() == TypePtr::NotNull) {
2314       return Type::OopPtr;
2315     }
2316     // Offset is small => always a heap address.
2317     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2318     if (offset_type != NULL &&
2319         base_type->offset() == 0 &&     // (should always be?)
2320         offset_type->_lo >= 0 &&
2321         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2322       return Type::OopPtr;
2323     }
2324     // Otherwise, it might either be oop+off or NULL+addr.
2325     return Type::AnyPtr;
2326   } else {
2327     // No information:
2328     return Type::AnyPtr;
2329   }
2330 }
2331 
2332 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2333   int kind = classify_unsafe_addr(base, offset);
2334   if (kind == Type::RawPtr) {
2335     return basic_plus_adr(top(), base, offset);
2336   } else {
2337     return basic_plus_adr(base, offset);
2338   }
2339 }
2340 
2341 //--------------------------inline_number_methods-----------------------------
2342 // inline int     Integer.numberOfLeadingZeros(int)
2343 // inline int        Long.numberOfLeadingZeros(long)
2344 //
2345 // inline int     Integer.numberOfTrailingZeros(int)
2346 // inline int        Long.numberOfTrailingZeros(long)
2347 //
2348 // inline int     Integer.bitCount(int)
2349 // inline int        Long.bitCount(long)
2350 //
2351 // inline char  Character.reverseBytes(char)
2352 // inline short     Short.reverseBytes(short)
2353 // inline int     Integer.reverseBytes(int)
2354 // inline long       Long.reverseBytes(long)
2355 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2356   Node* arg = argument(0);
2357   Node* n;
2358   switch (id) {
2359   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2360   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2361   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2362   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2363   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2364   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2365   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2366   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2367   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2368   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2369   default:  fatal_unexpected_iid(id);  break;
2370   }
2371   set_result(_gvn.transform(n));
2372   return true;
2373 }
2374 
2375 //----------------------------inline_unsafe_access----------------------------
2376 
2377 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2378 
2379 // Helper that guards and inserts a pre-barrier.
2380 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2381                                         Node* pre_val, bool need_mem_bar) {
2382   // We could be accessing the referent field of a reference object. If so, when G1
2383   // is enabled, we need to log the value in the referent field in an SATB buffer.
2384   // This routine performs some compile time filters and generates suitable
2385   // runtime filters that guard the pre-barrier code.
2386   // Also add memory barrier for non volatile load from the referent field
2387   // to prevent commoning of loads across safepoint.
2388   if (!UseG1GC && !need_mem_bar)
2389     return;
2390 
2391   // Some compile time checks.
2392 
2393   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2394   const TypeX* otype = offset->find_intptr_t_type();
2395   if (otype != NULL && otype->is_con() &&
2396       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2397     // Constant offset but not the reference_offset so just return
2398     return;
2399   }
2400 
2401   // We only need to generate the runtime guards for instances.
2402   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2403   if (btype != NULL) {
2404     if (btype->isa_aryptr()) {
2405       // Array type so nothing to do
2406       return;
2407     }
2408 
2409     const TypeInstPtr* itype = btype->isa_instptr();
2410     if (itype != NULL) {
2411       // Can the klass of base_oop be statically determined to be
2412       // _not_ a sub-class of Reference and _not_ Object?
2413       ciKlass* klass = itype->klass();
2414       if ( klass->is_loaded() &&
2415           !klass->is_subtype_of(env()->Reference_klass()) &&
2416           !env()->Object_klass()->is_subtype_of(klass)) {
2417         return;
2418       }
2419     }
2420   }
2421 
2422   // The compile time filters did not reject base_oop/offset so
2423   // we need to generate the following runtime filters
2424   //
2425   // if (offset == java_lang_ref_Reference::_reference_offset) {
2426   //   if (instance_of(base, java.lang.ref.Reference)) {
2427   //     pre_barrier(_, pre_val, ...);
2428   //   }
2429   // }
2430 
2431   float likely   = PROB_LIKELY(  0.999);
2432   float unlikely = PROB_UNLIKELY(0.999);
2433 
2434   IdealKit ideal(this);
2435 #define __ ideal.
2436 
2437   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2438 
2439   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2440       // Update graphKit memory and control from IdealKit.
2441       sync_kit(ideal);
2442 
2443       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2444       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2445 
2446       // Update IdealKit memory and control from graphKit.
2447       __ sync_kit(this);
2448 
2449       Node* one = __ ConI(1);
2450       // is_instof == 0 if base_oop == NULL
2451       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2452 
2453         // Update graphKit from IdeakKit.
2454         sync_kit(ideal);
2455 
2456         // Use the pre-barrier to record the value in the referent field
2457         pre_barrier(false /* do_load */,
2458                     __ ctrl(),
2459                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2460                     pre_val /* pre_val */,
2461                     T_OBJECT);
2462         if (need_mem_bar) {
2463           // Add memory barrier to prevent commoning reads from this field
2464           // across safepoint since GC can change its value.
2465           insert_mem_bar(Op_MemBarCPUOrder);
2466         }
2467         // Update IdealKit from graphKit.
2468         __ sync_kit(this);
2469 
2470       } __ end_if(); // _ref_type != ref_none
2471   } __ end_if(); // offset == referent_offset
2472 
2473   // Final sync IdealKit and GraphKit.
2474   final_sync(ideal);
2475 #undef __
2476 }
2477 
2478 
2479 // Interpret Unsafe.fieldOffset cookies correctly:
2480 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2481 
2482 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2483   // Attempt to infer a sharper value type from the offset and base type.
2484   ciKlass* sharpened_klass = NULL;
2485 
2486   // See if it is an instance field, with an object type.
2487   if (alias_type->field() != NULL) {
2488     assert(!is_native_ptr, "native pointer op cannot use a java address");
2489     if (alias_type->field()->type()->is_klass()) {
2490       sharpened_klass = alias_type->field()->type()->as_klass();
2491     }
2492   }
2493 
2494   // See if it is a narrow oop array.
2495   if (adr_type->isa_aryptr()) {
2496     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2497       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2498       if (elem_type != NULL) {
2499         sharpened_klass = elem_type->klass();
2500       }
2501     }
2502   }
2503 
2504   // The sharpened class might be unloaded if there is no class loader
2505   // contraint in place.
2506   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2507     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2508 
2509 #ifndef PRODUCT
2510     if (C->print_intrinsics() || C->print_inlining()) {
2511       tty->print("  from base type: ");  adr_type->dump();
2512       tty->print("  sharpened value: ");  tjp->dump();
2513     }
2514 #endif
2515     // Sharpen the value type.
2516     return tjp;
2517   }
2518   return NULL;
2519 }
2520 
2521 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2522   if (callee()->is_static())  return false;  // caller must have the capability!
2523 
2524 #ifndef PRODUCT
2525   {
2526     ResourceMark rm;
2527     // Check the signatures.
2528     ciSignature* sig = callee()->signature();
2529 #ifdef ASSERT
2530     if (!is_store) {
2531       // Object getObject(Object base, int/long offset), etc.
2532       BasicType rtype = sig->return_type()->basic_type();
2533       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2534           rtype = T_ADDRESS;  // it is really a C void*
2535       assert(rtype == type, "getter must return the expected value");
2536       if (!is_native_ptr) {
2537         assert(sig->count() == 2, "oop getter has 2 arguments");
2538         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2539         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2540       } else {
2541         assert(sig->count() == 1, "native getter has 1 argument");
2542         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2543       }
2544     } else {
2545       // void putObject(Object base, int/long offset, Object x), etc.
2546       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2547       if (!is_native_ptr) {
2548         assert(sig->count() == 3, "oop putter has 3 arguments");
2549         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2550         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2551       } else {
2552         assert(sig->count() == 2, "native putter has 2 arguments");
2553         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2554       }
2555       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2556       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2557         vtype = T_ADDRESS;  // it is really a C void*
2558       assert(vtype == type, "putter must accept the expected value");
2559     }
2560 #endif // ASSERT
2561  }
2562 #endif //PRODUCT
2563 
2564   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2565 
2566   Node* receiver = argument(0);  // type: oop
2567 
2568   // Build address expression.
2569   Node* adr;
2570   Node* heap_base_oop = top();
2571   Node* offset = top();
2572   Node* val;
2573 
2574   if (!is_native_ptr) {
2575     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2576     Node* base = argument(1);  // type: oop
2577     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2578     offset = argument(2);  // type: long
2579     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2580     // to be plain byte offsets, which are also the same as those accepted
2581     // by oopDesc::field_base.
2582     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2583            "fieldOffset must be byte-scaled");
2584     // 32-bit machines ignore the high half!
2585     offset = ConvL2X(offset);
2586     adr = make_unsafe_address(base, offset);
2587     heap_base_oop = base;
2588     val = is_store ? argument(4) : NULL;
2589   } else {
2590     Node* ptr = argument(1);  // type: long
2591     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2592     adr = make_unsafe_address(NULL, ptr);
2593     val = is_store ? argument(3) : NULL;
2594   }
2595 
2596   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2597 
2598   // First guess at the value type.
2599   const Type *value_type = Type::get_const_basic_type(type);
2600 
2601   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2602   // there was not enough information to nail it down.
2603   Compile::AliasType* alias_type = C->alias_type(adr_type);
2604   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2605 
2606   // We will need memory barriers unless we can determine a unique
2607   // alias category for this reference.  (Note:  If for some reason
2608   // the barriers get omitted and the unsafe reference begins to "pollute"
2609   // the alias analysis of the rest of the graph, either Compile::can_alias
2610   // or Compile::must_alias will throw a diagnostic assert.)
2611   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2612 
2613   // If we are reading the value of the referent field of a Reference
2614   // object (either by using Unsafe directly or through reflection)
2615   // then, if G1 is enabled, we need to record the referent in an
2616   // SATB log buffer using the pre-barrier mechanism.
2617   // Also we need to add memory barrier to prevent commoning reads
2618   // from this field across safepoint since GC can change its value.
2619   bool need_read_barrier = !is_native_ptr && !is_store &&
2620                            offset != top() && heap_base_oop != top();
2621 
2622   if (!is_store && type == T_OBJECT) {
2623     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2624     if (tjp != NULL) {
2625       value_type = tjp;
2626     }
2627   }
2628 
2629   receiver = null_check(receiver);
2630   if (stopped()) {
2631     return true;
2632   }
2633   // Heap pointers get a null-check from the interpreter,
2634   // as a courtesy.  However, this is not guaranteed by Unsafe,
2635   // and it is not possible to fully distinguish unintended nulls
2636   // from intended ones in this API.
2637 
2638   if (is_volatile) {
2639     // We need to emit leading and trailing CPU membars (see below) in
2640     // addition to memory membars when is_volatile. This is a little
2641     // too strong, but avoids the need to insert per-alias-type
2642     // volatile membars (for stores; compare Parse::do_put_xxx), which
2643     // we cannot do effectively here because we probably only have a
2644     // rough approximation of type.
2645     need_mem_bar = true;
2646     // For Stores, place a memory ordering barrier now.
2647     if (is_store) {
2648       insert_mem_bar(Op_MemBarRelease);
2649     } else {
2650       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2651         insert_mem_bar(Op_MemBarVolatile);
2652       }
2653     }
2654   }
2655 
2656   // Memory barrier to prevent normal and 'unsafe' accesses from
2657   // bypassing each other.  Happens after null checks, so the
2658   // exception paths do not take memory state from the memory barrier,
2659   // so there's no problems making a strong assert about mixing users
2660   // of safe & unsafe memory.
2661   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2662 
2663   if (!is_store) {
2664     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2665     // To be valid, unsafe loads may depend on other conditions than
2666     // the one that guards them: pin the Load node
2667     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile);
2668     // load value
2669     switch (type) {
2670     case T_BOOLEAN:
2671     case T_CHAR:
2672     case T_BYTE:
2673     case T_SHORT:
2674     case T_INT:
2675     case T_LONG:
2676     case T_FLOAT:
2677     case T_DOUBLE:
2678       break;
2679     case T_OBJECT:
2680       if (need_read_barrier) {
2681         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2682       }
2683       break;
2684     case T_ADDRESS:
2685       // Cast to an int type.
2686       p = _gvn.transform(new CastP2XNode(NULL, p));
2687       p = ConvX2UL(p);
2688       break;
2689     default:
2690       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2691       break;
2692     }
2693     // The load node has the control of the preceding MemBarCPUOrder.  All
2694     // following nodes will have the control of the MemBarCPUOrder inserted at
2695     // the end of this method.  So, pushing the load onto the stack at a later
2696     // point is fine.
2697     set_result(p);
2698   } else {
2699     // place effect of store into memory
2700     switch (type) {
2701     case T_DOUBLE:
2702       val = dstore_rounding(val);
2703       break;
2704     case T_ADDRESS:
2705       // Repackage the long as a pointer.
2706       val = ConvL2X(val);
2707       val = _gvn.transform(new CastX2PNode(val));
2708       break;
2709     }
2710 
2711     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2712     if (type != T_OBJECT ) {
2713       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2714     } else {
2715       // Possibly an oop being stored to Java heap or native memory
2716       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2717         // oop to Java heap.
2718         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2719       } else {
2720         // We can't tell at compile time if we are storing in the Java heap or outside
2721         // of it. So we need to emit code to conditionally do the proper type of
2722         // store.
2723 
2724         IdealKit ideal(this);
2725 #define __ ideal.
2726         // QQQ who knows what probability is here??
2727         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2728           // Sync IdealKit and graphKit.
2729           sync_kit(ideal);
2730           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2731           // Update IdealKit memory.
2732           __ sync_kit(this);
2733         } __ else_(); {
2734           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2735         } __ end_if();
2736         // Final sync IdealKit and GraphKit.
2737         final_sync(ideal);
2738 #undef __
2739       }
2740     }
2741   }
2742 
2743   if (is_volatile) {
2744     if (!is_store) {
2745       insert_mem_bar(Op_MemBarAcquire);
2746     } else {
2747       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2748         insert_mem_bar(Op_MemBarVolatile);
2749       }
2750     }
2751   }
2752 
2753   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2754 
2755   return true;
2756 }
2757 
2758 //----------------------------inline_unsafe_load_store----------------------------
2759 // This method serves a couple of different customers (depending on LoadStoreKind):
2760 //
2761 // LS_cmpxchg:
2762 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2763 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2764 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2765 //
2766 // LS_xadd:
2767 //   public int  getAndAddInt( Object o, long offset, int  delta)
2768 //   public long getAndAddLong(Object o, long offset, long delta)
2769 //
2770 // LS_xchg:
2771 //   int    getAndSet(Object o, long offset, int    newValue)
2772 //   long   getAndSet(Object o, long offset, long   newValue)
2773 //   Object getAndSet(Object o, long offset, Object newValue)
2774 //
2775 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2776   // This basic scheme here is the same as inline_unsafe_access, but
2777   // differs in enough details that combining them would make the code
2778   // overly confusing.  (This is a true fact! I originally combined
2779   // them, but even I was confused by it!) As much code/comments as
2780   // possible are retained from inline_unsafe_access though to make
2781   // the correspondences clearer. - dl
2782 
2783   if (callee()->is_static())  return false;  // caller must have the capability!
2784 
2785 #ifndef PRODUCT
2786   BasicType rtype;
2787   {
2788     ResourceMark rm;
2789     // Check the signatures.
2790     ciSignature* sig = callee()->signature();
2791     rtype = sig->return_type()->basic_type();
2792     if (kind == LS_xadd || kind == LS_xchg) {
2793       // Check the signatures.
2794 #ifdef ASSERT
2795       assert(rtype == type, "get and set must return the expected type");
2796       assert(sig->count() == 3, "get and set has 3 arguments");
2797       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2798       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2799       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2800 #endif // ASSERT
2801     } else if (kind == LS_cmpxchg) {
2802       // Check the signatures.
2803 #ifdef ASSERT
2804       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2805       assert(sig->count() == 4, "CAS has 4 arguments");
2806       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2807       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2808 #endif // ASSERT
2809     } else {
2810       ShouldNotReachHere();
2811     }
2812   }
2813 #endif //PRODUCT
2814 
2815   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2816 
2817   // Get arguments:
2818   Node* receiver = NULL;
2819   Node* base     = NULL;
2820   Node* offset   = NULL;
2821   Node* oldval   = NULL;
2822   Node* newval   = NULL;
2823   if (kind == LS_cmpxchg) {
2824     const bool two_slot_type = type2size[type] == 2;
2825     receiver = argument(0);  // type: oop
2826     base     = argument(1);  // type: oop
2827     offset   = argument(2);  // type: long
2828     oldval   = argument(4);  // type: oop, int, or long
2829     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2830   } else if (kind == LS_xadd || kind == LS_xchg){
2831     receiver = argument(0);  // type: oop
2832     base     = argument(1);  // type: oop
2833     offset   = argument(2);  // type: long
2834     oldval   = NULL;
2835     newval   = argument(4);  // type: oop, int, or long
2836   }
2837 
2838   // Null check receiver.
2839   receiver = null_check(receiver);
2840   if (stopped()) {
2841     return true;
2842   }
2843 
2844   // Build field offset expression.
2845   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2846   // to be plain byte offsets, which are also the same as those accepted
2847   // by oopDesc::field_base.
2848   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2849   // 32-bit machines ignore the high half of long offsets
2850   offset = ConvL2X(offset);
2851   Node* adr = make_unsafe_address(base, offset);
2852   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2853 
2854   // For CAS, unlike inline_unsafe_access, there seems no point in
2855   // trying to refine types. Just use the coarse types here.
2856   const Type *value_type = Type::get_const_basic_type(type);
2857   Compile::AliasType* alias_type = C->alias_type(adr_type);
2858   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2859 
2860   if (kind == LS_xchg && type == T_OBJECT) {
2861     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2862     if (tjp != NULL) {
2863       value_type = tjp;
2864     }
2865   }
2866 
2867   int alias_idx = C->get_alias_index(adr_type);
2868 
2869   // Memory-model-wise, a LoadStore acts like a little synchronized
2870   // block, so needs barriers on each side.  These don't translate
2871   // into actual barriers on most machines, but we still need rest of
2872   // compiler to respect ordering.
2873 
2874   insert_mem_bar(Op_MemBarRelease);
2875   insert_mem_bar(Op_MemBarCPUOrder);
2876 
2877   // 4984716: MemBars must be inserted before this
2878   //          memory node in order to avoid a false
2879   //          dependency which will confuse the scheduler.
2880   Node *mem = memory(alias_idx);
2881 
2882   // For now, we handle only those cases that actually exist: ints,
2883   // longs, and Object. Adding others should be straightforward.
2884   Node* load_store;
2885   switch(type) {
2886   case T_INT:
2887     if (kind == LS_xadd) {
2888       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2889     } else if (kind == LS_xchg) {
2890       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2891     } else if (kind == LS_cmpxchg) {
2892       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2893     } else {
2894       ShouldNotReachHere();
2895     }
2896     break;
2897   case T_LONG:
2898     if (kind == LS_xadd) {
2899       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2900     } else if (kind == LS_xchg) {
2901       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2902     } else if (kind == LS_cmpxchg) {
2903       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2904     } else {
2905       ShouldNotReachHere();
2906     }
2907     break;
2908   case T_OBJECT:
2909     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2910     // could be delayed during Parse (for example, in adjust_map_after_if()).
2911     // Execute transformation here to avoid barrier generation in such case.
2912     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2913       newval = _gvn.makecon(TypePtr::NULL_PTR);
2914 
2915     // Reference stores need a store barrier.
2916     if (kind == LS_xchg) {
2917       // If pre-barrier must execute before the oop store, old value will require do_load here.
2918       if (!can_move_pre_barrier()) {
2919         pre_barrier(true /* do_load*/,
2920                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2921                     NULL /* pre_val*/,
2922                     T_OBJECT);
2923       } // Else move pre_barrier to use load_store value, see below.
2924     } else if (kind == LS_cmpxchg) {
2925       // Same as for newval above:
2926       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2927         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2928       }
2929       // The only known value which might get overwritten is oldval.
2930       pre_barrier(false /* do_load */,
2931                   control(), NULL, NULL, max_juint, NULL, NULL,
2932                   oldval /* pre_val */,
2933                   T_OBJECT);
2934     } else {
2935       ShouldNotReachHere();
2936     }
2937 
2938 #ifdef _LP64
2939     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2940       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2941       if (kind == LS_xchg) {
2942         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2943                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2944       } else {
2945         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2946         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2947         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2948                                                                 newval_enc, oldval_enc));
2949       }
2950     } else
2951 #endif
2952     {
2953       if (kind == LS_xchg) {
2954         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2955       } else {
2956         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2957         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2958       }
2959     }
2960     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2961     break;
2962   default:
2963     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2964     break;
2965   }
2966 
2967   // SCMemProjNodes represent the memory state of a LoadStore. Their
2968   // main role is to prevent LoadStore nodes from being optimized away
2969   // when their results aren't used.
2970   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2971   set_memory(proj, alias_idx);
2972 
2973   if (type == T_OBJECT && kind == LS_xchg) {
2974 #ifdef _LP64
2975     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2976       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2977     }
2978 #endif
2979     if (can_move_pre_barrier()) {
2980       // Don't need to load pre_val. The old value is returned by load_store.
2981       // The pre_barrier can execute after the xchg as long as no safepoint
2982       // gets inserted between them.
2983       pre_barrier(false /* do_load */,
2984                   control(), NULL, NULL, max_juint, NULL, NULL,
2985                   load_store /* pre_val */,
2986                   T_OBJECT);
2987     }
2988   }
2989 
2990   // Add the trailing membar surrounding the access
2991   insert_mem_bar(Op_MemBarCPUOrder);
2992   insert_mem_bar(Op_MemBarAcquire);
2993 
2994   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2995   set_result(load_store);
2996   return true;
2997 }
2998 
2999 //----------------------------inline_unsafe_ordered_store----------------------
3000 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3001 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3002 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3003 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3004   // This is another variant of inline_unsafe_access, differing in
3005   // that it always issues store-store ("release") barrier and ensures
3006   // store-atomicity (which only matters for "long").
3007 
3008   if (callee()->is_static())  return false;  // caller must have the capability!
3009 
3010 #ifndef PRODUCT
3011   {
3012     ResourceMark rm;
3013     // Check the signatures.
3014     ciSignature* sig = callee()->signature();
3015 #ifdef ASSERT
3016     BasicType rtype = sig->return_type()->basic_type();
3017     assert(rtype == T_VOID, "must return void");
3018     assert(sig->count() == 3, "has 3 arguments");
3019     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3020     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3021 #endif // ASSERT
3022   }
3023 #endif //PRODUCT
3024 
3025   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3026 
3027   // Get arguments:
3028   Node* receiver = argument(0);  // type: oop
3029   Node* base     = argument(1);  // type: oop
3030   Node* offset   = argument(2);  // type: long
3031   Node* val      = argument(4);  // type: oop, int, or long
3032 
3033   // Null check receiver.
3034   receiver = null_check(receiver);
3035   if (stopped()) {
3036     return true;
3037   }
3038 
3039   // Build field offset expression.
3040   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3041   // 32-bit machines ignore the high half of long offsets
3042   offset = ConvL2X(offset);
3043   Node* adr = make_unsafe_address(base, offset);
3044   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3045   const Type *value_type = Type::get_const_basic_type(type);
3046   Compile::AliasType* alias_type = C->alias_type(adr_type);
3047 
3048   insert_mem_bar(Op_MemBarRelease);
3049   insert_mem_bar(Op_MemBarCPUOrder);
3050   // Ensure that the store is atomic for longs:
3051   const bool require_atomic_access = true;
3052   Node* store;
3053   if (type == T_OBJECT) // reference stores need a store barrier.
3054     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3055   else {
3056     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3057   }
3058   insert_mem_bar(Op_MemBarCPUOrder);
3059   return true;
3060 }
3061 
3062 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3063   // Regardless of form, don't allow previous ld/st to move down,
3064   // then issue acquire, release, or volatile mem_bar.
3065   insert_mem_bar(Op_MemBarCPUOrder);
3066   switch(id) {
3067     case vmIntrinsics::_loadFence:
3068       insert_mem_bar(Op_LoadFence);
3069       return true;
3070     case vmIntrinsics::_storeFence:
3071       insert_mem_bar(Op_StoreFence);
3072       return true;
3073     case vmIntrinsics::_fullFence:
3074       insert_mem_bar(Op_MemBarVolatile);
3075       return true;
3076     default:
3077       fatal_unexpected_iid(id);
3078       return false;
3079   }
3080 }
3081 
3082 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3083   if (!kls->is_Con()) {
3084     return true;
3085   }
3086   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3087   if (klsptr == NULL) {
3088     return true;
3089   }
3090   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3091   // don't need a guard for a klass that is already initialized
3092   return !ik->is_initialized();
3093 }
3094 
3095 //----------------------------inline_unsafe_allocate---------------------------
3096 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3097 bool LibraryCallKit::inline_unsafe_allocate() {
3098   if (callee()->is_static())  return false;  // caller must have the capability!
3099 
3100   null_check_receiver();  // null-check, then ignore
3101   Node* cls = null_check(argument(1));
3102   if (stopped())  return true;
3103 
3104   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3105   kls = null_check(kls);
3106   if (stopped())  return true;  // argument was like int.class
3107 
3108   Node* test = NULL;
3109   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3110     // Note:  The argument might still be an illegal value like
3111     // Serializable.class or Object[].class.   The runtime will handle it.
3112     // But we must make an explicit check for initialization.
3113     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3114     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3115     // can generate code to load it as unsigned byte.
3116     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3117     Node* bits = intcon(InstanceKlass::fully_initialized);
3118     test = _gvn.transform(new SubINode(inst, bits));
3119     // The 'test' is non-zero if we need to take a slow path.
3120   }
3121 
3122   Node* obj = new_instance(kls, test);
3123   set_result(obj);
3124   return true;
3125 }
3126 
3127 #ifdef TRACE_HAVE_INTRINSICS
3128 /*
3129  * oop -> myklass
3130  * myklass->trace_id |= USED
3131  * return myklass->trace_id & ~0x3
3132  */
3133 bool LibraryCallKit::inline_native_classID() {
3134   null_check_receiver();  // null-check, then ignore
3135   Node* cls = null_check(argument(1), T_OBJECT);
3136   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3137   kls = null_check(kls, T_OBJECT);
3138   ByteSize offset = TRACE_ID_OFFSET;
3139   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3140   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3141   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3142   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3143   Node* clsused = longcon(0x01l); // set the class bit
3144   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3145 
3146   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3147   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3148   set_result(andl);
3149   return true;
3150 }
3151 
3152 bool LibraryCallKit::inline_native_threadID() {
3153   Node* tls_ptr = NULL;
3154   Node* cur_thr = generate_current_thread(tls_ptr);
3155   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3156   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3157   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3158 
3159   Node* threadid = NULL;
3160   size_t thread_id_size = OSThread::thread_id_size();
3161   if (thread_id_size == (size_t) BytesPerLong) {
3162     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3163   } else if (thread_id_size == (size_t) BytesPerInt) {
3164     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3165   } else {
3166     ShouldNotReachHere();
3167   }
3168   set_result(threadid);
3169   return true;
3170 }
3171 #endif
3172 
3173 //------------------------inline_native_time_funcs--------------
3174 // inline code for System.currentTimeMillis() and System.nanoTime()
3175 // these have the same type and signature
3176 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3177   const TypeFunc* tf = OptoRuntime::void_long_Type();
3178   const TypePtr* no_memory_effects = NULL;
3179   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3180   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3181 #ifdef ASSERT
3182   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3183   assert(value_top == top(), "second value must be top");
3184 #endif
3185   set_result(value);
3186   return true;
3187 }
3188 
3189 //------------------------inline_native_currentThread------------------
3190 bool LibraryCallKit::inline_native_currentThread() {
3191   Node* junk = NULL;
3192   set_result(generate_current_thread(junk));
3193   return true;
3194 }
3195 
3196 //------------------------inline_native_isInterrupted------------------
3197 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3198 bool LibraryCallKit::inline_native_isInterrupted() {
3199   // Add a fast path to t.isInterrupted(clear_int):
3200   //   (t == Thread.current() &&
3201   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3202   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3203   // So, in the common case that the interrupt bit is false,
3204   // we avoid making a call into the VM.  Even if the interrupt bit
3205   // is true, if the clear_int argument is false, we avoid the VM call.
3206   // However, if the receiver is not currentThread, we must call the VM,
3207   // because there must be some locking done around the operation.
3208 
3209   // We only go to the fast case code if we pass two guards.
3210   // Paths which do not pass are accumulated in the slow_region.
3211 
3212   enum {
3213     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3214     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3215     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3216     PATH_LIMIT
3217   };
3218 
3219   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3220   // out of the function.
3221   insert_mem_bar(Op_MemBarCPUOrder);
3222 
3223   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3224   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3225 
3226   RegionNode* slow_region = new RegionNode(1);
3227   record_for_igvn(slow_region);
3228 
3229   // (a) Receiving thread must be the current thread.
3230   Node* rec_thr = argument(0);
3231   Node* tls_ptr = NULL;
3232   Node* cur_thr = generate_current_thread(tls_ptr);
3233   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3234   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3235 
3236   generate_slow_guard(bol_thr, slow_region);
3237 
3238   // (b) Interrupt bit on TLS must be false.
3239   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3240   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3241   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3242 
3243   // Set the control input on the field _interrupted read to prevent it floating up.
3244   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3245   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3246   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3247 
3248   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3249 
3250   // First fast path:  if (!TLS._interrupted) return false;
3251   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3252   result_rgn->init_req(no_int_result_path, false_bit);
3253   result_val->init_req(no_int_result_path, intcon(0));
3254 
3255   // drop through to next case
3256   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3257 
3258 #ifndef TARGET_OS_FAMILY_windows
3259   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3260   Node* clr_arg = argument(1);
3261   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3262   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3263   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3264 
3265   // Second fast path:  ... else if (!clear_int) return true;
3266   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3267   result_rgn->init_req(no_clear_result_path, false_arg);
3268   result_val->init_req(no_clear_result_path, intcon(1));
3269 
3270   // drop through to next case
3271   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3272 #else
3273   // To return true on Windows you must read the _interrupted field
3274   // and check the the event state i.e. take the slow path.
3275 #endif // TARGET_OS_FAMILY_windows
3276 
3277   // (d) Otherwise, go to the slow path.
3278   slow_region->add_req(control());
3279   set_control( _gvn.transform(slow_region));
3280 
3281   if (stopped()) {
3282     // There is no slow path.
3283     result_rgn->init_req(slow_result_path, top());
3284     result_val->init_req(slow_result_path, top());
3285   } else {
3286     // non-virtual because it is a private non-static
3287     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3288 
3289     Node* slow_val = set_results_for_java_call(slow_call);
3290     // this->control() comes from set_results_for_java_call
3291 
3292     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3293     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3294 
3295     // These two phis are pre-filled with copies of of the fast IO and Memory
3296     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3297     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3298 
3299     result_rgn->init_req(slow_result_path, control());
3300     result_io ->init_req(slow_result_path, i_o());
3301     result_mem->init_req(slow_result_path, reset_memory());
3302     result_val->init_req(slow_result_path, slow_val);
3303 
3304     set_all_memory(_gvn.transform(result_mem));
3305     set_i_o(       _gvn.transform(result_io));
3306   }
3307 
3308   C->set_has_split_ifs(true); // Has chance for split-if optimization
3309   set_result(result_rgn, result_val);
3310   return true;
3311 }
3312 
3313 //---------------------------load_mirror_from_klass----------------------------
3314 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3315 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3316   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3317   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3318 }
3319 
3320 //-----------------------load_klass_from_mirror_common-------------------------
3321 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3322 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3323 // and branch to the given path on the region.
3324 // If never_see_null, take an uncommon trap on null, so we can optimistically
3325 // compile for the non-null case.
3326 // If the region is NULL, force never_see_null = true.
3327 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3328                                                     bool never_see_null,
3329                                                     RegionNode* region,
3330                                                     int null_path,
3331                                                     int offset) {
3332   if (region == NULL)  never_see_null = true;
3333   Node* p = basic_plus_adr(mirror, offset);
3334   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3335   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3336   Node* null_ctl = top();
3337   kls = null_check_oop(kls, &null_ctl, never_see_null);
3338   if (region != NULL) {
3339     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3340     region->init_req(null_path, null_ctl);
3341   } else {
3342     assert(null_ctl == top(), "no loose ends");
3343   }
3344   return kls;
3345 }
3346 
3347 //--------------------(inline_native_Class_query helpers)---------------------
3348 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3349 // Fall through if (mods & mask) == bits, take the guard otherwise.
3350 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3351   // Branch around if the given klass has the given modifier bit set.
3352   // Like generate_guard, adds a new path onto the region.
3353   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3354   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3355   Node* mask = intcon(modifier_mask);
3356   Node* bits = intcon(modifier_bits);
3357   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3358   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3359   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3360   return generate_fair_guard(bol, region);
3361 }
3362 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3363   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3364 }
3365 
3366 //-------------------------inline_native_Class_query-------------------
3367 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3368   const Type* return_type = TypeInt::BOOL;
3369   Node* prim_return_value = top();  // what happens if it's a primitive class?
3370   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3371   bool expect_prim = false;     // most of these guys expect to work on refs
3372 
3373   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3374 
3375   Node* mirror = argument(0);
3376   Node* obj    = top();
3377 
3378   switch (id) {
3379   case vmIntrinsics::_isInstance:
3380     // nothing is an instance of a primitive type
3381     prim_return_value = intcon(0);
3382     obj = argument(1);
3383     break;
3384   case vmIntrinsics::_getModifiers:
3385     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3386     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3387     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3388     break;
3389   case vmIntrinsics::_isInterface:
3390     prim_return_value = intcon(0);
3391     break;
3392   case vmIntrinsics::_isArray:
3393     prim_return_value = intcon(0);
3394     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3395     break;
3396   case vmIntrinsics::_isPrimitive:
3397     prim_return_value = intcon(1);
3398     expect_prim = true;  // obviously
3399     break;
3400   case vmIntrinsics::_getSuperclass:
3401     prim_return_value = null();
3402     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3403     break;
3404   case vmIntrinsics::_getClassAccessFlags:
3405     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3406     return_type = TypeInt::INT;  // not bool!  6297094
3407     break;
3408   default:
3409     fatal_unexpected_iid(id);
3410     break;
3411   }
3412 
3413   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3414   if (mirror_con == NULL)  return false;  // cannot happen?
3415 
3416 #ifndef PRODUCT
3417   if (C->print_intrinsics() || C->print_inlining()) {
3418     ciType* k = mirror_con->java_mirror_type();
3419     if (k) {
3420       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3421       k->print_name();
3422       tty->cr();
3423     }
3424   }
3425 #endif
3426 
3427   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3428   RegionNode* region = new RegionNode(PATH_LIMIT);
3429   record_for_igvn(region);
3430   PhiNode* phi = new PhiNode(region, return_type);
3431 
3432   // The mirror will never be null of Reflection.getClassAccessFlags, however
3433   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3434   // if it is. See bug 4774291.
3435 
3436   // For Reflection.getClassAccessFlags(), the null check occurs in
3437   // the wrong place; see inline_unsafe_access(), above, for a similar
3438   // situation.
3439   mirror = null_check(mirror);
3440   // If mirror or obj is dead, only null-path is taken.
3441   if (stopped())  return true;
3442 
3443   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3444 
3445   // Now load the mirror's klass metaobject, and null-check it.
3446   // Side-effects region with the control path if the klass is null.
3447   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3448   // If kls is null, we have a primitive mirror.
3449   phi->init_req(_prim_path, prim_return_value);
3450   if (stopped()) { set_result(region, phi); return true; }
3451   bool safe_for_replace = (region->in(_prim_path) == top());
3452 
3453   Node* p;  // handy temp
3454   Node* null_ctl;
3455 
3456   // Now that we have the non-null klass, we can perform the real query.
3457   // For constant classes, the query will constant-fold in LoadNode::Value.
3458   Node* query_value = top();
3459   switch (id) {
3460   case vmIntrinsics::_isInstance:
3461     // nothing is an instance of a primitive type
3462     query_value = gen_instanceof(obj, kls, safe_for_replace);
3463     break;
3464 
3465   case vmIntrinsics::_getModifiers:
3466     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3467     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3468     break;
3469 
3470   case vmIntrinsics::_isInterface:
3471     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3472     if (generate_interface_guard(kls, region) != NULL)
3473       // A guard was added.  If the guard is taken, it was an interface.
3474       phi->add_req(intcon(1));
3475     // If we fall through, it's a plain class.
3476     query_value = intcon(0);
3477     break;
3478 
3479   case vmIntrinsics::_isArray:
3480     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3481     if (generate_array_guard(kls, region) != NULL)
3482       // A guard was added.  If the guard is taken, it was an array.
3483       phi->add_req(intcon(1));
3484     // If we fall through, it's a plain class.
3485     query_value = intcon(0);
3486     break;
3487 
3488   case vmIntrinsics::_isPrimitive:
3489     query_value = intcon(0); // "normal" path produces false
3490     break;
3491 
3492   case vmIntrinsics::_getSuperclass:
3493     // The rules here are somewhat unfortunate, but we can still do better
3494     // with random logic than with a JNI call.
3495     // Interfaces store null or Object as _super, but must report null.
3496     // Arrays store an intermediate super as _super, but must report Object.
3497     // Other types can report the actual _super.
3498     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3499     if (generate_interface_guard(kls, region) != NULL)
3500       // A guard was added.  If the guard is taken, it was an interface.
3501       phi->add_req(null());
3502     if (generate_array_guard(kls, region) != NULL)
3503       // A guard was added.  If the guard is taken, it was an array.
3504       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3505     // If we fall through, it's a plain class.  Get its _super.
3506     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3507     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3508     null_ctl = top();
3509     kls = null_check_oop(kls, &null_ctl);
3510     if (null_ctl != top()) {
3511       // If the guard is taken, Object.superClass is null (both klass and mirror).
3512       region->add_req(null_ctl);
3513       phi   ->add_req(null());
3514     }
3515     if (!stopped()) {
3516       query_value = load_mirror_from_klass(kls);
3517     }
3518     break;
3519 
3520   case vmIntrinsics::_getClassAccessFlags:
3521     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3522     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3523     break;
3524 
3525   default:
3526     fatal_unexpected_iid(id);
3527     break;
3528   }
3529 
3530   // Fall-through is the normal case of a query to a real class.
3531   phi->init_req(1, query_value);
3532   region->init_req(1, control());
3533 
3534   C->set_has_split_ifs(true); // Has chance for split-if optimization
3535   set_result(region, phi);
3536   return true;
3537 }
3538 
3539 //-------------------------inline_Class_cast-------------------
3540 bool LibraryCallKit::inline_Class_cast() {
3541   Node* mirror = argument(0); // Class
3542   Node* obj    = argument(1);
3543   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3544   if (mirror_con == NULL) {
3545     return false;  // dead path (mirror->is_top()).
3546   }
3547   if (obj == NULL || obj->is_top()) {
3548     return false;  // dead path
3549   }
3550   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3551 
3552   // First, see if Class.cast() can be folded statically.
3553   // java_mirror_type() returns non-null for compile-time Class constants.
3554   ciType* tm = mirror_con->java_mirror_type();
3555   if (tm != NULL && tm->is_klass() &&
3556       tp != NULL && tp->klass() != NULL) {
3557     if (!tp->klass()->is_loaded()) {
3558       // Don't use intrinsic when class is not loaded.
3559       return false;
3560     } else {
3561       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3562       if (static_res == Compile::SSC_always_true) {
3563         // isInstance() is true - fold the code.
3564         set_result(obj);
3565         return true;
3566       } else if (static_res == Compile::SSC_always_false) {
3567         // Don't use intrinsic, have to throw ClassCastException.
3568         // If the reference is null, the non-intrinsic bytecode will
3569         // be optimized appropriately.
3570         return false;
3571       }
3572     }
3573   }
3574 
3575   // Bailout intrinsic and do normal inlining if exception path is frequent.
3576   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3577     return false;
3578   }
3579 
3580   // Generate dynamic checks.
3581   // Class.cast() is java implementation of _checkcast bytecode.
3582   // Do checkcast (Parse::do_checkcast()) optimizations here.
3583 
3584   mirror = null_check(mirror);
3585   // If mirror is dead, only null-path is taken.
3586   if (stopped()) {
3587     return true;
3588   }
3589 
3590   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3591   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3592   RegionNode* region = new RegionNode(PATH_LIMIT);
3593   record_for_igvn(region);
3594 
3595   // Now load the mirror's klass metaobject, and null-check it.
3596   // If kls is null, we have a primitive mirror and
3597   // nothing is an instance of a primitive type.
3598   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3599 
3600   Node* res = top();
3601   if (!stopped()) {
3602     Node* bad_type_ctrl = top();
3603     // Do checkcast optimizations.
3604     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3605     region->init_req(_bad_type_path, bad_type_ctrl);
3606   }
3607   if (region->in(_prim_path) != top() ||
3608       region->in(_bad_type_path) != top()) {
3609     // Let Interpreter throw ClassCastException.
3610     PreserveJVMState pjvms(this);
3611     set_control(_gvn.transform(region));
3612     uncommon_trap(Deoptimization::Reason_intrinsic,
3613                   Deoptimization::Action_maybe_recompile);
3614   }
3615   if (!stopped()) {
3616     set_result(res);
3617   }
3618   return true;
3619 }
3620 
3621 
3622 //--------------------------inline_native_subtype_check------------------------
3623 // This intrinsic takes the JNI calls out of the heart of
3624 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3625 bool LibraryCallKit::inline_native_subtype_check() {
3626   // Pull both arguments off the stack.
3627   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3628   args[0] = argument(0);
3629   args[1] = argument(1);
3630   Node* klasses[2];             // corresponding Klasses: superk, subk
3631   klasses[0] = klasses[1] = top();
3632 
3633   enum {
3634     // A full decision tree on {superc is prim, subc is prim}:
3635     _prim_0_path = 1,           // {P,N} => false
3636                                 // {P,P} & superc!=subc => false
3637     _prim_same_path,            // {P,P} & superc==subc => true
3638     _prim_1_path,               // {N,P} => false
3639     _ref_subtype_path,          // {N,N} & subtype check wins => true
3640     _both_ref_path,             // {N,N} & subtype check loses => false
3641     PATH_LIMIT
3642   };
3643 
3644   RegionNode* region = new RegionNode(PATH_LIMIT);
3645   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3646   record_for_igvn(region);
3647 
3648   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3649   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3650   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3651 
3652   // First null-check both mirrors and load each mirror's klass metaobject.
3653   int which_arg;
3654   for (which_arg = 0; which_arg <= 1; which_arg++) {
3655     Node* arg = args[which_arg];
3656     arg = null_check(arg);
3657     if (stopped())  break;
3658     args[which_arg] = arg;
3659 
3660     Node* p = basic_plus_adr(arg, class_klass_offset);
3661     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3662     klasses[which_arg] = _gvn.transform(kls);
3663   }
3664 
3665   // Having loaded both klasses, test each for null.
3666   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3667   for (which_arg = 0; which_arg <= 1; which_arg++) {
3668     Node* kls = klasses[which_arg];
3669     Node* null_ctl = top();
3670     kls = null_check_oop(kls, &null_ctl, never_see_null);
3671     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3672     region->init_req(prim_path, null_ctl);
3673     if (stopped())  break;
3674     klasses[which_arg] = kls;
3675   }
3676 
3677   if (!stopped()) {
3678     // now we have two reference types, in klasses[0..1]
3679     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3680     Node* superk = klasses[0];  // the receiver
3681     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3682     // now we have a successful reference subtype check
3683     region->set_req(_ref_subtype_path, control());
3684   }
3685 
3686   // If both operands are primitive (both klasses null), then
3687   // we must return true when they are identical primitives.
3688   // It is convenient to test this after the first null klass check.
3689   set_control(region->in(_prim_0_path)); // go back to first null check
3690   if (!stopped()) {
3691     // Since superc is primitive, make a guard for the superc==subc case.
3692     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3693     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3694     generate_guard(bol_eq, region, PROB_FAIR);
3695     if (region->req() == PATH_LIMIT+1) {
3696       // A guard was added.  If the added guard is taken, superc==subc.
3697       region->swap_edges(PATH_LIMIT, _prim_same_path);
3698       region->del_req(PATH_LIMIT);
3699     }
3700     region->set_req(_prim_0_path, control()); // Not equal after all.
3701   }
3702 
3703   // these are the only paths that produce 'true':
3704   phi->set_req(_prim_same_path,   intcon(1));
3705   phi->set_req(_ref_subtype_path, intcon(1));
3706 
3707   // pull together the cases:
3708   assert(region->req() == PATH_LIMIT, "sane region");
3709   for (uint i = 1; i < region->req(); i++) {
3710     Node* ctl = region->in(i);
3711     if (ctl == NULL || ctl == top()) {
3712       region->set_req(i, top());
3713       phi   ->set_req(i, top());
3714     } else if (phi->in(i) == NULL) {
3715       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3716     }
3717   }
3718 
3719   set_control(_gvn.transform(region));
3720   set_result(_gvn.transform(phi));
3721   return true;
3722 }
3723 
3724 //---------------------generate_array_guard_common------------------------
3725 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3726                                                   bool obj_array, bool not_array) {
3727 
3728   if (stopped()) {
3729     return NULL;
3730   }
3731 
3732   // If obj_array/non_array==false/false:
3733   // Branch around if the given klass is in fact an array (either obj or prim).
3734   // If obj_array/non_array==false/true:
3735   // Branch around if the given klass is not an array klass of any kind.
3736   // If obj_array/non_array==true/true:
3737   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3738   // If obj_array/non_array==true/false:
3739   // Branch around if the kls is an oop array (Object[] or subtype)
3740   //
3741   // Like generate_guard, adds a new path onto the region.
3742   jint  layout_con = 0;
3743   Node* layout_val = get_layout_helper(kls, layout_con);
3744   if (layout_val == NULL) {
3745     bool query = (obj_array
3746                   ? Klass::layout_helper_is_objArray(layout_con)
3747                   : Klass::layout_helper_is_array(layout_con));
3748     if (query == not_array) {
3749       return NULL;                       // never a branch
3750     } else {                             // always a branch
3751       Node* always_branch = control();
3752       if (region != NULL)
3753         region->add_req(always_branch);
3754       set_control(top());
3755       return always_branch;
3756     }
3757   }
3758   // Now test the correct condition.
3759   jint  nval = (obj_array
3760                 ? ((jint)Klass::_lh_array_tag_type_value
3761                    <<    Klass::_lh_array_tag_shift)
3762                 : Klass::_lh_neutral_value);
3763   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3764   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3765   // invert the test if we are looking for a non-array
3766   if (not_array)  btest = BoolTest(btest).negate();
3767   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3768   return generate_fair_guard(bol, region);
3769 }
3770 
3771 
3772 //-----------------------inline_native_newArray--------------------------
3773 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3774 bool LibraryCallKit::inline_native_newArray() {
3775   Node* mirror    = argument(0);
3776   Node* count_val = argument(1);
3777 
3778   mirror = null_check(mirror);
3779   // If mirror or obj is dead, only null-path is taken.
3780   if (stopped())  return true;
3781 
3782   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3783   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3784   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3785   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3786   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3787 
3788   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3789   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3790                                                   result_reg, _slow_path);
3791   Node* normal_ctl   = control();
3792   Node* no_array_ctl = result_reg->in(_slow_path);
3793 
3794   // Generate code for the slow case.  We make a call to newArray().
3795   set_control(no_array_ctl);
3796   if (!stopped()) {
3797     // Either the input type is void.class, or else the
3798     // array klass has not yet been cached.  Either the
3799     // ensuing call will throw an exception, or else it
3800     // will cache the array klass for next time.
3801     PreserveJVMState pjvms(this);
3802     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3803     Node* slow_result = set_results_for_java_call(slow_call);
3804     // this->control() comes from set_results_for_java_call
3805     result_reg->set_req(_slow_path, control());
3806     result_val->set_req(_slow_path, slow_result);
3807     result_io ->set_req(_slow_path, i_o());
3808     result_mem->set_req(_slow_path, reset_memory());
3809   }
3810 
3811   set_control(normal_ctl);
3812   if (!stopped()) {
3813     // Normal case:  The array type has been cached in the java.lang.Class.
3814     // The following call works fine even if the array type is polymorphic.
3815     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3816     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3817     result_reg->init_req(_normal_path, control());
3818     result_val->init_req(_normal_path, obj);
3819     result_io ->init_req(_normal_path, i_o());
3820     result_mem->init_req(_normal_path, reset_memory());
3821   }
3822 
3823   // Return the combined state.
3824   set_i_o(        _gvn.transform(result_io)  );
3825   set_all_memory( _gvn.transform(result_mem));
3826 
3827   C->set_has_split_ifs(true); // Has chance for split-if optimization
3828   set_result(result_reg, result_val);
3829   return true;
3830 }
3831 
3832 //----------------------inline_native_getLength--------------------------
3833 // public static native int java.lang.reflect.Array.getLength(Object array);
3834 bool LibraryCallKit::inline_native_getLength() {
3835   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3836 
3837   Node* array = null_check(argument(0));
3838   // If array is dead, only null-path is taken.
3839   if (stopped())  return true;
3840 
3841   // Deoptimize if it is a non-array.
3842   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3843 
3844   if (non_array != NULL) {
3845     PreserveJVMState pjvms(this);
3846     set_control(non_array);
3847     uncommon_trap(Deoptimization::Reason_intrinsic,
3848                   Deoptimization::Action_maybe_recompile);
3849   }
3850 
3851   // If control is dead, only non-array-path is taken.
3852   if (stopped())  return true;
3853 
3854   // The works fine even if the array type is polymorphic.
3855   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3856   Node* result = load_array_length(array);
3857 
3858   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3859   set_result(result);
3860   return true;
3861 }
3862 
3863 //------------------------inline_array_copyOf----------------------------
3864 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3865 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3866 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3867   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3868 
3869   // Get the arguments.
3870   Node* original          = argument(0);
3871   Node* start             = is_copyOfRange? argument(1): intcon(0);
3872   Node* end               = is_copyOfRange? argument(2): argument(1);
3873   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3874 
3875   Node* newcopy;
3876 
3877   // Set the original stack and the reexecute bit for the interpreter to reexecute
3878   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3879   { PreserveReexecuteState preexecs(this);
3880     jvms()->set_should_reexecute(true);
3881 
3882     array_type_mirror = null_check(array_type_mirror);
3883     original          = null_check(original);
3884 
3885     // Check if a null path was taken unconditionally.
3886     if (stopped())  return true;
3887 
3888     Node* orig_length = load_array_length(original);
3889 
3890     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3891     klass_node = null_check(klass_node);
3892 
3893     RegionNode* bailout = new RegionNode(1);
3894     record_for_igvn(bailout);
3895 
3896     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3897     // Bail out if that is so.
3898     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3899     if (not_objArray != NULL) {
3900       // Improve the klass node's type from the new optimistic assumption:
3901       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3902       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3903       Node* cast = new CastPPNode(klass_node, akls);
3904       cast->init_req(0, control());
3905       klass_node = _gvn.transform(cast);
3906     }
3907 
3908     // Bail out if either start or end is negative.
3909     generate_negative_guard(start, bailout, &start);
3910     generate_negative_guard(end,   bailout, &end);
3911 
3912     Node* length = end;
3913     if (_gvn.type(start) != TypeInt::ZERO) {
3914       length = _gvn.transform(new SubINode(end, start));
3915     }
3916 
3917     // Bail out if length is negative.
3918     // Without this the new_array would throw
3919     // NegativeArraySizeException but IllegalArgumentException is what
3920     // should be thrown
3921     generate_negative_guard(length, bailout, &length);
3922 
3923     if (bailout->req() > 1) {
3924       PreserveJVMState pjvms(this);
3925       set_control(_gvn.transform(bailout));
3926       uncommon_trap(Deoptimization::Reason_intrinsic,
3927                     Deoptimization::Action_maybe_recompile);
3928     }
3929 
3930     if (!stopped()) {
3931       // How many elements will we copy from the original?
3932       // The answer is MinI(orig_length - start, length).
3933       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3934       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3935 
3936       // Generate a direct call to the right arraycopy function(s).
3937       // We know the copy is disjoint but we might not know if the
3938       // oop stores need checking.
3939       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3940       // This will fail a store-check if x contains any non-nulls.
3941 
3942       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3943       // loads/stores but it is legal only if we're sure the
3944       // Arrays.copyOf would succeed. So we need all input arguments
3945       // to the copyOf to be validated, including that the copy to the
3946       // new array won't trigger an ArrayStoreException. That subtype
3947       // check can be optimized if we know something on the type of
3948       // the input array from type speculation.
3949       if (_gvn.type(klass_node)->singleton()) {
3950         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3951         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3952 
3953         int test = C->static_subtype_check(superk, subk);
3954         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3955           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3956           if (t_original->speculative_type() != NULL) {
3957             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3958           }
3959         }
3960       }
3961 
3962       bool validated = false;
3963       // Reason_class_check rather than Reason_intrinsic because we
3964       // want to intrinsify even if this traps.
3965       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3966         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3967                                                    klass_node);
3968 
3969         if (not_subtype_ctrl != top()) {
3970           PreserveJVMState pjvms(this);
3971           set_control(not_subtype_ctrl);
3972           uncommon_trap(Deoptimization::Reason_class_check,
3973                         Deoptimization::Action_make_not_entrant);
3974           assert(stopped(), "Should be stopped");
3975         }
3976         validated = true;
3977       }
3978 
3979       if (!stopped()) {
3980         newcopy = new_array(klass_node, length, 0);  // no arguments to push
3981 
3982         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
3983                                                 load_object_klass(original), klass_node);
3984         if (!is_copyOfRange) {
3985           ac->set_copyof(validated);
3986         } else {
3987           ac->set_copyofrange(validated);
3988         }
3989         Node* n = _gvn.transform(ac);
3990         if (n == ac) {
3991           ac->connect_outputs(this);
3992         } else {
3993           assert(validated, "shouldn't transform if all arguments not validated");
3994           set_all_memory(n);
3995         }
3996       }
3997     }
3998   } // original reexecute is set back here
3999 
4000   C->set_has_split_ifs(true); // Has chance for split-if optimization
4001   if (!stopped()) {
4002     set_result(newcopy);
4003   }
4004   return true;
4005 }
4006 
4007 
4008 //----------------------generate_virtual_guard---------------------------
4009 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4010 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4011                                              RegionNode* slow_region) {
4012   ciMethod* method = callee();
4013   int vtable_index = method->vtable_index();
4014   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4015          err_msg_res("bad index %d", vtable_index));
4016   // Get the Method* out of the appropriate vtable entry.
4017   int entry_offset  = (InstanceKlass::vtable_start_offset() +
4018                      vtable_index*vtableEntry::size()) * wordSize +
4019                      vtableEntry::method_offset_in_bytes();
4020   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4021   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4022 
4023   // Compare the target method with the expected method (e.g., Object.hashCode).
4024   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4025 
4026   Node* native_call = makecon(native_call_addr);
4027   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4028   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4029 
4030   return generate_slow_guard(test_native, slow_region);
4031 }
4032 
4033 //-----------------------generate_method_call----------------------------
4034 // Use generate_method_call to make a slow-call to the real
4035 // method if the fast path fails.  An alternative would be to
4036 // use a stub like OptoRuntime::slow_arraycopy_Java.
4037 // This only works for expanding the current library call,
4038 // not another intrinsic.  (E.g., don't use this for making an
4039 // arraycopy call inside of the copyOf intrinsic.)
4040 CallJavaNode*
4041 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4042   // When compiling the intrinsic method itself, do not use this technique.
4043   guarantee(callee() != C->method(), "cannot make slow-call to self");
4044 
4045   ciMethod* method = callee();
4046   // ensure the JVMS we have will be correct for this call
4047   guarantee(method_id == method->intrinsic_id(), "must match");
4048 
4049   const TypeFunc* tf = TypeFunc::make(method);
4050   CallJavaNode* slow_call;
4051   if (is_static) {
4052     assert(!is_virtual, "");
4053     slow_call = new CallStaticJavaNode(C, tf,
4054                            SharedRuntime::get_resolve_static_call_stub(),
4055                            method, bci());
4056   } else if (is_virtual) {
4057     null_check_receiver();
4058     int vtable_index = Method::invalid_vtable_index;
4059     if (UseInlineCaches) {
4060       // Suppress the vtable call
4061     } else {
4062       // hashCode and clone are not a miranda methods,
4063       // so the vtable index is fixed.
4064       // No need to use the linkResolver to get it.
4065        vtable_index = method->vtable_index();
4066        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4067               err_msg_res("bad index %d", vtable_index));
4068     }
4069     slow_call = new CallDynamicJavaNode(tf,
4070                           SharedRuntime::get_resolve_virtual_call_stub(),
4071                           method, vtable_index, bci());
4072   } else {  // neither virtual nor static:  opt_virtual
4073     null_check_receiver();
4074     slow_call = new CallStaticJavaNode(C, tf,
4075                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4076                                 method, bci());
4077     slow_call->set_optimized_virtual(true);
4078   }
4079   set_arguments_for_java_call(slow_call);
4080   set_edges_for_java_call(slow_call);
4081   return slow_call;
4082 }
4083 
4084 
4085 /**
4086  * Build special case code for calls to hashCode on an object. This call may
4087  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4088  * slightly different code.
4089  */
4090 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4091   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4092   assert(!(is_virtual && is_static), "either virtual, special, or static");
4093 
4094   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4095 
4096   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4097   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4098   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4099   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4100   Node* obj = NULL;
4101   if (!is_static) {
4102     // Check for hashing null object
4103     obj = null_check_receiver();
4104     if (stopped())  return true;        // unconditionally null
4105     result_reg->init_req(_null_path, top());
4106     result_val->init_req(_null_path, top());
4107   } else {
4108     // Do a null check, and return zero if null.
4109     // System.identityHashCode(null) == 0
4110     obj = argument(0);
4111     Node* null_ctl = top();
4112     obj = null_check_oop(obj, &null_ctl);
4113     result_reg->init_req(_null_path, null_ctl);
4114     result_val->init_req(_null_path, _gvn.intcon(0));
4115   }
4116 
4117   // Unconditionally null?  Then return right away.
4118   if (stopped()) {
4119     set_control( result_reg->in(_null_path));
4120     if (!stopped())
4121       set_result(result_val->in(_null_path));
4122     return true;
4123   }
4124 
4125   // We only go to the fast case code if we pass a number of guards.  The
4126   // paths which do not pass are accumulated in the slow_region.
4127   RegionNode* slow_region = new RegionNode(1);
4128   record_for_igvn(slow_region);
4129 
4130   // If this is a virtual call, we generate a funny guard.  We pull out
4131   // the vtable entry corresponding to hashCode() from the target object.
4132   // If the target method which we are calling happens to be the native
4133   // Object hashCode() method, we pass the guard.  We do not need this
4134   // guard for non-virtual calls -- the caller is known to be the native
4135   // Object hashCode().
4136   if (is_virtual) {
4137     // After null check, get the object's klass.
4138     Node* obj_klass = load_object_klass(obj);
4139     generate_virtual_guard(obj_klass, slow_region);
4140   }
4141 
4142   // Get the header out of the object, use LoadMarkNode when available
4143   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4144   // The control of the load must be NULL. Otherwise, the load can move before
4145   // the null check after castPP removal.
4146   Node* no_ctrl = NULL;
4147   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4148 
4149   // Test the header to see if it is unlocked.
4150   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4151   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4152   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4153   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4154   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4155 
4156   generate_slow_guard(test_unlocked, slow_region);
4157 
4158   // Get the hash value and check to see that it has been properly assigned.
4159   // We depend on hash_mask being at most 32 bits and avoid the use of
4160   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4161   // vm: see markOop.hpp.
4162   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4163   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4164   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4165   // This hack lets the hash bits live anywhere in the mark object now, as long
4166   // as the shift drops the relevant bits into the low 32 bits.  Note that
4167   // Java spec says that HashCode is an int so there's no point in capturing
4168   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4169   hshifted_header      = ConvX2I(hshifted_header);
4170   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4171 
4172   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4173   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4174   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4175 
4176   generate_slow_guard(test_assigned, slow_region);
4177 
4178   Node* init_mem = reset_memory();
4179   // fill in the rest of the null path:
4180   result_io ->init_req(_null_path, i_o());
4181   result_mem->init_req(_null_path, init_mem);
4182 
4183   result_val->init_req(_fast_path, hash_val);
4184   result_reg->init_req(_fast_path, control());
4185   result_io ->init_req(_fast_path, i_o());
4186   result_mem->init_req(_fast_path, init_mem);
4187 
4188   // Generate code for the slow case.  We make a call to hashCode().
4189   set_control(_gvn.transform(slow_region));
4190   if (!stopped()) {
4191     // No need for PreserveJVMState, because we're using up the present state.
4192     set_all_memory(init_mem);
4193     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4194     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4195     Node* slow_result = set_results_for_java_call(slow_call);
4196     // this->control() comes from set_results_for_java_call
4197     result_reg->init_req(_slow_path, control());
4198     result_val->init_req(_slow_path, slow_result);
4199     result_io  ->set_req(_slow_path, i_o());
4200     result_mem ->set_req(_slow_path, reset_memory());
4201   }
4202 
4203   // Return the combined state.
4204   set_i_o(        _gvn.transform(result_io)  );
4205   set_all_memory( _gvn.transform(result_mem));
4206 
4207   set_result(result_reg, result_val);
4208   return true;
4209 }
4210 
4211 //---------------------------inline_native_getClass----------------------------
4212 // public final native Class<?> java.lang.Object.getClass();
4213 //
4214 // Build special case code for calls to getClass on an object.
4215 bool LibraryCallKit::inline_native_getClass() {
4216   Node* obj = null_check_receiver();
4217   if (stopped())  return true;
4218   set_result(load_mirror_from_klass(load_object_klass(obj)));
4219   return true;
4220 }
4221 
4222 //-----------------inline_native_Reflection_getCallerClass---------------------
4223 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4224 //
4225 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4226 //
4227 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4228 // in that it must skip particular security frames and checks for
4229 // caller sensitive methods.
4230 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4231 #ifndef PRODUCT
4232   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4233     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4234   }
4235 #endif
4236 
4237   if (!jvms()->has_method()) {
4238 #ifndef PRODUCT
4239     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4240       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4241     }
4242 #endif
4243     return false;
4244   }
4245 
4246   // Walk back up the JVM state to find the caller at the required
4247   // depth.
4248   JVMState* caller_jvms = jvms();
4249 
4250   // Cf. JVM_GetCallerClass
4251   // NOTE: Start the loop at depth 1 because the current JVM state does
4252   // not include the Reflection.getCallerClass() frame.
4253   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4254     ciMethod* m = caller_jvms->method();
4255     switch (n) {
4256     case 0:
4257       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4258       break;
4259     case 1:
4260       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4261       if (!m->caller_sensitive()) {
4262 #ifndef PRODUCT
4263         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4264           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4265         }
4266 #endif
4267         return false;  // bail-out; let JVM_GetCallerClass do the work
4268       }
4269       break;
4270     default:
4271       if (!m->is_ignored_by_security_stack_walk()) {
4272         // We have reached the desired frame; return the holder class.
4273         // Acquire method holder as java.lang.Class and push as constant.
4274         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4275         ciInstance* caller_mirror = caller_klass->java_mirror();
4276         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4277 
4278 #ifndef PRODUCT
4279         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4280           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4281           tty->print_cr("  JVM state at this point:");
4282           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4283             ciMethod* m = jvms()->of_depth(i)->method();
4284             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4285           }
4286         }
4287 #endif
4288         return true;
4289       }
4290       break;
4291     }
4292   }
4293 
4294 #ifndef PRODUCT
4295   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4296     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4297     tty->print_cr("  JVM state at this point:");
4298     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4299       ciMethod* m = jvms()->of_depth(i)->method();
4300       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4301     }
4302   }
4303 #endif
4304 
4305   return false;  // bail-out; let JVM_GetCallerClass do the work
4306 }
4307 
4308 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4309   Node* arg = argument(0);
4310   Node* result;
4311 
4312   switch (id) {
4313   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4314   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4315   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4316   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4317 
4318   case vmIntrinsics::_doubleToLongBits: {
4319     // two paths (plus control) merge in a wood
4320     RegionNode *r = new RegionNode(3);
4321     Node *phi = new PhiNode(r, TypeLong::LONG);
4322 
4323     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4324     // Build the boolean node
4325     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4326 
4327     // Branch either way.
4328     // NaN case is less traveled, which makes all the difference.
4329     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4330     Node *opt_isnan = _gvn.transform(ifisnan);
4331     assert( opt_isnan->is_If(), "Expect an IfNode");
4332     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4333     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4334 
4335     set_control(iftrue);
4336 
4337     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4338     Node *slow_result = longcon(nan_bits); // return NaN
4339     phi->init_req(1, _gvn.transform( slow_result ));
4340     r->init_req(1, iftrue);
4341 
4342     // Else fall through
4343     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4344     set_control(iffalse);
4345 
4346     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4347     r->init_req(2, iffalse);
4348 
4349     // Post merge
4350     set_control(_gvn.transform(r));
4351     record_for_igvn(r);
4352 
4353     C->set_has_split_ifs(true); // Has chance for split-if optimization
4354     result = phi;
4355     assert(result->bottom_type()->isa_long(), "must be");
4356     break;
4357   }
4358 
4359   case vmIntrinsics::_floatToIntBits: {
4360     // two paths (plus control) merge in a wood
4361     RegionNode *r = new RegionNode(3);
4362     Node *phi = new PhiNode(r, TypeInt::INT);
4363 
4364     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4365     // Build the boolean node
4366     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4367 
4368     // Branch either way.
4369     // NaN case is less traveled, which makes all the difference.
4370     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4371     Node *opt_isnan = _gvn.transform(ifisnan);
4372     assert( opt_isnan->is_If(), "Expect an IfNode");
4373     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4374     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4375 
4376     set_control(iftrue);
4377 
4378     static const jint nan_bits = 0x7fc00000;
4379     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4380     phi->init_req(1, _gvn.transform( slow_result ));
4381     r->init_req(1, iftrue);
4382 
4383     // Else fall through
4384     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4385     set_control(iffalse);
4386 
4387     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4388     r->init_req(2, iffalse);
4389 
4390     // Post merge
4391     set_control(_gvn.transform(r));
4392     record_for_igvn(r);
4393 
4394     C->set_has_split_ifs(true); // Has chance for split-if optimization
4395     result = phi;
4396     assert(result->bottom_type()->isa_int(), "must be");
4397     break;
4398   }
4399 
4400   default:
4401     fatal_unexpected_iid(id);
4402     break;
4403   }
4404   set_result(_gvn.transform(result));
4405   return true;
4406 }
4407 
4408 #ifdef _LP64
4409 #define XTOP ,top() /*additional argument*/
4410 #else  //_LP64
4411 #define XTOP        /*no additional argument*/
4412 #endif //_LP64
4413 
4414 //----------------------inline_unsafe_copyMemory-------------------------
4415 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4416 bool LibraryCallKit::inline_unsafe_copyMemory() {
4417   if (callee()->is_static())  return false;  // caller must have the capability!
4418   null_check_receiver();  // null-check receiver
4419   if (stopped())  return true;
4420 
4421   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4422 
4423   Node* src_ptr =         argument(1);   // type: oop
4424   Node* src_off = ConvL2X(argument(2));  // type: long
4425   Node* dst_ptr =         argument(4);   // type: oop
4426   Node* dst_off = ConvL2X(argument(5));  // type: long
4427   Node* size    = ConvL2X(argument(7));  // type: long
4428 
4429   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4430          "fieldOffset must be byte-scaled");
4431 
4432   Node* src = make_unsafe_address(src_ptr, src_off);
4433   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4434 
4435   // Conservatively insert a memory barrier on all memory slices.
4436   // Do not let writes of the copy source or destination float below the copy.
4437   insert_mem_bar(Op_MemBarCPUOrder);
4438 
4439   // Call it.  Note that the length argument is not scaled.
4440   make_runtime_call(RC_LEAF|RC_NO_FP,
4441                     OptoRuntime::fast_arraycopy_Type(),
4442                     StubRoutines::unsafe_arraycopy(),
4443                     "unsafe_arraycopy",
4444                     TypeRawPtr::BOTTOM,
4445                     src, dst, size XTOP);
4446 
4447   // Do not let reads of the copy destination float above the copy.
4448   insert_mem_bar(Op_MemBarCPUOrder);
4449 
4450   return true;
4451 }
4452 
4453 //------------------------clone_coping-----------------------------------
4454 // Helper function for inline_native_clone.
4455 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4456   assert(obj_size != NULL, "");
4457   Node* raw_obj = alloc_obj->in(1);
4458   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4459 
4460   AllocateNode* alloc = NULL;
4461   if (ReduceBulkZeroing) {
4462     // We will be completely responsible for initializing this object -
4463     // mark Initialize node as complete.
4464     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4465     // The object was just allocated - there should be no any stores!
4466     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4467     // Mark as complete_with_arraycopy so that on AllocateNode
4468     // expansion, we know this AllocateNode is initialized by an array
4469     // copy and a StoreStore barrier exists after the array copy.
4470     alloc->initialization()->set_complete_with_arraycopy();
4471   }
4472 
4473   // Copy the fastest available way.
4474   // TODO: generate fields copies for small objects instead.
4475   Node* src  = obj;
4476   Node* dest = alloc_obj;
4477   Node* size = _gvn.transform(obj_size);
4478 
4479   // Exclude the header but include array length to copy by 8 bytes words.
4480   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4481   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4482                             instanceOopDesc::base_offset_in_bytes();
4483   // base_off:
4484   // 8  - 32-bit VM
4485   // 12 - 64-bit VM, compressed klass
4486   // 16 - 64-bit VM, normal klass
4487   if (base_off % BytesPerLong != 0) {
4488     assert(UseCompressedClassPointers, "");
4489     if (is_array) {
4490       // Exclude length to copy by 8 bytes words.
4491       base_off += sizeof(int);
4492     } else {
4493       // Include klass to copy by 8 bytes words.
4494       base_off = instanceOopDesc::klass_offset_in_bytes();
4495     }
4496     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4497   }
4498   src  = basic_plus_adr(src,  base_off);
4499   dest = basic_plus_adr(dest, base_off);
4500 
4501   // Compute the length also, if needed:
4502   Node* countx = size;
4503   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4504   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4505 
4506   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4507 
4508   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4509   ac->set_clonebasic();
4510   Node* n = _gvn.transform(ac);
4511   if (n == ac) {
4512     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4513   } else {
4514     set_all_memory(n);
4515   }
4516 
4517   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4518   if (card_mark) {
4519     assert(!is_array, "");
4520     // Put in store barrier for any and all oops we are sticking
4521     // into this object.  (We could avoid this if we could prove
4522     // that the object type contains no oop fields at all.)
4523     Node* no_particular_value = NULL;
4524     Node* no_particular_field = NULL;
4525     int raw_adr_idx = Compile::AliasIdxRaw;
4526     post_barrier(control(),
4527                  memory(raw_adr_type),
4528                  alloc_obj,
4529                  no_particular_field,
4530                  raw_adr_idx,
4531                  no_particular_value,
4532                  T_OBJECT,
4533                  false);
4534   }
4535 
4536   // Do not let reads from the cloned object float above the arraycopy.
4537   if (alloc != NULL) {
4538     // Do not let stores that initialize this object be reordered with
4539     // a subsequent store that would make this object accessible by
4540     // other threads.
4541     // Record what AllocateNode this StoreStore protects so that
4542     // escape analysis can go from the MemBarStoreStoreNode to the
4543     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4544     // based on the escape status of the AllocateNode.
4545     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4546   } else {
4547     insert_mem_bar(Op_MemBarCPUOrder);
4548   }
4549 }
4550 
4551 //------------------------inline_native_clone----------------------------
4552 // protected native Object java.lang.Object.clone();
4553 //
4554 // Here are the simple edge cases:
4555 //  null receiver => normal trap
4556 //  virtual and clone was overridden => slow path to out-of-line clone
4557 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4558 //
4559 // The general case has two steps, allocation and copying.
4560 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4561 //
4562 // Copying also has two cases, oop arrays and everything else.
4563 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4564 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4565 //
4566 // These steps fold up nicely if and when the cloned object's klass
4567 // can be sharply typed as an object array, a type array, or an instance.
4568 //
4569 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4570   PhiNode* result_val;
4571 
4572   // Set the reexecute bit for the interpreter to reexecute
4573   // the bytecode that invokes Object.clone if deoptimization happens.
4574   { PreserveReexecuteState preexecs(this);
4575     jvms()->set_should_reexecute(true);
4576 
4577     Node* obj = null_check_receiver();
4578     if (stopped())  return true;
4579 
4580     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4581 
4582     // If we are going to clone an instance, we need its exact type to
4583     // know the number and types of fields to convert the clone to
4584     // loads/stores. Maybe a speculative type can help us.
4585     if (!obj_type->klass_is_exact() &&
4586         obj_type->speculative_type() != NULL &&
4587         obj_type->speculative_type()->is_instance_klass()) {
4588       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4589       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4590           !spec_ik->has_injected_fields()) {
4591         ciKlass* k = obj_type->klass();
4592         if (!k->is_instance_klass() ||
4593             k->as_instance_klass()->is_interface() ||
4594             k->as_instance_klass()->has_subklass()) {
4595           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4596         }
4597       }
4598     }
4599 
4600     Node* obj_klass = load_object_klass(obj);
4601     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4602     const TypeOopPtr*   toop   = ((tklass != NULL)
4603                                 ? tklass->as_instance_type()
4604                                 : TypeInstPtr::NOTNULL);
4605 
4606     // Conservatively insert a memory barrier on all memory slices.
4607     // Do not let writes into the original float below the clone.
4608     insert_mem_bar(Op_MemBarCPUOrder);
4609 
4610     // paths into result_reg:
4611     enum {
4612       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4613       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4614       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4615       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4616       PATH_LIMIT
4617     };
4618     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4619     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4620     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4621     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4622     record_for_igvn(result_reg);
4623 
4624     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4625     int raw_adr_idx = Compile::AliasIdxRaw;
4626 
4627     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4628     if (array_ctl != NULL) {
4629       // It's an array.
4630       PreserveJVMState pjvms(this);
4631       set_control(array_ctl);
4632       Node* obj_length = load_array_length(obj);
4633       Node* obj_size  = NULL;
4634       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4635 
4636       if (!use_ReduceInitialCardMarks()) {
4637         // If it is an oop array, it requires very special treatment,
4638         // because card marking is required on each card of the array.
4639         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4640         if (is_obja != NULL) {
4641           PreserveJVMState pjvms2(this);
4642           set_control(is_obja);
4643           // Generate a direct call to the right arraycopy function(s).
4644           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4645           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4646           ac->set_cloneoop();
4647           Node* n = _gvn.transform(ac);
4648           assert(n == ac, "cannot disappear");
4649           ac->connect_outputs(this);
4650 
4651           result_reg->init_req(_objArray_path, control());
4652           result_val->init_req(_objArray_path, alloc_obj);
4653           result_i_o ->set_req(_objArray_path, i_o());
4654           result_mem ->set_req(_objArray_path, reset_memory());
4655         }
4656       }
4657       // Otherwise, there are no card marks to worry about.
4658       // (We can dispense with card marks if we know the allocation
4659       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4660       //  causes the non-eden paths to take compensating steps to
4661       //  simulate a fresh allocation, so that no further
4662       //  card marks are required in compiled code to initialize
4663       //  the object.)
4664 
4665       if (!stopped()) {
4666         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4667 
4668         // Present the results of the copy.
4669         result_reg->init_req(_array_path, control());
4670         result_val->init_req(_array_path, alloc_obj);
4671         result_i_o ->set_req(_array_path, i_o());
4672         result_mem ->set_req(_array_path, reset_memory());
4673       }
4674     }
4675 
4676     // We only go to the instance fast case code if we pass a number of guards.
4677     // The paths which do not pass are accumulated in the slow_region.
4678     RegionNode* slow_region = new RegionNode(1);
4679     record_for_igvn(slow_region);
4680     if (!stopped()) {
4681       // It's an instance (we did array above).  Make the slow-path tests.
4682       // If this is a virtual call, we generate a funny guard.  We grab
4683       // the vtable entry corresponding to clone() from the target object.
4684       // If the target method which we are calling happens to be the
4685       // Object clone() method, we pass the guard.  We do not need this
4686       // guard for non-virtual calls; the caller is known to be the native
4687       // Object clone().
4688       if (is_virtual) {
4689         generate_virtual_guard(obj_klass, slow_region);
4690       }
4691 
4692       // The object must be cloneable and must not have a finalizer.
4693       // Both of these conditions may be checked in a single test.
4694       // We could optimize the cloneable test further, but we don't care.
4695       generate_access_flags_guard(obj_klass,
4696                                   // Test both conditions:
4697                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4698                                   // Must be cloneable but not finalizer:
4699                                   JVM_ACC_IS_CLONEABLE,
4700                                   slow_region);
4701     }
4702 
4703     if (!stopped()) {
4704       // It's an instance, and it passed the slow-path tests.
4705       PreserveJVMState pjvms(this);
4706       Node* obj_size  = NULL;
4707       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4708       // is reexecuted if deoptimization occurs and there could be problems when merging
4709       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4710       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4711 
4712       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4713 
4714       // Present the results of the slow call.
4715       result_reg->init_req(_instance_path, control());
4716       result_val->init_req(_instance_path, alloc_obj);
4717       result_i_o ->set_req(_instance_path, i_o());
4718       result_mem ->set_req(_instance_path, reset_memory());
4719     }
4720 
4721     // Generate code for the slow case.  We make a call to clone().
4722     set_control(_gvn.transform(slow_region));
4723     if (!stopped()) {
4724       PreserveJVMState pjvms(this);
4725       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4726       Node* slow_result = set_results_for_java_call(slow_call);
4727       // this->control() comes from set_results_for_java_call
4728       result_reg->init_req(_slow_path, control());
4729       result_val->init_req(_slow_path, slow_result);
4730       result_i_o ->set_req(_slow_path, i_o());
4731       result_mem ->set_req(_slow_path, reset_memory());
4732     }
4733 
4734     // Return the combined state.
4735     set_control(    _gvn.transform(result_reg));
4736     set_i_o(        _gvn.transform(result_i_o));
4737     set_all_memory( _gvn.transform(result_mem));
4738   } // original reexecute is set back here
4739 
4740   set_result(_gvn.transform(result_val));
4741   return true;
4742 }
4743 
4744 // If we have a tighly coupled allocation, the arraycopy may take care
4745 // of the array initialization. If one of the guards we insert between
4746 // the allocation and the arraycopy causes a deoptimization, an
4747 // unitialized array will escape the compiled method. To prevent that
4748 // we set the JVM state for uncommon traps between the allocation and
4749 // the arraycopy to the state before the allocation so, in case of
4750 // deoptimization, we'll reexecute the allocation and the
4751 // initialization.
4752 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4753   if (alloc != NULL) {
4754     ciMethod* trap_method = alloc->jvms()->method();
4755     int trap_bci = alloc->jvms()->bci();
4756 
4757     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4758           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4759       // Make sure there's no store between the allocation and the
4760       // arraycopy otherwise visible side effects could be rexecuted
4761       // in case of deoptimization and cause incorrect execution.
4762       bool no_interfering_store = true;
4763       Node* mem = alloc->in(TypeFunc::Memory);
4764       if (mem->is_MergeMem()) {
4765         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4766           Node* n = mms.memory();
4767           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4768             assert(n->is_Store(), "what else?");
4769             no_interfering_store = false;
4770             break;
4771           }
4772         }
4773       } else {
4774         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4775           Node* n = mms.memory();
4776           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4777             assert(n->is_Store(), "what else?");
4778             no_interfering_store = false;
4779             break;
4780           }
4781         }
4782       }
4783 
4784       if (no_interfering_store) {
4785         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4786         uint size = alloc->req();
4787         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4788         old_jvms->set_map(sfpt);
4789         for (uint i = 0; i < size; i++) {
4790           sfpt->init_req(i, alloc->in(i));
4791         }
4792         // re-push array length for deoptimization
4793         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4794         old_jvms->set_sp(old_jvms->sp()+1);
4795         old_jvms->set_monoff(old_jvms->monoff()+1);
4796         old_jvms->set_scloff(old_jvms->scloff()+1);
4797         old_jvms->set_endoff(old_jvms->endoff()+1);
4798         old_jvms->set_should_reexecute(true);
4799 
4800         sfpt->set_i_o(map()->i_o());
4801         sfpt->set_memory(map()->memory());
4802         sfpt->set_control(map()->control());
4803 
4804         JVMState* saved_jvms = jvms();
4805         saved_reexecute_sp = _reexecute_sp;
4806 
4807         set_jvms(sfpt->jvms());
4808         _reexecute_sp = jvms()->sp();
4809 
4810         return saved_jvms;
4811       }
4812     }
4813   }
4814   return NULL;
4815 }
4816 
4817 // In case of a deoptimization, we restart execution at the
4818 // allocation, allocating a new array. We would leave an uninitialized
4819 // array in the heap that GCs wouldn't expect. Move the allocation
4820 // after the traps so we don't allocate the array if we
4821 // deoptimize. This is possible because tightly_coupled_allocation()
4822 // guarantees there's no observer of the allocated array at this point
4823 // and the control flow is simple enough.
4824 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4825   if (saved_jvms != NULL && !stopped()) {
4826     assert(alloc != NULL, "only with a tightly coupled allocation");
4827     // restore JVM state to the state at the arraycopy
4828     saved_jvms->map()->set_control(map()->control());
4829     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4830     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4831     // If we've improved the types of some nodes (null check) while
4832     // emitting the guards, propagate them to the current state
4833     map()->replaced_nodes().apply(saved_jvms->map());
4834     set_jvms(saved_jvms);
4835     _reexecute_sp = saved_reexecute_sp;
4836 
4837     // Remove the allocation from above the guards
4838     CallProjections callprojs;
4839     alloc->extract_projections(&callprojs, true);
4840     InitializeNode* init = alloc->initialization();
4841     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4842     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4843     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4844     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4845 
4846     // move the allocation here (after the guards)
4847     _gvn.hash_delete(alloc);
4848     alloc->set_req(TypeFunc::Control, control());
4849     alloc->set_req(TypeFunc::I_O, i_o());
4850     Node *mem = reset_memory();
4851     set_all_memory(mem);
4852     alloc->set_req(TypeFunc::Memory, mem);
4853     set_control(init->proj_out(TypeFunc::Control));
4854     set_i_o(callprojs.fallthrough_ioproj);
4855 
4856     // Update memory as done in GraphKit::set_output_for_allocation()
4857     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4858     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4859     if (ary_type->isa_aryptr() && length_type != NULL) {
4860       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4861     }
4862     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4863     int            elemidx  = C->get_alias_index(telemref);
4864     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4865     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4866 
4867     Node* allocx = _gvn.transform(alloc);
4868     assert(allocx == alloc, "where has the allocation gone?");
4869     assert(dest->is_CheckCastPP(), "not an allocation result?");
4870 
4871     _gvn.hash_delete(dest);
4872     dest->set_req(0, control());
4873     Node* destx = _gvn.transform(dest);
4874     assert(destx == dest, "where has the allocation result gone?");
4875   }
4876 }
4877 
4878 
4879 //------------------------------inline_arraycopy-----------------------
4880 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4881 //                                                      Object dest, int destPos,
4882 //                                                      int length);
4883 bool LibraryCallKit::inline_arraycopy() {
4884   // Get the arguments.
4885   Node* src         = argument(0);  // type: oop
4886   Node* src_offset  = argument(1);  // type: int
4887   Node* dest        = argument(2);  // type: oop
4888   Node* dest_offset = argument(3);  // type: int
4889   Node* length      = argument(4);  // type: int
4890 
4891 
4892   // Check for allocation before we add nodes that would confuse
4893   // tightly_coupled_allocation()
4894   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4895 
4896   int saved_reexecute_sp = -1;
4897   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4898   // See arraycopy_restore_alloc_state() comment
4899   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4900   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4901   // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards
4902   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4903 
4904   // The following tests must be performed
4905   // (1) src and dest are arrays.
4906   // (2) src and dest arrays must have elements of the same BasicType
4907   // (3) src and dest must not be null.
4908   // (4) src_offset must not be negative.
4909   // (5) dest_offset must not be negative.
4910   // (6) length must not be negative.
4911   // (7) src_offset + length must not exceed length of src.
4912   // (8) dest_offset + length must not exceed length of dest.
4913   // (9) each element of an oop array must be assignable
4914 
4915   // (3) src and dest must not be null.
4916   // always do this here because we need the JVM state for uncommon traps
4917   Node* null_ctl = top();
4918   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4919   assert(null_ctl->is_top(), "no null control here");
4920   dest = null_check(dest, T_ARRAY);
4921 
4922   if (!can_emit_guards) {
4923     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4924     // guards but the arraycopy node could still take advantage of a
4925     // tightly allocated allocation. tightly_coupled_allocation() is
4926     // called again to make sure it takes the null check above into
4927     // account: the null check is mandatory and if it caused an
4928     // uncommon trap to be emitted then the allocation can't be
4929     // considered tightly coupled in this context.
4930     alloc = tightly_coupled_allocation(dest, NULL);
4931   }
4932 
4933   bool validated = false;
4934 
4935   const Type* src_type  = _gvn.type(src);
4936   const Type* dest_type = _gvn.type(dest);
4937   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4938   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4939 
4940   // Do we have the type of src?
4941   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4942   // Do we have the type of dest?
4943   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4944   // Is the type for src from speculation?
4945   bool src_spec = false;
4946   // Is the type for dest from speculation?
4947   bool dest_spec = false;
4948 
4949   if ((!has_src || !has_dest) && can_emit_guards) {
4950     // We don't have sufficient type information, let's see if
4951     // speculative types can help. We need to have types for both src
4952     // and dest so that it pays off.
4953 
4954     // Do we already have or could we have type information for src
4955     bool could_have_src = has_src;
4956     // Do we already have or could we have type information for dest
4957     bool could_have_dest = has_dest;
4958 
4959     ciKlass* src_k = NULL;
4960     if (!has_src) {
4961       src_k = src_type->speculative_type_not_null();
4962       if (src_k != NULL && src_k->is_array_klass()) {
4963         could_have_src = true;
4964       }
4965     }
4966 
4967     ciKlass* dest_k = NULL;
4968     if (!has_dest) {
4969       dest_k = dest_type->speculative_type_not_null();
4970       if (dest_k != NULL && dest_k->is_array_klass()) {
4971         could_have_dest = true;
4972       }
4973     }
4974 
4975     if (could_have_src && could_have_dest) {
4976       // This is going to pay off so emit the required guards
4977       if (!has_src) {
4978         src = maybe_cast_profiled_obj(src, src_k, true);
4979         src_type  = _gvn.type(src);
4980         top_src  = src_type->isa_aryptr();
4981         has_src = (top_src != NULL && top_src->klass() != NULL);
4982         src_spec = true;
4983       }
4984       if (!has_dest) {
4985         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4986         dest_type  = _gvn.type(dest);
4987         top_dest  = dest_type->isa_aryptr();
4988         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4989         dest_spec = true;
4990       }
4991     }
4992   }
4993 
4994   if (has_src && has_dest && can_emit_guards) {
4995     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4996     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4997     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4998     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4999 
5000     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5001       // If both arrays are object arrays then having the exact types
5002       // for both will remove the need for a subtype check at runtime
5003       // before the call and may make it possible to pick a faster copy
5004       // routine (without a subtype check on every element)
5005       // Do we have the exact type of src?
5006       bool could_have_src = src_spec;
5007       // Do we have the exact type of dest?
5008       bool could_have_dest = dest_spec;
5009       ciKlass* src_k = top_src->klass();
5010       ciKlass* dest_k = top_dest->klass();
5011       if (!src_spec) {
5012         src_k = src_type->speculative_type_not_null();
5013         if (src_k != NULL && src_k->is_array_klass()) {
5014           could_have_src = true;
5015         }
5016       }
5017       if (!dest_spec) {
5018         dest_k = dest_type->speculative_type_not_null();
5019         if (dest_k != NULL && dest_k->is_array_klass()) {
5020           could_have_dest = true;
5021         }
5022       }
5023       if (could_have_src && could_have_dest) {
5024         // If we can have both exact types, emit the missing guards
5025         if (could_have_src && !src_spec) {
5026           src = maybe_cast_profiled_obj(src, src_k, true);
5027         }
5028         if (could_have_dest && !dest_spec) {
5029           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5030         }
5031       }
5032     }
5033   }
5034 
5035   ciMethod* trap_method = method();
5036   int trap_bci = bci();
5037   if (saved_jvms != NULL) {
5038     trap_method = alloc->jvms()->method();
5039     trap_bci = alloc->jvms()->bci();
5040   }
5041 
5042   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5043       can_emit_guards &&
5044       !src->is_top() && !dest->is_top()) {
5045     // validate arguments: enables transformation the ArrayCopyNode
5046     validated = true;
5047 
5048     RegionNode* slow_region = new RegionNode(1);
5049     record_for_igvn(slow_region);
5050 
5051     // (1) src and dest are arrays.
5052     generate_non_array_guard(load_object_klass(src), slow_region);
5053     generate_non_array_guard(load_object_klass(dest), slow_region);
5054 
5055     // (2) src and dest arrays must have elements of the same BasicType
5056     // done at macro expansion or at Ideal transformation time
5057 
5058     // (4) src_offset must not be negative.
5059     generate_negative_guard(src_offset, slow_region);
5060 
5061     // (5) dest_offset must not be negative.
5062     generate_negative_guard(dest_offset, slow_region);
5063 
5064     // (7) src_offset + length must not exceed length of src.
5065     generate_limit_guard(src_offset, length,
5066                          load_array_length(src),
5067                          slow_region);
5068 
5069     // (8) dest_offset + length must not exceed length of dest.
5070     generate_limit_guard(dest_offset, length,
5071                          load_array_length(dest),
5072                          slow_region);
5073 
5074     // (9) each element of an oop array must be assignable
5075     Node* src_klass  = load_object_klass(src);
5076     Node* dest_klass = load_object_klass(dest);
5077     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5078 
5079     if (not_subtype_ctrl != top()) {
5080       PreserveJVMState pjvms(this);
5081       set_control(not_subtype_ctrl);
5082       uncommon_trap(Deoptimization::Reason_intrinsic,
5083                     Deoptimization::Action_make_not_entrant);
5084       assert(stopped(), "Should be stopped");
5085     }
5086     {
5087       PreserveJVMState pjvms(this);
5088       set_control(_gvn.transform(slow_region));
5089       uncommon_trap(Deoptimization::Reason_intrinsic,
5090                     Deoptimization::Action_make_not_entrant);
5091       assert(stopped(), "Should be stopped");
5092     }
5093   }
5094 
5095   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
5096 
5097   if (stopped()) {
5098     return true;
5099   }
5100 
5101   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
5102                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5103                                           // so the compiler has a chance to eliminate them: during macro expansion,
5104                                           // we have to set their control (CastPP nodes are eliminated).
5105                                           load_object_klass(src), load_object_klass(dest),
5106                                           load_array_length(src), load_array_length(dest));
5107 
5108   ac->set_arraycopy(validated);
5109 
5110   Node* n = _gvn.transform(ac);
5111   if (n == ac) {
5112     ac->connect_outputs(this);
5113   } else {
5114     assert(validated, "shouldn't transform if all arguments not validated");
5115     set_all_memory(n);
5116   }
5117 
5118   return true;
5119 }
5120 
5121 
5122 // Helper function which determines if an arraycopy immediately follows
5123 // an allocation, with no intervening tests or other escapes for the object.
5124 AllocateArrayNode*
5125 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5126                                            RegionNode* slow_region) {
5127   if (stopped())             return NULL;  // no fast path
5128   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5129 
5130   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5131   if (alloc == NULL)  return NULL;
5132 
5133   Node* rawmem = memory(Compile::AliasIdxRaw);
5134   // Is the allocation's memory state untouched?
5135   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5136     // Bail out if there have been raw-memory effects since the allocation.
5137     // (Example:  There might have been a call or safepoint.)
5138     return NULL;
5139   }
5140   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5141   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5142     return NULL;
5143   }
5144 
5145   // There must be no unexpected observers of this allocation.
5146   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5147     Node* obs = ptr->fast_out(i);
5148     if (obs != this->map()) {
5149       return NULL;
5150     }
5151   }
5152 
5153   // This arraycopy must unconditionally follow the allocation of the ptr.
5154   Node* alloc_ctl = ptr->in(0);
5155   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5156 
5157   Node* ctl = control();
5158   while (ctl != alloc_ctl) {
5159     // There may be guards which feed into the slow_region.
5160     // Any other control flow means that we might not get a chance
5161     // to finish initializing the allocated object.
5162     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5163       IfNode* iff = ctl->in(0)->as_If();
5164       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5165       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5166       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5167         ctl = iff->in(0);       // This test feeds the known slow_region.
5168         continue;
5169       }
5170       // One more try:  Various low-level checks bottom out in
5171       // uncommon traps.  If the debug-info of the trap omits
5172       // any reference to the allocation, as we've already
5173       // observed, then there can be no objection to the trap.
5174       bool found_trap = false;
5175       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5176         Node* obs = not_ctl->fast_out(j);
5177         if (obs->in(0) == not_ctl && obs->is_Call() &&
5178             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5179           found_trap = true; break;
5180         }
5181       }
5182       if (found_trap) {
5183         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5184         continue;
5185       }
5186     }
5187     return NULL;
5188   }
5189 
5190   // If we get this far, we have an allocation which immediately
5191   // precedes the arraycopy, and we can take over zeroing the new object.
5192   // The arraycopy will finish the initialization, and provide
5193   // a new control state to which we will anchor the destination pointer.
5194 
5195   return alloc;
5196 }
5197 
5198 //-------------inline_encodeISOArray-----------------------------------
5199 // encode char[] to byte[] in ISO_8859_1
5200 bool LibraryCallKit::inline_encodeISOArray() {
5201   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5202   // no receiver since it is static method
5203   Node *src         = argument(0);
5204   Node *src_offset  = argument(1);
5205   Node *dst         = argument(2);
5206   Node *dst_offset  = argument(3);
5207   Node *length      = argument(4);
5208 
5209   const Type* src_type = src->Value(&_gvn);
5210   const Type* dst_type = dst->Value(&_gvn);
5211   const TypeAryPtr* top_src = src_type->isa_aryptr();
5212   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5213   if (top_src  == NULL || top_src->klass()  == NULL ||
5214       top_dest == NULL || top_dest->klass() == NULL) {
5215     // failed array check
5216     return false;
5217   }
5218 
5219   // Figure out the size and type of the elements we will be copying.
5220   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5221   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5222   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5223     return false;
5224   }
5225   Node* src_start = array_element_address(src, src_offset, src_elem);
5226   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5227   // 'src_start' points to src array + scaled offset
5228   // 'dst_start' points to dst array + scaled offset
5229 
5230   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5231   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5232   enc = _gvn.transform(enc);
5233   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5234   set_memory(res_mem, mtype);
5235   set_result(enc);
5236   return true;
5237 }
5238 
5239 //-------------inline_multiplyToLen-----------------------------------
5240 bool LibraryCallKit::inline_multiplyToLen() {
5241   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5242 
5243   address stubAddr = StubRoutines::multiplyToLen();
5244   if (stubAddr == NULL) {
5245     return false; // Intrinsic's stub is not implemented on this platform
5246   }
5247   const char* stubName = "multiplyToLen";
5248 
5249   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5250 
5251   Node* x    = argument(1);
5252   Node* xlen = argument(2);
5253   Node* y    = argument(3);
5254   Node* ylen = argument(4);
5255   Node* z    = argument(5);
5256 
5257   const Type* x_type = x->Value(&_gvn);
5258   const Type* y_type = y->Value(&_gvn);
5259   const TypeAryPtr* top_x = x_type->isa_aryptr();
5260   const TypeAryPtr* top_y = y_type->isa_aryptr();
5261   if (top_x  == NULL || top_x->klass()  == NULL ||
5262       top_y == NULL || top_y->klass() == NULL) {
5263     // failed array check
5264     return false;
5265   }
5266 
5267   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5268   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5269   if (x_elem != T_INT || y_elem != T_INT) {
5270     return false;
5271   }
5272 
5273   // Set the original stack and the reexecute bit for the interpreter to reexecute
5274   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5275   // on the return from z array allocation in runtime.
5276   { PreserveReexecuteState preexecs(this);
5277     jvms()->set_should_reexecute(true);
5278 
5279     Node* x_start = array_element_address(x, intcon(0), x_elem);
5280     Node* y_start = array_element_address(y, intcon(0), y_elem);
5281     // 'x_start' points to x array + scaled xlen
5282     // 'y_start' points to y array + scaled ylen
5283 
5284     // Allocate the result array
5285     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5286     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5287     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5288 
5289     IdealKit ideal(this);
5290 
5291 #define __ ideal.
5292      Node* one = __ ConI(1);
5293      Node* zero = __ ConI(0);
5294      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5295      __ set(need_alloc, zero);
5296      __ set(z_alloc, z);
5297      __ if_then(z, BoolTest::eq, null()); {
5298        __ increment (need_alloc, one);
5299      } __ else_(); {
5300        // Update graphKit memory and control from IdealKit.
5301        sync_kit(ideal);
5302        Node* zlen_arg = load_array_length(z);
5303        // Update IdealKit memory and control from graphKit.
5304        __ sync_kit(this);
5305        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5306          __ increment (need_alloc, one);
5307        } __ end_if();
5308      } __ end_if();
5309 
5310      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5311        // Update graphKit memory and control from IdealKit.
5312        sync_kit(ideal);
5313        Node * narr = new_array(klass_node, zlen, 1);
5314        // Update IdealKit memory and control from graphKit.
5315        __ sync_kit(this);
5316        __ set(z_alloc, narr);
5317      } __ end_if();
5318 
5319      sync_kit(ideal);
5320      z = __ value(z_alloc);
5321      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5322      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5323      // Final sync IdealKit and GraphKit.
5324      final_sync(ideal);
5325 #undef __
5326 
5327     Node* z_start = array_element_address(z, intcon(0), T_INT);
5328 
5329     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5330                                    OptoRuntime::multiplyToLen_Type(),
5331                                    stubAddr, stubName, TypePtr::BOTTOM,
5332                                    x_start, xlen, y_start, ylen, z_start, zlen);
5333   } // original reexecute is set back here
5334 
5335   C->set_has_split_ifs(true); // Has chance for split-if optimization
5336   set_result(z);
5337   return true;
5338 }
5339 
5340 //-------------inline_squareToLen------------------------------------
5341 bool LibraryCallKit::inline_squareToLen() {
5342   assert(UseSquareToLenIntrinsic, "not implementated on this platform");
5343 
5344   address stubAddr = StubRoutines::squareToLen();
5345   if (stubAddr == NULL) {
5346     return false; // Intrinsic's stub is not implemented on this platform
5347   }
5348   const char* stubName = "squareToLen";
5349 
5350   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5351 
5352   Node* x    = argument(0);
5353   Node* len  = argument(1);
5354   Node* z    = argument(2);
5355   Node* zlen = argument(3);
5356 
5357   const Type* x_type = x->Value(&_gvn);
5358   const Type* z_type = z->Value(&_gvn);
5359   const TypeAryPtr* top_x = x_type->isa_aryptr();
5360   const TypeAryPtr* top_z = z_type->isa_aryptr();
5361   if (top_x  == NULL || top_x->klass()  == NULL ||
5362       top_z  == NULL || top_z->klass()  == NULL) {
5363     // failed array check
5364     return false;
5365   }
5366 
5367   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5368   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5369   if (x_elem != T_INT || z_elem != T_INT) {
5370     return false;
5371   }
5372 
5373 
5374   Node* x_start = array_element_address(x, intcon(0), x_elem);
5375   Node* z_start = array_element_address(z, intcon(0), z_elem);
5376 
5377   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5378                                   OptoRuntime::squareToLen_Type(),
5379                                   stubAddr, stubName, TypePtr::BOTTOM,
5380                                   x_start, len, z_start, zlen);
5381 
5382   set_result(z);
5383   return true;
5384 }
5385 
5386 //-------------inline_mulAdd------------------------------------------
5387 bool LibraryCallKit::inline_mulAdd() {
5388   assert(UseMulAddIntrinsic, "not implementated on this platform");
5389 
5390   address stubAddr = StubRoutines::mulAdd();
5391   if (stubAddr == NULL) {
5392     return false; // Intrinsic's stub is not implemented on this platform
5393   }
5394   const char* stubName = "mulAdd";
5395 
5396   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5397 
5398   Node* out      = argument(0);
5399   Node* in       = argument(1);
5400   Node* offset   = argument(2);
5401   Node* len      = argument(3);
5402   Node* k        = argument(4);
5403 
5404   const Type* out_type = out->Value(&_gvn);
5405   const Type* in_type = in->Value(&_gvn);
5406   const TypeAryPtr* top_out = out_type->isa_aryptr();
5407   const TypeAryPtr* top_in = in_type->isa_aryptr();
5408   if (top_out  == NULL || top_out->klass()  == NULL ||
5409       top_in == NULL || top_in->klass() == NULL) {
5410     // failed array check
5411     return false;
5412   }
5413 
5414   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5415   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5416   if (out_elem != T_INT || in_elem != T_INT) {
5417     return false;
5418   }
5419 
5420   Node* outlen = load_array_length(out);
5421   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5422   Node* out_start = array_element_address(out, intcon(0), out_elem);
5423   Node* in_start = array_element_address(in, intcon(0), in_elem);
5424 
5425   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5426                                   OptoRuntime::mulAdd_Type(),
5427                                   stubAddr, stubName, TypePtr::BOTTOM,
5428                                   out_start,in_start, new_offset, len, k);
5429   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5430   set_result(result);
5431   return true;
5432 }
5433 
5434 
5435 /**
5436  * Calculate CRC32 for byte.
5437  * int java.util.zip.CRC32.update(int crc, int b)
5438  */
5439 bool LibraryCallKit::inline_updateCRC32() {
5440   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5441   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5442   // no receiver since it is static method
5443   Node* crc  = argument(0); // type: int
5444   Node* b    = argument(1); // type: int
5445 
5446   /*
5447    *    int c = ~ crc;
5448    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5449    *    b = b ^ (c >>> 8);
5450    *    crc = ~b;
5451    */
5452 
5453   Node* M1 = intcon(-1);
5454   crc = _gvn.transform(new XorINode(crc, M1));
5455   Node* result = _gvn.transform(new XorINode(crc, b));
5456   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5457 
5458   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5459   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5460   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5461   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5462 
5463   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5464   result = _gvn.transform(new XorINode(crc, result));
5465   result = _gvn.transform(new XorINode(result, M1));
5466   set_result(result);
5467   return true;
5468 }
5469 
5470 /**
5471  * Calculate CRC32 for byte[] array.
5472  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5473  */
5474 bool LibraryCallKit::inline_updateBytesCRC32() {
5475   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5476   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5477   // no receiver since it is static method
5478   Node* crc     = argument(0); // type: int
5479   Node* src     = argument(1); // type: oop
5480   Node* offset  = argument(2); // type: int
5481   Node* length  = argument(3); // type: int
5482 
5483   const Type* src_type = src->Value(&_gvn);
5484   const TypeAryPtr* top_src = src_type->isa_aryptr();
5485   if (top_src  == NULL || top_src->klass()  == NULL) {
5486     // failed array check
5487     return false;
5488   }
5489 
5490   // Figure out the size and type of the elements we will be copying.
5491   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5492   if (src_elem != T_BYTE) {
5493     return false;
5494   }
5495 
5496   // 'src_start' points to src array + scaled offset
5497   Node* src_start = array_element_address(src, offset, src_elem);
5498 
5499   // We assume that range check is done by caller.
5500   // TODO: generate range check (offset+length < src.length) in debug VM.
5501 
5502   // Call the stub.
5503   address stubAddr = StubRoutines::updateBytesCRC32();
5504   const char *stubName = "updateBytesCRC32";
5505 
5506   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5507                                  stubAddr, stubName, TypePtr::BOTTOM,
5508                                  crc, src_start, length);
5509   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5510   set_result(result);
5511   return true;
5512 }
5513 
5514 /**
5515  * Calculate CRC32 for ByteBuffer.
5516  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5517  */
5518 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5519   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5520   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5521   // no receiver since it is static method
5522   Node* crc     = argument(0); // type: int
5523   Node* src     = argument(1); // type: long
5524   Node* offset  = argument(3); // type: int
5525   Node* length  = argument(4); // type: int
5526 
5527   src = ConvL2X(src);  // adjust Java long to machine word
5528   Node* base = _gvn.transform(new CastX2PNode(src));
5529   offset = ConvI2X(offset);
5530 
5531   // 'src_start' points to src array + scaled offset
5532   Node* src_start = basic_plus_adr(top(), base, offset);
5533 
5534   // Call the stub.
5535   address stubAddr = StubRoutines::updateBytesCRC32();
5536   const char *stubName = "updateBytesCRC32";
5537 
5538   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5539                                  stubAddr, stubName, TypePtr::BOTTOM,
5540                                  crc, src_start, length);
5541   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5542   set_result(result);
5543   return true;
5544 }
5545 
5546 //----------------------------inline_reference_get----------------------------
5547 // public T java.lang.ref.Reference.get();
5548 bool LibraryCallKit::inline_reference_get() {
5549   const int referent_offset = java_lang_ref_Reference::referent_offset;
5550   guarantee(referent_offset > 0, "should have already been set");
5551 
5552   // Get the argument:
5553   Node* reference_obj = null_check_receiver();
5554   if (stopped()) return true;
5555 
5556   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5557 
5558   ciInstanceKlass* klass = env()->Object_klass();
5559   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5560 
5561   Node* no_ctrl = NULL;
5562   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5563 
5564   // Use the pre-barrier to record the value in the referent field
5565   pre_barrier(false /* do_load */,
5566               control(),
5567               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5568               result /* pre_val */,
5569               T_OBJECT);
5570 
5571   // Add memory barrier to prevent commoning reads from this field
5572   // across safepoint since GC can change its value.
5573   insert_mem_bar(Op_MemBarCPUOrder);
5574 
5575   set_result(result);
5576   return true;
5577 }
5578 
5579 
5580 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5581                                               bool is_exact=true, bool is_static=false) {
5582 
5583   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5584   assert(tinst != NULL, "obj is null");
5585   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5586   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5587 
5588   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5589                                                                           ciSymbol::make(fieldTypeString),
5590                                                                           is_static);
5591   if (field == NULL) return (Node *) NULL;
5592   assert (field != NULL, "undefined field");
5593 
5594   // Next code  copied from Parse::do_get_xxx():
5595 
5596   // Compute address and memory type.
5597   int offset  = field->offset_in_bytes();
5598   bool is_vol = field->is_volatile();
5599   ciType* field_klass = field->type();
5600   assert(field_klass->is_loaded(), "should be loaded");
5601   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5602   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5603   BasicType bt = field->layout_type();
5604 
5605   // Build the resultant type of the load
5606   const Type *type;
5607   if (bt == T_OBJECT) {
5608     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5609   } else {
5610     type = Type::get_const_basic_type(bt);
5611   }
5612 
5613   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5614     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5615   }
5616   // Build the load.
5617   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5618   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
5619   // If reference is volatile, prevent following memory ops from
5620   // floating up past the volatile read.  Also prevents commoning
5621   // another volatile read.
5622   if (is_vol) {
5623     // Memory barrier includes bogus read of value to force load BEFORE membar
5624     insert_mem_bar(Op_MemBarAcquire, loadedField);
5625   }
5626   return loadedField;
5627 }
5628 
5629 
5630 //------------------------------inline_aescrypt_Block-----------------------
5631 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5632   address stubAddr;
5633   const char *stubName;
5634   assert(UseAES, "need AES instruction support");
5635 
5636   switch(id) {
5637   case vmIntrinsics::_aescrypt_encryptBlock:
5638     stubAddr = StubRoutines::aescrypt_encryptBlock();
5639     stubName = "aescrypt_encryptBlock";
5640     break;
5641   case vmIntrinsics::_aescrypt_decryptBlock:
5642     stubAddr = StubRoutines::aescrypt_decryptBlock();
5643     stubName = "aescrypt_decryptBlock";
5644     break;
5645   }
5646   if (stubAddr == NULL) return false;
5647 
5648   Node* aescrypt_object = argument(0);
5649   Node* src             = argument(1);
5650   Node* src_offset      = argument(2);
5651   Node* dest            = argument(3);
5652   Node* dest_offset     = argument(4);
5653 
5654   // (1) src and dest are arrays.
5655   const Type* src_type = src->Value(&_gvn);
5656   const Type* dest_type = dest->Value(&_gvn);
5657   const TypeAryPtr* top_src = src_type->isa_aryptr();
5658   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5659   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5660 
5661   // for the quick and dirty code we will skip all the checks.
5662   // we are just trying to get the call to be generated.
5663   Node* src_start  = src;
5664   Node* dest_start = dest;
5665   if (src_offset != NULL || dest_offset != NULL) {
5666     assert(src_offset != NULL && dest_offset != NULL, "");
5667     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5668     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5669   }
5670 
5671   // now need to get the start of its expanded key array
5672   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5673   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5674   if (k_start == NULL) return false;
5675 
5676   if (Matcher::pass_original_key_for_aes()) {
5677     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5678     // compatibility issues between Java key expansion and SPARC crypto instructions
5679     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5680     if (original_k_start == NULL) return false;
5681 
5682     // Call the stub.
5683     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5684                       stubAddr, stubName, TypePtr::BOTTOM,
5685                       src_start, dest_start, k_start, original_k_start);
5686   } else {
5687     // Call the stub.
5688     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5689                       stubAddr, stubName, TypePtr::BOTTOM,
5690                       src_start, dest_start, k_start);
5691   }
5692 
5693   return true;
5694 }
5695 
5696 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5697 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5698   address stubAddr;
5699   const char *stubName;
5700 
5701   assert(UseAES, "need AES instruction support");
5702 
5703   switch(id) {
5704   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5705     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5706     stubName = "cipherBlockChaining_encryptAESCrypt";
5707     break;
5708   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5709     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5710     stubName = "cipherBlockChaining_decryptAESCrypt";
5711     break;
5712   }
5713   if (stubAddr == NULL) return false;
5714 
5715   Node* cipherBlockChaining_object = argument(0);
5716   Node* src                        = argument(1);
5717   Node* src_offset                 = argument(2);
5718   Node* len                        = argument(3);
5719   Node* dest                       = argument(4);
5720   Node* dest_offset                = argument(5);
5721 
5722   // (1) src and dest are arrays.
5723   const Type* src_type = src->Value(&_gvn);
5724   const Type* dest_type = dest->Value(&_gvn);
5725   const TypeAryPtr* top_src = src_type->isa_aryptr();
5726   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5727   assert (top_src  != NULL && top_src->klass()  != NULL
5728           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5729 
5730   // checks are the responsibility of the caller
5731   Node* src_start  = src;
5732   Node* dest_start = dest;
5733   if (src_offset != NULL || dest_offset != NULL) {
5734     assert(src_offset != NULL && dest_offset != NULL, "");
5735     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5736     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5737   }
5738 
5739   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5740   // (because of the predicated logic executed earlier).
5741   // so we cast it here safely.
5742   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5743 
5744   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5745   if (embeddedCipherObj == NULL) return false;
5746 
5747   // cast it to what we know it will be at runtime
5748   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5749   assert(tinst != NULL, "CBC obj is null");
5750   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5751   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5752   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5753 
5754   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5755   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5756   const TypeOopPtr* xtype = aklass->as_instance_type();
5757   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5758   aescrypt_object = _gvn.transform(aescrypt_object);
5759 
5760   // we need to get the start of the aescrypt_object's expanded key array
5761   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5762   if (k_start == NULL) return false;
5763 
5764   // similarly, get the start address of the r vector
5765   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5766   if (objRvec == NULL) return false;
5767   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5768 
5769   Node* cbcCrypt;
5770   if (Matcher::pass_original_key_for_aes()) {
5771     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5772     // compatibility issues between Java key expansion and SPARC crypto instructions
5773     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5774     if (original_k_start == NULL) return false;
5775 
5776     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5777     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5778                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5779                                  stubAddr, stubName, TypePtr::BOTTOM,
5780                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5781   } else {
5782     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5783     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5784                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5785                                  stubAddr, stubName, TypePtr::BOTTOM,
5786                                  src_start, dest_start, k_start, r_start, len);
5787   }
5788 
5789   // return cipher length (int)
5790   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
5791   set_result(retvalue);
5792   return true;
5793 }
5794 
5795 //------------------------------get_key_start_from_aescrypt_object-----------------------
5796 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5797   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5798   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5799   if (objAESCryptKey == NULL) return (Node *) NULL;
5800 
5801   // now have the array, need to get the start address of the K array
5802   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5803   return k_start;
5804 }
5805 
5806 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
5807 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
5808   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
5809   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5810   if (objAESCryptKey == NULL) return (Node *) NULL;
5811 
5812   // now have the array, need to get the start address of the lastKey array
5813   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
5814   return original_k_start;
5815 }
5816 
5817 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5818 // Return node representing slow path of predicate check.
5819 // the pseudo code we want to emulate with this predicate is:
5820 // for encryption:
5821 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5822 // for decryption:
5823 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5824 //    note cipher==plain is more conservative than the original java code but that's OK
5825 //
5826 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5827   // The receiver was checked for NULL already.
5828   Node* objCBC = argument(0);
5829 
5830   // Load embeddedCipher field of CipherBlockChaining object.
5831   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5832 
5833   // get AESCrypt klass for instanceOf check
5834   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5835   // will have same classloader as CipherBlockChaining object
5836   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5837   assert(tinst != NULL, "CBCobj is null");
5838   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5839 
5840   // we want to do an instanceof comparison against the AESCrypt class
5841   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5842   if (!klass_AESCrypt->is_loaded()) {
5843     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5844     Node* ctrl = control();
5845     set_control(top()); // no regular fast path
5846     return ctrl;
5847   }
5848   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5849 
5850   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5851   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
5852   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5853 
5854   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5855 
5856   // for encryption, we are done
5857   if (!decrypting)
5858     return instof_false;  // even if it is NULL
5859 
5860   // for decryption, we need to add a further check to avoid
5861   // taking the intrinsic path when cipher and plain are the same
5862   // see the original java code for why.
5863   RegionNode* region = new RegionNode(3);
5864   region->init_req(1, instof_false);
5865   Node* src = argument(1);
5866   Node* dest = argument(4);
5867   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
5868   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
5869   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5870   region->init_req(2, src_dest_conjoint);
5871 
5872   record_for_igvn(region);
5873   return _gvn.transform(region);
5874 }
5875 
5876 //------------------------------inline_ghash_processBlocks
5877 bool LibraryCallKit::inline_ghash_processBlocks() {
5878   address stubAddr;
5879   const char *stubName;
5880   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
5881 
5882   stubAddr = StubRoutines::ghash_processBlocks();
5883   stubName = "ghash_processBlocks";
5884 
5885   Node* data           = argument(0);
5886   Node* offset         = argument(1);
5887   Node* len            = argument(2);
5888   Node* state          = argument(3);
5889   Node* subkeyH        = argument(4);
5890 
5891   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
5892   assert(state_start, "state is NULL");
5893   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
5894   assert(subkeyH_start, "subkeyH is NULL");
5895   Node* data_start  = array_element_address(data, offset, T_BYTE);
5896   assert(data_start, "data is NULL");
5897 
5898   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
5899                                   OptoRuntime::ghash_processBlocks_Type(),
5900                                   stubAddr, stubName, TypePtr::BOTTOM,
5901                                   state_start, subkeyH_start, data_start, len);
5902   return true;
5903 }
5904 
5905 //------------------------------inline_sha_implCompress-----------------------
5906 //
5907 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
5908 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
5909 //
5910 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
5911 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
5912 //
5913 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
5914 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
5915 //
5916 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
5917   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
5918 
5919   Node* sha_obj = argument(0);
5920   Node* src     = argument(1); // type oop
5921   Node* ofs     = argument(2); // type int
5922 
5923   const Type* src_type = src->Value(&_gvn);
5924   const TypeAryPtr* top_src = src_type->isa_aryptr();
5925   if (top_src  == NULL || top_src->klass()  == NULL) {
5926     // failed array check
5927     return false;
5928   }
5929   // Figure out the size and type of the elements we will be copying.
5930   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5931   if (src_elem != T_BYTE) {
5932     return false;
5933   }
5934   // 'src_start' points to src array + offset
5935   Node* src_start = array_element_address(src, ofs, src_elem);
5936   Node* state = NULL;
5937   address stubAddr;
5938   const char *stubName;
5939 
5940   switch(id) {
5941   case vmIntrinsics::_sha_implCompress:
5942     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
5943     state = get_state_from_sha_object(sha_obj);
5944     stubAddr = StubRoutines::sha1_implCompress();
5945     stubName = "sha1_implCompress";
5946     break;
5947   case vmIntrinsics::_sha2_implCompress:
5948     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
5949     state = get_state_from_sha_object(sha_obj);
5950     stubAddr = StubRoutines::sha256_implCompress();
5951     stubName = "sha256_implCompress";
5952     break;
5953   case vmIntrinsics::_sha5_implCompress:
5954     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
5955     state = get_state_from_sha5_object(sha_obj);
5956     stubAddr = StubRoutines::sha512_implCompress();
5957     stubName = "sha512_implCompress";
5958     break;
5959   default:
5960     fatal_unexpected_iid(id);
5961     return false;
5962   }
5963   if (state == NULL) return false;
5964 
5965   // Call the stub.
5966   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
5967                                  stubAddr, stubName, TypePtr::BOTTOM,
5968                                  src_start, state);
5969 
5970   return true;
5971 }
5972 
5973 //------------------------------inline_digestBase_implCompressMB-----------------------
5974 //
5975 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
5976 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
5977 //
5978 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
5979   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5980          "need SHA1/SHA256/SHA512 instruction support");
5981   assert((uint)predicate < 3, "sanity");
5982   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
5983 
5984   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
5985   Node* src            = argument(1); // byte[] array
5986   Node* ofs            = argument(2); // type int
5987   Node* limit          = argument(3); // type int
5988 
5989   const Type* src_type = src->Value(&_gvn);
5990   const TypeAryPtr* top_src = src_type->isa_aryptr();
5991   if (top_src  == NULL || top_src->klass()  == NULL) {
5992     // failed array check
5993     return false;
5994   }
5995   // Figure out the size and type of the elements we will be copying.
5996   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5997   if (src_elem != T_BYTE) {
5998     return false;
5999   }
6000   // 'src_start' points to src array + offset
6001   Node* src_start = array_element_address(src, ofs, src_elem);
6002 
6003   const char* klass_SHA_name = NULL;
6004   const char* stub_name = NULL;
6005   address     stub_addr = NULL;
6006   bool        long_state = false;
6007 
6008   switch (predicate) {
6009   case 0:
6010     if (UseSHA1Intrinsics) {
6011       klass_SHA_name = "sun/security/provider/SHA";
6012       stub_name = "sha1_implCompressMB";
6013       stub_addr = StubRoutines::sha1_implCompressMB();
6014     }
6015     break;
6016   case 1:
6017     if (UseSHA256Intrinsics) {
6018       klass_SHA_name = "sun/security/provider/SHA2";
6019       stub_name = "sha256_implCompressMB";
6020       stub_addr = StubRoutines::sha256_implCompressMB();
6021     }
6022     break;
6023   case 2:
6024     if (UseSHA512Intrinsics) {
6025       klass_SHA_name = "sun/security/provider/SHA5";
6026       stub_name = "sha512_implCompressMB";
6027       stub_addr = StubRoutines::sha512_implCompressMB();
6028       long_state = true;
6029     }
6030     break;
6031   default:
6032     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6033   }
6034   if (klass_SHA_name != NULL) {
6035     // get DigestBase klass to lookup for SHA klass
6036     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6037     assert(tinst != NULL, "digestBase_obj is not instance???");
6038     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6039 
6040     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6041     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6042     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6043     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6044   }
6045   return false;
6046 }
6047 //------------------------------inline_sha_implCompressMB-----------------------
6048 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6049                                                bool long_state, address stubAddr, const char *stubName,
6050                                                Node* src_start, Node* ofs, Node* limit) {
6051   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6052   const TypeOopPtr* xtype = aklass->as_instance_type();
6053   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6054   sha_obj = _gvn.transform(sha_obj);
6055 
6056   Node* state;
6057   if (long_state) {
6058     state = get_state_from_sha5_object(sha_obj);
6059   } else {
6060     state = get_state_from_sha_object(sha_obj);
6061   }
6062   if (state == NULL) return false;
6063 
6064   // Call the stub.
6065   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6066                                  OptoRuntime::digestBase_implCompressMB_Type(),
6067                                  stubAddr, stubName, TypePtr::BOTTOM,
6068                                  src_start, state, ofs, limit);
6069   // return ofs (int)
6070   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6071   set_result(result);
6072 
6073   return true;
6074 }
6075 
6076 //------------------------------get_state_from_sha_object-----------------------
6077 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6078   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6079   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6080   if (sha_state == NULL) return (Node *) NULL;
6081 
6082   // now have the array, need to get the start address of the state array
6083   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6084   return state;
6085 }
6086 
6087 //------------------------------get_state_from_sha5_object-----------------------
6088 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6089   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6090   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6091   if (sha_state == NULL) return (Node *) NULL;
6092 
6093   // now have the array, need to get the start address of the state array
6094   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6095   return state;
6096 }
6097 
6098 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6099 // Return node representing slow path of predicate check.
6100 // the pseudo code we want to emulate with this predicate is:
6101 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6102 //
6103 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6104   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6105          "need SHA1/SHA256/SHA512 instruction support");
6106   assert((uint)predicate < 3, "sanity");
6107 
6108   // The receiver was checked for NULL already.
6109   Node* digestBaseObj = argument(0);
6110 
6111   // get DigestBase klass for instanceOf check
6112   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6113   assert(tinst != NULL, "digestBaseObj is null");
6114   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6115 
6116   const char* klass_SHA_name = NULL;
6117   switch (predicate) {
6118   case 0:
6119     if (UseSHA1Intrinsics) {
6120       // we want to do an instanceof comparison against the SHA class
6121       klass_SHA_name = "sun/security/provider/SHA";
6122     }
6123     break;
6124   case 1:
6125     if (UseSHA256Intrinsics) {
6126       // we want to do an instanceof comparison against the SHA2 class
6127       klass_SHA_name = "sun/security/provider/SHA2";
6128     }
6129     break;
6130   case 2:
6131     if (UseSHA512Intrinsics) {
6132       // we want to do an instanceof comparison against the SHA5 class
6133       klass_SHA_name = "sun/security/provider/SHA5";
6134     }
6135     break;
6136   default:
6137     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6138   }
6139 
6140   ciKlass* klass_SHA = NULL;
6141   if (klass_SHA_name != NULL) {
6142     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6143   }
6144   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6145     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6146     Node* ctrl = control();
6147     set_control(top()); // no intrinsic path
6148     return ctrl;
6149   }
6150   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6151 
6152   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6153   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6154   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6155   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6156 
6157   return instof_false;  // even if it is NULL
6158 }
6159 
6160 bool LibraryCallKit::inline_profileBoolean() {
6161   Node* counts = argument(1);
6162   const TypeAryPtr* ary = NULL;
6163   ciArray* aobj = NULL;
6164   if (counts->is_Con()
6165       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6166       && (aobj = ary->const_oop()->as_array()) != NULL
6167       && (aobj->length() == 2)) {
6168     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6169     jint false_cnt = aobj->element_value(0).as_int();
6170     jint  true_cnt = aobj->element_value(1).as_int();
6171 
6172     if (C->log() != NULL) {
6173       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6174                      false_cnt, true_cnt);
6175     }
6176 
6177     if (false_cnt + true_cnt == 0) {
6178       // According to profile, never executed.
6179       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6180                           Deoptimization::Action_reinterpret);
6181       return true;
6182     }
6183 
6184     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6185     // is a number of each value occurrences.
6186     Node* result = argument(0);
6187     if (false_cnt == 0 || true_cnt == 0) {
6188       // According to profile, one value has been never seen.
6189       int expected_val = (false_cnt == 0) ? 1 : 0;
6190 
6191       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6192       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6193 
6194       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6195       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6196       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6197 
6198       { // Slow path: uncommon trap for never seen value and then reexecute
6199         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6200         // the value has been seen at least once.
6201         PreserveJVMState pjvms(this);
6202         PreserveReexecuteState preexecs(this);
6203         jvms()->set_should_reexecute(true);
6204 
6205         set_control(slow_path);
6206         set_i_o(i_o());
6207 
6208         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6209                             Deoptimization::Action_reinterpret);
6210       }
6211       // The guard for never seen value enables sharpening of the result and
6212       // returning a constant. It allows to eliminate branches on the same value
6213       // later on.
6214       set_control(fast_path);
6215       result = intcon(expected_val);
6216     }
6217     // Stop profiling.
6218     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6219     // By replacing method body with profile data (represented as ProfileBooleanNode
6220     // on IR level) we effectively disable profiling.
6221     // It enables full speed execution once optimized code is generated.
6222     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6223     C->record_for_igvn(profile);
6224     set_result(profile);
6225     return true;
6226   } else {
6227     // Continue profiling.
6228     // Profile data isn't available at the moment. So, execute method's bytecode version.
6229     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6230     // is compiled and counters aren't available since corresponding MethodHandle
6231     // isn't a compile-time constant.
6232     return false;
6233   }
6234 }
6235 
6236 bool LibraryCallKit::inline_isCompileConstant() {
6237   Node* n = argument(0);
6238   set_result(n->is_Con() ? intcon(1) : intcon(0));
6239   return true;
6240 }