1 /*
   2  * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 
  29 import java.util.*;
  30 import jdk.internal.HotSpotIntrinsicCandidate;
  31 
  32 import static java.lang.invoke.MethodHandleStatics.*;
  33 
  34 /**
  35  * A method handle is a typed, directly executable reference to an underlying method,
  36  * constructor, field, or similar low-level operation, with optional
  37  * transformations of arguments or return values.
  38  * These transformations are quite general, and include such patterns as
  39  * {@linkplain #asType conversion},
  40  * {@linkplain #bindTo insertion},
  41  * {@linkplain java.lang.invoke.MethodHandles#dropArguments deletion},
  42  * and {@linkplain java.lang.invoke.MethodHandles#filterArguments substitution}.
  43  *
  44  * <h1>Method handle contents</h1>
  45  * Method handles are dynamically and strongly typed according to their parameter and return types.
  46  * They are not distinguished by the name or the defining class of their underlying methods.
  47  * A method handle must be invoked using a symbolic type descriptor which matches
  48  * the method handle's own {@linkplain #type type descriptor}.
  49  * <p>
  50  * Every method handle reports its type descriptor via the {@link #type type} accessor.
  51  * This type descriptor is a {@link java.lang.invoke.MethodType MethodType} object,
  52  * whose structure is a series of classes, one of which is
  53  * the return type of the method (or {@code void.class} if none).
  54  * <p>
  55  * A method handle's type controls the types of invocations it accepts,
  56  * and the kinds of transformations that apply to it.
  57  * <p>
  58  * A method handle contains a pair of special invoker methods
  59  * called {@link #invokeExact invokeExact} and {@link #invoke invoke}.
  60  * Both invoker methods provide direct access to the method handle's
  61  * underlying method, constructor, field, or other operation,
  62  * as modified by transformations of arguments and return values.
  63  * Both invokers accept calls which exactly match the method handle's own type.
  64  * The plain, inexact invoker also accepts a range of other call types.
  65  * <p>
  66  * Method handles are immutable and have no visible state.
  67  * Of course, they can be bound to underlying methods or data which exhibit state.
  68  * With respect to the Java Memory Model, any method handle will behave
  69  * as if all of its (internal) fields are final variables.  This means that any method
  70  * handle made visible to the application will always be fully formed.
  71  * This is true even if the method handle is published through a shared
  72  * variable in a data race.
  73  * <p>
  74  * Method handles cannot be subclassed by the user.
  75  * Implementations may (or may not) create internal subclasses of {@code MethodHandle}
  76  * which may be visible via the {@link java.lang.Object#getClass Object.getClass}
  77  * operation.  The programmer should not draw conclusions about a method handle
  78  * from its specific class, as the method handle class hierarchy (if any)
  79  * may change from time to time or across implementations from different vendors.
  80  *
  81  * <h1>Method handle compilation</h1>
  82  * A Java method call expression naming {@code invokeExact} or {@code invoke}
  83  * can invoke a method handle from Java source code.
  84  * From the viewpoint of source code, these methods can take any arguments
  85  * and their result can be cast to any return type.
  86  * Formally this is accomplished by giving the invoker methods
  87  * {@code Object} return types and variable arity {@code Object} arguments,
  88  * but they have an additional quality called <em>signature polymorphism</em>
  89  * which connects this freedom of invocation directly to the JVM execution stack.
  90  * <p>
  91  * As is usual with virtual methods, source-level calls to {@code invokeExact}
  92  * and {@code invoke} compile to an {@code invokevirtual} instruction.
  93  * More unusually, the compiler must record the actual argument types,
  94  * and may not perform method invocation conversions on the arguments.
  95  * Instead, it must push them on the stack according to their own unconverted types.
  96  * The method handle object itself is pushed on the stack before the arguments.
  97  * The compiler then calls the method handle with a symbolic type descriptor which
  98  * describes the argument and return types.
  99  * <p>
 100  * To issue a complete symbolic type descriptor, the compiler must also determine
 101  * the return type.  This is based on a cast on the method invocation expression,
 102  * if there is one, or else {@code Object} if the invocation is an expression
 103  * or else {@code void} if the invocation is a statement.
 104  * The cast may be to a primitive type (but not {@code void}).
 105  * <p>
 106  * As a corner case, an uncasted {@code null} argument is given
 107  * a symbolic type descriptor of {@code java.lang.Void}.
 108  * The ambiguity with the type {@code Void} is harmless, since there are no references of type
 109  * {@code Void} except the null reference.
 110  *
 111  * <h1>Method handle invocation</h1>
 112  * The first time a {@code invokevirtual} instruction is executed
 113  * it is linked, by symbolically resolving the names in the instruction
 114  * and verifying that the method call is statically legal.
 115  * This is true of calls to {@code invokeExact} and {@code invoke}.
 116  * In this case, the symbolic type descriptor emitted by the compiler is checked for
 117  * correct syntax and names it contains are resolved.
 118  * Thus, an {@code invokevirtual} instruction which invokes
 119  * a method handle will always link, as long
 120  * as the symbolic type descriptor is syntactically well-formed
 121  * and the types exist.
 122  * <p>
 123  * When the {@code invokevirtual} is executed after linking,
 124  * the receiving method handle's type is first checked by the JVM
 125  * to ensure that it matches the symbolic type descriptor.
 126  * If the type match fails, it means that the method which the
 127  * caller is invoking is not present on the individual
 128  * method handle being invoked.
 129  * <p>
 130  * In the case of {@code invokeExact}, the type descriptor of the invocation
 131  * (after resolving symbolic type names) must exactly match the method type
 132  * of the receiving method handle.
 133  * In the case of plain, inexact {@code invoke}, the resolved type descriptor
 134  * must be a valid argument to the receiver's {@link #asType asType} method.
 135  * Thus, plain {@code invoke} is more permissive than {@code invokeExact}.
 136  * <p>
 137  * After type matching, a call to {@code invokeExact} directly
 138  * and immediately invoke the method handle's underlying method
 139  * (or other behavior, as the case may be).
 140  * <p>
 141  * A call to plain {@code invoke} works the same as a call to
 142  * {@code invokeExact}, if the symbolic type descriptor specified by the caller
 143  * exactly matches the method handle's own type.
 144  * If there is a type mismatch, {@code invoke} attempts
 145  * to adjust the type of the receiving method handle,
 146  * as if by a call to {@link #asType asType},
 147  * to obtain an exactly invokable method handle {@code M2}.
 148  * This allows a more powerful negotiation of method type
 149  * between caller and callee.
 150  * <p>
 151  * (<em>Note:</em> The adjusted method handle {@code M2} is not directly observable,
 152  * and implementations are therefore not required to materialize it.)
 153  *
 154  * <h1>Invocation checking</h1>
 155  * In typical programs, method handle type matching will usually succeed.
 156  * But if a match fails, the JVM will throw a {@link WrongMethodTypeException},
 157  * either directly (in the case of {@code invokeExact}) or indirectly as if
 158  * by a failed call to {@code asType} (in the case of {@code invoke}).
 159  * <p>
 160  * Thus, a method type mismatch which might show up as a linkage error
 161  * in a statically typed program can show up as
 162  * a dynamic {@code WrongMethodTypeException}
 163  * in a program which uses method handles.
 164  * <p>
 165  * Because method types contain "live" {@code Class} objects,
 166  * method type matching takes into account both types names and class loaders.
 167  * Thus, even if a method handle {@code M} is created in one
 168  * class loader {@code L1} and used in another {@code L2},
 169  * method handle calls are type-safe, because the caller's symbolic type
 170  * descriptor, as resolved in {@code L2},
 171  * is matched against the original callee method's symbolic type descriptor,
 172  * as resolved in {@code L1}.
 173  * The resolution in {@code L1} happens when {@code M} is created
 174  * and its type is assigned, while the resolution in {@code L2} happens
 175  * when the {@code invokevirtual} instruction is linked.
 176  * <p>
 177  * Apart from the checking of type descriptors,
 178  * a method handle's capability to call its underlying method is unrestricted.
 179  * If a method handle is formed on a non-public method by a class
 180  * that has access to that method, the resulting handle can be used
 181  * in any place by any caller who receives a reference to it.
 182  * <p>
 183  * Unlike with the Core Reflection API, where access is checked every time
 184  * a reflective method is invoked,
 185  * method handle access checking is performed
 186  * <a href="MethodHandles.Lookup.html#access">when the method handle is created</a>.
 187  * In the case of {@code ldc} (see below), access checking is performed as part of linking
 188  * the constant pool entry underlying the constant method handle.
 189  * <p>
 190  * Thus, handles to non-public methods, or to methods in non-public classes,
 191  * should generally be kept secret.
 192  * They should not be passed to untrusted code unless their use from
 193  * the untrusted code would be harmless.
 194  *
 195  * <h1>Method handle creation</h1>
 196  * Java code can create a method handle that directly accesses
 197  * any method, constructor, or field that is accessible to that code.
 198  * This is done via a reflective, capability-based API called
 199  * {@link java.lang.invoke.MethodHandles.Lookup MethodHandles.Lookup}
 200  * For example, a static method handle can be obtained
 201  * from {@link java.lang.invoke.MethodHandles.Lookup#findStatic Lookup.findStatic}.
 202  * There are also conversion methods from Core Reflection API objects,
 203  * such as {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
 204  * <p>
 205  * Like classes and strings, method handles that correspond to accessible
 206  * fields, methods, and constructors can also be represented directly
 207  * in a class file's constant pool as constants to be loaded by {@code ldc} bytecodes.
 208  * A new type of constant pool entry, {@code CONSTANT_MethodHandle},
 209  * refers directly to an associated {@code CONSTANT_Methodref},
 210  * {@code CONSTANT_InterfaceMethodref}, or {@code CONSTANT_Fieldref}
 211  * constant pool entry.
 212  * (For full details on method handle constants,
 213  * see sections 4.4.8 and 5.4.3.5 of the Java Virtual Machine Specification.)
 214  * <p>
 215  * Method handles produced by lookups or constant loads from methods or
 216  * constructors with the variable arity modifier bit ({@code 0x0080})
 217  * have a corresponding variable arity, as if they were defined with
 218  * the help of {@link #asVarargsCollector asVarargsCollector}.
 219  * <p>
 220  * A method reference may refer either to a static or non-static method.
 221  * In the non-static case, the method handle type includes an explicit
 222  * receiver argument, prepended before any other arguments.
 223  * In the method handle's type, the initial receiver argument is typed
 224  * according to the class under which the method was initially requested.
 225  * (E.g., if a non-static method handle is obtained via {@code ldc},
 226  * the type of the receiver is the class named in the constant pool entry.)
 227  * <p>
 228  * Method handle constants are subject to the same link-time access checks
 229  * their corresponding bytecode instructions, and the {@code ldc} instruction
 230  * will throw corresponding linkage errors if the bytecode behaviors would
 231  * throw such errors.
 232  * <p>
 233  * As a corollary of this, access to protected members is restricted
 234  * to receivers only of the accessing class, or one of its subclasses,
 235  * and the accessing class must in turn be a subclass (or package sibling)
 236  * of the protected member's defining class.
 237  * If a method reference refers to a protected non-static method or field
 238  * of a class outside the current package, the receiver argument will
 239  * be narrowed to the type of the accessing class.
 240  * <p>
 241  * When a method handle to a virtual method is invoked, the method is
 242  * always looked up in the receiver (that is, the first argument).
 243  * <p>
 244  * A non-virtual method handle to a specific virtual method implementation
 245  * can also be created.  These do not perform virtual lookup based on
 246  * receiver type.  Such a method handle simulates the effect of
 247  * an {@code invokespecial} instruction to the same method.
 248  *
 249  * <h1>Usage examples</h1>
 250  * Here are some examples of usage:
 251  * <blockquote><pre>{@code
 252 Object x, y; String s; int i;
 253 MethodType mt; MethodHandle mh;
 254 MethodHandles.Lookup lookup = MethodHandles.lookup();
 255 // mt is (char,char)String
 256 mt = MethodType.methodType(String.class, char.class, char.class);
 257 mh = lookup.findVirtual(String.class, "replace", mt);
 258 s = (String) mh.invokeExact("daddy",'d','n');
 259 // invokeExact(Ljava/lang/String;CC)Ljava/lang/String;
 260 assertEquals(s, "nanny");
 261 // weakly typed invocation (using MHs.invoke)
 262 s = (String) mh.invokeWithArguments("sappy", 'p', 'v');
 263 assertEquals(s, "savvy");
 264 // mt is (Object[])List
 265 mt = MethodType.methodType(java.util.List.class, Object[].class);
 266 mh = lookup.findStatic(java.util.Arrays.class, "asList", mt);
 267 assert(mh.isVarargsCollector());
 268 x = mh.invoke("one", "two");
 269 // invoke(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/Object;
 270 assertEquals(x, java.util.Arrays.asList("one","two"));
 271 // mt is (Object,Object,Object)Object
 272 mt = MethodType.genericMethodType(3);
 273 mh = mh.asType(mt);
 274 x = mh.invokeExact((Object)1, (Object)2, (Object)3);
 275 // invokeExact(Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;
 276 assertEquals(x, java.util.Arrays.asList(1,2,3));
 277 // mt is ()int
 278 mt = MethodType.methodType(int.class);
 279 mh = lookup.findVirtual(java.util.List.class, "size", mt);
 280 i = (int) mh.invokeExact(java.util.Arrays.asList(1,2,3));
 281 // invokeExact(Ljava/util/List;)I
 282 assert(i == 3);
 283 mt = MethodType.methodType(void.class, String.class);
 284 mh = lookup.findVirtual(java.io.PrintStream.class, "println", mt);
 285 mh.invokeExact(System.out, "Hello, world.");
 286 // invokeExact(Ljava/io/PrintStream;Ljava/lang/String;)V
 287  * }</pre></blockquote>
 288  * Each of the above calls to {@code invokeExact} or plain {@code invoke}
 289  * generates a single invokevirtual instruction with
 290  * the symbolic type descriptor indicated in the following comment.
 291  * In these examples, the helper method {@code assertEquals} is assumed to
 292  * be a method which calls {@link java.util.Objects#equals(Object,Object) Objects.equals}
 293  * on its arguments, and asserts that the result is true.
 294  *
 295  * <h1>Exceptions</h1>
 296  * The methods {@code invokeExact} and {@code invoke} are declared
 297  * to throw {@link java.lang.Throwable Throwable},
 298  * which is to say that there is no static restriction on what a method handle
 299  * can throw.  Since the JVM does not distinguish between checked
 300  * and unchecked exceptions (other than by their class, of course),
 301  * there is no particular effect on bytecode shape from ascribing
 302  * checked exceptions to method handle invocations.  But in Java source
 303  * code, methods which perform method handle calls must either explicitly
 304  * throw {@code Throwable}, or else must catch all
 305  * throwables locally, rethrowing only those which are legal in the context,
 306  * and wrapping ones which are illegal.
 307  *
 308  * <h1><a name="sigpoly"></a>Signature polymorphism</h1>
 309  * The unusual compilation and linkage behavior of
 310  * {@code invokeExact} and plain {@code invoke}
 311  * is referenced by the term <em>signature polymorphism</em>.
 312  * As defined in the Java Language Specification,
 313  * a signature polymorphic method is one which can operate with
 314  * any of a wide range of call signatures and return types.
 315  * <p>
 316  * In source code, a call to a signature polymorphic method will
 317  * compile, regardless of the requested symbolic type descriptor.
 318  * As usual, the Java compiler emits an {@code invokevirtual}
 319  * instruction with the given symbolic type descriptor against the named method.
 320  * The unusual part is that the symbolic type descriptor is derived from
 321  * the actual argument and return types, not from the method declaration.
 322  * <p>
 323  * When the JVM processes bytecode containing signature polymorphic calls,
 324  * it will successfully link any such call, regardless of its symbolic type descriptor.
 325  * (In order to retain type safety, the JVM will guard such calls with suitable
 326  * dynamic type checks, as described elsewhere.)
 327  * <p>
 328  * Bytecode generators, including the compiler back end, are required to emit
 329  * untransformed symbolic type descriptors for these methods.
 330  * Tools which determine symbolic linkage are required to accept such
 331  * untransformed descriptors, without reporting linkage errors.
 332  *
 333  * <h1>Interoperation between method handles and the Core Reflection API</h1>
 334  * Using factory methods in the {@link java.lang.invoke.MethodHandles.Lookup Lookup} API,
 335  * any class member represented by a Core Reflection API object
 336  * can be converted to a behaviorally equivalent method handle.
 337  * For example, a reflective {@link java.lang.reflect.Method Method} can
 338  * be converted to a method handle using
 339  * {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
 340  * The resulting method handles generally provide more direct and efficient
 341  * access to the underlying class members.
 342  * <p>
 343  * As a special case,
 344  * when the Core Reflection API is used to view the signature polymorphic
 345  * methods {@code invokeExact} or plain {@code invoke} in this class,
 346  * they appear as ordinary non-polymorphic methods.
 347  * Their reflective appearance, as viewed by
 348  * {@link java.lang.Class#getDeclaredMethod Class.getDeclaredMethod},
 349  * is unaffected by their special status in this API.
 350  * For example, {@link java.lang.reflect.Method#getModifiers Method.getModifiers}
 351  * will report exactly those modifier bits required for any similarly
 352  * declared method, including in this case {@code native} and {@code varargs} bits.
 353  * <p>
 354  * As with any reflected method, these methods (when reflected) may be
 355  * invoked via {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.
 356  * However, such reflective calls do not result in method handle invocations.
 357  * Such a call, if passed the required argument
 358  * (a single one, of type {@code Object[]}), will ignore the argument and
 359  * will throw an {@code UnsupportedOperationException}.
 360  * <p>
 361  * Since {@code invokevirtual} instructions can natively
 362  * invoke method handles under any symbolic type descriptor, this reflective view conflicts
 363  * with the normal presentation of these methods via bytecodes.
 364  * Thus, these two native methods, when reflectively viewed by
 365  * {@code Class.getDeclaredMethod}, may be regarded as placeholders only.
 366  * <p>
 367  * In order to obtain an invoker method for a particular type descriptor,
 368  * use {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker},
 369  * or {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}.
 370  * The {@link java.lang.invoke.MethodHandles.Lookup#findVirtual Lookup.findVirtual}
 371  * API is also able to return a method handle
 372  * to call {@code invokeExact} or plain {@code invoke},
 373  * for any specified type descriptor .
 374  *
 375  * <h1>Interoperation between method handles and Java generics</h1>
 376  * A method handle can be obtained on a method, constructor, or field
 377  * which is declared with Java generic types.
 378  * As with the Core Reflection API, the type of the method handle
 379  * will constructed from the erasure of the source-level type.
 380  * When a method handle is invoked, the types of its arguments
 381  * or the return value cast type may be generic types or type instances.
 382  * If this occurs, the compiler will replace those
 383  * types by their erasures when it constructs the symbolic type descriptor
 384  * for the {@code invokevirtual} instruction.
 385  * <p>
 386  * Method handles do not represent
 387  * their function-like types in terms of Java parameterized (generic) types,
 388  * because there are three mismatches between function-like types and parameterized
 389  * Java types.
 390  * <ul>
 391  * <li>Method types range over all possible arities,
 392  * from no arguments to up to the  <a href="MethodHandle.html#maxarity">maximum number</a> of allowed arguments.
 393  * Generics are not variadic, and so cannot represent this.</li>
 394  * <li>Method types can specify arguments of primitive types,
 395  * which Java generic types cannot range over.</li>
 396  * <li>Higher order functions over method handles (combinators) are
 397  * often generic across a wide range of function types, including
 398  * those of multiple arities.  It is impossible to represent such
 399  * genericity with a Java type parameter.</li>
 400  * </ul>
 401  *
 402  * <h1><a name="maxarity"></a>Arity limits</h1>
 403  * The JVM imposes on all methods and constructors of any kind an absolute
 404  * limit of 255 stacked arguments.  This limit can appear more restrictive
 405  * in certain cases:
 406  * <ul>
 407  * <li>A {@code long} or {@code double} argument counts (for purposes of arity limits) as two argument slots.
 408  * <li>A non-static method consumes an extra argument for the object on which the method is called.
 409  * <li>A constructor consumes an extra argument for the object which is being constructed.
 410  * <li>Since a method handle&rsquo;s {@code invoke} method (or other signature-polymorphic method) is non-virtual,
 411  *     it consumes an extra argument for the method handle itself, in addition to any non-virtual receiver object.
 412  * </ul>
 413  * These limits imply that certain method handles cannot be created, solely because of the JVM limit on stacked arguments.
 414  * For example, if a static JVM method accepts exactly 255 arguments, a method handle cannot be created for it.
 415  * Attempts to create method handles with impossible method types lead to an {@link IllegalArgumentException}.
 416  * In particular, a method handle&rsquo;s type must not have an arity of the exact maximum 255.
 417  *
 418  * @see MethodType
 419  * @see MethodHandles
 420  * @author John Rose, JSR 292 EG
 421  */
 422 public abstract class MethodHandle {
 423     static { MethodHandleImpl.initStatics(); }
 424 
 425     /**
 426      * Internal marker interface which distinguishes (to the Java compiler)
 427      * those methods which are <a href="MethodHandle.html#sigpoly">signature polymorphic</a>.
 428      */
 429     @java.lang.annotation.Target({java.lang.annotation.ElementType.METHOD})
 430     @java.lang.annotation.Retention(java.lang.annotation.RetentionPolicy.RUNTIME)
 431     @interface PolymorphicSignature { }
 432 
 433     private final MethodType type;
 434     /*private*/ final LambdaForm form;
 435     // form is not private so that invokers can easily fetch it
 436     /*private*/ MethodHandle asTypeCache;
 437     // asTypeCache is not private so that invokers can easily fetch it
 438     /*non-public*/ byte customizationCount;
 439     // customizationCount should be accessible from invokers
 440 
 441     /**
 442      * Reports the type of this method handle.
 443      * Every invocation of this method handle via {@code invokeExact} must exactly match this type.
 444      * @return the method handle type
 445      */
 446     public MethodType type() {
 447         return type;
 448     }
 449 
 450     /**
 451      * Package-private constructor for the method handle implementation hierarchy.
 452      * Method handle inheritance will be contained completely within
 453      * the {@code java.lang.invoke} package.
 454      */
 455     // @param type type (permanently assigned) of the new method handle
 456     /*non-public*/ MethodHandle(MethodType type, LambdaForm form) {
 457         this.type = Objects.requireNonNull(type);
 458         this.form = Objects.requireNonNull(form).uncustomize();
 459 
 460         this.form.prepare();  // TO DO:  Try to delay this step until just before invocation.
 461     }
 462 
 463     /**
 464      * Invokes the method handle, allowing any caller type descriptor, but requiring an exact type match.
 465      * The symbolic type descriptor at the call site of {@code invokeExact} must
 466      * exactly match this method handle's {@link #type type}.
 467      * No conversions are allowed on arguments or return values.
 468      * <p>
 469      * When this method is observed via the Core Reflection API,
 470      * it will appear as a single native method, taking an object array and returning an object.
 471      * If this native method is invoked directly via
 472      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
 473      * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
 474      * it will throw an {@code UnsupportedOperationException}.
 475      * @param args the signature-polymorphic parameter list, statically represented using varargs
 476      * @return the signature-polymorphic result, statically represented using {@code Object}
 477      * @throws WrongMethodTypeException if the target's type is not identical with the caller's symbolic type descriptor
 478      * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
 479      */
 480     @HotSpotIntrinsicCandidate
 481     public final native @PolymorphicSignature Object invokeExact(Object... args) throws Throwable;
 482 
 483     /**
 484      * Invokes the method handle, allowing any caller type descriptor,
 485      * and optionally performing conversions on arguments and return values.
 486      * <p>
 487      * If the call site's symbolic type descriptor exactly matches this method handle's {@link #type type},
 488      * the call proceeds as if by {@link #invokeExact invokeExact}.
 489      * <p>
 490      * Otherwise, the call proceeds as if this method handle were first
 491      * adjusted by calling {@link #asType asType} to adjust this method handle
 492      * to the required type, and then the call proceeds as if by
 493      * {@link #invokeExact invokeExact} on the adjusted method handle.
 494      * <p>
 495      * There is no guarantee that the {@code asType} call is actually made.
 496      * If the JVM can predict the results of making the call, it may perform
 497      * adaptations directly on the caller's arguments,
 498      * and call the target method handle according to its own exact type.
 499      * <p>
 500      * The resolved type descriptor at the call site of {@code invoke} must
 501      * be a valid argument to the receivers {@code asType} method.
 502      * In particular, the caller must specify the same argument arity
 503      * as the callee's type,
 504      * if the callee is not a {@linkplain #asVarargsCollector variable arity collector}.
 505      * <p>
 506      * When this method is observed via the Core Reflection API,
 507      * it will appear as a single native method, taking an object array and returning an object.
 508      * If this native method is invoked directly via
 509      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
 510      * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
 511      * it will throw an {@code UnsupportedOperationException}.
 512      * @param args the signature-polymorphic parameter list, statically represented using varargs
 513      * @return the signature-polymorphic result, statically represented using {@code Object}
 514      * @throws WrongMethodTypeException if the target's type cannot be adjusted to the caller's symbolic type descriptor
 515      * @throws ClassCastException if the target's type can be adjusted to the caller, but a reference cast fails
 516      * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
 517      */
 518     @HotSpotIntrinsicCandidate
 519     public final native @PolymorphicSignature Object invoke(Object... args) throws Throwable;
 520 
 521     /**
 522      * Private method for trusted invocation of a method handle respecting simplified signatures.
 523      * Type mismatches will not throw {@code WrongMethodTypeException}, but could crash the JVM.
 524      * <p>
 525      * The caller signature is restricted to the following basic types:
 526      * Object, int, long, float, double, and void return.
 527      * <p>
 528      * The caller is responsible for maintaining type correctness by ensuring
 529      * that the each outgoing argument value is a member of the range of the corresponding
 530      * callee argument type.
 531      * (The caller should therefore issue appropriate casts and integer narrowing
 532      * operations on outgoing argument values.)
 533      * The caller can assume that the incoming result value is part of the range
 534      * of the callee's return type.
 535      * @param args the signature-polymorphic parameter list, statically represented using varargs
 536      * @return the signature-polymorphic result, statically represented using {@code Object}
 537      */
 538     @HotSpotIntrinsicCandidate
 539     /*non-public*/ final native @PolymorphicSignature Object invokeBasic(Object... args) throws Throwable;
 540 
 541     /**
 542      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeVirtual}.
 543      * The caller signature is restricted to basic types as with {@code invokeBasic}.
 544      * The trailing (not leading) argument must be a MemberName.
 545      * @param args the signature-polymorphic parameter list, statically represented using varargs
 546      * @return the signature-polymorphic result, statically represented using {@code Object}
 547      */
 548     @HotSpotIntrinsicCandidate
 549     /*non-public*/ static native @PolymorphicSignature Object linkToVirtual(Object... args) throws Throwable;
 550 
 551     /**
 552      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeStatic}.
 553      * The caller signature is restricted to basic types as with {@code invokeBasic}.
 554      * The trailing (not leading) argument must be a MemberName.
 555      * @param args the signature-polymorphic parameter list, statically represented using varargs
 556      * @return the signature-polymorphic result, statically represented using {@code Object}
 557      */
 558     @HotSpotIntrinsicCandidate
 559     /*non-public*/ static native @PolymorphicSignature Object linkToStatic(Object... args) throws Throwable;
 560 
 561     /**
 562      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeSpecial}.
 563      * The caller signature is restricted to basic types as with {@code invokeBasic}.
 564      * The trailing (not leading) argument must be a MemberName.
 565      * @param args the signature-polymorphic parameter list, statically represented using varargs
 566      * @return the signature-polymorphic result, statically represented using {@code Object}
 567      */
 568     @HotSpotIntrinsicCandidate
 569     /*non-public*/ static native @PolymorphicSignature Object linkToSpecial(Object... args) throws Throwable;
 570 
 571     /**
 572      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeInterface}.
 573      * The caller signature is restricted to basic types as with {@code invokeBasic}.
 574      * The trailing (not leading) argument must be a MemberName.
 575      * @param args the signature-polymorphic parameter list, statically represented using varargs
 576      * @return the signature-polymorphic result, statically represented using {@code Object}
 577      */
 578     @HotSpotIntrinsicCandidate
 579     /*non-public*/ static native @PolymorphicSignature Object linkToInterface(Object... args) throws Throwable;
 580 
 581     /**
 582      * Performs a variable arity invocation, passing the arguments in the given list
 583      * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
 584      * which mentions only the type {@code Object}, and whose arity is the length
 585      * of the argument list.
 586      * <p>
 587      * Specifically, execution proceeds as if by the following steps,
 588      * although the methods are not guaranteed to be called if the JVM
 589      * can predict their effects.
 590      * <ul>
 591      * <li>Determine the length of the argument array as {@code N}.
 592      *     For a null reference, {@code N=0}. </li>
 593      * <li>Determine the general type {@code TN} of {@code N} arguments as
 594      *     as {@code TN=MethodType.genericMethodType(N)}.</li>
 595      * <li>Force the original target method handle {@code MH0} to the
 596      *     required type, as {@code MH1 = MH0.asType(TN)}. </li>
 597      * <li>Spread the array into {@code N} separate arguments {@code A0, ...}. </li>
 598      * <li>Invoke the type-adjusted method handle on the unpacked arguments:
 599      *     MH1.invokeExact(A0, ...). </li>
 600      * <li>Take the return value as an {@code Object} reference. </li>
 601      * </ul>
 602      * <p>
 603      * Because of the action of the {@code asType} step, the following argument
 604      * conversions are applied as necessary:
 605      * <ul>
 606      * <li>reference casting
 607      * <li>unboxing
 608      * <li>widening primitive conversions
 609      * </ul>
 610      * <p>
 611      * The result returned by the call is boxed if it is a primitive,
 612      * or forced to null if the return type is void.
 613      * <p>
 614      * This call is equivalent to the following code:
 615      * <blockquote><pre>{@code
 616      * MethodHandle invoker = MethodHandles.spreadInvoker(this.type(), 0);
 617      * Object result = invoker.invokeExact(this, arguments);
 618      * }</pre></blockquote>
 619      * <p>
 620      * Unlike the signature polymorphic methods {@code invokeExact} and {@code invoke},
 621      * {@code invokeWithArguments} can be accessed normally via the Core Reflection API and JNI.
 622      * It can therefore be used as a bridge between native or reflective code and method handles.
 623      *
 624      * @param arguments the arguments to pass to the target
 625      * @return the result returned by the target
 626      * @throws ClassCastException if an argument cannot be converted by reference casting
 627      * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
 628      * @throws Throwable anything thrown by the target method invocation
 629      * @see MethodHandles#spreadInvoker
 630      */
 631     public Object invokeWithArguments(Object... arguments) throws Throwable {
 632         MethodType invocationType = MethodType.genericMethodType(arguments == null ? 0 : arguments.length);
 633         return invocationType.invokers().spreadInvoker(0).invokeExact(asType(invocationType), arguments);
 634     }
 635 
 636     /**
 637      * Performs a variable arity invocation, passing the arguments in the given array
 638      * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
 639      * which mentions only the type {@code Object}, and whose arity is the length
 640      * of the argument array.
 641      * <p>
 642      * This method is also equivalent to the following code:
 643      * <blockquote><pre>{@code
 644      *   invokeWithArguments(arguments.toArray()
 645      * }</pre></blockquote>
 646      *
 647      * @param arguments the arguments to pass to the target
 648      * @return the result returned by the target
 649      * @throws NullPointerException if {@code arguments} is a null reference
 650      * @throws ClassCastException if an argument cannot be converted by reference casting
 651      * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
 652      * @throws Throwable anything thrown by the target method invocation
 653      */
 654     public Object invokeWithArguments(java.util.List<?> arguments) throws Throwable {
 655         return invokeWithArguments(arguments.toArray());
 656     }
 657 
 658     /**
 659      * Produces an adapter method handle which adapts the type of the
 660      * current method handle to a new type.
 661      * The resulting method handle is guaranteed to report a type
 662      * which is equal to the desired new type.
 663      * <p>
 664      * If the original type and new type are equal, returns {@code this}.
 665      * <p>
 666      * The new method handle, when invoked, will perform the following
 667      * steps:
 668      * <ul>
 669      * <li>Convert the incoming argument list to match the original
 670      *     method handle's argument list.
 671      * <li>Invoke the original method handle on the converted argument list.
 672      * <li>Convert any result returned by the original method handle
 673      *     to the return type of new method handle.
 674      * </ul>
 675      * <p>
 676      * This method provides the crucial behavioral difference between
 677      * {@link #invokeExact invokeExact} and plain, inexact {@link #invoke invoke}.
 678      * The two methods
 679      * perform the same steps when the caller's type descriptor exactly matches
 680      * the callee's, but when the types differ, plain {@link #invoke invoke}
 681      * also calls {@code asType} (or some internal equivalent) in order
 682      * to match up the caller's and callee's types.
 683      * <p>
 684      * If the current method is a variable arity method handle
 685      * argument list conversion may involve the conversion and collection
 686      * of several arguments into an array, as
 687      * {@linkplain #asVarargsCollector described elsewhere}.
 688      * In every other case, all conversions are applied <em>pairwise</em>,
 689      * which means that each argument or return value is converted to
 690      * exactly one argument or return value (or no return value).
 691      * The applied conversions are defined by consulting the
 692      * the corresponding component types of the old and new
 693      * method handle types.
 694      * <p>
 695      * Let <em>T0</em> and <em>T1</em> be corresponding new and old parameter types,
 696      * or old and new return types.  Specifically, for some valid index {@code i}, let
 697      * <em>T0</em>{@code =newType.parameterType(i)} and <em>T1</em>{@code =this.type().parameterType(i)}.
 698      * Or else, going the other way for return values, let
 699      * <em>T0</em>{@code =this.type().returnType()} and <em>T1</em>{@code =newType.returnType()}.
 700      * If the types are the same, the new method handle makes no change
 701      * to the corresponding argument or return value (if any).
 702      * Otherwise, one of the following conversions is applied
 703      * if possible:
 704      * <ul>
 705      * <li>If <em>T0</em> and <em>T1</em> are references, then a cast to <em>T1</em> is applied.
 706      *     (The types do not need to be related in any particular way.
 707      *     This is because a dynamic value of null can convert to any reference type.)
 708      * <li>If <em>T0</em> and <em>T1</em> are primitives, then a Java method invocation
 709      *     conversion (JLS 5.3) is applied, if one exists.
 710      *     (Specifically, <em>T0</em> must convert to <em>T1</em> by a widening primitive conversion.)
 711      * <li>If <em>T0</em> is a primitive and <em>T1</em> a reference,
 712      *     a Java casting conversion (JLS 5.5) is applied if one exists.
 713      *     (Specifically, the value is boxed from <em>T0</em> to its wrapper class,
 714      *     which is then widened as needed to <em>T1</em>.)
 715      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
 716      *     conversion will be applied at runtime, possibly followed
 717      *     by a Java method invocation conversion (JLS 5.3)
 718      *     on the primitive value.  (These are the primitive widening conversions.)
 719      *     <em>T0</em> must be a wrapper class or a supertype of one.
 720      *     (In the case where <em>T0</em> is Object, these are the conversions
 721      *     allowed by {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.)
 722      *     The unboxing conversion must have a possibility of success, which means that
 723      *     if <em>T0</em> is not itself a wrapper class, there must exist at least one
 724      *     wrapper class <em>TW</em> which is a subtype of <em>T0</em> and whose unboxed
 725      *     primitive value can be widened to <em>T1</em>.
 726      * <li>If the return type <em>T1</em> is marked as void, any returned value is discarded
 727      * <li>If the return type <em>T0</em> is void and <em>T1</em> a reference, a null value is introduced.
 728      * <li>If the return type <em>T0</em> is void and <em>T1</em> a primitive,
 729      *     a zero value is introduced.
 730      * </ul>
 731      * (<em>Note:</em> Both <em>T0</em> and <em>T1</em> may be regarded as static types,
 732      * because neither corresponds specifically to the <em>dynamic type</em> of any
 733      * actual argument or return value.)
 734      * <p>
 735      * The method handle conversion cannot be made if any one of the required
 736      * pairwise conversions cannot be made.
 737      * <p>
 738      * At runtime, the conversions applied to reference arguments
 739      * or return values may require additional runtime checks which can fail.
 740      * An unboxing operation may fail because the original reference is null,
 741      * causing a {@link java.lang.NullPointerException NullPointerException}.
 742      * An unboxing operation or a reference cast may also fail on a reference
 743      * to an object of the wrong type,
 744      * causing a {@link java.lang.ClassCastException ClassCastException}.
 745      * Although an unboxing operation may accept several kinds of wrappers,
 746      * if none are available, a {@code ClassCastException} will be thrown.
 747      *
 748      * @param newType the expected type of the new method handle
 749      * @return a method handle which delegates to {@code this} after performing
 750      *           any necessary argument conversions, and arranges for any
 751      *           necessary return value conversions
 752      * @throws NullPointerException if {@code newType} is a null reference
 753      * @throws WrongMethodTypeException if the conversion cannot be made
 754      * @see MethodHandles#explicitCastArguments
 755      */
 756     public MethodHandle asType(MethodType newType) {
 757         // Fast path alternative to a heavyweight {@code asType} call.
 758         // Return 'this' if the conversion will be a no-op.
 759         if (newType == type) {
 760             return this;
 761         }
 762         // Return 'this.asTypeCache' if the conversion is already memoized.
 763         MethodHandle atc = asTypeCached(newType);
 764         if (atc != null) {
 765             return atc;
 766         }
 767         return asTypeUncached(newType);
 768     }
 769 
 770     private MethodHandle asTypeCached(MethodType newType) {
 771         MethodHandle atc = asTypeCache;
 772         if (atc != null && newType == atc.type) {
 773             return atc;
 774         }
 775         return null;
 776     }
 777 
 778     /** Override this to change asType behavior. */
 779     /*non-public*/ MethodHandle asTypeUncached(MethodType newType) {
 780         if (!type.isConvertibleTo(newType))
 781             throw new WrongMethodTypeException("cannot convert "+this+" to "+newType);
 782         return asTypeCache = MethodHandleImpl.makePairwiseConvert(this, newType, true);
 783     }
 784 
 785     /**
 786      * Makes an <em>array-spreading</em> method handle, which accepts a trailing array argument
 787      * and spreads its elements as positional arguments.
 788      * The new method handle adapts, as its <i>target</i>,
 789      * the current method handle.  The type of the adapter will be
 790      * the same as the type of the target, except that the final
 791      * {@code arrayLength} parameters of the target's type are replaced
 792      * by a single array parameter of type {@code arrayType}.
 793      * <p>
 794      * If the array element type differs from any of the corresponding
 795      * argument types on the original target,
 796      * the original target is adapted to take the array elements directly,
 797      * as if by a call to {@link #asType asType}.
 798      * <p>
 799      * When called, the adapter replaces a trailing array argument
 800      * by the array's elements, each as its own argument to the target.
 801      * (The order of the arguments is preserved.)
 802      * They are converted pairwise by casting and/or unboxing
 803      * to the types of the trailing parameters of the target.
 804      * Finally the target is called.
 805      * What the target eventually returns is returned unchanged by the adapter.
 806      * <p>
 807      * Before calling the target, the adapter verifies that the array
 808      * contains exactly enough elements to provide a correct argument count
 809      * to the target method handle.
 810      * (The array may also be null when zero elements are required.)
 811      * <p>
 812      * If, when the adapter is called, the supplied array argument does
 813      * not have the correct number of elements, the adapter will throw
 814      * an {@link IllegalArgumentException} instead of invoking the target.
 815      * <p>
 816      * Here are some simple examples of array-spreading method handles:
 817      * <blockquote><pre>{@code
 818 MethodHandle equals = publicLookup()
 819   .findVirtual(String.class, "equals", methodType(boolean.class, Object.class));
 820 assert( (boolean) equals.invokeExact("me", (Object)"me"));
 821 assert(!(boolean) equals.invokeExact("me", (Object)"thee"));
 822 // spread both arguments from a 2-array:
 823 MethodHandle eq2 = equals.asSpreader(Object[].class, 2);
 824 assert( (boolean) eq2.invokeExact(new Object[]{ "me", "me" }));
 825 assert(!(boolean) eq2.invokeExact(new Object[]{ "me", "thee" }));
 826 // try to spread from anything but a 2-array:
 827 for (int n = 0; n <= 10; n++) {
 828   Object[] badArityArgs = (n == 2 ? null : new Object[n]);
 829   try { assert((boolean) eq2.invokeExact(badArityArgs) && false); }
 830   catch (IllegalArgumentException ex) { } // OK
 831 }
 832 // spread both arguments from a String array:
 833 MethodHandle eq2s = equals.asSpreader(String[].class, 2);
 834 assert( (boolean) eq2s.invokeExact(new String[]{ "me", "me" }));
 835 assert(!(boolean) eq2s.invokeExact(new String[]{ "me", "thee" }));
 836 // spread second arguments from a 1-array:
 837 MethodHandle eq1 = equals.asSpreader(Object[].class, 1);
 838 assert( (boolean) eq1.invokeExact("me", new Object[]{ "me" }));
 839 assert(!(boolean) eq1.invokeExact("me", new Object[]{ "thee" }));
 840 // spread no arguments from a 0-array or null:
 841 MethodHandle eq0 = equals.asSpreader(Object[].class, 0);
 842 assert( (boolean) eq0.invokeExact("me", (Object)"me", new Object[0]));
 843 assert(!(boolean) eq0.invokeExact("me", (Object)"thee", (Object[])null));
 844 // asSpreader and asCollector are approximate inverses:
 845 for (int n = 0; n <= 2; n++) {
 846     for (Class<?> a : new Class<?>[]{Object[].class, String[].class, CharSequence[].class}) {
 847         MethodHandle equals2 = equals.asSpreader(a, n).asCollector(a, n);
 848         assert( (boolean) equals2.invokeWithArguments("me", "me"));
 849         assert(!(boolean) equals2.invokeWithArguments("me", "thee"));
 850     }
 851 }
 852 MethodHandle caToString = publicLookup()
 853   .findStatic(Arrays.class, "toString", methodType(String.class, char[].class));
 854 assertEquals("[A, B, C]", (String) caToString.invokeExact("ABC".toCharArray()));
 855 MethodHandle caString3 = caToString.asCollector(char[].class, 3);
 856 assertEquals("[A, B, C]", (String) caString3.invokeExact('A', 'B', 'C'));
 857 MethodHandle caToString2 = caString3.asSpreader(char[].class, 2);
 858 assertEquals("[A, B, C]", (String) caToString2.invokeExact('A', "BC".toCharArray()));
 859      * }</pre></blockquote>
 860      * @param arrayType usually {@code Object[]}, the type of the array argument from which to extract the spread arguments
 861      * @param arrayLength the number of arguments to spread from an incoming array argument
 862      * @return a new method handle which spreads its final array argument,
 863      *         before calling the original method handle
 864      * @throws NullPointerException if {@code arrayType} is a null reference
 865      * @throws IllegalArgumentException if {@code arrayType} is not an array type,
 866      *         or if target does not have at least
 867      *         {@code arrayLength} parameter types,
 868      *         or if {@code arrayLength} is negative,
 869      *         or if the resulting method handle's type would have
 870      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
 871      * @throws WrongMethodTypeException if the implied {@code asType} call fails
 872      * @see #asCollector
 873      */
 874     public MethodHandle asSpreader(Class<?> arrayType, int arrayLength) {
 875         MethodType postSpreadType = asSpreaderChecks(arrayType, arrayLength);
 876         int arity = type().parameterCount();
 877         int spreadArgPos = arity - arrayLength;
 878         MethodHandle afterSpread = this.asType(postSpreadType);
 879         BoundMethodHandle mh = afterSpread.rebind();
 880         LambdaForm lform = mh.editor().spreadArgumentsForm(1 + spreadArgPos, arrayType, arrayLength);
 881         MethodType preSpreadType = postSpreadType.replaceParameterTypes(spreadArgPos, arity, arrayType);
 882         return mh.copyWith(preSpreadType, lform);
 883     }
 884 
 885     /**
 886      * See if {@code asSpreader} can be validly called with the given arguments.
 887      * Return the type of the method handle call after spreading but before conversions.
 888      */
 889     private MethodType asSpreaderChecks(Class<?> arrayType, int arrayLength) {
 890         spreadArrayChecks(arrayType, arrayLength);
 891         int nargs = type().parameterCount();
 892         if (nargs < arrayLength || arrayLength < 0)
 893             throw newIllegalArgumentException("bad spread array length");
 894         Class<?> arrayElement = arrayType.getComponentType();
 895         MethodType mtype = type();
 896         boolean match = true, fail = false;
 897         for (int i = nargs - arrayLength; i < nargs; i++) {
 898             Class<?> ptype = mtype.parameterType(i);
 899             if (ptype != arrayElement) {
 900                 match = false;
 901                 if (!MethodType.canConvert(arrayElement, ptype)) {
 902                     fail = true;
 903                     break;
 904                 }
 905             }
 906         }
 907         if (match)  return mtype;
 908         MethodType needType = mtype.asSpreaderType(arrayType, arrayLength);
 909         if (!fail)  return needType;
 910         // elicit an error:
 911         this.asType(needType);
 912         throw newInternalError("should not return", null);
 913     }
 914 
 915     private void spreadArrayChecks(Class<?> arrayType, int arrayLength) {
 916         Class<?> arrayElement = arrayType.getComponentType();
 917         if (arrayElement == null)
 918             throw newIllegalArgumentException("not an array type", arrayType);
 919         if ((arrayLength & 0x7F) != arrayLength) {
 920             if ((arrayLength & 0xFF) != arrayLength)
 921                 throw newIllegalArgumentException("array length is not legal", arrayLength);
 922             assert(arrayLength >= 128);
 923             if (arrayElement == long.class ||
 924                 arrayElement == double.class)
 925                 throw newIllegalArgumentException("array length is not legal for long[] or double[]", arrayLength);
 926         }
 927     }
 928 
 929     /**
 930      * Makes an <em>array-collecting</em> method handle, which accepts a given number of trailing
 931      * positional arguments and collects them into an array argument.
 932      * The new method handle adapts, as its <i>target</i>,
 933      * the current method handle.  The type of the adapter will be
 934      * the same as the type of the target, except that a single trailing
 935      * parameter (usually of type {@code arrayType}) is replaced by
 936      * {@code arrayLength} parameters whose type is element type of {@code arrayType}.
 937      * <p>
 938      * If the array type differs from the final argument type on the original target,
 939      * the original target is adapted to take the array type directly,
 940      * as if by a call to {@link #asType asType}.
 941      * <p>
 942      * When called, the adapter replaces its trailing {@code arrayLength}
 943      * arguments by a single new array of type {@code arrayType}, whose elements
 944      * comprise (in order) the replaced arguments.
 945      * Finally the target is called.
 946      * What the target eventually returns is returned unchanged by the adapter.
 947      * <p>
 948      * (The array may also be a shared constant when {@code arrayLength} is zero.)
 949      * <p>
 950      * (<em>Note:</em> The {@code arrayType} is often identical to the last
 951      * parameter type of the original target.
 952      * It is an explicit argument for symmetry with {@code asSpreader}, and also
 953      * to allow the target to use a simple {@code Object} as its last parameter type.)
 954      * <p>
 955      * In order to create a collecting adapter which is not restricted to a particular
 956      * number of collected arguments, use {@link #asVarargsCollector asVarargsCollector} instead.
 957      * <p>
 958      * Here are some examples of array-collecting method handles:
 959      * <blockquote><pre>{@code
 960 MethodHandle deepToString = publicLookup()
 961   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
 962 assertEquals("[won]",   (String) deepToString.invokeExact(new Object[]{"won"}));
 963 MethodHandle ts1 = deepToString.asCollector(Object[].class, 1);
 964 assertEquals(methodType(String.class, Object.class), ts1.type());
 965 //assertEquals("[won]", (String) ts1.invokeExact(         new Object[]{"won"})); //FAIL
 966 assertEquals("[[won]]", (String) ts1.invokeExact((Object) new Object[]{"won"}));
 967 // arrayType can be a subtype of Object[]
 968 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
 969 assertEquals(methodType(String.class, String.class, String.class), ts2.type());
 970 assertEquals("[two, too]", (String) ts2.invokeExact("two", "too"));
 971 MethodHandle ts0 = deepToString.asCollector(Object[].class, 0);
 972 assertEquals("[]", (String) ts0.invokeExact());
 973 // collectors can be nested, Lisp-style
 974 MethodHandle ts22 = deepToString.asCollector(Object[].class, 3).asCollector(String[].class, 2);
 975 assertEquals("[A, B, [C, D]]", ((String) ts22.invokeExact((Object)'A', (Object)"B", "C", "D")));
 976 // arrayType can be any primitive array type
 977 MethodHandle bytesToString = publicLookup()
 978   .findStatic(Arrays.class, "toString", methodType(String.class, byte[].class))
 979   .asCollector(byte[].class, 3);
 980 assertEquals("[1, 2, 3]", (String) bytesToString.invokeExact((byte)1, (byte)2, (byte)3));
 981 MethodHandle longsToString = publicLookup()
 982   .findStatic(Arrays.class, "toString", methodType(String.class, long[].class))
 983   .asCollector(long[].class, 1);
 984 assertEquals("[123]", (String) longsToString.invokeExact((long)123));
 985      * }</pre></blockquote>
 986      * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
 987      * @param arrayLength the number of arguments to collect into a new array argument
 988      * @return a new method handle which collects some trailing argument
 989      *         into an array, before calling the original method handle
 990      * @throws NullPointerException if {@code arrayType} is a null reference
 991      * @throws IllegalArgumentException if {@code arrayType} is not an array type
 992      *         or {@code arrayType} is not assignable to this method handle's trailing parameter type,
 993      *         or {@code arrayLength} is not a legal array size,
 994      *         or the resulting method handle's type would have
 995      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
 996      * @throws WrongMethodTypeException if the implied {@code asType} call fails
 997      * @see #asSpreader
 998      * @see #asVarargsCollector
 999      */
1000     public MethodHandle asCollector(Class<?> arrayType, int arrayLength) {
1001         asCollectorChecks(arrayType, arrayLength);
1002         int collectArgPos = type().parameterCount() - 1;
1003         BoundMethodHandle mh = rebind();
1004         MethodType resultType = type().asCollectorType(arrayType, arrayLength);
1005         MethodHandle newArray = MethodHandleImpl.varargsArray(arrayType, arrayLength);
1006         LambdaForm lform = mh.editor().collectArgumentArrayForm(1 + collectArgPos, newArray);
1007         if (lform != null) {
1008             return mh.copyWith(resultType, lform);
1009         }
1010         lform = mh.editor().collectArgumentsForm(1 + collectArgPos, newArray.type().basicType());
1011         return mh.copyWithExtendL(resultType, lform, newArray);
1012     }
1013 
1014     /**
1015      * See if {@code asCollector} can be validly called with the given arguments.
1016      * Return false if the last parameter is not an exact match to arrayType.
1017      */
1018     /*non-public*/ boolean asCollectorChecks(Class<?> arrayType, int arrayLength) {
1019         spreadArrayChecks(arrayType, arrayLength);
1020         int nargs = type().parameterCount();
1021         if (nargs != 0) {
1022             Class<?> lastParam = type().parameterType(nargs-1);
1023             if (lastParam == arrayType)  return true;
1024             if (lastParam.isAssignableFrom(arrayType))  return false;
1025         }
1026         throw newIllegalArgumentException("array type not assignable to trailing argument", this, arrayType);
1027     }
1028 
1029     /**
1030      * Makes a <em>variable arity</em> adapter which is able to accept
1031      * any number of trailing positional arguments and collect them
1032      * into an array argument.
1033      * <p>
1034      * The type and behavior of the adapter will be the same as
1035      * the type and behavior of the target, except that certain
1036      * {@code invoke} and {@code asType} requests can lead to
1037      * trailing positional arguments being collected into target's
1038      * trailing parameter.
1039      * Also, the last parameter type of the adapter will be
1040      * {@code arrayType}, even if the target has a different
1041      * last parameter type.
1042      * <p>
1043      * This transformation may return {@code this} if the method handle is
1044      * already of variable arity and its trailing parameter type
1045      * is identical to {@code arrayType}.
1046      * <p>
1047      * When called with {@link #invokeExact invokeExact}, the adapter invokes
1048      * the target with no argument changes.
1049      * (<em>Note:</em> This behavior is different from a
1050      * {@linkplain #asCollector fixed arity collector},
1051      * since it accepts a whole array of indeterminate length,
1052      * rather than a fixed number of arguments.)
1053      * <p>
1054      * When called with plain, inexact {@link #invoke invoke}, if the caller
1055      * type is the same as the adapter, the adapter invokes the target as with
1056      * {@code invokeExact}.
1057      * (This is the normal behavior for {@code invoke} when types match.)
1058      * <p>
1059      * Otherwise, if the caller and adapter arity are the same, and the
1060      * trailing parameter type of the caller is a reference type identical to
1061      * or assignable to the trailing parameter type of the adapter,
1062      * the arguments and return values are converted pairwise,
1063      * as if by {@link #asType asType} on a fixed arity
1064      * method handle.
1065      * <p>
1066      * Otherwise, the arities differ, or the adapter's trailing parameter
1067      * type is not assignable from the corresponding caller type.
1068      * In this case, the adapter replaces all trailing arguments from
1069      * the original trailing argument position onward, by
1070      * a new array of type {@code arrayType}, whose elements
1071      * comprise (in order) the replaced arguments.
1072      * <p>
1073      * The caller type must provides as least enough arguments,
1074      * and of the correct type, to satisfy the target's requirement for
1075      * positional arguments before the trailing array argument.
1076      * Thus, the caller must supply, at a minimum, {@code N-1} arguments,
1077      * where {@code N} is the arity of the target.
1078      * Also, there must exist conversions from the incoming arguments
1079      * to the target's arguments.
1080      * As with other uses of plain {@code invoke}, if these basic
1081      * requirements are not fulfilled, a {@code WrongMethodTypeException}
1082      * may be thrown.
1083      * <p>
1084      * In all cases, what the target eventually returns is returned unchanged by the adapter.
1085      * <p>
1086      * In the final case, it is exactly as if the target method handle were
1087      * temporarily adapted with a {@linkplain #asCollector fixed arity collector}
1088      * to the arity required by the caller type.
1089      * (As with {@code asCollector}, if the array length is zero,
1090      * a shared constant may be used instead of a new array.
1091      * If the implied call to {@code asCollector} would throw
1092      * an {@code IllegalArgumentException} or {@code WrongMethodTypeException},
1093      * the call to the variable arity adapter must throw
1094      * {@code WrongMethodTypeException}.)
1095      * <p>
1096      * The behavior of {@link #asType asType} is also specialized for
1097      * variable arity adapters, to maintain the invariant that
1098      * plain, inexact {@code invoke} is always equivalent to an {@code asType}
1099      * call to adjust the target type, followed by {@code invokeExact}.
1100      * Therefore, a variable arity adapter responds
1101      * to an {@code asType} request by building a fixed arity collector,
1102      * if and only if the adapter and requested type differ either
1103      * in arity or trailing argument type.
1104      * The resulting fixed arity collector has its type further adjusted
1105      * (if necessary) to the requested type by pairwise conversion,
1106      * as if by another application of {@code asType}.
1107      * <p>
1108      * When a method handle is obtained by executing an {@code ldc} instruction
1109      * of a {@code CONSTANT_MethodHandle} constant, and the target method is marked
1110      * as a variable arity method (with the modifier bit {@code 0x0080}),
1111      * the method handle will accept multiple arities, as if the method handle
1112      * constant were created by means of a call to {@code asVarargsCollector}.
1113      * <p>
1114      * In order to create a collecting adapter which collects a predetermined
1115      * number of arguments, and whose type reflects this predetermined number,
1116      * use {@link #asCollector asCollector} instead.
1117      * <p>
1118      * No method handle transformations produce new method handles with
1119      * variable arity, unless they are documented as doing so.
1120      * Therefore, besides {@code asVarargsCollector},
1121      * all methods in {@code MethodHandle} and {@code MethodHandles}
1122      * will return a method handle with fixed arity,
1123      * except in the cases where they are specified to return their original
1124      * operand (e.g., {@code asType} of the method handle's own type).
1125      * <p>
1126      * Calling {@code asVarargsCollector} on a method handle which is already
1127      * of variable arity will produce a method handle with the same type and behavior.
1128      * It may (or may not) return the original variable arity method handle.
1129      * <p>
1130      * Here is an example, of a list-making variable arity method handle:
1131      * <blockquote><pre>{@code
1132 MethodHandle deepToString = publicLookup()
1133   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
1134 MethodHandle ts1 = deepToString.asVarargsCollector(Object[].class);
1135 assertEquals("[won]",   (String) ts1.invokeExact(    new Object[]{"won"}));
1136 assertEquals("[won]",   (String) ts1.invoke(         new Object[]{"won"}));
1137 assertEquals("[won]",   (String) ts1.invoke(                      "won" ));
1138 assertEquals("[[won]]", (String) ts1.invoke((Object) new Object[]{"won"}));
1139 // findStatic of Arrays.asList(...) produces a variable arity method handle:
1140 MethodHandle asList = publicLookup()
1141   .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class));
1142 assertEquals(methodType(List.class, Object[].class), asList.type());
1143 assert(asList.isVarargsCollector());
1144 assertEquals("[]", asList.invoke().toString());
1145 assertEquals("[1]", asList.invoke(1).toString());
1146 assertEquals("[two, too]", asList.invoke("two", "too").toString());
1147 String[] argv = { "three", "thee", "tee" };
1148 assertEquals("[three, thee, tee]", asList.invoke(argv).toString());
1149 assertEquals("[three, thee, tee]", asList.invoke((Object[])argv).toString());
1150 List ls = (List) asList.invoke((Object)argv);
1151 assertEquals(1, ls.size());
1152 assertEquals("[three, thee, tee]", Arrays.toString((Object[])ls.get(0)));
1153      * }</pre></blockquote>
1154      * <p style="font-size:smaller;">
1155      * <em>Discussion:</em>
1156      * These rules are designed as a dynamically-typed variation
1157      * of the Java rules for variable arity methods.
1158      * In both cases, callers to a variable arity method or method handle
1159      * can either pass zero or more positional arguments, or else pass
1160      * pre-collected arrays of any length.  Users should be aware of the
1161      * special role of the final argument, and of the effect of a
1162      * type match on that final argument, which determines whether
1163      * or not a single trailing argument is interpreted as a whole
1164      * array or a single element of an array to be collected.
1165      * Note that the dynamic type of the trailing argument has no
1166      * effect on this decision, only a comparison between the symbolic
1167      * type descriptor of the call site and the type descriptor of the method handle.)
1168      *
1169      * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
1170      * @return a new method handle which can collect any number of trailing arguments
1171      *         into an array, before calling the original method handle
1172      * @throws NullPointerException if {@code arrayType} is a null reference
1173      * @throws IllegalArgumentException if {@code arrayType} is not an array type
1174      *         or {@code arrayType} is not assignable to this method handle's trailing parameter type
1175      * @see #asCollector
1176      * @see #isVarargsCollector
1177      * @see #asFixedArity
1178      */
1179     public MethodHandle asVarargsCollector(Class<?> arrayType) {
1180         Objects.requireNonNull(arrayType);
1181         boolean lastMatch = asCollectorChecks(arrayType, 0);
1182         if (isVarargsCollector() && lastMatch)
1183             return this;
1184         return MethodHandleImpl.makeVarargsCollector(this, arrayType);
1185     }
1186 
1187     /**
1188      * Determines if this method handle
1189      * supports {@linkplain #asVarargsCollector variable arity} calls.
1190      * Such method handles arise from the following sources:
1191      * <ul>
1192      * <li>a call to {@linkplain #asVarargsCollector asVarargsCollector}
1193      * <li>a call to a {@linkplain java.lang.invoke.MethodHandles.Lookup lookup method}
1194      *     which resolves to a variable arity Java method or constructor
1195      * <li>an {@code ldc} instruction of a {@code CONSTANT_MethodHandle}
1196      *     which resolves to a variable arity Java method or constructor
1197      * </ul>
1198      * @return true if this method handle accepts more than one arity of plain, inexact {@code invoke} calls
1199      * @see #asVarargsCollector
1200      * @see #asFixedArity
1201      */
1202     public boolean isVarargsCollector() {
1203         return false;
1204     }
1205 
1206     /**
1207      * Makes a <em>fixed arity</em> method handle which is otherwise
1208      * equivalent to the current method handle.
1209      * <p>
1210      * If the current method handle is not of
1211      * {@linkplain #asVarargsCollector variable arity},
1212      * the current method handle is returned.
1213      * This is true even if the current method handle
1214      * could not be a valid input to {@code asVarargsCollector}.
1215      * <p>
1216      * Otherwise, the resulting fixed-arity method handle has the same
1217      * type and behavior of the current method handle,
1218      * except that {@link #isVarargsCollector isVarargsCollector}
1219      * will be false.
1220      * The fixed-arity method handle may (or may not) be the
1221      * a previous argument to {@code asVarargsCollector}.
1222      * <p>
1223      * Here is an example, of a list-making variable arity method handle:
1224      * <blockquote><pre>{@code
1225 MethodHandle asListVar = publicLookup()
1226   .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class))
1227   .asVarargsCollector(Object[].class);
1228 MethodHandle asListFix = asListVar.asFixedArity();
1229 assertEquals("[1]", asListVar.invoke(1).toString());
1230 Exception caught = null;
1231 try { asListFix.invoke((Object)1); }
1232 catch (Exception ex) { caught = ex; }
1233 assert(caught instanceof ClassCastException);
1234 assertEquals("[two, too]", asListVar.invoke("two", "too").toString());
1235 try { asListFix.invoke("two", "too"); }
1236 catch (Exception ex) { caught = ex; }
1237 assert(caught instanceof WrongMethodTypeException);
1238 Object[] argv = { "three", "thee", "tee" };
1239 assertEquals("[three, thee, tee]", asListVar.invoke(argv).toString());
1240 assertEquals("[three, thee, tee]", asListFix.invoke(argv).toString());
1241 assertEquals(1, ((List) asListVar.invoke((Object)argv)).size());
1242 assertEquals("[three, thee, tee]", asListFix.invoke((Object)argv).toString());
1243      * }</pre></blockquote>
1244      *
1245      * @return a new method handle which accepts only a fixed number of arguments
1246      * @see #asVarargsCollector
1247      * @see #isVarargsCollector
1248      */
1249     public MethodHandle asFixedArity() {
1250         assert(!isVarargsCollector());
1251         return this;
1252     }
1253 
1254     /**
1255      * Binds a value {@code x} to the first argument of a method handle, without invoking it.
1256      * The new method handle adapts, as its <i>target</i>,
1257      * the current method handle by binding it to the given argument.
1258      * The type of the bound handle will be
1259      * the same as the type of the target, except that a single leading
1260      * reference parameter will be omitted.
1261      * <p>
1262      * When called, the bound handle inserts the given value {@code x}
1263      * as a new leading argument to the target.  The other arguments are
1264      * also passed unchanged.
1265      * What the target eventually returns is returned unchanged by the bound handle.
1266      * <p>
1267      * The reference {@code x} must be convertible to the first parameter
1268      * type of the target.
1269      * <p>
1270      * (<em>Note:</em>  Because method handles are immutable, the target method handle
1271      * retains its original type and behavior.)
1272      * @param x  the value to bind to the first argument of the target
1273      * @return a new method handle which prepends the given value to the incoming
1274      *         argument list, before calling the original method handle
1275      * @throws IllegalArgumentException if the target does not have a
1276      *         leading parameter type that is a reference type
1277      * @throws ClassCastException if {@code x} cannot be converted
1278      *         to the leading parameter type of the target
1279      * @see MethodHandles#insertArguments
1280      */
1281     public MethodHandle bindTo(Object x) {
1282         x = type.leadingReferenceParameter().cast(x);  // throw CCE if needed
1283         return bindArgumentL(0, x);
1284     }
1285 
1286     /**
1287      * Returns a string representation of the method handle,
1288      * starting with the string {@code "MethodHandle"} and
1289      * ending with the string representation of the method handle's type.
1290      * In other words, this method returns a string equal to the value of:
1291      * <blockquote><pre>{@code
1292      * "MethodHandle" + type().toString()
1293      * }</pre></blockquote>
1294      * <p>
1295      * (<em>Note:</em>  Future releases of this API may add further information
1296      * to the string representation.
1297      * Therefore, the present syntax should not be parsed by applications.)
1298      *
1299      * @return a string representation of the method handle
1300      */
1301     @Override
1302     public String toString() {
1303         if (DEBUG_METHOD_HANDLE_NAMES)  return "MethodHandle"+debugString();
1304         return standardString();
1305     }
1306     String standardString() {
1307         return "MethodHandle"+type;
1308     }
1309     /** Return a string with a several lines describing the method handle structure.
1310      *  This string would be suitable for display in an IDE debugger.
1311      */
1312     String debugString() {
1313         return type+" : "+internalForm()+internalProperties();
1314     }
1315 
1316     //// Implementation methods.
1317     //// Sub-classes can override these default implementations.
1318     //// All these methods assume arguments are already validated.
1319 
1320     // Other transforms to do:  convert, explicitCast, permute, drop, filter, fold, GWT, catch
1321 
1322     BoundMethodHandle bindArgumentL(int pos, Object value) {
1323         return rebind().bindArgumentL(pos, value);
1324     }
1325 
1326     /*non-public*/
1327     MethodHandle setVarargs(MemberName member) throws IllegalAccessException {
1328         if (!member.isVarargs())  return this;
1329         Class<?> arrayType = type().lastParameterType();
1330         if (arrayType.isArray()) {
1331             return MethodHandleImpl.makeVarargsCollector(this, arrayType);
1332         }
1333         throw member.makeAccessException("cannot make variable arity", null);
1334     }
1335 
1336     /*non-public*/
1337     MethodHandle viewAsType(MethodType newType, boolean strict) {
1338         // No actual conversions, just a new view of the same method.
1339         // Note that this operation must not produce a DirectMethodHandle,
1340         // because retyped DMHs, like any transformed MHs,
1341         // cannot be cracked into MethodHandleInfo.
1342         assert viewAsTypeChecks(newType, strict);
1343         BoundMethodHandle mh = rebind();
1344         assert(!((MethodHandle)mh instanceof DirectMethodHandle));
1345         return mh.copyWith(newType, mh.form);
1346     }
1347 
1348     /*non-public*/
1349     boolean viewAsTypeChecks(MethodType newType, boolean strict) {
1350         if (strict) {
1351             assert(type().isViewableAs(newType, true))
1352                 : Arrays.asList(this, newType);
1353         } else {
1354             assert(type().basicType().isViewableAs(newType.basicType(), true))
1355                 : Arrays.asList(this, newType);
1356         }
1357         return true;
1358     }
1359 
1360     // Decoding
1361 
1362     /*non-public*/
1363     LambdaForm internalForm() {
1364         return form;
1365     }
1366 
1367     /*non-public*/
1368     MemberName internalMemberName() {
1369         return null;  // DMH returns DMH.member
1370     }
1371 
1372     /*non-public*/
1373     Class<?> internalCallerClass() {
1374         return null;  // caller-bound MH for @CallerSensitive method returns caller
1375     }
1376 
1377     /*non-public*/
1378     MethodHandleImpl.Intrinsic intrinsicName() {
1379         // no special intrinsic meaning to most MHs
1380         return MethodHandleImpl.Intrinsic.NONE;
1381     }
1382 
1383     /*non-public*/
1384     MethodHandle withInternalMemberName(MemberName member, boolean isInvokeSpecial) {
1385         if (member != null) {
1386             return MethodHandleImpl.makeWrappedMember(this, member, isInvokeSpecial);
1387         } else if (internalMemberName() == null) {
1388             // The required internaMemberName is null, and this MH (like most) doesn't have one.
1389             return this;
1390         } else {
1391             // The following case is rare. Mask the internalMemberName by wrapping the MH in a BMH.
1392             MethodHandle result = rebind();
1393             assert (result.internalMemberName() == null);
1394             return result;
1395         }
1396     }
1397 
1398     /*non-public*/
1399     boolean isInvokeSpecial() {
1400         return false;  // DMH.Special returns true
1401     }
1402 
1403     /*non-public*/
1404     Object internalValues() {
1405         return null;
1406     }
1407 
1408     /*non-public*/
1409     Object internalProperties() {
1410         // Override to something to follow this.form, like "\n& FOO=bar"
1411         return "";
1412     }
1413 
1414     //// Method handle implementation methods.
1415     //// Sub-classes can override these default implementations.
1416     //// All these methods assume arguments are already validated.
1417 
1418     /*non-public*/
1419     abstract MethodHandle copyWith(MethodType mt, LambdaForm lf);
1420 
1421     /** Require this method handle to be a BMH, or else replace it with a "wrapper" BMH.
1422      *  Many transforms are implemented only for BMHs.
1423      *  @return a behaviorally equivalent BMH
1424      */
1425     abstract BoundMethodHandle rebind();
1426 
1427     /**
1428      * Replace the old lambda form of this method handle with a new one.
1429      * The new one must be functionally equivalent to the old one.
1430      * Threads may continue running the old form indefinitely,
1431      * but it is likely that the new one will be preferred for new executions.
1432      * Use with discretion.
1433      */
1434     /*non-public*/
1435     void updateForm(LambdaForm newForm) {
1436         assert(newForm.customized == null || newForm.customized == this);
1437         if (form == newForm)  return;
1438         newForm.prepare();  // as in MethodHandle.<init>
1439         UNSAFE.putObject(this, FORM_OFFSET, newForm);
1440         UNSAFE.fullFence();
1441     }
1442 
1443     /** Craft a LambdaForm customized for this particular MethodHandle */
1444     /*non-public*/
1445     void customize() {
1446         if (form.customized == null) {
1447             LambdaForm newForm = form.customize(this);
1448             updateForm(newForm);
1449         } else {
1450             assert(form.customized == this);
1451         }
1452     }
1453 
1454     private static final long FORM_OFFSET;
1455     static {
1456         try {
1457             FORM_OFFSET = UNSAFE.objectFieldOffset(MethodHandle.class.getDeclaredField("form"));
1458         } catch (ReflectiveOperationException ex) {
1459             throw newInternalError(ex);
1460         }
1461     }
1462 }