1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx += 2 + ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && is_evex_instruction) {
 398     switch (tuple_type) {
 399     case EVEX_FV:
 400       if ((evex_encoding & VEX_W) == VEX_W) {
 401         mod_idx += 2 + ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 402       } else {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 404       }
 405       break;
 406 
 407     case EVEX_HV:
 408       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 409       break;
 410 
 411     case EVEX_FVM:
 412       break;
 413 
 414     case EVEX_T1S:
 415       switch (input_size_in_bits) {
 416       case EVEX_8bit:
 417         break;
 418 
 419       case EVEX_16bit:
 420         mod_idx = 1;
 421         break;
 422 
 423       case EVEX_32bit:
 424         mod_idx = 2;
 425         break;
 426 
 427       case EVEX_64bit:
 428         mod_idx = 3;
 429         break;
 430       }
 431       break;
 432 
 433     case EVEX_T1F:
 434     case EVEX_T2:
 435     case EVEX_T4:
 436       mod_idx = (input_size_in_bits == EVEX_64bit) ? 1 : 0;
 437       break;
 438 
 439     case EVEX_T8:
 440       break;
 441 
 442     case EVEX_HVM:
 443       break;
 444 
 445     case EVEX_QVM:
 446       break;
 447 
 448     case EVEX_OVM:
 449       break;
 450 
 451     case EVEX_M128:
 452       break;
 453 
 454     case EVEX_DUP:
 455       break;
 456 
 457     default:
 458       assert(0, "no valid evex tuple_table entry");
 459       break;
 460     }
 461 
 462     if (avx_vector_len >= AVX_128bit && avx_vector_len <= AVX_512bit) {
 463       int disp_factor = tuple_table[tuple_type + mod_idx][avx_vector_len];
 464       if ((disp % disp_factor) == 0) {
 465         int new_disp = disp / disp_factor;
 466         if (is8bit(new_disp)) {
 467           disp = new_disp;
 468         }
 469       } else {
 470         return false;
 471       }
 472     }
 473   }
 474   return is8bit(disp);
 475 }
 476 
 477 
 478 void Assembler::emit_operand(Register reg, Register base, Register index,
 479                              Address::ScaleFactor scale, int disp,
 480                              RelocationHolder const& rspec,
 481                              int rip_relative_correction) {
 482   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 483 
 484   // Encode the registers as needed in the fields they are used in
 485 
 486   int regenc = encode(reg) << 3;
 487   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 488   int baseenc = base->is_valid() ? encode(base) : 0;
 489 
 490   if (base->is_valid()) {
 491     if (index->is_valid()) {
 492       assert(scale != Address::no_scale, "inconsistent address");
 493       // [base + index*scale + disp]
 494       if (disp == 0 && rtype == relocInfo::none  &&
 495           base != rbp LP64_ONLY(&& base != r13)) {
 496         // [base + index*scale]
 497         // [00 reg 100][ss index base]
 498         assert(index != rsp, "illegal addressing mode");
 499         emit_int8(0x04 | regenc);
 500         emit_int8(scale << 6 | indexenc | baseenc);
 501       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 502         // [base + index*scale + imm8]
 503         // [01 reg 100][ss index base] imm8
 504         assert(index != rsp, "illegal addressing mode");
 505         emit_int8(0x44 | regenc);
 506         emit_int8(scale << 6 | indexenc | baseenc);
 507         emit_int8(disp & 0xFF);
 508       } else {
 509         // [base + index*scale + disp32]
 510         // [10 reg 100][ss index base] disp32
 511         assert(index != rsp, "illegal addressing mode");
 512         emit_int8(0x84 | regenc);
 513         emit_int8(scale << 6 | indexenc | baseenc);
 514         emit_data(disp, rspec, disp32_operand);
 515       }
 516     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 517       // [rsp + disp]
 518       if (disp == 0 && rtype == relocInfo::none) {
 519         // [rsp]
 520         // [00 reg 100][00 100 100]
 521         emit_int8(0x04 | regenc);
 522         emit_int8(0x24);
 523       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 524         // [rsp + imm8]
 525         // [01 reg 100][00 100 100] disp8
 526         emit_int8(0x44 | regenc);
 527         emit_int8(0x24);
 528         emit_int8(disp & 0xFF);
 529       } else {
 530         // [rsp + imm32]
 531         // [10 reg 100][00 100 100] disp32
 532         emit_int8(0x84 | regenc);
 533         emit_int8(0x24);
 534         emit_data(disp, rspec, disp32_operand);
 535       }
 536     } else {
 537       // [base + disp]
 538       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 539       if (disp == 0 && rtype == relocInfo::none &&
 540           base != rbp LP64_ONLY(&& base != r13)) {
 541         // [base]
 542         // [00 reg base]
 543         emit_int8(0x00 | regenc | baseenc);
 544       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 545         // [base + disp8]
 546         // [01 reg base] disp8
 547         emit_int8(0x40 | regenc | baseenc);
 548         emit_int8(disp & 0xFF);
 549       } else {
 550         // [base + disp32]
 551         // [10 reg base] disp32
 552         emit_int8(0x80 | regenc | baseenc);
 553         emit_data(disp, rspec, disp32_operand);
 554       }
 555     }
 556   } else {
 557     if (index->is_valid()) {
 558       assert(scale != Address::no_scale, "inconsistent address");
 559       // [index*scale + disp]
 560       // [00 reg 100][ss index 101] disp32
 561       assert(index != rsp, "illegal addressing mode");
 562       emit_int8(0x04 | regenc);
 563       emit_int8(scale << 6 | indexenc | 0x05);
 564       emit_data(disp, rspec, disp32_operand);
 565     } else if (rtype != relocInfo::none ) {
 566       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 567       // [00 000 101] disp32
 568 
 569       emit_int8(0x05 | regenc);
 570       // Note that the RIP-rel. correction applies to the generated
 571       // disp field, but _not_ to the target address in the rspec.
 572 
 573       // disp was created by converting the target address minus the pc
 574       // at the start of the instruction. That needs more correction here.
 575       // intptr_t disp = target - next_ip;
 576       assert(inst_mark() != NULL, "must be inside InstructionMark");
 577       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 578       int64_t adjusted = disp;
 579       // Do rip-rel adjustment for 64bit
 580       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 581       assert(is_simm32(adjusted),
 582              "must be 32bit offset (RIP relative address)");
 583       emit_data((int32_t) adjusted, rspec, disp32_operand);
 584 
 585     } else {
 586       // 32bit never did this, did everything as the rip-rel/disp code above
 587       // [disp] ABSOLUTE
 588       // [00 reg 100][00 100 101] disp32
 589       emit_int8(0x04 | regenc);
 590       emit_int8(0x25);
 591       emit_data(disp, rspec, disp32_operand);
 592     }
 593   }
 594   is_evex_instruction = false;
 595 }
 596 
 597 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 598                              Address::ScaleFactor scale, int disp,
 599                              RelocationHolder const& rspec) {
 600   if (UseAVX > 2) {
 601     int xreg_enc = reg->encoding();
 602     if (xreg_enc > 15) {
 603       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 604       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 605       return;
 606     }
 607   }
 608   emit_operand((Register)reg, base, index, scale, disp, rspec);
 609 }
 610 
 611 // Secret local extension to Assembler::WhichOperand:
 612 #define end_pc_operand (_WhichOperand_limit)
 613 
 614 address Assembler::locate_operand(address inst, WhichOperand which) {
 615   // Decode the given instruction, and return the address of
 616   // an embedded 32-bit operand word.
 617 
 618   // If "which" is disp32_operand, selects the displacement portion
 619   // of an effective address specifier.
 620   // If "which" is imm64_operand, selects the trailing immediate constant.
 621   // If "which" is call32_operand, selects the displacement of a call or jump.
 622   // Caller is responsible for ensuring that there is such an operand,
 623   // and that it is 32/64 bits wide.
 624 
 625   // If "which" is end_pc_operand, find the end of the instruction.
 626 
 627   address ip = inst;
 628   bool is_64bit = false;
 629 
 630   debug_only(bool has_disp32 = false);
 631   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 632 
 633   again_after_prefix:
 634   switch (0xFF & *ip++) {
 635 
 636   // These convenience macros generate groups of "case" labels for the switch.
 637 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 638 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 639              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 640 #define REP16(x) REP8((x)+0): \
 641               case REP8((x)+8)
 642 
 643   case CS_segment:
 644   case SS_segment:
 645   case DS_segment:
 646   case ES_segment:
 647   case FS_segment:
 648   case GS_segment:
 649     // Seems dubious
 650     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 651     assert(ip == inst+1, "only one prefix allowed");
 652     goto again_after_prefix;
 653 
 654   case 0x67:
 655   case REX:
 656   case REX_B:
 657   case REX_X:
 658   case REX_XB:
 659   case REX_R:
 660   case REX_RB:
 661   case REX_RX:
 662   case REX_RXB:
 663     NOT_LP64(assert(false, "64bit prefixes"));
 664     goto again_after_prefix;
 665 
 666   case REX_W:
 667   case REX_WB:
 668   case REX_WX:
 669   case REX_WXB:
 670   case REX_WR:
 671   case REX_WRB:
 672   case REX_WRX:
 673   case REX_WRXB:
 674     NOT_LP64(assert(false, "64bit prefixes"));
 675     is_64bit = true;
 676     goto again_after_prefix;
 677 
 678   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 679   case 0x88: // movb a, r
 680   case 0x89: // movl a, r
 681   case 0x8A: // movb r, a
 682   case 0x8B: // movl r, a
 683   case 0x8F: // popl a
 684     debug_only(has_disp32 = true);
 685     break;
 686 
 687   case 0x68: // pushq #32
 688     if (which == end_pc_operand) {
 689       return ip + 4;
 690     }
 691     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 692     return ip;                  // not produced by emit_operand
 693 
 694   case 0x66: // movw ... (size prefix)
 695     again_after_size_prefix2:
 696     switch (0xFF & *ip++) {
 697     case REX:
 698     case REX_B:
 699     case REX_X:
 700     case REX_XB:
 701     case REX_R:
 702     case REX_RB:
 703     case REX_RX:
 704     case REX_RXB:
 705     case REX_W:
 706     case REX_WB:
 707     case REX_WX:
 708     case REX_WXB:
 709     case REX_WR:
 710     case REX_WRB:
 711     case REX_WRX:
 712     case REX_WRXB:
 713       NOT_LP64(assert(false, "64bit prefix found"));
 714       goto again_after_size_prefix2;
 715     case 0x8B: // movw r, a
 716     case 0x89: // movw a, r
 717       debug_only(has_disp32 = true);
 718       break;
 719     case 0xC7: // movw a, #16
 720       debug_only(has_disp32 = true);
 721       tail_size = 2;  // the imm16
 722       break;
 723     case 0x0F: // several SSE/SSE2 variants
 724       ip--;    // reparse the 0x0F
 725       goto again_after_prefix;
 726     default:
 727       ShouldNotReachHere();
 728     }
 729     break;
 730 
 731   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 732     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 733     // these asserts are somewhat nonsensical
 734 #ifndef _LP64
 735     assert(which == imm_operand || which == disp32_operand,
 736            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 737 #else
 738     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 739            which == narrow_oop_operand && !is_64bit,
 740            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 741 #endif // _LP64
 742     return ip;
 743 
 744   case 0x69: // imul r, a, #32
 745   case 0xC7: // movl a, #32(oop?)
 746     tail_size = 4;
 747     debug_only(has_disp32 = true); // has both kinds of operands!
 748     break;
 749 
 750   case 0x0F: // movx..., etc.
 751     switch (0xFF & *ip++) {
 752     case 0x3A: // pcmpestri
 753       tail_size = 1;
 754     case 0x38: // ptest, pmovzxbw
 755       ip++; // skip opcode
 756       debug_only(has_disp32 = true); // has both kinds of operands!
 757       break;
 758 
 759     case 0x70: // pshufd r, r/a, #8
 760       debug_only(has_disp32 = true); // has both kinds of operands!
 761     case 0x73: // psrldq r, #8
 762       tail_size = 1;
 763       break;
 764 
 765     case 0x12: // movlps
 766     case 0x28: // movaps
 767     case 0x2E: // ucomiss
 768     case 0x2F: // comiss
 769     case 0x54: // andps
 770     case 0x55: // andnps
 771     case 0x56: // orps
 772     case 0x57: // xorps
 773     case 0x6E: // movd
 774     case 0x7E: // movd
 775     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 776       debug_only(has_disp32 = true);
 777       break;
 778 
 779     case 0xAD: // shrd r, a, %cl
 780     case 0xAF: // imul r, a
 781     case 0xBE: // movsbl r, a (movsxb)
 782     case 0xBF: // movswl r, a (movsxw)
 783     case 0xB6: // movzbl r, a (movzxb)
 784     case 0xB7: // movzwl r, a (movzxw)
 785     case REP16(0x40): // cmovl cc, r, a
 786     case 0xB0: // cmpxchgb
 787     case 0xB1: // cmpxchg
 788     case 0xC1: // xaddl
 789     case 0xC7: // cmpxchg8
 790     case REP16(0x90): // setcc a
 791       debug_only(has_disp32 = true);
 792       // fall out of the switch to decode the address
 793       break;
 794 
 795     case 0xC4: // pinsrw r, a, #8
 796       debug_only(has_disp32 = true);
 797     case 0xC5: // pextrw r, r, #8
 798       tail_size = 1;  // the imm8
 799       break;
 800 
 801     case 0xAC: // shrd r, a, #8
 802       debug_only(has_disp32 = true);
 803       tail_size = 1;  // the imm8
 804       break;
 805 
 806     case REP16(0x80): // jcc rdisp32
 807       if (which == end_pc_operand)  return ip + 4;
 808       assert(which == call32_operand, "jcc has no disp32 or imm");
 809       return ip;
 810     default:
 811       ShouldNotReachHere();
 812     }
 813     break;
 814 
 815   case 0x81: // addl a, #32; addl r, #32
 816     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 817     // on 32bit in the case of cmpl, the imm might be an oop
 818     tail_size = 4;
 819     debug_only(has_disp32 = true); // has both kinds of operands!
 820     break;
 821 
 822   case 0x83: // addl a, #8; addl r, #8
 823     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 824     debug_only(has_disp32 = true); // has both kinds of operands!
 825     tail_size = 1;
 826     break;
 827 
 828   case 0x9B:
 829     switch (0xFF & *ip++) {
 830     case 0xD9: // fnstcw a
 831       debug_only(has_disp32 = true);
 832       break;
 833     default:
 834       ShouldNotReachHere();
 835     }
 836     break;
 837 
 838   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 839   case REP4(0x10): // adc...
 840   case REP4(0x20): // and...
 841   case REP4(0x30): // xor...
 842   case REP4(0x08): // or...
 843   case REP4(0x18): // sbb...
 844   case REP4(0x28): // sub...
 845   case 0xF7: // mull a
 846   case 0x8D: // lea r, a
 847   case 0x87: // xchg r, a
 848   case REP4(0x38): // cmp...
 849   case 0x85: // test r, a
 850     debug_only(has_disp32 = true); // has both kinds of operands!
 851     break;
 852 
 853   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 854   case 0xC6: // movb a, #8
 855   case 0x80: // cmpb a, #8
 856   case 0x6B: // imul r, a, #8
 857     debug_only(has_disp32 = true); // has both kinds of operands!
 858     tail_size = 1; // the imm8
 859     break;
 860 
 861   case 0xC4: // VEX_3bytes
 862   case 0xC5: // VEX_2bytes
 863     assert((UseAVX > 0), "shouldn't have VEX prefix");
 864     assert(ip == inst+1, "no prefixes allowed");
 865     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 866     // but they have prefix 0x0F and processed when 0x0F processed above.
 867     //
 868     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 869     // instructions (these instructions are not supported in 64-bit mode).
 870     // To distinguish them bits [7:6] are set in the VEX second byte since
 871     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 872     // those VEX bits REX and vvvv bits are inverted.
 873     //
 874     // Fortunately C2 doesn't generate these instructions so we don't need
 875     // to check for them in product version.
 876 
 877     // Check second byte
 878     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 879 
 880     // First byte
 881     if ((0xFF & *inst) == VEX_3bytes) {
 882       ip++; // third byte
 883       is_64bit = ((VEX_W & *ip) == VEX_W);
 884     }
 885     ip++; // opcode
 886     // To find the end of instruction (which == end_pc_operand).
 887     switch (0xFF & *ip) {
 888     case 0x61: // pcmpestri r, r/a, #8
 889     case 0x70: // pshufd r, r/a, #8
 890     case 0x73: // psrldq r, #8
 891       tail_size = 1;  // the imm8
 892       break;
 893     default:
 894       break;
 895     }
 896     ip++; // skip opcode
 897     debug_only(has_disp32 = true); // has both kinds of operands!
 898     break;
 899 
 900   case 0x62: // EVEX_4bytes
 901     assert((UseAVX > 0), "shouldn't have EVEX prefix");
 902     assert(ip == inst+1, "no prefixes allowed");
 903     // no EVEX collisions, all instructions that have 0x62 opcodes
 904     // have EVEX versions and are subopcodes of 0x66
 905     ip++; // skip P0 and exmaine W in P1
 906     is_64bit = ((VEX_W & *ip) == VEX_W);
 907     ip++; // move to P2
 908     ip++; // skip P2, move to opcode
 909     // To find the end of instruction (which == end_pc_operand).
 910     switch (0xFF & *ip) {
 911     case 0x61: // pcmpestri r, r/a, #8
 912     case 0x70: // pshufd r, r/a, #8
 913     case 0x73: // psrldq r, #8
 914       tail_size = 1;  // the imm8
 915       break;
 916     default:
 917       break;
 918     }
 919     ip++; // skip opcode
 920     debug_only(has_disp32 = true); // has both kinds of operands!
 921     break;
 922 
 923   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 924   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 925   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 926   case 0xDD: // fld_d a; fst_d a; fstp_d a
 927   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 928   case 0xDF: // fild_d a; fistp_d a
 929   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 930   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 931   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 932     debug_only(has_disp32 = true);
 933     break;
 934 
 935   case 0xE8: // call rdisp32
 936   case 0xE9: // jmp  rdisp32
 937     if (which == end_pc_operand)  return ip + 4;
 938     assert(which == call32_operand, "call has no disp32 or imm");
 939     return ip;
 940 
 941   case 0xF0:                    // Lock
 942     assert(os::is_MP(), "only on MP");
 943     goto again_after_prefix;
 944 
 945   case 0xF3:                    // For SSE
 946   case 0xF2:                    // For SSE2
 947     switch (0xFF & *ip++) {
 948     case REX:
 949     case REX_B:
 950     case REX_X:
 951     case REX_XB:
 952     case REX_R:
 953     case REX_RB:
 954     case REX_RX:
 955     case REX_RXB:
 956     case REX_W:
 957     case REX_WB:
 958     case REX_WX:
 959     case REX_WXB:
 960     case REX_WR:
 961     case REX_WRB:
 962     case REX_WRX:
 963     case REX_WRXB:
 964       NOT_LP64(assert(false, "found 64bit prefix"));
 965       ip++;
 966     default:
 967       ip++;
 968     }
 969     debug_only(has_disp32 = true); // has both kinds of operands!
 970     break;
 971 
 972   default:
 973     ShouldNotReachHere();
 974 
 975 #undef REP8
 976 #undef REP16
 977   }
 978 
 979   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 980 #ifdef _LP64
 981   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 982 #else
 983   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 984   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 985 #endif // LP64
 986   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 987 
 988   // parse the output of emit_operand
 989   int op2 = 0xFF & *ip++;
 990   int base = op2 & 0x07;
 991   int op3 = -1;
 992   const int b100 = 4;
 993   const int b101 = 5;
 994   if (base == b100 && (op2 >> 6) != 3) {
 995     op3 = 0xFF & *ip++;
 996     base = op3 & 0x07;   // refetch the base
 997   }
 998   // now ip points at the disp (if any)
 999 
1000   switch (op2 >> 6) {
1001   case 0:
1002     // [00 reg  100][ss index base]
1003     // [00 reg  100][00   100  esp]
1004     // [00 reg base]
1005     // [00 reg  100][ss index  101][disp32]
1006     // [00 reg  101]               [disp32]
1007 
1008     if (base == b101) {
1009       if (which == disp32_operand)
1010         return ip;              // caller wants the disp32
1011       ip += 4;                  // skip the disp32
1012     }
1013     break;
1014 
1015   case 1:
1016     // [01 reg  100][ss index base][disp8]
1017     // [01 reg  100][00   100  esp][disp8]
1018     // [01 reg base]               [disp8]
1019     ip += 1;                    // skip the disp8
1020     break;
1021 
1022   case 2:
1023     // [10 reg  100][ss index base][disp32]
1024     // [10 reg  100][00   100  esp][disp32]
1025     // [10 reg base]               [disp32]
1026     if (which == disp32_operand)
1027       return ip;                // caller wants the disp32
1028     ip += 4;                    // skip the disp32
1029     break;
1030 
1031   case 3:
1032     // [11 reg base]  (not a memory addressing mode)
1033     break;
1034   }
1035 
1036   if (which == end_pc_operand) {
1037     return ip + tail_size;
1038   }
1039 
1040 #ifdef _LP64
1041   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1042 #else
1043   assert(which == imm_operand, "instruction has only an imm field");
1044 #endif // LP64
1045   return ip;
1046 }
1047 
1048 address Assembler::locate_next_instruction(address inst) {
1049   // Secretly share code with locate_operand:
1050   return locate_operand(inst, end_pc_operand);
1051 }
1052 
1053 
1054 #ifdef ASSERT
1055 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1056   address inst = inst_mark();
1057   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1058   address opnd;
1059 
1060   Relocation* r = rspec.reloc();
1061   if (r->type() == relocInfo::none) {
1062     return;
1063   } else if (r->is_call() || format == call32_operand) {
1064     // assert(format == imm32_operand, "cannot specify a nonzero format");
1065     opnd = locate_operand(inst, call32_operand);
1066   } else if (r->is_data()) {
1067     assert(format == imm_operand || format == disp32_operand
1068            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1069     opnd = locate_operand(inst, (WhichOperand)format);
1070   } else {
1071     assert(format == imm_operand, "cannot specify a format");
1072     return;
1073   }
1074   assert(opnd == pc(), "must put operand where relocs can find it");
1075 }
1076 #endif // ASSERT
1077 
1078 void Assembler::emit_operand32(Register reg, Address adr) {
1079   assert(reg->encoding() < 8, "no extended registers");
1080   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1081   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1082                adr._rspec);
1083 }
1084 
1085 void Assembler::emit_operand(Register reg, Address adr,
1086                              int rip_relative_correction) {
1087   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1088                adr._rspec,
1089                rip_relative_correction);
1090 }
1091 
1092 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1093   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1094                adr._rspec);
1095 }
1096 
1097 // MMX operations
1098 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1099   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1100   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1101 }
1102 
1103 // work around gcc (3.2.1-7a) bug
1104 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1105   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1106   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1107 }
1108 
1109 
1110 void Assembler::emit_farith(int b1, int b2, int i) {
1111   assert(isByte(b1) && isByte(b2), "wrong opcode");
1112   assert(0 <= i &&  i < 8, "illegal stack offset");
1113   emit_int8(b1);
1114   emit_int8(b2 + i);
1115 }
1116 
1117 
1118 // Now the Assembler instructions (identical for 32/64 bits)
1119 
1120 void Assembler::adcl(Address dst, int32_t imm32) {
1121   InstructionMark im(this);
1122   prefix(dst);
1123   emit_arith_operand(0x81, rdx, dst, imm32);
1124 }
1125 
1126 void Assembler::adcl(Address dst, Register src) {
1127   InstructionMark im(this);
1128   prefix(dst, src);
1129   emit_int8(0x11);
1130   emit_operand(src, dst);
1131 }
1132 
1133 void Assembler::adcl(Register dst, int32_t imm32) {
1134   prefix(dst);
1135   emit_arith(0x81, 0xD0, dst, imm32);
1136 }
1137 
1138 void Assembler::adcl(Register dst, Address src) {
1139   InstructionMark im(this);
1140   prefix(src, dst);
1141   emit_int8(0x13);
1142   emit_operand(dst, src);
1143 }
1144 
1145 void Assembler::adcl(Register dst, Register src) {
1146   (void) prefix_and_encode(dst->encoding(), src->encoding());
1147   emit_arith(0x13, 0xC0, dst, src);
1148 }
1149 
1150 void Assembler::addl(Address dst, int32_t imm32) {
1151   InstructionMark im(this);
1152   prefix(dst);
1153   emit_arith_operand(0x81, rax, dst, imm32);
1154 }
1155 
1156 void Assembler::addl(Address dst, Register src) {
1157   InstructionMark im(this);
1158   prefix(dst, src);
1159   emit_int8(0x01);
1160   emit_operand(src, dst);
1161 }
1162 
1163 void Assembler::addl(Register dst, int32_t imm32) {
1164   prefix(dst);
1165   emit_arith(0x81, 0xC0, dst, imm32);
1166 }
1167 
1168 void Assembler::addl(Register dst, Address src) {
1169   InstructionMark im(this);
1170   prefix(src, dst);
1171   emit_int8(0x03);
1172   emit_operand(dst, src);
1173 }
1174 
1175 void Assembler::addl(Register dst, Register src) {
1176   (void) prefix_and_encode(dst->encoding(), src->encoding());
1177   emit_arith(0x03, 0xC0, dst, src);
1178 }
1179 
1180 void Assembler::addr_nop_4() {
1181   assert(UseAddressNop, "no CPU support");
1182   // 4 bytes: NOP DWORD PTR [EAX+0]
1183   emit_int8(0x0F);
1184   emit_int8(0x1F);
1185   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1186   emit_int8(0);    // 8-bits offset (1 byte)
1187 }
1188 
1189 void Assembler::addr_nop_5() {
1190   assert(UseAddressNop, "no CPU support");
1191   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1192   emit_int8(0x0F);
1193   emit_int8(0x1F);
1194   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1195   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1196   emit_int8(0);    // 8-bits offset (1 byte)
1197 }
1198 
1199 void Assembler::addr_nop_7() {
1200   assert(UseAddressNop, "no CPU support");
1201   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1202   emit_int8(0x0F);
1203   emit_int8(0x1F);
1204   emit_int8((unsigned char)0x80);
1205                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1206   emit_int32(0);   // 32-bits offset (4 bytes)
1207 }
1208 
1209 void Assembler::addr_nop_8() {
1210   assert(UseAddressNop, "no CPU support");
1211   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1212   emit_int8(0x0F);
1213   emit_int8(0x1F);
1214   emit_int8((unsigned char)0x84);
1215                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1216   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1217   emit_int32(0);   // 32-bits offset (4 bytes)
1218 }
1219 
1220 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1221   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1222   if (VM_Version::supports_evex()) {
1223     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1224   } else {
1225     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1226   }
1227 }
1228 
1229 void Assembler::addsd(XMMRegister dst, Address src) {
1230   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1231   if (VM_Version::supports_evex()) {
1232     tuple_type = EVEX_T1S;
1233     input_size_in_bits = EVEX_64bit;
1234     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1235   } else {
1236     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1237   }
1238 }
1239 
1240 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1241   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1242   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1243 }
1244 
1245 void Assembler::addss(XMMRegister dst, Address src) {
1246   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1247   if (VM_Version::supports_evex()) {
1248     tuple_type = EVEX_T1S;
1249     input_size_in_bits = EVEX_32bit;
1250   }
1251   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1252 }
1253 
1254 void Assembler::aesdec(XMMRegister dst, Address src) {
1255   assert(VM_Version::supports_aes(), "");
1256   InstructionMark im(this);
1257   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1258               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1259   emit_int8((unsigned char)0xDE);
1260   emit_operand(dst, src);
1261 }
1262 
1263 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1264   assert(VM_Version::supports_aes(), "");
1265   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1266                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1267   emit_int8((unsigned char)0xDE);
1268   emit_int8(0xC0 | encode);
1269 }
1270 
1271 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1272   assert(VM_Version::supports_aes(), "");
1273   InstructionMark im(this);
1274   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1275               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1276   emit_int8((unsigned char)0xDF);
1277   emit_operand(dst, src);
1278 }
1279 
1280 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1281   assert(VM_Version::supports_aes(), "");
1282   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1283                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1284   emit_int8((unsigned char)0xDF);
1285   emit_int8((unsigned char)(0xC0 | encode));
1286 }
1287 
1288 void Assembler::aesenc(XMMRegister dst, Address src) {
1289   assert(VM_Version::supports_aes(), "");
1290   InstructionMark im(this);
1291   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1292               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1293   emit_int8((unsigned char)0xDC);
1294   emit_operand(dst, src);
1295 }
1296 
1297 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1298   assert(VM_Version::supports_aes(), "");
1299   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1300                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1301   emit_int8((unsigned char)0xDC);
1302   emit_int8(0xC0 | encode);
1303 }
1304 
1305 void Assembler::aesenclast(XMMRegister dst, Address src) {
1306   assert(VM_Version::supports_aes(), "");
1307   InstructionMark im(this);
1308   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1309               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1310   emit_int8((unsigned char)0xDD);
1311   emit_operand(dst, src);
1312 }
1313 
1314 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1315   assert(VM_Version::supports_aes(), "");
1316   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1317                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1318   emit_int8((unsigned char)0xDD);
1319   emit_int8((unsigned char)(0xC0 | encode));
1320 }
1321 
1322 
1323 void Assembler::andl(Address dst, int32_t imm32) {
1324   InstructionMark im(this);
1325   prefix(dst);
1326   emit_int8((unsigned char)0x81);
1327   emit_operand(rsp, dst, 4);
1328   emit_int32(imm32);
1329 }
1330 
1331 void Assembler::andl(Register dst, int32_t imm32) {
1332   prefix(dst);
1333   emit_arith(0x81, 0xE0, dst, imm32);
1334 }
1335 
1336 void Assembler::andl(Register dst, Address src) {
1337   InstructionMark im(this);
1338   prefix(src, dst);
1339   emit_int8(0x23);
1340   emit_operand(dst, src);
1341 }
1342 
1343 void Assembler::andl(Register dst, Register src) {
1344   (void) prefix_and_encode(dst->encoding(), src->encoding());
1345   emit_arith(0x23, 0xC0, dst, src);
1346 }
1347 
1348 void Assembler::andnl(Register dst, Register src1, Register src2) {
1349   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1350   int encode = vex_prefix_0F38_and_encode_legacy(dst, src1, src2, false);
1351   emit_int8((unsigned char)0xF2);
1352   emit_int8((unsigned char)(0xC0 | encode));
1353 }
1354 
1355 void Assembler::andnl(Register dst, Register src1, Address src2) {
1356   InstructionMark im(this);
1357   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1358   vex_prefix_0F38_legacy(dst, src1, src2, false);
1359   emit_int8((unsigned char)0xF2);
1360   emit_operand(dst, src2);
1361 }
1362 
1363 void Assembler::bsfl(Register dst, Register src) {
1364   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1365   emit_int8(0x0F);
1366   emit_int8((unsigned char)0xBC);
1367   emit_int8((unsigned char)(0xC0 | encode));
1368 }
1369 
1370 void Assembler::bsrl(Register dst, Register src) {
1371   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1372   emit_int8(0x0F);
1373   emit_int8((unsigned char)0xBD);
1374   emit_int8((unsigned char)(0xC0 | encode));
1375 }
1376 
1377 void Assembler::bswapl(Register reg) { // bswap
1378   int encode = prefix_and_encode(reg->encoding());
1379   emit_int8(0x0F);
1380   emit_int8((unsigned char)(0xC8 | encode));
1381 }
1382 
1383 void Assembler::blsil(Register dst, Register src) {
1384   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1385   int encode = vex_prefix_0F38_and_encode_legacy(rbx, dst, src, false);
1386   emit_int8((unsigned char)0xF3);
1387   emit_int8((unsigned char)(0xC0 | encode));
1388 }
1389 
1390 void Assembler::blsil(Register dst, Address src) {
1391   InstructionMark im(this);
1392   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1393   vex_prefix_0F38_legacy(rbx, dst, src, false);
1394   emit_int8((unsigned char)0xF3);
1395   emit_operand(rbx, src);
1396 }
1397 
1398 void Assembler::blsmskl(Register dst, Register src) {
1399   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1400   int encode = vex_prefix_0F38_and_encode_legacy(rdx, dst, src, false);
1401   emit_int8((unsigned char)0xF3);
1402   emit_int8((unsigned char)(0xC0 | encode));
1403 }
1404 
1405 void Assembler::blsmskl(Register dst, Address src) {
1406   InstructionMark im(this);
1407   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1408   vex_prefix_0F38(rdx, dst, src, false);
1409   emit_int8((unsigned char)0xF3);
1410   emit_operand(rdx, src);
1411 }
1412 
1413 void Assembler::blsrl(Register dst, Register src) {
1414   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1415   int encode = vex_prefix_0F38_and_encode_legacy(rcx, dst, src, false);
1416   emit_int8((unsigned char)0xF3);
1417   emit_int8((unsigned char)(0xC0 | encode));
1418 }
1419 
1420 void Assembler::blsrl(Register dst, Address src) {
1421   InstructionMark im(this);
1422   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1423   vex_prefix_0F38_legacy(rcx, dst, src, false);
1424   emit_int8((unsigned char)0xF3);
1425   emit_operand(rcx, src);
1426 }
1427 
1428 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1429   // suspect disp32 is always good
1430   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1431 
1432   if (L.is_bound()) {
1433     const int long_size = 5;
1434     int offs = (int)( target(L) - pc() );
1435     assert(offs <= 0, "assembler error");
1436     InstructionMark im(this);
1437     // 1110 1000 #32-bit disp
1438     emit_int8((unsigned char)0xE8);
1439     emit_data(offs - long_size, rtype, operand);
1440   } else {
1441     InstructionMark im(this);
1442     // 1110 1000 #32-bit disp
1443     L.add_patch_at(code(), locator());
1444 
1445     emit_int8((unsigned char)0xE8);
1446     emit_data(int(0), rtype, operand);
1447   }
1448 }
1449 
1450 void Assembler::call(Register dst) {
1451   int encode = prefix_and_encode(dst->encoding());
1452   emit_int8((unsigned char)0xFF);
1453   emit_int8((unsigned char)(0xD0 | encode));
1454 }
1455 
1456 
1457 void Assembler::call(Address adr) {
1458   InstructionMark im(this);
1459   prefix(adr);
1460   emit_int8((unsigned char)0xFF);
1461   emit_operand(rdx, adr);
1462 }
1463 
1464 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1465   assert(entry != NULL, "call most probably wrong");
1466   InstructionMark im(this);
1467   emit_int8((unsigned char)0xE8);
1468   intptr_t disp = entry - (pc() + sizeof(int32_t));
1469   assert(is_simm32(disp), "must be 32bit offset (call2)");
1470   // Technically, should use call32_operand, but this format is
1471   // implied by the fact that we're emitting a call instruction.
1472 
1473   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1474   emit_data((int) disp, rspec, operand);
1475 }
1476 
1477 void Assembler::cdql() {
1478   emit_int8((unsigned char)0x99);
1479 }
1480 
1481 void Assembler::cld() {
1482   emit_int8((unsigned char)0xFC);
1483 }
1484 
1485 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1486   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1487   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1488   emit_int8(0x0F);
1489   emit_int8(0x40 | cc);
1490   emit_int8((unsigned char)(0xC0 | encode));
1491 }
1492 
1493 
1494 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1495   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1496   prefix(src, dst);
1497   emit_int8(0x0F);
1498   emit_int8(0x40 | cc);
1499   emit_operand(dst, src);
1500 }
1501 
1502 void Assembler::cmpb(Address dst, int imm8) {
1503   InstructionMark im(this);
1504   prefix(dst);
1505   emit_int8((unsigned char)0x80);
1506   emit_operand(rdi, dst, 1);
1507   emit_int8(imm8);
1508 }
1509 
1510 void Assembler::cmpl(Address dst, int32_t imm32) {
1511   InstructionMark im(this);
1512   prefix(dst);
1513   emit_int8((unsigned char)0x81);
1514   emit_operand(rdi, dst, 4);
1515   emit_int32(imm32);
1516 }
1517 
1518 void Assembler::cmpl(Register dst, int32_t imm32) {
1519   prefix(dst);
1520   emit_arith(0x81, 0xF8, dst, imm32);
1521 }
1522 
1523 void Assembler::cmpl(Register dst, Register src) {
1524   (void) prefix_and_encode(dst->encoding(), src->encoding());
1525   emit_arith(0x3B, 0xC0, dst, src);
1526 }
1527 
1528 
1529 void Assembler::cmpl(Register dst, Address  src) {
1530   InstructionMark im(this);
1531   prefix(src, dst);
1532   emit_int8((unsigned char)0x3B);
1533   emit_operand(dst, src);
1534 }
1535 
1536 void Assembler::cmpw(Address dst, int imm16) {
1537   InstructionMark im(this);
1538   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1539   emit_int8(0x66);
1540   emit_int8((unsigned char)0x81);
1541   emit_operand(rdi, dst, 2);
1542   emit_int16(imm16);
1543 }
1544 
1545 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1546 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1547 // The ZF is set if the compared values were equal, and cleared otherwise.
1548 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1549   InstructionMark im(this);
1550   prefix(adr, reg);
1551   emit_int8(0x0F);
1552   emit_int8((unsigned char)0xB1);
1553   emit_operand(reg, adr);
1554 }
1555 
1556 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1557 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1558 // The ZF is set if the compared values were equal, and cleared otherwise.
1559 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1560   InstructionMark im(this);
1561   prefix(adr, reg, true);
1562   emit_int8(0x0F);
1563   emit_int8((unsigned char)0xB0);
1564   emit_operand(reg, adr);
1565 }
1566 
1567 void Assembler::comisd(XMMRegister dst, Address src) {
1568   // NOTE: dbx seems to decode this as comiss even though the
1569   // 0x66 is there. Strangly ucomisd comes out correct
1570   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1571   if (VM_Version::supports_evex()) {
1572     tuple_type = EVEX_T1S;
1573     input_size_in_bits = EVEX_64bit;
1574     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, true);
1575   } else {
1576     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1577   }
1578 }
1579 
1580 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1581   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1582   if (VM_Version::supports_evex()) {
1583     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, true);
1584   } else {
1585     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1586   }
1587 }
1588 
1589 void Assembler::comiss(XMMRegister dst, Address src) {
1590   if (VM_Version::supports_evex()) {
1591     tuple_type = EVEX_T1S;
1592     input_size_in_bits = EVEX_32bit;
1593   }
1594   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1595   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, true);
1596 }
1597 
1598 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1599   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1600   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, true);
1601 }
1602 
1603 void Assembler::cpuid() {
1604   emit_int8(0x0F);
1605   emit_int8((unsigned char)0xA2);
1606 }
1607 
1608 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1609   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1610   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
1611 }
1612 
1613 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1614   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1615   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
1616 }
1617 
1618 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1619   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1620   if (VM_Version::supports_evex()) {
1621     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1622   } else {
1623     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1624   }
1625 }
1626 
1627 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1628   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1629   if (VM_Version::supports_evex()) {
1630     tuple_type = EVEX_T1F;
1631     input_size_in_bits = EVEX_64bit;
1632     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1633   } else {
1634     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1635   }
1636 }
1637 
1638 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1639   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1640   int encode = 0;
1641   if (VM_Version::supports_evex()) {
1642     encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, true);
1643   } else {
1644     encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, false);
1645   }
1646   emit_int8(0x2A);
1647   emit_int8((unsigned char)(0xC0 | encode));
1648 }
1649 
1650 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1651   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1652   if (VM_Version::supports_evex()) {
1653     tuple_type = EVEX_T1S;
1654     input_size_in_bits = EVEX_32bit;
1655     emit_simd_arith_q(0x2A, dst, src, VEX_SIMD_F2, true);
1656   } else {
1657     emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
1658   }
1659 }
1660 
1661 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1662   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1663   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, true);
1664   emit_int8(0x2A);
1665   emit_int8((unsigned char)(0xC0 | encode));
1666 }
1667 
1668 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1669   if (VM_Version::supports_evex()) {
1670     tuple_type = EVEX_T1S;
1671     input_size_in_bits = EVEX_32bit;
1672   }
1673   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1674   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3, true);
1675 }
1676 
1677 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1678   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1679   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3, true);
1680   emit_int8(0x2A);
1681   emit_int8((unsigned char)(0xC0 | encode));
1682 }
1683 
1684 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1685   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1686   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1687 }
1688 
1689 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1690   if (VM_Version::supports_evex()) {
1691     tuple_type = EVEX_T1S;
1692     input_size_in_bits = EVEX_32bit;
1693   }
1694   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1695   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1696 }
1697 
1698 
1699 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1700   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1701   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, true);
1702   emit_int8(0x2C);
1703   emit_int8((unsigned char)(0xC0 | encode));
1704 }
1705 
1706 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1707   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1708   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, true);
1709   emit_int8(0x2C);
1710   emit_int8((unsigned char)(0xC0 | encode));
1711 }
1712 
1713 void Assembler::decl(Address dst) {
1714   // Don't use it directly. Use MacroAssembler::decrement() instead.
1715   InstructionMark im(this);
1716   prefix(dst);
1717   emit_int8((unsigned char)0xFF);
1718   emit_operand(rcx, dst);
1719 }
1720 
1721 void Assembler::divsd(XMMRegister dst, Address src) {
1722   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1723   if (VM_Version::supports_evex()) {
1724     tuple_type = EVEX_T1S;
1725     input_size_in_bits = EVEX_64bit;
1726     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1727   } else {
1728     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1729   }
1730 }
1731 
1732 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1733   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1734   if (VM_Version::supports_evex()) {
1735     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1736   } else {
1737     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1738   }
1739 }
1740 
1741 void Assembler::divss(XMMRegister dst, Address src) {
1742   if (VM_Version::supports_evex()) {
1743     tuple_type = EVEX_T1S;
1744     input_size_in_bits = EVEX_32bit;
1745   }
1746   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1747   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1748 }
1749 
1750 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1751   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1752   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1753 }
1754 
1755 void Assembler::emms() {
1756   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1757   emit_int8(0x0F);
1758   emit_int8(0x77);
1759 }
1760 
1761 void Assembler::hlt() {
1762   emit_int8((unsigned char)0xF4);
1763 }
1764 
1765 void Assembler::idivl(Register src) {
1766   int encode = prefix_and_encode(src->encoding());
1767   emit_int8((unsigned char)0xF7);
1768   emit_int8((unsigned char)(0xF8 | encode));
1769 }
1770 
1771 void Assembler::divl(Register src) { // Unsigned
1772   int encode = prefix_and_encode(src->encoding());
1773   emit_int8((unsigned char)0xF7);
1774   emit_int8((unsigned char)(0xF0 | encode));
1775 }
1776 
1777 void Assembler::imull(Register dst, Register src) {
1778   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1779   emit_int8(0x0F);
1780   emit_int8((unsigned char)0xAF);
1781   emit_int8((unsigned char)(0xC0 | encode));
1782 }
1783 
1784 
1785 void Assembler::imull(Register dst, Register src, int value) {
1786   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1787   if (is8bit(value)) {
1788     emit_int8(0x6B);
1789     emit_int8((unsigned char)(0xC0 | encode));
1790     emit_int8(value & 0xFF);
1791   } else {
1792     emit_int8(0x69);
1793     emit_int8((unsigned char)(0xC0 | encode));
1794     emit_int32(value);
1795   }
1796 }
1797 
1798 void Assembler::imull(Register dst, Address src) {
1799   InstructionMark im(this);
1800   prefix(src, dst);
1801   emit_int8(0x0F);
1802   emit_int8((unsigned char) 0xAF);
1803   emit_operand(dst, src);
1804 }
1805 
1806 
1807 void Assembler::incl(Address dst) {
1808   // Don't use it directly. Use MacroAssembler::increment() instead.
1809   InstructionMark im(this);
1810   prefix(dst);
1811   emit_int8((unsigned char)0xFF);
1812   emit_operand(rax, dst);
1813 }
1814 
1815 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1816   InstructionMark im(this);
1817   assert((0 <= cc) && (cc < 16), "illegal cc");
1818   if (L.is_bound()) {
1819     address dst = target(L);
1820     assert(dst != NULL, "jcc most probably wrong");
1821 
1822     const int short_size = 2;
1823     const int long_size = 6;
1824     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1825     if (maybe_short && is8bit(offs - short_size)) {
1826       // 0111 tttn #8-bit disp
1827       emit_int8(0x70 | cc);
1828       emit_int8((offs - short_size) & 0xFF);
1829     } else {
1830       // 0000 1111 1000 tttn #32-bit disp
1831       assert(is_simm32(offs - long_size),
1832              "must be 32bit offset (call4)");
1833       emit_int8(0x0F);
1834       emit_int8((unsigned char)(0x80 | cc));
1835       emit_int32(offs - long_size);
1836     }
1837   } else {
1838     // Note: could eliminate cond. jumps to this jump if condition
1839     //       is the same however, seems to be rather unlikely case.
1840     // Note: use jccb() if label to be bound is very close to get
1841     //       an 8-bit displacement
1842     L.add_patch_at(code(), locator());
1843     emit_int8(0x0F);
1844     emit_int8((unsigned char)(0x80 | cc));
1845     emit_int32(0);
1846   }
1847 }
1848 
1849 void Assembler::jccb(Condition cc, Label& L) {
1850   if (L.is_bound()) {
1851     const int short_size = 2;
1852     address entry = target(L);
1853 #ifdef ASSERT
1854     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1855     intptr_t delta = short_branch_delta();
1856     if (delta != 0) {
1857       dist += (dist < 0 ? (-delta) :delta);
1858     }
1859     assert(is8bit(dist), "Dispacement too large for a short jmp");
1860 #endif
1861     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1862     // 0111 tttn #8-bit disp
1863     emit_int8(0x70 | cc);
1864     emit_int8((offs - short_size) & 0xFF);
1865   } else {
1866     InstructionMark im(this);
1867     L.add_patch_at(code(), locator());
1868     emit_int8(0x70 | cc);
1869     emit_int8(0);
1870   }
1871 }
1872 
1873 void Assembler::jmp(Address adr) {
1874   InstructionMark im(this);
1875   prefix(adr);
1876   emit_int8((unsigned char)0xFF);
1877   emit_operand(rsp, adr);
1878 }
1879 
1880 void Assembler::jmp(Label& L, bool maybe_short) {
1881   if (L.is_bound()) {
1882     address entry = target(L);
1883     assert(entry != NULL, "jmp most probably wrong");
1884     InstructionMark im(this);
1885     const int short_size = 2;
1886     const int long_size = 5;
1887     intptr_t offs = entry - pc();
1888     if (maybe_short && is8bit(offs - short_size)) {
1889       emit_int8((unsigned char)0xEB);
1890       emit_int8((offs - short_size) & 0xFF);
1891     } else {
1892       emit_int8((unsigned char)0xE9);
1893       emit_int32(offs - long_size);
1894     }
1895   } else {
1896     // By default, forward jumps are always 32-bit displacements, since
1897     // we can't yet know where the label will be bound.  If you're sure that
1898     // the forward jump will not run beyond 256 bytes, use jmpb to
1899     // force an 8-bit displacement.
1900     InstructionMark im(this);
1901     L.add_patch_at(code(), locator());
1902     emit_int8((unsigned char)0xE9);
1903     emit_int32(0);
1904   }
1905 }
1906 
1907 void Assembler::jmp(Register entry) {
1908   int encode = prefix_and_encode(entry->encoding());
1909   emit_int8((unsigned char)0xFF);
1910   emit_int8((unsigned char)(0xE0 | encode));
1911 }
1912 
1913 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1914   InstructionMark im(this);
1915   emit_int8((unsigned char)0xE9);
1916   assert(dest != NULL, "must have a target");
1917   intptr_t disp = dest - (pc() + sizeof(int32_t));
1918   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1919   emit_data(disp, rspec.reloc(), call32_operand);
1920 }
1921 
1922 void Assembler::jmpb(Label& L) {
1923   if (L.is_bound()) {
1924     const int short_size = 2;
1925     address entry = target(L);
1926     assert(entry != NULL, "jmp most probably wrong");
1927 #ifdef ASSERT
1928     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1929     intptr_t delta = short_branch_delta();
1930     if (delta != 0) {
1931       dist += (dist < 0 ? (-delta) :delta);
1932     }
1933     assert(is8bit(dist), "Dispacement too large for a short jmp");
1934 #endif
1935     intptr_t offs = entry - pc();
1936     emit_int8((unsigned char)0xEB);
1937     emit_int8((offs - short_size) & 0xFF);
1938   } else {
1939     InstructionMark im(this);
1940     L.add_patch_at(code(), locator());
1941     emit_int8((unsigned char)0xEB);
1942     emit_int8(0);
1943   }
1944 }
1945 
1946 void Assembler::ldmxcsr( Address src) {
1947   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1948   InstructionMark im(this);
1949   prefix(src);
1950   emit_int8(0x0F);
1951   emit_int8((unsigned char)0xAE);
1952   emit_operand(as_Register(2), src);
1953 }
1954 
1955 void Assembler::leal(Register dst, Address src) {
1956   InstructionMark im(this);
1957 #ifdef _LP64
1958   emit_int8(0x67); // addr32
1959   prefix(src, dst);
1960 #endif // LP64
1961   emit_int8((unsigned char)0x8D);
1962   emit_operand(dst, src);
1963 }
1964 
1965 void Assembler::lfence() {
1966   emit_int8(0x0F);
1967   emit_int8((unsigned char)0xAE);
1968   emit_int8((unsigned char)0xE8);
1969 }
1970 
1971 void Assembler::lock() {
1972   emit_int8((unsigned char)0xF0);
1973 }
1974 
1975 void Assembler::lzcntl(Register dst, Register src) {
1976   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1977   emit_int8((unsigned char)0xF3);
1978   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1979   emit_int8(0x0F);
1980   emit_int8((unsigned char)0xBD);
1981   emit_int8((unsigned char)(0xC0 | encode));
1982 }
1983 
1984 // Emit mfence instruction
1985 void Assembler::mfence() {
1986   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1987   emit_int8(0x0F);
1988   emit_int8((unsigned char)0xAE);
1989   emit_int8((unsigned char)0xF0);
1990 }
1991 
1992 void Assembler::mov(Register dst, Register src) {
1993   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
1994 }
1995 
1996 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1997   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1998   if (VM_Version::supports_evex()) {
1999     emit_simd_arith_nonds_q(0x28, dst, src, VEX_SIMD_66, true);
2000   } else {
2001     emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
2002   }
2003 }
2004 
2005 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2006   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2007   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
2008 }
2009 
2010 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2011   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2012   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, true, VEX_OPCODE_0F,
2013                                       false, AVX_128bit);
2014   emit_int8(0x16);
2015   emit_int8((unsigned char)(0xC0 | encode));
2016 }
2017 
2018 void Assembler::movb(Register dst, Address src) {
2019   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2020   InstructionMark im(this);
2021   prefix(src, dst, true);
2022   emit_int8((unsigned char)0x8A);
2023   emit_operand(dst, src);
2024 }
2025 
2026 void Assembler::kmovq(KRegister dst, KRegister src) {
2027   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2028   int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE,
2029                                       true, VEX_OPCODE_0F, true);
2030   emit_int8((unsigned char)0x90);
2031   emit_int8((unsigned char)(0xC0 | encode));
2032 }
2033 
2034 void Assembler::kmovq(KRegister dst, Address src) {
2035   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2036   int dst_enc = dst->encoding();
2037   int nds_enc = 0;
2038   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_NONE,
2039              VEX_OPCODE_0F, true, AVX_128bit, true, true);
2040   emit_int8((unsigned char)0x90);
2041   emit_operand((Register)dst, src);
2042 }
2043 
2044 void Assembler::kmovq(Address dst, KRegister src) {
2045   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2046   int src_enc = src->encoding();
2047   int nds_enc = 0;
2048   vex_prefix(dst, nds_enc, src_enc, VEX_SIMD_NONE,
2049              VEX_OPCODE_0F, true, AVX_128bit, true, true);
2050   emit_int8((unsigned char)0x90);
2051   emit_operand((Register)src, dst);
2052 }
2053 
2054 void Assembler::kmovql(KRegister dst, Register src) {
2055   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2056   bool supports_bw = VM_Version::supports_avx512bw();
2057   VexSimdPrefix pre = supports_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2058   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, true,
2059                                       VEX_OPCODE_0F, supports_bw);
2060   emit_int8((unsigned char)0x92);
2061   emit_int8((unsigned char)(0xC0 | encode));
2062 }
2063 
2064 void Assembler::kmovdl(KRegister dst, Register src) {
2065   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2066   VexSimdPrefix pre = VM_Version::supports_avx512bw() ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2067   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, true, VEX_OPCODE_0F, false);
2068   emit_int8((unsigned char)0x92);
2069   emit_int8((unsigned char)(0xC0 | encode));
2070 }
2071 
2072 void Assembler::movb(Address dst, int imm8) {
2073   InstructionMark im(this);
2074    prefix(dst);
2075   emit_int8((unsigned char)0xC6);
2076   emit_operand(rax, dst, 1);
2077   emit_int8(imm8);
2078 }
2079 
2080 
2081 void Assembler::movb(Address dst, Register src) {
2082   assert(src->has_byte_register(), "must have byte register");
2083   InstructionMark im(this);
2084   prefix(dst, src, true);
2085   emit_int8((unsigned char)0x88);
2086   emit_operand(src, dst);
2087 }
2088 
2089 void Assembler::movdl(XMMRegister dst, Register src) {
2090   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2091   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, true);
2092   emit_int8(0x6E);
2093   emit_int8((unsigned char)(0xC0 | encode));
2094 }
2095 
2096 void Assembler::movdl(Register dst, XMMRegister src) {
2097   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2098   // swap src/dst to get correct prefix
2099   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66, true);
2100   emit_int8(0x7E);
2101   emit_int8((unsigned char)(0xC0 | encode));
2102 }
2103 
2104 void Assembler::movdl(XMMRegister dst, Address src) {
2105   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2106   if (VM_Version::supports_evex()) {
2107     tuple_type = EVEX_T1S;
2108     input_size_in_bits = EVEX_32bit;
2109   }
2110   InstructionMark im(this);
2111   simd_prefix(dst, src, VEX_SIMD_66, true, VEX_OPCODE_0F);
2112   emit_int8(0x6E);
2113   emit_operand(dst, src);
2114 }
2115 
2116 void Assembler::movdl(Address dst, XMMRegister src) {
2117   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2118   if (VM_Version::supports_evex()) {
2119     tuple_type = EVEX_T1S;
2120     input_size_in_bits = EVEX_32bit;
2121   }
2122   InstructionMark im(this);
2123   simd_prefix(dst, src, VEX_SIMD_66, true);
2124   emit_int8(0x7E);
2125   emit_operand(src, dst);
2126 }
2127 
2128 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2129   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2130   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2131 }
2132 
2133 void Assembler::movdqa(XMMRegister dst, Address src) {
2134   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2135   if (VM_Version::supports_evex()) {
2136     tuple_type = EVEX_FVM;
2137   }
2138   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2139 }
2140 
2141 void Assembler::movdqu(XMMRegister dst, Address src) {
2142   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2143   if (VM_Version::supports_evex()) {
2144     tuple_type = EVEX_FVM;
2145   }
2146   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2147 }
2148 
2149 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2150   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2151   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2152 }
2153 
2154 void Assembler::movdqu(Address dst, XMMRegister src) {
2155   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2156   if (VM_Version::supports_evex()) {
2157     tuple_type = EVEX_FVM;
2158   }
2159   InstructionMark im(this);
2160   simd_prefix(dst, src, VEX_SIMD_F3, false);
2161   emit_int8(0x7F);
2162   emit_operand(src, dst);
2163 }
2164 
2165 // Move Unaligned 256bit Vector
2166 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2167   assert(UseAVX > 0, "");
2168   if (VM_Version::supports_evex()) {
2169     tuple_type = EVEX_FVM;
2170   }
2171   int vector_len = AVX_256bit;
2172   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
2173   emit_int8(0x6F);
2174   emit_int8((unsigned char)(0xC0 | encode));
2175 }
2176 
2177 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2178   assert(UseAVX > 0, "");
2179   if (VM_Version::supports_evex()) {
2180     tuple_type = EVEX_FVM;
2181   }
2182   InstructionMark im(this);
2183   int vector_len = AVX_256bit;
2184   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2185   emit_int8(0x6F);
2186   emit_operand(dst, src);
2187 }
2188 
2189 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2190   assert(UseAVX > 0, "");
2191   if (VM_Version::supports_evex()) {
2192     tuple_type = EVEX_FVM;
2193   }
2194   InstructionMark im(this);
2195   int vector_len = AVX_256bit;
2196   // swap src<->dst for encoding
2197   assert(src != xnoreg, "sanity");
2198   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2199   emit_int8(0x7F);
2200   emit_operand(src, dst);
2201 }
2202 
2203 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2204 void Assembler::evmovdqu(XMMRegister dst, XMMRegister src, int vector_len) {
2205   assert(UseAVX > 0, "");
2206   int src_enc = src->encoding();
2207   int dst_enc = dst->encoding();
2208   int encode = vex_prefix_and_encode(dst_enc, 0, src_enc, VEX_SIMD_F3, VEX_OPCODE_0F,
2209                                      true, vector_len, false, false);
2210   emit_int8(0x6F);
2211   emit_int8((unsigned char)(0xC0 | encode));
2212 }
2213 
2214 void Assembler::evmovdqu(XMMRegister dst, Address src, int vector_len) {
2215   assert(UseAVX > 0, "");
2216   InstructionMark im(this);
2217   if (VM_Version::supports_evex()) {
2218     tuple_type = EVEX_FVM;
2219     vex_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2220   } else {
2221     vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2222   }
2223   emit_int8(0x6F);
2224   emit_operand(dst, src);
2225 }
2226 
2227 void Assembler::evmovdqu(Address dst, XMMRegister src, int vector_len) {
2228   assert(UseAVX > 0, "");
2229   InstructionMark im(this);
2230   assert(src != xnoreg, "sanity");
2231   if (VM_Version::supports_evex()) {
2232     tuple_type = EVEX_FVM;
2233     // swap src<->dst for encoding
2234     vex_prefix_q(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2235   } else {
2236     // swap src<->dst for encoding
2237     vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2238   }
2239   emit_int8(0x7F);
2240   emit_operand(src, dst);
2241 }
2242 
2243 // Uses zero extension on 64bit
2244 
2245 void Assembler::movl(Register dst, int32_t imm32) {
2246   int encode = prefix_and_encode(dst->encoding());
2247   emit_int8((unsigned char)(0xB8 | encode));
2248   emit_int32(imm32);
2249 }
2250 
2251 void Assembler::movl(Register dst, Register src) {
2252   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2253   emit_int8((unsigned char)0x8B);
2254   emit_int8((unsigned char)(0xC0 | encode));
2255 }
2256 
2257 void Assembler::movl(Register dst, Address src) {
2258   InstructionMark im(this);
2259   prefix(src, dst);
2260   emit_int8((unsigned char)0x8B);
2261   emit_operand(dst, src);
2262 }
2263 
2264 void Assembler::movl(Address dst, int32_t imm32) {
2265   InstructionMark im(this);
2266   prefix(dst);
2267   emit_int8((unsigned char)0xC7);
2268   emit_operand(rax, dst, 4);
2269   emit_int32(imm32);
2270 }
2271 
2272 void Assembler::movl(Address dst, Register src) {
2273   InstructionMark im(this);
2274   prefix(dst, src);
2275   emit_int8((unsigned char)0x89);
2276   emit_operand(src, dst);
2277 }
2278 
2279 // New cpus require to use movsd and movss to avoid partial register stall
2280 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2281 // The selection is done in MacroAssembler::movdbl() and movflt().
2282 void Assembler::movlpd(XMMRegister dst, Address src) {
2283   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2284   if (VM_Version::supports_evex()) {
2285     tuple_type = EVEX_T1S;
2286     input_size_in_bits = EVEX_32bit;
2287   }
2288   emit_simd_arith(0x12, dst, src, VEX_SIMD_66, true);
2289 }
2290 
2291 void Assembler::movq( MMXRegister dst, Address src ) {
2292   assert( VM_Version::supports_mmx(), "" );
2293   emit_int8(0x0F);
2294   emit_int8(0x6F);
2295   emit_operand(dst, src);
2296 }
2297 
2298 void Assembler::movq( Address dst, MMXRegister src ) {
2299   assert( VM_Version::supports_mmx(), "" );
2300   emit_int8(0x0F);
2301   emit_int8(0x7F);
2302   // workaround gcc (3.2.1-7a) bug
2303   // In that version of gcc with only an emit_operand(MMX, Address)
2304   // gcc will tail jump and try and reverse the parameters completely
2305   // obliterating dst in the process. By having a version available
2306   // that doesn't need to swap the args at the tail jump the bug is
2307   // avoided.
2308   emit_operand(dst, src);
2309 }
2310 
2311 void Assembler::movq(XMMRegister dst, Address src) {
2312   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2313   InstructionMark im(this);
2314   if (VM_Version::supports_evex()) {
2315     tuple_type = EVEX_T1S;
2316     input_size_in_bits = EVEX_64bit;
2317     simd_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, true);
2318   } else {
2319     simd_prefix(dst, src, VEX_SIMD_F3, true, VEX_OPCODE_0F);
2320   }
2321   emit_int8(0x7E);
2322   emit_operand(dst, src);
2323 }
2324 
2325 void Assembler::movq(Address dst, XMMRegister src) {
2326   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2327   InstructionMark im(this);
2328   if (VM_Version::supports_evex()) {
2329     tuple_type = EVEX_T1S;
2330     input_size_in_bits = EVEX_64bit;
2331     simd_prefix(src, xnoreg, dst, VEX_SIMD_66, true,
2332                 VEX_OPCODE_0F, true, AVX_128bit);
2333   } else {
2334     simd_prefix(dst, src, VEX_SIMD_66, true);
2335   }
2336   emit_int8((unsigned char)0xD6);
2337   emit_operand(src, dst);
2338 }
2339 
2340 void Assembler::movsbl(Register dst, Address src) { // movsxb
2341   InstructionMark im(this);
2342   prefix(src, dst);
2343   emit_int8(0x0F);
2344   emit_int8((unsigned char)0xBE);
2345   emit_operand(dst, src);
2346 }
2347 
2348 void Assembler::movsbl(Register dst, Register src) { // movsxb
2349   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2350   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
2351   emit_int8(0x0F);
2352   emit_int8((unsigned char)0xBE);
2353   emit_int8((unsigned char)(0xC0 | encode));
2354 }
2355 
2356 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2357   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2358   if (VM_Version::supports_evex()) {
2359     emit_simd_arith_q(0x10, dst, src, VEX_SIMD_F2, true);
2360   } else {
2361     emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
2362   }
2363 }
2364 
2365 void Assembler::movsd(XMMRegister dst, Address src) {
2366   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2367   if (VM_Version::supports_evex()) {
2368     tuple_type = EVEX_T1S;
2369     input_size_in_bits = EVEX_64bit;
2370     emit_simd_arith_nonds_q(0x10, dst, src, VEX_SIMD_F2, true);
2371   } else {
2372     emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
2373   }
2374 }
2375 
2376 void Assembler::movsd(Address dst, XMMRegister src) {
2377   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2378   InstructionMark im(this);
2379   if (VM_Version::supports_evex()) {
2380     tuple_type = EVEX_T1S;
2381     input_size_in_bits = EVEX_64bit;
2382     simd_prefix_q(src, xnoreg, dst, VEX_SIMD_F2);
2383   } else {
2384     simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, false);
2385   }
2386   emit_int8(0x11);
2387   emit_operand(src, dst);
2388 }
2389 
2390 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2391   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2392   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3, true);
2393 }
2394 
2395 void Assembler::movss(XMMRegister dst, Address src) {
2396   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2397   if (VM_Version::supports_evex()) {
2398     tuple_type = EVEX_T1S;
2399     input_size_in_bits = EVEX_32bit;
2400   }
2401   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3, true);
2402 }
2403 
2404 void Assembler::movss(Address dst, XMMRegister src) {
2405   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2406   if (VM_Version::supports_evex()) {
2407     tuple_type = EVEX_T1S;
2408     input_size_in_bits = EVEX_32bit;
2409   }
2410   InstructionMark im(this);
2411   simd_prefix(dst, src, VEX_SIMD_F3, false);
2412   emit_int8(0x11);
2413   emit_operand(src, dst);
2414 }
2415 
2416 void Assembler::movswl(Register dst, Address src) { // movsxw
2417   InstructionMark im(this);
2418   prefix(src, dst);
2419   emit_int8(0x0F);
2420   emit_int8((unsigned char)0xBF);
2421   emit_operand(dst, src);
2422 }
2423 
2424 void Assembler::movswl(Register dst, Register src) { // movsxw
2425   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2426   emit_int8(0x0F);
2427   emit_int8((unsigned char)0xBF);
2428   emit_int8((unsigned char)(0xC0 | encode));
2429 }
2430 
2431 void Assembler::movw(Address dst, int imm16) {
2432   InstructionMark im(this);
2433 
2434   emit_int8(0x66); // switch to 16-bit mode
2435   prefix(dst);
2436   emit_int8((unsigned char)0xC7);
2437   emit_operand(rax, dst, 2);
2438   emit_int16(imm16);
2439 }
2440 
2441 void Assembler::movw(Register dst, Address src) {
2442   InstructionMark im(this);
2443   emit_int8(0x66);
2444   prefix(src, dst);
2445   emit_int8((unsigned char)0x8B);
2446   emit_operand(dst, src);
2447 }
2448 
2449 void Assembler::movw(Address dst, Register src) {
2450   InstructionMark im(this);
2451   emit_int8(0x66);
2452   prefix(dst, src);
2453   emit_int8((unsigned char)0x89);
2454   emit_operand(src, dst);
2455 }
2456 
2457 void Assembler::movzbl(Register dst, Address src) { // movzxb
2458   InstructionMark im(this);
2459   prefix(src, dst);
2460   emit_int8(0x0F);
2461   emit_int8((unsigned char)0xB6);
2462   emit_operand(dst, src);
2463 }
2464 
2465 void Assembler::movzbl(Register dst, Register src) { // movzxb
2466   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2467   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
2468   emit_int8(0x0F);
2469   emit_int8((unsigned char)0xB6);
2470   emit_int8(0xC0 | encode);
2471 }
2472 
2473 void Assembler::movzwl(Register dst, Address src) { // movzxw
2474   InstructionMark im(this);
2475   prefix(src, dst);
2476   emit_int8(0x0F);
2477   emit_int8((unsigned char)0xB7);
2478   emit_operand(dst, src);
2479 }
2480 
2481 void Assembler::movzwl(Register dst, Register src) { // movzxw
2482   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2483   emit_int8(0x0F);
2484   emit_int8((unsigned char)0xB7);
2485   emit_int8(0xC0 | encode);
2486 }
2487 
2488 void Assembler::mull(Address src) {
2489   InstructionMark im(this);
2490   prefix(src);
2491   emit_int8((unsigned char)0xF7);
2492   emit_operand(rsp, src);
2493 }
2494 
2495 void Assembler::mull(Register src) {
2496   int encode = prefix_and_encode(src->encoding());
2497   emit_int8((unsigned char)0xF7);
2498   emit_int8((unsigned char)(0xE0 | encode));
2499 }
2500 
2501 void Assembler::mulsd(XMMRegister dst, Address src) {
2502   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2503   if (VM_Version::supports_evex()) {
2504     tuple_type = EVEX_T1S;
2505     input_size_in_bits = EVEX_64bit;
2506     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2507   } else {
2508     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2509   }
2510 }
2511 
2512 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2513   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2514   if (VM_Version::supports_evex()) {
2515     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2516   } else {
2517     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2518   }
2519 }
2520 
2521 void Assembler::mulss(XMMRegister dst, Address src) {
2522   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2523   if (VM_Version::supports_evex()) {
2524     tuple_type = EVEX_T1S;
2525     input_size_in_bits = EVEX_32bit;
2526   }
2527   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2528 }
2529 
2530 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2531   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2532   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2533 }
2534 
2535 void Assembler::negl(Register dst) {
2536   int encode = prefix_and_encode(dst->encoding());
2537   emit_int8((unsigned char)0xF7);
2538   emit_int8((unsigned char)(0xD8 | encode));
2539 }
2540 
2541 void Assembler::nop(int i) {
2542 #ifdef ASSERT
2543   assert(i > 0, " ");
2544   // The fancy nops aren't currently recognized by debuggers making it a
2545   // pain to disassemble code while debugging. If asserts are on clearly
2546   // speed is not an issue so simply use the single byte traditional nop
2547   // to do alignment.
2548 
2549   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2550   return;
2551 
2552 #endif // ASSERT
2553 
2554   if (UseAddressNop && VM_Version::is_intel()) {
2555     //
2556     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2557     //  1: 0x90
2558     //  2: 0x66 0x90
2559     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2560     //  4: 0x0F 0x1F 0x40 0x00
2561     //  5: 0x0F 0x1F 0x44 0x00 0x00
2562     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2563     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2564     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2565     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2566     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2567     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2568 
2569     // The rest coding is Intel specific - don't use consecutive address nops
2570 
2571     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2572     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2573     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2574     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2575 
2576     while(i >= 15) {
2577       // For Intel don't generate consecutive addess nops (mix with regular nops)
2578       i -= 15;
2579       emit_int8(0x66);   // size prefix
2580       emit_int8(0x66);   // size prefix
2581       emit_int8(0x66);   // size prefix
2582       addr_nop_8();
2583       emit_int8(0x66);   // size prefix
2584       emit_int8(0x66);   // size prefix
2585       emit_int8(0x66);   // size prefix
2586       emit_int8((unsigned char)0x90);
2587                          // nop
2588     }
2589     switch (i) {
2590       case 14:
2591         emit_int8(0x66); // size prefix
2592       case 13:
2593         emit_int8(0x66); // size prefix
2594       case 12:
2595         addr_nop_8();
2596         emit_int8(0x66); // size prefix
2597         emit_int8(0x66); // size prefix
2598         emit_int8(0x66); // size prefix
2599         emit_int8((unsigned char)0x90);
2600                          // nop
2601         break;
2602       case 11:
2603         emit_int8(0x66); // size prefix
2604       case 10:
2605         emit_int8(0x66); // size prefix
2606       case 9:
2607         emit_int8(0x66); // size prefix
2608       case 8:
2609         addr_nop_8();
2610         break;
2611       case 7:
2612         addr_nop_7();
2613         break;
2614       case 6:
2615         emit_int8(0x66); // size prefix
2616       case 5:
2617         addr_nop_5();
2618         break;
2619       case 4:
2620         addr_nop_4();
2621         break;
2622       case 3:
2623         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2624         emit_int8(0x66); // size prefix
2625       case 2:
2626         emit_int8(0x66); // size prefix
2627       case 1:
2628         emit_int8((unsigned char)0x90);
2629                          // nop
2630         break;
2631       default:
2632         assert(i == 0, " ");
2633     }
2634     return;
2635   }
2636   if (UseAddressNop && VM_Version::is_amd()) {
2637     //
2638     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2639     //  1: 0x90
2640     //  2: 0x66 0x90
2641     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2642     //  4: 0x0F 0x1F 0x40 0x00
2643     //  5: 0x0F 0x1F 0x44 0x00 0x00
2644     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2645     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2646     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2647     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2648     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2649     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2650 
2651     // The rest coding is AMD specific - use consecutive address nops
2652 
2653     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2654     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2655     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2656     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2657     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2658     //     Size prefixes (0x66) are added for larger sizes
2659 
2660     while(i >= 22) {
2661       i -= 11;
2662       emit_int8(0x66); // size prefix
2663       emit_int8(0x66); // size prefix
2664       emit_int8(0x66); // size prefix
2665       addr_nop_8();
2666     }
2667     // Generate first nop for size between 21-12
2668     switch (i) {
2669       case 21:
2670         i -= 1;
2671         emit_int8(0x66); // size prefix
2672       case 20:
2673       case 19:
2674         i -= 1;
2675         emit_int8(0x66); // size prefix
2676       case 18:
2677       case 17:
2678         i -= 1;
2679         emit_int8(0x66); // size prefix
2680       case 16:
2681       case 15:
2682         i -= 8;
2683         addr_nop_8();
2684         break;
2685       case 14:
2686       case 13:
2687         i -= 7;
2688         addr_nop_7();
2689         break;
2690       case 12:
2691         i -= 6;
2692         emit_int8(0x66); // size prefix
2693         addr_nop_5();
2694         break;
2695       default:
2696         assert(i < 12, " ");
2697     }
2698 
2699     // Generate second nop for size between 11-1
2700     switch (i) {
2701       case 11:
2702         emit_int8(0x66); // size prefix
2703       case 10:
2704         emit_int8(0x66); // size prefix
2705       case 9:
2706         emit_int8(0x66); // size prefix
2707       case 8:
2708         addr_nop_8();
2709         break;
2710       case 7:
2711         addr_nop_7();
2712         break;
2713       case 6:
2714         emit_int8(0x66); // size prefix
2715       case 5:
2716         addr_nop_5();
2717         break;
2718       case 4:
2719         addr_nop_4();
2720         break;
2721       case 3:
2722         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2723         emit_int8(0x66); // size prefix
2724       case 2:
2725         emit_int8(0x66); // size prefix
2726       case 1:
2727         emit_int8((unsigned char)0x90);
2728                          // nop
2729         break;
2730       default:
2731         assert(i == 0, " ");
2732     }
2733     return;
2734   }
2735 
2736   // Using nops with size prefixes "0x66 0x90".
2737   // From AMD Optimization Guide:
2738   //  1: 0x90
2739   //  2: 0x66 0x90
2740   //  3: 0x66 0x66 0x90
2741   //  4: 0x66 0x66 0x66 0x90
2742   //  5: 0x66 0x66 0x90 0x66 0x90
2743   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2744   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2745   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2746   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2747   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2748   //
2749   while(i > 12) {
2750     i -= 4;
2751     emit_int8(0x66); // size prefix
2752     emit_int8(0x66);
2753     emit_int8(0x66);
2754     emit_int8((unsigned char)0x90);
2755                      // nop
2756   }
2757   // 1 - 12 nops
2758   if(i > 8) {
2759     if(i > 9) {
2760       i -= 1;
2761       emit_int8(0x66);
2762     }
2763     i -= 3;
2764     emit_int8(0x66);
2765     emit_int8(0x66);
2766     emit_int8((unsigned char)0x90);
2767   }
2768   // 1 - 8 nops
2769   if(i > 4) {
2770     if(i > 6) {
2771       i -= 1;
2772       emit_int8(0x66);
2773     }
2774     i -= 3;
2775     emit_int8(0x66);
2776     emit_int8(0x66);
2777     emit_int8((unsigned char)0x90);
2778   }
2779   switch (i) {
2780     case 4:
2781       emit_int8(0x66);
2782     case 3:
2783       emit_int8(0x66);
2784     case 2:
2785       emit_int8(0x66);
2786     case 1:
2787       emit_int8((unsigned char)0x90);
2788       break;
2789     default:
2790       assert(i == 0, " ");
2791   }
2792 }
2793 
2794 void Assembler::notl(Register dst) {
2795   int encode = prefix_and_encode(dst->encoding());
2796   emit_int8((unsigned char)0xF7);
2797   emit_int8((unsigned char)(0xD0 | encode));
2798 }
2799 
2800 void Assembler::orl(Address dst, int32_t imm32) {
2801   InstructionMark im(this);
2802   prefix(dst);
2803   emit_arith_operand(0x81, rcx, dst, imm32);
2804 }
2805 
2806 void Assembler::orl(Register dst, int32_t imm32) {
2807   prefix(dst);
2808   emit_arith(0x81, 0xC8, dst, imm32);
2809 }
2810 
2811 void Assembler::orl(Register dst, Address src) {
2812   InstructionMark im(this);
2813   prefix(src, dst);
2814   emit_int8(0x0B);
2815   emit_operand(dst, src);
2816 }
2817 
2818 void Assembler::orl(Register dst, Register src) {
2819   (void) prefix_and_encode(dst->encoding(), src->encoding());
2820   emit_arith(0x0B, 0xC0, dst, src);
2821 }
2822 
2823 void Assembler::orl(Address dst, Register src) {
2824   InstructionMark im(this);
2825   prefix(dst, src);
2826   emit_int8(0x09);
2827   emit_operand(src, dst);
2828 }
2829 
2830 void Assembler::packuswb(XMMRegister dst, Address src) {
2831   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2832   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2833   if (VM_Version::supports_evex()) {
2834     tuple_type = EVEX_FV;
2835     input_size_in_bits = EVEX_32bit;
2836   }
2837   emit_simd_arith(0x67, dst, src, VEX_SIMD_66,
2838                   false, (VM_Version::supports_avx512dq() == false));
2839 }
2840 
2841 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2842   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2843   emit_simd_arith(0x67, dst, src, VEX_SIMD_66,
2844                   false, (VM_Version::supports_avx512dq() == false));
2845 }
2846 
2847 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2848   assert(UseAVX > 0, "some form of AVX must be enabled");
2849   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector_len,
2850                  false, (VM_Version::supports_avx512dq() == false));
2851 }
2852 
2853 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
2854   assert(VM_Version::supports_avx2(), "");
2855   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
2856                                       VEX_OPCODE_0F_3A, true, vector_len);
2857   emit_int8(0x00);
2858   emit_int8(0xC0 | encode);
2859   emit_int8(imm8);
2860 }
2861 
2862 void Assembler::pause() {
2863   emit_int8((unsigned char)0xF3);
2864   emit_int8((unsigned char)0x90);
2865 }
2866 
2867 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2868   assert(VM_Version::supports_sse4_2(), "");
2869   InstructionMark im(this);
2870   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, false, VEX_OPCODE_0F_3A,
2871               false, AVX_128bit, true);
2872   emit_int8(0x61);
2873   emit_operand(dst, src);
2874   emit_int8(imm8);
2875 }
2876 
2877 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2878   assert(VM_Version::supports_sse4_2(), "");
2879   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
2880                                       VEX_OPCODE_0F_3A, false, AVX_128bit, true);
2881   emit_int8(0x61);
2882   emit_int8((unsigned char)(0xC0 | encode));
2883   emit_int8(imm8);
2884 }
2885 
2886 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
2887   assert(VM_Version::supports_sse4_1(), "");
2888   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2889                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2890   emit_int8(0x16);
2891   emit_int8((unsigned char)(0xC0 | encode));
2892   emit_int8(imm8);
2893 }
2894 
2895 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
2896   assert(VM_Version::supports_sse4_1(), "");
2897   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2898                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2899   emit_int8(0x16);
2900   emit_int8((unsigned char)(0xC0 | encode));
2901   emit_int8(imm8);
2902 }
2903 
2904 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
2905   assert(VM_Version::supports_sse4_1(), "");
2906   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2907                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2908   emit_int8(0x22);
2909   emit_int8((unsigned char)(0xC0 | encode));
2910   emit_int8(imm8);
2911 }
2912 
2913 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
2914   assert(VM_Version::supports_sse4_1(), "");
2915   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2916                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2917   emit_int8(0x22);
2918   emit_int8((unsigned char)(0xC0 | encode));
2919   emit_int8(imm8);
2920 }
2921 
2922 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
2923   assert(VM_Version::supports_sse4_1(), "");
2924   if (VM_Version::supports_evex()) {
2925     tuple_type = EVEX_HVM;
2926   }
2927   InstructionMark im(this);
2928   simd_prefix(dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
2929   emit_int8(0x30);
2930   emit_operand(dst, src);
2931 }
2932 
2933 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
2934   assert(VM_Version::supports_sse4_1(), "");
2935   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
2936   emit_int8(0x30);
2937   emit_int8((unsigned char)(0xC0 | encode));
2938 }
2939 
2940 // generic
2941 void Assembler::pop(Register dst) {
2942   int encode = prefix_and_encode(dst->encoding());
2943   emit_int8(0x58 | encode);
2944 }
2945 
2946 void Assembler::popcntl(Register dst, Address src) {
2947   assert(VM_Version::supports_popcnt(), "must support");
2948   InstructionMark im(this);
2949   emit_int8((unsigned char)0xF3);
2950   prefix(src, dst);
2951   emit_int8(0x0F);
2952   emit_int8((unsigned char)0xB8);
2953   emit_operand(dst, src);
2954 }
2955 
2956 void Assembler::popcntl(Register dst, Register src) {
2957   assert(VM_Version::supports_popcnt(), "must support");
2958   emit_int8((unsigned char)0xF3);
2959   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2960   emit_int8(0x0F);
2961   emit_int8((unsigned char)0xB8);
2962   emit_int8((unsigned char)(0xC0 | encode));
2963 }
2964 
2965 void Assembler::popf() {
2966   emit_int8((unsigned char)0x9D);
2967 }
2968 
2969 #ifndef _LP64 // no 32bit push/pop on amd64
2970 void Assembler::popl(Address dst) {
2971   // NOTE: this will adjust stack by 8byte on 64bits
2972   InstructionMark im(this);
2973   prefix(dst);
2974   emit_int8((unsigned char)0x8F);
2975   emit_operand(rax, dst);
2976 }
2977 #endif
2978 
2979 void Assembler::prefetch_prefix(Address src) {
2980   prefix(src);
2981   emit_int8(0x0F);
2982 }
2983 
2984 void Assembler::prefetchnta(Address src) {
2985   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2986   InstructionMark im(this);
2987   prefetch_prefix(src);
2988   emit_int8(0x18);
2989   emit_operand(rax, src); // 0, src
2990 }
2991 
2992 void Assembler::prefetchr(Address src) {
2993   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2994   InstructionMark im(this);
2995   prefetch_prefix(src);
2996   emit_int8(0x0D);
2997   emit_operand(rax, src); // 0, src
2998 }
2999 
3000 void Assembler::prefetcht0(Address src) {
3001   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3002   InstructionMark im(this);
3003   prefetch_prefix(src);
3004   emit_int8(0x18);
3005   emit_operand(rcx, src); // 1, src
3006 }
3007 
3008 void Assembler::prefetcht1(Address src) {
3009   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3010   InstructionMark im(this);
3011   prefetch_prefix(src);
3012   emit_int8(0x18);
3013   emit_operand(rdx, src); // 2, src
3014 }
3015 
3016 void Assembler::prefetcht2(Address src) {
3017   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3018   InstructionMark im(this);
3019   prefetch_prefix(src);
3020   emit_int8(0x18);
3021   emit_operand(rbx, src); // 3, src
3022 }
3023 
3024 void Assembler::prefetchw(Address src) {
3025   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3026   InstructionMark im(this);
3027   prefetch_prefix(src);
3028   emit_int8(0x0D);
3029   emit_operand(rcx, src); // 1, src
3030 }
3031 
3032 void Assembler::prefix(Prefix p) {
3033   emit_int8(p);
3034 }
3035 
3036 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3037   assert(VM_Version::supports_ssse3(), "");
3038   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38,
3039                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3040   emit_int8(0x00);
3041   emit_int8((unsigned char)(0xC0 | encode));
3042 }
3043 
3044 void Assembler::pshufb(XMMRegister dst, Address src) {
3045   assert(VM_Version::supports_ssse3(), "");
3046   if (VM_Version::supports_evex()) {
3047     tuple_type = EVEX_FVM;
3048   }
3049   InstructionMark im(this);
3050   simd_prefix(dst, dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38,
3051               false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3052   emit_int8(0x00);
3053   emit_operand(dst, src);
3054 }
3055 
3056 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3057   assert(isByte(mode), "invalid value");
3058   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3059   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
3060   emit_int8(mode & 0xFF);
3061 
3062 }
3063 
3064 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3065   assert(isByte(mode), "invalid value");
3066   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3067   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3068   if (VM_Version::supports_evex()) {
3069     tuple_type = EVEX_FV;
3070     input_size_in_bits = EVEX_32bit;
3071   }
3072   InstructionMark im(this);
3073   simd_prefix(dst, src, VEX_SIMD_66, false);
3074   emit_int8(0x70);
3075   emit_operand(dst, src);
3076   emit_int8(mode & 0xFF);
3077 }
3078 
3079 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3080   assert(isByte(mode), "invalid value");
3081   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3082   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2, false,
3083                         (VM_Version::supports_avx512bw() == false));
3084   emit_int8(mode & 0xFF);
3085 }
3086 
3087 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3088   assert(isByte(mode), "invalid value");
3089   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3090   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3091   if (VM_Version::supports_evex()) {
3092     tuple_type = EVEX_FVM;
3093   }
3094   InstructionMark im(this);
3095   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, false, VEX_OPCODE_0F,
3096               false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3097   emit_int8(0x70);
3098   emit_operand(dst, src);
3099   emit_int8(mode & 0xFF);
3100 }
3101 
3102 void Assembler::psrldq(XMMRegister dst, int shift) {
3103   // Shift 128 bit value in xmm register by number of bytes.
3104   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3105   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3106   emit_int8(0x73);
3107   emit_int8((unsigned char)(0xC0 | encode));
3108   emit_int8(shift);
3109 }
3110 
3111 void Assembler::pslldq(XMMRegister dst, int shift) {
3112   // Shift left 128 bit value in xmm register by number of bytes.
3113   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3114   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3115   emit_int8(0x73);
3116   emit_int8((unsigned char)(0xC0 | encode));
3117   emit_int8(shift);
3118 }
3119 
3120 void Assembler::ptest(XMMRegister dst, Address src) {
3121   assert(VM_Version::supports_sse4_1(), "");
3122   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3123   InstructionMark im(this);
3124   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, false,
3125               VEX_OPCODE_0F_38, false, AVX_128bit, true);
3126   emit_int8(0x17);
3127   emit_operand(dst, src);
3128 }
3129 
3130 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
3131   assert(VM_Version::supports_sse4_1(), "");
3132   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
3133                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
3134   emit_int8(0x17);
3135   emit_int8((unsigned char)(0xC0 | encode));
3136 }
3137 
3138 void Assembler::vptest(XMMRegister dst, Address src) {
3139   assert(VM_Version::supports_avx(), "");
3140   InstructionMark im(this);
3141   int vector_len = AVX_256bit;
3142   assert(dst != xnoreg, "sanity");
3143   int dst_enc = dst->encoding();
3144   // swap src<->dst for encoding
3145   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len, true, false);
3146   emit_int8(0x17);
3147   emit_operand(dst, src);
3148 }
3149 
3150 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
3151   assert(VM_Version::supports_avx(), "");
3152   int vector_len = AVX_256bit;
3153   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
3154                                      vector_len, VEX_OPCODE_0F_38, true, false);
3155   emit_int8(0x17);
3156   emit_int8((unsigned char)(0xC0 | encode));
3157 }
3158 
3159 void Assembler::punpcklbw(XMMRegister dst, Address src) {
3160   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3161   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3162   if (VM_Version::supports_evex()) {
3163     tuple_type = EVEX_FVM;
3164   }
3165   emit_simd_arith(0x60, dst, src, VEX_SIMD_66, false, (VM_Version::supports_avx512vlbw() == false));
3166 }
3167 
3168 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3169   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3170   emit_simd_arith(0x60, dst, src, VEX_SIMD_66, false, (VM_Version::supports_avx512vlbw() == false));
3171 }
3172 
3173 void Assembler::punpckldq(XMMRegister dst, Address src) {
3174   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3175   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3176   if (VM_Version::supports_evex()) {
3177     tuple_type = EVEX_FV;
3178     input_size_in_bits = EVEX_32bit;
3179   }
3180   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3181 }
3182 
3183 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
3184   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3185   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3186 }
3187 
3188 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
3189   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3190   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
3191 }
3192 
3193 void Assembler::push(int32_t imm32) {
3194   // in 64bits we push 64bits onto the stack but only
3195   // take a 32bit immediate
3196   emit_int8(0x68);
3197   emit_int32(imm32);
3198 }
3199 
3200 void Assembler::push(Register src) {
3201   int encode = prefix_and_encode(src->encoding());
3202 
3203   emit_int8(0x50 | encode);
3204 }
3205 
3206 void Assembler::pushf() {
3207   emit_int8((unsigned char)0x9C);
3208 }
3209 
3210 #ifndef _LP64 // no 32bit push/pop on amd64
3211 void Assembler::pushl(Address src) {
3212   // Note this will push 64bit on 64bit
3213   InstructionMark im(this);
3214   prefix(src);
3215   emit_int8((unsigned char)0xFF);
3216   emit_operand(rsi, src);
3217 }
3218 #endif
3219 
3220 void Assembler::rcll(Register dst, int imm8) {
3221   assert(isShiftCount(imm8), "illegal shift count");
3222   int encode = prefix_and_encode(dst->encoding());
3223   if (imm8 == 1) {
3224     emit_int8((unsigned char)0xD1);
3225     emit_int8((unsigned char)(0xD0 | encode));
3226   } else {
3227     emit_int8((unsigned char)0xC1);
3228     emit_int8((unsigned char)0xD0 | encode);
3229     emit_int8(imm8);
3230   }
3231 }
3232 
3233 void Assembler::rdtsc() {
3234   emit_int8((unsigned char)0x0F);
3235   emit_int8((unsigned char)0x31);
3236 }
3237 
3238 // copies data from [esi] to [edi] using rcx pointer sized words
3239 // generic
3240 void Assembler::rep_mov() {
3241   emit_int8((unsigned char)0xF3);
3242   // MOVSQ
3243   LP64_ONLY(prefix(REX_W));
3244   emit_int8((unsigned char)0xA5);
3245 }
3246 
3247 // sets rcx bytes with rax, value at [edi]
3248 void Assembler::rep_stosb() {
3249   emit_int8((unsigned char)0xF3); // REP
3250   LP64_ONLY(prefix(REX_W));
3251   emit_int8((unsigned char)0xAA); // STOSB
3252 }
3253 
3254 // sets rcx pointer sized words with rax, value at [edi]
3255 // generic
3256 void Assembler::rep_stos() {
3257   emit_int8((unsigned char)0xF3); // REP
3258   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
3259   emit_int8((unsigned char)0xAB);
3260 }
3261 
3262 // scans rcx pointer sized words at [edi] for occurance of rax,
3263 // generic
3264 void Assembler::repne_scan() { // repne_scan
3265   emit_int8((unsigned char)0xF2);
3266   // SCASQ
3267   LP64_ONLY(prefix(REX_W));
3268   emit_int8((unsigned char)0xAF);
3269 }
3270 
3271 #ifdef _LP64
3272 // scans rcx 4 byte words at [edi] for occurance of rax,
3273 // generic
3274 void Assembler::repne_scanl() { // repne_scan
3275   emit_int8((unsigned char)0xF2);
3276   // SCASL
3277   emit_int8((unsigned char)0xAF);
3278 }
3279 #endif
3280 
3281 void Assembler::ret(int imm16) {
3282   if (imm16 == 0) {
3283     emit_int8((unsigned char)0xC3);
3284   } else {
3285     emit_int8((unsigned char)0xC2);
3286     emit_int16(imm16);
3287   }
3288 }
3289 
3290 void Assembler::sahf() {
3291 #ifdef _LP64
3292   // Not supported in 64bit mode
3293   ShouldNotReachHere();
3294 #endif
3295   emit_int8((unsigned char)0x9E);
3296 }
3297 
3298 void Assembler::sarl(Register dst, int imm8) {
3299   int encode = prefix_and_encode(dst->encoding());
3300   assert(isShiftCount(imm8), "illegal shift count");
3301   if (imm8 == 1) {
3302     emit_int8((unsigned char)0xD1);
3303     emit_int8((unsigned char)(0xF8 | encode));
3304   } else {
3305     emit_int8((unsigned char)0xC1);
3306     emit_int8((unsigned char)(0xF8 | encode));
3307     emit_int8(imm8);
3308   }
3309 }
3310 
3311 void Assembler::sarl(Register dst) {
3312   int encode = prefix_and_encode(dst->encoding());
3313   emit_int8((unsigned char)0xD3);
3314   emit_int8((unsigned char)(0xF8 | encode));
3315 }
3316 
3317 void Assembler::sbbl(Address dst, int32_t imm32) {
3318   InstructionMark im(this);
3319   prefix(dst);
3320   emit_arith_operand(0x81, rbx, dst, imm32);
3321 }
3322 
3323 void Assembler::sbbl(Register dst, int32_t imm32) {
3324   prefix(dst);
3325   emit_arith(0x81, 0xD8, dst, imm32);
3326 }
3327 
3328 
3329 void Assembler::sbbl(Register dst, Address src) {
3330   InstructionMark im(this);
3331   prefix(src, dst);
3332   emit_int8(0x1B);
3333   emit_operand(dst, src);
3334 }
3335 
3336 void Assembler::sbbl(Register dst, Register src) {
3337   (void) prefix_and_encode(dst->encoding(), src->encoding());
3338   emit_arith(0x1B, 0xC0, dst, src);
3339 }
3340 
3341 void Assembler::setb(Condition cc, Register dst) {
3342   assert(0 <= cc && cc < 16, "illegal cc");
3343   int encode = prefix_and_encode(dst->encoding(), true);
3344   emit_int8(0x0F);
3345   emit_int8((unsigned char)0x90 | cc);
3346   emit_int8((unsigned char)(0xC0 | encode));
3347 }
3348 
3349 void Assembler::shll(Register dst, int imm8) {
3350   assert(isShiftCount(imm8), "illegal shift count");
3351   int encode = prefix_and_encode(dst->encoding());
3352   if (imm8 == 1 ) {
3353     emit_int8((unsigned char)0xD1);
3354     emit_int8((unsigned char)(0xE0 | encode));
3355   } else {
3356     emit_int8((unsigned char)0xC1);
3357     emit_int8((unsigned char)(0xE0 | encode));
3358     emit_int8(imm8);
3359   }
3360 }
3361 
3362 void Assembler::shll(Register dst) {
3363   int encode = prefix_and_encode(dst->encoding());
3364   emit_int8((unsigned char)0xD3);
3365   emit_int8((unsigned char)(0xE0 | encode));
3366 }
3367 
3368 void Assembler::shrl(Register dst, int imm8) {
3369   assert(isShiftCount(imm8), "illegal shift count");
3370   int encode = prefix_and_encode(dst->encoding());
3371   emit_int8((unsigned char)0xC1);
3372   emit_int8((unsigned char)(0xE8 | encode));
3373   emit_int8(imm8);
3374 }
3375 
3376 void Assembler::shrl(Register dst) {
3377   int encode = prefix_and_encode(dst->encoding());
3378   emit_int8((unsigned char)0xD3);
3379   emit_int8((unsigned char)(0xE8 | encode));
3380 }
3381 
3382 // copies a single word from [esi] to [edi]
3383 void Assembler::smovl() {
3384   emit_int8((unsigned char)0xA5);
3385 }
3386 
3387 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
3388   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3389   if (VM_Version::supports_evex()) {
3390     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3391   } else {
3392     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3393   }
3394 }
3395 
3396 void Assembler::sqrtsd(XMMRegister dst, Address src) {
3397   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3398   if (VM_Version::supports_evex()) {
3399     tuple_type = EVEX_T1S;
3400     input_size_in_bits = EVEX_64bit;
3401     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3402   } else {
3403     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3404   }
3405 }
3406 
3407 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
3408   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3409   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3410 }
3411 
3412 void Assembler::std() {
3413   emit_int8((unsigned char)0xFD);
3414 }
3415 
3416 void Assembler::sqrtss(XMMRegister dst, Address src) {
3417   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3418   if (VM_Version::supports_evex()) {
3419     tuple_type = EVEX_T1S;
3420     input_size_in_bits = EVEX_32bit;
3421   }
3422   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3423 }
3424 
3425 void Assembler::stmxcsr( Address dst) {
3426   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3427   InstructionMark im(this);
3428   prefix(dst);
3429   emit_int8(0x0F);
3430   emit_int8((unsigned char)0xAE);
3431   emit_operand(as_Register(3), dst);
3432 }
3433 
3434 void Assembler::subl(Address dst, int32_t imm32) {
3435   InstructionMark im(this);
3436   prefix(dst);
3437   emit_arith_operand(0x81, rbp, dst, imm32);
3438 }
3439 
3440 void Assembler::subl(Address dst, Register src) {
3441   InstructionMark im(this);
3442   prefix(dst, src);
3443   emit_int8(0x29);
3444   emit_operand(src, dst);
3445 }
3446 
3447 void Assembler::subl(Register dst, int32_t imm32) {
3448   prefix(dst);
3449   emit_arith(0x81, 0xE8, dst, imm32);
3450 }
3451 
3452 // Force generation of a 4 byte immediate value even if it fits into 8bit
3453 void Assembler::subl_imm32(Register dst, int32_t imm32) {
3454   prefix(dst);
3455   emit_arith_imm32(0x81, 0xE8, dst, imm32);
3456 }
3457 
3458 void Assembler::subl(Register dst, Address src) {
3459   InstructionMark im(this);
3460   prefix(src, dst);
3461   emit_int8(0x2B);
3462   emit_operand(dst, src);
3463 }
3464 
3465 void Assembler::subl(Register dst, Register src) {
3466   (void) prefix_and_encode(dst->encoding(), src->encoding());
3467   emit_arith(0x2B, 0xC0, dst, src);
3468 }
3469 
3470 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
3471   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3472   if (VM_Version::supports_evex()) {
3473     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3474   } else {
3475     emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
3476   }
3477 }
3478 
3479 void Assembler::subsd(XMMRegister dst, Address src) {
3480   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3481   if (VM_Version::supports_evex()) {
3482     tuple_type = EVEX_T1S;
3483     input_size_in_bits = EVEX_64bit;
3484   }
3485   emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3486 }
3487 
3488 void Assembler::subss(XMMRegister dst, XMMRegister src) {
3489   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3490   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3491 }
3492 
3493 void Assembler::subss(XMMRegister dst, Address src) {
3494   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3495   if (VM_Version::supports_evex()) {
3496     tuple_type = EVEX_T1S;
3497     input_size_in_bits = EVEX_32bit;
3498   }
3499   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3500 }
3501 
3502 void Assembler::testb(Register dst, int imm8) {
3503   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
3504   (void) prefix_and_encode(dst->encoding(), true);
3505   emit_arith_b(0xF6, 0xC0, dst, imm8);
3506 }
3507 
3508 void Assembler::testl(Register dst, int32_t imm32) {
3509   // not using emit_arith because test
3510   // doesn't support sign-extension of
3511   // 8bit operands
3512   int encode = dst->encoding();
3513   if (encode == 0) {
3514     emit_int8((unsigned char)0xA9);
3515   } else {
3516     encode = prefix_and_encode(encode);
3517     emit_int8((unsigned char)0xF7);
3518     emit_int8((unsigned char)(0xC0 | encode));
3519   }
3520   emit_int32(imm32);
3521 }
3522 
3523 void Assembler::testl(Register dst, Register src) {
3524   (void) prefix_and_encode(dst->encoding(), src->encoding());
3525   emit_arith(0x85, 0xC0, dst, src);
3526 }
3527 
3528 void Assembler::testl(Register dst, Address  src) {
3529   InstructionMark im(this);
3530   prefix(src, dst);
3531   emit_int8((unsigned char)0x85);
3532   emit_operand(dst, src);
3533 }
3534 
3535 void Assembler::tzcntl(Register dst, Register src) {
3536   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3537   emit_int8((unsigned char)0xF3);
3538   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3539   emit_int8(0x0F);
3540   emit_int8((unsigned char)0xBC);
3541   emit_int8((unsigned char)0xC0 | encode);
3542 }
3543 
3544 void Assembler::tzcntq(Register dst, Register src) {
3545   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3546   emit_int8((unsigned char)0xF3);
3547   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3548   emit_int8(0x0F);
3549   emit_int8((unsigned char)0xBC);
3550   emit_int8((unsigned char)(0xC0 | encode));
3551 }
3552 
3553 void Assembler::ucomisd(XMMRegister dst, Address src) {
3554   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3555   if (VM_Version::supports_evex()) {
3556     tuple_type = EVEX_T1S;
3557     input_size_in_bits = EVEX_64bit;
3558     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, true);
3559   } else {
3560     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3561   }
3562 }
3563 
3564 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
3565   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3566   if (VM_Version::supports_evex()) {
3567     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, true);
3568   } else {
3569     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3570   }
3571 }
3572 
3573 void Assembler::ucomiss(XMMRegister dst, Address src) {
3574   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3575   if (VM_Version::supports_evex()) {
3576     tuple_type = EVEX_T1S;
3577     input_size_in_bits = EVEX_32bit;
3578   }
3579   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, true);
3580 }
3581 
3582 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
3583   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3584   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, true);
3585 }
3586 
3587 void Assembler::xabort(int8_t imm8) {
3588   emit_int8((unsigned char)0xC6);
3589   emit_int8((unsigned char)0xF8);
3590   emit_int8((unsigned char)(imm8 & 0xFF));
3591 }
3592 
3593 void Assembler::xaddl(Address dst, Register src) {
3594   InstructionMark im(this);
3595   prefix(dst, src);
3596   emit_int8(0x0F);
3597   emit_int8((unsigned char)0xC1);
3598   emit_operand(src, dst);
3599 }
3600 
3601 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
3602   InstructionMark im(this);
3603   relocate(rtype);
3604   if (abort.is_bound()) {
3605     address entry = target(abort);
3606     assert(entry != NULL, "abort entry NULL");
3607     intptr_t offset = entry - pc();
3608     emit_int8((unsigned char)0xC7);
3609     emit_int8((unsigned char)0xF8);
3610     emit_int32(offset - 6); // 2 opcode + 4 address
3611   } else {
3612     abort.add_patch_at(code(), locator());
3613     emit_int8((unsigned char)0xC7);
3614     emit_int8((unsigned char)0xF8);
3615     emit_int32(0);
3616   }
3617 }
3618 
3619 void Assembler::xchgl(Register dst, Address src) { // xchg
3620   InstructionMark im(this);
3621   prefix(src, dst);
3622   emit_int8((unsigned char)0x87);
3623   emit_operand(dst, src);
3624 }
3625 
3626 void Assembler::xchgl(Register dst, Register src) {
3627   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3628   emit_int8((unsigned char)0x87);
3629   emit_int8((unsigned char)(0xC0 | encode));
3630 }
3631 
3632 void Assembler::xend() {
3633   emit_int8((unsigned char)0x0F);
3634   emit_int8((unsigned char)0x01);
3635   emit_int8((unsigned char)0xD5);
3636 }
3637 
3638 void Assembler::xgetbv() {
3639   emit_int8(0x0F);
3640   emit_int8(0x01);
3641   emit_int8((unsigned char)0xD0);
3642 }
3643 
3644 void Assembler::xorl(Register dst, int32_t imm32) {
3645   prefix(dst);
3646   emit_arith(0x81, 0xF0, dst, imm32);
3647 }
3648 
3649 void Assembler::xorl(Register dst, Address src) {
3650   InstructionMark im(this);
3651   prefix(src, dst);
3652   emit_int8(0x33);
3653   emit_operand(dst, src);
3654 }
3655 
3656 void Assembler::xorl(Register dst, Register src) {
3657   (void) prefix_and_encode(dst->encoding(), src->encoding());
3658   emit_arith(0x33, 0xC0, dst, src);
3659 }
3660 
3661 
3662 // AVX 3-operands scalar float-point arithmetic instructions
3663 
3664 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
3665   assert(VM_Version::supports_avx(), "");
3666   if (VM_Version::supports_evex()) {
3667     tuple_type = EVEX_T1S;
3668     input_size_in_bits = EVEX_64bit;
3669     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3670   } else {
3671     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3672   }
3673 }
3674 
3675 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3676   assert(VM_Version::supports_avx(), "");
3677   if (VM_Version::supports_evex()) {
3678     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3679   } else {
3680     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3681   }
3682 }
3683 
3684 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
3685   assert(VM_Version::supports_avx(), "");
3686   if (VM_Version::supports_evex()) {
3687     tuple_type = EVEX_T1S;
3688     input_size_in_bits = EVEX_32bit;
3689   }
3690   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3691 }
3692 
3693 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3694   assert(VM_Version::supports_avx(), "");
3695   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3696 }
3697 
3698 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
3699   assert(VM_Version::supports_avx(), "");
3700   if (VM_Version::supports_evex()) {
3701     tuple_type = EVEX_T1S;
3702     input_size_in_bits = EVEX_64bit;
3703     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3704   } else {
3705     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3706   }
3707 }
3708 
3709 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3710   assert(VM_Version::supports_avx(), "");
3711   if (VM_Version::supports_evex()) {
3712     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3713   } else {
3714     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3715   }
3716 }
3717 
3718 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
3719   assert(VM_Version::supports_avx(), "");
3720   if (VM_Version::supports_evex()) {
3721     tuple_type = EVEX_T1S;
3722     input_size_in_bits = EVEX_32bit;
3723   }
3724   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3725 }
3726 
3727 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3728   assert(VM_Version::supports_avx(), "");
3729   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3730 }
3731 
3732 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
3733   assert(VM_Version::supports_avx(), "");
3734   if (VM_Version::supports_evex()) {
3735     tuple_type = EVEX_T1S;
3736     input_size_in_bits = EVEX_64bit;
3737     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3738   } else {
3739     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3740   }
3741 }
3742 
3743 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3744   assert(VM_Version::supports_avx(), "");
3745   if (VM_Version::supports_evex()) {
3746     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3747   } else {
3748     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3749   }
3750 }
3751 
3752 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
3753   assert(VM_Version::supports_avx(), "");
3754   if (VM_Version::supports_evex()) {
3755     tuple_type = EVEX_T1S;
3756     input_size_in_bits = EVEX_32bit;
3757   }
3758   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3759 }
3760 
3761 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3762   assert(VM_Version::supports_avx(), "");
3763   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3764 }
3765 
3766 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
3767   assert(VM_Version::supports_avx(), "");
3768   if (VM_Version::supports_evex()) {
3769     tuple_type = EVEX_T1S;
3770     input_size_in_bits = EVEX_64bit;
3771     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3772   } else {
3773     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3774   }
3775 }
3776 
3777 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3778   assert(VM_Version::supports_avx(), "");
3779   if (VM_Version::supports_evex()) {
3780     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3781   } else {
3782     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3783   }
3784 }
3785 
3786 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
3787   assert(VM_Version::supports_avx(), "");
3788   if (VM_Version::supports_evex()) {
3789     tuple_type = EVEX_T1S;
3790     input_size_in_bits = EVEX_32bit;
3791   }
3792   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3793 }
3794 
3795 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3796   assert(VM_Version::supports_avx(), "");
3797   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3798 }
3799 
3800 //====================VECTOR ARITHMETIC=====================================
3801 
3802 // Float-point vector arithmetic
3803 
3804 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
3805   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3806   if (VM_Version::supports_evex()) {
3807     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_66);
3808   } else {
3809     emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
3810   }
3811 }
3812 
3813 void Assembler::addps(XMMRegister dst, XMMRegister src) {
3814   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3815   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
3816 }
3817 
3818 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3819   assert(VM_Version::supports_avx(), "");
3820   if (VM_Version::supports_evex()) {
3821     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3822   } else {
3823     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3824   }
3825 }
3826 
3827 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3828   assert(VM_Version::supports_avx(), "");
3829   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
3830 }
3831 
3832 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3833   assert(VM_Version::supports_avx(), "");
3834   if (VM_Version::supports_evex()) {
3835     tuple_type = EVEX_FV;
3836     input_size_in_bits = EVEX_64bit;
3837     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3838   } else {
3839     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3840   }
3841 }
3842 
3843 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3844   assert(VM_Version::supports_avx(), "");
3845   if (VM_Version::supports_evex()) {
3846     tuple_type = EVEX_FV;
3847     input_size_in_bits = EVEX_32bit;
3848   }
3849   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
3850 }
3851 
3852 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
3853   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3854   if (VM_Version::supports_evex()) {
3855     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_66);
3856   } else {
3857     emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
3858   }
3859 }
3860 
3861 void Assembler::subps(XMMRegister dst, XMMRegister src) {
3862   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3863   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
3864 }
3865 
3866 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3867   assert(VM_Version::supports_avx(), "");
3868   if (VM_Version::supports_evex()) {
3869     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3870   } else {
3871     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3872   }
3873 }
3874 
3875 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3876   assert(VM_Version::supports_avx(), "");
3877   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
3878 }
3879 
3880 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3881   assert(VM_Version::supports_avx(), "");
3882   if (VM_Version::supports_evex()) {
3883     tuple_type = EVEX_FV;
3884     input_size_in_bits = EVEX_64bit;
3885     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3886   } else {
3887     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3888   }
3889 }
3890 
3891 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3892   assert(VM_Version::supports_avx(), "");
3893   if (VM_Version::supports_evex()) {
3894     tuple_type = EVEX_FV;
3895     input_size_in_bits = EVEX_32bit;
3896   }
3897   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
3898 }
3899 
3900 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
3901   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3902   if (VM_Version::supports_evex()) {
3903     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_66);
3904   } else {
3905     emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
3906   }
3907 }
3908 
3909 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
3910   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3911   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
3912 }
3913 
3914 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3915   assert(VM_Version::supports_avx(), "");
3916   if (VM_Version::supports_evex()) {
3917     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3918   } else {
3919     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3920   }
3921 }
3922 
3923 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3924   assert(VM_Version::supports_avx(), "");
3925   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
3926 }
3927 
3928 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3929   assert(VM_Version::supports_avx(), "");
3930   if (VM_Version::supports_evex()) {
3931     tuple_type = EVEX_FV;
3932     input_size_in_bits = EVEX_64bit;
3933     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3934   } else {
3935     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3936   }
3937 }
3938 
3939 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3940   assert(VM_Version::supports_avx(), "");
3941   if (VM_Version::supports_evex()) {
3942     tuple_type = EVEX_FV;
3943     input_size_in_bits = EVEX_32bit;
3944   }
3945   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
3946 }
3947 
3948 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
3949   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3950   if (VM_Version::supports_evex()) {
3951     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_66);
3952   } else {
3953     emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
3954   }
3955 }
3956 
3957 void Assembler::divps(XMMRegister dst, XMMRegister src) {
3958   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3959   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
3960 }
3961 
3962 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3963   assert(VM_Version::supports_avx(), "");
3964   if (VM_Version::supports_evex()) {
3965     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3966   } else {
3967     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3968   }
3969 }
3970 
3971 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3972   assert(VM_Version::supports_avx(), "");
3973   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
3974 }
3975 
3976 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3977   assert(VM_Version::supports_avx(), "");
3978   if (VM_Version::supports_evex()) {
3979     tuple_type = EVEX_FV;
3980     input_size_in_bits = EVEX_64bit;
3981     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3982   } else {
3983     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3984   }
3985 }
3986 
3987 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3988   assert(VM_Version::supports_avx(), "");
3989   if (VM_Version::supports_evex()) {
3990     tuple_type = EVEX_FV;
3991     input_size_in_bits = EVEX_32bit;
3992   }
3993   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
3994 }
3995 
3996 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
3997   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3998   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
3999     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
4000   } else {
4001     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, false, true);
4002   }
4003 }
4004 
4005 void Assembler::andps(XMMRegister dst, XMMRegister src) {
4006   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4007   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE, false,
4008                   (VM_Version::supports_avx512dq() == false));
4009 }
4010 
4011 void Assembler::andps(XMMRegister dst, Address src) {
4012   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4013   if (VM_Version::supports_evex()) {
4014     tuple_type = EVEX_FV;
4015     input_size_in_bits = EVEX_32bit;
4016   }
4017   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE,
4018                   false, (VM_Version::supports_avx512dq() == false));
4019 }
4020 
4021 void Assembler::andpd(XMMRegister dst, Address src) {
4022   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4023   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4024     tuple_type = EVEX_FV;
4025     input_size_in_bits = EVEX_64bit;
4026     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
4027   } else {
4028     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, false, true);
4029   }
4030 }
4031 
4032 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4033   assert(VM_Version::supports_avx(), "");
4034   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4035     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4036   } else {
4037     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, true);
4038   }
4039 }
4040 
4041 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4042   assert(VM_Version::supports_avx(), "");
4043   bool legacy_mode = (VM_Version::supports_avx512dq() == false);
4044   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len, legacy_mode);
4045 }
4046 
4047 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4048   assert(VM_Version::supports_avx(), "");
4049   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4050     tuple_type = EVEX_FV;
4051     input_size_in_bits = EVEX_64bit;
4052     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4053   } else {
4054     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, true);
4055   }
4056 }
4057 
4058 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4059   assert(VM_Version::supports_avx(), "");
4060   if (VM_Version::supports_evex()) {
4061     tuple_type = EVEX_FV;
4062     input_size_in_bits = EVEX_32bit;
4063   }
4064   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len,
4065                  (VM_Version::supports_avx512dq() == false));
4066 }
4067 
4068 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
4069   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4070   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4071     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4072   } else {
4073     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, false, true);
4074   }
4075 }
4076 
4077 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
4078   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4079   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE,
4080                   false, (VM_Version::supports_avx512dq() == false));
4081 }
4082 
4083 void Assembler::xorpd(XMMRegister dst, Address src) {
4084   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4085   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4086     tuple_type = EVEX_FV;
4087     input_size_in_bits = EVEX_64bit;
4088     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4089   } else {
4090     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, false, true);
4091   }
4092 }
4093 
4094 void Assembler::xorps(XMMRegister dst, Address src) {
4095   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4096   if (VM_Version::supports_evex()) {
4097     tuple_type = EVEX_FV;
4098     input_size_in_bits = EVEX_32bit;
4099   }
4100   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE, false,
4101                   (VM_Version::supports_avx512dq() == false));
4102 }
4103 
4104 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4105   assert(VM_Version::supports_avx(), "");
4106   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4107     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4108   } else {
4109     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, true);
4110   }
4111 }
4112 
4113 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4114   assert(VM_Version::supports_avx(), "");
4115   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len,
4116                  (VM_Version::supports_avx512dq() == false));
4117 }
4118 
4119 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4120   assert(VM_Version::supports_avx(), "");
4121   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4122     tuple_type = EVEX_FV;
4123     input_size_in_bits = EVEX_64bit;
4124     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4125   } else {
4126     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, true);
4127   }
4128 }
4129 
4130 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4131   assert(VM_Version::supports_avx(), "");
4132   if (VM_Version::supports_evex()) {
4133     tuple_type = EVEX_FV;
4134     input_size_in_bits = EVEX_32bit;
4135   }
4136   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len,
4137                  (VM_Version::supports_avx512dq() == false));
4138 }
4139 
4140 // Integer vector arithmetic
4141 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4142   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4143          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4144   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len,
4145                                      VEX_OPCODE_0F_38, true, false);
4146   emit_int8(0x01);
4147   emit_int8((unsigned char)(0xC0 | encode));
4148 }
4149 
4150 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4151   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4152          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4153   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len,
4154                                      VEX_OPCODE_0F_38, true, false);
4155   emit_int8(0x02);
4156   emit_int8((unsigned char)(0xC0 | encode));
4157 }
4158 
4159 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
4160   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4161   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
4162 }
4163 
4164 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
4165   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4166   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
4167 }
4168 
4169 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
4170   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4171   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
4172 }
4173 
4174 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
4175   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4176   if (VM_Version::supports_evex()) {
4177     emit_simd_arith_q(0xD4, dst, src, VEX_SIMD_66);
4178   } else {
4179     emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
4180   }
4181 }
4182 
4183 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
4184   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4185   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
4186                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
4187   emit_int8(0x01);
4188   emit_int8((unsigned char)(0xC0 | encode));
4189 }
4190 
4191 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
4192   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4193   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
4194                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
4195   emit_int8(0x02);
4196   emit_int8((unsigned char)(0xC0 | encode));
4197 }
4198 
4199 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4200   assert(UseAVX > 0, "requires some form of AVX");
4201   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len,
4202                  (VM_Version::supports_avx512bw() == false));
4203 }
4204 
4205 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4206   assert(UseAVX > 0, "requires some form of AVX");
4207   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len,
4208                  (VM_Version::supports_avx512bw() == false));
4209 }
4210 
4211 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4212   assert(UseAVX > 0, "requires some form of AVX");
4213   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4214 }
4215 
4216 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4217   assert(UseAVX > 0, "requires some form of AVX");
4218   if (VM_Version::supports_evex()) {
4219     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4220   } else {
4221     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4222   }
4223 }
4224 
4225 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4226   assert(UseAVX > 0, "requires some form of AVX");
4227   if (VM_Version::supports_evex()) {
4228     tuple_type = EVEX_FVM;
4229   }
4230   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len);
4231 }
4232 
4233 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4234   assert(UseAVX > 0, "requires some form of AVX");
4235   if (VM_Version::supports_evex()) {
4236     tuple_type = EVEX_FVM;
4237   }
4238   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len);
4239 }
4240 
4241 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4242   assert(UseAVX > 0, "requires some form of AVX");
4243   if (VM_Version::supports_evex()) {
4244     tuple_type = EVEX_FV;
4245     input_size_in_bits = EVEX_32bit;
4246   }
4247   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4248 }
4249 
4250 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4251   assert(UseAVX > 0, "requires some form of AVX");
4252   if (VM_Version::supports_evex()) {
4253     tuple_type = EVEX_FV;
4254     input_size_in_bits = EVEX_64bit;
4255     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4256   } else {
4257     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4258   }
4259 }
4260 
4261 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
4262   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4263   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
4264 }
4265 
4266 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
4267   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4268   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
4269 }
4270 
4271 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
4272   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4273   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
4274 }
4275 
4276 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
4277   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4278   if (VM_Version::supports_evex()) {
4279     emit_simd_arith_q(0xFB, dst, src, VEX_SIMD_66);
4280   } else {
4281     emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
4282   }
4283 }
4284 
4285 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4286   assert(UseAVX > 0, "requires some form of AVX");
4287   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len,
4288                  (VM_Version::supports_avx512bw() == false));
4289 }
4290 
4291 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4292   assert(UseAVX > 0, "requires some form of AVX");
4293   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len,
4294                  (VM_Version::supports_avx512bw() == false));
4295 }
4296 
4297 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4298   assert(UseAVX > 0, "requires some form of AVX");
4299   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4300 }
4301 
4302 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4303   assert(UseAVX > 0, "requires some form of AVX");
4304   if (VM_Version::supports_evex()) {
4305     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4306   } else {
4307     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4308   }
4309 }
4310 
4311 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4312   assert(UseAVX > 0, "requires some form of AVX");
4313   if (VM_Version::supports_evex()) {
4314     tuple_type = EVEX_FVM;
4315   }
4316   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len,
4317                  (VM_Version::supports_avx512bw() == false));
4318 }
4319 
4320 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4321   assert(UseAVX > 0, "requires some form of AVX");
4322   if (VM_Version::supports_evex()) {
4323     tuple_type = EVEX_FVM;
4324   }
4325   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len,
4326                  (VM_Version::supports_avx512bw() == false));
4327 }
4328 
4329 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4330   assert(UseAVX > 0, "requires some form of AVX");
4331   if (VM_Version::supports_evex()) {
4332     tuple_type = EVEX_FV;
4333     input_size_in_bits = EVEX_32bit;
4334   }
4335   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4336 }
4337 
4338 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4339   assert(UseAVX > 0, "requires some form of AVX");
4340   if (VM_Version::supports_evex()) {
4341     tuple_type = EVEX_FV;
4342     input_size_in_bits = EVEX_64bit;
4343     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4344   } else {
4345     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4346   }
4347 }
4348 
4349 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
4350   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4351   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66,
4352                   (VM_Version::supports_avx512bw() == false));
4353 }
4354 
4355 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
4356   assert(VM_Version::supports_sse4_1(), "");
4357   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66,
4358                                       false, VEX_OPCODE_0F_38);
4359   emit_int8(0x40);
4360   emit_int8((unsigned char)(0xC0 | encode));
4361 }
4362 
4363 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4364   assert(UseAVX > 0, "requires some form of AVX");
4365   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len,
4366                  (VM_Version::supports_avx512bw() == false));
4367 }
4368 
4369 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4370   assert(UseAVX > 0, "requires some form of AVX");
4371   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66,
4372                                      vector_len, VEX_OPCODE_0F_38);
4373   emit_int8(0x40);
4374   emit_int8((unsigned char)(0xC0 | encode));
4375 }
4376 
4377 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4378   assert(UseAVX > 2, "requires some form of AVX");
4379   int src_enc = src->encoding();
4380   int dst_enc = dst->encoding();
4381   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4382   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66,
4383                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
4384   emit_int8(0x40);
4385   emit_int8((unsigned char)(0xC0 | encode));
4386 }
4387 
4388 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4389   assert(UseAVX > 0, "requires some form of AVX");
4390   if (VM_Version::supports_evex()) {
4391     tuple_type = EVEX_FVM;
4392   }
4393   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len);
4394 }
4395 
4396 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4397   assert(UseAVX > 0, "requires some form of AVX");
4398   if (VM_Version::supports_evex()) {
4399     tuple_type = EVEX_FV;
4400     input_size_in_bits = EVEX_32bit;
4401   }
4402   InstructionMark im(this);
4403   int dst_enc = dst->encoding();
4404   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4405   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66,
4406              VEX_OPCODE_0F_38, false, vector_len);
4407   emit_int8(0x40);
4408   emit_operand(dst, src);
4409 }
4410 
4411 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4412   assert(UseAVX > 0, "requires some form of AVX");
4413   if (VM_Version::supports_evex()) {
4414     tuple_type = EVEX_FV;
4415     input_size_in_bits = EVEX_64bit;
4416   }
4417   InstructionMark im(this);
4418   int dst_enc = dst->encoding();
4419   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4420   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
4421   emit_int8(0x40);
4422   emit_operand(dst, src);
4423 }
4424 
4425 // Shift packed integers left by specified number of bits.
4426 void Assembler::psllw(XMMRegister dst, int shift) {
4427   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4428   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4429   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4430                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
4431   emit_int8(0x71);
4432   emit_int8((unsigned char)(0xC0 | encode));
4433   emit_int8(shift & 0xFF);
4434 }
4435 
4436 void Assembler::pslld(XMMRegister dst, int shift) {
4437   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4438   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4439   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false);
4440   emit_int8(0x72);
4441   emit_int8((unsigned char)(0xC0 | encode));
4442   emit_int8(shift & 0xFF);
4443 }
4444 
4445 void Assembler::psllq(XMMRegister dst, int shift) {
4446   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4447   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4448   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F, true);
4449   emit_int8(0x73);
4450   emit_int8((unsigned char)(0xC0 | encode));
4451   emit_int8(shift & 0xFF);
4452 }
4453 
4454 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
4455   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4456   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66, false,
4457                   (VM_Version::supports_avx512bw() == false));
4458 }
4459 
4460 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
4461   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4462   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
4463 }
4464 
4465 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
4466   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4467   if (VM_Version::supports_evex()) {
4468     emit_simd_arith_q(0xF3, dst, shift, VEX_SIMD_66);
4469   } else {
4470     emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
4471   }
4472 }
4473 
4474 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4475   assert(UseAVX > 0, "requires some form of AVX");
4476   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4477   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector_len,
4478                  (VM_Version::supports_avx512bw() == false));
4479   emit_int8(shift & 0xFF);
4480 }
4481 
4482 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4483   assert(UseAVX > 0, "requires some form of AVX");
4484   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4485   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector_len);
4486   emit_int8(shift & 0xFF);
4487 }
4488 
4489 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4490   assert(UseAVX > 0, "requires some form of AVX");
4491   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4492   if (VM_Version::supports_evex()) {
4493     emit_vex_arith_q(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4494   } else {
4495     emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4496   }
4497   emit_int8(shift & 0xFF);
4498 }
4499 
4500 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4501   assert(UseAVX > 0, "requires some form of AVX");
4502   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector_len,
4503                  (VM_Version::supports_avx512bw() == false));
4504 }
4505 
4506 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4507   assert(UseAVX > 0, "requires some form of AVX");
4508   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector_len);
4509 }
4510 
4511 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4512   assert(UseAVX > 0, "requires some form of AVX");
4513   if (VM_Version::supports_evex()) {
4514     emit_vex_arith_q(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4515   } else {
4516     emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4517   }
4518 }
4519 
4520 // Shift packed integers logically right by specified number of bits.
4521 void Assembler::psrlw(XMMRegister dst, int shift) {
4522   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4523   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
4524   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4525                                       (VM_Version::supports_avx512bw() == false));
4526   emit_int8(0x71);
4527   emit_int8((unsigned char)(0xC0 | encode));
4528   emit_int8(shift & 0xFF);
4529 }
4530 
4531 void Assembler::psrld(XMMRegister dst, int shift) {
4532   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4533   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
4534   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false);
4535   emit_int8(0x72);
4536   emit_int8((unsigned char)(0xC0 | encode));
4537   emit_int8(shift & 0xFF);
4538 }
4539 
4540 void Assembler::psrlq(XMMRegister dst, int shift) {
4541   // Do not confuse it with psrldq SSE2 instruction which
4542   // shifts 128 bit value in xmm register by number of bytes.
4543   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4544   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4545   int encode = 0;
4546   if (VM_Version::supports_evex() && VM_Version::supports_avx512bw()) {
4547     encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false);
4548   } else {
4549     encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F, true);
4550   }
4551   emit_int8(0x73);
4552   emit_int8((unsigned char)(0xC0 | encode));
4553   emit_int8(shift & 0xFF);
4554 }
4555 
4556 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
4557   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4558   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66, false,
4559                   (VM_Version::supports_avx512bw() == false));
4560 }
4561 
4562 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
4563   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4564   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
4565 }
4566 
4567 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
4568   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4569   if (VM_Version::supports_evex()) {
4570     emit_simd_arith_q(0xD3, dst, shift, VEX_SIMD_66);
4571   } else {
4572     emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
4573   }
4574 }
4575 
4576 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4577   assert(UseAVX > 0, "requires some form of AVX");
4578   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4579   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector_len,
4580                  (VM_Version::supports_avx512bw() == false));
4581   emit_int8(shift & 0xFF);
4582 }
4583 
4584 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4585   assert(UseAVX > 0, "requires some form of AVX");
4586   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4587   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector_len);
4588   emit_int8(shift & 0xFF);
4589 }
4590 
4591 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4592   assert(UseAVX > 0, "requires some form of AVX");
4593   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4594   if (VM_Version::supports_evex()) {
4595     emit_vex_arith_q(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4596   } else {
4597     emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4598   }
4599   emit_int8(shift & 0xFF);
4600 }
4601 
4602 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4603   assert(UseAVX > 0, "requires some form of AVX");
4604   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector_len,
4605                  (VM_Version::supports_avx512bw() == false));
4606 }
4607 
4608 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4609   assert(UseAVX > 0, "requires some form of AVX");
4610   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector_len);
4611 }
4612 
4613 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4614   assert(UseAVX > 0, "requires some form of AVX");
4615   if (VM_Version::supports_evex()) {
4616     emit_vex_arith_q(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4617   } else {
4618     emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4619   }
4620 }
4621 
4622 // Shift packed integers arithmetically right by specified number of bits.
4623 void Assembler::psraw(XMMRegister dst, int shift) {
4624   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4625   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4626   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4627                                       (VM_Version::supports_avx512bw() == false));
4628   emit_int8(0x71);
4629   emit_int8((unsigned char)(0xC0 | encode));
4630   emit_int8(shift & 0xFF);
4631 }
4632 
4633 void Assembler::psrad(XMMRegister dst, int shift) {
4634   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4635   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
4636   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, false);
4637   emit_int8(0x72);
4638   emit_int8((unsigned char)(0xC0 | encode));
4639   emit_int8(shift & 0xFF);
4640 }
4641 
4642 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
4643   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4644   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66,
4645                   (VM_Version::supports_avx512bw() == false));
4646 }
4647 
4648 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
4649   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4650   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
4651 }
4652 
4653 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4654   assert(UseAVX > 0, "requires some form of AVX");
4655   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4656   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector_len,
4657                  (VM_Version::supports_avx512bw() == false));
4658   emit_int8(shift & 0xFF);
4659 }
4660 
4661 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4662   assert(UseAVX > 0, "requires some form of AVX");
4663   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4664   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector_len);
4665   emit_int8(shift & 0xFF);
4666 }
4667 
4668 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4669   assert(UseAVX > 0, "requires some form of AVX");
4670   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector_len,
4671                  (VM_Version::supports_avx512bw() == false));
4672 }
4673 
4674 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4675   assert(UseAVX > 0, "requires some form of AVX");
4676   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector_len);
4677 }
4678 
4679 
4680 // AND packed integers
4681 void Assembler::pand(XMMRegister dst, XMMRegister src) {
4682   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4683   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
4684 }
4685 
4686 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4687   assert(UseAVX > 0, "requires some form of AVX");
4688   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4689 }
4690 
4691 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4692   assert(UseAVX > 0, "requires some form of AVX");
4693   if (VM_Version::supports_evex()) {
4694     tuple_type = EVEX_FV;
4695     input_size_in_bits = EVEX_32bit;
4696   }
4697   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4698 }
4699 
4700 void Assembler::por(XMMRegister dst, XMMRegister src) {
4701   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4702   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
4703 }
4704 
4705 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4706   assert(UseAVX > 0, "requires some form of AVX");
4707   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
4708 }
4709 
4710 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4711   assert(UseAVX > 0, "requires some form of AVX");
4712   if (VM_Version::supports_evex()) {
4713     tuple_type = EVEX_FV;
4714     input_size_in_bits = EVEX_32bit;
4715   }
4716   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
4717 }
4718 
4719 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
4720   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4721   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
4722 }
4723 
4724 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4725   assert(UseAVX > 0, "requires some form of AVX");
4726   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
4727 }
4728 
4729 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4730   assert(UseAVX > 0, "requires some form of AVX");
4731   if (VM_Version::supports_evex()) {
4732     tuple_type = EVEX_FV;
4733     input_size_in_bits = EVEX_32bit;
4734   }
4735   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
4736 }
4737 
4738 
4739 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4740   assert(VM_Version::supports_avx(), "");
4741   int vector_len = AVX_256bit;
4742   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4743   emit_int8(0x18);
4744   emit_int8((unsigned char)(0xC0 | encode));
4745   // 0x00 - insert into lower 128 bits
4746   // 0x01 - insert into upper 128 bits
4747   emit_int8(0x01);
4748 }
4749 
4750 void Assembler::vinsertf64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4751   assert(VM_Version::supports_evex(), "");
4752   int vector_len = AVX_512bit;
4753   int src_enc = src->encoding();
4754   int dst_enc = dst->encoding();
4755   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4756   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66,
4757                                      VEX_OPCODE_0F_3A, true, vector_len, false, false);
4758   emit_int8(0x1A);
4759   emit_int8((unsigned char)(0xC0 | encode));
4760   // 0x00 - insert into lower 256 bits
4761   // 0x01 - insert into upper 256 bits
4762   emit_int8(0x01);
4763 }
4764 
4765 void Assembler::vinsertf64x4h(XMMRegister dst, Address src) {
4766   assert(VM_Version::supports_avx(), "");
4767   if (VM_Version::supports_evex()) {
4768     tuple_type = EVEX_T4;
4769     input_size_in_bits = EVEX_64bit;
4770   }
4771   InstructionMark im(this);
4772   int vector_len = AVX_512bit;
4773   assert(dst != xnoreg, "sanity");
4774   int dst_enc = dst->encoding();
4775   // swap src<->dst for encoding
4776   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector_len);
4777   emit_int8(0x1A);
4778   emit_operand(dst, src);
4779   // 0x01 - insert into upper 128 bits
4780   emit_int8(0x01);
4781 }
4782 
4783 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
4784   assert(VM_Version::supports_avx(), "");
4785   if (VM_Version::supports_evex()) {
4786     tuple_type = EVEX_T4;
4787     input_size_in_bits = EVEX_32bit;
4788   }
4789   InstructionMark im(this);
4790   int vector_len = AVX_256bit;
4791   assert(dst != xnoreg, "sanity");
4792   int dst_enc = dst->encoding();
4793   // swap src<->dst for encoding
4794   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4795   emit_int8(0x18);
4796   emit_operand(dst, src);
4797   // 0x01 - insert into upper 128 bits
4798   emit_int8(0x01);
4799 }
4800 
4801 void Assembler::vextractf128h(XMMRegister dst, XMMRegister src) {
4802   assert(VM_Version::supports_avx(), "");
4803   int vector_len = AVX_256bit;
4804   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4805   emit_int8(0x19);
4806   emit_int8((unsigned char)(0xC0 | encode));
4807   // 0x00 - insert into lower 128 bits
4808   // 0x01 - insert into upper 128 bits
4809   emit_int8(0x01);
4810 }
4811 
4812 void Assembler::vextractf128h(Address dst, XMMRegister src) {
4813   assert(VM_Version::supports_avx(), "");
4814   if (VM_Version::supports_evex()) {
4815     tuple_type = EVEX_T4;
4816     input_size_in_bits = EVEX_32bit;
4817   }
4818   InstructionMark im(this);
4819   int vector_len = AVX_256bit;
4820   assert(src != xnoreg, "sanity");
4821   int src_enc = src->encoding();
4822   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4823   emit_int8(0x19);
4824   emit_operand(src, dst);
4825   // 0x01 - extract from upper 128 bits
4826   emit_int8(0x01);
4827 }
4828 
4829 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4830   assert(VM_Version::supports_avx2(), "");
4831   int vector_len = AVX_256bit;
4832   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4833   emit_int8(0x38);
4834   emit_int8((unsigned char)(0xC0 | encode));
4835   // 0x00 - insert into lower 128 bits
4836   // 0x01 - insert into upper 128 bits
4837   emit_int8(0x01);
4838 }
4839 
4840 void Assembler::vinserti64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4841   assert(VM_Version::supports_evex(), "");
4842   int vector_len = AVX_512bit;
4843   int src_enc = src->encoding();
4844   int dst_enc = dst->encoding();
4845   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4846   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4847                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4848   emit_int8(0x38);
4849   emit_int8((unsigned char)(0xC0 | encode));
4850   // 0x00 - insert into lower 256 bits
4851   // 0x01 - insert into upper 256 bits
4852   emit_int8(0x01);
4853 }
4854 
4855 void Assembler::vinserti128h(XMMRegister dst, Address src) {
4856   assert(VM_Version::supports_avx2(), "");
4857   if (VM_Version::supports_evex()) {
4858     tuple_type = EVEX_T4;
4859     input_size_in_bits = EVEX_32bit;
4860   }
4861   InstructionMark im(this);
4862   int vector_len = AVX_256bit;
4863   assert(dst != xnoreg, "sanity");
4864   int dst_enc = dst->encoding();
4865   // swap src<->dst for encoding
4866   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4867   emit_int8(0x38);
4868   emit_operand(dst, src);
4869   // 0x01 - insert into upper 128 bits
4870   emit_int8(0x01);
4871 }
4872 
4873 void Assembler::vextracti128h(XMMRegister dst, XMMRegister src) {
4874   assert(VM_Version::supports_avx(), "");
4875   int vector_len = AVX_256bit;
4876   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4877   emit_int8(0x39);
4878   emit_int8((unsigned char)(0xC0 | encode));
4879   // 0x00 - insert into lower 128 bits
4880   // 0x01 - insert into upper 128 bits
4881   emit_int8(0x01);
4882 }
4883 
4884 void Assembler::vextracti128h(Address dst, XMMRegister src) {
4885   assert(VM_Version::supports_avx2(), "");
4886   if (VM_Version::supports_evex()) {
4887     tuple_type = EVEX_T4;
4888     input_size_in_bits = EVEX_32bit;
4889   }
4890   InstructionMark im(this);
4891   int vector_len = AVX_256bit;
4892   assert(src != xnoreg, "sanity");
4893   int src_enc = src->encoding();
4894   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4895   emit_int8(0x39);
4896   emit_operand(src, dst);
4897   // 0x01 - extract from upper 128 bits
4898   emit_int8(0x01);
4899 }
4900 
4901 void Assembler::vextracti64x4h(XMMRegister dst, XMMRegister src) {
4902   assert(VM_Version::supports_evex(), "");
4903   int vector_len = AVX_512bit;
4904   int src_enc = src->encoding();
4905   int dst_enc = dst->encoding();
4906   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4907                                      true, vector_len, false, false);
4908   emit_int8(0x3B);
4909   emit_int8((unsigned char)(0xC0 | encode));
4910   // 0x01 - extract from upper 256 bits
4911   emit_int8(0x01);
4912 }
4913 
4914 void Assembler::vextracti64x2h(XMMRegister dst, XMMRegister src, int value) {
4915   assert(VM_Version::supports_evex(), "");
4916   int vector_len = AVX_512bit;
4917   int src_enc = src->encoding();
4918   int dst_enc = dst->encoding();
4919   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4920                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4921   emit_int8(0x39);
4922   emit_int8((unsigned char)(0xC0 | encode));
4923   // 0x01 - extract from bits 255:128
4924   // 0x02 - extract from bits 383:256
4925   // 0x03 - extract from bits 511:384
4926   emit_int8(value & 0x3);
4927 }
4928 
4929 void Assembler::vextractf64x4h(XMMRegister dst, XMMRegister src) {
4930   assert(VM_Version::supports_evex(), "");
4931   int vector_len = AVX_512bit;
4932   int src_enc = src->encoding();
4933   int dst_enc = dst->encoding();
4934   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4935                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4936   emit_int8(0x1B);
4937   emit_int8((unsigned char)(0xC0 | encode));
4938   // 0x01 - extract from upper 256 bits
4939   emit_int8(0x01);
4940 }
4941 
4942 void Assembler::vextractf64x4h(Address dst, XMMRegister src) {
4943   assert(VM_Version::supports_avx2(), "");
4944   tuple_type = EVEX_T4;
4945   input_size_in_bits = EVEX_64bit;
4946   InstructionMark im(this);
4947   int vector_len = AVX_512bit;
4948   assert(src != xnoreg, "sanity");
4949   int src_enc = src->encoding();
4950   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4951              VM_Version::supports_avx512dq(), vector_len);
4952   emit_int8(0x1B);
4953   emit_operand(src, dst);
4954   // 0x01 - extract from upper 128 bits
4955   emit_int8(0x01);
4956 }
4957 
4958 void Assembler::vextractf32x4h(XMMRegister dst, XMMRegister src, int value) {
4959   assert(VM_Version::supports_evex(), "");
4960   int vector_len = AVX_512bit;
4961   int src_enc = src->encoding();
4962   int dst_enc = dst->encoding();
4963   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66,
4964                                      VEX_OPCODE_0F_3A, false, vector_len, false, false);
4965   emit_int8(0x19);
4966   emit_int8((unsigned char)(0xC0 | encode));
4967   // 0x01 - extract from bits 255:128
4968   // 0x02 - extract from bits 383:256
4969   // 0x03 - extract from bits 511:384
4970   emit_int8(value & 0x3);
4971 }
4972 
4973 void Assembler::vextractf64x2h(XMMRegister dst, XMMRegister src, int value) {
4974   assert(VM_Version::supports_evex(), "");
4975   int vector_len = AVX_512bit;
4976   int src_enc = src->encoding();
4977   int dst_enc = dst->encoding();
4978   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4979                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4980   emit_int8(0x19);
4981   emit_int8((unsigned char)(0xC0 | encode));
4982   // 0x01 - extract from bits 255:128
4983   // 0x02 - extract from bits 383:256
4984   // 0x03 - extract from bits 511:384
4985   emit_int8(value & 0x3);
4986 }
4987 
4988 // duplicate 4-bytes integer data from src into 8 locations in dest
4989 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
4990   assert(VM_Version::supports_avx2(), "");
4991   int vector_len = AVX_256bit;
4992   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
4993                                      vector_len, VEX_OPCODE_0F_38, false);
4994   emit_int8(0x58);
4995   emit_int8((unsigned char)(0xC0 | encode));
4996 }
4997 
4998 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
4999 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
5000   assert(VM_Version::supports_evex(), "");
5001   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
5002                                      vector_len, VEX_OPCODE_0F_38, false);
5003   emit_int8(0x78);
5004   emit_int8((unsigned char)(0xC0 | encode));
5005 }
5006 
5007 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
5008   assert(VM_Version::supports_evex(), "");
5009   tuple_type = EVEX_T1S;
5010   input_size_in_bits = EVEX_8bit;
5011   InstructionMark im(this);
5012   assert(dst != xnoreg, "sanity");
5013   int dst_enc = dst->encoding();
5014   // swap src<->dst for encoding
5015   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
5016   emit_int8(0x78);
5017   emit_operand(dst, src);
5018 }
5019 
5020 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
5021 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
5022   assert(VM_Version::supports_evex(), "");
5023   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
5024                                      vector_len, VEX_OPCODE_0F_38, false);
5025   emit_int8(0x79);
5026   emit_int8((unsigned char)(0xC0 | encode));
5027 }
5028 
5029 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
5030   assert(VM_Version::supports_evex(), "");
5031   tuple_type = EVEX_T1S;
5032   input_size_in_bits = EVEX_16bit;
5033   InstructionMark im(this);
5034   assert(dst != xnoreg, "sanity");
5035   int dst_enc = dst->encoding();
5036   // swap src<->dst for encoding
5037   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
5038   emit_int8(0x79);
5039   emit_operand(dst, src);
5040 }
5041 
5042 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5043 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
5044   assert(VM_Version::supports_evex(), "");
5045   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
5046                                      vector_len, VEX_OPCODE_0F_38, false);
5047   emit_int8(0x58);
5048   emit_int8((unsigned char)(0xC0 | encode));
5049 }
5050 
5051 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
5052   assert(VM_Version::supports_evex(), "");
5053   tuple_type = EVEX_T1S;
5054   input_size_in_bits = EVEX_32bit;
5055   InstructionMark im(this);
5056   assert(dst != xnoreg, "sanity");
5057   int dst_enc = dst->encoding();
5058   // swap src<->dst for encoding
5059   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
5060   emit_int8(0x58);
5061   emit_operand(dst, src);
5062 }
5063 
5064 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5065 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
5066   assert(VM_Version::supports_evex(), "");
5067   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5068                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
5069   emit_int8(0x59);
5070   emit_int8((unsigned char)(0xC0 | encode));
5071 }
5072 
5073 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
5074   assert(VM_Version::supports_evex(), "");
5075   tuple_type = EVEX_T1S;
5076   input_size_in_bits = EVEX_64bit;
5077   InstructionMark im(this);
5078   assert(dst != xnoreg, "sanity");
5079   int dst_enc = dst->encoding();
5080   // swap src<->dst for encoding
5081   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
5082   emit_int8(0x59);
5083   emit_operand(dst, src);
5084 }
5085 
5086 // duplicate single precision fp from src into 4|8|16 locations in dest : requires AVX512VL
5087 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
5088   assert(VM_Version::supports_evex(), "");
5089   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5090                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5091   emit_int8(0x18);
5092   emit_int8((unsigned char)(0xC0 | encode));
5093 }
5094 
5095 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
5096   assert(VM_Version::supports_evex(), "");
5097   tuple_type = EVEX_T1S;
5098   input_size_in_bits = EVEX_32bit;
5099   InstructionMark im(this);
5100   assert(dst != xnoreg, "sanity");
5101   int dst_enc = dst->encoding();
5102   // swap src<->dst for encoding
5103   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
5104   emit_int8(0x18);
5105   emit_operand(dst, src);
5106 }
5107 
5108 // duplicate double precision fp from src into 2|4|8 locations in dest : requires AVX512VL
5109 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
5110   assert(VM_Version::supports_evex(), "");
5111   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5112                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
5113   emit_int8(0x19);
5114   emit_int8((unsigned char)(0xC0 | encode));
5115 }
5116 
5117 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
5118   assert(VM_Version::supports_evex(), "");
5119   tuple_type = EVEX_T1S;
5120   input_size_in_bits = EVEX_64bit;
5121   InstructionMark im(this);
5122   assert(dst != xnoreg, "sanity");
5123   int dst_enc = dst->encoding();
5124   // swap src<->dst for encoding
5125   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
5126   emit_int8(0x19);
5127   emit_operand(dst, src);
5128 }
5129 
5130 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
5131 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
5132   assert(VM_Version::supports_evex(), "");
5133   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5134                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5135   emit_int8(0x7A);
5136   emit_int8((unsigned char)(0xC0 | encode));
5137 }
5138 
5139 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
5140 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
5141   assert(VM_Version::supports_evex(), "");
5142   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5143                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5144   emit_int8(0x7B);
5145   emit_int8((unsigned char)(0xC0 | encode));
5146 }
5147 
5148 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5149 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
5150   assert(VM_Version::supports_evex(), "");
5151   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5152                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5153   emit_int8(0x7C);
5154   emit_int8((unsigned char)(0xC0 | encode));
5155 }
5156 
5157 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5158 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
5159   assert(VM_Version::supports_evex(), "");
5160   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5161                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
5162   emit_int8(0x7C);
5163   emit_int8((unsigned char)(0xC0 | encode));
5164 }
5165 
5166 // Carry-Less Multiplication Quadword
5167 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
5168   assert(VM_Version::supports_clmul(), "");
5169   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
5170                                       VEX_OPCODE_0F_3A, false, AVX_128bit, true);
5171   emit_int8(0x44);
5172   emit_int8((unsigned char)(0xC0 | encode));
5173   emit_int8((unsigned char)mask);
5174 }
5175 
5176 // Carry-Less Multiplication Quadword
5177 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
5178   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
5179   int vector_len = AVX_128bit;
5180   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66,
5181                                      vector_len, VEX_OPCODE_0F_3A, true);
5182   emit_int8(0x44);
5183   emit_int8((unsigned char)(0xC0 | encode));
5184   emit_int8((unsigned char)mask);
5185 }
5186 
5187 void Assembler::vzeroupper() {
5188   assert(VM_Version::supports_avx(), "");
5189   if (UseAVX < 3)
5190   {
5191     (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
5192     emit_int8(0x77);
5193   }
5194 }
5195 
5196 
5197 #ifndef _LP64
5198 // 32bit only pieces of the assembler
5199 
5200 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
5201   // NO PREFIX AS NEVER 64BIT
5202   InstructionMark im(this);
5203   emit_int8((unsigned char)0x81);
5204   emit_int8((unsigned char)(0xF8 | src1->encoding()));
5205   emit_data(imm32, rspec, 0);
5206 }
5207 
5208 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5209   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
5210   InstructionMark im(this);
5211   emit_int8((unsigned char)0x81);
5212   emit_operand(rdi, src1);
5213   emit_data(imm32, rspec, 0);
5214 }
5215 
5216 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
5217 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
5218 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
5219 void Assembler::cmpxchg8(Address adr) {
5220   InstructionMark im(this);
5221   emit_int8(0x0F);
5222   emit_int8((unsigned char)0xC7);
5223   emit_operand(rcx, adr);
5224 }
5225 
5226 void Assembler::decl(Register dst) {
5227   // Don't use it directly. Use MacroAssembler::decrementl() instead.
5228  emit_int8(0x48 | dst->encoding());
5229 }
5230 
5231 #endif // _LP64
5232 
5233 // 64bit typically doesn't use the x87 but needs to for the trig funcs
5234 
5235 void Assembler::fabs() {
5236   emit_int8((unsigned char)0xD9);
5237   emit_int8((unsigned char)0xE1);
5238 }
5239 
5240 void Assembler::fadd(int i) {
5241   emit_farith(0xD8, 0xC0, i);
5242 }
5243 
5244 void Assembler::fadd_d(Address src) {
5245   InstructionMark im(this);
5246   emit_int8((unsigned char)0xDC);
5247   emit_operand32(rax, src);
5248 }
5249 
5250 void Assembler::fadd_s(Address src) {
5251   InstructionMark im(this);
5252   emit_int8((unsigned char)0xD8);
5253   emit_operand32(rax, src);
5254 }
5255 
5256 void Assembler::fadda(int i) {
5257   emit_farith(0xDC, 0xC0, i);
5258 }
5259 
5260 void Assembler::faddp(int i) {
5261   emit_farith(0xDE, 0xC0, i);
5262 }
5263 
5264 void Assembler::fchs() {
5265   emit_int8((unsigned char)0xD9);
5266   emit_int8((unsigned char)0xE0);
5267 }
5268 
5269 void Assembler::fcom(int i) {
5270   emit_farith(0xD8, 0xD0, i);
5271 }
5272 
5273 void Assembler::fcomp(int i) {
5274   emit_farith(0xD8, 0xD8, i);
5275 }
5276 
5277 void Assembler::fcomp_d(Address src) {
5278   InstructionMark im(this);
5279   emit_int8((unsigned char)0xDC);
5280   emit_operand32(rbx, src);
5281 }
5282 
5283 void Assembler::fcomp_s(Address src) {
5284   InstructionMark im(this);
5285   emit_int8((unsigned char)0xD8);
5286   emit_operand32(rbx, src);
5287 }
5288 
5289 void Assembler::fcompp() {
5290   emit_int8((unsigned char)0xDE);
5291   emit_int8((unsigned char)0xD9);
5292 }
5293 
5294 void Assembler::fcos() {
5295   emit_int8((unsigned char)0xD9);
5296   emit_int8((unsigned char)0xFF);
5297 }
5298 
5299 void Assembler::fdecstp() {
5300   emit_int8((unsigned char)0xD9);
5301   emit_int8((unsigned char)0xF6);
5302 }
5303 
5304 void Assembler::fdiv(int i) {
5305   emit_farith(0xD8, 0xF0, i);
5306 }
5307 
5308 void Assembler::fdiv_d(Address src) {
5309   InstructionMark im(this);
5310   emit_int8((unsigned char)0xDC);
5311   emit_operand32(rsi, src);
5312 }
5313 
5314 void Assembler::fdiv_s(Address src) {
5315   InstructionMark im(this);
5316   emit_int8((unsigned char)0xD8);
5317   emit_operand32(rsi, src);
5318 }
5319 
5320 void Assembler::fdiva(int i) {
5321   emit_farith(0xDC, 0xF8, i);
5322 }
5323 
5324 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
5325 //       is erroneous for some of the floating-point instructions below.
5326 
5327 void Assembler::fdivp(int i) {
5328   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
5329 }
5330 
5331 void Assembler::fdivr(int i) {
5332   emit_farith(0xD8, 0xF8, i);
5333 }
5334 
5335 void Assembler::fdivr_d(Address src) {
5336   InstructionMark im(this);
5337   emit_int8((unsigned char)0xDC);
5338   emit_operand32(rdi, src);
5339 }
5340 
5341 void Assembler::fdivr_s(Address src) {
5342   InstructionMark im(this);
5343   emit_int8((unsigned char)0xD8);
5344   emit_operand32(rdi, src);
5345 }
5346 
5347 void Assembler::fdivra(int i) {
5348   emit_farith(0xDC, 0xF0, i);
5349 }
5350 
5351 void Assembler::fdivrp(int i) {
5352   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
5353 }
5354 
5355 void Assembler::ffree(int i) {
5356   emit_farith(0xDD, 0xC0, i);
5357 }
5358 
5359 void Assembler::fild_d(Address adr) {
5360   InstructionMark im(this);
5361   emit_int8((unsigned char)0xDF);
5362   emit_operand32(rbp, adr);
5363 }
5364 
5365 void Assembler::fild_s(Address adr) {
5366   InstructionMark im(this);
5367   emit_int8((unsigned char)0xDB);
5368   emit_operand32(rax, adr);
5369 }
5370 
5371 void Assembler::fincstp() {
5372   emit_int8((unsigned char)0xD9);
5373   emit_int8((unsigned char)0xF7);
5374 }
5375 
5376 void Assembler::finit() {
5377   emit_int8((unsigned char)0x9B);
5378   emit_int8((unsigned char)0xDB);
5379   emit_int8((unsigned char)0xE3);
5380 }
5381 
5382 void Assembler::fist_s(Address adr) {
5383   InstructionMark im(this);
5384   emit_int8((unsigned char)0xDB);
5385   emit_operand32(rdx, adr);
5386 }
5387 
5388 void Assembler::fistp_d(Address adr) {
5389   InstructionMark im(this);
5390   emit_int8((unsigned char)0xDF);
5391   emit_operand32(rdi, adr);
5392 }
5393 
5394 void Assembler::fistp_s(Address adr) {
5395   InstructionMark im(this);
5396   emit_int8((unsigned char)0xDB);
5397   emit_operand32(rbx, adr);
5398 }
5399 
5400 void Assembler::fld1() {
5401   emit_int8((unsigned char)0xD9);
5402   emit_int8((unsigned char)0xE8);
5403 }
5404 
5405 void Assembler::fld_d(Address adr) {
5406   InstructionMark im(this);
5407   emit_int8((unsigned char)0xDD);
5408   emit_operand32(rax, adr);
5409 }
5410 
5411 void Assembler::fld_s(Address adr) {
5412   InstructionMark im(this);
5413   emit_int8((unsigned char)0xD9);
5414   emit_operand32(rax, adr);
5415 }
5416 
5417 
5418 void Assembler::fld_s(int index) {
5419   emit_farith(0xD9, 0xC0, index);
5420 }
5421 
5422 void Assembler::fld_x(Address adr) {
5423   InstructionMark im(this);
5424   emit_int8((unsigned char)0xDB);
5425   emit_operand32(rbp, adr);
5426 }
5427 
5428 void Assembler::fldcw(Address src) {
5429   InstructionMark im(this);
5430   emit_int8((unsigned char)0xD9);
5431   emit_operand32(rbp, src);
5432 }
5433 
5434 void Assembler::fldenv(Address src) {
5435   InstructionMark im(this);
5436   emit_int8((unsigned char)0xD9);
5437   emit_operand32(rsp, src);
5438 }
5439 
5440 void Assembler::fldlg2() {
5441   emit_int8((unsigned char)0xD9);
5442   emit_int8((unsigned char)0xEC);
5443 }
5444 
5445 void Assembler::fldln2() {
5446   emit_int8((unsigned char)0xD9);
5447   emit_int8((unsigned char)0xED);
5448 }
5449 
5450 void Assembler::fldz() {
5451   emit_int8((unsigned char)0xD9);
5452   emit_int8((unsigned char)0xEE);
5453 }
5454 
5455 void Assembler::flog() {
5456   fldln2();
5457   fxch();
5458   fyl2x();
5459 }
5460 
5461 void Assembler::flog10() {
5462   fldlg2();
5463   fxch();
5464   fyl2x();
5465 }
5466 
5467 void Assembler::fmul(int i) {
5468   emit_farith(0xD8, 0xC8, i);
5469 }
5470 
5471 void Assembler::fmul_d(Address src) {
5472   InstructionMark im(this);
5473   emit_int8((unsigned char)0xDC);
5474   emit_operand32(rcx, src);
5475 }
5476 
5477 void Assembler::fmul_s(Address src) {
5478   InstructionMark im(this);
5479   emit_int8((unsigned char)0xD8);
5480   emit_operand32(rcx, src);
5481 }
5482 
5483 void Assembler::fmula(int i) {
5484   emit_farith(0xDC, 0xC8, i);
5485 }
5486 
5487 void Assembler::fmulp(int i) {
5488   emit_farith(0xDE, 0xC8, i);
5489 }
5490 
5491 void Assembler::fnsave(Address dst) {
5492   InstructionMark im(this);
5493   emit_int8((unsigned char)0xDD);
5494   emit_operand32(rsi, dst);
5495 }
5496 
5497 void Assembler::fnstcw(Address src) {
5498   InstructionMark im(this);
5499   emit_int8((unsigned char)0x9B);
5500   emit_int8((unsigned char)0xD9);
5501   emit_operand32(rdi, src);
5502 }
5503 
5504 void Assembler::fnstsw_ax() {
5505   emit_int8((unsigned char)0xDF);
5506   emit_int8((unsigned char)0xE0);
5507 }
5508 
5509 void Assembler::fprem() {
5510   emit_int8((unsigned char)0xD9);
5511   emit_int8((unsigned char)0xF8);
5512 }
5513 
5514 void Assembler::fprem1() {
5515   emit_int8((unsigned char)0xD9);
5516   emit_int8((unsigned char)0xF5);
5517 }
5518 
5519 void Assembler::frstor(Address src) {
5520   InstructionMark im(this);
5521   emit_int8((unsigned char)0xDD);
5522   emit_operand32(rsp, src);
5523 }
5524 
5525 void Assembler::fsin() {
5526   emit_int8((unsigned char)0xD9);
5527   emit_int8((unsigned char)0xFE);
5528 }
5529 
5530 void Assembler::fsqrt() {
5531   emit_int8((unsigned char)0xD9);
5532   emit_int8((unsigned char)0xFA);
5533 }
5534 
5535 void Assembler::fst_d(Address adr) {
5536   InstructionMark im(this);
5537   emit_int8((unsigned char)0xDD);
5538   emit_operand32(rdx, adr);
5539 }
5540 
5541 void Assembler::fst_s(Address adr) {
5542   InstructionMark im(this);
5543   emit_int8((unsigned char)0xD9);
5544   emit_operand32(rdx, adr);
5545 }
5546 
5547 void Assembler::fstp_d(Address adr) {
5548   InstructionMark im(this);
5549   emit_int8((unsigned char)0xDD);
5550   emit_operand32(rbx, adr);
5551 }
5552 
5553 void Assembler::fstp_d(int index) {
5554   emit_farith(0xDD, 0xD8, index);
5555 }
5556 
5557 void Assembler::fstp_s(Address adr) {
5558   InstructionMark im(this);
5559   emit_int8((unsigned char)0xD9);
5560   emit_operand32(rbx, adr);
5561 }
5562 
5563 void Assembler::fstp_x(Address adr) {
5564   InstructionMark im(this);
5565   emit_int8((unsigned char)0xDB);
5566   emit_operand32(rdi, adr);
5567 }
5568 
5569 void Assembler::fsub(int i) {
5570   emit_farith(0xD8, 0xE0, i);
5571 }
5572 
5573 void Assembler::fsub_d(Address src) {
5574   InstructionMark im(this);
5575   emit_int8((unsigned char)0xDC);
5576   emit_operand32(rsp, src);
5577 }
5578 
5579 void Assembler::fsub_s(Address src) {
5580   InstructionMark im(this);
5581   emit_int8((unsigned char)0xD8);
5582   emit_operand32(rsp, src);
5583 }
5584 
5585 void Assembler::fsuba(int i) {
5586   emit_farith(0xDC, 0xE8, i);
5587 }
5588 
5589 void Assembler::fsubp(int i) {
5590   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
5591 }
5592 
5593 void Assembler::fsubr(int i) {
5594   emit_farith(0xD8, 0xE8, i);
5595 }
5596 
5597 void Assembler::fsubr_d(Address src) {
5598   InstructionMark im(this);
5599   emit_int8((unsigned char)0xDC);
5600   emit_operand32(rbp, src);
5601 }
5602 
5603 void Assembler::fsubr_s(Address src) {
5604   InstructionMark im(this);
5605   emit_int8((unsigned char)0xD8);
5606   emit_operand32(rbp, src);
5607 }
5608 
5609 void Assembler::fsubra(int i) {
5610   emit_farith(0xDC, 0xE0, i);
5611 }
5612 
5613 void Assembler::fsubrp(int i) {
5614   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
5615 }
5616 
5617 void Assembler::ftan() {
5618   emit_int8((unsigned char)0xD9);
5619   emit_int8((unsigned char)0xF2);
5620   emit_int8((unsigned char)0xDD);
5621   emit_int8((unsigned char)0xD8);
5622 }
5623 
5624 void Assembler::ftst() {
5625   emit_int8((unsigned char)0xD9);
5626   emit_int8((unsigned char)0xE4);
5627 }
5628 
5629 void Assembler::fucomi(int i) {
5630   // make sure the instruction is supported (introduced for P6, together with cmov)
5631   guarantee(VM_Version::supports_cmov(), "illegal instruction");
5632   emit_farith(0xDB, 0xE8, i);
5633 }
5634 
5635 void Assembler::fucomip(int i) {
5636   // make sure the instruction is supported (introduced for P6, together with cmov)
5637   guarantee(VM_Version::supports_cmov(), "illegal instruction");
5638   emit_farith(0xDF, 0xE8, i);
5639 }
5640 
5641 void Assembler::fwait() {
5642   emit_int8((unsigned char)0x9B);
5643 }
5644 
5645 void Assembler::fxch(int i) {
5646   emit_farith(0xD9, 0xC8, i);
5647 }
5648 
5649 void Assembler::fyl2x() {
5650   emit_int8((unsigned char)0xD9);
5651   emit_int8((unsigned char)0xF1);
5652 }
5653 
5654 void Assembler::frndint() {
5655   emit_int8((unsigned char)0xD9);
5656   emit_int8((unsigned char)0xFC);
5657 }
5658 
5659 void Assembler::f2xm1() {
5660   emit_int8((unsigned char)0xD9);
5661   emit_int8((unsigned char)0xF0);
5662 }
5663 
5664 void Assembler::fldl2e() {
5665   emit_int8((unsigned char)0xD9);
5666   emit_int8((unsigned char)0xEA);
5667 }
5668 
5669 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
5670 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
5671 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
5672 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
5673 
5674 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
5675 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
5676   if (pre > 0) {
5677     emit_int8(simd_pre[pre]);
5678   }
5679   if (rex_w) {
5680     prefixq(adr, xreg);
5681   } else {
5682     prefix(adr, xreg);
5683   }
5684   if (opc > 0) {
5685     emit_int8(0x0F);
5686     int opc2 = simd_opc[opc];
5687     if (opc2 > 0) {
5688       emit_int8(opc2);
5689     }
5690   }
5691 }
5692 
5693 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
5694   if (pre > 0) {
5695     emit_int8(simd_pre[pre]);
5696   }
5697   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
5698                           prefix_and_encode(dst_enc, src_enc);
5699   if (opc > 0) {
5700     emit_int8(0x0F);
5701     int opc2 = simd_opc[opc];
5702     if (opc2 > 0) {
5703       emit_int8(opc2);
5704     }
5705   }
5706   return encode;
5707 }
5708 
5709 
5710 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, int vector_len) {
5711   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
5712     prefix(VEX_3bytes);
5713 
5714     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
5715     byte1 = (~byte1) & 0xE0;
5716     byte1 |= opc;
5717     emit_int8(byte1);
5718 
5719     int byte2 = ((~nds_enc) & 0xf) << 3;
5720     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
5721     emit_int8(byte2);
5722   } else {
5723     prefix(VEX_2bytes);
5724 
5725     int byte1 = vex_r ? VEX_R : 0;
5726     byte1 = (~byte1) & 0x80;
5727     byte1 |= ((~nds_enc) & 0xf) << 3;
5728     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
5729     emit_int8(byte1);
5730   }
5731 }
5732 
5733 // This is a 4 byte encoding
5734 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, bool evex_r, bool evex_v,
5735                             int nds_enc, VexSimdPrefix pre, VexOpcode opc,
5736                             bool is_extended_context, bool is_merge_context,
5737                             int vector_len, bool no_mask_reg ){
5738   // EVEX 0x62 prefix
5739   prefix(EVEX_4bytes);
5740   evex_encoding = (vex_w ? VEX_W : 0) | (evex_r ? EVEX_Rb : 0);
5741 
5742   // P0: byte 2, initialized to RXBR`00mm
5743   // instead of not'd
5744   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
5745   byte2 = (~byte2) & 0xF0;
5746   // confine opc opcode extensions in mm bits to lower two bits
5747   // of form {0F, 0F_38, 0F_3A}
5748   byte2 |= opc;
5749   emit_int8(byte2);
5750 
5751   // P1: byte 3 as Wvvvv1pp
5752   int byte3 = ((~nds_enc) & 0xf) << 3;
5753   // p[10] is always 1
5754   byte3 |= EVEX_F;
5755   byte3 |= (vex_w & 1) << 7;
5756   // confine pre opcode extensions in pp bits to lower two bits
5757   // of form {66, F3, F2}
5758   byte3 |= pre;
5759   emit_int8(byte3);
5760 
5761   // P2: byte 4 as zL'Lbv'aaa
5762   int byte4 = (no_mask_reg) ? 0 : 1; // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
5763   // EVEX.v` for extending EVEX.vvvv or VIDX
5764   byte4 |= (evex_v ? 0: EVEX_V);
5765   // third EXEC.b for broadcast actions
5766   byte4 |= (is_extended_context ? EVEX_Rb : 0);
5767   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
5768   byte4 |= ((vector_len) & 0x3) << 5;
5769   // last is EVEX.z for zero/merge actions
5770   byte4 |= (is_merge_context ? EVEX_Z : 0);
5771   emit_int8(byte4);
5772 }
5773 
5774 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre,
5775                            VexOpcode opc, bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg) {
5776   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
5777   bool vex_b = adr.base_needs_rex();
5778   bool vex_x = adr.index_needs_rex();
5779   avx_vector_len = vector_len;
5780 
5781   // if vector length is turned off, revert to AVX for vectors smaller than AVX_512bit
5782   if (VM_Version::supports_avx512vl() == false) {
5783     switch (vector_len) {
5784     case AVX_128bit:
5785     case AVX_256bit:
5786       legacy_mode = true;
5787       break;
5788     }
5789   }
5790 
5791   if ((UseAVX > 2) && (legacy_mode == false))
5792   {
5793     bool evex_r = (xreg_enc >= 16);
5794     bool evex_v = (nds_enc >= 16);
5795     is_evex_instruction = true;
5796     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
5797   } else {
5798     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
5799   }
5800 }
5801 
5802 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc,
5803                                      bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg ) {
5804   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
5805   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
5806   bool vex_x = false;
5807   avx_vector_len = vector_len;
5808 
5809   // if vector length is turned off, revert to AVX for vectors smaller than AVX_512bit
5810   if (VM_Version::supports_avx512vl() == false) {
5811     switch (vector_len) {
5812     case AVX_128bit:
5813     case AVX_256bit:
5814       legacy_mode = true;
5815       break;
5816     }
5817   }
5818 
5819   if ((UseAVX > 2) && (legacy_mode == false))
5820   {
5821     bool evex_r = (dst_enc >= 16);
5822     bool evex_v = (nds_enc >= 16);
5823     // can use vex_x as bank extender on rm encoding
5824     vex_x = (src_enc >= 16);
5825     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
5826   } else {
5827     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
5828   }
5829 
5830   // return modrm byte components for operands
5831   return (((dst_enc & 7) << 3) | (src_enc & 7));
5832 }
5833 
5834 
5835 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
5836                             bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
5837   if (UseAVX > 0) {
5838     int xreg_enc = xreg->encoding();
5839     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
5840     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
5841   } else {
5842     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
5843     rex_prefix(adr, xreg, pre, opc, rex_w);
5844   }
5845 }
5846 
5847 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
5848                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
5849   int dst_enc = dst->encoding();
5850   int src_enc = src->encoding();
5851   if (UseAVX > 0) {
5852     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5853     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
5854   } else {
5855     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
5856     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
5857   }
5858 }
5859 
5860 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, KRegister src, VexSimdPrefix pre,
5861                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
5862   int dst_enc = dst->encoding();
5863   int src_enc = src->encoding();
5864   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5865   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
5866 }
5867 
5868 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, Register src, VexSimdPrefix pre,
5869                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
5870   int dst_enc = dst->encoding();
5871   int src_enc = src->encoding();
5872   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5873   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
5874 }
5875 
5876 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5877   InstructionMark im(this);
5878   simd_prefix(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
5879   emit_int8(opcode);
5880   emit_operand(dst, src);
5881 }
5882 
5883 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg) {
5884   InstructionMark im(this);
5885   simd_prefix_q(dst, dst, src, pre, no_mask_reg);
5886   emit_int8(opcode);
5887   emit_operand(dst, src);
5888 }
5889 
5890 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5891   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
5892   emit_int8(opcode);
5893   emit_int8((unsigned char)(0xC0 | encode));
5894 }
5895 
5896 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
5897   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, true, AVX_128bit);
5898   emit_int8(opcode);
5899   emit_int8((unsigned char)(0xC0 | encode));
5900 }
5901 
5902 // Versions with no second source register (non-destructive source).
5903 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
5904   InstructionMark im(this);
5905   simd_prefix(dst, xnoreg, src, pre, opNoRegMask);
5906   emit_int8(opcode);
5907   emit_operand(dst, src);
5908 }
5909 
5910 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
5911   InstructionMark im(this);
5912   simd_prefix_q(dst, xnoreg, src, pre, opNoRegMask);
5913   emit_int8(opcode);
5914   emit_operand(dst, src);
5915 }
5916 
5917 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5918   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, legacy_mode, AVX_128bit);
5919   emit_int8(opcode);
5920   emit_int8((unsigned char)(0xC0 | encode));
5921 }
5922 
5923 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
5924   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, true, AVX_128bit);
5925   emit_int8(opcode);
5926   emit_int8((unsigned char)(0xC0 | encode));
5927 }
5928 
5929 // 3-operands AVX instructions
5930 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, Address src,
5931                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
5932   InstructionMark im(this);
5933   vex_prefix(dst, nds, src, pre, vector_len, no_mask_reg, legacy_mode);
5934   emit_int8(opcode);
5935   emit_operand(dst, src);
5936 }
5937 
5938 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds,
5939                                  Address src, VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
5940   InstructionMark im(this);
5941   vex_prefix_q(dst, nds, src, pre, vector_len, no_mask_reg);
5942   emit_int8(opcode);
5943   emit_operand(dst, src);
5944 }
5945 
5946 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
5947                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
5948   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector_len, VEX_OPCODE_0F, false, no_mask_reg);
5949   emit_int8(opcode);
5950   emit_int8((unsigned char)(0xC0 | encode));
5951 }
5952 
5953 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
5954                                  VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
5955   int src_enc = src->encoding();
5956   int dst_enc = dst->encoding();
5957   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5958   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, VEX_OPCODE_0F, true, vector_len, false, no_mask_reg);
5959   emit_int8(opcode);
5960   emit_int8((unsigned char)(0xC0 | encode));
5961 }
5962 
5963 #ifndef _LP64
5964 
5965 void Assembler::incl(Register dst) {
5966   // Don't use it directly. Use MacroAssembler::incrementl() instead.
5967   emit_int8(0x40 | dst->encoding());
5968 }
5969 
5970 void Assembler::lea(Register dst, Address src) {
5971   leal(dst, src);
5972 }
5973 
5974 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
5975   InstructionMark im(this);
5976   emit_int8((unsigned char)0xC7);
5977   emit_operand(rax, dst);
5978   emit_data((int)imm32, rspec, 0);
5979 }
5980 
5981 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
5982   InstructionMark im(this);
5983   int encode = prefix_and_encode(dst->encoding());
5984   emit_int8((unsigned char)(0xB8 | encode));
5985   emit_data((int)imm32, rspec, 0);
5986 }
5987 
5988 void Assembler::popa() { // 32bit
5989   emit_int8(0x61);
5990 }
5991 
5992 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
5993   InstructionMark im(this);
5994   emit_int8(0x68);
5995   emit_data(imm32, rspec, 0);
5996 }
5997 
5998 void Assembler::pusha() { // 32bit
5999   emit_int8(0x60);
6000 }
6001 
6002 void Assembler::set_byte_if_not_zero(Register dst) {
6003   emit_int8(0x0F);
6004   emit_int8((unsigned char)0x95);
6005   emit_int8((unsigned char)(0xE0 | dst->encoding()));
6006 }
6007 
6008 void Assembler::shldl(Register dst, Register src) {
6009   emit_int8(0x0F);
6010   emit_int8((unsigned char)0xA5);
6011   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6012 }
6013 
6014 void Assembler::shrdl(Register dst, Register src) {
6015   emit_int8(0x0F);
6016   emit_int8((unsigned char)0xAD);
6017   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6018 }
6019 
6020 #else // LP64
6021 
6022 void Assembler::set_byte_if_not_zero(Register dst) {
6023   int enc = prefix_and_encode(dst->encoding(), true);
6024   emit_int8(0x0F);
6025   emit_int8((unsigned char)0x95);
6026   emit_int8((unsigned char)(0xE0 | enc));
6027 }
6028 
6029 // 64bit only pieces of the assembler
6030 // This should only be used by 64bit instructions that can use rip-relative
6031 // it cannot be used by instructions that want an immediate value.
6032 
6033 bool Assembler::reachable(AddressLiteral adr) {
6034   int64_t disp;
6035   // None will force a 64bit literal to the code stream. Likely a placeholder
6036   // for something that will be patched later and we need to certain it will
6037   // always be reachable.
6038   if (adr.reloc() == relocInfo::none) {
6039     return false;
6040   }
6041   if (adr.reloc() == relocInfo::internal_word_type) {
6042     // This should be rip relative and easily reachable.
6043     return true;
6044   }
6045   if (adr.reloc() == relocInfo::virtual_call_type ||
6046       adr.reloc() == relocInfo::opt_virtual_call_type ||
6047       adr.reloc() == relocInfo::static_call_type ||
6048       adr.reloc() == relocInfo::static_stub_type ) {
6049     // This should be rip relative within the code cache and easily
6050     // reachable until we get huge code caches. (At which point
6051     // ic code is going to have issues).
6052     return true;
6053   }
6054   if (adr.reloc() != relocInfo::external_word_type &&
6055       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
6056       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
6057       adr.reloc() != relocInfo::runtime_call_type ) {
6058     return false;
6059   }
6060 
6061   // Stress the correction code
6062   if (ForceUnreachable) {
6063     // Must be runtimecall reloc, see if it is in the codecache
6064     // Flipping stuff in the codecache to be unreachable causes issues
6065     // with things like inline caches where the additional instructions
6066     // are not handled.
6067     if (CodeCache::find_blob(adr._target) == NULL) {
6068       return false;
6069     }
6070   }
6071   // For external_word_type/runtime_call_type if it is reachable from where we
6072   // are now (possibly a temp buffer) and where we might end up
6073   // anywhere in the codeCache then we are always reachable.
6074   // This would have to change if we ever save/restore shared code
6075   // to be more pessimistic.
6076   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
6077   if (!is_simm32(disp)) return false;
6078   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
6079   if (!is_simm32(disp)) return false;
6080 
6081   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
6082 
6083   // Because rip relative is a disp + address_of_next_instruction and we
6084   // don't know the value of address_of_next_instruction we apply a fudge factor
6085   // to make sure we will be ok no matter the size of the instruction we get placed into.
6086   // We don't have to fudge the checks above here because they are already worst case.
6087 
6088   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
6089   // + 4 because better safe than sorry.
6090   const int fudge = 12 + 4;
6091   if (disp < 0) {
6092     disp -= fudge;
6093   } else {
6094     disp += fudge;
6095   }
6096   return is_simm32(disp);
6097 }
6098 
6099 // Check if the polling page is not reachable from the code cache using rip-relative
6100 // addressing.
6101 bool Assembler::is_polling_page_far() {
6102   intptr_t addr = (intptr_t)os::get_polling_page();
6103   return ForceUnreachable ||
6104          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
6105          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
6106 }
6107 
6108 void Assembler::emit_data64(jlong data,
6109                             relocInfo::relocType rtype,
6110                             int format) {
6111   if (rtype == relocInfo::none) {
6112     emit_int64(data);
6113   } else {
6114     emit_data64(data, Relocation::spec_simple(rtype), format);
6115   }
6116 }
6117 
6118 void Assembler::emit_data64(jlong data,
6119                             RelocationHolder const& rspec,
6120                             int format) {
6121   assert(imm_operand == 0, "default format must be immediate in this file");
6122   assert(imm_operand == format, "must be immediate");
6123   assert(inst_mark() != NULL, "must be inside InstructionMark");
6124   // Do not use AbstractAssembler::relocate, which is not intended for
6125   // embedded words.  Instead, relocate to the enclosing instruction.
6126   code_section()->relocate(inst_mark(), rspec, format);
6127 #ifdef ASSERT
6128   check_relocation(rspec, format);
6129 #endif
6130   emit_int64(data);
6131 }
6132 
6133 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
6134   if (reg_enc >= 8) {
6135     prefix(REX_B);
6136     reg_enc -= 8;
6137   } else if (byteinst && reg_enc >= 4) {
6138     prefix(REX);
6139   }
6140   return reg_enc;
6141 }
6142 
6143 int Assembler::prefixq_and_encode(int reg_enc) {
6144   if (reg_enc < 8) {
6145     prefix(REX_W);
6146   } else {
6147     prefix(REX_WB);
6148     reg_enc -= 8;
6149   }
6150   return reg_enc;
6151 }
6152 
6153 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
6154   if (dst_enc < 8) {
6155     if (src_enc >= 8) {
6156       prefix(REX_B);
6157       src_enc -= 8;
6158     } else if (byteinst && src_enc >= 4) {
6159       prefix(REX);
6160     }
6161   } else {
6162     if (src_enc < 8) {
6163       prefix(REX_R);
6164     } else {
6165       prefix(REX_RB);
6166       src_enc -= 8;
6167     }
6168     dst_enc -= 8;
6169   }
6170   return dst_enc << 3 | src_enc;
6171 }
6172 
6173 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
6174   if (dst_enc < 8) {
6175     if (src_enc < 8) {
6176       prefix(REX_W);
6177     } else {
6178       prefix(REX_WB);
6179       src_enc -= 8;
6180     }
6181   } else {
6182     if (src_enc < 8) {
6183       prefix(REX_WR);
6184     } else {
6185       prefix(REX_WRB);
6186       src_enc -= 8;
6187     }
6188     dst_enc -= 8;
6189   }
6190   return dst_enc << 3 | src_enc;
6191 }
6192 
6193 void Assembler::prefix(Register reg) {
6194   if (reg->encoding() >= 8) {
6195     prefix(REX_B);
6196   }
6197 }
6198 
6199 void Assembler::prefix(Address adr) {
6200   if (adr.base_needs_rex()) {
6201     if (adr.index_needs_rex()) {
6202       prefix(REX_XB);
6203     } else {
6204       prefix(REX_B);
6205     }
6206   } else {
6207     if (adr.index_needs_rex()) {
6208       prefix(REX_X);
6209     }
6210   }
6211 }
6212 
6213 void Assembler::prefixq(Address adr) {
6214   if (adr.base_needs_rex()) {
6215     if (adr.index_needs_rex()) {
6216       prefix(REX_WXB);
6217     } else {
6218       prefix(REX_WB);
6219     }
6220   } else {
6221     if (adr.index_needs_rex()) {
6222       prefix(REX_WX);
6223     } else {
6224       prefix(REX_W);
6225     }
6226   }
6227 }
6228 
6229 
6230 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
6231   if (reg->encoding() < 8) {
6232     if (adr.base_needs_rex()) {
6233       if (adr.index_needs_rex()) {
6234         prefix(REX_XB);
6235       } else {
6236         prefix(REX_B);
6237       }
6238     } else {
6239       if (adr.index_needs_rex()) {
6240         prefix(REX_X);
6241       } else if (byteinst && reg->encoding() >= 4 ) {
6242         prefix(REX);
6243       }
6244     }
6245   } else {
6246     if (adr.base_needs_rex()) {
6247       if (adr.index_needs_rex()) {
6248         prefix(REX_RXB);
6249       } else {
6250         prefix(REX_RB);
6251       }
6252     } else {
6253       if (adr.index_needs_rex()) {
6254         prefix(REX_RX);
6255       } else {
6256         prefix(REX_R);
6257       }
6258     }
6259   }
6260 }
6261 
6262 void Assembler::prefixq(Address adr, Register src) {
6263   if (src->encoding() < 8) {
6264     if (adr.base_needs_rex()) {
6265       if (adr.index_needs_rex()) {
6266         prefix(REX_WXB);
6267       } else {
6268         prefix(REX_WB);
6269       }
6270     } else {
6271       if (adr.index_needs_rex()) {
6272         prefix(REX_WX);
6273       } else {
6274         prefix(REX_W);
6275       }
6276     }
6277   } else {
6278     if (adr.base_needs_rex()) {
6279       if (adr.index_needs_rex()) {
6280         prefix(REX_WRXB);
6281       } else {
6282         prefix(REX_WRB);
6283       }
6284     } else {
6285       if (adr.index_needs_rex()) {
6286         prefix(REX_WRX);
6287       } else {
6288         prefix(REX_WR);
6289       }
6290     }
6291   }
6292 }
6293 
6294 void Assembler::prefix(Address adr, XMMRegister reg) {
6295   if (reg->encoding() < 8) {
6296     if (adr.base_needs_rex()) {
6297       if (adr.index_needs_rex()) {
6298         prefix(REX_XB);
6299       } else {
6300         prefix(REX_B);
6301       }
6302     } else {
6303       if (adr.index_needs_rex()) {
6304         prefix(REX_X);
6305       }
6306     }
6307   } else {
6308     if (adr.base_needs_rex()) {
6309       if (adr.index_needs_rex()) {
6310         prefix(REX_RXB);
6311       } else {
6312         prefix(REX_RB);
6313       }
6314     } else {
6315       if (adr.index_needs_rex()) {
6316         prefix(REX_RX);
6317       } else {
6318         prefix(REX_R);
6319       }
6320     }
6321   }
6322 }
6323 
6324 void Assembler::prefixq(Address adr, XMMRegister src) {
6325   if (src->encoding() < 8) {
6326     if (adr.base_needs_rex()) {
6327       if (adr.index_needs_rex()) {
6328         prefix(REX_WXB);
6329       } else {
6330         prefix(REX_WB);
6331       }
6332     } else {
6333       if (adr.index_needs_rex()) {
6334         prefix(REX_WX);
6335       } else {
6336         prefix(REX_W);
6337       }
6338     }
6339   } else {
6340     if (adr.base_needs_rex()) {
6341       if (adr.index_needs_rex()) {
6342         prefix(REX_WRXB);
6343       } else {
6344         prefix(REX_WRB);
6345       }
6346     } else {
6347       if (adr.index_needs_rex()) {
6348         prefix(REX_WRX);
6349       } else {
6350         prefix(REX_WR);
6351       }
6352     }
6353   }
6354 }
6355 
6356 void Assembler::adcq(Register dst, int32_t imm32) {
6357   (void) prefixq_and_encode(dst->encoding());
6358   emit_arith(0x81, 0xD0, dst, imm32);
6359 }
6360 
6361 void Assembler::adcq(Register dst, Address src) {
6362   InstructionMark im(this);
6363   prefixq(src, dst);
6364   emit_int8(0x13);
6365   emit_operand(dst, src);
6366 }
6367 
6368 void Assembler::adcq(Register dst, Register src) {
6369   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6370   emit_arith(0x13, 0xC0, dst, src);
6371 }
6372 
6373 void Assembler::addq(Address dst, int32_t imm32) {
6374   InstructionMark im(this);
6375   prefixq(dst);
6376   emit_arith_operand(0x81, rax, dst,imm32);
6377 }
6378 
6379 void Assembler::addq(Address dst, Register src) {
6380   InstructionMark im(this);
6381   prefixq(dst, src);
6382   emit_int8(0x01);
6383   emit_operand(src, dst);
6384 }
6385 
6386 void Assembler::addq(Register dst, int32_t imm32) {
6387   (void) prefixq_and_encode(dst->encoding());
6388   emit_arith(0x81, 0xC0, dst, imm32);
6389 }
6390 
6391 void Assembler::addq(Register dst, Address src) {
6392   InstructionMark im(this);
6393   prefixq(src, dst);
6394   emit_int8(0x03);
6395   emit_operand(dst, src);
6396 }
6397 
6398 void Assembler::addq(Register dst, Register src) {
6399   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6400   emit_arith(0x03, 0xC0, dst, src);
6401 }
6402 
6403 void Assembler::adcxq(Register dst, Register src) {
6404   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6405   emit_int8((unsigned char)0x66);
6406   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6407   emit_int8(0x0F);
6408   emit_int8(0x38);
6409   emit_int8((unsigned char)0xF6);
6410   emit_int8((unsigned char)(0xC0 | encode));
6411 }
6412 
6413 void Assembler::adoxq(Register dst, Register src) {
6414   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6415   emit_int8((unsigned char)0xF3);
6416   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6417   emit_int8(0x0F);
6418   emit_int8(0x38);
6419   emit_int8((unsigned char)0xF6);
6420   emit_int8((unsigned char)(0xC0 | encode));
6421 }
6422 
6423 void Assembler::andq(Address dst, int32_t imm32) {
6424   InstructionMark im(this);
6425   prefixq(dst);
6426   emit_int8((unsigned char)0x81);
6427   emit_operand(rsp, dst, 4);
6428   emit_int32(imm32);
6429 }
6430 
6431 void Assembler::andq(Register dst, int32_t imm32) {
6432   (void) prefixq_and_encode(dst->encoding());
6433   emit_arith(0x81, 0xE0, dst, imm32);
6434 }
6435 
6436 void Assembler::andq(Register dst, Address src) {
6437   InstructionMark im(this);
6438   prefixq(src, dst);
6439   emit_int8(0x23);
6440   emit_operand(dst, src);
6441 }
6442 
6443 void Assembler::andq(Register dst, Register src) {
6444   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6445   emit_arith(0x23, 0xC0, dst, src);
6446 }
6447 
6448 void Assembler::andnq(Register dst, Register src1, Register src2) {
6449   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6450   int encode = vex_prefix_0F38_and_encode_q_legacy(dst, src1, src2);
6451   emit_int8((unsigned char)0xF2);
6452   emit_int8((unsigned char)(0xC0 | encode));
6453 }
6454 
6455 void Assembler::andnq(Register dst, Register src1, Address src2) {
6456   InstructionMark im(this);
6457   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6458   vex_prefix_0F38_q_legacy(dst, src1, src2);
6459   emit_int8((unsigned char)0xF2);
6460   emit_operand(dst, src2);
6461 }
6462 
6463 void Assembler::bsfq(Register dst, Register src) {
6464   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6465   emit_int8(0x0F);
6466   emit_int8((unsigned char)0xBC);
6467   emit_int8((unsigned char)(0xC0 | encode));
6468 }
6469 
6470 void Assembler::bsrq(Register dst, Register src) {
6471   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6472   emit_int8(0x0F);
6473   emit_int8((unsigned char)0xBD);
6474   emit_int8((unsigned char)(0xC0 | encode));
6475 }
6476 
6477 void Assembler::bswapq(Register reg) {
6478   int encode = prefixq_and_encode(reg->encoding());
6479   emit_int8(0x0F);
6480   emit_int8((unsigned char)(0xC8 | encode));
6481 }
6482 
6483 void Assembler::blsiq(Register dst, Register src) {
6484   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6485   int encode = vex_prefix_0F38_and_encode_q_legacy(rbx, dst, src);
6486   emit_int8((unsigned char)0xF3);
6487   emit_int8((unsigned char)(0xC0 | encode));
6488 }
6489 
6490 void Assembler::blsiq(Register dst, Address src) {
6491   InstructionMark im(this);
6492   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6493   vex_prefix_0F38_q_legacy(rbx, dst, src);
6494   emit_int8((unsigned char)0xF3);
6495   emit_operand(rbx, src);
6496 }
6497 
6498 void Assembler::blsmskq(Register dst, Register src) {
6499   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6500   int encode = vex_prefix_0F38_and_encode_q_legacy(rdx, dst, src);
6501   emit_int8((unsigned char)0xF3);
6502   emit_int8((unsigned char)(0xC0 | encode));
6503 }
6504 
6505 void Assembler::blsmskq(Register dst, Address src) {
6506   InstructionMark im(this);
6507   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6508   vex_prefix_0F38_q_legacy(rdx, dst, src);
6509   emit_int8((unsigned char)0xF3);
6510   emit_operand(rdx, src);
6511 }
6512 
6513 void Assembler::blsrq(Register dst, Register src) {
6514   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6515   int encode = vex_prefix_0F38_and_encode_q_legacy(rcx, dst, src);
6516   emit_int8((unsigned char)0xF3);
6517   emit_int8((unsigned char)(0xC0 | encode));
6518 }
6519 
6520 void Assembler::blsrq(Register dst, Address src) {
6521   InstructionMark im(this);
6522   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6523   vex_prefix_0F38_q_legacy(rcx, dst, src);
6524   emit_int8((unsigned char)0xF3);
6525   emit_operand(rcx, src);
6526 }
6527 
6528 void Assembler::cdqq() {
6529   prefix(REX_W);
6530   emit_int8((unsigned char)0x99);
6531 }
6532 
6533 void Assembler::clflush(Address adr) {
6534   prefix(adr);
6535   emit_int8(0x0F);
6536   emit_int8((unsigned char)0xAE);
6537   emit_operand(rdi, adr);
6538 }
6539 
6540 void Assembler::cmovq(Condition cc, Register dst, Register src) {
6541   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6542   emit_int8(0x0F);
6543   emit_int8(0x40 | cc);
6544   emit_int8((unsigned char)(0xC0 | encode));
6545 }
6546 
6547 void Assembler::cmovq(Condition cc, Register dst, Address src) {
6548   InstructionMark im(this);
6549   prefixq(src, dst);
6550   emit_int8(0x0F);
6551   emit_int8(0x40 | cc);
6552   emit_operand(dst, src);
6553 }
6554 
6555 void Assembler::cmpq(Address dst, int32_t imm32) {
6556   InstructionMark im(this);
6557   prefixq(dst);
6558   emit_int8((unsigned char)0x81);
6559   emit_operand(rdi, dst, 4);
6560   emit_int32(imm32);
6561 }
6562 
6563 void Assembler::cmpq(Register dst, int32_t imm32) {
6564   (void) prefixq_and_encode(dst->encoding());
6565   emit_arith(0x81, 0xF8, dst, imm32);
6566 }
6567 
6568 void Assembler::cmpq(Address dst, Register src) {
6569   InstructionMark im(this);
6570   prefixq(dst, src);
6571   emit_int8(0x3B);
6572   emit_operand(src, dst);
6573 }
6574 
6575 void Assembler::cmpq(Register dst, Register src) {
6576   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6577   emit_arith(0x3B, 0xC0, dst, src);
6578 }
6579 
6580 void Assembler::cmpq(Register dst, Address  src) {
6581   InstructionMark im(this);
6582   prefixq(src, dst);
6583   emit_int8(0x3B);
6584   emit_operand(dst, src);
6585 }
6586 
6587 void Assembler::cmpxchgq(Register reg, Address adr) {
6588   InstructionMark im(this);
6589   prefixq(adr, reg);
6590   emit_int8(0x0F);
6591   emit_int8((unsigned char)0xB1);
6592   emit_operand(reg, adr);
6593 }
6594 
6595 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
6596   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6597   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, true);
6598   emit_int8(0x2A);
6599   emit_int8((unsigned char)(0xC0 | encode));
6600 }
6601 
6602 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
6603   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6604   if (VM_Version::supports_evex()) {
6605     tuple_type = EVEX_T1S;
6606     input_size_in_bits = EVEX_32bit;
6607   }
6608   InstructionMark im(this);
6609   simd_prefix_q(dst, dst, src, VEX_SIMD_F2, true);
6610   emit_int8(0x2A);
6611   emit_operand(dst, src);
6612 }
6613 
6614 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
6615   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6616   if (VM_Version::supports_evex()) {
6617     tuple_type = EVEX_T1S;
6618     input_size_in_bits = EVEX_32bit;
6619   }
6620   InstructionMark im(this);
6621   simd_prefix_q(dst, dst, src, VEX_SIMD_F3, true);
6622   emit_int8(0x2A);
6623   emit_operand(dst, src);
6624 }
6625 
6626 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
6627   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6628   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, true);
6629   emit_int8(0x2C);
6630   emit_int8((unsigned char)(0xC0 | encode));
6631 }
6632 
6633 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
6634   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6635   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, true);
6636   emit_int8(0x2C);
6637   emit_int8((unsigned char)(0xC0 | encode));
6638 }
6639 
6640 void Assembler::decl(Register dst) {
6641   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6642   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
6643   int encode = prefix_and_encode(dst->encoding());
6644   emit_int8((unsigned char)0xFF);
6645   emit_int8((unsigned char)(0xC8 | encode));
6646 }
6647 
6648 void Assembler::decq(Register dst) {
6649   // Don't use it directly. Use MacroAssembler::decrementq() instead.
6650   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6651   int encode = prefixq_and_encode(dst->encoding());
6652   emit_int8((unsigned char)0xFF);
6653   emit_int8(0xC8 | encode);
6654 }
6655 
6656 void Assembler::decq(Address dst) {
6657   // Don't use it directly. Use MacroAssembler::decrementq() instead.
6658   InstructionMark im(this);
6659   prefixq(dst);
6660   emit_int8((unsigned char)0xFF);
6661   emit_operand(rcx, dst);
6662 }
6663 
6664 void Assembler::fxrstor(Address src) {
6665   prefixq(src);
6666   emit_int8(0x0F);
6667   emit_int8((unsigned char)0xAE);
6668   emit_operand(as_Register(1), src);
6669 }
6670 
6671 void Assembler::fxsave(Address dst) {
6672   prefixq(dst);
6673   emit_int8(0x0F);
6674   emit_int8((unsigned char)0xAE);
6675   emit_operand(as_Register(0), dst);
6676 }
6677 
6678 void Assembler::idivq(Register src) {
6679   int encode = prefixq_and_encode(src->encoding());
6680   emit_int8((unsigned char)0xF7);
6681   emit_int8((unsigned char)(0xF8 | encode));
6682 }
6683 
6684 void Assembler::imulq(Register dst, Register src) {
6685   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6686   emit_int8(0x0F);
6687   emit_int8((unsigned char)0xAF);
6688   emit_int8((unsigned char)(0xC0 | encode));
6689 }
6690 
6691 void Assembler::imulq(Register dst, Register src, int value) {
6692   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6693   if (is8bit(value)) {
6694     emit_int8(0x6B);
6695     emit_int8((unsigned char)(0xC0 | encode));
6696     emit_int8(value & 0xFF);
6697   } else {
6698     emit_int8(0x69);
6699     emit_int8((unsigned char)(0xC0 | encode));
6700     emit_int32(value);
6701   }
6702 }
6703 
6704 void Assembler::imulq(Register dst, Address src) {
6705   InstructionMark im(this);
6706   prefixq(src, dst);
6707   emit_int8(0x0F);
6708   emit_int8((unsigned char) 0xAF);
6709   emit_operand(dst, src);
6710 }
6711 
6712 void Assembler::incl(Register dst) {
6713   // Don't use it directly. Use MacroAssembler::incrementl() instead.
6714   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6715   int encode = prefix_and_encode(dst->encoding());
6716   emit_int8((unsigned char)0xFF);
6717   emit_int8((unsigned char)(0xC0 | encode));
6718 }
6719 
6720 void Assembler::incq(Register dst) {
6721   // Don't use it directly. Use MacroAssembler::incrementq() instead.
6722   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6723   int encode = prefixq_and_encode(dst->encoding());
6724   emit_int8((unsigned char)0xFF);
6725   emit_int8((unsigned char)(0xC0 | encode));
6726 }
6727 
6728 void Assembler::incq(Address dst) {
6729   // Don't use it directly. Use MacroAssembler::incrementq() instead.
6730   InstructionMark im(this);
6731   prefixq(dst);
6732   emit_int8((unsigned char)0xFF);
6733   emit_operand(rax, dst);
6734 }
6735 
6736 void Assembler::lea(Register dst, Address src) {
6737   leaq(dst, src);
6738 }
6739 
6740 void Assembler::leaq(Register dst, Address src) {
6741   InstructionMark im(this);
6742   prefixq(src, dst);
6743   emit_int8((unsigned char)0x8D);
6744   emit_operand(dst, src);
6745 }
6746 
6747 void Assembler::mov64(Register dst, int64_t imm64) {
6748   InstructionMark im(this);
6749   int encode = prefixq_and_encode(dst->encoding());
6750   emit_int8((unsigned char)(0xB8 | encode));
6751   emit_int64(imm64);
6752 }
6753 
6754 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
6755   InstructionMark im(this);
6756   int encode = prefixq_and_encode(dst->encoding());
6757   emit_int8(0xB8 | encode);
6758   emit_data64(imm64, rspec);
6759 }
6760 
6761 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
6762   InstructionMark im(this);
6763   int encode = prefix_and_encode(dst->encoding());
6764   emit_int8((unsigned char)(0xB8 | encode));
6765   emit_data((int)imm32, rspec, narrow_oop_operand);
6766 }
6767 
6768 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
6769   InstructionMark im(this);
6770   prefix(dst);
6771   emit_int8((unsigned char)0xC7);
6772   emit_operand(rax, dst, 4);
6773   emit_data((int)imm32, rspec, narrow_oop_operand);
6774 }
6775 
6776 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6777   InstructionMark im(this);
6778   int encode = prefix_and_encode(src1->encoding());
6779   emit_int8((unsigned char)0x81);
6780   emit_int8((unsigned char)(0xF8 | encode));
6781   emit_data((int)imm32, rspec, narrow_oop_operand);
6782 }
6783 
6784 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6785   InstructionMark im(this);
6786   prefix(src1);
6787   emit_int8((unsigned char)0x81);
6788   emit_operand(rax, src1, 4);
6789   emit_data((int)imm32, rspec, narrow_oop_operand);
6790 }
6791 
6792 void Assembler::lzcntq(Register dst, Register src) {
6793   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
6794   emit_int8((unsigned char)0xF3);
6795   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6796   emit_int8(0x0F);
6797   emit_int8((unsigned char)0xBD);
6798   emit_int8((unsigned char)(0xC0 | encode));
6799 }
6800 
6801 void Assembler::movdq(XMMRegister dst, Register src) {
6802   // table D-1 says MMX/SSE2
6803   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6804   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66, true);
6805   emit_int8(0x6E);
6806   emit_int8((unsigned char)(0xC0 | encode));
6807 }
6808 
6809 void Assembler::movdq(Register dst, XMMRegister src) {
6810   // table D-1 says MMX/SSE2
6811   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6812   // swap src/dst to get correct prefix
6813   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66, true);
6814   emit_int8(0x7E);
6815   emit_int8((unsigned char)(0xC0 | encode));
6816 }
6817 
6818 void Assembler::movq(Register dst, Register src) {
6819   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6820   emit_int8((unsigned char)0x8B);
6821   emit_int8((unsigned char)(0xC0 | encode));
6822 }
6823 
6824 void Assembler::movq(Register dst, Address src) {
6825   InstructionMark im(this);
6826   prefixq(src, dst);
6827   emit_int8((unsigned char)0x8B);
6828   emit_operand(dst, src);
6829 }
6830 
6831 void Assembler::movq(Address dst, Register src) {
6832   InstructionMark im(this);
6833   prefixq(dst, src);
6834   emit_int8((unsigned char)0x89);
6835   emit_operand(src, dst);
6836 }
6837 
6838 void Assembler::movsbq(Register dst, Address src) {
6839   InstructionMark im(this);
6840   prefixq(src, dst);
6841   emit_int8(0x0F);
6842   emit_int8((unsigned char)0xBE);
6843   emit_operand(dst, src);
6844 }
6845 
6846 void Assembler::movsbq(Register dst, Register src) {
6847   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6848   emit_int8(0x0F);
6849   emit_int8((unsigned char)0xBE);
6850   emit_int8((unsigned char)(0xC0 | encode));
6851 }
6852 
6853 void Assembler::movslq(Register dst, int32_t imm32) {
6854   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
6855   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
6856   // as a result we shouldn't use until tested at runtime...
6857   ShouldNotReachHere();
6858   InstructionMark im(this);
6859   int encode = prefixq_and_encode(dst->encoding());
6860   emit_int8((unsigned char)(0xC7 | encode));
6861   emit_int32(imm32);
6862 }
6863 
6864 void Assembler::movslq(Address dst, int32_t imm32) {
6865   assert(is_simm32(imm32), "lost bits");
6866   InstructionMark im(this);
6867   prefixq(dst);
6868   emit_int8((unsigned char)0xC7);
6869   emit_operand(rax, dst, 4);
6870   emit_int32(imm32);
6871 }
6872 
6873 void Assembler::movslq(Register dst, Address src) {
6874   InstructionMark im(this);
6875   prefixq(src, dst);
6876   emit_int8(0x63);
6877   emit_operand(dst, src);
6878 }
6879 
6880 void Assembler::movslq(Register dst, Register src) {
6881   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6882   emit_int8(0x63);
6883   emit_int8((unsigned char)(0xC0 | encode));
6884 }
6885 
6886 void Assembler::movswq(Register dst, Address src) {
6887   InstructionMark im(this);
6888   prefixq(src, dst);
6889   emit_int8(0x0F);
6890   emit_int8((unsigned char)0xBF);
6891   emit_operand(dst, src);
6892 }
6893 
6894 void Assembler::movswq(Register dst, Register src) {
6895   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6896   emit_int8((unsigned char)0x0F);
6897   emit_int8((unsigned char)0xBF);
6898   emit_int8((unsigned char)(0xC0 | encode));
6899 }
6900 
6901 void Assembler::movzbq(Register dst, Address src) {
6902   InstructionMark im(this);
6903   prefixq(src, dst);
6904   emit_int8((unsigned char)0x0F);
6905   emit_int8((unsigned char)0xB6);
6906   emit_operand(dst, src);
6907 }
6908 
6909 void Assembler::movzbq(Register dst, Register src) {
6910   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6911   emit_int8(0x0F);
6912   emit_int8((unsigned char)0xB6);
6913   emit_int8(0xC0 | encode);
6914 }
6915 
6916 void Assembler::movzwq(Register dst, Address src) {
6917   InstructionMark im(this);
6918   prefixq(src, dst);
6919   emit_int8((unsigned char)0x0F);
6920   emit_int8((unsigned char)0xB7);
6921   emit_operand(dst, src);
6922 }
6923 
6924 void Assembler::movzwq(Register dst, Register src) {
6925   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6926   emit_int8((unsigned char)0x0F);
6927   emit_int8((unsigned char)0xB7);
6928   emit_int8((unsigned char)(0xC0 | encode));
6929 }
6930 
6931 void Assembler::mulq(Address src) {
6932   InstructionMark im(this);
6933   prefixq(src);
6934   emit_int8((unsigned char)0xF7);
6935   emit_operand(rsp, src);
6936 }
6937 
6938 void Assembler::mulq(Register src) {
6939   int encode = prefixq_and_encode(src->encoding());
6940   emit_int8((unsigned char)0xF7);
6941   emit_int8((unsigned char)(0xE0 | encode));
6942 }
6943 
6944 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
6945   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
6946   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(),
6947                                      VEX_SIMD_F2, VEX_OPCODE_0F_38, true, AVX_128bit, true, false);
6948   emit_int8((unsigned char)0xF6);
6949   emit_int8((unsigned char)(0xC0 | encode));
6950 }
6951 
6952 void Assembler::negq(Register dst) {
6953   int encode = prefixq_and_encode(dst->encoding());
6954   emit_int8((unsigned char)0xF7);
6955   emit_int8((unsigned char)(0xD8 | encode));
6956 }
6957 
6958 void Assembler::notq(Register dst) {
6959   int encode = prefixq_and_encode(dst->encoding());
6960   emit_int8((unsigned char)0xF7);
6961   emit_int8((unsigned char)(0xD0 | encode));
6962 }
6963 
6964 void Assembler::orq(Address dst, int32_t imm32) {
6965   InstructionMark im(this);
6966   prefixq(dst);
6967   emit_int8((unsigned char)0x81);
6968   emit_operand(rcx, dst, 4);
6969   emit_int32(imm32);
6970 }
6971 
6972 void Assembler::orq(Register dst, int32_t imm32) {
6973   (void) prefixq_and_encode(dst->encoding());
6974   emit_arith(0x81, 0xC8, dst, imm32);
6975 }
6976 
6977 void Assembler::orq(Register dst, Address src) {
6978   InstructionMark im(this);
6979   prefixq(src, dst);
6980   emit_int8(0x0B);
6981   emit_operand(dst, src);
6982 }
6983 
6984 void Assembler::orq(Register dst, Register src) {
6985   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6986   emit_arith(0x0B, 0xC0, dst, src);
6987 }
6988 
6989 void Assembler::popa() { // 64bit
6990   movq(r15, Address(rsp, 0));
6991   movq(r14, Address(rsp, wordSize));
6992   movq(r13, Address(rsp, 2 * wordSize));
6993   movq(r12, Address(rsp, 3 * wordSize));
6994   movq(r11, Address(rsp, 4 * wordSize));
6995   movq(r10, Address(rsp, 5 * wordSize));
6996   movq(r9,  Address(rsp, 6 * wordSize));
6997   movq(r8,  Address(rsp, 7 * wordSize));
6998   movq(rdi, Address(rsp, 8 * wordSize));
6999   movq(rsi, Address(rsp, 9 * wordSize));
7000   movq(rbp, Address(rsp, 10 * wordSize));
7001   // skip rsp
7002   movq(rbx, Address(rsp, 12 * wordSize));
7003   movq(rdx, Address(rsp, 13 * wordSize));
7004   movq(rcx, Address(rsp, 14 * wordSize));
7005   movq(rax, Address(rsp, 15 * wordSize));
7006 
7007   addq(rsp, 16 * wordSize);
7008 }
7009 
7010 void Assembler::popcntq(Register dst, Address src) {
7011   assert(VM_Version::supports_popcnt(), "must support");
7012   InstructionMark im(this);
7013   emit_int8((unsigned char)0xF3);
7014   prefixq(src, dst);
7015   emit_int8((unsigned char)0x0F);
7016   emit_int8((unsigned char)0xB8);
7017   emit_operand(dst, src);
7018 }
7019 
7020 void Assembler::popcntq(Register dst, Register src) {
7021   assert(VM_Version::supports_popcnt(), "must support");
7022   emit_int8((unsigned char)0xF3);
7023   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7024   emit_int8((unsigned char)0x0F);
7025   emit_int8((unsigned char)0xB8);
7026   emit_int8((unsigned char)(0xC0 | encode));
7027 }
7028 
7029 void Assembler::popq(Address dst) {
7030   InstructionMark im(this);
7031   prefixq(dst);
7032   emit_int8((unsigned char)0x8F);
7033   emit_operand(rax, dst);
7034 }
7035 
7036 void Assembler::pusha() { // 64bit
7037   // we have to store original rsp.  ABI says that 128 bytes
7038   // below rsp are local scratch.
7039   movq(Address(rsp, -5 * wordSize), rsp);
7040 
7041   subq(rsp, 16 * wordSize);
7042 
7043   movq(Address(rsp, 15 * wordSize), rax);
7044   movq(Address(rsp, 14 * wordSize), rcx);
7045   movq(Address(rsp, 13 * wordSize), rdx);
7046   movq(Address(rsp, 12 * wordSize), rbx);
7047   // skip rsp
7048   movq(Address(rsp, 10 * wordSize), rbp);
7049   movq(Address(rsp, 9 * wordSize), rsi);
7050   movq(Address(rsp, 8 * wordSize), rdi);
7051   movq(Address(rsp, 7 * wordSize), r8);
7052   movq(Address(rsp, 6 * wordSize), r9);
7053   movq(Address(rsp, 5 * wordSize), r10);
7054   movq(Address(rsp, 4 * wordSize), r11);
7055   movq(Address(rsp, 3 * wordSize), r12);
7056   movq(Address(rsp, 2 * wordSize), r13);
7057   movq(Address(rsp, wordSize), r14);
7058   movq(Address(rsp, 0), r15);
7059 }
7060 
7061 void Assembler::pushq(Address src) {
7062   InstructionMark im(this);
7063   prefixq(src);
7064   emit_int8((unsigned char)0xFF);
7065   emit_operand(rsi, src);
7066 }
7067 
7068 void Assembler::rclq(Register dst, int imm8) {
7069   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7070   int encode = prefixq_and_encode(dst->encoding());
7071   if (imm8 == 1) {
7072     emit_int8((unsigned char)0xD1);
7073     emit_int8((unsigned char)(0xD0 | encode));
7074   } else {
7075     emit_int8((unsigned char)0xC1);
7076     emit_int8((unsigned char)(0xD0 | encode));
7077     emit_int8(imm8);
7078   }
7079 }
7080 
7081 void Assembler::rcrq(Register dst, int imm8) {
7082   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7083   int encode = prefixq_and_encode(dst->encoding());
7084   if (imm8 == 1) {
7085     emit_int8((unsigned char)0xD1);
7086     emit_int8((unsigned char)(0xD8 | encode));
7087   } else {
7088     emit_int8((unsigned char)0xC1);
7089     emit_int8((unsigned char)(0xD8 | encode));
7090     emit_int8(imm8);
7091   }
7092 }
7093 
7094 void Assembler::rorq(Register dst, int imm8) {
7095   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7096   int encode = prefixq_and_encode(dst->encoding());
7097   if (imm8 == 1) {
7098     emit_int8((unsigned char)0xD1);
7099     emit_int8((unsigned char)(0xC8 | encode));
7100   } else {
7101     emit_int8((unsigned char)0xC1);
7102     emit_int8((unsigned char)(0xc8 | encode));
7103     emit_int8(imm8);
7104   }
7105 }
7106 
7107 void Assembler::rorxq(Register dst, Register src, int imm8) {
7108   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
7109   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2,
7110                                      VEX_OPCODE_0F_3A, true, AVX_128bit, true, false);
7111   emit_int8((unsigned char)0xF0);
7112   emit_int8((unsigned char)(0xC0 | encode));
7113   emit_int8(imm8);
7114 }
7115 
7116 void Assembler::sarq(Register dst, int imm8) {
7117   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7118   int encode = prefixq_and_encode(dst->encoding());
7119   if (imm8 == 1) {
7120     emit_int8((unsigned char)0xD1);
7121     emit_int8((unsigned char)(0xF8 | encode));
7122   } else {
7123     emit_int8((unsigned char)0xC1);
7124     emit_int8((unsigned char)(0xF8 | encode));
7125     emit_int8(imm8);
7126   }
7127 }
7128 
7129 void Assembler::sarq(Register dst) {
7130   int encode = prefixq_and_encode(dst->encoding());
7131   emit_int8((unsigned char)0xD3);
7132   emit_int8((unsigned char)(0xF8 | encode));
7133 }
7134 
7135 void Assembler::sbbq(Address dst, int32_t imm32) {
7136   InstructionMark im(this);
7137   prefixq(dst);
7138   emit_arith_operand(0x81, rbx, dst, imm32);
7139 }
7140 
7141 void Assembler::sbbq(Register dst, int32_t imm32) {
7142   (void) prefixq_and_encode(dst->encoding());
7143   emit_arith(0x81, 0xD8, dst, imm32);
7144 }
7145 
7146 void Assembler::sbbq(Register dst, Address src) {
7147   InstructionMark im(this);
7148   prefixq(src, dst);
7149   emit_int8(0x1B);
7150   emit_operand(dst, src);
7151 }
7152 
7153 void Assembler::sbbq(Register dst, Register src) {
7154   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7155   emit_arith(0x1B, 0xC0, dst, src);
7156 }
7157 
7158 void Assembler::shlq(Register dst, int imm8) {
7159   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7160   int encode = prefixq_and_encode(dst->encoding());
7161   if (imm8 == 1) {
7162     emit_int8((unsigned char)0xD1);
7163     emit_int8((unsigned char)(0xE0 | encode));
7164   } else {
7165     emit_int8((unsigned char)0xC1);
7166     emit_int8((unsigned char)(0xE0 | encode));
7167     emit_int8(imm8);
7168   }
7169 }
7170 
7171 void Assembler::shlq(Register dst) {
7172   int encode = prefixq_and_encode(dst->encoding());
7173   emit_int8((unsigned char)0xD3);
7174   emit_int8((unsigned char)(0xE0 | encode));
7175 }
7176 
7177 void Assembler::shrq(Register dst, int imm8) {
7178   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7179   int encode = prefixq_and_encode(dst->encoding());
7180   emit_int8((unsigned char)0xC1);
7181   emit_int8((unsigned char)(0xE8 | encode));
7182   emit_int8(imm8);
7183 }
7184 
7185 void Assembler::shrq(Register dst) {
7186   int encode = prefixq_and_encode(dst->encoding());
7187   emit_int8((unsigned char)0xD3);
7188   emit_int8(0xE8 | encode);
7189 }
7190 
7191 void Assembler::subq(Address dst, int32_t imm32) {
7192   InstructionMark im(this);
7193   prefixq(dst);
7194   emit_arith_operand(0x81, rbp, dst, imm32);
7195 }
7196 
7197 void Assembler::subq(Address dst, Register src) {
7198   InstructionMark im(this);
7199   prefixq(dst, src);
7200   emit_int8(0x29);
7201   emit_operand(src, dst);
7202 }
7203 
7204 void Assembler::subq(Register dst, int32_t imm32) {
7205   (void) prefixq_and_encode(dst->encoding());
7206   emit_arith(0x81, 0xE8, dst, imm32);
7207 }
7208 
7209 // Force generation of a 4 byte immediate value even if it fits into 8bit
7210 void Assembler::subq_imm32(Register dst, int32_t imm32) {
7211   (void) prefixq_and_encode(dst->encoding());
7212   emit_arith_imm32(0x81, 0xE8, dst, imm32);
7213 }
7214 
7215 void Assembler::subq(Register dst, Address src) {
7216   InstructionMark im(this);
7217   prefixq(src, dst);
7218   emit_int8(0x2B);
7219   emit_operand(dst, src);
7220 }
7221 
7222 void Assembler::subq(Register dst, Register src) {
7223   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7224   emit_arith(0x2B, 0xC0, dst, src);
7225 }
7226 
7227 void Assembler::testq(Register dst, int32_t imm32) {
7228   // not using emit_arith because test
7229   // doesn't support sign-extension of
7230   // 8bit operands
7231   int encode = dst->encoding();
7232   if (encode == 0) {
7233     prefix(REX_W);
7234     emit_int8((unsigned char)0xA9);
7235   } else {
7236     encode = prefixq_and_encode(encode);
7237     emit_int8((unsigned char)0xF7);
7238     emit_int8((unsigned char)(0xC0 | encode));
7239   }
7240   emit_int32(imm32);
7241 }
7242 
7243 void Assembler::testq(Register dst, Register src) {
7244   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7245   emit_arith(0x85, 0xC0, dst, src);
7246 }
7247 
7248 void Assembler::xaddq(Address dst, Register src) {
7249   InstructionMark im(this);
7250   prefixq(dst, src);
7251   emit_int8(0x0F);
7252   emit_int8((unsigned char)0xC1);
7253   emit_operand(src, dst);
7254 }
7255 
7256 void Assembler::xchgq(Register dst, Address src) {
7257   InstructionMark im(this);
7258   prefixq(src, dst);
7259   emit_int8((unsigned char)0x87);
7260   emit_operand(dst, src);
7261 }
7262 
7263 void Assembler::xchgq(Register dst, Register src) {
7264   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7265   emit_int8((unsigned char)0x87);
7266   emit_int8((unsigned char)(0xc0 | encode));
7267 }
7268 
7269 void Assembler::xorq(Register dst, Register src) {
7270   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7271   emit_arith(0x33, 0xC0, dst, src);
7272 }
7273 
7274 void Assembler::xorq(Register dst, Address src) {
7275   InstructionMark im(this);
7276   prefixq(src, dst);
7277   emit_int8(0x33);
7278   emit_operand(dst, src);
7279 }
7280 
7281 #endif // !LP64