1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/biasedLocking.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/os.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc/g1/g1CollectedHeap.inline.hpp"
  45 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  46 #include "gc/g1/heapRegion.hpp"
  47 #endif // INCLUDE_ALL_GCS
  48 #include "crc32c.h"
  49 
  50 #ifdef PRODUCT
  51 #define BLOCK_COMMENT(str) /* nothing */
  52 #define STOP(error) stop(error)
  53 #else
  54 #define BLOCK_COMMENT(str) block_comment(str)
  55 #define STOP(error) block_comment(error); stop(error)
  56 #endif
  57 
  58 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  59 
  60 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  61 
  62 #ifdef ASSERT
  63 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  64 #endif
  65 
  66 static Assembler::Condition reverse[] = {
  67     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  68     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  69     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  70     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  71     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  72     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  73     Assembler::above          /* belowEqual    = 0x6 */ ,
  74     Assembler::belowEqual     /* above         = 0x7 */ ,
  75     Assembler::positive       /* negative      = 0x8 */ ,
  76     Assembler::negative       /* positive      = 0x9 */ ,
  77     Assembler::noParity       /* parity        = 0xa */ ,
  78     Assembler::parity         /* noParity      = 0xb */ ,
  79     Assembler::greaterEqual   /* less          = 0xc */ ,
  80     Assembler::less           /* greaterEqual  = 0xd */ ,
  81     Assembler::greater        /* lessEqual     = 0xe */ ,
  82     Assembler::lessEqual      /* greater       = 0xf, */
  83 
  84 };
  85 
  86 
  87 // Implementation of MacroAssembler
  88 
  89 // First all the versions that have distinct versions depending on 32/64 bit
  90 // Unless the difference is trivial (1 line or so).
  91 
  92 #ifndef _LP64
  93 
  94 // 32bit versions
  95 
  96 Address MacroAssembler::as_Address(AddressLiteral adr) {
  97   return Address(adr.target(), adr.rspec());
  98 }
  99 
 100 Address MacroAssembler::as_Address(ArrayAddress adr) {
 101   return Address::make_array(adr);
 102 }
 103 
 104 void MacroAssembler::call_VM_leaf_base(address entry_point,
 105                                        int number_of_arguments) {
 106   call(RuntimeAddress(entry_point));
 107   increment(rsp, number_of_arguments * wordSize);
 108 }
 109 
 110 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 111   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 112 }
 113 
 114 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 115   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 116 }
 117 
 118 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 119   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 120 }
 121 
 122 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 123   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 124 }
 125 
 126 void MacroAssembler::extend_sign(Register hi, Register lo) {
 127   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 128   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 129     cdql();
 130   } else {
 131     movl(hi, lo);
 132     sarl(hi, 31);
 133   }
 134 }
 135 
 136 void MacroAssembler::jC2(Register tmp, Label& L) {
 137   // set parity bit if FPU flag C2 is set (via rax)
 138   save_rax(tmp);
 139   fwait(); fnstsw_ax();
 140   sahf();
 141   restore_rax(tmp);
 142   // branch
 143   jcc(Assembler::parity, L);
 144 }
 145 
 146 void MacroAssembler::jnC2(Register tmp, Label& L) {
 147   // set parity bit if FPU flag C2 is set (via rax)
 148   save_rax(tmp);
 149   fwait(); fnstsw_ax();
 150   sahf();
 151   restore_rax(tmp);
 152   // branch
 153   jcc(Assembler::noParity, L);
 154 }
 155 
 156 // 32bit can do a case table jump in one instruction but we no longer allow the base
 157 // to be installed in the Address class
 158 void MacroAssembler::jump(ArrayAddress entry) {
 159   jmp(as_Address(entry));
 160 }
 161 
 162 // Note: y_lo will be destroyed
 163 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 164   // Long compare for Java (semantics as described in JVM spec.)
 165   Label high, low, done;
 166 
 167   cmpl(x_hi, y_hi);
 168   jcc(Assembler::less, low);
 169   jcc(Assembler::greater, high);
 170   // x_hi is the return register
 171   xorl(x_hi, x_hi);
 172   cmpl(x_lo, y_lo);
 173   jcc(Assembler::below, low);
 174   jcc(Assembler::equal, done);
 175 
 176   bind(high);
 177   xorl(x_hi, x_hi);
 178   increment(x_hi);
 179   jmp(done);
 180 
 181   bind(low);
 182   xorl(x_hi, x_hi);
 183   decrementl(x_hi);
 184 
 185   bind(done);
 186 }
 187 
 188 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 189     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 190 }
 191 
 192 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 193   // leal(dst, as_Address(adr));
 194   // see note in movl as to why we must use a move
 195   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 196 }
 197 
 198 void MacroAssembler::leave() {
 199   mov(rsp, rbp);
 200   pop(rbp);
 201 }
 202 
 203 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 204   // Multiplication of two Java long values stored on the stack
 205   // as illustrated below. Result is in rdx:rax.
 206   //
 207   // rsp ---> [  ??  ] \               \
 208   //            ....    | y_rsp_offset  |
 209   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 210   //          [ y_hi ]                  | (in bytes)
 211   //            ....                    |
 212   //          [ x_lo ]                 /
 213   //          [ x_hi ]
 214   //            ....
 215   //
 216   // Basic idea: lo(result) = lo(x_lo * y_lo)
 217   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 218   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 219   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 220   Label quick;
 221   // load x_hi, y_hi and check if quick
 222   // multiplication is possible
 223   movl(rbx, x_hi);
 224   movl(rcx, y_hi);
 225   movl(rax, rbx);
 226   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 227   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 228   // do full multiplication
 229   // 1st step
 230   mull(y_lo);                                    // x_hi * y_lo
 231   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 232   // 2nd step
 233   movl(rax, x_lo);
 234   mull(rcx);                                     // x_lo * y_hi
 235   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 236   // 3rd step
 237   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 238   movl(rax, x_lo);
 239   mull(y_lo);                                    // x_lo * y_lo
 240   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 241 }
 242 
 243 void MacroAssembler::lneg(Register hi, Register lo) {
 244   negl(lo);
 245   adcl(hi, 0);
 246   negl(hi);
 247 }
 248 
 249 void MacroAssembler::lshl(Register hi, Register lo) {
 250   // Java shift left long support (semantics as described in JVM spec., p.305)
 251   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 252   // shift value is in rcx !
 253   assert(hi != rcx, "must not use rcx");
 254   assert(lo != rcx, "must not use rcx");
 255   const Register s = rcx;                        // shift count
 256   const int      n = BitsPerWord;
 257   Label L;
 258   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 259   cmpl(s, n);                                    // if (s < n)
 260   jcc(Assembler::less, L);                       // else (s >= n)
 261   movl(hi, lo);                                  // x := x << n
 262   xorl(lo, lo);
 263   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 264   bind(L);                                       // s (mod n) < n
 265   shldl(hi, lo);                                 // x := x << s
 266   shll(lo);
 267 }
 268 
 269 
 270 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 271   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 272   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 273   assert(hi != rcx, "must not use rcx");
 274   assert(lo != rcx, "must not use rcx");
 275   const Register s = rcx;                        // shift count
 276   const int      n = BitsPerWord;
 277   Label L;
 278   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 279   cmpl(s, n);                                    // if (s < n)
 280   jcc(Assembler::less, L);                       // else (s >= n)
 281   movl(lo, hi);                                  // x := x >> n
 282   if (sign_extension) sarl(hi, 31);
 283   else                xorl(hi, hi);
 284   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 285   bind(L);                                       // s (mod n) < n
 286   shrdl(lo, hi);                                 // x := x >> s
 287   if (sign_extension) sarl(hi);
 288   else                shrl(hi);
 289 }
 290 
 291 void MacroAssembler::movoop(Register dst, jobject obj) {
 292   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 293 }
 294 
 295 void MacroAssembler::movoop(Address dst, jobject obj) {
 296   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 297 }
 298 
 299 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 300   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 301 }
 302 
 303 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 304   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 305 }
 306 
 307 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 308   // scratch register is not used,
 309   // it is defined to match parameters of 64-bit version of this method.
 310   if (src.is_lval()) {
 311     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 312   } else {
 313     movl(dst, as_Address(src));
 314   }
 315 }
 316 
 317 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 318   movl(as_Address(dst), src);
 319 }
 320 
 321 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 322   movl(dst, as_Address(src));
 323 }
 324 
 325 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 326 void MacroAssembler::movptr(Address dst, intptr_t src) {
 327   movl(dst, src);
 328 }
 329 
 330 
 331 void MacroAssembler::pop_callee_saved_registers() {
 332   pop(rcx);
 333   pop(rdx);
 334   pop(rdi);
 335   pop(rsi);
 336 }
 337 
 338 void MacroAssembler::pop_fTOS() {
 339   fld_d(Address(rsp, 0));
 340   addl(rsp, 2 * wordSize);
 341 }
 342 
 343 void MacroAssembler::push_callee_saved_registers() {
 344   push(rsi);
 345   push(rdi);
 346   push(rdx);
 347   push(rcx);
 348 }
 349 
 350 void MacroAssembler::push_fTOS() {
 351   subl(rsp, 2 * wordSize);
 352   fstp_d(Address(rsp, 0));
 353 }
 354 
 355 
 356 void MacroAssembler::pushoop(jobject obj) {
 357   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 358 }
 359 
 360 void MacroAssembler::pushklass(Metadata* obj) {
 361   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 362 }
 363 
 364 void MacroAssembler::pushptr(AddressLiteral src) {
 365   if (src.is_lval()) {
 366     push_literal32((int32_t)src.target(), src.rspec());
 367   } else {
 368     pushl(as_Address(src));
 369   }
 370 }
 371 
 372 void MacroAssembler::set_word_if_not_zero(Register dst) {
 373   xorl(dst, dst);
 374   set_byte_if_not_zero(dst);
 375 }
 376 
 377 static void pass_arg0(MacroAssembler* masm, Register arg) {
 378   masm->push(arg);
 379 }
 380 
 381 static void pass_arg1(MacroAssembler* masm, Register arg) {
 382   masm->push(arg);
 383 }
 384 
 385 static void pass_arg2(MacroAssembler* masm, Register arg) {
 386   masm->push(arg);
 387 }
 388 
 389 static void pass_arg3(MacroAssembler* masm, Register arg) {
 390   masm->push(arg);
 391 }
 392 
 393 #ifndef PRODUCT
 394 extern "C" void findpc(intptr_t x);
 395 #endif
 396 
 397 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 398   // In order to get locks to work, we need to fake a in_VM state
 399   JavaThread* thread = JavaThread::current();
 400   JavaThreadState saved_state = thread->thread_state();
 401   thread->set_thread_state(_thread_in_vm);
 402   if (ShowMessageBoxOnError) {
 403     JavaThread* thread = JavaThread::current();
 404     JavaThreadState saved_state = thread->thread_state();
 405     thread->set_thread_state(_thread_in_vm);
 406     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 407       ttyLocker ttyl;
 408       BytecodeCounter::print();
 409     }
 410     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 411     // This is the value of eip which points to where verify_oop will return.
 412     if (os::message_box(msg, "Execution stopped, print registers?")) {
 413       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 414       BREAKPOINT;
 415     }
 416   } else {
 417     ttyLocker ttyl;
 418     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 419   }
 420   // Don't assert holding the ttyLock
 421     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 422   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 423 }
 424 
 425 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 426   ttyLocker ttyl;
 427   FlagSetting fs(Debugging, true);
 428   tty->print_cr("eip = 0x%08x", eip);
 429 #ifndef PRODUCT
 430   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 431     tty->cr();
 432     findpc(eip);
 433     tty->cr();
 434   }
 435 #endif
 436 #define PRINT_REG(rax) \
 437   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 438   PRINT_REG(rax);
 439   PRINT_REG(rbx);
 440   PRINT_REG(rcx);
 441   PRINT_REG(rdx);
 442   PRINT_REG(rdi);
 443   PRINT_REG(rsi);
 444   PRINT_REG(rbp);
 445   PRINT_REG(rsp);
 446 #undef PRINT_REG
 447   // Print some words near top of staack.
 448   int* dump_sp = (int*) rsp;
 449   for (int col1 = 0; col1 < 8; col1++) {
 450     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 451     os::print_location(tty, *dump_sp++);
 452   }
 453   for (int row = 0; row < 16; row++) {
 454     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 455     for (int col = 0; col < 8; col++) {
 456       tty->print(" 0x%08x", *dump_sp++);
 457     }
 458     tty->cr();
 459   }
 460   // Print some instructions around pc:
 461   Disassembler::decode((address)eip-64, (address)eip);
 462   tty->print_cr("--------");
 463   Disassembler::decode((address)eip, (address)eip+32);
 464 }
 465 
 466 void MacroAssembler::stop(const char* msg) {
 467   ExternalAddress message((address)msg);
 468   // push address of message
 469   pushptr(message.addr());
 470   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 471   pusha();                                            // push registers
 472   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 473   hlt();
 474 }
 475 
 476 void MacroAssembler::warn(const char* msg) {
 477   push_CPU_state();
 478 
 479   ExternalAddress message((address) msg);
 480   // push address of message
 481   pushptr(message.addr());
 482 
 483   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 484   addl(rsp, wordSize);       // discard argument
 485   pop_CPU_state();
 486 }
 487 
 488 void MacroAssembler::print_state() {
 489   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 490   pusha();                                            // push registers
 491 
 492   push_CPU_state();
 493   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 494   pop_CPU_state();
 495 
 496   popa();
 497   addl(rsp, wordSize);
 498 }
 499 
 500 #else // _LP64
 501 
 502 // 64 bit versions
 503 
 504 Address MacroAssembler::as_Address(AddressLiteral adr) {
 505   // amd64 always does this as a pc-rel
 506   // we can be absolute or disp based on the instruction type
 507   // jmp/call are displacements others are absolute
 508   assert(!adr.is_lval(), "must be rval");
 509   assert(reachable(adr), "must be");
 510   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 511 
 512 }
 513 
 514 Address MacroAssembler::as_Address(ArrayAddress adr) {
 515   AddressLiteral base = adr.base();
 516   lea(rscratch1, base);
 517   Address index = adr.index();
 518   assert(index._disp == 0, "must not have disp"); // maybe it can?
 519   Address array(rscratch1, index._index, index._scale, index._disp);
 520   return array;
 521 }
 522 
 523 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 524   Label L, E;
 525 
 526 #ifdef _WIN64
 527   // Windows always allocates space for it's register args
 528   assert(num_args <= 4, "only register arguments supported");
 529   subq(rsp,  frame::arg_reg_save_area_bytes);
 530 #endif
 531 
 532   // Align stack if necessary
 533   testl(rsp, 15);
 534   jcc(Assembler::zero, L);
 535 
 536   subq(rsp, 8);
 537   {
 538     call(RuntimeAddress(entry_point));
 539   }
 540   addq(rsp, 8);
 541   jmp(E);
 542 
 543   bind(L);
 544   {
 545     call(RuntimeAddress(entry_point));
 546   }
 547 
 548   bind(E);
 549 
 550 #ifdef _WIN64
 551   // restore stack pointer
 552   addq(rsp, frame::arg_reg_save_area_bytes);
 553 #endif
 554 
 555 }
 556 
 557 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 558   assert(!src2.is_lval(), "should use cmpptr");
 559 
 560   if (reachable(src2)) {
 561     cmpq(src1, as_Address(src2));
 562   } else {
 563     lea(rscratch1, src2);
 564     Assembler::cmpq(src1, Address(rscratch1, 0));
 565   }
 566 }
 567 
 568 int MacroAssembler::corrected_idivq(Register reg) {
 569   // Full implementation of Java ldiv and lrem; checks for special
 570   // case as described in JVM spec., p.243 & p.271.  The function
 571   // returns the (pc) offset of the idivl instruction - may be needed
 572   // for implicit exceptions.
 573   //
 574   //         normal case                           special case
 575   //
 576   // input : rax: dividend                         min_long
 577   //         reg: divisor   (may not be eax/edx)   -1
 578   //
 579   // output: rax: quotient  (= rax idiv reg)       min_long
 580   //         rdx: remainder (= rax irem reg)       0
 581   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 582   static const int64_t min_long = 0x8000000000000000;
 583   Label normal_case, special_case;
 584 
 585   // check for special case
 586   cmp64(rax, ExternalAddress((address) &min_long));
 587   jcc(Assembler::notEqual, normal_case);
 588   xorl(rdx, rdx); // prepare rdx for possible special case (where
 589                   // remainder = 0)
 590   cmpq(reg, -1);
 591   jcc(Assembler::equal, special_case);
 592 
 593   // handle normal case
 594   bind(normal_case);
 595   cdqq();
 596   int idivq_offset = offset();
 597   idivq(reg);
 598 
 599   // normal and special case exit
 600   bind(special_case);
 601 
 602   return idivq_offset;
 603 }
 604 
 605 void MacroAssembler::decrementq(Register reg, int value) {
 606   if (value == min_jint) { subq(reg, value); return; }
 607   if (value <  0) { incrementq(reg, -value); return; }
 608   if (value == 0) {                        ; return; }
 609   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 610   /* else */      { subq(reg, value)       ; return; }
 611 }
 612 
 613 void MacroAssembler::decrementq(Address dst, int value) {
 614   if (value == min_jint) { subq(dst, value); return; }
 615   if (value <  0) { incrementq(dst, -value); return; }
 616   if (value == 0) {                        ; return; }
 617   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 618   /* else */      { subq(dst, value)       ; return; }
 619 }
 620 
 621 void MacroAssembler::incrementq(AddressLiteral dst) {
 622   if (reachable(dst)) {
 623     incrementq(as_Address(dst));
 624   } else {
 625     lea(rscratch1, dst);
 626     incrementq(Address(rscratch1, 0));
 627   }
 628 }
 629 
 630 void MacroAssembler::incrementq(Register reg, int value) {
 631   if (value == min_jint) { addq(reg, value); return; }
 632   if (value <  0) { decrementq(reg, -value); return; }
 633   if (value == 0) {                        ; return; }
 634   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 635   /* else */      { addq(reg, value)       ; return; }
 636 }
 637 
 638 void MacroAssembler::incrementq(Address dst, int value) {
 639   if (value == min_jint) { addq(dst, value); return; }
 640   if (value <  0) { decrementq(dst, -value); return; }
 641   if (value == 0) {                        ; return; }
 642   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 643   /* else */      { addq(dst, value)       ; return; }
 644 }
 645 
 646 // 32bit can do a case table jump in one instruction but we no longer allow the base
 647 // to be installed in the Address class
 648 void MacroAssembler::jump(ArrayAddress entry) {
 649   lea(rscratch1, entry.base());
 650   Address dispatch = entry.index();
 651   assert(dispatch._base == noreg, "must be");
 652   dispatch._base = rscratch1;
 653   jmp(dispatch);
 654 }
 655 
 656 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 657   ShouldNotReachHere(); // 64bit doesn't use two regs
 658   cmpq(x_lo, y_lo);
 659 }
 660 
 661 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 662     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 663 }
 664 
 665 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 666   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 667   movptr(dst, rscratch1);
 668 }
 669 
 670 void MacroAssembler::leave() {
 671   // %%% is this really better? Why not on 32bit too?
 672   emit_int8((unsigned char)0xC9); // LEAVE
 673 }
 674 
 675 void MacroAssembler::lneg(Register hi, Register lo) {
 676   ShouldNotReachHere(); // 64bit doesn't use two regs
 677   negq(lo);
 678 }
 679 
 680 void MacroAssembler::movoop(Register dst, jobject obj) {
 681   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 682 }
 683 
 684 void MacroAssembler::movoop(Address dst, jobject obj) {
 685   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 686   movq(dst, rscratch1);
 687 }
 688 
 689 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 690   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 691 }
 692 
 693 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 694   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 695   movq(dst, rscratch1);
 696 }
 697 
 698 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 699   if (src.is_lval()) {
 700     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 701   } else {
 702     if (reachable(src)) {
 703       movq(dst, as_Address(src));
 704     } else {
 705       lea(scratch, src);
 706       movq(dst, Address(scratch, 0));
 707     }
 708   }
 709 }
 710 
 711 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 712   movq(as_Address(dst), src);
 713 }
 714 
 715 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 716   movq(dst, as_Address(src));
 717 }
 718 
 719 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 720 void MacroAssembler::movptr(Address dst, intptr_t src) {
 721   mov64(rscratch1, src);
 722   movq(dst, rscratch1);
 723 }
 724 
 725 // These are mostly for initializing NULL
 726 void MacroAssembler::movptr(Address dst, int32_t src) {
 727   movslq(dst, src);
 728 }
 729 
 730 void MacroAssembler::movptr(Register dst, int32_t src) {
 731   mov64(dst, (intptr_t)src);
 732 }
 733 
 734 void MacroAssembler::pushoop(jobject obj) {
 735   movoop(rscratch1, obj);
 736   push(rscratch1);
 737 }
 738 
 739 void MacroAssembler::pushklass(Metadata* obj) {
 740   mov_metadata(rscratch1, obj);
 741   push(rscratch1);
 742 }
 743 
 744 void MacroAssembler::pushptr(AddressLiteral src) {
 745   lea(rscratch1, src);
 746   if (src.is_lval()) {
 747     push(rscratch1);
 748   } else {
 749     pushq(Address(rscratch1, 0));
 750   }
 751 }
 752 
 753 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
 754                                            bool clear_pc) {
 755   // we must set sp to zero to clear frame
 756   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 757   // must clear fp, so that compiled frames are not confused; it is
 758   // possible that we need it only for debugging
 759   if (clear_fp) {
 760     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 761   }
 762 
 763   if (clear_pc) {
 764     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 765   }
 766 }
 767 
 768 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 769                                          Register last_java_fp,
 770                                          address  last_java_pc) {
 771   // determine last_java_sp register
 772   if (!last_java_sp->is_valid()) {
 773     last_java_sp = rsp;
 774   }
 775 
 776   // last_java_fp is optional
 777   if (last_java_fp->is_valid()) {
 778     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 779            last_java_fp);
 780   }
 781 
 782   // last_java_pc is optional
 783   if (last_java_pc != NULL) {
 784     Address java_pc(r15_thread,
 785                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 786     lea(rscratch1, InternalAddress(last_java_pc));
 787     movptr(java_pc, rscratch1);
 788   }
 789 
 790   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 791 }
 792 
 793 static void pass_arg0(MacroAssembler* masm, Register arg) {
 794   if (c_rarg0 != arg ) {
 795     masm->mov(c_rarg0, arg);
 796   }
 797 }
 798 
 799 static void pass_arg1(MacroAssembler* masm, Register arg) {
 800   if (c_rarg1 != arg ) {
 801     masm->mov(c_rarg1, arg);
 802   }
 803 }
 804 
 805 static void pass_arg2(MacroAssembler* masm, Register arg) {
 806   if (c_rarg2 != arg ) {
 807     masm->mov(c_rarg2, arg);
 808   }
 809 }
 810 
 811 static void pass_arg3(MacroAssembler* masm, Register arg) {
 812   if (c_rarg3 != arg ) {
 813     masm->mov(c_rarg3, arg);
 814   }
 815 }
 816 
 817 void MacroAssembler::stop(const char* msg) {
 818   address rip = pc();
 819   pusha(); // get regs on stack
 820   lea(c_rarg0, ExternalAddress((address) msg));
 821   lea(c_rarg1, InternalAddress(rip));
 822   movq(c_rarg2, rsp); // pass pointer to regs array
 823   andq(rsp, -16); // align stack as required by ABI
 824   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 825   hlt();
 826 }
 827 
 828 void MacroAssembler::warn(const char* msg) {
 829   push(rbp);
 830   movq(rbp, rsp);
 831   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 832   push_CPU_state();   // keeps alignment at 16 bytes
 833   lea(c_rarg0, ExternalAddress((address) msg));
 834   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 835   pop_CPU_state();
 836   mov(rsp, rbp);
 837   pop(rbp);
 838 }
 839 
 840 void MacroAssembler::print_state() {
 841   address rip = pc();
 842   pusha();            // get regs on stack
 843   push(rbp);
 844   movq(rbp, rsp);
 845   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 846   push_CPU_state();   // keeps alignment at 16 bytes
 847 
 848   lea(c_rarg0, InternalAddress(rip));
 849   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 850   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 851 
 852   pop_CPU_state();
 853   mov(rsp, rbp);
 854   pop(rbp);
 855   popa();
 856 }
 857 
 858 #ifndef PRODUCT
 859 extern "C" void findpc(intptr_t x);
 860 #endif
 861 
 862 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 863   // In order to get locks to work, we need to fake a in_VM state
 864   if (ShowMessageBoxOnError) {
 865     JavaThread* thread = JavaThread::current();
 866     JavaThreadState saved_state = thread->thread_state();
 867     thread->set_thread_state(_thread_in_vm);
 868 #ifndef PRODUCT
 869     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 870       ttyLocker ttyl;
 871       BytecodeCounter::print();
 872     }
 873 #endif
 874     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 875     // XXX correct this offset for amd64
 876     // This is the value of eip which points to where verify_oop will return.
 877     if (os::message_box(msg, "Execution stopped, print registers?")) {
 878       print_state64(pc, regs);
 879       BREAKPOINT;
 880       assert(false, "start up GDB");
 881     }
 882     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 883   } else {
 884     ttyLocker ttyl;
 885     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 886                     msg);
 887     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 888   }
 889 }
 890 
 891 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 892   ttyLocker ttyl;
 893   FlagSetting fs(Debugging, true);
 894   tty->print_cr("rip = 0x%016lx", pc);
 895 #ifndef PRODUCT
 896   tty->cr();
 897   findpc(pc);
 898   tty->cr();
 899 #endif
 900 #define PRINT_REG(rax, value) \
 901   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 902   PRINT_REG(rax, regs[15]);
 903   PRINT_REG(rbx, regs[12]);
 904   PRINT_REG(rcx, regs[14]);
 905   PRINT_REG(rdx, regs[13]);
 906   PRINT_REG(rdi, regs[8]);
 907   PRINT_REG(rsi, regs[9]);
 908   PRINT_REG(rbp, regs[10]);
 909   PRINT_REG(rsp, regs[11]);
 910   PRINT_REG(r8 , regs[7]);
 911   PRINT_REG(r9 , regs[6]);
 912   PRINT_REG(r10, regs[5]);
 913   PRINT_REG(r11, regs[4]);
 914   PRINT_REG(r12, regs[3]);
 915   PRINT_REG(r13, regs[2]);
 916   PRINT_REG(r14, regs[1]);
 917   PRINT_REG(r15, regs[0]);
 918 #undef PRINT_REG
 919   // Print some words near top of staack.
 920   int64_t* rsp = (int64_t*) regs[11];
 921   int64_t* dump_sp = rsp;
 922   for (int col1 = 0; col1 < 8; col1++) {
 923     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 924     os::print_location(tty, *dump_sp++);
 925   }
 926   for (int row = 0; row < 25; row++) {
 927     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 928     for (int col = 0; col < 4; col++) {
 929       tty->print(" 0x%016lx", *dump_sp++);
 930     }
 931     tty->cr();
 932   }
 933   // Print some instructions around pc:
 934   Disassembler::decode((address)pc-64, (address)pc);
 935   tty->print_cr("--------");
 936   Disassembler::decode((address)pc, (address)pc+32);
 937 }
 938 
 939 #endif // _LP64
 940 
 941 // Now versions that are common to 32/64 bit
 942 
 943 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 944   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 945 }
 946 
 947 void MacroAssembler::addptr(Register dst, Register src) {
 948   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 949 }
 950 
 951 void MacroAssembler::addptr(Address dst, Register src) {
 952   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 953 }
 954 
 955 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 956   if (reachable(src)) {
 957     Assembler::addsd(dst, as_Address(src));
 958   } else {
 959     lea(rscratch1, src);
 960     Assembler::addsd(dst, Address(rscratch1, 0));
 961   }
 962 }
 963 
 964 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 965   if (reachable(src)) {
 966     addss(dst, as_Address(src));
 967   } else {
 968     lea(rscratch1, src);
 969     addss(dst, Address(rscratch1, 0));
 970   }
 971 }
 972 
 973 void MacroAssembler::align(int modulus) {
 974   align(modulus, offset());
 975 }
 976 
 977 void MacroAssembler::align(int modulus, int target) {
 978   if (target % modulus != 0) {
 979     nop(modulus - (target % modulus));
 980   }
 981 }
 982 
 983 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 984   // Used in sign-masking with aligned address.
 985   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 986   if (reachable(src)) {
 987     Assembler::andpd(dst, as_Address(src));
 988   } else {
 989     lea(rscratch1, src);
 990     Assembler::andpd(dst, Address(rscratch1, 0));
 991   }
 992 }
 993 
 994 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
 995   // Used in sign-masking with aligned address.
 996   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 997   if (reachable(src)) {
 998     Assembler::andps(dst, as_Address(src));
 999   } else {
1000     lea(rscratch1, src);
1001     Assembler::andps(dst, Address(rscratch1, 0));
1002   }
1003 }
1004 
1005 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1006   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1007 }
1008 
1009 void MacroAssembler::atomic_incl(Address counter_addr) {
1010   if (os::is_MP())
1011     lock();
1012   incrementl(counter_addr);
1013 }
1014 
1015 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1016   if (reachable(counter_addr)) {
1017     atomic_incl(as_Address(counter_addr));
1018   } else {
1019     lea(scr, counter_addr);
1020     atomic_incl(Address(scr, 0));
1021   }
1022 }
1023 
1024 #ifdef _LP64
1025 void MacroAssembler::atomic_incq(Address counter_addr) {
1026   if (os::is_MP())
1027     lock();
1028   incrementq(counter_addr);
1029 }
1030 
1031 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1032   if (reachable(counter_addr)) {
1033     atomic_incq(as_Address(counter_addr));
1034   } else {
1035     lea(scr, counter_addr);
1036     atomic_incq(Address(scr, 0));
1037   }
1038 }
1039 #endif
1040 
1041 // Writes to stack successive pages until offset reached to check for
1042 // stack overflow + shadow pages.  This clobbers tmp.
1043 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1044   movptr(tmp, rsp);
1045   // Bang stack for total size given plus shadow page size.
1046   // Bang one page at a time because large size can bang beyond yellow and
1047   // red zones.
1048   Label loop;
1049   bind(loop);
1050   movl(Address(tmp, (-os::vm_page_size())), size );
1051   subptr(tmp, os::vm_page_size());
1052   subl(size, os::vm_page_size());
1053   jcc(Assembler::greater, loop);
1054 
1055   // Bang down shadow pages too.
1056   // At this point, (tmp-0) is the last address touched, so don't
1057   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1058   // was post-decremented.)  Skip this address by starting at i=1, and
1059   // touch a few more pages below.  N.B.  It is important to touch all
1060   // the way down to and including i=StackShadowPages.
1061   for (int i = 1; i < StackShadowPages; i++) {
1062     // this could be any sized move but this is can be a debugging crumb
1063     // so the bigger the better.
1064     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1065   }
1066 }
1067 
1068 int MacroAssembler::biased_locking_enter(Register lock_reg,
1069                                          Register obj_reg,
1070                                          Register swap_reg,
1071                                          Register tmp_reg,
1072                                          bool swap_reg_contains_mark,
1073                                          Label& done,
1074                                          Label* slow_case,
1075                                          BiasedLockingCounters* counters) {
1076   assert(UseBiasedLocking, "why call this otherwise?");
1077   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1078   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1079   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1080   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1081   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1082   Address saved_mark_addr(lock_reg, 0);
1083 
1084   if (PrintBiasedLockingStatistics && counters == NULL) {
1085     counters = BiasedLocking::counters();
1086   }
1087   // Biased locking
1088   // See whether the lock is currently biased toward our thread and
1089   // whether the epoch is still valid
1090   // Note that the runtime guarantees sufficient alignment of JavaThread
1091   // pointers to allow age to be placed into low bits
1092   // First check to see whether biasing is even enabled for this object
1093   Label cas_label;
1094   int null_check_offset = -1;
1095   if (!swap_reg_contains_mark) {
1096     null_check_offset = offset();
1097     movptr(swap_reg, mark_addr);
1098   }
1099   movptr(tmp_reg, swap_reg);
1100   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1101   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1102   jcc(Assembler::notEqual, cas_label);
1103   // The bias pattern is present in the object's header. Need to check
1104   // whether the bias owner and the epoch are both still current.
1105 #ifndef _LP64
1106   // Note that because there is no current thread register on x86_32 we
1107   // need to store off the mark word we read out of the object to
1108   // avoid reloading it and needing to recheck invariants below. This
1109   // store is unfortunate but it makes the overall code shorter and
1110   // simpler.
1111   movptr(saved_mark_addr, swap_reg);
1112 #endif
1113   if (swap_reg_contains_mark) {
1114     null_check_offset = offset();
1115   }
1116   load_prototype_header(tmp_reg, obj_reg);
1117 #ifdef _LP64
1118   orptr(tmp_reg, r15_thread);
1119   xorptr(tmp_reg, swap_reg);
1120   Register header_reg = tmp_reg;
1121 #else
1122   xorptr(tmp_reg, swap_reg);
1123   get_thread(swap_reg);
1124   xorptr(swap_reg, tmp_reg);
1125   Register header_reg = swap_reg;
1126 #endif
1127   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1128   if (counters != NULL) {
1129     cond_inc32(Assembler::zero,
1130                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1131   }
1132   jcc(Assembler::equal, done);
1133 
1134   Label try_revoke_bias;
1135   Label try_rebias;
1136 
1137   // At this point we know that the header has the bias pattern and
1138   // that we are not the bias owner in the current epoch. We need to
1139   // figure out more details about the state of the header in order to
1140   // know what operations can be legally performed on the object's
1141   // header.
1142 
1143   // If the low three bits in the xor result aren't clear, that means
1144   // the prototype header is no longer biased and we have to revoke
1145   // the bias on this object.
1146   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1147   jccb(Assembler::notZero, try_revoke_bias);
1148 
1149   // Biasing is still enabled for this data type. See whether the
1150   // epoch of the current bias is still valid, meaning that the epoch
1151   // bits of the mark word are equal to the epoch bits of the
1152   // prototype header. (Note that the prototype header's epoch bits
1153   // only change at a safepoint.) If not, attempt to rebias the object
1154   // toward the current thread. Note that we must be absolutely sure
1155   // that the current epoch is invalid in order to do this because
1156   // otherwise the manipulations it performs on the mark word are
1157   // illegal.
1158   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1159   jccb(Assembler::notZero, try_rebias);
1160 
1161   // The epoch of the current bias is still valid but we know nothing
1162   // about the owner; it might be set or it might be clear. Try to
1163   // acquire the bias of the object using an atomic operation. If this
1164   // fails we will go in to the runtime to revoke the object's bias.
1165   // Note that we first construct the presumed unbiased header so we
1166   // don't accidentally blow away another thread's valid bias.
1167   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1168   andptr(swap_reg,
1169          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1170 #ifdef _LP64
1171   movptr(tmp_reg, swap_reg);
1172   orptr(tmp_reg, r15_thread);
1173 #else
1174   get_thread(tmp_reg);
1175   orptr(tmp_reg, swap_reg);
1176 #endif
1177   if (os::is_MP()) {
1178     lock();
1179   }
1180   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1181   // If the biasing toward our thread failed, this means that
1182   // another thread succeeded in biasing it toward itself and we
1183   // need to revoke that bias. The revocation will occur in the
1184   // interpreter runtime in the slow case.
1185   if (counters != NULL) {
1186     cond_inc32(Assembler::zero,
1187                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1188   }
1189   if (slow_case != NULL) {
1190     jcc(Assembler::notZero, *slow_case);
1191   }
1192   jmp(done);
1193 
1194   bind(try_rebias);
1195   // At this point we know the epoch has expired, meaning that the
1196   // current "bias owner", if any, is actually invalid. Under these
1197   // circumstances _only_, we are allowed to use the current header's
1198   // value as the comparison value when doing the cas to acquire the
1199   // bias in the current epoch. In other words, we allow transfer of
1200   // the bias from one thread to another directly in this situation.
1201   //
1202   // FIXME: due to a lack of registers we currently blow away the age
1203   // bits in this situation. Should attempt to preserve them.
1204   load_prototype_header(tmp_reg, obj_reg);
1205 #ifdef _LP64
1206   orptr(tmp_reg, r15_thread);
1207 #else
1208   get_thread(swap_reg);
1209   orptr(tmp_reg, swap_reg);
1210   movptr(swap_reg, saved_mark_addr);
1211 #endif
1212   if (os::is_MP()) {
1213     lock();
1214   }
1215   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1216   // If the biasing toward our thread failed, then another thread
1217   // succeeded in biasing it toward itself and we need to revoke that
1218   // bias. The revocation will occur in the runtime in the slow case.
1219   if (counters != NULL) {
1220     cond_inc32(Assembler::zero,
1221                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1222   }
1223   if (slow_case != NULL) {
1224     jcc(Assembler::notZero, *slow_case);
1225   }
1226   jmp(done);
1227 
1228   bind(try_revoke_bias);
1229   // The prototype mark in the klass doesn't have the bias bit set any
1230   // more, indicating that objects of this data type are not supposed
1231   // to be biased any more. We are going to try to reset the mark of
1232   // this object to the prototype value and fall through to the
1233   // CAS-based locking scheme. Note that if our CAS fails, it means
1234   // that another thread raced us for the privilege of revoking the
1235   // bias of this particular object, so it's okay to continue in the
1236   // normal locking code.
1237   //
1238   // FIXME: due to a lack of registers we currently blow away the age
1239   // bits in this situation. Should attempt to preserve them.
1240   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1241   load_prototype_header(tmp_reg, obj_reg);
1242   if (os::is_MP()) {
1243     lock();
1244   }
1245   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1246   // Fall through to the normal CAS-based lock, because no matter what
1247   // the result of the above CAS, some thread must have succeeded in
1248   // removing the bias bit from the object's header.
1249   if (counters != NULL) {
1250     cond_inc32(Assembler::zero,
1251                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1252   }
1253 
1254   bind(cas_label);
1255 
1256   return null_check_offset;
1257 }
1258 
1259 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1260   assert(UseBiasedLocking, "why call this otherwise?");
1261 
1262   // Check for biased locking unlock case, which is a no-op
1263   // Note: we do not have to check the thread ID for two reasons.
1264   // First, the interpreter checks for IllegalMonitorStateException at
1265   // a higher level. Second, if the bias was revoked while we held the
1266   // lock, the object could not be rebiased toward another thread, so
1267   // the bias bit would be clear.
1268   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1269   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1270   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1271   jcc(Assembler::equal, done);
1272 }
1273 
1274 #ifdef COMPILER2
1275 
1276 #if INCLUDE_RTM_OPT
1277 
1278 // Update rtm_counters based on abort status
1279 // input: abort_status
1280 //        rtm_counters (RTMLockingCounters*)
1281 // flags are killed
1282 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1283 
1284   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1285   if (PrintPreciseRTMLockingStatistics) {
1286     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1287       Label check_abort;
1288       testl(abort_status, (1<<i));
1289       jccb(Assembler::equal, check_abort);
1290       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1291       bind(check_abort);
1292     }
1293   }
1294 }
1295 
1296 // Branch if (random & (count-1) != 0), count is 2^n
1297 // tmp, scr and flags are killed
1298 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1299   assert(tmp == rax, "");
1300   assert(scr == rdx, "");
1301   rdtsc(); // modifies EDX:EAX
1302   andptr(tmp, count-1);
1303   jccb(Assembler::notZero, brLabel);
1304 }
1305 
1306 // Perform abort ratio calculation, set no_rtm bit if high ratio
1307 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1308 // tmpReg, rtm_counters_Reg and flags are killed
1309 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1310                                                  Register rtm_counters_Reg,
1311                                                  RTMLockingCounters* rtm_counters,
1312                                                  Metadata* method_data) {
1313   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1314 
1315   if (RTMLockingCalculationDelay > 0) {
1316     // Delay calculation
1317     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1318     testptr(tmpReg, tmpReg);
1319     jccb(Assembler::equal, L_done);
1320   }
1321   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1322   //   Aborted transactions = abort_count * 100
1323   //   All transactions = total_count *  RTMTotalCountIncrRate
1324   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1325 
1326   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1327   cmpptr(tmpReg, RTMAbortThreshold);
1328   jccb(Assembler::below, L_check_always_rtm2);
1329   imulptr(tmpReg, tmpReg, 100);
1330 
1331   Register scrReg = rtm_counters_Reg;
1332   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1333   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1334   imulptr(scrReg, scrReg, RTMAbortRatio);
1335   cmpptr(tmpReg, scrReg);
1336   jccb(Assembler::below, L_check_always_rtm1);
1337   if (method_data != NULL) {
1338     // set rtm_state to "no rtm" in MDO
1339     mov_metadata(tmpReg, method_data);
1340     if (os::is_MP()) {
1341       lock();
1342     }
1343     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1344   }
1345   jmpb(L_done);
1346   bind(L_check_always_rtm1);
1347   // Reload RTMLockingCounters* address
1348   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1349   bind(L_check_always_rtm2);
1350   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1351   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1352   jccb(Assembler::below, L_done);
1353   if (method_data != NULL) {
1354     // set rtm_state to "always rtm" in MDO
1355     mov_metadata(tmpReg, method_data);
1356     if (os::is_MP()) {
1357       lock();
1358     }
1359     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1360   }
1361   bind(L_done);
1362 }
1363 
1364 // Update counters and perform abort ratio calculation
1365 // input:  abort_status_Reg
1366 // rtm_counters_Reg, flags are killed
1367 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1368                                    Register rtm_counters_Reg,
1369                                    RTMLockingCounters* rtm_counters,
1370                                    Metadata* method_data,
1371                                    bool profile_rtm) {
1372 
1373   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1374   // update rtm counters based on rax value at abort
1375   // reads abort_status_Reg, updates flags
1376   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1377   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1378   if (profile_rtm) {
1379     // Save abort status because abort_status_Reg is used by following code.
1380     if (RTMRetryCount > 0) {
1381       push(abort_status_Reg);
1382     }
1383     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1384     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1385     // restore abort status
1386     if (RTMRetryCount > 0) {
1387       pop(abort_status_Reg);
1388     }
1389   }
1390 }
1391 
1392 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1393 // inputs: retry_count_Reg
1394 //       : abort_status_Reg
1395 // output: retry_count_Reg decremented by 1
1396 // flags are killed
1397 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1398   Label doneRetry;
1399   assert(abort_status_Reg == rax, "");
1400   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1401   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1402   // if reason is in 0x6 and retry count != 0 then retry
1403   andptr(abort_status_Reg, 0x6);
1404   jccb(Assembler::zero, doneRetry);
1405   testl(retry_count_Reg, retry_count_Reg);
1406   jccb(Assembler::zero, doneRetry);
1407   pause();
1408   decrementl(retry_count_Reg);
1409   jmp(retryLabel);
1410   bind(doneRetry);
1411 }
1412 
1413 // Spin and retry if lock is busy,
1414 // inputs: box_Reg (monitor address)
1415 //       : retry_count_Reg
1416 // output: retry_count_Reg decremented by 1
1417 //       : clear z flag if retry count exceeded
1418 // tmp_Reg, scr_Reg, flags are killed
1419 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1420                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1421   Label SpinLoop, SpinExit, doneRetry;
1422   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1423 
1424   testl(retry_count_Reg, retry_count_Reg);
1425   jccb(Assembler::zero, doneRetry);
1426   decrementl(retry_count_Reg);
1427   movptr(scr_Reg, RTMSpinLoopCount);
1428 
1429   bind(SpinLoop);
1430   pause();
1431   decrementl(scr_Reg);
1432   jccb(Assembler::lessEqual, SpinExit);
1433   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1434   testptr(tmp_Reg, tmp_Reg);
1435   jccb(Assembler::notZero, SpinLoop);
1436 
1437   bind(SpinExit);
1438   jmp(retryLabel);
1439   bind(doneRetry);
1440   incrementl(retry_count_Reg); // clear z flag
1441 }
1442 
1443 // Use RTM for normal stack locks
1444 // Input: objReg (object to lock)
1445 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1446                                        Register retry_on_abort_count_Reg,
1447                                        RTMLockingCounters* stack_rtm_counters,
1448                                        Metadata* method_data, bool profile_rtm,
1449                                        Label& DONE_LABEL, Label& IsInflated) {
1450   assert(UseRTMForStackLocks, "why call this otherwise?");
1451   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1452   assert(tmpReg == rax, "");
1453   assert(scrReg == rdx, "");
1454   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1455 
1456   if (RTMRetryCount > 0) {
1457     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1458     bind(L_rtm_retry);
1459   }
1460   movptr(tmpReg, Address(objReg, 0));
1461   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1462   jcc(Assembler::notZero, IsInflated);
1463 
1464   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1465     Label L_noincrement;
1466     if (RTMTotalCountIncrRate > 1) {
1467       // tmpReg, scrReg and flags are killed
1468       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1469     }
1470     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1471     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1472     bind(L_noincrement);
1473   }
1474   xbegin(L_on_abort);
1475   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1476   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1477   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1478   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1479 
1480   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1481   if (UseRTMXendForLockBusy) {
1482     xend();
1483     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1484     jmp(L_decrement_retry);
1485   }
1486   else {
1487     xabort(0);
1488   }
1489   bind(L_on_abort);
1490   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1491     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1492   }
1493   bind(L_decrement_retry);
1494   if (RTMRetryCount > 0) {
1495     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1496     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1497   }
1498 }
1499 
1500 // Use RTM for inflating locks
1501 // inputs: objReg (object to lock)
1502 //         boxReg (on-stack box address (displaced header location) - KILLED)
1503 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1504 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1505                                           Register scrReg, Register retry_on_busy_count_Reg,
1506                                           Register retry_on_abort_count_Reg,
1507                                           RTMLockingCounters* rtm_counters,
1508                                           Metadata* method_data, bool profile_rtm,
1509                                           Label& DONE_LABEL) {
1510   assert(UseRTMLocking, "why call this otherwise?");
1511   assert(tmpReg == rax, "");
1512   assert(scrReg == rdx, "");
1513   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1514   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1515 
1516   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1517   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1518   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1519 
1520   if (RTMRetryCount > 0) {
1521     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1522     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1523     bind(L_rtm_retry);
1524   }
1525   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1526     Label L_noincrement;
1527     if (RTMTotalCountIncrRate > 1) {
1528       // tmpReg, scrReg and flags are killed
1529       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1530     }
1531     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1532     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1533     bind(L_noincrement);
1534   }
1535   xbegin(L_on_abort);
1536   movptr(tmpReg, Address(objReg, 0));
1537   movptr(tmpReg, Address(tmpReg, owner_offset));
1538   testptr(tmpReg, tmpReg);
1539   jcc(Assembler::zero, DONE_LABEL);
1540   if (UseRTMXendForLockBusy) {
1541     xend();
1542     jmp(L_decrement_retry);
1543   }
1544   else {
1545     xabort(0);
1546   }
1547   bind(L_on_abort);
1548   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1549   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1550     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1551   }
1552   if (RTMRetryCount > 0) {
1553     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1554     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1555   }
1556 
1557   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1558   testptr(tmpReg, tmpReg) ;
1559   jccb(Assembler::notZero, L_decrement_retry) ;
1560 
1561   // Appears unlocked - try to swing _owner from null to non-null.
1562   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1563 #ifdef _LP64
1564   Register threadReg = r15_thread;
1565 #else
1566   get_thread(scrReg);
1567   Register threadReg = scrReg;
1568 #endif
1569   if (os::is_MP()) {
1570     lock();
1571   }
1572   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1573 
1574   if (RTMRetryCount > 0) {
1575     // success done else retry
1576     jccb(Assembler::equal, DONE_LABEL) ;
1577     bind(L_decrement_retry);
1578     // Spin and retry if lock is busy.
1579     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1580   }
1581   else {
1582     bind(L_decrement_retry);
1583   }
1584 }
1585 
1586 #endif //  INCLUDE_RTM_OPT
1587 
1588 // Fast_Lock and Fast_Unlock used by C2
1589 
1590 // Because the transitions from emitted code to the runtime
1591 // monitorenter/exit helper stubs are so slow it's critical that
1592 // we inline both the stack-locking fast-path and the inflated fast path.
1593 //
1594 // See also: cmpFastLock and cmpFastUnlock.
1595 //
1596 // What follows is a specialized inline transliteration of the code
1597 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1598 // another option would be to emit TrySlowEnter and TrySlowExit methods
1599 // at startup-time.  These methods would accept arguments as
1600 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1601 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1602 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1603 // In practice, however, the # of lock sites is bounded and is usually small.
1604 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1605 // if the processor uses simple bimodal branch predictors keyed by EIP
1606 // Since the helper routines would be called from multiple synchronization
1607 // sites.
1608 //
1609 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1610 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1611 // to those specialized methods.  That'd give us a mostly platform-independent
1612 // implementation that the JITs could optimize and inline at their pleasure.
1613 // Done correctly, the only time we'd need to cross to native could would be
1614 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1615 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1616 // (b) explicit barriers or fence operations.
1617 //
1618 // TODO:
1619 //
1620 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1621 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1622 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1623 //    the lock operators would typically be faster than reifying Self.
1624 //
1625 // *  Ideally I'd define the primitives as:
1626 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1627 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1628 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1629 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1630 //    Furthermore the register assignments are overconstrained, possibly resulting in
1631 //    sub-optimal code near the synchronization site.
1632 //
1633 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1634 //    Alternately, use a better sp-proximity test.
1635 //
1636 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1637 //    Either one is sufficient to uniquely identify a thread.
1638 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1639 //
1640 // *  Intrinsify notify() and notifyAll() for the common cases where the
1641 //    object is locked by the calling thread but the waitlist is empty.
1642 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1643 //
1644 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1645 //    But beware of excessive branch density on AMD Opterons.
1646 //
1647 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1648 //    or failure of the fast-path.  If the fast-path fails then we pass
1649 //    control to the slow-path, typically in C.  In Fast_Lock and
1650 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1651 //    will emit a conditional branch immediately after the node.
1652 //    So we have branches to branches and lots of ICC.ZF games.
1653 //    Instead, it might be better to have C2 pass a "FailureLabel"
1654 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1655 //    will drop through the node.  ICC.ZF is undefined at exit.
1656 //    In the case of failure, the node will branch directly to the
1657 //    FailureLabel
1658 
1659 
1660 // obj: object to lock
1661 // box: on-stack box address (displaced header location) - KILLED
1662 // rax,: tmp -- KILLED
1663 // scr: tmp -- KILLED
1664 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1665                                Register scrReg, Register cx1Reg, Register cx2Reg,
1666                                BiasedLockingCounters* counters,
1667                                RTMLockingCounters* rtm_counters,
1668                                RTMLockingCounters* stack_rtm_counters,
1669                                Metadata* method_data,
1670                                bool use_rtm, bool profile_rtm) {
1671   // Ensure the register assignents are disjoint
1672   assert(tmpReg == rax, "");
1673 
1674   if (use_rtm) {
1675     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1676   } else {
1677     assert(cx1Reg == noreg, "");
1678     assert(cx2Reg == noreg, "");
1679     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1680   }
1681 
1682   if (counters != NULL) {
1683     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1684   }
1685   if (EmitSync & 1) {
1686       // set box->dhw = markOopDesc::unused_mark()
1687       // Force all sync thru slow-path: slow_enter() and slow_exit()
1688       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1689       cmpptr (rsp, (int32_t)NULL_WORD);
1690   } else {
1691     // Possible cases that we'll encounter in fast_lock
1692     // ------------------------------------------------
1693     // * Inflated
1694     //    -- unlocked
1695     //    -- Locked
1696     //       = by self
1697     //       = by other
1698     // * biased
1699     //    -- by Self
1700     //    -- by other
1701     // * neutral
1702     // * stack-locked
1703     //    -- by self
1704     //       = sp-proximity test hits
1705     //       = sp-proximity test generates false-negative
1706     //    -- by other
1707     //
1708 
1709     Label IsInflated, DONE_LABEL;
1710 
1711     // it's stack-locked, biased or neutral
1712     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1713     // order to reduce the number of conditional branches in the most common cases.
1714     // Beware -- there's a subtle invariant that fetch of the markword
1715     // at [FETCH], below, will never observe a biased encoding (*101b).
1716     // If this invariant is not held we risk exclusion (safety) failure.
1717     if (UseBiasedLocking && !UseOptoBiasInlining) {
1718       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1719     }
1720 
1721 #if INCLUDE_RTM_OPT
1722     if (UseRTMForStackLocks && use_rtm) {
1723       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1724                         stack_rtm_counters, method_data, profile_rtm,
1725                         DONE_LABEL, IsInflated);
1726     }
1727 #endif // INCLUDE_RTM_OPT
1728 
1729     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1730     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1731     jccb(Assembler::notZero, IsInflated);
1732 
1733     // Attempt stack-locking ...
1734     orptr (tmpReg, markOopDesc::unlocked_value);
1735     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1736     if (os::is_MP()) {
1737       lock();
1738     }
1739     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1740     if (counters != NULL) {
1741       cond_inc32(Assembler::equal,
1742                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1743     }
1744     jcc(Assembler::equal, DONE_LABEL);           // Success
1745 
1746     // Recursive locking.
1747     // The object is stack-locked: markword contains stack pointer to BasicLock.
1748     // Locked by current thread if difference with current SP is less than one page.
1749     subptr(tmpReg, rsp);
1750     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1751     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1752     movptr(Address(boxReg, 0), tmpReg);
1753     if (counters != NULL) {
1754       cond_inc32(Assembler::equal,
1755                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1756     }
1757     jmp(DONE_LABEL);
1758 
1759     bind(IsInflated);
1760     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1761 
1762 #if INCLUDE_RTM_OPT
1763     // Use the same RTM locking code in 32- and 64-bit VM.
1764     if (use_rtm) {
1765       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1766                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1767     } else {
1768 #endif // INCLUDE_RTM_OPT
1769 
1770 #ifndef _LP64
1771     // The object is inflated.
1772 
1773     // boxReg refers to the on-stack BasicLock in the current frame.
1774     // We'd like to write:
1775     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1776     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1777     // additional latency as we have another ST in the store buffer that must drain.
1778 
1779     if (EmitSync & 8192) {
1780        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1781        get_thread (scrReg);
1782        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1783        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1784        if (os::is_MP()) {
1785          lock();
1786        }
1787        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1788     } else
1789     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1790        // register juggle because we need tmpReg for cmpxchgptr below
1791        movptr(scrReg, boxReg);
1792        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1793 
1794        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1795        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1796           // prefetchw [eax + Offset(_owner)-2]
1797           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1798        }
1799 
1800        if ((EmitSync & 64) == 0) {
1801          // Optimistic form: consider XORL tmpReg,tmpReg
1802          movptr(tmpReg, NULL_WORD);
1803        } else {
1804          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1805          // Test-And-CAS instead of CAS
1806          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1807          testptr(tmpReg, tmpReg);                   // Locked ?
1808          jccb  (Assembler::notZero, DONE_LABEL);
1809        }
1810 
1811        // Appears unlocked - try to swing _owner from null to non-null.
1812        // Ideally, I'd manifest "Self" with get_thread and then attempt
1813        // to CAS the register containing Self into m->Owner.
1814        // But we don't have enough registers, so instead we can either try to CAS
1815        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1816        // we later store "Self" into m->Owner.  Transiently storing a stack address
1817        // (rsp or the address of the box) into  m->owner is harmless.
1818        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1819        if (os::is_MP()) {
1820          lock();
1821        }
1822        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1823        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1824        // If we weren't able to swing _owner from NULL to the BasicLock
1825        // then take the slow path.
1826        jccb  (Assembler::notZero, DONE_LABEL);
1827        // update _owner from BasicLock to thread
1828        get_thread (scrReg);                    // beware: clobbers ICCs
1829        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1830        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1831 
1832        // If the CAS fails we can either retry or pass control to the slow-path.
1833        // We use the latter tactic.
1834        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1835        // If the CAS was successful ...
1836        //   Self has acquired the lock
1837        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1838        // Intentional fall-through into DONE_LABEL ...
1839     } else {
1840        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1841        movptr(boxReg, tmpReg);
1842 
1843        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1844        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1845           // prefetchw [eax + Offset(_owner)-2]
1846           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1847        }
1848 
1849        if ((EmitSync & 64) == 0) {
1850          // Optimistic form
1851          xorptr  (tmpReg, tmpReg);
1852        } else {
1853          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1854          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1855          testptr(tmpReg, tmpReg);                   // Locked ?
1856          jccb  (Assembler::notZero, DONE_LABEL);
1857        }
1858 
1859        // Appears unlocked - try to swing _owner from null to non-null.
1860        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1861        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1862        get_thread (scrReg);
1863        if (os::is_MP()) {
1864          lock();
1865        }
1866        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1867 
1868        // If the CAS fails we can either retry or pass control to the slow-path.
1869        // We use the latter tactic.
1870        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1871        // If the CAS was successful ...
1872        //   Self has acquired the lock
1873        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1874        // Intentional fall-through into DONE_LABEL ...
1875     }
1876 #else // _LP64
1877     // It's inflated
1878     movq(scrReg, tmpReg);
1879     xorq(tmpReg, tmpReg);
1880 
1881     if (os::is_MP()) {
1882       lock();
1883     }
1884     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1885     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1886     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1887     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1888     // Intentional fall-through into DONE_LABEL ...
1889     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1890 #endif // _LP64
1891 #if INCLUDE_RTM_OPT
1892     } // use_rtm()
1893 #endif
1894     // DONE_LABEL is a hot target - we'd really like to place it at the
1895     // start of cache line by padding with NOPs.
1896     // See the AMD and Intel software optimization manuals for the
1897     // most efficient "long" NOP encodings.
1898     // Unfortunately none of our alignment mechanisms suffice.
1899     bind(DONE_LABEL);
1900 
1901     // At DONE_LABEL the icc ZFlag is set as follows ...
1902     // Fast_Unlock uses the same protocol.
1903     // ZFlag == 1 -> Success
1904     // ZFlag == 0 -> Failure - force control through the slow-path
1905   }
1906 }
1907 
1908 // obj: object to unlock
1909 // box: box address (displaced header location), killed.  Must be EAX.
1910 // tmp: killed, cannot be obj nor box.
1911 //
1912 // Some commentary on balanced locking:
1913 //
1914 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1915 // Methods that don't have provably balanced locking are forced to run in the
1916 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1917 // The interpreter provides two properties:
1918 // I1:  At return-time the interpreter automatically and quietly unlocks any
1919 //      objects acquired the current activation (frame).  Recall that the
1920 //      interpreter maintains an on-stack list of locks currently held by
1921 //      a frame.
1922 // I2:  If a method attempts to unlock an object that is not held by the
1923 //      the frame the interpreter throws IMSX.
1924 //
1925 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1926 // B() doesn't have provably balanced locking so it runs in the interpreter.
1927 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1928 // is still locked by A().
1929 //
1930 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1931 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1932 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1933 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1934 // Arguably given that the spec legislates the JNI case as undefined our implementation
1935 // could reasonably *avoid* checking owner in Fast_Unlock().
1936 // In the interest of performance we elide m->Owner==Self check in unlock.
1937 // A perfectly viable alternative is to elide the owner check except when
1938 // Xcheck:jni is enabled.
1939 
1940 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1941   assert(boxReg == rax, "");
1942   assert_different_registers(objReg, boxReg, tmpReg);
1943 
1944   if (EmitSync & 4) {
1945     // Disable - inhibit all inlining.  Force control through the slow-path
1946     cmpptr (rsp, 0);
1947   } else {
1948     Label DONE_LABEL, Stacked, CheckSucc;
1949 
1950     // Critically, the biased locking test must have precedence over
1951     // and appear before the (box->dhw == 0) recursive stack-lock test.
1952     if (UseBiasedLocking && !UseOptoBiasInlining) {
1953        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1954     }
1955 
1956 #if INCLUDE_RTM_OPT
1957     if (UseRTMForStackLocks && use_rtm) {
1958       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1959       Label L_regular_unlock;
1960       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1961       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1962       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1963       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1964       xend();                                       // otherwise end...
1965       jmp(DONE_LABEL);                              // ... and we're done
1966       bind(L_regular_unlock);
1967     }
1968 #endif
1969 
1970     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1971     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1972     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
1973     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
1974     jccb  (Assembler::zero, Stacked);
1975 
1976     // It's inflated.
1977 #if INCLUDE_RTM_OPT
1978     if (use_rtm) {
1979       Label L_regular_inflated_unlock;
1980       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1981       movptr(boxReg, Address(tmpReg, owner_offset));
1982       testptr(boxReg, boxReg);
1983       jccb(Assembler::notZero, L_regular_inflated_unlock);
1984       xend();
1985       jmpb(DONE_LABEL);
1986       bind(L_regular_inflated_unlock);
1987     }
1988 #endif
1989 
1990     // Despite our balanced locking property we still check that m->_owner == Self
1991     // as java routines or native JNI code called by this thread might
1992     // have released the lock.
1993     // Refer to the comments in synchronizer.cpp for how we might encode extra
1994     // state in _succ so we can avoid fetching EntryList|cxq.
1995     //
1996     // I'd like to add more cases in fast_lock() and fast_unlock() --
1997     // such as recursive enter and exit -- but we have to be wary of
1998     // I$ bloat, T$ effects and BP$ effects.
1999     //
2000     // If there's no contention try a 1-0 exit.  That is, exit without
2001     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2002     // we detect and recover from the race that the 1-0 exit admits.
2003     //
2004     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2005     // before it STs null into _owner, releasing the lock.  Updates
2006     // to data protected by the critical section must be visible before
2007     // we drop the lock (and thus before any other thread could acquire
2008     // the lock and observe the fields protected by the lock).
2009     // IA32's memory-model is SPO, so STs are ordered with respect to
2010     // each other and there's no need for an explicit barrier (fence).
2011     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2012 #ifndef _LP64
2013     get_thread (boxReg);
2014     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2015       // prefetchw [ebx + Offset(_owner)-2]
2016       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2017     }
2018 
2019     // Note that we could employ various encoding schemes to reduce
2020     // the number of loads below (currently 4) to just 2 or 3.
2021     // Refer to the comments in synchronizer.cpp.
2022     // In practice the chain of fetches doesn't seem to impact performance, however.
2023     xorptr(boxReg, boxReg);
2024     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2025        // Attempt to reduce branch density - AMD's branch predictor.
2026        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2027        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2028        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2029        jccb  (Assembler::notZero, DONE_LABEL);
2030        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2031        jmpb  (DONE_LABEL);
2032     } else {
2033        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2034        jccb  (Assembler::notZero, DONE_LABEL);
2035        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2036        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2037        jccb  (Assembler::notZero, CheckSucc);
2038        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2039        jmpb  (DONE_LABEL);
2040     }
2041 
2042     // The Following code fragment (EmitSync & 65536) improves the performance of
2043     // contended applications and contended synchronization microbenchmarks.
2044     // Unfortunately the emission of the code - even though not executed - causes regressions
2045     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2046     // with an equal number of never-executed NOPs results in the same regression.
2047     // We leave it off by default.
2048 
2049     if ((EmitSync & 65536) != 0) {
2050        Label LSuccess, LGoSlowPath ;
2051 
2052        bind  (CheckSucc);
2053 
2054        // Optional pre-test ... it's safe to elide this
2055        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2056        jccb(Assembler::zero, LGoSlowPath);
2057 
2058        // We have a classic Dekker-style idiom:
2059        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2060        // There are a number of ways to implement the barrier:
2061        // (1) lock:andl &m->_owner, 0
2062        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2063        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2064        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2065        // (2) If supported, an explicit MFENCE is appealing.
2066        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2067        //     particularly if the write-buffer is full as might be the case if
2068        //     if stores closely precede the fence or fence-equivalent instruction.
2069        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2070        //     as the situation has changed with Nehalem and Shanghai.
2071        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2072        //     The $lines underlying the top-of-stack should be in M-state.
2073        //     The locked add instruction is serializing, of course.
2074        // (4) Use xchg, which is serializing
2075        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2076        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2077        //     The integer condition codes will tell us if succ was 0.
2078        //     Since _succ and _owner should reside in the same $line and
2079        //     we just stored into _owner, it's likely that the $line
2080        //     remains in M-state for the lock:orl.
2081        //
2082        // We currently use (3), although it's likely that switching to (2)
2083        // is correct for the future.
2084 
2085        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2086        if (os::is_MP()) {
2087          lock(); addptr(Address(rsp, 0), 0);
2088        }
2089        // Ratify _succ remains non-null
2090        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2091        jccb  (Assembler::notZero, LSuccess);
2092 
2093        xorptr(boxReg, boxReg);                  // box is really EAX
2094        if (os::is_MP()) { lock(); }
2095        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2096        // There's no successor so we tried to regrab the lock with the
2097        // placeholder value. If that didn't work, then another thread
2098        // grabbed the lock so we're done (and exit was a success).
2099        jccb  (Assembler::notEqual, LSuccess);
2100        // Since we're low on registers we installed rsp as a placeholding in _owner.
2101        // Now install Self over rsp.  This is safe as we're transitioning from
2102        // non-null to non=null
2103        get_thread (boxReg);
2104        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2105        // Intentional fall-through into LGoSlowPath ...
2106 
2107        bind  (LGoSlowPath);
2108        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2109        jmpb  (DONE_LABEL);
2110 
2111        bind  (LSuccess);
2112        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2113        jmpb  (DONE_LABEL);
2114     }
2115 
2116     bind (Stacked);
2117     // It's not inflated and it's not recursively stack-locked and it's not biased.
2118     // It must be stack-locked.
2119     // Try to reset the header to displaced header.
2120     // The "box" value on the stack is stable, so we can reload
2121     // and be assured we observe the same value as above.
2122     movptr(tmpReg, Address(boxReg, 0));
2123     if (os::is_MP()) {
2124       lock();
2125     }
2126     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2127     // Intention fall-thru into DONE_LABEL
2128 
2129     // DONE_LABEL is a hot target - we'd really like to place it at the
2130     // start of cache line by padding with NOPs.
2131     // See the AMD and Intel software optimization manuals for the
2132     // most efficient "long" NOP encodings.
2133     // Unfortunately none of our alignment mechanisms suffice.
2134     if ((EmitSync & 65536) == 0) {
2135        bind (CheckSucc);
2136     }
2137 #else // _LP64
2138     // It's inflated
2139     if (EmitSync & 1024) {
2140       // Emit code to check that _owner == Self
2141       // We could fold the _owner test into subsequent code more efficiently
2142       // than using a stand-alone check, but since _owner checking is off by
2143       // default we don't bother. We also might consider predicating the
2144       // _owner==Self check on Xcheck:jni or running on a debug build.
2145       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2146       xorptr(boxReg, r15_thread);
2147     } else {
2148       xorptr(boxReg, boxReg);
2149     }
2150     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2151     jccb  (Assembler::notZero, DONE_LABEL);
2152     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2153     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2154     jccb  (Assembler::notZero, CheckSucc);
2155     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2156     jmpb  (DONE_LABEL);
2157 
2158     if ((EmitSync & 65536) == 0) {
2159       // Try to avoid passing control into the slow_path ...
2160       Label LSuccess, LGoSlowPath ;
2161       bind  (CheckSucc);
2162 
2163       // The following optional optimization can be elided if necessary
2164       // Effectively: if (succ == null) goto SlowPath
2165       // The code reduces the window for a race, however,
2166       // and thus benefits performance.
2167       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2168       jccb  (Assembler::zero, LGoSlowPath);
2169 
2170       if ((EmitSync & 16) && os::is_MP()) {
2171         orptr(boxReg, boxReg);
2172         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2173       } else {
2174         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2175         if (os::is_MP()) {
2176           // Memory barrier/fence
2177           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2178           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2179           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2180           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2181           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2182           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2183           lock(); addl(Address(rsp, 0), 0);
2184         }
2185       }
2186       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2187       jccb  (Assembler::notZero, LSuccess);
2188 
2189       // Rare inopportune interleaving - race.
2190       // The successor vanished in the small window above.
2191       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2192       // We need to ensure progress and succession.
2193       // Try to reacquire the lock.
2194       // If that fails then the new owner is responsible for succession and this
2195       // thread needs to take no further action and can exit via the fast path (success).
2196       // If the re-acquire succeeds then pass control into the slow path.
2197       // As implemented, this latter mode is horrible because we generated more
2198       // coherence traffic on the lock *and* artifically extended the critical section
2199       // length while by virtue of passing control into the slow path.
2200 
2201       // box is really RAX -- the following CMPXCHG depends on that binding
2202       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2203       movptr(boxReg, (int32_t)NULL_WORD);
2204       if (os::is_MP()) { lock(); }
2205       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2206       // There's no successor so we tried to regrab the lock.
2207       // If that didn't work, then another thread grabbed the
2208       // lock so we're done (and exit was a success).
2209       jccb  (Assembler::notEqual, LSuccess);
2210       // Intentional fall-through into slow-path
2211 
2212       bind  (LGoSlowPath);
2213       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2214       jmpb  (DONE_LABEL);
2215 
2216       bind  (LSuccess);
2217       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2218       jmpb  (DONE_LABEL);
2219     }
2220 
2221     bind  (Stacked);
2222     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2223     if (os::is_MP()) { lock(); }
2224     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2225 
2226     if (EmitSync & 65536) {
2227        bind (CheckSucc);
2228     }
2229 #endif
2230     bind(DONE_LABEL);
2231   }
2232 }
2233 #endif // COMPILER2
2234 
2235 void MacroAssembler::c2bool(Register x) {
2236   // implements x == 0 ? 0 : 1
2237   // note: must only look at least-significant byte of x
2238   //       since C-style booleans are stored in one byte
2239   //       only! (was bug)
2240   andl(x, 0xFF);
2241   setb(Assembler::notZero, x);
2242 }
2243 
2244 // Wouldn't need if AddressLiteral version had new name
2245 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2246   Assembler::call(L, rtype);
2247 }
2248 
2249 void MacroAssembler::call(Register entry) {
2250   Assembler::call(entry);
2251 }
2252 
2253 void MacroAssembler::call(AddressLiteral entry) {
2254   if (reachable(entry)) {
2255     Assembler::call_literal(entry.target(), entry.rspec());
2256   } else {
2257     lea(rscratch1, entry);
2258     Assembler::call(rscratch1);
2259   }
2260 }
2261 
2262 void MacroAssembler::ic_call(address entry) {
2263   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2264   movptr(rax, (intptr_t)Universe::non_oop_word());
2265   call(AddressLiteral(entry, rh));
2266 }
2267 
2268 // Implementation of call_VM versions
2269 
2270 void MacroAssembler::call_VM(Register oop_result,
2271                              address entry_point,
2272                              bool check_exceptions) {
2273   Label C, E;
2274   call(C, relocInfo::none);
2275   jmp(E);
2276 
2277   bind(C);
2278   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2279   ret(0);
2280 
2281   bind(E);
2282 }
2283 
2284 void MacroAssembler::call_VM(Register oop_result,
2285                              address entry_point,
2286                              Register arg_1,
2287                              bool check_exceptions) {
2288   Label C, E;
2289   call(C, relocInfo::none);
2290   jmp(E);
2291 
2292   bind(C);
2293   pass_arg1(this, arg_1);
2294   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2295   ret(0);
2296 
2297   bind(E);
2298 }
2299 
2300 void MacroAssembler::call_VM(Register oop_result,
2301                              address entry_point,
2302                              Register arg_1,
2303                              Register arg_2,
2304                              bool check_exceptions) {
2305   Label C, E;
2306   call(C, relocInfo::none);
2307   jmp(E);
2308 
2309   bind(C);
2310 
2311   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2312 
2313   pass_arg2(this, arg_2);
2314   pass_arg1(this, arg_1);
2315   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2316   ret(0);
2317 
2318   bind(E);
2319 }
2320 
2321 void MacroAssembler::call_VM(Register oop_result,
2322                              address entry_point,
2323                              Register arg_1,
2324                              Register arg_2,
2325                              Register arg_3,
2326                              bool check_exceptions) {
2327   Label C, E;
2328   call(C, relocInfo::none);
2329   jmp(E);
2330 
2331   bind(C);
2332 
2333   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2334   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2335   pass_arg3(this, arg_3);
2336 
2337   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2338   pass_arg2(this, arg_2);
2339 
2340   pass_arg1(this, arg_1);
2341   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2342   ret(0);
2343 
2344   bind(E);
2345 }
2346 
2347 void MacroAssembler::call_VM(Register oop_result,
2348                              Register last_java_sp,
2349                              address entry_point,
2350                              int number_of_arguments,
2351                              bool check_exceptions) {
2352   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2353   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2354 }
2355 
2356 void MacroAssembler::call_VM(Register oop_result,
2357                              Register last_java_sp,
2358                              address entry_point,
2359                              Register arg_1,
2360                              bool check_exceptions) {
2361   pass_arg1(this, arg_1);
2362   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2363 }
2364 
2365 void MacroAssembler::call_VM(Register oop_result,
2366                              Register last_java_sp,
2367                              address entry_point,
2368                              Register arg_1,
2369                              Register arg_2,
2370                              bool check_exceptions) {
2371 
2372   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2373   pass_arg2(this, arg_2);
2374   pass_arg1(this, arg_1);
2375   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2376 }
2377 
2378 void MacroAssembler::call_VM(Register oop_result,
2379                              Register last_java_sp,
2380                              address entry_point,
2381                              Register arg_1,
2382                              Register arg_2,
2383                              Register arg_3,
2384                              bool check_exceptions) {
2385   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2386   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2387   pass_arg3(this, arg_3);
2388   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2389   pass_arg2(this, arg_2);
2390   pass_arg1(this, arg_1);
2391   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2392 }
2393 
2394 void MacroAssembler::super_call_VM(Register oop_result,
2395                                    Register last_java_sp,
2396                                    address entry_point,
2397                                    int number_of_arguments,
2398                                    bool check_exceptions) {
2399   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2400   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2401 }
2402 
2403 void MacroAssembler::super_call_VM(Register oop_result,
2404                                    Register last_java_sp,
2405                                    address entry_point,
2406                                    Register arg_1,
2407                                    bool check_exceptions) {
2408   pass_arg1(this, arg_1);
2409   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2410 }
2411 
2412 void MacroAssembler::super_call_VM(Register oop_result,
2413                                    Register last_java_sp,
2414                                    address entry_point,
2415                                    Register arg_1,
2416                                    Register arg_2,
2417                                    bool check_exceptions) {
2418 
2419   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2420   pass_arg2(this, arg_2);
2421   pass_arg1(this, arg_1);
2422   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2423 }
2424 
2425 void MacroAssembler::super_call_VM(Register oop_result,
2426                                    Register last_java_sp,
2427                                    address entry_point,
2428                                    Register arg_1,
2429                                    Register arg_2,
2430                                    Register arg_3,
2431                                    bool check_exceptions) {
2432   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2433   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2434   pass_arg3(this, arg_3);
2435   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2436   pass_arg2(this, arg_2);
2437   pass_arg1(this, arg_1);
2438   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2439 }
2440 
2441 void MacroAssembler::call_VM_base(Register oop_result,
2442                                   Register java_thread,
2443                                   Register last_java_sp,
2444                                   address  entry_point,
2445                                   int      number_of_arguments,
2446                                   bool     check_exceptions) {
2447   // determine java_thread register
2448   if (!java_thread->is_valid()) {
2449 #ifdef _LP64
2450     java_thread = r15_thread;
2451 #else
2452     java_thread = rdi;
2453     get_thread(java_thread);
2454 #endif // LP64
2455   }
2456   // determine last_java_sp register
2457   if (!last_java_sp->is_valid()) {
2458     last_java_sp = rsp;
2459   }
2460   // debugging support
2461   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2462   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2463 #ifdef ASSERT
2464   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2465   // r12 is the heapbase.
2466   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2467 #endif // ASSERT
2468 
2469   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2470   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2471 
2472   // push java thread (becomes first argument of C function)
2473 
2474   NOT_LP64(push(java_thread); number_of_arguments++);
2475   LP64_ONLY(mov(c_rarg0, r15_thread));
2476 
2477   // set last Java frame before call
2478   assert(last_java_sp != rbp, "can't use ebp/rbp");
2479 
2480   // Only interpreter should have to set fp
2481   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2482 
2483   // do the call, remove parameters
2484   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2485 
2486   // restore the thread (cannot use the pushed argument since arguments
2487   // may be overwritten by C code generated by an optimizing compiler);
2488   // however can use the register value directly if it is callee saved.
2489   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2490     // rdi & rsi (also r15) are callee saved -> nothing to do
2491 #ifdef ASSERT
2492     guarantee(java_thread != rax, "change this code");
2493     push(rax);
2494     { Label L;
2495       get_thread(rax);
2496       cmpptr(java_thread, rax);
2497       jcc(Assembler::equal, L);
2498       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2499       bind(L);
2500     }
2501     pop(rax);
2502 #endif
2503   } else {
2504     get_thread(java_thread);
2505   }
2506   // reset last Java frame
2507   // Only interpreter should have to clear fp
2508   reset_last_Java_frame(java_thread, true, false);
2509 
2510 #ifndef CC_INTERP
2511    // C++ interp handles this in the interpreter
2512   check_and_handle_popframe(java_thread);
2513   check_and_handle_earlyret(java_thread);
2514 #endif /* CC_INTERP */
2515 
2516   if (check_exceptions) {
2517     // check for pending exceptions (java_thread is set upon return)
2518     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2519 #ifndef _LP64
2520     jump_cc(Assembler::notEqual,
2521             RuntimeAddress(StubRoutines::forward_exception_entry()));
2522 #else
2523     // This used to conditionally jump to forward_exception however it is
2524     // possible if we relocate that the branch will not reach. So we must jump
2525     // around so we can always reach
2526 
2527     Label ok;
2528     jcc(Assembler::equal, ok);
2529     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2530     bind(ok);
2531 #endif // LP64
2532   }
2533 
2534   // get oop result if there is one and reset the value in the thread
2535   if (oop_result->is_valid()) {
2536     get_vm_result(oop_result, java_thread);
2537   }
2538 }
2539 
2540 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2541 
2542   // Calculate the value for last_Java_sp
2543   // somewhat subtle. call_VM does an intermediate call
2544   // which places a return address on the stack just under the
2545   // stack pointer as the user finsihed with it. This allows
2546   // use to retrieve last_Java_pc from last_Java_sp[-1].
2547   // On 32bit we then have to push additional args on the stack to accomplish
2548   // the actual requested call. On 64bit call_VM only can use register args
2549   // so the only extra space is the return address that call_VM created.
2550   // This hopefully explains the calculations here.
2551 
2552 #ifdef _LP64
2553   // We've pushed one address, correct last_Java_sp
2554   lea(rax, Address(rsp, wordSize));
2555 #else
2556   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2557 #endif // LP64
2558 
2559   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2560 
2561 }
2562 
2563 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2564   call_VM_leaf_base(entry_point, number_of_arguments);
2565 }
2566 
2567 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2568   pass_arg0(this, arg_0);
2569   call_VM_leaf(entry_point, 1);
2570 }
2571 
2572 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2573 
2574   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2575   pass_arg1(this, arg_1);
2576   pass_arg0(this, arg_0);
2577   call_VM_leaf(entry_point, 2);
2578 }
2579 
2580 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2581   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2582   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2583   pass_arg2(this, arg_2);
2584   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2585   pass_arg1(this, arg_1);
2586   pass_arg0(this, arg_0);
2587   call_VM_leaf(entry_point, 3);
2588 }
2589 
2590 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2591   pass_arg0(this, arg_0);
2592   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2593 }
2594 
2595 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2596 
2597   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2598   pass_arg1(this, arg_1);
2599   pass_arg0(this, arg_0);
2600   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2601 }
2602 
2603 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2604   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2605   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2606   pass_arg2(this, arg_2);
2607   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2608   pass_arg1(this, arg_1);
2609   pass_arg0(this, arg_0);
2610   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2611 }
2612 
2613 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2614   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2615   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2616   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2617   pass_arg3(this, arg_3);
2618   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2619   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2620   pass_arg2(this, arg_2);
2621   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2622   pass_arg1(this, arg_1);
2623   pass_arg0(this, arg_0);
2624   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2625 }
2626 
2627 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2628   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2629   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2630   verify_oop(oop_result, "broken oop in call_VM_base");
2631 }
2632 
2633 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2634   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2635   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2636 }
2637 
2638 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2639 }
2640 
2641 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2642 }
2643 
2644 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2645   if (reachable(src1)) {
2646     cmpl(as_Address(src1), imm);
2647   } else {
2648     lea(rscratch1, src1);
2649     cmpl(Address(rscratch1, 0), imm);
2650   }
2651 }
2652 
2653 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2654   assert(!src2.is_lval(), "use cmpptr");
2655   if (reachable(src2)) {
2656     cmpl(src1, as_Address(src2));
2657   } else {
2658     lea(rscratch1, src2);
2659     cmpl(src1, Address(rscratch1, 0));
2660   }
2661 }
2662 
2663 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2664   Assembler::cmpl(src1, imm);
2665 }
2666 
2667 void MacroAssembler::cmp32(Register src1, Address src2) {
2668   Assembler::cmpl(src1, src2);
2669 }
2670 
2671 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2672   ucomisd(opr1, opr2);
2673 
2674   Label L;
2675   if (unordered_is_less) {
2676     movl(dst, -1);
2677     jcc(Assembler::parity, L);
2678     jcc(Assembler::below , L);
2679     movl(dst, 0);
2680     jcc(Assembler::equal , L);
2681     increment(dst);
2682   } else { // unordered is greater
2683     movl(dst, 1);
2684     jcc(Assembler::parity, L);
2685     jcc(Assembler::above , L);
2686     movl(dst, 0);
2687     jcc(Assembler::equal , L);
2688     decrementl(dst);
2689   }
2690   bind(L);
2691 }
2692 
2693 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2694   ucomiss(opr1, opr2);
2695 
2696   Label L;
2697   if (unordered_is_less) {
2698     movl(dst, -1);
2699     jcc(Assembler::parity, L);
2700     jcc(Assembler::below , L);
2701     movl(dst, 0);
2702     jcc(Assembler::equal , L);
2703     increment(dst);
2704   } else { // unordered is greater
2705     movl(dst, 1);
2706     jcc(Assembler::parity, L);
2707     jcc(Assembler::above , L);
2708     movl(dst, 0);
2709     jcc(Assembler::equal , L);
2710     decrementl(dst);
2711   }
2712   bind(L);
2713 }
2714 
2715 
2716 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2717   if (reachable(src1)) {
2718     cmpb(as_Address(src1), imm);
2719   } else {
2720     lea(rscratch1, src1);
2721     cmpb(Address(rscratch1, 0), imm);
2722   }
2723 }
2724 
2725 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2726 #ifdef _LP64
2727   if (src2.is_lval()) {
2728     movptr(rscratch1, src2);
2729     Assembler::cmpq(src1, rscratch1);
2730   } else if (reachable(src2)) {
2731     cmpq(src1, as_Address(src2));
2732   } else {
2733     lea(rscratch1, src2);
2734     Assembler::cmpq(src1, Address(rscratch1, 0));
2735   }
2736 #else
2737   if (src2.is_lval()) {
2738     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2739   } else {
2740     cmpl(src1, as_Address(src2));
2741   }
2742 #endif // _LP64
2743 }
2744 
2745 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2746   assert(src2.is_lval(), "not a mem-mem compare");
2747 #ifdef _LP64
2748   // moves src2's literal address
2749   movptr(rscratch1, src2);
2750   Assembler::cmpq(src1, rscratch1);
2751 #else
2752   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2753 #endif // _LP64
2754 }
2755 
2756 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2757   if (reachable(adr)) {
2758     if (os::is_MP())
2759       lock();
2760     cmpxchgptr(reg, as_Address(adr));
2761   } else {
2762     lea(rscratch1, adr);
2763     if (os::is_MP())
2764       lock();
2765     cmpxchgptr(reg, Address(rscratch1, 0));
2766   }
2767 }
2768 
2769 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2770   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2771 }
2772 
2773 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2774   if (reachable(src)) {
2775     Assembler::comisd(dst, as_Address(src));
2776   } else {
2777     lea(rscratch1, src);
2778     Assembler::comisd(dst, Address(rscratch1, 0));
2779   }
2780 }
2781 
2782 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2783   if (reachable(src)) {
2784     Assembler::comiss(dst, as_Address(src));
2785   } else {
2786     lea(rscratch1, src);
2787     Assembler::comiss(dst, Address(rscratch1, 0));
2788   }
2789 }
2790 
2791 
2792 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2793   Condition negated_cond = negate_condition(cond);
2794   Label L;
2795   jcc(negated_cond, L);
2796   pushf(); // Preserve flags
2797   atomic_incl(counter_addr);
2798   popf();
2799   bind(L);
2800 }
2801 
2802 int MacroAssembler::corrected_idivl(Register reg) {
2803   // Full implementation of Java idiv and irem; checks for
2804   // special case as described in JVM spec., p.243 & p.271.
2805   // The function returns the (pc) offset of the idivl
2806   // instruction - may be needed for implicit exceptions.
2807   //
2808   //         normal case                           special case
2809   //
2810   // input : rax,: dividend                         min_int
2811   //         reg: divisor   (may not be rax,/rdx)   -1
2812   //
2813   // output: rax,: quotient  (= rax, idiv reg)       min_int
2814   //         rdx: remainder (= rax, irem reg)       0
2815   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2816   const int min_int = 0x80000000;
2817   Label normal_case, special_case;
2818 
2819   // check for special case
2820   cmpl(rax, min_int);
2821   jcc(Assembler::notEqual, normal_case);
2822   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2823   cmpl(reg, -1);
2824   jcc(Assembler::equal, special_case);
2825 
2826   // handle normal case
2827   bind(normal_case);
2828   cdql();
2829   int idivl_offset = offset();
2830   idivl(reg);
2831 
2832   // normal and special case exit
2833   bind(special_case);
2834 
2835   return idivl_offset;
2836 }
2837 
2838 
2839 
2840 void MacroAssembler::decrementl(Register reg, int value) {
2841   if (value == min_jint) {subl(reg, value) ; return; }
2842   if (value <  0) { incrementl(reg, -value); return; }
2843   if (value == 0) {                        ; return; }
2844   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2845   /* else */      { subl(reg, value)       ; return; }
2846 }
2847 
2848 void MacroAssembler::decrementl(Address dst, int value) {
2849   if (value == min_jint) {subl(dst, value) ; return; }
2850   if (value <  0) { incrementl(dst, -value); return; }
2851   if (value == 0) {                        ; return; }
2852   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2853   /* else */      { subl(dst, value)       ; return; }
2854 }
2855 
2856 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2857   assert (shift_value > 0, "illegal shift value");
2858   Label _is_positive;
2859   testl (reg, reg);
2860   jcc (Assembler::positive, _is_positive);
2861   int offset = (1 << shift_value) - 1 ;
2862 
2863   if (offset == 1) {
2864     incrementl(reg);
2865   } else {
2866     addl(reg, offset);
2867   }
2868 
2869   bind (_is_positive);
2870   sarl(reg, shift_value);
2871 }
2872 
2873 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2874   if (reachable(src)) {
2875     Assembler::divsd(dst, as_Address(src));
2876   } else {
2877     lea(rscratch1, src);
2878     Assembler::divsd(dst, Address(rscratch1, 0));
2879   }
2880 }
2881 
2882 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2883   if (reachable(src)) {
2884     Assembler::divss(dst, as_Address(src));
2885   } else {
2886     lea(rscratch1, src);
2887     Assembler::divss(dst, Address(rscratch1, 0));
2888   }
2889 }
2890 
2891 // !defined(COMPILER2) is because of stupid core builds
2892 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2893 void MacroAssembler::empty_FPU_stack() {
2894   if (VM_Version::supports_mmx()) {
2895     emms();
2896   } else {
2897     for (int i = 8; i-- > 0; ) ffree(i);
2898   }
2899 }
2900 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2901 
2902 
2903 // Defines obj, preserves var_size_in_bytes
2904 void MacroAssembler::eden_allocate(Register obj,
2905                                    Register var_size_in_bytes,
2906                                    int con_size_in_bytes,
2907                                    Register t1,
2908                                    Label& slow_case) {
2909   assert(obj == rax, "obj must be in rax, for cmpxchg");
2910   assert_different_registers(obj, var_size_in_bytes, t1);
2911   if (!Universe::heap()->supports_inline_contig_alloc()) {
2912     jmp(slow_case);
2913   } else {
2914     Register end = t1;
2915     Label retry;
2916     bind(retry);
2917     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2918     movptr(obj, heap_top);
2919     if (var_size_in_bytes == noreg) {
2920       lea(end, Address(obj, con_size_in_bytes));
2921     } else {
2922       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2923     }
2924     // if end < obj then we wrapped around => object too long => slow case
2925     cmpptr(end, obj);
2926     jcc(Assembler::below, slow_case);
2927     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2928     jcc(Assembler::above, slow_case);
2929     // Compare obj with the top addr, and if still equal, store the new top addr in
2930     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2931     // it otherwise. Use lock prefix for atomicity on MPs.
2932     locked_cmpxchgptr(end, heap_top);
2933     jcc(Assembler::notEqual, retry);
2934   }
2935 }
2936 
2937 void MacroAssembler::enter() {
2938   push(rbp);
2939   mov(rbp, rsp);
2940 }
2941 
2942 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2943 void MacroAssembler::fat_nop() {
2944   if (UseAddressNop) {
2945     addr_nop_5();
2946   } else {
2947     emit_int8(0x26); // es:
2948     emit_int8(0x2e); // cs:
2949     emit_int8(0x64); // fs:
2950     emit_int8(0x65); // gs:
2951     emit_int8((unsigned char)0x90);
2952   }
2953 }
2954 
2955 void MacroAssembler::fcmp(Register tmp) {
2956   fcmp(tmp, 1, true, true);
2957 }
2958 
2959 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2960   assert(!pop_right || pop_left, "usage error");
2961   if (VM_Version::supports_cmov()) {
2962     assert(tmp == noreg, "unneeded temp");
2963     if (pop_left) {
2964       fucomip(index);
2965     } else {
2966       fucomi(index);
2967     }
2968     if (pop_right) {
2969       fpop();
2970     }
2971   } else {
2972     assert(tmp != noreg, "need temp");
2973     if (pop_left) {
2974       if (pop_right) {
2975         fcompp();
2976       } else {
2977         fcomp(index);
2978       }
2979     } else {
2980       fcom(index);
2981     }
2982     // convert FPU condition into eflags condition via rax,
2983     save_rax(tmp);
2984     fwait(); fnstsw_ax();
2985     sahf();
2986     restore_rax(tmp);
2987   }
2988   // condition codes set as follows:
2989   //
2990   // CF (corresponds to C0) if x < y
2991   // PF (corresponds to C2) if unordered
2992   // ZF (corresponds to C3) if x = y
2993 }
2994 
2995 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
2996   fcmp2int(dst, unordered_is_less, 1, true, true);
2997 }
2998 
2999 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3000   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3001   Label L;
3002   if (unordered_is_less) {
3003     movl(dst, -1);
3004     jcc(Assembler::parity, L);
3005     jcc(Assembler::below , L);
3006     movl(dst, 0);
3007     jcc(Assembler::equal , L);
3008     increment(dst);
3009   } else { // unordered is greater
3010     movl(dst, 1);
3011     jcc(Assembler::parity, L);
3012     jcc(Assembler::above , L);
3013     movl(dst, 0);
3014     jcc(Assembler::equal , L);
3015     decrementl(dst);
3016   }
3017   bind(L);
3018 }
3019 
3020 void MacroAssembler::fld_d(AddressLiteral src) {
3021   fld_d(as_Address(src));
3022 }
3023 
3024 void MacroAssembler::fld_s(AddressLiteral src) {
3025   fld_s(as_Address(src));
3026 }
3027 
3028 void MacroAssembler::fld_x(AddressLiteral src) {
3029   Assembler::fld_x(as_Address(src));
3030 }
3031 
3032 void MacroAssembler::fldcw(AddressLiteral src) {
3033   Assembler::fldcw(as_Address(src));
3034 }
3035 
3036 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3037   if (reachable(src)) {
3038     Assembler::mulpd(dst, as_Address(src));
3039   } else {
3040     lea(rscratch1, src);
3041     Assembler::mulpd(dst, Address(rscratch1, 0));
3042   }
3043 }
3044 
3045 void MacroAssembler::pow_exp_core_encoding() {
3046   // kills rax, rcx, rdx
3047   subptr(rsp,sizeof(jdouble));
3048   // computes 2^X. Stack: X ...
3049   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
3050   // keep it on the thread's stack to compute 2^int(X) later
3051   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
3052   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
3053   fld_s(0);                 // Stack: X X ...
3054   frndint();                // Stack: int(X) X ...
3055   fsuba(1);                 // Stack: int(X) X-int(X) ...
3056   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
3057   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
3058   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
3059   faddp(1);                 // Stack: 2^(X-int(X))
3060   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
3061   // shift int(X)+1023 to exponent position.
3062   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
3063   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
3064   // values so detect them and set result to NaN.
3065   movl(rax,Address(rsp,0));
3066   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
3067   addl(rax, 1023);
3068   movl(rdx,rax);
3069   shll(rax,20);
3070   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
3071   addl(rdx,1);
3072   // Check that 1 < int(X)+1023+1 < 2048
3073   // in 3 steps:
3074   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
3075   // 2- (int(X)+1023+1)&-2048 != 0
3076   // 3- (int(X)+1023+1)&-2048 != 1
3077   // Do 2- first because addl just updated the flags.
3078   cmov32(Assembler::equal,rax,rcx);
3079   cmpl(rdx,1);
3080   cmov32(Assembler::equal,rax,rcx);
3081   testl(rdx,rcx);
3082   cmov32(Assembler::notEqual,rax,rcx);
3083   movl(Address(rsp,4),rax);
3084   movl(Address(rsp,0),0);
3085   fmul_d(Address(rsp,0));   // Stack: 2^X ...
3086   addptr(rsp,sizeof(jdouble));
3087 }
3088 
3089 void MacroAssembler::increase_precision() {
3090   subptr(rsp, BytesPerWord);
3091   fnstcw(Address(rsp, 0));
3092   movl(rax, Address(rsp, 0));
3093   orl(rax, 0x300);
3094   push(rax);
3095   fldcw(Address(rsp, 0));
3096   pop(rax);
3097 }
3098 
3099 void MacroAssembler::restore_precision() {
3100   fldcw(Address(rsp, 0));
3101   addptr(rsp, BytesPerWord);
3102 }
3103 
3104 void MacroAssembler::fast_pow() {
3105   // computes X^Y = 2^(Y * log2(X))
3106   // if fast computation is not possible, result is NaN. Requires
3107   // fallback from user of this macro.
3108   // increase precision for intermediate steps of the computation
3109   BLOCK_COMMENT("fast_pow {");
3110   increase_precision();
3111   fyl2x();                 // Stack: (Y*log2(X)) ...
3112   pow_exp_core_encoding(); // Stack: exp(X) ...
3113   restore_precision();
3114   BLOCK_COMMENT("} fast_pow");
3115 }
3116 
3117 void MacroAssembler::pow_or_exp(int num_fpu_regs_in_use) {
3118   // kills rax, rcx, rdx
3119   // pow and exp needs 2 extra registers on the fpu stack.
3120   Label slow_case, done;
3121   Register tmp = noreg;
3122   if (!VM_Version::supports_cmov()) {
3123     // fcmp needs a temporary so preserve rdx,
3124     tmp = rdx;
3125   }
3126   Register tmp2 = rax;
3127   Register tmp3 = rcx;
3128 
3129   // Stack: X Y
3130   Label x_negative, y_not_2;
3131 
3132   static double two = 2.0;
3133   ExternalAddress two_addr((address)&two);
3134 
3135   // constant maybe too far on 64 bit
3136   lea(tmp2, two_addr);
3137   fld_d(Address(tmp2, 0));    // Stack: 2 X Y
3138   fcmp(tmp, 2, true, false);  // Stack: X Y
3139   jcc(Assembler::parity, y_not_2);
3140   jcc(Assembler::notEqual, y_not_2);
3141 
3142   fxch(); fpop();             // Stack: X
3143   fmul(0);                    // Stack: X*X
3144 
3145   jmp(done);
3146 
3147   bind(y_not_2);
3148 
3149   fldz();                     // Stack: 0 X Y
3150   fcmp(tmp, 1, true, false);  // Stack: X Y
3151   jcc(Assembler::above, x_negative);
3152 
3153   // X >= 0
3154 
3155   fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3156   fld_s(1);                   // Stack: X Y X Y
3157   fast_pow();                 // Stack: X^Y X Y
3158   fcmp(tmp, 0, false, false); // Stack: X^Y X Y
3159   // X^Y not equal to itself: X^Y is NaN go to slow case.
3160   jcc(Assembler::parity, slow_case);
3161   // get rid of duplicate arguments. Stack: X^Y
3162   if (num_fpu_regs_in_use > 0) {
3163     fxch(); fpop();
3164     fxch(); fpop();
3165   } else {
3166     ffree(2);
3167     ffree(1);
3168   }
3169   jmp(done);
3170 
3171   // X <= 0
3172   bind(x_negative);
3173 
3174   fld_s(1);                   // Stack: Y X Y
3175   frndint();                  // Stack: int(Y) X Y
3176   fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
3177   jcc(Assembler::notEqual, slow_case);
3178 
3179   subptr(rsp, 8);
3180 
3181   // For X^Y, when X < 0, Y has to be an integer and the final
3182   // result depends on whether it's odd or even. We just checked
3183   // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
3184   // integer to test its parity. If int(Y) is huge and doesn't fit
3185   // in the 64 bit integer range, the integer indefinite value will
3186   // end up in the gp registers. Huge numbers are all even, the
3187   // integer indefinite number is even so it's fine.
3188 
3189 #ifdef ASSERT
3190   // Let's check we don't end up with an integer indefinite number
3191   // when not expected. First test for huge numbers: check whether
3192   // int(Y)+1 == int(Y) which is true for very large numbers and
3193   // those are all even. A 64 bit integer is guaranteed to not
3194   // overflow for numbers where y+1 != y (when precision is set to
3195   // double precision).
3196   Label y_not_huge;
3197 
3198   fld1();                     // Stack: 1 int(Y) X Y
3199   fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
3200 
3201 #ifdef _LP64
3202   // trip to memory to force the precision down from double extended
3203   // precision
3204   fstp_d(Address(rsp, 0));
3205   fld_d(Address(rsp, 0));
3206 #endif
3207 
3208   fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
3209 #endif
3210 
3211   // move int(Y) as 64 bit integer to thread's stack
3212   fistp_d(Address(rsp,0));    // Stack: X Y
3213 
3214 #ifdef ASSERT
3215   jcc(Assembler::notEqual, y_not_huge);
3216 
3217   // Y is huge so we know it's even. It may not fit in a 64 bit
3218   // integer and we don't want the debug code below to see the
3219   // integer indefinite value so overwrite int(Y) on the thread's
3220   // stack with 0.
3221   movl(Address(rsp, 0), 0);
3222   movl(Address(rsp, 4), 0);
3223 
3224   bind(y_not_huge);
3225 #endif
3226 
3227   fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3228   fld_s(1);                   // Stack: X Y X Y
3229   fabs();                     // Stack: abs(X) Y X Y
3230   fast_pow();                 // Stack: abs(X)^Y X Y
3231   fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
3232   // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
3233 
3234   pop(tmp2);
3235   NOT_LP64(pop(tmp3));
3236   jcc(Assembler::parity, slow_case);
3237 
3238 #ifdef ASSERT
3239   // Check that int(Y) is not integer indefinite value (int
3240   // overflow). Shouldn't happen because for values that would
3241   // overflow, 1+int(Y)==Y which was tested earlier.
3242 #ifndef _LP64
3243   {
3244     Label integer;
3245     testl(tmp2, tmp2);
3246     jcc(Assembler::notZero, integer);
3247     cmpl(tmp3, 0x80000000);
3248     jcc(Assembler::notZero, integer);
3249     STOP("integer indefinite value shouldn't be seen here");
3250     bind(integer);
3251   }
3252 #else
3253   {
3254     Label integer;
3255     mov(tmp3, tmp2); // preserve tmp2 for parity check below
3256     shlq(tmp3, 1);
3257     jcc(Assembler::carryClear, integer);
3258     jcc(Assembler::notZero, integer);
3259     STOP("integer indefinite value shouldn't be seen here");
3260     bind(integer);
3261   }
3262 #endif
3263 #endif
3264 
3265   // get rid of duplicate arguments. Stack: X^Y
3266   if (num_fpu_regs_in_use > 0) {
3267     fxch(); fpop();
3268     fxch(); fpop();
3269   } else {
3270     ffree(2);
3271     ffree(1);
3272   }
3273 
3274   testl(tmp2, 1);
3275   jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
3276   // X <= 0, Y even: X^Y = -abs(X)^Y
3277 
3278   fchs();                     // Stack: -abs(X)^Y Y
3279   jmp(done);
3280 
3281   // slow case: runtime call
3282   bind(slow_case);
3283 
3284   fpop();                       // pop incorrect result or int(Y)
3285 
3286   fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), 2, num_fpu_regs_in_use);
3287 
3288   // Come here with result in F-TOS
3289   bind(done);
3290 }
3291 
3292 void MacroAssembler::fpop() {
3293   ffree();
3294   fincstp();
3295 }
3296 
3297 void MacroAssembler::load_float(Address src) {
3298   if (UseSSE >= 1) {
3299     movflt(xmm0, src);
3300   } else {
3301     LP64_ONLY(ShouldNotReachHere());
3302     NOT_LP64(fld_s(src));
3303   }
3304 }
3305 
3306 void MacroAssembler::store_float(Address dst) {
3307   if (UseSSE >= 1) {
3308     movflt(dst, xmm0);
3309   } else {
3310     LP64_ONLY(ShouldNotReachHere());
3311     NOT_LP64(fstp_s(dst));
3312   }
3313 }
3314 
3315 void MacroAssembler::load_double(Address src) {
3316   if (UseSSE >= 2) {
3317     movdbl(xmm0, src);
3318   } else {
3319     LP64_ONLY(ShouldNotReachHere());
3320     NOT_LP64(fld_d(src));
3321   }
3322 }
3323 
3324 void MacroAssembler::store_double(Address dst) {
3325   if (UseSSE >= 2) {
3326     movdbl(dst, xmm0);
3327   } else {
3328     LP64_ONLY(ShouldNotReachHere());
3329     NOT_LP64(fstp_d(dst));
3330   }
3331 }
3332 
3333 void MacroAssembler::fremr(Register tmp) {
3334   save_rax(tmp);
3335   { Label L;
3336     bind(L);
3337     fprem();
3338     fwait(); fnstsw_ax();
3339 #ifdef _LP64
3340     testl(rax, 0x400);
3341     jcc(Assembler::notEqual, L);
3342 #else
3343     sahf();
3344     jcc(Assembler::parity, L);
3345 #endif // _LP64
3346   }
3347   restore_rax(tmp);
3348   // Result is in ST0.
3349   // Note: fxch & fpop to get rid of ST1
3350   // (otherwise FPU stack could overflow eventually)
3351   fxch(1);
3352   fpop();
3353 }
3354 
3355 
3356 void MacroAssembler::incrementl(AddressLiteral dst) {
3357   if (reachable(dst)) {
3358     incrementl(as_Address(dst));
3359   } else {
3360     lea(rscratch1, dst);
3361     incrementl(Address(rscratch1, 0));
3362   }
3363 }
3364 
3365 void MacroAssembler::incrementl(ArrayAddress dst) {
3366   incrementl(as_Address(dst));
3367 }
3368 
3369 void MacroAssembler::incrementl(Register reg, int value) {
3370   if (value == min_jint) {addl(reg, value) ; return; }
3371   if (value <  0) { decrementl(reg, -value); return; }
3372   if (value == 0) {                        ; return; }
3373   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3374   /* else */      { addl(reg, value)       ; return; }
3375 }
3376 
3377 void MacroAssembler::incrementl(Address dst, int value) {
3378   if (value == min_jint) {addl(dst, value) ; return; }
3379   if (value <  0) { decrementl(dst, -value); return; }
3380   if (value == 0) {                        ; return; }
3381   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3382   /* else */      { addl(dst, value)       ; return; }
3383 }
3384 
3385 void MacroAssembler::jump(AddressLiteral dst) {
3386   if (reachable(dst)) {
3387     jmp_literal(dst.target(), dst.rspec());
3388   } else {
3389     lea(rscratch1, dst);
3390     jmp(rscratch1);
3391   }
3392 }
3393 
3394 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3395   if (reachable(dst)) {
3396     InstructionMark im(this);
3397     relocate(dst.reloc());
3398     const int short_size = 2;
3399     const int long_size = 6;
3400     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3401     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3402       // 0111 tttn #8-bit disp
3403       emit_int8(0x70 | cc);
3404       emit_int8((offs - short_size) & 0xFF);
3405     } else {
3406       // 0000 1111 1000 tttn #32-bit disp
3407       emit_int8(0x0F);
3408       emit_int8((unsigned char)(0x80 | cc));
3409       emit_int32(offs - long_size);
3410     }
3411   } else {
3412 #ifdef ASSERT
3413     warning("reversing conditional branch");
3414 #endif /* ASSERT */
3415     Label skip;
3416     jccb(reverse[cc], skip);
3417     lea(rscratch1, dst);
3418     Assembler::jmp(rscratch1);
3419     bind(skip);
3420   }
3421 }
3422 
3423 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3424   if (reachable(src)) {
3425     Assembler::ldmxcsr(as_Address(src));
3426   } else {
3427     lea(rscratch1, src);
3428     Assembler::ldmxcsr(Address(rscratch1, 0));
3429   }
3430 }
3431 
3432 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3433   int off;
3434   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3435     off = offset();
3436     movsbl(dst, src); // movsxb
3437   } else {
3438     off = load_unsigned_byte(dst, src);
3439     shll(dst, 24);
3440     sarl(dst, 24);
3441   }
3442   return off;
3443 }
3444 
3445 // Note: load_signed_short used to be called load_signed_word.
3446 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3447 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3448 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3449 int MacroAssembler::load_signed_short(Register dst, Address src) {
3450   int off;
3451   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3452     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3453     // version but this is what 64bit has always done. This seems to imply
3454     // that users are only using 32bits worth.
3455     off = offset();
3456     movswl(dst, src); // movsxw
3457   } else {
3458     off = load_unsigned_short(dst, src);
3459     shll(dst, 16);
3460     sarl(dst, 16);
3461   }
3462   return off;
3463 }
3464 
3465 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3466   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3467   // and "3.9 Partial Register Penalties", p. 22).
3468   int off;
3469   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3470     off = offset();
3471     movzbl(dst, src); // movzxb
3472   } else {
3473     xorl(dst, dst);
3474     off = offset();
3475     movb(dst, src);
3476   }
3477   return off;
3478 }
3479 
3480 // Note: load_unsigned_short used to be called load_unsigned_word.
3481 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3482   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3483   // and "3.9 Partial Register Penalties", p. 22).
3484   int off;
3485   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3486     off = offset();
3487     movzwl(dst, src); // movzxw
3488   } else {
3489     xorl(dst, dst);
3490     off = offset();
3491     movw(dst, src);
3492   }
3493   return off;
3494 }
3495 
3496 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3497   switch (size_in_bytes) {
3498 #ifndef _LP64
3499   case  8:
3500     assert(dst2 != noreg, "second dest register required");
3501     movl(dst,  src);
3502     movl(dst2, src.plus_disp(BytesPerInt));
3503     break;
3504 #else
3505   case  8:  movq(dst, src); break;
3506 #endif
3507   case  4:  movl(dst, src); break;
3508   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3509   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3510   default:  ShouldNotReachHere();
3511   }
3512 }
3513 
3514 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3515   switch (size_in_bytes) {
3516 #ifndef _LP64
3517   case  8:
3518     assert(src2 != noreg, "second source register required");
3519     movl(dst,                        src);
3520     movl(dst.plus_disp(BytesPerInt), src2);
3521     break;
3522 #else
3523   case  8:  movq(dst, src); break;
3524 #endif
3525   case  4:  movl(dst, src); break;
3526   case  2:  movw(dst, src); break;
3527   case  1:  movb(dst, src); break;
3528   default:  ShouldNotReachHere();
3529   }
3530 }
3531 
3532 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3533   if (reachable(dst)) {
3534     movl(as_Address(dst), src);
3535   } else {
3536     lea(rscratch1, dst);
3537     movl(Address(rscratch1, 0), src);
3538   }
3539 }
3540 
3541 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3542   if (reachable(src)) {
3543     movl(dst, as_Address(src));
3544   } else {
3545     lea(rscratch1, src);
3546     movl(dst, Address(rscratch1, 0));
3547   }
3548 }
3549 
3550 // C++ bool manipulation
3551 
3552 void MacroAssembler::movbool(Register dst, Address src) {
3553   if(sizeof(bool) == 1)
3554     movb(dst, src);
3555   else if(sizeof(bool) == 2)
3556     movw(dst, src);
3557   else if(sizeof(bool) == 4)
3558     movl(dst, src);
3559   else
3560     // unsupported
3561     ShouldNotReachHere();
3562 }
3563 
3564 void MacroAssembler::movbool(Address dst, bool boolconst) {
3565   if(sizeof(bool) == 1)
3566     movb(dst, (int) boolconst);
3567   else if(sizeof(bool) == 2)
3568     movw(dst, (int) boolconst);
3569   else if(sizeof(bool) == 4)
3570     movl(dst, (int) boolconst);
3571   else
3572     // unsupported
3573     ShouldNotReachHere();
3574 }
3575 
3576 void MacroAssembler::movbool(Address dst, Register src) {
3577   if(sizeof(bool) == 1)
3578     movb(dst, src);
3579   else if(sizeof(bool) == 2)
3580     movw(dst, src);
3581   else if(sizeof(bool) == 4)
3582     movl(dst, src);
3583   else
3584     // unsupported
3585     ShouldNotReachHere();
3586 }
3587 
3588 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3589   movb(as_Address(dst), src);
3590 }
3591 
3592 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3593   if (reachable(src)) {
3594     movdl(dst, as_Address(src));
3595   } else {
3596     lea(rscratch1, src);
3597     movdl(dst, Address(rscratch1, 0));
3598   }
3599 }
3600 
3601 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3602   if (reachable(src)) {
3603     movq(dst, as_Address(src));
3604   } else {
3605     lea(rscratch1, src);
3606     movq(dst, Address(rscratch1, 0));
3607   }
3608 }
3609 
3610 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3611   if (reachable(src)) {
3612     if (UseXmmLoadAndClearUpper) {
3613       movsd (dst, as_Address(src));
3614     } else {
3615       movlpd(dst, as_Address(src));
3616     }
3617   } else {
3618     lea(rscratch1, src);
3619     if (UseXmmLoadAndClearUpper) {
3620       movsd (dst, Address(rscratch1, 0));
3621     } else {
3622       movlpd(dst, Address(rscratch1, 0));
3623     }
3624   }
3625 }
3626 
3627 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3628   if (reachable(src)) {
3629     movss(dst, as_Address(src));
3630   } else {
3631     lea(rscratch1, src);
3632     movss(dst, Address(rscratch1, 0));
3633   }
3634 }
3635 
3636 void MacroAssembler::movptr(Register dst, Register src) {
3637   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3638 }
3639 
3640 void MacroAssembler::movptr(Register dst, Address src) {
3641   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3642 }
3643 
3644 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3645 void MacroAssembler::movptr(Register dst, intptr_t src) {
3646   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3647 }
3648 
3649 void MacroAssembler::movptr(Address dst, Register src) {
3650   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3651 }
3652 
3653 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
3654   if (reachable(src)) {
3655     Assembler::movdqu(dst, as_Address(src));
3656   } else {
3657     lea(rscratch1, src);
3658     Assembler::movdqu(dst, Address(rscratch1, 0));
3659   }
3660 }
3661 
3662 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3663   if (reachable(src)) {
3664     Assembler::movdqa(dst, as_Address(src));
3665   } else {
3666     lea(rscratch1, src);
3667     Assembler::movdqa(dst, Address(rscratch1, 0));
3668   }
3669 }
3670 
3671 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3672   if (reachable(src)) {
3673     Assembler::movsd(dst, as_Address(src));
3674   } else {
3675     lea(rscratch1, src);
3676     Assembler::movsd(dst, Address(rscratch1, 0));
3677   }
3678 }
3679 
3680 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3681   if (reachable(src)) {
3682     Assembler::movss(dst, as_Address(src));
3683   } else {
3684     lea(rscratch1, src);
3685     Assembler::movss(dst, Address(rscratch1, 0));
3686   }
3687 }
3688 
3689 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3690   if (reachable(src)) {
3691     Assembler::mulsd(dst, as_Address(src));
3692   } else {
3693     lea(rscratch1, src);
3694     Assembler::mulsd(dst, Address(rscratch1, 0));
3695   }
3696 }
3697 
3698 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3699   if (reachable(src)) {
3700     Assembler::mulss(dst, as_Address(src));
3701   } else {
3702     lea(rscratch1, src);
3703     Assembler::mulss(dst, Address(rscratch1, 0));
3704   }
3705 }
3706 
3707 void MacroAssembler::null_check(Register reg, int offset) {
3708   if (needs_explicit_null_check(offset)) {
3709     // provoke OS NULL exception if reg = NULL by
3710     // accessing M[reg] w/o changing any (non-CC) registers
3711     // NOTE: cmpl is plenty here to provoke a segv
3712     cmpptr(rax, Address(reg, 0));
3713     // Note: should probably use testl(rax, Address(reg, 0));
3714     //       may be shorter code (however, this version of
3715     //       testl needs to be implemented first)
3716   } else {
3717     // nothing to do, (later) access of M[reg + offset]
3718     // will provoke OS NULL exception if reg = NULL
3719   }
3720 }
3721 
3722 void MacroAssembler::os_breakpoint() {
3723   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3724   // (e.g., MSVC can't call ps() otherwise)
3725   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3726 }
3727 
3728 void MacroAssembler::pop_CPU_state() {
3729   pop_FPU_state();
3730   pop_IU_state();
3731 }
3732 
3733 void MacroAssembler::pop_FPU_state() {
3734 #ifndef _LP64
3735   frstor(Address(rsp, 0));
3736 #else
3737   // AVX will continue to use the fxsave area.
3738   // EVEX needs to utilize the xsave area, which is under different
3739   // management.
3740   if(VM_Version::supports_evex()) {
3741     // EDX:EAX describe the XSAVE header and
3742     // are obtained while fetching info for XCR0 via cpuid.
3743     // These two registers make up 64-bits in the header for which bits
3744     // 62:10 are currently reserved for future implementations and unused.  Bit 63
3745     // is unused for our implementation as we do not utilize
3746     // compressed XSAVE areas.  Bits 9..8 are currently ignored as we do not use
3747     // the functionality for PKRU state and MSR tracing.
3748     // Ergo we are primarily concerned with bits 7..0, which define
3749     // which ISA extensions and features are enabled for a given machine and are
3750     // defined in XemXcr0Eax and is used to map the XSAVE area
3751     // for restoring registers as described via XCR0.
3752     movl(rdx,VM_Version::get_xsave_header_upper_segment());
3753     movl(rax,VM_Version::get_xsave_header_lower_segment());
3754     xrstor(Address(rsp, 0));
3755   } else {
3756     fxrstor(Address(rsp, 0));
3757   }
3758 #endif
3759   addptr(rsp, FPUStateSizeInWords * wordSize);
3760 }
3761 
3762 void MacroAssembler::pop_IU_state() {
3763   popa();
3764   LP64_ONLY(addq(rsp, 8));
3765   popf();
3766 }
3767 
3768 // Save Integer and Float state
3769 // Warning: Stack must be 16 byte aligned (64bit)
3770 void MacroAssembler::push_CPU_state() {
3771   push_IU_state();
3772   push_FPU_state();
3773 }
3774 
3775 #ifdef _LP64
3776 #define XSTATE_BV 0x200
3777 #endif
3778 
3779 void MacroAssembler::push_FPU_state() {
3780   subptr(rsp, FPUStateSizeInWords * wordSize);
3781 #ifndef _LP64
3782   fnsave(Address(rsp, 0));
3783   fwait();
3784 #else
3785   // AVX will continue to use the fxsave area.
3786   // EVEX needs to utilize the xsave area, which is under different
3787   // management.
3788   if(VM_Version::supports_evex()) {
3789     // Save a copy of EAX and EDX
3790     push(rax);
3791     push(rdx);
3792     // EDX:EAX describe the XSAVE header and
3793     // are obtained while fetching info for XCR0 via cpuid.
3794     // These two registers make up 64-bits in the header for which bits
3795     // 62:10 are currently reserved for future implementations and unused.  Bit 63
3796     // is unused for our implementation as we do not utilize
3797     // compressed XSAVE areas.  Bits 9..8 are currently ignored as we do not use
3798     // the functionality for PKRU state and MSR tracing.
3799     // Ergo we are primarily concerned with bits 7..0, which define
3800     // which ISA extensions and features are enabled for a given machine and are
3801     // defined in XemXcr0Eax and is used to program XSAVE area
3802     // for saving the required registers as defined in XCR0.
3803     int xcr0_edx = VM_Version::get_xsave_header_upper_segment();
3804     int xcr0_eax = VM_Version::get_xsave_header_lower_segment();
3805     movl(rdx,xcr0_edx);
3806     movl(rax,xcr0_eax);
3807     xsave(Address(rsp, wordSize*2));
3808     // now Apply control bits and clear bytes 8..23 in the header
3809     pop(rdx);
3810     pop(rax);
3811     movl(Address(rsp, XSTATE_BV), xcr0_eax);
3812     movl(Address(rsp, XSTATE_BV+4), xcr0_edx);
3813     andq(Address(rsp, XSTATE_BV+8), 0);
3814     andq(Address(rsp, XSTATE_BV+16), 0);
3815   } else {
3816     fxsave(Address(rsp, 0));
3817   }
3818 #endif // LP64
3819 }
3820 
3821 void MacroAssembler::push_IU_state() {
3822   // Push flags first because pusha kills them
3823   pushf();
3824   // Make sure rsp stays 16-byte aligned
3825   LP64_ONLY(subq(rsp, 8));
3826   pusha();
3827 }
3828 
3829 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
3830   // determine java_thread register
3831   if (!java_thread->is_valid()) {
3832     java_thread = rdi;
3833     get_thread(java_thread);
3834   }
3835   // we must set sp to zero to clear frame
3836   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3837   if (clear_fp) {
3838     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3839   }
3840 
3841   if (clear_pc)
3842     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3843 
3844 }
3845 
3846 void MacroAssembler::restore_rax(Register tmp) {
3847   if (tmp == noreg) pop(rax);
3848   else if (tmp != rax) mov(rax, tmp);
3849 }
3850 
3851 void MacroAssembler::round_to(Register reg, int modulus) {
3852   addptr(reg, modulus - 1);
3853   andptr(reg, -modulus);
3854 }
3855 
3856 void MacroAssembler::save_rax(Register tmp) {
3857   if (tmp == noreg) push(rax);
3858   else if (tmp != rax) mov(tmp, rax);
3859 }
3860 
3861 // Write serialization page so VM thread can do a pseudo remote membar.
3862 // We use the current thread pointer to calculate a thread specific
3863 // offset to write to within the page. This minimizes bus traffic
3864 // due to cache line collision.
3865 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3866   movl(tmp, thread);
3867   shrl(tmp, os::get_serialize_page_shift_count());
3868   andl(tmp, (os::vm_page_size() - sizeof(int)));
3869 
3870   Address index(noreg, tmp, Address::times_1);
3871   ExternalAddress page(os::get_memory_serialize_page());
3872 
3873   // Size of store must match masking code above
3874   movl(as_Address(ArrayAddress(page, index)), tmp);
3875 }
3876 
3877 // Calls to C land
3878 //
3879 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3880 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3881 // has to be reset to 0. This is required to allow proper stack traversal.
3882 void MacroAssembler::set_last_Java_frame(Register java_thread,
3883                                          Register last_java_sp,
3884                                          Register last_java_fp,
3885                                          address  last_java_pc) {
3886   // determine java_thread register
3887   if (!java_thread->is_valid()) {
3888     java_thread = rdi;
3889     get_thread(java_thread);
3890   }
3891   // determine last_java_sp register
3892   if (!last_java_sp->is_valid()) {
3893     last_java_sp = rsp;
3894   }
3895 
3896   // last_java_fp is optional
3897 
3898   if (last_java_fp->is_valid()) {
3899     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3900   }
3901 
3902   // last_java_pc is optional
3903 
3904   if (last_java_pc != NULL) {
3905     lea(Address(java_thread,
3906                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3907         InternalAddress(last_java_pc));
3908 
3909   }
3910   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3911 }
3912 
3913 void MacroAssembler::shlptr(Register dst, int imm8) {
3914   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3915 }
3916 
3917 void MacroAssembler::shrptr(Register dst, int imm8) {
3918   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3919 }
3920 
3921 void MacroAssembler::sign_extend_byte(Register reg) {
3922   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3923     movsbl(reg, reg); // movsxb
3924   } else {
3925     shll(reg, 24);
3926     sarl(reg, 24);
3927   }
3928 }
3929 
3930 void MacroAssembler::sign_extend_short(Register reg) {
3931   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3932     movswl(reg, reg); // movsxw
3933   } else {
3934     shll(reg, 16);
3935     sarl(reg, 16);
3936   }
3937 }
3938 
3939 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3940   assert(reachable(src), "Address should be reachable");
3941   testl(dst, as_Address(src));
3942 }
3943 
3944 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3945   if (reachable(src)) {
3946     Assembler::sqrtsd(dst, as_Address(src));
3947   } else {
3948     lea(rscratch1, src);
3949     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3950   }
3951 }
3952 
3953 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3954   if (reachable(src)) {
3955     Assembler::sqrtss(dst, as_Address(src));
3956   } else {
3957     lea(rscratch1, src);
3958     Assembler::sqrtss(dst, Address(rscratch1, 0));
3959   }
3960 }
3961 
3962 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3963   if (reachable(src)) {
3964     Assembler::subsd(dst, as_Address(src));
3965   } else {
3966     lea(rscratch1, src);
3967     Assembler::subsd(dst, Address(rscratch1, 0));
3968   }
3969 }
3970 
3971 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3972   if (reachable(src)) {
3973     Assembler::subss(dst, as_Address(src));
3974   } else {
3975     lea(rscratch1, src);
3976     Assembler::subss(dst, Address(rscratch1, 0));
3977   }
3978 }
3979 
3980 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3981   if (reachable(src)) {
3982     Assembler::ucomisd(dst, as_Address(src));
3983   } else {
3984     lea(rscratch1, src);
3985     Assembler::ucomisd(dst, Address(rscratch1, 0));
3986   }
3987 }
3988 
3989 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3990   if (reachable(src)) {
3991     Assembler::ucomiss(dst, as_Address(src));
3992   } else {
3993     lea(rscratch1, src);
3994     Assembler::ucomiss(dst, Address(rscratch1, 0));
3995   }
3996 }
3997 
3998 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
3999   // Used in sign-bit flipping with aligned address.
4000   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4001   if (reachable(src)) {
4002     Assembler::xorpd(dst, as_Address(src));
4003   } else {
4004     lea(rscratch1, src);
4005     Assembler::xorpd(dst, Address(rscratch1, 0));
4006   }
4007 }
4008 
4009 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4010   // Used in sign-bit flipping with aligned address.
4011   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4012   if (reachable(src)) {
4013     Assembler::xorps(dst, as_Address(src));
4014   } else {
4015     lea(rscratch1, src);
4016     Assembler::xorps(dst, Address(rscratch1, 0));
4017   }
4018 }
4019 
4020 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4021   // Used in sign-bit flipping with aligned address.
4022   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4023   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4024   if (reachable(src)) {
4025     Assembler::pshufb(dst, as_Address(src));
4026   } else {
4027     lea(rscratch1, src);
4028     Assembler::pshufb(dst, Address(rscratch1, 0));
4029   }
4030 }
4031 
4032 // AVX 3-operands instructions
4033 
4034 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4035   if (reachable(src)) {
4036     vaddsd(dst, nds, as_Address(src));
4037   } else {
4038     lea(rscratch1, src);
4039     vaddsd(dst, nds, Address(rscratch1, 0));
4040   }
4041 }
4042 
4043 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4044   if (reachable(src)) {
4045     vaddss(dst, nds, as_Address(src));
4046   } else {
4047     lea(rscratch1, src);
4048     vaddss(dst, nds, Address(rscratch1, 0));
4049   }
4050 }
4051 
4052 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4053   if (reachable(src)) {
4054     vandpd(dst, nds, as_Address(src), vector_len);
4055   } else {
4056     lea(rscratch1, src);
4057     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
4058   }
4059 }
4060 
4061 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4062   if (reachable(src)) {
4063     vandps(dst, nds, as_Address(src), vector_len);
4064   } else {
4065     lea(rscratch1, src);
4066     vandps(dst, nds, Address(rscratch1, 0), vector_len);
4067   }
4068 }
4069 
4070 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4071   if (reachable(src)) {
4072     vdivsd(dst, nds, as_Address(src));
4073   } else {
4074     lea(rscratch1, src);
4075     vdivsd(dst, nds, Address(rscratch1, 0));
4076   }
4077 }
4078 
4079 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4080   if (reachable(src)) {
4081     vdivss(dst, nds, as_Address(src));
4082   } else {
4083     lea(rscratch1, src);
4084     vdivss(dst, nds, Address(rscratch1, 0));
4085   }
4086 }
4087 
4088 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4089   if (reachable(src)) {
4090     vmulsd(dst, nds, as_Address(src));
4091   } else {
4092     lea(rscratch1, src);
4093     vmulsd(dst, nds, Address(rscratch1, 0));
4094   }
4095 }
4096 
4097 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4098   if (reachable(src)) {
4099     vmulss(dst, nds, as_Address(src));
4100   } else {
4101     lea(rscratch1, src);
4102     vmulss(dst, nds, Address(rscratch1, 0));
4103   }
4104 }
4105 
4106 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4107   if (reachable(src)) {
4108     vsubsd(dst, nds, as_Address(src));
4109   } else {
4110     lea(rscratch1, src);
4111     vsubsd(dst, nds, Address(rscratch1, 0));
4112   }
4113 }
4114 
4115 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4116   if (reachable(src)) {
4117     vsubss(dst, nds, as_Address(src));
4118   } else {
4119     lea(rscratch1, src);
4120     vsubss(dst, nds, Address(rscratch1, 0));
4121   }
4122 }
4123 
4124 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4125   int nds_enc = nds->encoding();
4126   int dst_enc = dst->encoding();
4127   bool dst_upper_bank = (dst_enc > 15);
4128   bool nds_upper_bank = (nds_enc > 15);
4129   if (VM_Version::supports_avx512novl() &&
4130       (nds_upper_bank || dst_upper_bank)) {
4131     if (dst_upper_bank) {
4132       subptr(rsp, 64);
4133       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4134       movflt(xmm0, nds);
4135       if (reachable(src)) {
4136         vxorps(xmm0, xmm0, as_Address(src), Assembler::AVX_128bit);
4137       } else {
4138         lea(rscratch1, src);
4139         vxorps(xmm0, xmm0, Address(rscratch1, 0), Assembler::AVX_128bit);
4140       }
4141       movflt(dst, xmm0);
4142       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4143       addptr(rsp, 64);
4144     } else {
4145       movflt(dst, nds);
4146       if (reachable(src)) {
4147         vxorps(dst, dst, as_Address(src), Assembler::AVX_128bit);
4148       } else {
4149         lea(rscratch1, src);
4150         vxorps(dst, dst, Address(rscratch1, 0), Assembler::AVX_128bit);
4151       }
4152     }
4153   } else {
4154     if (reachable(src)) {
4155       vxorps(dst, nds, as_Address(src), Assembler::AVX_128bit);
4156     } else {
4157       lea(rscratch1, src);
4158       vxorps(dst, nds, Address(rscratch1, 0), Assembler::AVX_128bit);
4159     }
4160   }
4161 }
4162 
4163 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4164   int nds_enc = nds->encoding();
4165   int dst_enc = dst->encoding();
4166   bool dst_upper_bank = (dst_enc > 15);
4167   bool nds_upper_bank = (nds_enc > 15);
4168   if (VM_Version::supports_avx512novl() &&
4169       (nds_upper_bank || dst_upper_bank)) {
4170     if (dst_upper_bank) {
4171       subptr(rsp, 64);
4172       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4173       movdbl(xmm0, nds);
4174       if (reachable(src)) {
4175         vxorps(xmm0, xmm0, as_Address(src), Assembler::AVX_128bit);
4176       } else {
4177         lea(rscratch1, src);
4178         vxorps(xmm0, xmm0, Address(rscratch1, 0), Assembler::AVX_128bit);
4179       }
4180       movdbl(dst, xmm0);
4181       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4182       addptr(rsp, 64);
4183     } else {
4184       movdbl(dst, nds);
4185       if (reachable(src)) {
4186         vxorps(dst, dst, as_Address(src), Assembler::AVX_128bit);
4187       } else {
4188         lea(rscratch1, src);
4189         vxorps(dst, dst, Address(rscratch1, 0), Assembler::AVX_128bit);
4190       }
4191     }
4192   } else {
4193     if (reachable(src)) {
4194       vxorpd(dst, nds, as_Address(src), Assembler::AVX_128bit);
4195     } else {
4196       lea(rscratch1, src);
4197       vxorpd(dst, nds, Address(rscratch1, 0), Assembler::AVX_128bit);
4198     }
4199   }
4200 }
4201 
4202 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4203   if (reachable(src)) {
4204     vxorpd(dst, nds, as_Address(src), vector_len);
4205   } else {
4206     lea(rscratch1, src);
4207     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
4208   }
4209 }
4210 
4211 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4212   if (reachable(src)) {
4213     vxorps(dst, nds, as_Address(src), vector_len);
4214   } else {
4215     lea(rscratch1, src);
4216     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
4217   }
4218 }
4219 
4220 
4221 //////////////////////////////////////////////////////////////////////////////////
4222 #if INCLUDE_ALL_GCS
4223 
4224 void MacroAssembler::g1_write_barrier_pre(Register obj,
4225                                           Register pre_val,
4226                                           Register thread,
4227                                           Register tmp,
4228                                           bool tosca_live,
4229                                           bool expand_call) {
4230 
4231   // If expand_call is true then we expand the call_VM_leaf macro
4232   // directly to skip generating the check by
4233   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
4234 
4235 #ifdef _LP64
4236   assert(thread == r15_thread, "must be");
4237 #endif // _LP64
4238 
4239   Label done;
4240   Label runtime;
4241 
4242   assert(pre_val != noreg, "check this code");
4243 
4244   if (obj != noreg) {
4245     assert_different_registers(obj, pre_val, tmp);
4246     assert(pre_val != rax, "check this code");
4247   }
4248 
4249   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4250                                        PtrQueue::byte_offset_of_active()));
4251   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4252                                        PtrQueue::byte_offset_of_index()));
4253   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4254                                        PtrQueue::byte_offset_of_buf()));
4255 
4256 
4257   // Is marking active?
4258   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4259     cmpl(in_progress, 0);
4260   } else {
4261     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
4262     cmpb(in_progress, 0);
4263   }
4264   jcc(Assembler::equal, done);
4265 
4266   // Do we need to load the previous value?
4267   if (obj != noreg) {
4268     load_heap_oop(pre_val, Address(obj, 0));
4269   }
4270 
4271   // Is the previous value null?
4272   cmpptr(pre_val, (int32_t) NULL_WORD);
4273   jcc(Assembler::equal, done);
4274 
4275   // Can we store original value in the thread's buffer?
4276   // Is index == 0?
4277   // (The index field is typed as size_t.)
4278 
4279   movptr(tmp, index);                   // tmp := *index_adr
4280   cmpptr(tmp, 0);                       // tmp == 0?
4281   jcc(Assembler::equal, runtime);       // If yes, goto runtime
4282 
4283   subptr(tmp, wordSize);                // tmp := tmp - wordSize
4284   movptr(index, tmp);                   // *index_adr := tmp
4285   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
4286 
4287   // Record the previous value
4288   movptr(Address(tmp, 0), pre_val);
4289   jmp(done);
4290 
4291   bind(runtime);
4292   // save the live input values
4293   if(tosca_live) push(rax);
4294 
4295   if (obj != noreg && obj != rax)
4296     push(obj);
4297 
4298   if (pre_val != rax)
4299     push(pre_val);
4300 
4301   // Calling the runtime using the regular call_VM_leaf mechanism generates
4302   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
4303   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
4304   //
4305   // If we care generating the pre-barrier without a frame (e.g. in the
4306   // intrinsified Reference.get() routine) then ebp might be pointing to
4307   // the caller frame and so this check will most likely fail at runtime.
4308   //
4309   // Expanding the call directly bypasses the generation of the check.
4310   // So when we do not have have a full interpreter frame on the stack
4311   // expand_call should be passed true.
4312 
4313   NOT_LP64( push(thread); )
4314 
4315   if (expand_call) {
4316     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
4317     pass_arg1(this, thread);
4318     pass_arg0(this, pre_val);
4319     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
4320   } else {
4321     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
4322   }
4323 
4324   NOT_LP64( pop(thread); )
4325 
4326   // save the live input values
4327   if (pre_val != rax)
4328     pop(pre_val);
4329 
4330   if (obj != noreg && obj != rax)
4331     pop(obj);
4332 
4333   if(tosca_live) pop(rax);
4334 
4335   bind(done);
4336 }
4337 
4338 void MacroAssembler::g1_write_barrier_post(Register store_addr,
4339                                            Register new_val,
4340                                            Register thread,
4341                                            Register tmp,
4342                                            Register tmp2) {
4343 #ifdef _LP64
4344   assert(thread == r15_thread, "must be");
4345 #endif // _LP64
4346 
4347   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4348                                        PtrQueue::byte_offset_of_index()));
4349   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4350                                        PtrQueue::byte_offset_of_buf()));
4351 
4352   CardTableModRefBS* ct =
4353     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
4354   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4355 
4356   Label done;
4357   Label runtime;
4358 
4359   // Does store cross heap regions?
4360 
4361   movptr(tmp, store_addr);
4362   xorptr(tmp, new_val);
4363   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
4364   jcc(Assembler::equal, done);
4365 
4366   // crosses regions, storing NULL?
4367 
4368   cmpptr(new_val, (int32_t) NULL_WORD);
4369   jcc(Assembler::equal, done);
4370 
4371   // storing region crossing non-NULL, is card already dirty?
4372 
4373   const Register card_addr = tmp;
4374   const Register cardtable = tmp2;
4375 
4376   movptr(card_addr, store_addr);
4377   shrptr(card_addr, CardTableModRefBS::card_shift);
4378   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
4379   // a valid address and therefore is not properly handled by the relocation code.
4380   movptr(cardtable, (intptr_t)ct->byte_map_base);
4381   addptr(card_addr, cardtable);
4382 
4383   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
4384   jcc(Assembler::equal, done);
4385 
4386   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4387   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4388   jcc(Assembler::equal, done);
4389 
4390 
4391   // storing a region crossing, non-NULL oop, card is clean.
4392   // dirty card and log.
4393 
4394   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4395 
4396   cmpl(queue_index, 0);
4397   jcc(Assembler::equal, runtime);
4398   subl(queue_index, wordSize);
4399   movptr(tmp2, buffer);
4400 #ifdef _LP64
4401   movslq(rscratch1, queue_index);
4402   addq(tmp2, rscratch1);
4403   movq(Address(tmp2, 0), card_addr);
4404 #else
4405   addl(tmp2, queue_index);
4406   movl(Address(tmp2, 0), card_addr);
4407 #endif
4408   jmp(done);
4409 
4410   bind(runtime);
4411   // save the live input values
4412   push(store_addr);
4413   push(new_val);
4414 #ifdef _LP64
4415   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
4416 #else
4417   push(thread);
4418   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
4419   pop(thread);
4420 #endif
4421   pop(new_val);
4422   pop(store_addr);
4423 
4424   bind(done);
4425 }
4426 
4427 #endif // INCLUDE_ALL_GCS
4428 //////////////////////////////////////////////////////////////////////////////////
4429 
4430 
4431 void MacroAssembler::store_check(Register obj, Address dst) {
4432   store_check(obj);
4433 }
4434 
4435 void MacroAssembler::store_check(Register obj) {
4436   // Does a store check for the oop in register obj. The content of
4437   // register obj is destroyed afterwards.
4438   BarrierSet* bs = Universe::heap()->barrier_set();
4439   assert(bs->kind() == BarrierSet::CardTableForRS ||
4440          bs->kind() == BarrierSet::CardTableExtension,
4441          "Wrong barrier set kind");
4442 
4443   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
4444   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4445 
4446   shrptr(obj, CardTableModRefBS::card_shift);
4447 
4448   Address card_addr;
4449 
4450   // The calculation for byte_map_base is as follows:
4451   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
4452   // So this essentially converts an address to a displacement and it will
4453   // never need to be relocated. On 64bit however the value may be too
4454   // large for a 32bit displacement.
4455   intptr_t disp = (intptr_t) ct->byte_map_base;
4456   if (is_simm32(disp)) {
4457     card_addr = Address(noreg, obj, Address::times_1, disp);
4458   } else {
4459     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
4460     // displacement and done in a single instruction given favorable mapping and a
4461     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
4462     // entry and that entry is not properly handled by the relocation code.
4463     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
4464     Address index(noreg, obj, Address::times_1);
4465     card_addr = as_Address(ArrayAddress(cardtable, index));
4466   }
4467 
4468   int dirty = CardTableModRefBS::dirty_card_val();
4469   if (UseCondCardMark) {
4470     Label L_already_dirty;
4471     if (UseConcMarkSweepGC) {
4472       membar(Assembler::StoreLoad);
4473     }
4474     cmpb(card_addr, dirty);
4475     jcc(Assembler::equal, L_already_dirty);
4476     movb(card_addr, dirty);
4477     bind(L_already_dirty);
4478   } else {
4479     movb(card_addr, dirty);
4480   }
4481 }
4482 
4483 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4484   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4485 }
4486 
4487 // Force generation of a 4 byte immediate value even if it fits into 8bit
4488 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4489   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4490 }
4491 
4492 void MacroAssembler::subptr(Register dst, Register src) {
4493   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4494 }
4495 
4496 // C++ bool manipulation
4497 void MacroAssembler::testbool(Register dst) {
4498   if(sizeof(bool) == 1)
4499     testb(dst, 0xff);
4500   else if(sizeof(bool) == 2) {
4501     // testw implementation needed for two byte bools
4502     ShouldNotReachHere();
4503   } else if(sizeof(bool) == 4)
4504     testl(dst, dst);
4505   else
4506     // unsupported
4507     ShouldNotReachHere();
4508 }
4509 
4510 void MacroAssembler::testptr(Register dst, Register src) {
4511   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4512 }
4513 
4514 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4515 void MacroAssembler::tlab_allocate(Register obj,
4516                                    Register var_size_in_bytes,
4517                                    int con_size_in_bytes,
4518                                    Register t1,
4519                                    Register t2,
4520                                    Label& slow_case) {
4521   assert_different_registers(obj, t1, t2);
4522   assert_different_registers(obj, var_size_in_bytes, t1);
4523   Register end = t2;
4524   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
4525 
4526   verify_tlab();
4527 
4528   NOT_LP64(get_thread(thread));
4529 
4530   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
4531   if (var_size_in_bytes == noreg) {
4532     lea(end, Address(obj, con_size_in_bytes));
4533   } else {
4534     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
4535   }
4536   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
4537   jcc(Assembler::above, slow_case);
4538 
4539   // update the tlab top pointer
4540   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
4541 
4542   // recover var_size_in_bytes if necessary
4543   if (var_size_in_bytes == end) {
4544     subptr(var_size_in_bytes, obj);
4545   }
4546   verify_tlab();
4547 }
4548 
4549 // Preserves rbx, and rdx.
4550 Register MacroAssembler::tlab_refill(Label& retry,
4551                                      Label& try_eden,
4552                                      Label& slow_case) {
4553   Register top = rax;
4554   Register t1  = rcx;
4555   Register t2  = rsi;
4556   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
4557   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
4558   Label do_refill, discard_tlab;
4559 
4560   if (!Universe::heap()->supports_inline_contig_alloc()) {
4561     // No allocation in the shared eden.
4562     jmp(slow_case);
4563   }
4564 
4565   NOT_LP64(get_thread(thread_reg));
4566 
4567   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4568   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4569 
4570   // calculate amount of free space
4571   subptr(t1, top);
4572   shrptr(t1, LogHeapWordSize);
4573 
4574   // Retain tlab and allocate object in shared space if
4575   // the amount free in the tlab is too large to discard.
4576   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
4577   jcc(Assembler::lessEqual, discard_tlab);
4578 
4579   // Retain
4580   // %%% yuck as movptr...
4581   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
4582   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
4583   if (TLABStats) {
4584     // increment number of slow_allocations
4585     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
4586   }
4587   jmp(try_eden);
4588 
4589   bind(discard_tlab);
4590   if (TLABStats) {
4591     // increment number of refills
4592     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
4593     // accumulate wastage -- t1 is amount free in tlab
4594     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
4595   }
4596 
4597   // if tlab is currently allocated (top or end != null) then
4598   // fill [top, end + alignment_reserve) with array object
4599   testptr(top, top);
4600   jcc(Assembler::zero, do_refill);
4601 
4602   // set up the mark word
4603   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
4604   // set the length to the remaining space
4605   subptr(t1, typeArrayOopDesc::header_size(T_INT));
4606   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
4607   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
4608   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
4609   // set klass to intArrayKlass
4610   // dubious reloc why not an oop reloc?
4611   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
4612   // store klass last.  concurrent gcs assumes klass length is valid if
4613   // klass field is not null.
4614   store_klass(top, t1);
4615 
4616   movptr(t1, top);
4617   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4618   incr_allocated_bytes(thread_reg, t1, 0);
4619 
4620   // refill the tlab with an eden allocation
4621   bind(do_refill);
4622   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4623   shlptr(t1, LogHeapWordSize);
4624   // allocate new tlab, address returned in top
4625   eden_allocate(top, t1, 0, t2, slow_case);
4626 
4627   // Check that t1 was preserved in eden_allocate.
4628 #ifdef ASSERT
4629   if (UseTLAB) {
4630     Label ok;
4631     Register tsize = rsi;
4632     assert_different_registers(tsize, thread_reg, t1);
4633     push(tsize);
4634     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4635     shlptr(tsize, LogHeapWordSize);
4636     cmpptr(t1, tsize);
4637     jcc(Assembler::equal, ok);
4638     STOP("assert(t1 != tlab size)");
4639     should_not_reach_here();
4640 
4641     bind(ok);
4642     pop(tsize);
4643   }
4644 #endif
4645   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
4646   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
4647   addptr(top, t1);
4648   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
4649   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
4650   verify_tlab();
4651   jmp(retry);
4652 
4653   return thread_reg; // for use by caller
4654 }
4655 
4656 void MacroAssembler::incr_allocated_bytes(Register thread,
4657                                           Register var_size_in_bytes,
4658                                           int con_size_in_bytes,
4659                                           Register t1) {
4660   if (!thread->is_valid()) {
4661 #ifdef _LP64
4662     thread = r15_thread;
4663 #else
4664     assert(t1->is_valid(), "need temp reg");
4665     thread = t1;
4666     get_thread(thread);
4667 #endif
4668   }
4669 
4670 #ifdef _LP64
4671   if (var_size_in_bytes->is_valid()) {
4672     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4673   } else {
4674     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4675   }
4676 #else
4677   if (var_size_in_bytes->is_valid()) {
4678     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4679   } else {
4680     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4681   }
4682   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
4683 #endif
4684 }
4685 
4686 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
4687   pusha();
4688 
4689   // if we are coming from c1, xmm registers may be live
4690   int off = 0;
4691   int num_xmm_regs = LP64_ONLY(16) NOT_LP64(8);
4692   if (UseAVX > 2) {
4693     num_xmm_regs = LP64_ONLY(32) NOT_LP64(8);
4694   }
4695 
4696   if (UseSSE == 1)  {
4697     subptr(rsp, sizeof(jdouble)*8);
4698     for (int n = 0; n < 8; n++) {
4699       movflt(Address(rsp, off++*sizeof(jdouble)), as_XMMRegister(n));
4700     }
4701   } else if (UseSSE >= 2)  {
4702     if (UseAVX > 2) {
4703       push(rbx);
4704       movl(rbx, 0xffff);
4705       kmovwl(k1, rbx);
4706       pop(rbx);
4707     }
4708 #ifdef COMPILER2
4709     if (MaxVectorSize > 16) {
4710       if(UseAVX > 2) {
4711         // Save upper half of ZMM registes
4712         subptr(rsp, 32*num_xmm_regs);
4713         for (int n = 0; n < num_xmm_regs; n++) {
4714           vextractf64x4h(Address(rsp, off++*32), as_XMMRegister(n));
4715         }
4716         off = 0;
4717       }
4718       assert(UseAVX > 0, "256 bit vectors are supported only with AVX");
4719       // Save upper half of YMM registes
4720       subptr(rsp, 16*num_xmm_regs);
4721       for (int n = 0; n < num_xmm_regs; n++) {
4722         vextractf128h(Address(rsp, off++*16), as_XMMRegister(n));
4723       }
4724     }
4725 #endif
4726     // Save whole 128bit (16 bytes) XMM registers
4727     subptr(rsp, 16*num_xmm_regs);
4728     off = 0;
4729 #ifdef _LP64
4730     if (VM_Version::supports_avx512novl()) {
4731       for (int n = 0; n < num_xmm_regs; n++) {
4732         vextractf32x4h(Address(rsp, off++*16), as_XMMRegister(n), 0);
4733       }
4734     } else {
4735       for (int n = 0; n < num_xmm_regs; n++) {
4736         movdqu(Address(rsp, off++*16), as_XMMRegister(n));
4737       }
4738     }
4739 #else
4740     for (int n = 0; n < num_xmm_regs; n++) {
4741       movdqu(Address(rsp, off++*16), as_XMMRegister(n));
4742     }
4743 #endif
4744   }
4745 
4746   // Preserve registers across runtime call
4747   int incoming_argument_and_return_value_offset = -1;
4748   if (num_fpu_regs_in_use > 1) {
4749     // Must preserve all other FPU regs (could alternatively convert
4750     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
4751     // FPU state, but can not trust C compiler)
4752     NEEDS_CLEANUP;
4753     // NOTE that in this case we also push the incoming argument(s) to
4754     // the stack and restore it later; we also use this stack slot to
4755     // hold the return value from dsin, dcos etc.
4756     for (int i = 0; i < num_fpu_regs_in_use; i++) {
4757       subptr(rsp, sizeof(jdouble));
4758       fstp_d(Address(rsp, 0));
4759     }
4760     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
4761     for (int i = nb_args-1; i >= 0; i--) {
4762       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
4763     }
4764   }
4765 
4766   subptr(rsp, nb_args*sizeof(jdouble));
4767   for (int i = 0; i < nb_args; i++) {
4768     fstp_d(Address(rsp, i*sizeof(jdouble)));
4769   }
4770 
4771 #ifdef _LP64
4772   if (nb_args > 0) {
4773     movdbl(xmm0, Address(rsp, 0));
4774   }
4775   if (nb_args > 1) {
4776     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
4777   }
4778   assert(nb_args <= 2, "unsupported number of args");
4779 #endif // _LP64
4780 
4781   // NOTE: we must not use call_VM_leaf here because that requires a
4782   // complete interpreter frame in debug mode -- same bug as 4387334
4783   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
4784   // do proper 64bit abi
4785 
4786   NEEDS_CLEANUP;
4787   // Need to add stack banging before this runtime call if it needs to
4788   // be taken; however, there is no generic stack banging routine at
4789   // the MacroAssembler level
4790 
4791   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
4792 
4793 #ifdef _LP64
4794   movsd(Address(rsp, 0), xmm0);
4795   fld_d(Address(rsp, 0));
4796 #endif // _LP64
4797   addptr(rsp, sizeof(jdouble)*nb_args);
4798   if (num_fpu_regs_in_use > 1) {
4799     // Must save return value to stack and then restore entire FPU
4800     // stack except incoming arguments
4801     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
4802     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
4803       fld_d(Address(rsp, 0));
4804       addptr(rsp, sizeof(jdouble));
4805     }
4806     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
4807     addptr(rsp, sizeof(jdouble)*nb_args);
4808   }
4809 
4810   off = 0;
4811   if (UseSSE == 1)  {
4812     for (int n = 0; n < 8; n++) {
4813       movflt(as_XMMRegister(n), Address(rsp, off++*sizeof(jdouble)));
4814     }
4815     addptr(rsp, sizeof(jdouble)*8);
4816   } else if (UseSSE >= 2)  {
4817     // Restore whole 128bit (16 bytes) XMM regiters
4818 #ifdef _LP64
4819     if (VM_Version::supports_avx512novl()) {
4820       for (int n = 0; n < num_xmm_regs; n++) {
4821         vinsertf32x4h(as_XMMRegister(n), Address(rsp, off++*16), 0);
4822       }
4823     }
4824     else {
4825       for (int n = 0; n < num_xmm_regs; n++) {
4826         movdqu(as_XMMRegister(n), Address(rsp, off++*16));
4827       }
4828     }
4829 #else
4830     for (int n = 0; n < num_xmm_regs; n++) {
4831       movdqu(as_XMMRegister(n), Address(rsp, off++ * 16));
4832     }
4833 #endif
4834     addptr(rsp, 16*num_xmm_regs);
4835 
4836 #ifdef COMPILER2
4837     if (MaxVectorSize > 16) {
4838       // Restore upper half of YMM registes.
4839       off = 0;
4840       for (int n = 0; n < num_xmm_regs; n++) {
4841         vinsertf128h(as_XMMRegister(n), Address(rsp, off++*16));
4842       }
4843       addptr(rsp, 16*num_xmm_regs);
4844       if(UseAVX > 2) {
4845         off = 0;
4846         for (int n = 0; n < num_xmm_regs; n++) {
4847           vinsertf64x4h(as_XMMRegister(n), Address(rsp, off++*32));
4848         }
4849         addptr(rsp, 32*num_xmm_regs);
4850       }
4851     }
4852 #endif
4853   }
4854   popa();
4855 }
4856 
4857 static const double     pi_4 =  0.7853981633974483;
4858 
4859 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
4860   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
4861   // was attempted in this code; unfortunately it appears that the
4862   // switch to 80-bit precision and back causes this to be
4863   // unprofitable compared with simply performing a runtime call if
4864   // the argument is out of the (-pi/4, pi/4) range.
4865 
4866   Register tmp = noreg;
4867   if (!VM_Version::supports_cmov()) {
4868     // fcmp needs a temporary so preserve rbx,
4869     tmp = rbx;
4870     push(tmp);
4871   }
4872 
4873   Label slow_case, done;
4874 
4875   ExternalAddress pi4_adr = (address)&pi_4;
4876   if (reachable(pi4_adr)) {
4877     // x ?<= pi/4
4878     fld_d(pi4_adr);
4879     fld_s(1);                // Stack:  X  PI/4  X
4880     fabs();                  // Stack: |X| PI/4  X
4881     fcmp(tmp);
4882     jcc(Assembler::above, slow_case);
4883 
4884     // fastest case: -pi/4 <= x <= pi/4
4885     switch(trig) {
4886     case 's':
4887       fsin();
4888       break;
4889     case 'c':
4890       fcos();
4891       break;
4892     case 't':
4893       ftan();
4894       break;
4895     default:
4896       assert(false, "bad intrinsic");
4897       break;
4898     }
4899     jmp(done);
4900   }
4901 
4902   // slow case: runtime call
4903   bind(slow_case);
4904 
4905   switch(trig) {
4906   case 's':
4907     {
4908       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
4909     }
4910     break;
4911   case 'c':
4912     {
4913       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
4914     }
4915     break;
4916   case 't':
4917     {
4918       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
4919     }
4920     break;
4921   default:
4922     assert(false, "bad intrinsic");
4923     break;
4924   }
4925 
4926   // Come here with result in F-TOS
4927   bind(done);
4928 
4929   if (tmp != noreg) {
4930     pop(tmp);
4931   }
4932 }
4933 
4934 
4935 // Look up the method for a megamorphic invokeinterface call.
4936 // The target method is determined by <intf_klass, itable_index>.
4937 // The receiver klass is in recv_klass.
4938 // On success, the result will be in method_result, and execution falls through.
4939 // On failure, execution transfers to the given label.
4940 void MacroAssembler::lookup_interface_method(Register recv_klass,
4941                                              Register intf_klass,
4942                                              RegisterOrConstant itable_index,
4943                                              Register method_result,
4944                                              Register scan_temp,
4945                                              Label& L_no_such_interface) {
4946   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
4947   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4948          "caller must use same register for non-constant itable index as for method");
4949 
4950   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4951   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
4952   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4953   int scan_step   = itableOffsetEntry::size() * wordSize;
4954   int vte_size    = vtableEntry::size() * wordSize;
4955   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4956   assert(vte_size == wordSize, "else adjust times_vte_scale");
4957 
4958   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
4959 
4960   // %%% Could store the aligned, prescaled offset in the klassoop.
4961   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4962   if (HeapWordsPerLong > 1) {
4963     // Round up to align_object_offset boundary
4964     // see code for InstanceKlass::start_of_itable!
4965     round_to(scan_temp, BytesPerLong);
4966   }
4967 
4968   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4969   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4970   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4971 
4972   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4973   //   if (scan->interface() == intf) {
4974   //     result = (klass + scan->offset() + itable_index);
4975   //   }
4976   // }
4977   Label search, found_method;
4978 
4979   for (int peel = 1; peel >= 0; peel--) {
4980     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4981     cmpptr(intf_klass, method_result);
4982 
4983     if (peel) {
4984       jccb(Assembler::equal, found_method);
4985     } else {
4986       jccb(Assembler::notEqual, search);
4987       // (invert the test to fall through to found_method...)
4988     }
4989 
4990     if (!peel)  break;
4991 
4992     bind(search);
4993 
4994     // Check that the previous entry is non-null.  A null entry means that
4995     // the receiver class doesn't implement the interface, and wasn't the
4996     // same as when the caller was compiled.
4997     testptr(method_result, method_result);
4998     jcc(Assembler::zero, L_no_such_interface);
4999     addptr(scan_temp, scan_step);
5000   }
5001 
5002   bind(found_method);
5003 
5004   // Got a hit.
5005   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5006   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5007 }
5008 
5009 
5010 // virtual method calling
5011 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5012                                            RegisterOrConstant vtable_index,
5013                                            Register method_result) {
5014   const int base = InstanceKlass::vtable_start_offset() * wordSize;
5015   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5016   Address vtable_entry_addr(recv_klass,
5017                             vtable_index, Address::times_ptr,
5018                             base + vtableEntry::method_offset_in_bytes());
5019   movptr(method_result, vtable_entry_addr);
5020 }
5021 
5022 
5023 void MacroAssembler::check_klass_subtype(Register sub_klass,
5024                            Register super_klass,
5025                            Register temp_reg,
5026                            Label& L_success) {
5027   Label L_failure;
5028   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5029   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5030   bind(L_failure);
5031 }
5032 
5033 
5034 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5035                                                    Register super_klass,
5036                                                    Register temp_reg,
5037                                                    Label* L_success,
5038                                                    Label* L_failure,
5039                                                    Label* L_slow_path,
5040                                         RegisterOrConstant super_check_offset) {
5041   assert_different_registers(sub_klass, super_klass, temp_reg);
5042   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5043   if (super_check_offset.is_register()) {
5044     assert_different_registers(sub_klass, super_klass,
5045                                super_check_offset.as_register());
5046   } else if (must_load_sco) {
5047     assert(temp_reg != noreg, "supply either a temp or a register offset");
5048   }
5049 
5050   Label L_fallthrough;
5051   int label_nulls = 0;
5052   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5053   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5054   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5055   assert(label_nulls <= 1, "at most one NULL in the batch");
5056 
5057   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5058   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5059   Address super_check_offset_addr(super_klass, sco_offset);
5060 
5061   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5062   // range of a jccb.  If this routine grows larger, reconsider at
5063   // least some of these.
5064 #define local_jcc(assembler_cond, label)                                \
5065   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5066   else                             jcc( assembler_cond, label) /*omit semi*/
5067 
5068   // Hacked jmp, which may only be used just before L_fallthrough.
5069 #define final_jmp(label)                                                \
5070   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5071   else                            jmp(label)                /*omit semi*/
5072 
5073   // If the pointers are equal, we are done (e.g., String[] elements).
5074   // This self-check enables sharing of secondary supertype arrays among
5075   // non-primary types such as array-of-interface.  Otherwise, each such
5076   // type would need its own customized SSA.
5077   // We move this check to the front of the fast path because many
5078   // type checks are in fact trivially successful in this manner,
5079   // so we get a nicely predicted branch right at the start of the check.
5080   cmpptr(sub_klass, super_klass);
5081   local_jcc(Assembler::equal, *L_success);
5082 
5083   // Check the supertype display:
5084   if (must_load_sco) {
5085     // Positive movl does right thing on LP64.
5086     movl(temp_reg, super_check_offset_addr);
5087     super_check_offset = RegisterOrConstant(temp_reg);
5088   }
5089   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
5090   cmpptr(super_klass, super_check_addr); // load displayed supertype
5091 
5092   // This check has worked decisively for primary supers.
5093   // Secondary supers are sought in the super_cache ('super_cache_addr').
5094   // (Secondary supers are interfaces and very deeply nested subtypes.)
5095   // This works in the same check above because of a tricky aliasing
5096   // between the super_cache and the primary super display elements.
5097   // (The 'super_check_addr' can address either, as the case requires.)
5098   // Note that the cache is updated below if it does not help us find
5099   // what we need immediately.
5100   // So if it was a primary super, we can just fail immediately.
5101   // Otherwise, it's the slow path for us (no success at this point).
5102 
5103   if (super_check_offset.is_register()) {
5104     local_jcc(Assembler::equal, *L_success);
5105     cmpl(super_check_offset.as_register(), sc_offset);
5106     if (L_failure == &L_fallthrough) {
5107       local_jcc(Assembler::equal, *L_slow_path);
5108     } else {
5109       local_jcc(Assembler::notEqual, *L_failure);
5110       final_jmp(*L_slow_path);
5111     }
5112   } else if (super_check_offset.as_constant() == sc_offset) {
5113     // Need a slow path; fast failure is impossible.
5114     if (L_slow_path == &L_fallthrough) {
5115       local_jcc(Assembler::equal, *L_success);
5116     } else {
5117       local_jcc(Assembler::notEqual, *L_slow_path);
5118       final_jmp(*L_success);
5119     }
5120   } else {
5121     // No slow path; it's a fast decision.
5122     if (L_failure == &L_fallthrough) {
5123       local_jcc(Assembler::equal, *L_success);
5124     } else {
5125       local_jcc(Assembler::notEqual, *L_failure);
5126       final_jmp(*L_success);
5127     }
5128   }
5129 
5130   bind(L_fallthrough);
5131 
5132 #undef local_jcc
5133 #undef final_jmp
5134 }
5135 
5136 
5137 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5138                                                    Register super_klass,
5139                                                    Register temp_reg,
5140                                                    Register temp2_reg,
5141                                                    Label* L_success,
5142                                                    Label* L_failure,
5143                                                    bool set_cond_codes) {
5144   assert_different_registers(sub_klass, super_klass, temp_reg);
5145   if (temp2_reg != noreg)
5146     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5147 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5148 
5149   Label L_fallthrough;
5150   int label_nulls = 0;
5151   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5152   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5153   assert(label_nulls <= 1, "at most one NULL in the batch");
5154 
5155   // a couple of useful fields in sub_klass:
5156   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5157   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5158   Address secondary_supers_addr(sub_klass, ss_offset);
5159   Address super_cache_addr(     sub_klass, sc_offset);
5160 
5161   // Do a linear scan of the secondary super-klass chain.
5162   // This code is rarely used, so simplicity is a virtue here.
5163   // The repne_scan instruction uses fixed registers, which we must spill.
5164   // Don't worry too much about pre-existing connections with the input regs.
5165 
5166   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5167   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5168 
5169   // Get super_klass value into rax (even if it was in rdi or rcx).
5170   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5171   if (super_klass != rax || UseCompressedOops) {
5172     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5173     mov(rax, super_klass);
5174   }
5175   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5176   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5177 
5178 #ifndef PRODUCT
5179   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5180   ExternalAddress pst_counter_addr((address) pst_counter);
5181   NOT_LP64(  incrementl(pst_counter_addr) );
5182   LP64_ONLY( lea(rcx, pst_counter_addr) );
5183   LP64_ONLY( incrementl(Address(rcx, 0)) );
5184 #endif //PRODUCT
5185 
5186   // We will consult the secondary-super array.
5187   movptr(rdi, secondary_supers_addr);
5188   // Load the array length.  (Positive movl does right thing on LP64.)
5189   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5190   // Skip to start of data.
5191   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5192 
5193   // Scan RCX words at [RDI] for an occurrence of RAX.
5194   // Set NZ/Z based on last compare.
5195   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5196   // not change flags (only scas instruction which is repeated sets flags).
5197   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5198 
5199     testptr(rax,rax); // Set Z = 0
5200     repne_scan();
5201 
5202   // Unspill the temp. registers:
5203   if (pushed_rdi)  pop(rdi);
5204   if (pushed_rcx)  pop(rcx);
5205   if (pushed_rax)  pop(rax);
5206 
5207   if (set_cond_codes) {
5208     // Special hack for the AD files:  rdi is guaranteed non-zero.
5209     assert(!pushed_rdi, "rdi must be left non-NULL");
5210     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5211   }
5212 
5213   if (L_failure == &L_fallthrough)
5214         jccb(Assembler::notEqual, *L_failure);
5215   else  jcc(Assembler::notEqual, *L_failure);
5216 
5217   // Success.  Cache the super we found and proceed in triumph.
5218   movptr(super_cache_addr, super_klass);
5219 
5220   if (L_success != &L_fallthrough) {
5221     jmp(*L_success);
5222   }
5223 
5224 #undef IS_A_TEMP
5225 
5226   bind(L_fallthrough);
5227 }
5228 
5229 
5230 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5231   if (VM_Version::supports_cmov()) {
5232     cmovl(cc, dst, src);
5233   } else {
5234     Label L;
5235     jccb(negate_condition(cc), L);
5236     movl(dst, src);
5237     bind(L);
5238   }
5239 }
5240 
5241 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5242   if (VM_Version::supports_cmov()) {
5243     cmovl(cc, dst, src);
5244   } else {
5245     Label L;
5246     jccb(negate_condition(cc), L);
5247     movl(dst, src);
5248     bind(L);
5249   }
5250 }
5251 
5252 void MacroAssembler::verify_oop(Register reg, const char* s) {
5253   if (!VerifyOops) return;
5254 
5255   // Pass register number to verify_oop_subroutine
5256   const char* b = NULL;
5257   {
5258     ResourceMark rm;
5259     stringStream ss;
5260     ss.print("verify_oop: %s: %s", reg->name(), s);
5261     b = code_string(ss.as_string());
5262   }
5263   BLOCK_COMMENT("verify_oop {");
5264 #ifdef _LP64
5265   push(rscratch1);                    // save r10, trashed by movptr()
5266 #endif
5267   push(rax);                          // save rax,
5268   push(reg);                          // pass register argument
5269   ExternalAddress buffer((address) b);
5270   // avoid using pushptr, as it modifies scratch registers
5271   // and our contract is not to modify anything
5272   movptr(rax, buffer.addr());
5273   push(rax);
5274   // call indirectly to solve generation ordering problem
5275   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5276   call(rax);
5277   // Caller pops the arguments (oop, message) and restores rax, r10
5278   BLOCK_COMMENT("} verify_oop");
5279 }
5280 
5281 
5282 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
5283                                                       Register tmp,
5284                                                       int offset) {
5285   intptr_t value = *delayed_value_addr;
5286   if (value != 0)
5287     return RegisterOrConstant(value + offset);
5288 
5289   // load indirectly to solve generation ordering problem
5290   movptr(tmp, ExternalAddress((address) delayed_value_addr));
5291 
5292 #ifdef ASSERT
5293   { Label L;
5294     testptr(tmp, tmp);
5295     if (WizardMode) {
5296       const char* buf = NULL;
5297       {
5298         ResourceMark rm;
5299         stringStream ss;
5300         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
5301         buf = code_string(ss.as_string());
5302       }
5303       jcc(Assembler::notZero, L);
5304       STOP(buf);
5305     } else {
5306       jccb(Assembler::notZero, L);
5307       hlt();
5308     }
5309     bind(L);
5310   }
5311 #endif
5312 
5313   if (offset != 0)
5314     addptr(tmp, offset);
5315 
5316   return RegisterOrConstant(tmp);
5317 }
5318 
5319 
5320 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
5321                                          int extra_slot_offset) {
5322   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
5323   int stackElementSize = Interpreter::stackElementSize;
5324   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
5325 #ifdef ASSERT
5326   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
5327   assert(offset1 - offset == stackElementSize, "correct arithmetic");
5328 #endif
5329   Register             scale_reg    = noreg;
5330   Address::ScaleFactor scale_factor = Address::no_scale;
5331   if (arg_slot.is_constant()) {
5332     offset += arg_slot.as_constant() * stackElementSize;
5333   } else {
5334     scale_reg    = arg_slot.as_register();
5335     scale_factor = Address::times(stackElementSize);
5336   }
5337   offset += wordSize;           // return PC is on stack
5338   return Address(rsp, scale_reg, scale_factor, offset);
5339 }
5340 
5341 
5342 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
5343   if (!VerifyOops) return;
5344 
5345   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
5346   // Pass register number to verify_oop_subroutine
5347   const char* b = NULL;
5348   {
5349     ResourceMark rm;
5350     stringStream ss;
5351     ss.print("verify_oop_addr: %s", s);
5352     b = code_string(ss.as_string());
5353   }
5354 #ifdef _LP64
5355   push(rscratch1);                    // save r10, trashed by movptr()
5356 #endif
5357   push(rax);                          // save rax,
5358   // addr may contain rsp so we will have to adjust it based on the push
5359   // we just did (and on 64 bit we do two pushes)
5360   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
5361   // stores rax into addr which is backwards of what was intended.
5362   if (addr.uses(rsp)) {
5363     lea(rax, addr);
5364     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
5365   } else {
5366     pushptr(addr);
5367   }
5368 
5369   ExternalAddress buffer((address) b);
5370   // pass msg argument
5371   // avoid using pushptr, as it modifies scratch registers
5372   // and our contract is not to modify anything
5373   movptr(rax, buffer.addr());
5374   push(rax);
5375 
5376   // call indirectly to solve generation ordering problem
5377   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5378   call(rax);
5379   // Caller pops the arguments (addr, message) and restores rax, r10.
5380 }
5381 
5382 void MacroAssembler::verify_tlab() {
5383 #ifdef ASSERT
5384   if (UseTLAB && VerifyOops) {
5385     Label next, ok;
5386     Register t1 = rsi;
5387     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
5388 
5389     push(t1);
5390     NOT_LP64(push(thread_reg));
5391     NOT_LP64(get_thread(thread_reg));
5392 
5393     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5394     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5395     jcc(Assembler::aboveEqual, next);
5396     STOP("assert(top >= start)");
5397     should_not_reach_here();
5398 
5399     bind(next);
5400     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5401     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5402     jcc(Assembler::aboveEqual, ok);
5403     STOP("assert(top <= end)");
5404     should_not_reach_here();
5405 
5406     bind(ok);
5407     NOT_LP64(pop(thread_reg));
5408     pop(t1);
5409   }
5410 #endif
5411 }
5412 
5413 class ControlWord {
5414  public:
5415   int32_t _value;
5416 
5417   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
5418   int  precision_control() const       { return  (_value >>  8) & 3      ; }
5419   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5420   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5421   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5422   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5423   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5424   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5425 
5426   void print() const {
5427     // rounding control
5428     const char* rc;
5429     switch (rounding_control()) {
5430       case 0: rc = "round near"; break;
5431       case 1: rc = "round down"; break;
5432       case 2: rc = "round up  "; break;
5433       case 3: rc = "chop      "; break;
5434     };
5435     // precision control
5436     const char* pc;
5437     switch (precision_control()) {
5438       case 0: pc = "24 bits "; break;
5439       case 1: pc = "reserved"; break;
5440       case 2: pc = "53 bits "; break;
5441       case 3: pc = "64 bits "; break;
5442     };
5443     // flags
5444     char f[9];
5445     f[0] = ' ';
5446     f[1] = ' ';
5447     f[2] = (precision   ()) ? 'P' : 'p';
5448     f[3] = (underflow   ()) ? 'U' : 'u';
5449     f[4] = (overflow    ()) ? 'O' : 'o';
5450     f[5] = (zero_divide ()) ? 'Z' : 'z';
5451     f[6] = (denormalized()) ? 'D' : 'd';
5452     f[7] = (invalid     ()) ? 'I' : 'i';
5453     f[8] = '\x0';
5454     // output
5455     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
5456   }
5457 
5458 };
5459 
5460 class StatusWord {
5461  public:
5462   int32_t _value;
5463 
5464   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
5465   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
5466   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
5467   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
5468   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
5469   int  top() const                     { return  (_value >> 11) & 7      ; }
5470   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
5471   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
5472   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5473   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5474   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5475   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5476   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5477   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5478 
5479   void print() const {
5480     // condition codes
5481     char c[5];
5482     c[0] = (C3()) ? '3' : '-';
5483     c[1] = (C2()) ? '2' : '-';
5484     c[2] = (C1()) ? '1' : '-';
5485     c[3] = (C0()) ? '0' : '-';
5486     c[4] = '\x0';
5487     // flags
5488     char f[9];
5489     f[0] = (error_status()) ? 'E' : '-';
5490     f[1] = (stack_fault ()) ? 'S' : '-';
5491     f[2] = (precision   ()) ? 'P' : '-';
5492     f[3] = (underflow   ()) ? 'U' : '-';
5493     f[4] = (overflow    ()) ? 'O' : '-';
5494     f[5] = (zero_divide ()) ? 'Z' : '-';
5495     f[6] = (denormalized()) ? 'D' : '-';
5496     f[7] = (invalid     ()) ? 'I' : '-';
5497     f[8] = '\x0';
5498     // output
5499     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
5500   }
5501 
5502 };
5503 
5504 class TagWord {
5505  public:
5506   int32_t _value;
5507 
5508   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
5509 
5510   void print() const {
5511     printf("%04x", _value & 0xFFFF);
5512   }
5513 
5514 };
5515 
5516 class FPU_Register {
5517  public:
5518   int32_t _m0;
5519   int32_t _m1;
5520   int16_t _ex;
5521 
5522   bool is_indefinite() const           {
5523     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
5524   }
5525 
5526   void print() const {
5527     char  sign = (_ex < 0) ? '-' : '+';
5528     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
5529     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
5530   };
5531 
5532 };
5533 
5534 class FPU_State {
5535  public:
5536   enum {
5537     register_size       = 10,
5538     number_of_registers =  8,
5539     register_mask       =  7
5540   };
5541 
5542   ControlWord  _control_word;
5543   StatusWord   _status_word;
5544   TagWord      _tag_word;
5545   int32_t      _error_offset;
5546   int32_t      _error_selector;
5547   int32_t      _data_offset;
5548   int32_t      _data_selector;
5549   int8_t       _register[register_size * number_of_registers];
5550 
5551   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
5552   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
5553 
5554   const char* tag_as_string(int tag) const {
5555     switch (tag) {
5556       case 0: return "valid";
5557       case 1: return "zero";
5558       case 2: return "special";
5559       case 3: return "empty";
5560     }
5561     ShouldNotReachHere();
5562     return NULL;
5563   }
5564 
5565   void print() const {
5566     // print computation registers
5567     { int t = _status_word.top();
5568       for (int i = 0; i < number_of_registers; i++) {
5569         int j = (i - t) & register_mask;
5570         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5571         st(j)->print();
5572         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5573       }
5574     }
5575     printf("\n");
5576     // print control registers
5577     printf("ctrl = "); _control_word.print(); printf("\n");
5578     printf("stat = "); _status_word .print(); printf("\n");
5579     printf("tags = "); _tag_word    .print(); printf("\n");
5580   }
5581 
5582 };
5583 
5584 class Flag_Register {
5585  public:
5586   int32_t _value;
5587 
5588   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5589   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5590   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5591   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5592   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5593   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5594   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5595 
5596   void print() const {
5597     // flags
5598     char f[8];
5599     f[0] = (overflow       ()) ? 'O' : '-';
5600     f[1] = (direction      ()) ? 'D' : '-';
5601     f[2] = (sign           ()) ? 'S' : '-';
5602     f[3] = (zero           ()) ? 'Z' : '-';
5603     f[4] = (auxiliary_carry()) ? 'A' : '-';
5604     f[5] = (parity         ()) ? 'P' : '-';
5605     f[6] = (carry          ()) ? 'C' : '-';
5606     f[7] = '\x0';
5607     // output
5608     printf("%08x  flags = %s", _value, f);
5609   }
5610 
5611 };
5612 
5613 class IU_Register {
5614  public:
5615   int32_t _value;
5616 
5617   void print() const {
5618     printf("%08x  %11d", _value, _value);
5619   }
5620 
5621 };
5622 
5623 class IU_State {
5624  public:
5625   Flag_Register _eflags;
5626   IU_Register   _rdi;
5627   IU_Register   _rsi;
5628   IU_Register   _rbp;
5629   IU_Register   _rsp;
5630   IU_Register   _rbx;
5631   IU_Register   _rdx;
5632   IU_Register   _rcx;
5633   IU_Register   _rax;
5634 
5635   void print() const {
5636     // computation registers
5637     printf("rax,  = "); _rax.print(); printf("\n");
5638     printf("rbx,  = "); _rbx.print(); printf("\n");
5639     printf("rcx  = "); _rcx.print(); printf("\n");
5640     printf("rdx  = "); _rdx.print(); printf("\n");
5641     printf("rdi  = "); _rdi.print(); printf("\n");
5642     printf("rsi  = "); _rsi.print(); printf("\n");
5643     printf("rbp,  = "); _rbp.print(); printf("\n");
5644     printf("rsp  = "); _rsp.print(); printf("\n");
5645     printf("\n");
5646     // control registers
5647     printf("flgs = "); _eflags.print(); printf("\n");
5648   }
5649 };
5650 
5651 
5652 class CPU_State {
5653  public:
5654   FPU_State _fpu_state;
5655   IU_State  _iu_state;
5656 
5657   void print() const {
5658     printf("--------------------------------------------------\n");
5659     _iu_state .print();
5660     printf("\n");
5661     _fpu_state.print();
5662     printf("--------------------------------------------------\n");
5663   }
5664 
5665 };
5666 
5667 
5668 static void _print_CPU_state(CPU_State* state) {
5669   state->print();
5670 };
5671 
5672 
5673 void MacroAssembler::print_CPU_state() {
5674   push_CPU_state();
5675   push(rsp);                // pass CPU state
5676   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5677   addptr(rsp, wordSize);       // discard argument
5678   pop_CPU_state();
5679 }
5680 
5681 
5682 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5683   static int counter = 0;
5684   FPU_State* fs = &state->_fpu_state;
5685   counter++;
5686   // For leaf calls, only verify that the top few elements remain empty.
5687   // We only need 1 empty at the top for C2 code.
5688   if( stack_depth < 0 ) {
5689     if( fs->tag_for_st(7) != 3 ) {
5690       printf("FPR7 not empty\n");
5691       state->print();
5692       assert(false, "error");
5693       return false;
5694     }
5695     return true;                // All other stack states do not matter
5696   }
5697 
5698   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5699          "bad FPU control word");
5700 
5701   // compute stack depth
5702   int i = 0;
5703   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5704   int d = i;
5705   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5706   // verify findings
5707   if (i != FPU_State::number_of_registers) {
5708     // stack not contiguous
5709     printf("%s: stack not contiguous at ST%d\n", s, i);
5710     state->print();
5711     assert(false, "error");
5712     return false;
5713   }
5714   // check if computed stack depth corresponds to expected stack depth
5715   if (stack_depth < 0) {
5716     // expected stack depth is -stack_depth or less
5717     if (d > -stack_depth) {
5718       // too many elements on the stack
5719       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5720       state->print();
5721       assert(false, "error");
5722       return false;
5723     }
5724   } else {
5725     // expected stack depth is stack_depth
5726     if (d != stack_depth) {
5727       // wrong stack depth
5728       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5729       state->print();
5730       assert(false, "error");
5731       return false;
5732     }
5733   }
5734   // everything is cool
5735   return true;
5736 }
5737 
5738 
5739 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5740   if (!VerifyFPU) return;
5741   push_CPU_state();
5742   push(rsp);                // pass CPU state
5743   ExternalAddress msg((address) s);
5744   // pass message string s
5745   pushptr(msg.addr());
5746   push(stack_depth);        // pass stack depth
5747   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5748   addptr(rsp, 3 * wordSize);   // discard arguments
5749   // check for error
5750   { Label L;
5751     testl(rax, rax);
5752     jcc(Assembler::notZero, L);
5753     int3();                  // break if error condition
5754     bind(L);
5755   }
5756   pop_CPU_state();
5757 }
5758 
5759 void MacroAssembler::restore_cpu_control_state_after_jni() {
5760   // Either restore the MXCSR register after returning from the JNI Call
5761   // or verify that it wasn't changed (with -Xcheck:jni flag).
5762   if (VM_Version::supports_sse()) {
5763     if (RestoreMXCSROnJNICalls) {
5764       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5765     } else if (CheckJNICalls) {
5766       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5767     }
5768   }
5769   if (VM_Version::supports_avx()) {
5770     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5771     vzeroupper();
5772   }
5773 
5774 #ifndef _LP64
5775   // Either restore the x87 floating pointer control word after returning
5776   // from the JNI call or verify that it wasn't changed.
5777   if (CheckJNICalls) {
5778     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5779   }
5780 #endif // _LP64
5781 }
5782 
5783 
5784 void MacroAssembler::load_klass(Register dst, Register src) {
5785 #ifdef _LP64
5786   if (UseCompressedClassPointers) {
5787     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5788     decode_klass_not_null(dst);
5789   } else
5790 #endif
5791     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5792 }
5793 
5794 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5795   load_klass(dst, src);
5796   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5797 }
5798 
5799 void MacroAssembler::store_klass(Register dst, Register src) {
5800 #ifdef _LP64
5801   if (UseCompressedClassPointers) {
5802     encode_klass_not_null(src);
5803     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5804   } else
5805 #endif
5806     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5807 }
5808 
5809 void MacroAssembler::load_heap_oop(Register dst, Address src) {
5810 #ifdef _LP64
5811   // FIXME: Must change all places where we try to load the klass.
5812   if (UseCompressedOops) {
5813     movl(dst, src);
5814     decode_heap_oop(dst);
5815   } else
5816 #endif
5817     movptr(dst, src);
5818 }
5819 
5820 // Doesn't do verfication, generates fixed size code
5821 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
5822 #ifdef _LP64
5823   if (UseCompressedOops) {
5824     movl(dst, src);
5825     decode_heap_oop_not_null(dst);
5826   } else
5827 #endif
5828     movptr(dst, src);
5829 }
5830 
5831 void MacroAssembler::store_heap_oop(Address dst, Register src) {
5832 #ifdef _LP64
5833   if (UseCompressedOops) {
5834     assert(!dst.uses(src), "not enough registers");
5835     encode_heap_oop(src);
5836     movl(dst, src);
5837   } else
5838 #endif
5839     movptr(dst, src);
5840 }
5841 
5842 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
5843   assert_different_registers(src1, tmp);
5844 #ifdef _LP64
5845   if (UseCompressedOops) {
5846     bool did_push = false;
5847     if (tmp == noreg) {
5848       tmp = rax;
5849       push(tmp);
5850       did_push = true;
5851       assert(!src2.uses(rsp), "can't push");
5852     }
5853     load_heap_oop(tmp, src2);
5854     cmpptr(src1, tmp);
5855     if (did_push)  pop(tmp);
5856   } else
5857 #endif
5858     cmpptr(src1, src2);
5859 }
5860 
5861 // Used for storing NULLs.
5862 void MacroAssembler::store_heap_oop_null(Address dst) {
5863 #ifdef _LP64
5864   if (UseCompressedOops) {
5865     movl(dst, (int32_t)NULL_WORD);
5866   } else {
5867     movslq(dst, (int32_t)NULL_WORD);
5868   }
5869 #else
5870   movl(dst, (int32_t)NULL_WORD);
5871 #endif
5872 }
5873 
5874 #ifdef _LP64
5875 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5876   if (UseCompressedClassPointers) {
5877     // Store to klass gap in destination
5878     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5879   }
5880 }
5881 
5882 #ifdef ASSERT
5883 void MacroAssembler::verify_heapbase(const char* msg) {
5884   assert (UseCompressedOops, "should be compressed");
5885   assert (Universe::heap() != NULL, "java heap should be initialized");
5886   if (CheckCompressedOops) {
5887     Label ok;
5888     push(rscratch1); // cmpptr trashes rscratch1
5889     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
5890     jcc(Assembler::equal, ok);
5891     STOP(msg);
5892     bind(ok);
5893     pop(rscratch1);
5894   }
5895 }
5896 #endif
5897 
5898 // Algorithm must match oop.inline.hpp encode_heap_oop.
5899 void MacroAssembler::encode_heap_oop(Register r) {
5900 #ifdef ASSERT
5901   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5902 #endif
5903   verify_oop(r, "broken oop in encode_heap_oop");
5904   if (Universe::narrow_oop_base() == NULL) {
5905     if (Universe::narrow_oop_shift() != 0) {
5906       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5907       shrq(r, LogMinObjAlignmentInBytes);
5908     }
5909     return;
5910   }
5911   testq(r, r);
5912   cmovq(Assembler::equal, r, r12_heapbase);
5913   subq(r, r12_heapbase);
5914   shrq(r, LogMinObjAlignmentInBytes);
5915 }
5916 
5917 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5918 #ifdef ASSERT
5919   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5920   if (CheckCompressedOops) {
5921     Label ok;
5922     testq(r, r);
5923     jcc(Assembler::notEqual, ok);
5924     STOP("null oop passed to encode_heap_oop_not_null");
5925     bind(ok);
5926   }
5927 #endif
5928   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5929   if (Universe::narrow_oop_base() != NULL) {
5930     subq(r, r12_heapbase);
5931   }
5932   if (Universe::narrow_oop_shift() != 0) {
5933     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5934     shrq(r, LogMinObjAlignmentInBytes);
5935   }
5936 }
5937 
5938 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5939 #ifdef ASSERT
5940   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5941   if (CheckCompressedOops) {
5942     Label ok;
5943     testq(src, src);
5944     jcc(Assembler::notEqual, ok);
5945     STOP("null oop passed to encode_heap_oop_not_null2");
5946     bind(ok);
5947   }
5948 #endif
5949   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5950   if (dst != src) {
5951     movq(dst, src);
5952   }
5953   if (Universe::narrow_oop_base() != NULL) {
5954     subq(dst, r12_heapbase);
5955   }
5956   if (Universe::narrow_oop_shift() != 0) {
5957     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5958     shrq(dst, LogMinObjAlignmentInBytes);
5959   }
5960 }
5961 
5962 void  MacroAssembler::decode_heap_oop(Register r) {
5963 #ifdef ASSERT
5964   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5965 #endif
5966   if (Universe::narrow_oop_base() == NULL) {
5967     if (Universe::narrow_oop_shift() != 0) {
5968       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5969       shlq(r, LogMinObjAlignmentInBytes);
5970     }
5971   } else {
5972     Label done;
5973     shlq(r, LogMinObjAlignmentInBytes);
5974     jccb(Assembler::equal, done);
5975     addq(r, r12_heapbase);
5976     bind(done);
5977   }
5978   verify_oop(r, "broken oop in decode_heap_oop");
5979 }
5980 
5981 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5982   // Note: it will change flags
5983   assert (UseCompressedOops, "should only be used for compressed headers");
5984   assert (Universe::heap() != NULL, "java heap should be initialized");
5985   // Cannot assert, unverified entry point counts instructions (see .ad file)
5986   // vtableStubs also counts instructions in pd_code_size_limit.
5987   // Also do not verify_oop as this is called by verify_oop.
5988   if (Universe::narrow_oop_shift() != 0) {
5989     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5990     shlq(r, LogMinObjAlignmentInBytes);
5991     if (Universe::narrow_oop_base() != NULL) {
5992       addq(r, r12_heapbase);
5993     }
5994   } else {
5995     assert (Universe::narrow_oop_base() == NULL, "sanity");
5996   }
5997 }
5998 
5999 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
6000   // Note: it will change flags
6001   assert (UseCompressedOops, "should only be used for compressed headers");
6002   assert (Universe::heap() != NULL, "java heap should be initialized");
6003   // Cannot assert, unverified entry point counts instructions (see .ad file)
6004   // vtableStubs also counts instructions in pd_code_size_limit.
6005   // Also do not verify_oop as this is called by verify_oop.
6006   if (Universe::narrow_oop_shift() != 0) {
6007     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6008     if (LogMinObjAlignmentInBytes == Address::times_8) {
6009       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6010     } else {
6011       if (dst != src) {
6012         movq(dst, src);
6013       }
6014       shlq(dst, LogMinObjAlignmentInBytes);
6015       if (Universe::narrow_oop_base() != NULL) {
6016         addq(dst, r12_heapbase);
6017       }
6018     }
6019   } else {
6020     assert (Universe::narrow_oop_base() == NULL, "sanity");
6021     if (dst != src) {
6022       movq(dst, src);
6023     }
6024   }
6025 }
6026 
6027 void MacroAssembler::encode_klass_not_null(Register r) {
6028   if (Universe::narrow_klass_base() != NULL) {
6029     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6030     assert(r != r12_heapbase, "Encoding a klass in r12");
6031     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6032     subq(r, r12_heapbase);
6033   }
6034   if (Universe::narrow_klass_shift() != 0) {
6035     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6036     shrq(r, LogKlassAlignmentInBytes);
6037   }
6038   if (Universe::narrow_klass_base() != NULL) {
6039     reinit_heapbase();
6040   }
6041 }
6042 
6043 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6044   if (dst == src) {
6045     encode_klass_not_null(src);
6046   } else {
6047     if (Universe::narrow_klass_base() != NULL) {
6048       mov64(dst, (int64_t)Universe::narrow_klass_base());
6049       negq(dst);
6050       addq(dst, src);
6051     } else {
6052       movptr(dst, src);
6053     }
6054     if (Universe::narrow_klass_shift() != 0) {
6055       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6056       shrq(dst, LogKlassAlignmentInBytes);
6057     }
6058   }
6059 }
6060 
6061 // Function instr_size_for_decode_klass_not_null() counts the instructions
6062 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6063 // when (Universe::heap() != NULL).  Hence, if the instructions they
6064 // generate change, then this method needs to be updated.
6065 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6066   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6067   if (Universe::narrow_klass_base() != NULL) {
6068     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6069     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6070   } else {
6071     // longest load decode klass function, mov64, leaq
6072     return 16;
6073   }
6074 }
6075 
6076 // !!! If the instructions that get generated here change then function
6077 // instr_size_for_decode_klass_not_null() needs to get updated.
6078 void  MacroAssembler::decode_klass_not_null(Register r) {
6079   // Note: it will change flags
6080   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6081   assert(r != r12_heapbase, "Decoding a klass in r12");
6082   // Cannot assert, unverified entry point counts instructions (see .ad file)
6083   // vtableStubs also counts instructions in pd_code_size_limit.
6084   // Also do not verify_oop as this is called by verify_oop.
6085   if (Universe::narrow_klass_shift() != 0) {
6086     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6087     shlq(r, LogKlassAlignmentInBytes);
6088   }
6089   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6090   if (Universe::narrow_klass_base() != NULL) {
6091     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6092     addq(r, r12_heapbase);
6093     reinit_heapbase();
6094   }
6095 }
6096 
6097 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
6098   // Note: it will change flags
6099   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6100   if (dst == src) {
6101     decode_klass_not_null(dst);
6102   } else {
6103     // Cannot assert, unverified entry point counts instructions (see .ad file)
6104     // vtableStubs also counts instructions in pd_code_size_limit.
6105     // Also do not verify_oop as this is called by verify_oop.
6106     mov64(dst, (int64_t)Universe::narrow_klass_base());
6107     if (Universe::narrow_klass_shift() != 0) {
6108       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6109       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6110       leaq(dst, Address(dst, src, Address::times_8, 0));
6111     } else {
6112       addq(dst, src);
6113     }
6114   }
6115 }
6116 
6117 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6118   assert (UseCompressedOops, "should only be used for compressed headers");
6119   assert (Universe::heap() != NULL, "java heap should be initialized");
6120   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6121   int oop_index = oop_recorder()->find_index(obj);
6122   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6123   mov_narrow_oop(dst, oop_index, rspec);
6124 }
6125 
6126 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6127   assert (UseCompressedOops, "should only be used for compressed headers");
6128   assert (Universe::heap() != NULL, "java heap should be initialized");
6129   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6130   int oop_index = oop_recorder()->find_index(obj);
6131   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6132   mov_narrow_oop(dst, oop_index, rspec);
6133 }
6134 
6135 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6136   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6137   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6138   int klass_index = oop_recorder()->find_index(k);
6139   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6140   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6141 }
6142 
6143 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6144   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6145   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6146   int klass_index = oop_recorder()->find_index(k);
6147   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6148   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6149 }
6150 
6151 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6152   assert (UseCompressedOops, "should only be used for compressed headers");
6153   assert (Universe::heap() != NULL, "java heap should be initialized");
6154   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6155   int oop_index = oop_recorder()->find_index(obj);
6156   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6157   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6158 }
6159 
6160 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6161   assert (UseCompressedOops, "should only be used for compressed headers");
6162   assert (Universe::heap() != NULL, "java heap should be initialized");
6163   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6164   int oop_index = oop_recorder()->find_index(obj);
6165   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6166   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6167 }
6168 
6169 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6170   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6171   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6172   int klass_index = oop_recorder()->find_index(k);
6173   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6174   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6175 }
6176 
6177 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6178   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6179   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6180   int klass_index = oop_recorder()->find_index(k);
6181   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6182   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6183 }
6184 
6185 void MacroAssembler::reinit_heapbase() {
6186   if (UseCompressedOops || UseCompressedClassPointers) {
6187     if (Universe::heap() != NULL) {
6188       if (Universe::narrow_oop_base() == NULL) {
6189         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6190       } else {
6191         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6192       }
6193     } else {
6194       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6195     }
6196   }
6197 }
6198 
6199 #endif // _LP64
6200 
6201 
6202 // C2 compiled method's prolog code.
6203 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6204 
6205   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6206   // NativeJump::patch_verified_entry will be able to patch out the entry
6207   // code safely. The push to verify stack depth is ok at 5 bytes,
6208   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6209   // stack bang then we must use the 6 byte frame allocation even if
6210   // we have no frame. :-(
6211   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6212 
6213   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6214   // Remove word for return addr
6215   framesize -= wordSize;
6216   stack_bang_size -= wordSize;
6217 
6218   // Calls to C2R adapters often do not accept exceptional returns.
6219   // We require that their callers must bang for them.  But be careful, because
6220   // some VM calls (such as call site linkage) can use several kilobytes of
6221   // stack.  But the stack safety zone should account for that.
6222   // See bugs 4446381, 4468289, 4497237.
6223   if (stack_bang_size > 0) {
6224     generate_stack_overflow_check(stack_bang_size);
6225 
6226     // We always push rbp, so that on return to interpreter rbp, will be
6227     // restored correctly and we can correct the stack.
6228     push(rbp);
6229     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6230     if (PreserveFramePointer) {
6231       mov(rbp, rsp);
6232     }
6233     // Remove word for ebp
6234     framesize -= wordSize;
6235 
6236     // Create frame
6237     if (framesize) {
6238       subptr(rsp, framesize);
6239     }
6240   } else {
6241     // Create frame (force generation of a 4 byte immediate value)
6242     subptr_imm32(rsp, framesize);
6243 
6244     // Save RBP register now.
6245     framesize -= wordSize;
6246     movptr(Address(rsp, framesize), rbp);
6247     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6248     if (PreserveFramePointer) {
6249       movptr(rbp, rsp);
6250       addptr(rbp, framesize + wordSize);
6251     }
6252   }
6253 
6254   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6255     framesize -= wordSize;
6256     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6257   }
6258 
6259 #ifndef _LP64
6260   // If method sets FPU control word do it now
6261   if (fp_mode_24b) {
6262     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6263   }
6264   if (UseSSE >= 2 && VerifyFPU) {
6265     verify_FPU(0, "FPU stack must be clean on entry");
6266   }
6267 #endif
6268 
6269 #ifdef ASSERT
6270   if (VerifyStackAtCalls) {
6271     Label L;
6272     push(rax);
6273     mov(rax, rsp);
6274     andptr(rax, StackAlignmentInBytes-1);
6275     cmpptr(rax, StackAlignmentInBytes-wordSize);
6276     pop(rax);
6277     jcc(Assembler::equal, L);
6278     STOP("Stack is not properly aligned!");
6279     bind(L);
6280   }
6281 #endif
6282 
6283 }
6284 
6285 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
6286   // cnt - number of qwords (8-byte words).
6287   // base - start address, qword aligned.
6288   assert(base==rdi, "base register must be edi for rep stos");
6289   assert(tmp==rax,   "tmp register must be eax for rep stos");
6290   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
6291 
6292   xorptr(tmp, tmp);
6293   if (UseFastStosb) {
6294     shlptr(cnt,3); // convert to number of bytes
6295     rep_stosb();
6296   } else {
6297     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
6298     rep_stos();
6299   }
6300 }
6301 
6302 // IndexOf for constant substrings with size >= 8 chars
6303 // which don't need to be loaded through stack.
6304 void MacroAssembler::string_indexofC8(Register str1, Register str2,
6305                                       Register cnt1, Register cnt2,
6306                                       int int_cnt2,  Register result,
6307                                       XMMRegister vec, Register tmp) {
6308   ShortBranchVerifier sbv(this);
6309   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6310 
6311   // This method uses pcmpestri instruction with bound registers
6312   //   inputs:
6313   //     xmm - substring
6314   //     rax - substring length (elements count)
6315   //     mem - scanned string
6316   //     rdx - string length (elements count)
6317   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6318   //   outputs:
6319   //     rcx - matched index in string
6320   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6321 
6322   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
6323         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
6324         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
6325 
6326   // Note, inline_string_indexOf() generates checks:
6327   // if (substr.count > string.count) return -1;
6328   // if (substr.count == 0) return 0;
6329   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
6330 
6331   // Load substring.
6332   movdqu(vec, Address(str2, 0));
6333   movl(cnt2, int_cnt2);
6334   movptr(result, str1); // string addr
6335 
6336   if (int_cnt2 > 8) {
6337     jmpb(SCAN_TO_SUBSTR);
6338 
6339     // Reload substr for rescan, this code
6340     // is executed only for large substrings (> 8 chars)
6341     bind(RELOAD_SUBSTR);
6342     movdqu(vec, Address(str2, 0));
6343     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
6344 
6345     bind(RELOAD_STR);
6346     // We came here after the beginning of the substring was
6347     // matched but the rest of it was not so we need to search
6348     // again. Start from the next element after the previous match.
6349 
6350     // cnt2 is number of substring reminding elements and
6351     // cnt1 is number of string reminding elements when cmp failed.
6352     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
6353     subl(cnt1, cnt2);
6354     addl(cnt1, int_cnt2);
6355     movl(cnt2, int_cnt2); // Now restore cnt2
6356 
6357     decrementl(cnt1);     // Shift to next element
6358     cmpl(cnt1, cnt2);
6359     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6360 
6361     addptr(result, 2);
6362 
6363   } // (int_cnt2 > 8)
6364 
6365   // Scan string for start of substr in 16-byte vectors
6366   bind(SCAN_TO_SUBSTR);
6367   pcmpestri(vec, Address(result, 0), 0x0d);
6368   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6369   subl(cnt1, 8);
6370   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6371   cmpl(cnt1, cnt2);
6372   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6373   addptr(result, 16);
6374   jmpb(SCAN_TO_SUBSTR);
6375 
6376   // Found a potential substr
6377   bind(FOUND_CANDIDATE);
6378   // Matched whole vector if first element matched (tmp(rcx) == 0).
6379   if (int_cnt2 == 8) {
6380     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
6381   } else { // int_cnt2 > 8
6382     jccb(Assembler::overflow, FOUND_SUBSTR);
6383   }
6384   // After pcmpestri tmp(rcx) contains matched element index
6385   // Compute start addr of substr
6386   lea(result, Address(result, tmp, Address::times_2));
6387 
6388   // Make sure string is still long enough
6389   subl(cnt1, tmp);
6390   cmpl(cnt1, cnt2);
6391   if (int_cnt2 == 8) {
6392     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6393   } else { // int_cnt2 > 8
6394     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
6395   }
6396   // Left less then substring.
6397 
6398   bind(RET_NOT_FOUND);
6399   movl(result, -1);
6400   jmpb(EXIT);
6401 
6402   if (int_cnt2 > 8) {
6403     // This code is optimized for the case when whole substring
6404     // is matched if its head is matched.
6405     bind(MATCH_SUBSTR_HEAD);
6406     pcmpestri(vec, Address(result, 0), 0x0d);
6407     // Reload only string if does not match
6408     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
6409 
6410     Label CONT_SCAN_SUBSTR;
6411     // Compare the rest of substring (> 8 chars).
6412     bind(FOUND_SUBSTR);
6413     // First 8 chars are already matched.
6414     negptr(cnt2);
6415     addptr(cnt2, 8);
6416 
6417     bind(SCAN_SUBSTR);
6418     subl(cnt1, 8);
6419     cmpl(cnt2, -8); // Do not read beyond substring
6420     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
6421     // Back-up strings to avoid reading beyond substring:
6422     // cnt1 = cnt1 - cnt2 + 8
6423     addl(cnt1, cnt2); // cnt2 is negative
6424     addl(cnt1, 8);
6425     movl(cnt2, 8); negptr(cnt2);
6426     bind(CONT_SCAN_SUBSTR);
6427     if (int_cnt2 < (int)G) {
6428       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
6429       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
6430     } else {
6431       // calculate index in register to avoid integer overflow (int_cnt2*2)
6432       movl(tmp, int_cnt2);
6433       addptr(tmp, cnt2);
6434       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
6435       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
6436     }
6437     // Need to reload strings pointers if not matched whole vector
6438     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6439     addptr(cnt2, 8);
6440     jcc(Assembler::negative, SCAN_SUBSTR);
6441     // Fall through if found full substring
6442 
6443   } // (int_cnt2 > 8)
6444 
6445   bind(RET_FOUND);
6446   // Found result if we matched full small substring.
6447   // Compute substr offset
6448   subptr(result, str1);
6449   shrl(result, 1); // index
6450   bind(EXIT);
6451 
6452 } // string_indexofC8
6453 
6454 // Small strings are loaded through stack if they cross page boundary.
6455 void MacroAssembler::string_indexof(Register str1, Register str2,
6456                                     Register cnt1, Register cnt2,
6457                                     int int_cnt2,  Register result,
6458                                     XMMRegister vec, Register tmp) {
6459   ShortBranchVerifier sbv(this);
6460   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6461   //
6462   // int_cnt2 is length of small (< 8 chars) constant substring
6463   // or (-1) for non constant substring in which case its length
6464   // is in cnt2 register.
6465   //
6466   // Note, inline_string_indexOf() generates checks:
6467   // if (substr.count > string.count) return -1;
6468   // if (substr.count == 0) return 0;
6469   //
6470   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
6471 
6472   // This method uses pcmpestri instruction with bound registers
6473   //   inputs:
6474   //     xmm - substring
6475   //     rax - substring length (elements count)
6476   //     mem - scanned string
6477   //     rdx - string length (elements count)
6478   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6479   //   outputs:
6480   //     rcx - matched index in string
6481   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6482 
6483   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6484         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6485         FOUND_CANDIDATE;
6486 
6487   { //========================================================
6488     // We don't know where these strings are located
6489     // and we can't read beyond them. Load them through stack.
6490     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6491 
6492     movptr(tmp, rsp); // save old SP
6493 
6494     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6495       if (int_cnt2 == 1) {  // One char
6496         load_unsigned_short(result, Address(str2, 0));
6497         movdl(vec, result); // move 32 bits
6498       } else if (int_cnt2 == 2) { // Two chars
6499         movdl(vec, Address(str2, 0)); // move 32 bits
6500       } else if (int_cnt2 == 4) { // Four chars
6501         movq(vec, Address(str2, 0));  // move 64 bits
6502       } else { // cnt2 = { 3, 5, 6, 7 }
6503         // Array header size is 12 bytes in 32-bit VM
6504         // + 6 bytes for 3 chars == 18 bytes,
6505         // enough space to load vec and shift.
6506         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6507         movdqu(vec, Address(str2, (int_cnt2*2)-16));
6508         psrldq(vec, 16-(int_cnt2*2));
6509       }
6510     } else { // not constant substring
6511       cmpl(cnt2, 8);
6512       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6513 
6514       // We can read beyond string if srt+16 does not cross page boundary
6515       // since heaps are aligned and mapped by pages.
6516       assert(os::vm_page_size() < (int)G, "default page should be small");
6517       movl(result, str2); // We need only low 32 bits
6518       andl(result, (os::vm_page_size()-1));
6519       cmpl(result, (os::vm_page_size()-16));
6520       jccb(Assembler::belowEqual, CHECK_STR);
6521 
6522       // Move small strings to stack to allow load 16 bytes into vec.
6523       subptr(rsp, 16);
6524       int stk_offset = wordSize-2;
6525       push(cnt2);
6526 
6527       bind(COPY_SUBSTR);
6528       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
6529       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6530       decrement(cnt2);
6531       jccb(Assembler::notZero, COPY_SUBSTR);
6532 
6533       pop(cnt2);
6534       movptr(str2, rsp);  // New substring address
6535     } // non constant
6536 
6537     bind(CHECK_STR);
6538     cmpl(cnt1, 8);
6539     jccb(Assembler::aboveEqual, BIG_STRINGS);
6540 
6541     // Check cross page boundary.
6542     movl(result, str1); // We need only low 32 bits
6543     andl(result, (os::vm_page_size()-1));
6544     cmpl(result, (os::vm_page_size()-16));
6545     jccb(Assembler::belowEqual, BIG_STRINGS);
6546 
6547     subptr(rsp, 16);
6548     int stk_offset = -2;
6549     if (int_cnt2 < 0) { // not constant
6550       push(cnt2);
6551       stk_offset += wordSize;
6552     }
6553     movl(cnt2, cnt1);
6554 
6555     bind(COPY_STR);
6556     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
6557     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6558     decrement(cnt2);
6559     jccb(Assembler::notZero, COPY_STR);
6560 
6561     if (int_cnt2 < 0) { // not constant
6562       pop(cnt2);
6563     }
6564     movptr(str1, rsp);  // New string address
6565 
6566     bind(BIG_STRINGS);
6567     // Load substring.
6568     if (int_cnt2 < 0) { // -1
6569       movdqu(vec, Address(str2, 0));
6570       push(cnt2);       // substr count
6571       push(str2);       // substr addr
6572       push(str1);       // string addr
6573     } else {
6574       // Small (< 8 chars) constant substrings are loaded already.
6575       movl(cnt2, int_cnt2);
6576     }
6577     push(tmp);  // original SP
6578 
6579   } // Finished loading
6580 
6581   //========================================================
6582   // Start search
6583   //
6584 
6585   movptr(result, str1); // string addr
6586 
6587   if (int_cnt2  < 0) {  // Only for non constant substring
6588     jmpb(SCAN_TO_SUBSTR);
6589 
6590     // SP saved at sp+0
6591     // String saved at sp+1*wordSize
6592     // Substr saved at sp+2*wordSize
6593     // Substr count saved at sp+3*wordSize
6594 
6595     // Reload substr for rescan, this code
6596     // is executed only for large substrings (> 8 chars)
6597     bind(RELOAD_SUBSTR);
6598     movptr(str2, Address(rsp, 2*wordSize));
6599     movl(cnt2, Address(rsp, 3*wordSize));
6600     movdqu(vec, Address(str2, 0));
6601     // We came here after the beginning of the substring was
6602     // matched but the rest of it was not so we need to search
6603     // again. Start from the next element after the previous match.
6604     subptr(str1, result); // Restore counter
6605     shrl(str1, 1);
6606     addl(cnt1, str1);
6607     decrementl(cnt1);   // Shift to next element
6608     cmpl(cnt1, cnt2);
6609     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6610 
6611     addptr(result, 2);
6612   } // non constant
6613 
6614   // Scan string for start of substr in 16-byte vectors
6615   bind(SCAN_TO_SUBSTR);
6616   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6617   pcmpestri(vec, Address(result, 0), 0x0d);
6618   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6619   subl(cnt1, 8);
6620   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6621   cmpl(cnt1, cnt2);
6622   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6623   addptr(result, 16);
6624 
6625   bind(ADJUST_STR);
6626   cmpl(cnt1, 8); // Do not read beyond string
6627   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6628   // Back-up string to avoid reading beyond string.
6629   lea(result, Address(result, cnt1, Address::times_2, -16));
6630   movl(cnt1, 8);
6631   jmpb(SCAN_TO_SUBSTR);
6632 
6633   // Found a potential substr
6634   bind(FOUND_CANDIDATE);
6635   // After pcmpestri tmp(rcx) contains matched element index
6636 
6637   // Make sure string is still long enough
6638   subl(cnt1, tmp);
6639   cmpl(cnt1, cnt2);
6640   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6641   // Left less then substring.
6642 
6643   bind(RET_NOT_FOUND);
6644   movl(result, -1);
6645   jmpb(CLEANUP);
6646 
6647   bind(FOUND_SUBSTR);
6648   // Compute start addr of substr
6649   lea(result, Address(result, tmp, Address::times_2));
6650 
6651   if (int_cnt2 > 0) { // Constant substring
6652     // Repeat search for small substring (< 8 chars)
6653     // from new point without reloading substring.
6654     // Have to check that we don't read beyond string.
6655     cmpl(tmp, 8-int_cnt2);
6656     jccb(Assembler::greater, ADJUST_STR);
6657     // Fall through if matched whole substring.
6658   } else { // non constant
6659     assert(int_cnt2 == -1, "should be != 0");
6660 
6661     addl(tmp, cnt2);
6662     // Found result if we matched whole substring.
6663     cmpl(tmp, 8);
6664     jccb(Assembler::lessEqual, RET_FOUND);
6665 
6666     // Repeat search for small substring (<= 8 chars)
6667     // from new point 'str1' without reloading substring.
6668     cmpl(cnt2, 8);
6669     // Have to check that we don't read beyond string.
6670     jccb(Assembler::lessEqual, ADJUST_STR);
6671 
6672     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6673     // Compare the rest of substring (> 8 chars).
6674     movptr(str1, result);
6675 
6676     cmpl(tmp, cnt2);
6677     // First 8 chars are already matched.
6678     jccb(Assembler::equal, CHECK_NEXT);
6679 
6680     bind(SCAN_SUBSTR);
6681     pcmpestri(vec, Address(str1, 0), 0x0d);
6682     // Need to reload strings pointers if not matched whole vector
6683     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6684 
6685     bind(CHECK_NEXT);
6686     subl(cnt2, 8);
6687     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6688     addptr(str1, 16);
6689     addptr(str2, 16);
6690     subl(cnt1, 8);
6691     cmpl(cnt2, 8); // Do not read beyond substring
6692     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6693     // Back-up strings to avoid reading beyond substring.
6694     lea(str2, Address(str2, cnt2, Address::times_2, -16));
6695     lea(str1, Address(str1, cnt2, Address::times_2, -16));
6696     subl(cnt1, cnt2);
6697     movl(cnt2, 8);
6698     addl(cnt1, 8);
6699     bind(CONT_SCAN_SUBSTR);
6700     movdqu(vec, Address(str2, 0));
6701     jmpb(SCAN_SUBSTR);
6702 
6703     bind(RET_FOUND_LONG);
6704     movptr(str1, Address(rsp, wordSize));
6705   } // non constant
6706 
6707   bind(RET_FOUND);
6708   // Compute substr offset
6709   subptr(result, str1);
6710   shrl(result, 1); // index
6711 
6712   bind(CLEANUP);
6713   pop(rsp); // restore SP
6714 
6715 } // string_indexof
6716 
6717 // Compare strings.
6718 void MacroAssembler::string_compare(Register str1, Register str2,
6719                                     Register cnt1, Register cnt2, Register result,
6720                                     XMMRegister vec1) {
6721   ShortBranchVerifier sbv(this);
6722   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6723 
6724   // Compute the minimum of the string lengths and the
6725   // difference of the string lengths (stack).
6726   // Do the conditional move stuff
6727   movl(result, cnt1);
6728   subl(cnt1, cnt2);
6729   push(cnt1);
6730   cmov32(Assembler::lessEqual, cnt2, result);
6731 
6732   // Is the minimum length zero?
6733   testl(cnt2, cnt2);
6734   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6735 
6736   // Compare first characters
6737   load_unsigned_short(result, Address(str1, 0));
6738   load_unsigned_short(cnt1, Address(str2, 0));
6739   subl(result, cnt1);
6740   jcc(Assembler::notZero,  POP_LABEL);
6741   cmpl(cnt2, 1);
6742   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6743 
6744   // Check if the strings start at the same location.
6745   cmpptr(str1, str2);
6746   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6747 
6748   Address::ScaleFactor scale = Address::times_2;
6749   int stride = 8;
6750 
6751   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6752     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6753     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6754     Label COMPARE_TAIL_LONG;
6755     int pcmpmask = 0x19;
6756 
6757     // Setup to compare 16-chars (32-bytes) vectors,
6758     // start from first character again because it has aligned address.
6759     int stride2 = 16;
6760     int adr_stride  = stride  << scale;
6761 
6762     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6763     // rax and rdx are used by pcmpestri as elements counters
6764     movl(result, cnt2);
6765     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6766     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6767 
6768     // fast path : compare first 2 8-char vectors.
6769     bind(COMPARE_16_CHARS);
6770     movdqu(vec1, Address(str1, 0));
6771     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6772     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6773 
6774     movdqu(vec1, Address(str1, adr_stride));
6775     pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6776     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6777     addl(cnt1, stride);
6778 
6779     // Compare the characters at index in cnt1
6780     bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
6781     load_unsigned_short(result, Address(str1, cnt1, scale));
6782     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6783     subl(result, cnt2);
6784     jmp(POP_LABEL);
6785 
6786     // Setup the registers to start vector comparison loop
6787     bind(COMPARE_WIDE_VECTORS);
6788     lea(str1, Address(str1, result, scale));
6789     lea(str2, Address(str2, result, scale));
6790     subl(result, stride2);
6791     subl(cnt2, stride2);
6792     jccb(Assembler::zero, COMPARE_WIDE_TAIL);
6793     negptr(result);
6794 
6795     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6796     bind(COMPARE_WIDE_VECTORS_LOOP);
6797     vmovdqu(vec1, Address(str1, result, scale));
6798     vpxor(vec1, Address(str2, result, scale));
6799     vptest(vec1, vec1);
6800     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
6801     addptr(result, stride2);
6802     subl(cnt2, stride2);
6803     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6804     // clean upper bits of YMM registers
6805     vpxor(vec1, vec1);
6806 
6807     // compare wide vectors tail
6808     bind(COMPARE_WIDE_TAIL);
6809     testptr(result, result);
6810     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6811 
6812     movl(result, stride2);
6813     movl(cnt2, result);
6814     negptr(result);
6815     jmpb(COMPARE_WIDE_VECTORS_LOOP);
6816 
6817     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6818     bind(VECTOR_NOT_EQUAL);
6819     // clean upper bits of YMM registers
6820     vpxor(vec1, vec1);
6821     lea(str1, Address(str1, result, scale));
6822     lea(str2, Address(str2, result, scale));
6823     jmp(COMPARE_16_CHARS);
6824 
6825     // Compare tail chars, length between 1 to 15 chars
6826     bind(COMPARE_TAIL_LONG);
6827     movl(cnt2, result);
6828     cmpl(cnt2, stride);
6829     jccb(Assembler::less, COMPARE_SMALL_STR);
6830 
6831     movdqu(vec1, Address(str1, 0));
6832     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6833     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6834     subptr(cnt2, stride);
6835     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6836     lea(str1, Address(str1, result, scale));
6837     lea(str2, Address(str2, result, scale));
6838     negptr(cnt2);
6839     jmpb(WHILE_HEAD_LABEL);
6840 
6841     bind(COMPARE_SMALL_STR);
6842   } else if (UseSSE42Intrinsics) {
6843     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6844     int pcmpmask = 0x19;
6845     // Setup to compare 8-char (16-byte) vectors,
6846     // start from first character again because it has aligned address.
6847     movl(result, cnt2);
6848     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6849     jccb(Assembler::zero, COMPARE_TAIL);
6850 
6851     lea(str1, Address(str1, result, scale));
6852     lea(str2, Address(str2, result, scale));
6853     negptr(result);
6854 
6855     // pcmpestri
6856     //   inputs:
6857     //     vec1- substring
6858     //     rax - negative string length (elements count)
6859     //     mem - scanned string
6860     //     rdx - string length (elements count)
6861     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6862     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6863     //   outputs:
6864     //     rcx - first mismatched element index
6865     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6866 
6867     bind(COMPARE_WIDE_VECTORS);
6868     movdqu(vec1, Address(str1, result, scale));
6869     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6870     // After pcmpestri cnt1(rcx) contains mismatched element index
6871 
6872     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6873     addptr(result, stride);
6874     subptr(cnt2, stride);
6875     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6876 
6877     // compare wide vectors tail
6878     testptr(result, result);
6879     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6880 
6881     movl(cnt2, stride);
6882     movl(result, stride);
6883     negptr(result);
6884     movdqu(vec1, Address(str1, result, scale));
6885     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6886     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6887 
6888     // Mismatched characters in the vectors
6889     bind(VECTOR_NOT_EQUAL);
6890     addptr(cnt1, result);
6891     load_unsigned_short(result, Address(str1, cnt1, scale));
6892     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6893     subl(result, cnt2);
6894     jmpb(POP_LABEL);
6895 
6896     bind(COMPARE_TAIL); // limit is zero
6897     movl(cnt2, result);
6898     // Fallthru to tail compare
6899   }
6900   // Shift str2 and str1 to the end of the arrays, negate min
6901   lea(str1, Address(str1, cnt2, scale));
6902   lea(str2, Address(str2, cnt2, scale));
6903   decrementl(cnt2);  // first character was compared already
6904   negptr(cnt2);
6905 
6906   // Compare the rest of the elements
6907   bind(WHILE_HEAD_LABEL);
6908   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
6909   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
6910   subl(result, cnt1);
6911   jccb(Assembler::notZero, POP_LABEL);
6912   increment(cnt2);
6913   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6914 
6915   // Strings are equal up to min length.  Return the length difference.
6916   bind(LENGTH_DIFF_LABEL);
6917   pop(result);
6918   jmpb(DONE_LABEL);
6919 
6920   // Discard the stored length difference
6921   bind(POP_LABEL);
6922   pop(cnt1);
6923 
6924   // That's it
6925   bind(DONE_LABEL);
6926 }
6927 
6928 // Compare char[] arrays aligned to 4 bytes or substrings.
6929 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
6930                                         Register limit, Register result, Register chr,
6931                                         XMMRegister vec1, XMMRegister vec2) {
6932   ShortBranchVerifier sbv(this);
6933   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
6934 
6935   int length_offset  = arrayOopDesc::length_offset_in_bytes();
6936   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
6937 
6938   // Check the input args
6939   cmpptr(ary1, ary2);
6940   jcc(Assembler::equal, TRUE_LABEL);
6941 
6942   if (is_array_equ) {
6943     // Need additional checks for arrays_equals.
6944     testptr(ary1, ary1);
6945     jcc(Assembler::zero, FALSE_LABEL);
6946     testptr(ary2, ary2);
6947     jcc(Assembler::zero, FALSE_LABEL);
6948 
6949     // Check the lengths
6950     movl(limit, Address(ary1, length_offset));
6951     cmpl(limit, Address(ary2, length_offset));
6952     jcc(Assembler::notEqual, FALSE_LABEL);
6953   }
6954 
6955   // count == 0
6956   testl(limit, limit);
6957   jcc(Assembler::zero, TRUE_LABEL);
6958 
6959   if (is_array_equ) {
6960     // Load array address
6961     lea(ary1, Address(ary1, base_offset));
6962     lea(ary2, Address(ary2, base_offset));
6963   }
6964 
6965   shll(limit, 1);      // byte count != 0
6966   movl(result, limit); // copy
6967 
6968   if (UseAVX >= 2) {
6969     // With AVX2, use 32-byte vector compare
6970     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6971 
6972     // Compare 32-byte vectors
6973     andl(result, 0x0000001e);  //   tail count (in bytes)
6974     andl(limit, 0xffffffe0);   // vector count (in bytes)
6975     jccb(Assembler::zero, COMPARE_TAIL);
6976 
6977     lea(ary1, Address(ary1, limit, Address::times_1));
6978     lea(ary2, Address(ary2, limit, Address::times_1));
6979     negptr(limit);
6980 
6981     bind(COMPARE_WIDE_VECTORS);
6982     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
6983     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
6984     vpxor(vec1, vec2);
6985 
6986     vptest(vec1, vec1);
6987     jccb(Assembler::notZero, FALSE_LABEL);
6988     addptr(limit, 32);
6989     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6990 
6991     testl(result, result);
6992     jccb(Assembler::zero, TRUE_LABEL);
6993 
6994     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6995     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
6996     vpxor(vec1, vec2);
6997 
6998     vptest(vec1, vec1);
6999     jccb(Assembler::notZero, FALSE_LABEL);
7000     jmpb(TRUE_LABEL);
7001 
7002     bind(COMPARE_TAIL); // limit is zero
7003     movl(limit, result);
7004     // Fallthru to tail compare
7005   } else if (UseSSE42Intrinsics) {
7006     // With SSE4.2, use double quad vector compare
7007     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7008 
7009     // Compare 16-byte vectors
7010     andl(result, 0x0000000e);  //   tail count (in bytes)
7011     andl(limit, 0xfffffff0);   // vector count (in bytes)
7012     jccb(Assembler::zero, COMPARE_TAIL);
7013 
7014     lea(ary1, Address(ary1, limit, Address::times_1));
7015     lea(ary2, Address(ary2, limit, Address::times_1));
7016     negptr(limit);
7017 
7018     bind(COMPARE_WIDE_VECTORS);
7019     movdqu(vec1, Address(ary1, limit, Address::times_1));
7020     movdqu(vec2, Address(ary2, limit, Address::times_1));
7021     pxor(vec1, vec2);
7022 
7023     ptest(vec1, vec1);
7024     jccb(Assembler::notZero, FALSE_LABEL);
7025     addptr(limit, 16);
7026     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7027 
7028     testl(result, result);
7029     jccb(Assembler::zero, TRUE_LABEL);
7030 
7031     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7032     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
7033     pxor(vec1, vec2);
7034 
7035     ptest(vec1, vec1);
7036     jccb(Assembler::notZero, FALSE_LABEL);
7037     jmpb(TRUE_LABEL);
7038 
7039     bind(COMPARE_TAIL); // limit is zero
7040     movl(limit, result);
7041     // Fallthru to tail compare
7042   }
7043 
7044   // Compare 4-byte vectors
7045   andl(limit, 0xfffffffc); // vector count (in bytes)
7046   jccb(Assembler::zero, COMPARE_CHAR);
7047 
7048   lea(ary1, Address(ary1, limit, Address::times_1));
7049   lea(ary2, Address(ary2, limit, Address::times_1));
7050   negptr(limit);
7051 
7052   bind(COMPARE_VECTORS);
7053   movl(chr, Address(ary1, limit, Address::times_1));
7054   cmpl(chr, Address(ary2, limit, Address::times_1));
7055   jccb(Assembler::notEqual, FALSE_LABEL);
7056   addptr(limit, 4);
7057   jcc(Assembler::notZero, COMPARE_VECTORS);
7058 
7059   // Compare trailing char (final 2 bytes), if any
7060   bind(COMPARE_CHAR);
7061   testl(result, 0x2);   // tail  char
7062   jccb(Assembler::zero, TRUE_LABEL);
7063   load_unsigned_short(chr, Address(ary1, 0));
7064   load_unsigned_short(limit, Address(ary2, 0));
7065   cmpl(chr, limit);
7066   jccb(Assembler::notEqual, FALSE_LABEL);
7067 
7068   bind(TRUE_LABEL);
7069   movl(result, 1);   // return true
7070   jmpb(DONE);
7071 
7072   bind(FALSE_LABEL);
7073   xorl(result, result); // return false
7074 
7075   // That's it
7076   bind(DONE);
7077   if (UseAVX >= 2) {
7078     // clean upper bits of YMM registers
7079     vpxor(vec1, vec1);
7080     vpxor(vec2, vec2);
7081   }
7082 }
7083 
7084 void MacroAssembler::generate_fill(BasicType t, bool aligned,
7085                                    Register to, Register value, Register count,
7086                                    Register rtmp, XMMRegister xtmp) {
7087   ShortBranchVerifier sbv(this);
7088   assert_different_registers(to, value, count, rtmp);
7089   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
7090   Label L_fill_2_bytes, L_fill_4_bytes;
7091 
7092   int shift = -1;
7093   switch (t) {
7094     case T_BYTE:
7095       shift = 2;
7096       break;
7097     case T_SHORT:
7098       shift = 1;
7099       break;
7100     case T_INT:
7101       shift = 0;
7102       break;
7103     default: ShouldNotReachHere();
7104   }
7105 
7106   if (t == T_BYTE) {
7107     andl(value, 0xff);
7108     movl(rtmp, value);
7109     shll(rtmp, 8);
7110     orl(value, rtmp);
7111   }
7112   if (t == T_SHORT) {
7113     andl(value, 0xffff);
7114   }
7115   if (t == T_BYTE || t == T_SHORT) {
7116     movl(rtmp, value);
7117     shll(rtmp, 16);
7118     orl(value, rtmp);
7119   }
7120 
7121   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
7122   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
7123   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
7124     // align source address at 4 bytes address boundary
7125     if (t == T_BYTE) {
7126       // One byte misalignment happens only for byte arrays
7127       testptr(to, 1);
7128       jccb(Assembler::zero, L_skip_align1);
7129       movb(Address(to, 0), value);
7130       increment(to);
7131       decrement(count);
7132       BIND(L_skip_align1);
7133     }
7134     // Two bytes misalignment happens only for byte and short (char) arrays
7135     testptr(to, 2);
7136     jccb(Assembler::zero, L_skip_align2);
7137     movw(Address(to, 0), value);
7138     addptr(to, 2);
7139     subl(count, 1<<(shift-1));
7140     BIND(L_skip_align2);
7141   }
7142   if (UseSSE < 2) {
7143     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7144     // Fill 32-byte chunks
7145     subl(count, 8 << shift);
7146     jcc(Assembler::less, L_check_fill_8_bytes);
7147     align(16);
7148 
7149     BIND(L_fill_32_bytes_loop);
7150 
7151     for (int i = 0; i < 32; i += 4) {
7152       movl(Address(to, i), value);
7153     }
7154 
7155     addptr(to, 32);
7156     subl(count, 8 << shift);
7157     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7158     BIND(L_check_fill_8_bytes);
7159     addl(count, 8 << shift);
7160     jccb(Assembler::zero, L_exit);
7161     jmpb(L_fill_8_bytes);
7162 
7163     //
7164     // length is too short, just fill qwords
7165     //
7166     BIND(L_fill_8_bytes_loop);
7167     movl(Address(to, 0), value);
7168     movl(Address(to, 4), value);
7169     addptr(to, 8);
7170     BIND(L_fill_8_bytes);
7171     subl(count, 1 << (shift + 1));
7172     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7173     // fall through to fill 4 bytes
7174   } else {
7175     Label L_fill_32_bytes;
7176     if (!UseUnalignedLoadStores) {
7177       // align to 8 bytes, we know we are 4 byte aligned to start
7178       testptr(to, 4);
7179       jccb(Assembler::zero, L_fill_32_bytes);
7180       movl(Address(to, 0), value);
7181       addptr(to, 4);
7182       subl(count, 1<<shift);
7183     }
7184     BIND(L_fill_32_bytes);
7185     {
7186       assert( UseSSE >= 2, "supported cpu only" );
7187       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7188       if (UseAVX > 2) {
7189         movl(rtmp, 0xffff);
7190         kmovwl(k1, rtmp);
7191       }
7192       movdl(xtmp, value);
7193       if (UseAVX > 2 && UseUnalignedLoadStores) {
7194         // Fill 64-byte chunks
7195         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7196         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
7197 
7198         subl(count, 16 << shift);
7199         jcc(Assembler::less, L_check_fill_32_bytes);
7200         align(16);
7201 
7202         BIND(L_fill_64_bytes_loop);
7203         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
7204         addptr(to, 64);
7205         subl(count, 16 << shift);
7206         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7207 
7208         BIND(L_check_fill_32_bytes);
7209         addl(count, 8 << shift);
7210         jccb(Assembler::less, L_check_fill_8_bytes);
7211         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_256bit);
7212         addptr(to, 32);
7213         subl(count, 8 << shift);
7214 
7215         BIND(L_check_fill_8_bytes);
7216       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
7217         // Fill 64-byte chunks
7218         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7219         vpbroadcastd(xtmp, xtmp);
7220 
7221         subl(count, 16 << shift);
7222         jcc(Assembler::less, L_check_fill_32_bytes);
7223         align(16);
7224 
7225         BIND(L_fill_64_bytes_loop);
7226         vmovdqu(Address(to, 0), xtmp);
7227         vmovdqu(Address(to, 32), xtmp);
7228         addptr(to, 64);
7229         subl(count, 16 << shift);
7230         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7231 
7232         BIND(L_check_fill_32_bytes);
7233         addl(count, 8 << shift);
7234         jccb(Assembler::less, L_check_fill_8_bytes);
7235         vmovdqu(Address(to, 0), xtmp);
7236         addptr(to, 32);
7237         subl(count, 8 << shift);
7238 
7239         BIND(L_check_fill_8_bytes);
7240         // clean upper bits of YMM registers
7241         movdl(xtmp, value);
7242         pshufd(xtmp, xtmp, 0);
7243       } else {
7244         // Fill 32-byte chunks
7245         pshufd(xtmp, xtmp, 0);
7246 
7247         subl(count, 8 << shift);
7248         jcc(Assembler::less, L_check_fill_8_bytes);
7249         align(16);
7250 
7251         BIND(L_fill_32_bytes_loop);
7252 
7253         if (UseUnalignedLoadStores) {
7254           movdqu(Address(to, 0), xtmp);
7255           movdqu(Address(to, 16), xtmp);
7256         } else {
7257           movq(Address(to, 0), xtmp);
7258           movq(Address(to, 8), xtmp);
7259           movq(Address(to, 16), xtmp);
7260           movq(Address(to, 24), xtmp);
7261         }
7262 
7263         addptr(to, 32);
7264         subl(count, 8 << shift);
7265         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7266 
7267         BIND(L_check_fill_8_bytes);
7268       }
7269       addl(count, 8 << shift);
7270       jccb(Assembler::zero, L_exit);
7271       jmpb(L_fill_8_bytes);
7272 
7273       //
7274       // length is too short, just fill qwords
7275       //
7276       BIND(L_fill_8_bytes_loop);
7277       movq(Address(to, 0), xtmp);
7278       addptr(to, 8);
7279       BIND(L_fill_8_bytes);
7280       subl(count, 1 << (shift + 1));
7281       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7282     }
7283   }
7284   // fill trailing 4 bytes
7285   BIND(L_fill_4_bytes);
7286   testl(count, 1<<shift);
7287   jccb(Assembler::zero, L_fill_2_bytes);
7288   movl(Address(to, 0), value);
7289   if (t == T_BYTE || t == T_SHORT) {
7290     addptr(to, 4);
7291     BIND(L_fill_2_bytes);
7292     // fill trailing 2 bytes
7293     testl(count, 1<<(shift-1));
7294     jccb(Assembler::zero, L_fill_byte);
7295     movw(Address(to, 0), value);
7296     if (t == T_BYTE) {
7297       addptr(to, 2);
7298       BIND(L_fill_byte);
7299       // fill trailing byte
7300       testl(count, 1);
7301       jccb(Assembler::zero, L_exit);
7302       movb(Address(to, 0), value);
7303     } else {
7304       BIND(L_fill_byte);
7305     }
7306   } else {
7307     BIND(L_fill_2_bytes);
7308   }
7309   BIND(L_exit);
7310 }
7311 
7312 // encode char[] to byte[] in ISO_8859_1
7313 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7314                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7315                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7316                                       Register tmp5, Register result) {
7317   // rsi: src
7318   // rdi: dst
7319   // rdx: len
7320   // rcx: tmp5
7321   // rax: result
7322   ShortBranchVerifier sbv(this);
7323   assert_different_registers(src, dst, len, tmp5, result);
7324   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7325 
7326   // set result
7327   xorl(result, result);
7328   // check for zero length
7329   testl(len, len);
7330   jcc(Assembler::zero, L_done);
7331   movl(result, len);
7332 
7333   // Setup pointers
7334   lea(src, Address(src, len, Address::times_2)); // char[]
7335   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7336   negptr(len);
7337 
7338   if (UseSSE42Intrinsics || UseAVX >= 2) {
7339     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
7340     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7341 
7342     if (UseAVX >= 2) {
7343       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7344       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7345       movdl(tmp1Reg, tmp5);
7346       vpbroadcastd(tmp1Reg, tmp1Reg);
7347       jmpb(L_chars_32_check);
7348 
7349       bind(L_copy_32_chars);
7350       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7351       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7352       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7353       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7354       jccb(Assembler::notZero, L_copy_32_chars_exit);
7355       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7356       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
7357       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7358 
7359       bind(L_chars_32_check);
7360       addptr(len, 32);
7361       jccb(Assembler::lessEqual, L_copy_32_chars);
7362 
7363       bind(L_copy_32_chars_exit);
7364       subptr(len, 16);
7365       jccb(Assembler::greater, L_copy_16_chars_exit);
7366 
7367     } else if (UseSSE42Intrinsics) {
7368       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7369       movdl(tmp1Reg, tmp5);
7370       pshufd(tmp1Reg, tmp1Reg, 0);
7371       jmpb(L_chars_16_check);
7372     }
7373 
7374     bind(L_copy_16_chars);
7375     if (UseAVX >= 2) {
7376       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7377       vptest(tmp2Reg, tmp1Reg);
7378       jccb(Assembler::notZero, L_copy_16_chars_exit);
7379       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
7380       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
7381     } else {
7382       if (UseAVX > 0) {
7383         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7384         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7385         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
7386       } else {
7387         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7388         por(tmp2Reg, tmp3Reg);
7389         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7390         por(tmp2Reg, tmp4Reg);
7391       }
7392       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7393       jccb(Assembler::notZero, L_copy_16_chars_exit);
7394       packuswb(tmp3Reg, tmp4Reg);
7395     }
7396     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7397 
7398     bind(L_chars_16_check);
7399     addptr(len, 16);
7400     jccb(Assembler::lessEqual, L_copy_16_chars);
7401 
7402     bind(L_copy_16_chars_exit);
7403     if (UseAVX >= 2) {
7404       // clean upper bits of YMM registers
7405       vpxor(tmp2Reg, tmp2Reg);
7406       vpxor(tmp3Reg, tmp3Reg);
7407       vpxor(tmp4Reg, tmp4Reg);
7408       movdl(tmp1Reg, tmp5);
7409       pshufd(tmp1Reg, tmp1Reg, 0);
7410     }
7411     subptr(len, 8);
7412     jccb(Assembler::greater, L_copy_8_chars_exit);
7413 
7414     bind(L_copy_8_chars);
7415     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7416     ptest(tmp3Reg, tmp1Reg);
7417     jccb(Assembler::notZero, L_copy_8_chars_exit);
7418     packuswb(tmp3Reg, tmp1Reg);
7419     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7420     addptr(len, 8);
7421     jccb(Assembler::lessEqual, L_copy_8_chars);
7422 
7423     bind(L_copy_8_chars_exit);
7424     subptr(len, 8);
7425     jccb(Assembler::zero, L_done);
7426   }
7427 
7428   bind(L_copy_1_char);
7429   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7430   testl(tmp5, 0xff00);      // check if Unicode char
7431   jccb(Assembler::notZero, L_copy_1_char_exit);
7432   movb(Address(dst, len, Address::times_1, 0), tmp5);
7433   addptr(len, 1);
7434   jccb(Assembler::less, L_copy_1_char);
7435 
7436   bind(L_copy_1_char_exit);
7437   addptr(result, len); // len is negative count of not processed elements
7438   bind(L_done);
7439 }
7440 
7441 #ifdef _LP64
7442 /**
7443  * Helper for multiply_to_len().
7444  */
7445 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7446   addq(dest_lo, src1);
7447   adcq(dest_hi, 0);
7448   addq(dest_lo, src2);
7449   adcq(dest_hi, 0);
7450 }
7451 
7452 /**
7453  * Multiply 64 bit by 64 bit first loop.
7454  */
7455 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7456                                            Register y, Register y_idx, Register z,
7457                                            Register carry, Register product,
7458                                            Register idx, Register kdx) {
7459   //
7460   //  jlong carry, x[], y[], z[];
7461   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7462   //    huge_128 product = y[idx] * x[xstart] + carry;
7463   //    z[kdx] = (jlong)product;
7464   //    carry  = (jlong)(product >>> 64);
7465   //  }
7466   //  z[xstart] = carry;
7467   //
7468 
7469   Label L_first_loop, L_first_loop_exit;
7470   Label L_one_x, L_one_y, L_multiply;
7471 
7472   decrementl(xstart);
7473   jcc(Assembler::negative, L_one_x);
7474 
7475   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7476   rorq(x_xstart, 32); // convert big-endian to little-endian
7477 
7478   bind(L_first_loop);
7479   decrementl(idx);
7480   jcc(Assembler::negative, L_first_loop_exit);
7481   decrementl(idx);
7482   jcc(Assembler::negative, L_one_y);
7483   movq(y_idx, Address(y, idx, Address::times_4,  0));
7484   rorq(y_idx, 32); // convert big-endian to little-endian
7485   bind(L_multiply);
7486   movq(product, x_xstart);
7487   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7488   addq(product, carry);
7489   adcq(rdx, 0);
7490   subl(kdx, 2);
7491   movl(Address(z, kdx, Address::times_4,  4), product);
7492   shrq(product, 32);
7493   movl(Address(z, kdx, Address::times_4,  0), product);
7494   movq(carry, rdx);
7495   jmp(L_first_loop);
7496 
7497   bind(L_one_y);
7498   movl(y_idx, Address(y,  0));
7499   jmp(L_multiply);
7500 
7501   bind(L_one_x);
7502   movl(x_xstart, Address(x,  0));
7503   jmp(L_first_loop);
7504 
7505   bind(L_first_loop_exit);
7506 }
7507 
7508 /**
7509  * Multiply 64 bit by 64 bit and add 128 bit.
7510  */
7511 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7512                                             Register yz_idx, Register idx,
7513                                             Register carry, Register product, int offset) {
7514   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7515   //     z[kdx] = (jlong)product;
7516 
7517   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7518   rorq(yz_idx, 32); // convert big-endian to little-endian
7519   movq(product, x_xstart);
7520   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7521   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7522   rorq(yz_idx, 32); // convert big-endian to little-endian
7523 
7524   add2_with_carry(rdx, product, carry, yz_idx);
7525 
7526   movl(Address(z, idx, Address::times_4,  offset+4), product);
7527   shrq(product, 32);
7528   movl(Address(z, idx, Address::times_4,  offset), product);
7529 
7530 }
7531 
7532 /**
7533  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7534  */
7535 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7536                                              Register yz_idx, Register idx, Register jdx,
7537                                              Register carry, Register product,
7538                                              Register carry2) {
7539   //   jlong carry, x[], y[], z[];
7540   //   int kdx = ystart+1;
7541   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7542   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7543   //     z[kdx+idx+1] = (jlong)product;
7544   //     jlong carry2  = (jlong)(product >>> 64);
7545   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7546   //     z[kdx+idx] = (jlong)product;
7547   //     carry  = (jlong)(product >>> 64);
7548   //   }
7549   //   idx += 2;
7550   //   if (idx > 0) {
7551   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7552   //     z[kdx+idx] = (jlong)product;
7553   //     carry  = (jlong)(product >>> 64);
7554   //   }
7555   //
7556 
7557   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7558 
7559   movl(jdx, idx);
7560   andl(jdx, 0xFFFFFFFC);
7561   shrl(jdx, 2);
7562 
7563   bind(L_third_loop);
7564   subl(jdx, 1);
7565   jcc(Assembler::negative, L_third_loop_exit);
7566   subl(idx, 4);
7567 
7568   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7569   movq(carry2, rdx);
7570 
7571   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7572   movq(carry, rdx);
7573   jmp(L_third_loop);
7574 
7575   bind (L_third_loop_exit);
7576 
7577   andl (idx, 0x3);
7578   jcc(Assembler::zero, L_post_third_loop_done);
7579 
7580   Label L_check_1;
7581   subl(idx, 2);
7582   jcc(Assembler::negative, L_check_1);
7583 
7584   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7585   movq(carry, rdx);
7586 
7587   bind (L_check_1);
7588   addl (idx, 0x2);
7589   andl (idx, 0x1);
7590   subl(idx, 1);
7591   jcc(Assembler::negative, L_post_third_loop_done);
7592 
7593   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7594   movq(product, x_xstart);
7595   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7596   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7597 
7598   add2_with_carry(rdx, product, yz_idx, carry);
7599 
7600   movl(Address(z, idx, Address::times_4,  0), product);
7601   shrq(product, 32);
7602 
7603   shlq(rdx, 32);
7604   orq(product, rdx);
7605   movq(carry, product);
7606 
7607   bind(L_post_third_loop_done);
7608 }
7609 
7610 /**
7611  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7612  *
7613  */
7614 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7615                                                   Register carry, Register carry2,
7616                                                   Register idx, Register jdx,
7617                                                   Register yz_idx1, Register yz_idx2,
7618                                                   Register tmp, Register tmp3, Register tmp4) {
7619   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7620 
7621   //   jlong carry, x[], y[], z[];
7622   //   int kdx = ystart+1;
7623   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7624   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7625   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7626   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7627   //     carry  = (jlong)(tmp4 >>> 64);
7628   //     z[kdx+idx+1] = (jlong)tmp3;
7629   //     z[kdx+idx] = (jlong)tmp4;
7630   //   }
7631   //   idx += 2;
7632   //   if (idx > 0) {
7633   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7634   //     z[kdx+idx] = (jlong)yz_idx1;
7635   //     carry  = (jlong)(yz_idx1 >>> 64);
7636   //   }
7637   //
7638 
7639   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7640 
7641   movl(jdx, idx);
7642   andl(jdx, 0xFFFFFFFC);
7643   shrl(jdx, 2);
7644 
7645   bind(L_third_loop);
7646   subl(jdx, 1);
7647   jcc(Assembler::negative, L_third_loop_exit);
7648   subl(idx, 4);
7649 
7650   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7651   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7652   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7653   rorxq(yz_idx2, yz_idx2, 32);
7654 
7655   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7656   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7657 
7658   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7659   rorxq(yz_idx1, yz_idx1, 32);
7660   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7661   rorxq(yz_idx2, yz_idx2, 32);
7662 
7663   if (VM_Version::supports_adx()) {
7664     adcxq(tmp3, carry);
7665     adoxq(tmp3, yz_idx1);
7666 
7667     adcxq(tmp4, tmp);
7668     adoxq(tmp4, yz_idx2);
7669 
7670     movl(carry, 0); // does not affect flags
7671     adcxq(carry2, carry);
7672     adoxq(carry2, carry);
7673   } else {
7674     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7675     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7676   }
7677   movq(carry, carry2);
7678 
7679   movl(Address(z, idx, Address::times_4, 12), tmp3);
7680   shrq(tmp3, 32);
7681   movl(Address(z, idx, Address::times_4,  8), tmp3);
7682 
7683   movl(Address(z, idx, Address::times_4,  4), tmp4);
7684   shrq(tmp4, 32);
7685   movl(Address(z, idx, Address::times_4,  0), tmp4);
7686 
7687   jmp(L_third_loop);
7688 
7689   bind (L_third_loop_exit);
7690 
7691   andl (idx, 0x3);
7692   jcc(Assembler::zero, L_post_third_loop_done);
7693 
7694   Label L_check_1;
7695   subl(idx, 2);
7696   jcc(Assembler::negative, L_check_1);
7697 
7698   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7699   rorxq(yz_idx1, yz_idx1, 32);
7700   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7701   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7702   rorxq(yz_idx2, yz_idx2, 32);
7703 
7704   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7705 
7706   movl(Address(z, idx, Address::times_4,  4), tmp3);
7707   shrq(tmp3, 32);
7708   movl(Address(z, idx, Address::times_4,  0), tmp3);
7709   movq(carry, tmp4);
7710 
7711   bind (L_check_1);
7712   addl (idx, 0x2);
7713   andl (idx, 0x1);
7714   subl(idx, 1);
7715   jcc(Assembler::negative, L_post_third_loop_done);
7716   movl(tmp4, Address(y, idx, Address::times_4,  0));
7717   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7718   movl(tmp4, Address(z, idx, Address::times_4,  0));
7719 
7720   add2_with_carry(carry2, tmp3, tmp4, carry);
7721 
7722   movl(Address(z, idx, Address::times_4,  0), tmp3);
7723   shrq(tmp3, 32);
7724 
7725   shlq(carry2, 32);
7726   orq(tmp3, carry2);
7727   movq(carry, tmp3);
7728 
7729   bind(L_post_third_loop_done);
7730 }
7731 
7732 /**
7733  * Code for BigInteger::multiplyToLen() instrinsic.
7734  *
7735  * rdi: x
7736  * rax: xlen
7737  * rsi: y
7738  * rcx: ylen
7739  * r8:  z
7740  * r11: zlen
7741  * r12: tmp1
7742  * r13: tmp2
7743  * r14: tmp3
7744  * r15: tmp4
7745  * rbx: tmp5
7746  *
7747  */
7748 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7749                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7750   ShortBranchVerifier sbv(this);
7751   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7752 
7753   push(tmp1);
7754   push(tmp2);
7755   push(tmp3);
7756   push(tmp4);
7757   push(tmp5);
7758 
7759   push(xlen);
7760   push(zlen);
7761 
7762   const Register idx = tmp1;
7763   const Register kdx = tmp2;
7764   const Register xstart = tmp3;
7765 
7766   const Register y_idx = tmp4;
7767   const Register carry = tmp5;
7768   const Register product  = xlen;
7769   const Register x_xstart = zlen;  // reuse register
7770 
7771   // First Loop.
7772   //
7773   //  final static long LONG_MASK = 0xffffffffL;
7774   //  int xstart = xlen - 1;
7775   //  int ystart = ylen - 1;
7776   //  long carry = 0;
7777   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7778   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7779   //    z[kdx] = (int)product;
7780   //    carry = product >>> 32;
7781   //  }
7782   //  z[xstart] = (int)carry;
7783   //
7784 
7785   movl(idx, ylen);      // idx = ylen;
7786   movl(kdx, zlen);      // kdx = xlen+ylen;
7787   xorq(carry, carry);   // carry = 0;
7788 
7789   Label L_done;
7790 
7791   movl(xstart, xlen);
7792   decrementl(xstart);
7793   jcc(Assembler::negative, L_done);
7794 
7795   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
7796 
7797   Label L_second_loop;
7798   testl(kdx, kdx);
7799   jcc(Assembler::zero, L_second_loop);
7800 
7801   Label L_carry;
7802   subl(kdx, 1);
7803   jcc(Assembler::zero, L_carry);
7804 
7805   movl(Address(z, kdx, Address::times_4,  0), carry);
7806   shrq(carry, 32);
7807   subl(kdx, 1);
7808 
7809   bind(L_carry);
7810   movl(Address(z, kdx, Address::times_4,  0), carry);
7811 
7812   // Second and third (nested) loops.
7813   //
7814   // for (int i = xstart-1; i >= 0; i--) { // Second loop
7815   //   carry = 0;
7816   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
7817   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
7818   //                    (z[k] & LONG_MASK) + carry;
7819   //     z[k] = (int)product;
7820   //     carry = product >>> 32;
7821   //   }
7822   //   z[i] = (int)carry;
7823   // }
7824   //
7825   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
7826 
7827   const Register jdx = tmp1;
7828 
7829   bind(L_second_loop);
7830   xorl(carry, carry);    // carry = 0;
7831   movl(jdx, ylen);       // j = ystart+1
7832 
7833   subl(xstart, 1);       // i = xstart-1;
7834   jcc(Assembler::negative, L_done);
7835 
7836   push (z);
7837 
7838   Label L_last_x;
7839   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
7840   subl(xstart, 1);       // i = xstart-1;
7841   jcc(Assembler::negative, L_last_x);
7842 
7843   if (UseBMI2Instructions) {
7844     movq(rdx,  Address(x, xstart, Address::times_4,  0));
7845     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
7846   } else {
7847     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7848     rorq(x_xstart, 32);  // convert big-endian to little-endian
7849   }
7850 
7851   Label L_third_loop_prologue;
7852   bind(L_third_loop_prologue);
7853 
7854   push (x);
7855   push (xstart);
7856   push (ylen);
7857 
7858 
7859   if (UseBMI2Instructions) {
7860     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
7861   } else { // !UseBMI2Instructions
7862     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
7863   }
7864 
7865   pop(ylen);
7866   pop(xlen);
7867   pop(x);
7868   pop(z);
7869 
7870   movl(tmp3, xlen);
7871   addl(tmp3, 1);
7872   movl(Address(z, tmp3, Address::times_4,  0), carry);
7873   subl(tmp3, 1);
7874   jccb(Assembler::negative, L_done);
7875 
7876   shrq(carry, 32);
7877   movl(Address(z, tmp3, Address::times_4,  0), carry);
7878   jmp(L_second_loop);
7879 
7880   // Next infrequent code is moved outside loops.
7881   bind(L_last_x);
7882   if (UseBMI2Instructions) {
7883     movl(rdx, Address(x,  0));
7884   } else {
7885     movl(x_xstart, Address(x,  0));
7886   }
7887   jmp(L_third_loop_prologue);
7888 
7889   bind(L_done);
7890 
7891   pop(zlen);
7892   pop(xlen);
7893 
7894   pop(tmp5);
7895   pop(tmp4);
7896   pop(tmp3);
7897   pop(tmp2);
7898   pop(tmp1);
7899 }
7900 
7901 //Helper functions for square_to_len()
7902 
7903 /**
7904  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
7905  * Preserves x and z and modifies rest of the registers.
7906  */
7907 
7908 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
7909   // Perform square and right shift by 1
7910   // Handle odd xlen case first, then for even xlen do the following
7911   // jlong carry = 0;
7912   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
7913   //     huge_128 product = x[j:j+1] * x[j:j+1];
7914   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
7915   //     z[i+2:i+3] = (jlong)(product >>> 1);
7916   //     carry = (jlong)product;
7917   // }
7918 
7919   xorq(tmp5, tmp5);     // carry
7920   xorq(rdxReg, rdxReg);
7921   xorl(tmp1, tmp1);     // index for x
7922   xorl(tmp4, tmp4);     // index for z
7923 
7924   Label L_first_loop, L_first_loop_exit;
7925 
7926   testl(xlen, 1);
7927   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
7928 
7929   // Square and right shift by 1 the odd element using 32 bit multiply
7930   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
7931   imulq(raxReg, raxReg);
7932   shrq(raxReg, 1);
7933   adcq(tmp5, 0);
7934   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
7935   incrementl(tmp1);
7936   addl(tmp4, 2);
7937 
7938   // Square and  right shift by 1 the rest using 64 bit multiply
7939   bind(L_first_loop);
7940   cmpptr(tmp1, xlen);
7941   jccb(Assembler::equal, L_first_loop_exit);
7942 
7943   // Square
7944   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
7945   rorq(raxReg, 32);    // convert big-endian to little-endian
7946   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
7947 
7948   // Right shift by 1 and save carry
7949   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
7950   rcrq(rdxReg, 1);
7951   rcrq(raxReg, 1);
7952   adcq(tmp5, 0);
7953 
7954   // Store result in z
7955   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
7956   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
7957 
7958   // Update indices for x and z
7959   addl(tmp1, 2);
7960   addl(tmp4, 4);
7961   jmp(L_first_loop);
7962 
7963   bind(L_first_loop_exit);
7964 }
7965 
7966 
7967 /**
7968  * Perform the following multiply add operation using BMI2 instructions
7969  * carry:sum = sum + op1*op2 + carry
7970  * op2 should be in rdx
7971  * op2 is preserved, all other registers are modified
7972  */
7973 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
7974   // assert op2 is rdx
7975   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
7976   addq(sum, carry);
7977   adcq(tmp2, 0);
7978   addq(sum, op1);
7979   adcq(tmp2, 0);
7980   movq(carry, tmp2);
7981 }
7982 
7983 /**
7984  * Perform the following multiply add operation:
7985  * carry:sum = sum + op1*op2 + carry
7986  * Preserves op1, op2 and modifies rest of registers
7987  */
7988 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
7989   // rdx:rax = op1 * op2
7990   movq(raxReg, op2);
7991   mulq(op1);
7992 
7993   //  rdx:rax = sum + carry + rdx:rax
7994   addq(sum, carry);
7995   adcq(rdxReg, 0);
7996   addq(sum, raxReg);
7997   adcq(rdxReg, 0);
7998 
7999   // carry:sum = rdx:sum
8000   movq(carry, rdxReg);
8001 }
8002 
8003 /**
8004  * Add 64 bit long carry into z[] with carry propogation.
8005  * Preserves z and carry register values and modifies rest of registers.
8006  *
8007  */
8008 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
8009   Label L_fourth_loop, L_fourth_loop_exit;
8010 
8011   movl(tmp1, 1);
8012   subl(zlen, 2);
8013   addq(Address(z, zlen, Address::times_4, 0), carry);
8014 
8015   bind(L_fourth_loop);
8016   jccb(Assembler::carryClear, L_fourth_loop_exit);
8017   subl(zlen, 2);
8018   jccb(Assembler::negative, L_fourth_loop_exit);
8019   addq(Address(z, zlen, Address::times_4, 0), tmp1);
8020   jmp(L_fourth_loop);
8021   bind(L_fourth_loop_exit);
8022 }
8023 
8024 /**
8025  * Shift z[] left by 1 bit.
8026  * Preserves x, len, z and zlen registers and modifies rest of the registers.
8027  *
8028  */
8029 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
8030 
8031   Label L_fifth_loop, L_fifth_loop_exit;
8032 
8033   // Fifth loop
8034   // Perform primitiveLeftShift(z, zlen, 1)
8035 
8036   const Register prev_carry = tmp1;
8037   const Register new_carry = tmp4;
8038   const Register value = tmp2;
8039   const Register zidx = tmp3;
8040 
8041   // int zidx, carry;
8042   // long value;
8043   // carry = 0;
8044   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
8045   //    (carry:value)  = (z[i] << 1) | carry ;
8046   //    z[i] = value;
8047   // }
8048 
8049   movl(zidx, zlen);
8050   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
8051 
8052   bind(L_fifth_loop);
8053   decl(zidx);  // Use decl to preserve carry flag
8054   decl(zidx);
8055   jccb(Assembler::negative, L_fifth_loop_exit);
8056 
8057   if (UseBMI2Instructions) {
8058      movq(value, Address(z, zidx, Address::times_4, 0));
8059      rclq(value, 1);
8060      rorxq(value, value, 32);
8061      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8062   }
8063   else {
8064     // clear new_carry
8065     xorl(new_carry, new_carry);
8066 
8067     // Shift z[i] by 1, or in previous carry and save new carry
8068     movq(value, Address(z, zidx, Address::times_4, 0));
8069     shlq(value, 1);
8070     adcl(new_carry, 0);
8071 
8072     orq(value, prev_carry);
8073     rorq(value, 0x20);
8074     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8075 
8076     // Set previous carry = new carry
8077     movl(prev_carry, new_carry);
8078   }
8079   jmp(L_fifth_loop);
8080 
8081   bind(L_fifth_loop_exit);
8082 }
8083 
8084 
8085 /**
8086  * Code for BigInteger::squareToLen() intrinsic
8087  *
8088  * rdi: x
8089  * rsi: len
8090  * r8:  z
8091  * rcx: zlen
8092  * r12: tmp1
8093  * r13: tmp2
8094  * r14: tmp3
8095  * r15: tmp4
8096  * rbx: tmp5
8097  *
8098  */
8099 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8100 
8101   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
8102   push(tmp1);
8103   push(tmp2);
8104   push(tmp3);
8105   push(tmp4);
8106   push(tmp5);
8107 
8108   // First loop
8109   // Store the squares, right shifted one bit (i.e., divided by 2).
8110   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
8111 
8112   // Add in off-diagonal sums.
8113   //
8114   // Second, third (nested) and fourth loops.
8115   // zlen +=2;
8116   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
8117   //    carry = 0;
8118   //    long op2 = x[xidx:xidx+1];
8119   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
8120   //       k -= 2;
8121   //       long op1 = x[j:j+1];
8122   //       long sum = z[k:k+1];
8123   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
8124   //       z[k:k+1] = sum;
8125   //    }
8126   //    add_one_64(z, k, carry, tmp_regs);
8127   // }
8128 
8129   const Register carry = tmp5;
8130   const Register sum = tmp3;
8131   const Register op1 = tmp4;
8132   Register op2 = tmp2;
8133 
8134   push(zlen);
8135   push(len);
8136   addl(zlen,2);
8137   bind(L_second_loop);
8138   xorq(carry, carry);
8139   subl(zlen, 4);
8140   subl(len, 2);
8141   push(zlen);
8142   push(len);
8143   cmpl(len, 0);
8144   jccb(Assembler::lessEqual, L_second_loop_exit);
8145 
8146   // Multiply an array by one 64 bit long.
8147   if (UseBMI2Instructions) {
8148     op2 = rdxReg;
8149     movq(op2, Address(x, len, Address::times_4,  0));
8150     rorxq(op2, op2, 32);
8151   }
8152   else {
8153     movq(op2, Address(x, len, Address::times_4,  0));
8154     rorq(op2, 32);
8155   }
8156 
8157   bind(L_third_loop);
8158   decrementl(len);
8159   jccb(Assembler::negative, L_third_loop_exit);
8160   decrementl(len);
8161   jccb(Assembler::negative, L_last_x);
8162 
8163   movq(op1, Address(x, len, Address::times_4,  0));
8164   rorq(op1, 32);
8165 
8166   bind(L_multiply);
8167   subl(zlen, 2);
8168   movq(sum, Address(z, zlen, Address::times_4,  0));
8169 
8170   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
8171   if (UseBMI2Instructions) {
8172     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
8173   }
8174   else {
8175     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8176   }
8177 
8178   movq(Address(z, zlen, Address::times_4, 0), sum);
8179 
8180   jmp(L_third_loop);
8181   bind(L_third_loop_exit);
8182 
8183   // Fourth loop
8184   // Add 64 bit long carry into z with carry propogation.
8185   // Uses offsetted zlen.
8186   add_one_64(z, zlen, carry, tmp1);
8187 
8188   pop(len);
8189   pop(zlen);
8190   jmp(L_second_loop);
8191 
8192   // Next infrequent code is moved outside loops.
8193   bind(L_last_x);
8194   movl(op1, Address(x, 0));
8195   jmp(L_multiply);
8196 
8197   bind(L_second_loop_exit);
8198   pop(len);
8199   pop(zlen);
8200   pop(len);
8201   pop(zlen);
8202 
8203   // Fifth loop
8204   // Shift z left 1 bit.
8205   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
8206 
8207   // z[zlen-1] |= x[len-1] & 1;
8208   movl(tmp3, Address(x, len, Address::times_4, -4));
8209   andl(tmp3, 1);
8210   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
8211 
8212   pop(tmp5);
8213   pop(tmp4);
8214   pop(tmp3);
8215   pop(tmp2);
8216   pop(tmp1);
8217 }
8218 
8219 /**
8220  * Helper function for mul_add()
8221  * Multiply the in[] by int k and add to out[] starting at offset offs using
8222  * 128 bit by 32 bit multiply and return the carry in tmp5.
8223  * Only quad int aligned length of in[] is operated on in this function.
8224  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
8225  * This function preserves out, in and k registers.
8226  * len and offset point to the appropriate index in "in" & "out" correspondingly
8227  * tmp5 has the carry.
8228  * other registers are temporary and are modified.
8229  *
8230  */
8231 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
8232   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
8233   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8234 
8235   Label L_first_loop, L_first_loop_exit;
8236 
8237   movl(tmp1, len);
8238   shrl(tmp1, 2);
8239 
8240   bind(L_first_loop);
8241   subl(tmp1, 1);
8242   jccb(Assembler::negative, L_first_loop_exit);
8243 
8244   subl(len, 4);
8245   subl(offset, 4);
8246 
8247   Register op2 = tmp2;
8248   const Register sum = tmp3;
8249   const Register op1 = tmp4;
8250   const Register carry = tmp5;
8251 
8252   if (UseBMI2Instructions) {
8253     op2 = rdxReg;
8254   }
8255 
8256   movq(op1, Address(in, len, Address::times_4,  8));
8257   rorq(op1, 32);
8258   movq(sum, Address(out, offset, Address::times_4,  8));
8259   rorq(sum, 32);
8260   if (UseBMI2Instructions) {
8261     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8262   }
8263   else {
8264     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8265   }
8266   // Store back in big endian from little endian
8267   rorq(sum, 0x20);
8268   movq(Address(out, offset, Address::times_4,  8), sum);
8269 
8270   movq(op1, Address(in, len, Address::times_4,  0));
8271   rorq(op1, 32);
8272   movq(sum, Address(out, offset, Address::times_4,  0));
8273   rorq(sum, 32);
8274   if (UseBMI2Instructions) {
8275     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8276   }
8277   else {
8278     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8279   }
8280   // Store back in big endian from little endian
8281   rorq(sum, 0x20);
8282   movq(Address(out, offset, Address::times_4,  0), sum);
8283 
8284   jmp(L_first_loop);
8285   bind(L_first_loop_exit);
8286 }
8287 
8288 /**
8289  * Code for BigInteger::mulAdd() intrinsic
8290  *
8291  * rdi: out
8292  * rsi: in
8293  * r11: offs (out.length - offset)
8294  * rcx: len
8295  * r8:  k
8296  * r12: tmp1
8297  * r13: tmp2
8298  * r14: tmp3
8299  * r15: tmp4
8300  * rbx: tmp5
8301  * Multiply the in[] by word k and add to out[], return the carry in rax
8302  */
8303 void MacroAssembler::mul_add(Register out, Register in, Register offs,
8304    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
8305    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8306 
8307   Label L_carry, L_last_in, L_done;
8308 
8309 // carry = 0;
8310 // for (int j=len-1; j >= 0; j--) {
8311 //    long product = (in[j] & LONG_MASK) * kLong +
8312 //                   (out[offs] & LONG_MASK) + carry;
8313 //    out[offs--] = (int)product;
8314 //    carry = product >>> 32;
8315 // }
8316 //
8317   push(tmp1);
8318   push(tmp2);
8319   push(tmp3);
8320   push(tmp4);
8321   push(tmp5);
8322 
8323   Register op2 = tmp2;
8324   const Register sum = tmp3;
8325   const Register op1 = tmp4;
8326   const Register carry =  tmp5;
8327 
8328   if (UseBMI2Instructions) {
8329     op2 = rdxReg;
8330     movl(op2, k);
8331   }
8332   else {
8333     movl(op2, k);
8334   }
8335 
8336   xorq(carry, carry);
8337 
8338   //First loop
8339 
8340   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
8341   //The carry is in tmp5
8342   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
8343 
8344   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
8345   decrementl(len);
8346   jccb(Assembler::negative, L_carry);
8347   decrementl(len);
8348   jccb(Assembler::negative, L_last_in);
8349 
8350   movq(op1, Address(in, len, Address::times_4,  0));
8351   rorq(op1, 32);
8352 
8353   subl(offs, 2);
8354   movq(sum, Address(out, offs, Address::times_4,  0));
8355   rorq(sum, 32);
8356 
8357   if (UseBMI2Instructions) {
8358     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8359   }
8360   else {
8361     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8362   }
8363 
8364   // Store back in big endian from little endian
8365   rorq(sum, 0x20);
8366   movq(Address(out, offs, Address::times_4,  0), sum);
8367 
8368   testl(len, len);
8369   jccb(Assembler::zero, L_carry);
8370 
8371   //Multiply the last in[] entry, if any
8372   bind(L_last_in);
8373   movl(op1, Address(in, 0));
8374   movl(sum, Address(out, offs, Address::times_4,  -4));
8375 
8376   movl(raxReg, k);
8377   mull(op1); //tmp4 * eax -> edx:eax
8378   addl(sum, carry);
8379   adcl(rdxReg, 0);
8380   addl(sum, raxReg);
8381   adcl(rdxReg, 0);
8382   movl(carry, rdxReg);
8383 
8384   movl(Address(out, offs, Address::times_4,  -4), sum);
8385 
8386   bind(L_carry);
8387   //return tmp5/carry as carry in rax
8388   movl(rax, carry);
8389 
8390   bind(L_done);
8391   pop(tmp5);
8392   pop(tmp4);
8393   pop(tmp3);
8394   pop(tmp2);
8395   pop(tmp1);
8396 }
8397 #endif
8398 
8399 /**
8400  * Emits code to update CRC-32 with a byte value according to constants in table
8401  *
8402  * @param [in,out]crc   Register containing the crc.
8403  * @param [in]val       Register containing the byte to fold into the CRC.
8404  * @param [in]table     Register containing the table of crc constants.
8405  *
8406  * uint32_t crc;
8407  * val = crc_table[(val ^ crc) & 0xFF];
8408  * crc = val ^ (crc >> 8);
8409  *
8410  */
8411 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
8412   xorl(val, crc);
8413   andl(val, 0xFF);
8414   shrl(crc, 8); // unsigned shift
8415   xorl(crc, Address(table, val, Address::times_4, 0));
8416 }
8417 
8418 /**
8419  * Fold 128-bit data chunk
8420  */
8421 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8422   if (UseAVX > 0) {
8423     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
8424     vpclmulldq(xcrc, xK, xcrc); // [63:0]
8425     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
8426     pxor(xcrc, xtmp);
8427   } else {
8428     movdqa(xtmp, xcrc);
8429     pclmulhdq(xtmp, xK);   // [123:64]
8430     pclmulldq(xcrc, xK);   // [63:0]
8431     pxor(xcrc, xtmp);
8432     movdqu(xtmp, Address(buf, offset));
8433     pxor(xcrc, xtmp);
8434   }
8435 }
8436 
8437 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
8438   if (UseAVX > 0) {
8439     vpclmulhdq(xtmp, xK, xcrc);
8440     vpclmulldq(xcrc, xK, xcrc);
8441     pxor(xcrc, xbuf);
8442     pxor(xcrc, xtmp);
8443   } else {
8444     movdqa(xtmp, xcrc);
8445     pclmulhdq(xtmp, xK);
8446     pclmulldq(xcrc, xK);
8447     pxor(xcrc, xbuf);
8448     pxor(xcrc, xtmp);
8449   }
8450 }
8451 
8452 /**
8453  * 8-bit folds to compute 32-bit CRC
8454  *
8455  * uint64_t xcrc;
8456  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
8457  */
8458 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
8459   movdl(tmp, xcrc);
8460   andl(tmp, 0xFF);
8461   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
8462   psrldq(xcrc, 1); // unsigned shift one byte
8463   pxor(xcrc, xtmp);
8464 }
8465 
8466 /**
8467  * uint32_t crc;
8468  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
8469  */
8470 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
8471   movl(tmp, crc);
8472   andl(tmp, 0xFF);
8473   shrl(crc, 8);
8474   xorl(crc, Address(table, tmp, Address::times_4, 0));
8475 }
8476 
8477 /**
8478  * @param crc   register containing existing CRC (32-bit)
8479  * @param buf   register pointing to input byte buffer (byte*)
8480  * @param len   register containing number of bytes
8481  * @param table register that will contain address of CRC table
8482  * @param tmp   scratch register
8483  */
8484 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
8485   assert_different_registers(crc, buf, len, table, tmp, rax);
8486 
8487   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
8488   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
8489 
8490   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
8491   // context for the registers used, where all instructions below are using 128-bit mode
8492   // On EVEX without VL and BW, these instructions will all be AVX.
8493   if (VM_Version::supports_avx512vlbw()) {
8494     movl(tmp, 0xffff);
8495     kmovwl(k1, tmp);
8496   }
8497 
8498   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
8499   notl(crc); // ~crc
8500   cmpl(len, 16);
8501   jcc(Assembler::less, L_tail);
8502 
8503   // Align buffer to 16 bytes
8504   movl(tmp, buf);
8505   andl(tmp, 0xF);
8506   jccb(Assembler::zero, L_aligned);
8507   subl(tmp,  16);
8508   addl(len, tmp);
8509 
8510   align(4);
8511   BIND(L_align_loop);
8512   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8513   update_byte_crc32(crc, rax, table);
8514   increment(buf);
8515   incrementl(tmp);
8516   jccb(Assembler::less, L_align_loop);
8517 
8518   BIND(L_aligned);
8519   movl(tmp, len); // save
8520   shrl(len, 4);
8521   jcc(Assembler::zero, L_tail_restore);
8522 
8523   // Fold crc into first bytes of vector
8524   movdqa(xmm1, Address(buf, 0));
8525   movdl(rax, xmm1);
8526   xorl(crc, rax);
8527   pinsrd(xmm1, crc, 0);
8528   addptr(buf, 16);
8529   subl(len, 4); // len > 0
8530   jcc(Assembler::less, L_fold_tail);
8531 
8532   movdqa(xmm2, Address(buf,  0));
8533   movdqa(xmm3, Address(buf, 16));
8534   movdqa(xmm4, Address(buf, 32));
8535   addptr(buf, 48);
8536   subl(len, 3);
8537   jcc(Assembler::lessEqual, L_fold_512b);
8538 
8539   // Fold total 512 bits of polynomial on each iteration,
8540   // 128 bits per each of 4 parallel streams.
8541   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
8542 
8543   align(32);
8544   BIND(L_fold_512b_loop);
8545   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8546   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
8547   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
8548   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
8549   addptr(buf, 64);
8550   subl(len, 4);
8551   jcc(Assembler::greater, L_fold_512b_loop);
8552 
8553   // Fold 512 bits to 128 bits.
8554   BIND(L_fold_512b);
8555   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8556   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
8557   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
8558   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
8559 
8560   // Fold the rest of 128 bits data chunks
8561   BIND(L_fold_tail);
8562   addl(len, 3);
8563   jccb(Assembler::lessEqual, L_fold_128b);
8564   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8565 
8566   BIND(L_fold_tail_loop);
8567   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8568   addptr(buf, 16);
8569   decrementl(len);
8570   jccb(Assembler::greater, L_fold_tail_loop);
8571 
8572   // Fold 128 bits in xmm1 down into 32 bits in crc register.
8573   BIND(L_fold_128b);
8574   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
8575   if (UseAVX > 0) {
8576     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
8577     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
8578     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
8579   } else {
8580     movdqa(xmm2, xmm0);
8581     pclmulqdq(xmm2, xmm1, 0x1);
8582     movdqa(xmm3, xmm0);
8583     pand(xmm3, xmm2);
8584     pclmulqdq(xmm0, xmm3, 0x1);
8585   }
8586   psrldq(xmm1, 8);
8587   psrldq(xmm2, 4);
8588   pxor(xmm0, xmm1);
8589   pxor(xmm0, xmm2);
8590 
8591   // 8 8-bit folds to compute 32-bit CRC.
8592   for (int j = 0; j < 4; j++) {
8593     fold_8bit_crc32(xmm0, table, xmm1, rax);
8594   }
8595   movdl(crc, xmm0); // mov 32 bits to general register
8596   for (int j = 0; j < 4; j++) {
8597     fold_8bit_crc32(crc, table, rax);
8598   }
8599 
8600   BIND(L_tail_restore);
8601   movl(len, tmp); // restore
8602   BIND(L_tail);
8603   andl(len, 0xf);
8604   jccb(Assembler::zero, L_exit);
8605 
8606   // Fold the rest of bytes
8607   align(4);
8608   BIND(L_tail_loop);
8609   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8610   update_byte_crc32(crc, rax, table);
8611   increment(buf);
8612   decrementl(len);
8613   jccb(Assembler::greater, L_tail_loop);
8614 
8615   BIND(L_exit);
8616   notl(crc); // ~c
8617 }
8618 
8619 #ifdef _LP64
8620 // S. Gueron / Information Processing Letters 112 (2012) 184
8621 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
8622 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
8623 // Output: the 64-bit carry-less product of B * CONST
8624 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
8625                                      Register tmp1, Register tmp2, Register tmp3) {
8626   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
8627   if (n > 0) {
8628     addq(tmp3, n * 256 * 8);
8629   }
8630   //    Q1 = TABLEExt[n][B & 0xFF];
8631   movl(tmp1, in);
8632   andl(tmp1, 0x000000FF);
8633   shll(tmp1, 3);
8634   addq(tmp1, tmp3);
8635   movq(tmp1, Address(tmp1, 0));
8636 
8637   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
8638   movl(tmp2, in);
8639   shrl(tmp2, 8);
8640   andl(tmp2, 0x000000FF);
8641   shll(tmp2, 3);
8642   addq(tmp2, tmp3);
8643   movq(tmp2, Address(tmp2, 0));
8644 
8645   shlq(tmp2, 8);
8646   xorq(tmp1, tmp2);
8647 
8648   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
8649   movl(tmp2, in);
8650   shrl(tmp2, 16);
8651   andl(tmp2, 0x000000FF);
8652   shll(tmp2, 3);
8653   addq(tmp2, tmp3);
8654   movq(tmp2, Address(tmp2, 0));
8655 
8656   shlq(tmp2, 16);
8657   xorq(tmp1, tmp2);
8658 
8659   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
8660   shrl(in, 24);
8661   andl(in, 0x000000FF);
8662   shll(in, 3);
8663   addq(in, tmp3);
8664   movq(in, Address(in, 0));
8665 
8666   shlq(in, 24);
8667   xorq(in, tmp1);
8668   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
8669 }
8670 
8671 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
8672                                       Register in_out,
8673                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
8674                                       XMMRegister w_xtmp2,
8675                                       Register tmp1,
8676                                       Register n_tmp2, Register n_tmp3) {
8677   if (is_pclmulqdq_supported) {
8678     movdl(w_xtmp1, in_out); // modified blindly
8679 
8680     movl(tmp1, const_or_pre_comp_const_index);
8681     movdl(w_xtmp2, tmp1);
8682     pclmulqdq(w_xtmp1, w_xtmp2, 0);
8683 
8684     movdq(in_out, w_xtmp1);
8685   } else {
8686     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
8687   }
8688 }
8689 
8690 // Recombination Alternative 2: No bit-reflections
8691 // T1 = (CRC_A * U1) << 1
8692 // T2 = (CRC_B * U2) << 1
8693 // C1 = T1 >> 32
8694 // C2 = T2 >> 32
8695 // T1 = T1 & 0xFFFFFFFF
8696 // T2 = T2 & 0xFFFFFFFF
8697 // T1 = CRC32(0, T1)
8698 // T2 = CRC32(0, T2)
8699 // C1 = C1 ^ T1
8700 // C2 = C2 ^ T2
8701 // CRC = C1 ^ C2 ^ CRC_C
8702 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
8703                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8704                                      Register tmp1, Register tmp2,
8705                                      Register n_tmp3) {
8706   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
8707   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
8708   shlq(in_out, 1);
8709   movl(tmp1, in_out);
8710   shrq(in_out, 32);
8711   xorl(tmp2, tmp2);
8712   crc32(tmp2, tmp1, 4);
8713   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
8714   shlq(in1, 1);
8715   movl(tmp1, in1);
8716   shrq(in1, 32);
8717   xorl(tmp2, tmp2);
8718   crc32(tmp2, tmp1, 4);
8719   xorl(in1, tmp2);
8720   xorl(in_out, in1);
8721   xorl(in_out, in2);
8722 }
8723 
8724 // Set N to predefined value
8725 // Subtract from a lenght of a buffer
8726 // execute in a loop:
8727 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
8728 // for i = 1 to N do
8729 //  CRC_A = CRC32(CRC_A, A[i])
8730 //  CRC_B = CRC32(CRC_B, B[i])
8731 //  CRC_C = CRC32(CRC_C, C[i])
8732 // end for
8733 // Recombine
8734 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
8735                                        Register in_out1, Register in_out2, Register in_out3,
8736                                        Register tmp1, Register tmp2, Register tmp3,
8737                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8738                                        Register tmp4, Register tmp5,
8739                                        Register n_tmp6) {
8740   Label L_processPartitions;
8741   Label L_processPartition;
8742   Label L_exit;
8743 
8744   bind(L_processPartitions);
8745   cmpl(in_out1, 3 * size);
8746   jcc(Assembler::less, L_exit);
8747     xorl(tmp1, tmp1);
8748     xorl(tmp2, tmp2);
8749     movq(tmp3, in_out2);
8750     addq(tmp3, size);
8751 
8752     bind(L_processPartition);
8753       crc32(in_out3, Address(in_out2, 0), 8);
8754       crc32(tmp1, Address(in_out2, size), 8);
8755       crc32(tmp2, Address(in_out2, size * 2), 8);
8756       addq(in_out2, 8);
8757       cmpq(in_out2, tmp3);
8758       jcc(Assembler::less, L_processPartition);
8759     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
8760             w_xtmp1, w_xtmp2, w_xtmp3,
8761             tmp4, tmp5,
8762             n_tmp6);
8763     addq(in_out2, 2 * size);
8764     subl(in_out1, 3 * size);
8765     jmp(L_processPartitions);
8766 
8767   bind(L_exit);
8768 }
8769 #else
8770 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
8771                                      Register tmp1, Register tmp2, Register tmp3,
8772                                      XMMRegister xtmp1, XMMRegister xtmp2) {
8773   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
8774   if (n > 0) {
8775     addl(tmp3, n * 256 * 8);
8776   }
8777   //    Q1 = TABLEExt[n][B & 0xFF];
8778   movl(tmp1, in_out);
8779   andl(tmp1, 0x000000FF);
8780   shll(tmp1, 3);
8781   addl(tmp1, tmp3);
8782   movq(xtmp1, Address(tmp1, 0));
8783 
8784   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
8785   movl(tmp2, in_out);
8786   shrl(tmp2, 8);
8787   andl(tmp2, 0x000000FF);
8788   shll(tmp2, 3);
8789   addl(tmp2, tmp3);
8790   movq(xtmp2, Address(tmp2, 0));
8791 
8792   psllq(xtmp2, 8);
8793   pxor(xtmp1, xtmp2);
8794 
8795   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
8796   movl(tmp2, in_out);
8797   shrl(tmp2, 16);
8798   andl(tmp2, 0x000000FF);
8799   shll(tmp2, 3);
8800   addl(tmp2, tmp3);
8801   movq(xtmp2, Address(tmp2, 0));
8802 
8803   psllq(xtmp2, 16);
8804   pxor(xtmp1, xtmp2);
8805 
8806   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
8807   shrl(in_out, 24);
8808   andl(in_out, 0x000000FF);
8809   shll(in_out, 3);
8810   addl(in_out, tmp3);
8811   movq(xtmp2, Address(in_out, 0));
8812 
8813   psllq(xtmp2, 24);
8814   pxor(xtmp1, xtmp2); // Result in CXMM
8815   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
8816 }
8817 
8818 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
8819                                       Register in_out,
8820                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
8821                                       XMMRegister w_xtmp2,
8822                                       Register tmp1,
8823                                       Register n_tmp2, Register n_tmp3) {
8824   if (is_pclmulqdq_supported) {
8825     movdl(w_xtmp1, in_out);
8826 
8827     movl(tmp1, const_or_pre_comp_const_index);
8828     movdl(w_xtmp2, tmp1);
8829     pclmulqdq(w_xtmp1, w_xtmp2, 0);
8830     // Keep result in XMM since GPR is 32 bit in length
8831   } else {
8832     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
8833   }
8834 }
8835 
8836 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
8837                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8838                                      Register tmp1, Register tmp2,
8839                                      Register n_tmp3) {
8840   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
8841   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
8842 
8843   psllq(w_xtmp1, 1);
8844   movdl(tmp1, w_xtmp1);
8845   psrlq(w_xtmp1, 32);
8846   movdl(in_out, w_xtmp1);
8847 
8848   xorl(tmp2, tmp2);
8849   crc32(tmp2, tmp1, 4);
8850   xorl(in_out, tmp2);
8851 
8852   psllq(w_xtmp2, 1);
8853   movdl(tmp1, w_xtmp2);
8854   psrlq(w_xtmp2, 32);
8855   movdl(in1, w_xtmp2);
8856 
8857   xorl(tmp2, tmp2);
8858   crc32(tmp2, tmp1, 4);
8859   xorl(in1, tmp2);
8860   xorl(in_out, in1);
8861   xorl(in_out, in2);
8862 }
8863 
8864 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
8865                                        Register in_out1, Register in_out2, Register in_out3,
8866                                        Register tmp1, Register tmp2, Register tmp3,
8867                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8868                                        Register tmp4, Register tmp5,
8869                                        Register n_tmp6) {
8870   Label L_processPartitions;
8871   Label L_processPartition;
8872   Label L_exit;
8873 
8874   bind(L_processPartitions);
8875   cmpl(in_out1, 3 * size);
8876   jcc(Assembler::less, L_exit);
8877     xorl(tmp1, tmp1);
8878     xorl(tmp2, tmp2);
8879     movl(tmp3, in_out2);
8880     addl(tmp3, size);
8881 
8882     bind(L_processPartition);
8883       crc32(in_out3, Address(in_out2, 0), 4);
8884       crc32(tmp1, Address(in_out2, size), 4);
8885       crc32(tmp2, Address(in_out2, size*2), 4);
8886       crc32(in_out3, Address(in_out2, 0+4), 4);
8887       crc32(tmp1, Address(in_out2, size+4), 4);
8888       crc32(tmp2, Address(in_out2, size*2+4), 4);
8889       addl(in_out2, 8);
8890       cmpl(in_out2, tmp3);
8891       jcc(Assembler::less, L_processPartition);
8892 
8893         push(tmp3);
8894         push(in_out1);
8895         push(in_out2);
8896         tmp4 = tmp3;
8897         tmp5 = in_out1;
8898         n_tmp6 = in_out2;
8899 
8900       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
8901             w_xtmp1, w_xtmp2, w_xtmp3,
8902             tmp4, tmp5,
8903             n_tmp6);
8904 
8905         pop(in_out2);
8906         pop(in_out1);
8907         pop(tmp3);
8908 
8909     addl(in_out2, 2 * size);
8910     subl(in_out1, 3 * size);
8911     jmp(L_processPartitions);
8912 
8913   bind(L_exit);
8914 }
8915 #endif //LP64
8916 
8917 #ifdef _LP64
8918 // Algorithm 2: Pipelined usage of the CRC32 instruction.
8919 // Input: A buffer I of L bytes.
8920 // Output: the CRC32C value of the buffer.
8921 // Notations:
8922 // Write L = 24N + r, with N = floor (L/24).
8923 // r = L mod 24 (0 <= r < 24).
8924 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
8925 // N quadwords, and R consists of r bytes.
8926 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
8927 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
8928 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
8929 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
8930 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
8931                                           Register tmp1, Register tmp2, Register tmp3,
8932                                           Register tmp4, Register tmp5, Register tmp6,
8933                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8934                                           bool is_pclmulqdq_supported) {
8935   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
8936   Label L_wordByWord;
8937   Label L_byteByByteProlog;
8938   Label L_byteByByte;
8939   Label L_exit;
8940 
8941   if (is_pclmulqdq_supported ) {
8942     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
8943     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
8944 
8945     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
8946     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
8947 
8948     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
8949     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
8950     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
8951   } else {
8952     const_or_pre_comp_const_index[0] = 1;
8953     const_or_pre_comp_const_index[1] = 0;
8954 
8955     const_or_pre_comp_const_index[2] = 3;
8956     const_or_pre_comp_const_index[3] = 2;
8957 
8958     const_or_pre_comp_const_index[4] = 5;
8959     const_or_pre_comp_const_index[5] = 4;
8960    }
8961   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
8962                     in2, in1, in_out,
8963                     tmp1, tmp2, tmp3,
8964                     w_xtmp1, w_xtmp2, w_xtmp3,
8965                     tmp4, tmp5,
8966                     tmp6);
8967   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
8968                     in2, in1, in_out,
8969                     tmp1, tmp2, tmp3,
8970                     w_xtmp1, w_xtmp2, w_xtmp3,
8971                     tmp4, tmp5,
8972                     tmp6);
8973   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
8974                     in2, in1, in_out,
8975                     tmp1, tmp2, tmp3,
8976                     w_xtmp1, w_xtmp2, w_xtmp3,
8977                     tmp4, tmp5,
8978                     tmp6);
8979   movl(tmp1, in2);
8980   andl(tmp1, 0x00000007);
8981   negl(tmp1);
8982   addl(tmp1, in2);
8983   addq(tmp1, in1);
8984 
8985   BIND(L_wordByWord);
8986   cmpq(in1, tmp1);
8987   jcc(Assembler::greaterEqual, L_byteByByteProlog);
8988     crc32(in_out, Address(in1, 0), 4);
8989     addq(in1, 4);
8990     jmp(L_wordByWord);
8991 
8992   BIND(L_byteByByteProlog);
8993   andl(in2, 0x00000007);
8994   movl(tmp2, 1);
8995 
8996   BIND(L_byteByByte);
8997   cmpl(tmp2, in2);
8998   jccb(Assembler::greater, L_exit);
8999     crc32(in_out, Address(in1, 0), 1);
9000     incq(in1);
9001     incl(tmp2);
9002     jmp(L_byteByByte);
9003 
9004   BIND(L_exit);
9005 }
9006 #else
9007 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9008                                           Register tmp1, Register  tmp2, Register tmp3,
9009                                           Register tmp4, Register  tmp5, Register tmp6,
9010                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9011                                           bool is_pclmulqdq_supported) {
9012   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9013   Label L_wordByWord;
9014   Label L_byteByByteProlog;
9015   Label L_byteByByte;
9016   Label L_exit;
9017 
9018   if (is_pclmulqdq_supported) {
9019     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9020     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
9021 
9022     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9023     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9024 
9025     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9026     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9027   } else {
9028     const_or_pre_comp_const_index[0] = 1;
9029     const_or_pre_comp_const_index[1] = 0;
9030 
9031     const_or_pre_comp_const_index[2] = 3;
9032     const_or_pre_comp_const_index[3] = 2;
9033 
9034     const_or_pre_comp_const_index[4] = 5;
9035     const_or_pre_comp_const_index[5] = 4;
9036   }
9037   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9038                     in2, in1, in_out,
9039                     tmp1, tmp2, tmp3,
9040                     w_xtmp1, w_xtmp2, w_xtmp3,
9041                     tmp4, tmp5,
9042                     tmp6);
9043   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9044                     in2, in1, in_out,
9045                     tmp1, tmp2, tmp3,
9046                     w_xtmp1, w_xtmp2, w_xtmp3,
9047                     tmp4, tmp5,
9048                     tmp6);
9049   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9050                     in2, in1, in_out,
9051                     tmp1, tmp2, tmp3,
9052                     w_xtmp1, w_xtmp2, w_xtmp3,
9053                     tmp4, tmp5,
9054                     tmp6);
9055   movl(tmp1, in2);
9056   andl(tmp1, 0x00000007);
9057   negl(tmp1);
9058   addl(tmp1, in2);
9059   addl(tmp1, in1);
9060 
9061   BIND(L_wordByWord);
9062   cmpl(in1, tmp1);
9063   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9064     crc32(in_out, Address(in1,0), 4);
9065     addl(in1, 4);
9066     jmp(L_wordByWord);
9067 
9068   BIND(L_byteByByteProlog);
9069   andl(in2, 0x00000007);
9070   movl(tmp2, 1);
9071 
9072   BIND(L_byteByByte);
9073   cmpl(tmp2, in2);
9074   jccb(Assembler::greater, L_exit);
9075     movb(tmp1, Address(in1, 0));
9076     crc32(in_out, tmp1, 1);
9077     incl(in1);
9078     incl(tmp2);
9079     jmp(L_byteByByte);
9080 
9081   BIND(L_exit);
9082 }
9083 #endif // LP64
9084 #undef BIND
9085 #undef BLOCK_COMMENT
9086 
9087 
9088 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
9089   switch (cond) {
9090     // Note some conditions are synonyms for others
9091     case Assembler::zero:         return Assembler::notZero;
9092     case Assembler::notZero:      return Assembler::zero;
9093     case Assembler::less:         return Assembler::greaterEqual;
9094     case Assembler::lessEqual:    return Assembler::greater;
9095     case Assembler::greater:      return Assembler::lessEqual;
9096     case Assembler::greaterEqual: return Assembler::less;
9097     case Assembler::below:        return Assembler::aboveEqual;
9098     case Assembler::belowEqual:   return Assembler::above;
9099     case Assembler::above:        return Assembler::belowEqual;
9100     case Assembler::aboveEqual:   return Assembler::below;
9101     case Assembler::overflow:     return Assembler::noOverflow;
9102     case Assembler::noOverflow:   return Assembler::overflow;
9103     case Assembler::negative:     return Assembler::positive;
9104     case Assembler::positive:     return Assembler::negative;
9105     case Assembler::parity:       return Assembler::noParity;
9106     case Assembler::noParity:     return Assembler::parity;
9107   }
9108   ShouldNotReachHere(); return Assembler::overflow;
9109 }
9110 
9111 SkipIfEqual::SkipIfEqual(
9112     MacroAssembler* masm, const bool* flag_addr, bool value) {
9113   _masm = masm;
9114   _masm->cmp8(ExternalAddress((address)flag_addr), value);
9115   _masm->jcc(Assembler::equal, _label);
9116 }
9117 
9118 SkipIfEqual::~SkipIfEqual() {
9119   _masm->bind(_label);
9120 }