1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "compiler/disassembler.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "memory/universe.hpp"
  33 #include "oops/klass.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/biasedLocking.hpp"
  36 #include "runtime/interfaceSupport.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/os.inline.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "utilities/macros.hpp"
  42 #if INCLUDE_ALL_GCS
  43 #include "gc/g1/g1CollectedHeap.inline.hpp"
  44 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  45 #include "gc/g1/heapRegion.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 #ifdef COMPILER2
  48 #include "opto/intrinsicnode.hpp"
  49 #endif
  50 
  51 #ifdef PRODUCT
  52 #define BLOCK_COMMENT(str) /* nothing */
  53 #define STOP(error) stop(error)
  54 #else
  55 #define BLOCK_COMMENT(str) block_comment(str)
  56 #define STOP(error) block_comment(error); stop(error)
  57 #endif
  58 
  59 // Convert the raw encoding form into the form expected by the
  60 // constructor for Address.
  61 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
  62   assert(scale == 0, "not supported");
  63   RelocationHolder rspec;
  64   if (disp_reloc != relocInfo::none) {
  65     rspec = Relocation::spec_simple(disp_reloc);
  66   }
  67 
  68   Register rindex = as_Register(index);
  69   if (rindex != G0) {
  70     Address madr(as_Register(base), rindex);
  71     madr._rspec = rspec;
  72     return madr;
  73   } else {
  74     Address madr(as_Register(base), disp);
  75     madr._rspec = rspec;
  76     return madr;
  77   }
  78 }
  79 
  80 Address Argument::address_in_frame() const {
  81   // Warning: In LP64 mode disp will occupy more than 10 bits, but
  82   //          op codes such as ld or ldx, only access disp() to get
  83   //          their simm13 argument.
  84   int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
  85   if (is_in())
  86     return Address(FP, disp); // In argument.
  87   else
  88     return Address(SP, disp); // Out argument.
  89 }
  90 
  91 static const char* argumentNames[][2] = {
  92   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
  93   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
  94   {"A(n>9)","P(n>9)"}
  95 };
  96 
  97 const char* Argument::name() const {
  98   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
  99   int num = number();
 100   if (num >= nofArgs)  num = nofArgs - 1;
 101   return argumentNames[num][is_in() ? 1 : 0];
 102 }
 103 
 104 #ifdef ASSERT
 105 // On RISC, there's no benefit to verifying instruction boundaries.
 106 bool AbstractAssembler::pd_check_instruction_mark() { return false; }
 107 #endif
 108 
 109 // Patch instruction inst at offset inst_pos to refer to dest_pos
 110 // and return the resulting instruction.
 111 // We should have pcs, not offsets, but since all is relative, it will work out
 112 // OK.
 113 int MacroAssembler::patched_branch(int dest_pos, int inst, int inst_pos) {
 114   int m; // mask for displacement field
 115   int v; // new value for displacement field
 116   const int word_aligned_ones = -4;
 117   switch (inv_op(inst)) {
 118   default: ShouldNotReachHere();
 119   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
 120   case branch_op:
 121     switch (inv_op2(inst)) {
 122       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
 123       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
 124       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
 125       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
 126       case bpr_op2: {
 127         if (is_cbcond(inst)) {
 128           m = wdisp10(word_aligned_ones, 0);
 129           v = wdisp10(dest_pos, inst_pos);
 130         } else {
 131           m = wdisp16(word_aligned_ones, 0);
 132           v = wdisp16(dest_pos, inst_pos);
 133         }
 134         break;
 135       }
 136       default: ShouldNotReachHere();
 137     }
 138   }
 139   return  inst & ~m  |  v;
 140 }
 141 
 142 // Return the offset of the branch destionation of instruction inst
 143 // at offset pos.
 144 // Should have pcs, but since all is relative, it works out.
 145 int MacroAssembler::branch_destination(int inst, int pos) {
 146   int r;
 147   switch (inv_op(inst)) {
 148   default: ShouldNotReachHere();
 149   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
 150   case branch_op:
 151     switch (inv_op2(inst)) {
 152       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
 153       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
 154       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
 155       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
 156       case bpr_op2: {
 157         if (is_cbcond(inst)) {
 158           r = inv_wdisp10(inst, pos);
 159         } else {
 160           r = inv_wdisp16(inst, pos);
 161         }
 162         break;
 163       }
 164       default: ShouldNotReachHere();
 165     }
 166   }
 167   return r;
 168 }
 169 
 170 void MacroAssembler::null_check(Register reg, int offset) {
 171   if (needs_explicit_null_check((intptr_t)offset)) {
 172     // provoke OS NULL exception if reg = NULL by
 173     // accessing M[reg] w/o changing any registers
 174     ld_ptr(reg, 0, G0);
 175   }
 176   else {
 177     // nothing to do, (later) access of M[reg + offset]
 178     // will provoke OS NULL exception if reg = NULL
 179   }
 180 }
 181 
 182 // Ring buffer jumps
 183 
 184 
 185 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
 186   assert_not_delayed();
 187   // This can only be traceable if r1 & r2 are visible after a window save
 188   if (TraceJumps) {
 189 #ifndef PRODUCT
 190     save_frame(0);
 191     verify_thread();
 192     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
 193     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
 194     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
 195     add(O2, O1, O1);
 196 
 197     add(r1->after_save(), r2->after_save(), O2);
 198     set((intptr_t)file, O3);
 199     set(line, O4);
 200     Label L;
 201     // get nearby pc, store jmp target
 202     call(L, relocInfo::none);  // No relocation for call to pc+0x8
 203     delayed()->st(O2, O1, 0);
 204     bind(L);
 205 
 206     // store nearby pc
 207     st(O7, O1, sizeof(intptr_t));
 208     // store file
 209     st(O3, O1, 2*sizeof(intptr_t));
 210     // store line
 211     st(O4, O1, 3*sizeof(intptr_t));
 212     add(O0, 1, O0);
 213     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
 214     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
 215     restore();
 216 #endif /* PRODUCT */
 217   }
 218   jmpl(r1, r2, G0);
 219 }
 220 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
 221   assert_not_delayed();
 222   // This can only be traceable if r1 is visible after a window save
 223   if (TraceJumps) {
 224 #ifndef PRODUCT
 225     save_frame(0);
 226     verify_thread();
 227     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
 228     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
 229     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
 230     add(O2, O1, O1);
 231 
 232     add(r1->after_save(), offset, O2);
 233     set((intptr_t)file, O3);
 234     set(line, O4);
 235     Label L;
 236     // get nearby pc, store jmp target
 237     call(L, relocInfo::none);  // No relocation for call to pc+0x8
 238     delayed()->st(O2, O1, 0);
 239     bind(L);
 240 
 241     // store nearby pc
 242     st(O7, O1, sizeof(intptr_t));
 243     // store file
 244     st(O3, O1, 2*sizeof(intptr_t));
 245     // store line
 246     st(O4, O1, 3*sizeof(intptr_t));
 247     add(O0, 1, O0);
 248     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
 249     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
 250     restore();
 251 #endif /* PRODUCT */
 252   }
 253   jmp(r1, offset);
 254 }
 255 
 256 // This code sequence is relocatable to any address, even on LP64.
 257 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
 258   assert_not_delayed();
 259   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
 260   // variable length instruction streams.
 261   patchable_sethi(addrlit, temp);
 262   Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
 263   if (TraceJumps) {
 264 #ifndef PRODUCT
 265     // Must do the add here so relocation can find the remainder of the
 266     // value to be relocated.
 267     add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
 268     save_frame(0);
 269     verify_thread();
 270     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
 271     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
 272     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
 273     add(O2, O1, O1);
 274 
 275     set((intptr_t)file, O3);
 276     set(line, O4);
 277     Label L;
 278 
 279     // get nearby pc, store jmp target
 280     call(L, relocInfo::none);  // No relocation for call to pc+0x8
 281     delayed()->st(a.base()->after_save(), O1, 0);
 282     bind(L);
 283 
 284     // store nearby pc
 285     st(O7, O1, sizeof(intptr_t));
 286     // store file
 287     st(O3, O1, 2*sizeof(intptr_t));
 288     // store line
 289     st(O4, O1, 3*sizeof(intptr_t));
 290     add(O0, 1, O0);
 291     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
 292     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
 293     restore();
 294     jmpl(a.base(), G0, d);
 295 #else
 296     jmpl(a.base(), a.disp(), d);
 297 #endif /* PRODUCT */
 298   } else {
 299     jmpl(a.base(), a.disp(), d);
 300   }
 301 }
 302 
 303 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
 304   jumpl(addrlit, temp, G0, offset, file, line);
 305 }
 306 
 307 
 308 // Conditional breakpoint (for assertion checks in assembly code)
 309 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
 310   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
 311 }
 312 
 313 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
 314 void MacroAssembler::breakpoint_trap() {
 315   trap(ST_RESERVED_FOR_USER_0);
 316 }
 317 
 318 // Write serialization page so VM thread can do a pseudo remote membar
 319 // We use the current thread pointer to calculate a thread specific
 320 // offset to write to within the page. This minimizes bus traffic
 321 // due to cache line collision.
 322 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
 323   srl(thread, os::get_serialize_page_shift_count(), tmp2);
 324   if (Assembler::is_simm13(os::vm_page_size())) {
 325     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
 326   }
 327   else {
 328     set((os::vm_page_size() - sizeof(int)), tmp1);
 329     and3(tmp2, tmp1, tmp2);
 330   }
 331   set(os::get_memory_serialize_page(), tmp1);
 332   st(G0, tmp1, tmp2);
 333 }
 334 
 335 
 336 
 337 void MacroAssembler::enter() {
 338   Unimplemented();
 339 }
 340 
 341 void MacroAssembler::leave() {
 342   Unimplemented();
 343 }
 344 
 345 // Calls to C land
 346 
 347 #ifdef ASSERT
 348 // a hook for debugging
 349 static Thread* reinitialize_thread() {
 350   return Thread::current();
 351 }
 352 #else
 353 #define reinitialize_thread Thread::current
 354 #endif
 355 
 356 #ifdef ASSERT
 357 address last_get_thread = NULL;
 358 #endif
 359 
 360 // call this when G2_thread is not known to be valid
 361 void MacroAssembler::get_thread() {
 362   save_frame(0);                // to avoid clobbering O0
 363   mov(G1, L0);                  // avoid clobbering G1
 364   mov(G5_method, L1);           // avoid clobbering G5
 365   mov(G3, L2);                  // avoid clobbering G3 also
 366   mov(G4, L5);                  // avoid clobbering G4
 367 #ifdef ASSERT
 368   AddressLiteral last_get_thread_addrlit(&last_get_thread);
 369   set(last_get_thread_addrlit, L3);
 370   rdpc(L4);
 371   inc(L4, 3 * BytesPerInstWord); // skip rdpc + inc + st_ptr to point L4 at call  st_ptr(L4, L3, 0);
 372 #endif
 373   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
 374   delayed()->nop();
 375   mov(L0, G1);
 376   mov(L1, G5_method);
 377   mov(L2, G3);
 378   mov(L5, G4);
 379   restore(O0, 0, G2_thread);
 380 }
 381 
 382 static Thread* verify_thread_subroutine(Thread* gthread_value) {
 383   Thread* correct_value = Thread::current();
 384   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
 385   return correct_value;
 386 }
 387 
 388 void MacroAssembler::verify_thread() {
 389   if (VerifyThread) {
 390     // NOTE: this chops off the heads of the 64-bit O registers.
 391 #ifdef CC_INTERP
 392     save_frame(0);
 393 #else
 394     // make sure G2_thread contains the right value
 395     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
 396     mov(G1, L1);                // avoid clobbering G1
 397     // G2 saved below
 398     mov(G3, L3);                // avoid clobbering G3
 399     mov(G4, L4);                // avoid clobbering G4
 400     mov(G5_method, L5);         // avoid clobbering G5_method
 401 #endif /* CC_INTERP */
 402 #if defined(COMPILER2) && !defined(_LP64)
 403     // Save & restore possible 64-bit Long arguments in G-regs
 404     srlx(G1,32,L0);
 405     srlx(G4,32,L6);
 406 #endif
 407     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
 408     delayed()->mov(G2_thread, O0);
 409 
 410     mov(L1, G1);                // Restore G1
 411     // G2 restored below
 412     mov(L3, G3);                // restore G3
 413     mov(L4, G4);                // restore G4
 414     mov(L5, G5_method);         // restore G5_method
 415 #if defined(COMPILER2) && !defined(_LP64)
 416     // Save & restore possible 64-bit Long arguments in G-regs
 417     sllx(L0,32,G2);             // Move old high G1 bits high in G2
 418     srl(G1, 0,G1);              // Clear current high G1 bits
 419     or3 (G1,G2,G1);             // Recover 64-bit G1
 420     sllx(L6,32,G2);             // Move old high G4 bits high in G2
 421     srl(G4, 0,G4);              // Clear current high G4 bits
 422     or3 (G4,G2,G4);             // Recover 64-bit G4
 423 #endif
 424     restore(O0, 0, G2_thread);
 425   }
 426 }
 427 
 428 
 429 void MacroAssembler::save_thread(const Register thread_cache) {
 430   verify_thread();
 431   if (thread_cache->is_valid()) {
 432     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
 433     mov(G2_thread, thread_cache);
 434   }
 435   if (VerifyThread) {
 436     // smash G2_thread, as if the VM were about to anyway
 437     set(0x67676767, G2_thread);
 438   }
 439 }
 440 
 441 
 442 void MacroAssembler::restore_thread(const Register thread_cache) {
 443   if (thread_cache->is_valid()) {
 444     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
 445     mov(thread_cache, G2_thread);
 446     verify_thread();
 447   } else {
 448     // do it the slow way
 449     get_thread();
 450   }
 451 }
 452 
 453 
 454 // %%% maybe get rid of [re]set_last_Java_frame
 455 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
 456   assert_not_delayed();
 457   Address flags(G2_thread, JavaThread::frame_anchor_offset() +
 458                            JavaFrameAnchor::flags_offset());
 459   Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
 460 
 461   // Always set last_Java_pc and flags first because once last_Java_sp is visible
 462   // has_last_Java_frame is true and users will look at the rest of the fields.
 463   // (Note: flags should always be zero before we get here so doesn't need to be set.)
 464 
 465 #ifdef ASSERT
 466   // Verify that flags was zeroed on return to Java
 467   Label PcOk;
 468   save_frame(0);                // to avoid clobbering O0
 469   ld_ptr(pc_addr, L0);
 470   br_null_short(L0, Assembler::pt, PcOk);
 471   STOP("last_Java_pc not zeroed before leaving Java");
 472   bind(PcOk);
 473 
 474   // Verify that flags was zeroed on return to Java
 475   Label FlagsOk;
 476   ld(flags, L0);
 477   tst(L0);
 478   br(Assembler::zero, false, Assembler::pt, FlagsOk);
 479   delayed() -> restore();
 480   STOP("flags not zeroed before leaving Java");
 481   bind(FlagsOk);
 482 #endif /* ASSERT */
 483   //
 484   // When returning from calling out from Java mode the frame anchor's last_Java_pc
 485   // will always be set to NULL. It is set here so that if we are doing a call to
 486   // native (not VM) that we capture the known pc and don't have to rely on the
 487   // native call having a standard frame linkage where we can find the pc.
 488 
 489   if (last_Java_pc->is_valid()) {
 490     st_ptr(last_Java_pc, pc_addr);
 491   }
 492 
 493 #ifdef _LP64
 494 #ifdef ASSERT
 495   // Make sure that we have an odd stack
 496   Label StackOk;
 497   andcc(last_java_sp, 0x01, G0);
 498   br(Assembler::notZero, false, Assembler::pt, StackOk);
 499   delayed()->nop();
 500   STOP("Stack Not Biased in set_last_Java_frame");
 501   bind(StackOk);
 502 #endif // ASSERT
 503   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
 504   add( last_java_sp, STACK_BIAS, G4_scratch );
 505   st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
 506 #else
 507   st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
 508 #endif // _LP64
 509 }
 510 
 511 void MacroAssembler::reset_last_Java_frame(void) {
 512   assert_not_delayed();
 513 
 514   Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
 515   Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 516   Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
 517 
 518 #ifdef ASSERT
 519   // check that it WAS previously set
 520 #ifdef CC_INTERP
 521     save_frame(0);
 522 #else
 523     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
 524 #endif /* CC_INTERP */
 525     ld_ptr(sp_addr, L0);
 526     tst(L0);
 527     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
 528     restore();
 529 #endif // ASSERT
 530 
 531   st_ptr(G0, sp_addr);
 532   // Always return last_Java_pc to zero
 533   st_ptr(G0, pc_addr);
 534   // Always null flags after return to Java
 535   st(G0, flags);
 536 }
 537 
 538 
 539 void MacroAssembler::call_VM_base(
 540   Register        oop_result,
 541   Register        thread_cache,
 542   Register        last_java_sp,
 543   address         entry_point,
 544   int             number_of_arguments,
 545   bool            check_exceptions)
 546 {
 547   assert_not_delayed();
 548 
 549   // determine last_java_sp register
 550   if (!last_java_sp->is_valid()) {
 551     last_java_sp = SP;
 552   }
 553   // debugging support
 554   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
 555 
 556   // 64-bit last_java_sp is biased!
 557   set_last_Java_frame(last_java_sp, noreg);
 558   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
 559   save_thread(thread_cache);
 560   // do the call
 561   call(entry_point, relocInfo::runtime_call_type);
 562   if (!VerifyThread)
 563     delayed()->mov(G2_thread, O0);  // pass thread as first argument
 564   else
 565     delayed()->nop();             // (thread already passed)
 566   restore_thread(thread_cache);
 567   reset_last_Java_frame();
 568 
 569   // check for pending exceptions. use Gtemp as scratch register.
 570   if (check_exceptions) {
 571     check_and_forward_exception(Gtemp);
 572   }
 573 
 574 #ifdef ASSERT
 575   set(badHeapWordVal, G3);
 576   set(badHeapWordVal, G4);
 577   set(badHeapWordVal, G5);
 578 #endif
 579 
 580   // get oop result if there is one and reset the value in the thread
 581   if (oop_result->is_valid()) {
 582     get_vm_result(oop_result);
 583   }
 584 }
 585 
 586 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
 587 {
 588   Label L;
 589 
 590   check_and_handle_popframe(scratch_reg);
 591   check_and_handle_earlyret(scratch_reg);
 592 
 593   Address exception_addr(G2_thread, Thread::pending_exception_offset());
 594   ld_ptr(exception_addr, scratch_reg);
 595   br_null_short(scratch_reg, pt, L);
 596   // we use O7 linkage so that forward_exception_entry has the issuing PC
 597   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
 598   delayed()->nop();
 599   bind(L);
 600 }
 601 
 602 
 603 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 604 }
 605 
 606 
 607 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 608 }
 609 
 610 
 611 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
 612   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
 613 }
 614 
 615 
 616 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
 617   // O0 is reserved for the thread
 618   mov(arg_1, O1);
 619   call_VM(oop_result, entry_point, 1, check_exceptions);
 620 }
 621 
 622 
 623 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
 624   // O0 is reserved for the thread
 625   mov(arg_1, O1);
 626   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
 627   call_VM(oop_result, entry_point, 2, check_exceptions);
 628 }
 629 
 630 
 631 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
 632   // O0 is reserved for the thread
 633   mov(arg_1, O1);
 634   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
 635   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
 636   call_VM(oop_result, entry_point, 3, check_exceptions);
 637 }
 638 
 639 
 640 
 641 // Note: The following call_VM overloadings are useful when a "save"
 642 // has already been performed by a stub, and the last Java frame is
 643 // the previous one.  In that case, last_java_sp must be passed as FP
 644 // instead of SP.
 645 
 646 
 647 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
 648   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 649 }
 650 
 651 
 652 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
 653   // O0 is reserved for the thread
 654   mov(arg_1, O1);
 655   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
 656 }
 657 
 658 
 659 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
 660   // O0 is reserved for the thread
 661   mov(arg_1, O1);
 662   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
 663   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
 664 }
 665 
 666 
 667 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
 668   // O0 is reserved for the thread
 669   mov(arg_1, O1);
 670   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
 671   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
 672   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
 673 }
 674 
 675 
 676 
 677 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
 678   assert_not_delayed();
 679   save_thread(thread_cache);
 680   // do the call
 681   call(entry_point, relocInfo::runtime_call_type);
 682   delayed()->nop();
 683   restore_thread(thread_cache);
 684 #ifdef ASSERT
 685   set(badHeapWordVal, G3);
 686   set(badHeapWordVal, G4);
 687   set(badHeapWordVal, G5);
 688 #endif
 689 }
 690 
 691 
 692 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
 693   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
 694 }
 695 
 696 
 697 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
 698   mov(arg_1, O0);
 699   call_VM_leaf(thread_cache, entry_point, 1);
 700 }
 701 
 702 
 703 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
 704   mov(arg_1, O0);
 705   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
 706   call_VM_leaf(thread_cache, entry_point, 2);
 707 }
 708 
 709 
 710 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
 711   mov(arg_1, O0);
 712   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
 713   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
 714   call_VM_leaf(thread_cache, entry_point, 3);
 715 }
 716 
 717 
 718 void MacroAssembler::get_vm_result(Register oop_result) {
 719   verify_thread();
 720   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
 721   ld_ptr(    vm_result_addr, oop_result);
 722   st_ptr(G0, vm_result_addr);
 723   verify_oop(oop_result);
 724 }
 725 
 726 
 727 void MacroAssembler::get_vm_result_2(Register metadata_result) {
 728   verify_thread();
 729   Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
 730   ld_ptr(vm_result_addr_2, metadata_result);
 731   st_ptr(G0, vm_result_addr_2);
 732 }
 733 
 734 
 735 // We require that C code which does not return a value in vm_result will
 736 // leave it undisturbed.
 737 void MacroAssembler::set_vm_result(Register oop_result) {
 738   verify_thread();
 739   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
 740   verify_oop(oop_result);
 741 
 742 # ifdef ASSERT
 743     // Check that we are not overwriting any other oop.
 744 #ifdef CC_INTERP
 745     save_frame(0);
 746 #else
 747     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
 748 #endif /* CC_INTERP */
 749     ld_ptr(vm_result_addr, L0);
 750     tst(L0);
 751     restore();
 752     breakpoint_trap(notZero, Assembler::ptr_cc);
 753     // }
 754 # endif
 755 
 756   st_ptr(oop_result, vm_result_addr);
 757 }
 758 
 759 
 760 void MacroAssembler::ic_call(address entry, bool emit_delay, jint method_index) {
 761   RelocationHolder rspec = virtual_call_Relocation::spec(pc(), method_index);
 762   patchable_set((intptr_t)Universe::non_oop_word(), G5_inline_cache_reg);
 763   relocate(rspec);
 764   call(entry, relocInfo::none);
 765   if (emit_delay) {
 766     delayed()->nop();
 767   }
 768 }
 769 
 770 void MacroAssembler::card_table_write(jbyte* byte_map_base,
 771                                       Register tmp, Register obj) {
 772 #ifdef _LP64
 773   srlx(obj, CardTableModRefBS::card_shift, obj);
 774 #else
 775   srl(obj, CardTableModRefBS::card_shift, obj);
 776 #endif
 777   assert(tmp != obj, "need separate temp reg");
 778   set((address) byte_map_base, tmp);
 779   stb(G0, tmp, obj);
 780 }
 781 
 782 
 783 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
 784   address save_pc;
 785   int shiftcnt;
 786 #ifdef _LP64
 787 # ifdef CHECK_DELAY
 788   assert_not_delayed((char*) "cannot put two instructions in delay slot");
 789 # endif
 790   v9_dep();
 791   save_pc = pc();
 792 
 793   int msb32 = (int) (addrlit.value() >> 32);
 794   int lsb32 = (int) (addrlit.value());
 795 
 796   if (msb32 == 0 && lsb32 >= 0) {
 797     Assembler::sethi(lsb32, d, addrlit.rspec());
 798   }
 799   else if (msb32 == -1) {
 800     Assembler::sethi(~lsb32, d, addrlit.rspec());
 801     xor3(d, ~low10(~0), d);
 802   }
 803   else {
 804     Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
 805     if (msb32 & 0x3ff)                            // Any bits?
 806       or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
 807     if (lsb32 & 0xFFFFFC00) {                     // done?
 808       if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
 809         sllx(d, 12, d);                           // Make room for next 12 bits
 810         or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
 811         shiftcnt = 0;                             // We already shifted
 812       }
 813       else
 814         shiftcnt = 12;
 815       if ((lsb32 >> 10) & 0x3ff) {
 816         sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
 817         or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
 818         shiftcnt = 0;
 819       }
 820       else
 821         shiftcnt = 10;
 822       sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
 823     }
 824     else
 825       sllx(d, 32, d);
 826   }
 827   // Pad out the instruction sequence so it can be patched later.
 828   if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
 829                            addrlit.rtype() != relocInfo::runtime_call_type)) {
 830     while (pc() < (save_pc + (7 * BytesPerInstWord)))
 831       nop();
 832   }
 833 #else
 834   Assembler::sethi(addrlit.value(), d, addrlit.rspec());
 835 #endif
 836 }
 837 
 838 
 839 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
 840   internal_sethi(addrlit, d, false);
 841 }
 842 
 843 
 844 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
 845   internal_sethi(addrlit, d, true);
 846 }
 847 
 848 
 849 int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
 850 #ifdef _LP64
 851   if (worst_case)  return 7;
 852   intptr_t iaddr = (intptr_t) a;
 853   int msb32 = (int) (iaddr >> 32);
 854   int lsb32 = (int) (iaddr);
 855   int count;
 856   if (msb32 == 0 && lsb32 >= 0)
 857     count = 1;
 858   else if (msb32 == -1)
 859     count = 2;
 860   else {
 861     count = 2;
 862     if (msb32 & 0x3ff)
 863       count++;
 864     if (lsb32 & 0xFFFFFC00 ) {
 865       if ((lsb32 >> 20) & 0xfff)  count += 2;
 866       if ((lsb32 >> 10) & 0x3ff)  count += 2;
 867     }
 868   }
 869   return count;
 870 #else
 871   return 1;
 872 #endif
 873 }
 874 
 875 int MacroAssembler::worst_case_insts_for_set() {
 876   return insts_for_sethi(NULL, true) + 1;
 877 }
 878 
 879 
 880 // Keep in sync with MacroAssembler::insts_for_internal_set
 881 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
 882   intptr_t value = addrlit.value();
 883 
 884   if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
 885     // can optimize
 886     if (-4096 <= value && value <= 4095) {
 887       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
 888       return;
 889     }
 890     if (inv_hi22(hi22(value)) == value) {
 891       sethi(addrlit, d);
 892       return;
 893     }
 894   }
 895   assert_not_delayed((char*) "cannot put two instructions in delay slot");
 896   internal_sethi(addrlit, d, ForceRelocatable);
 897   if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
 898     add(d, addrlit.low10(), d, addrlit.rspec());
 899   }
 900 }
 901 
 902 // Keep in sync with MacroAssembler::internal_set
 903 int MacroAssembler::insts_for_internal_set(intptr_t value) {
 904   // can optimize
 905   if (-4096 <= value && value <= 4095) {
 906     return 1;
 907   }
 908   if (inv_hi22(hi22(value)) == value) {
 909     return insts_for_sethi((address) value);
 910   }
 911   int count = insts_for_sethi((address) value);
 912   AddressLiteral al(value);
 913   if (al.low10() != 0) {
 914     count++;
 915   }
 916   return count;
 917 }
 918 
 919 void MacroAssembler::set(const AddressLiteral& al, Register d) {
 920   internal_set(al, d, false);
 921 }
 922 
 923 void MacroAssembler::set(intptr_t value, Register d) {
 924   AddressLiteral al(value);
 925   internal_set(al, d, false);
 926 }
 927 
 928 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
 929   AddressLiteral al(addr, rspec);
 930   internal_set(al, d, false);
 931 }
 932 
 933 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
 934   internal_set(al, d, true);
 935 }
 936 
 937 void MacroAssembler::patchable_set(intptr_t value, Register d) {
 938   AddressLiteral al(value);
 939   internal_set(al, d, true);
 940 }
 941 
 942 
 943 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
 944   assert_not_delayed();
 945   v9_dep();
 946 
 947   int hi = (int)(value >> 32);
 948   int lo = (int)(value & ~0);
 949   int bits_33to2 = (int)((value >> 2) & ~0);
 950   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
 951   if (Assembler::is_simm13(lo) && value == lo) {
 952     or3(G0, lo, d);
 953   } else if (hi == 0) {
 954     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
 955     if (low10(lo) != 0)
 956       or3(d, low10(lo), d);
 957   }
 958   else if ((hi >> 2) == 0) {
 959     Assembler::sethi(bits_33to2, d);  // hardware version zero-extends to upper 32
 960     sllx(d, 2, d);
 961     if (low12(lo) != 0)
 962       or3(d, low12(lo), d);
 963   }
 964   else if (hi == -1) {
 965     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
 966     xor3(d, low10(lo) ^ ~low10(~0), d);
 967   }
 968   else if (lo == 0) {
 969     if (Assembler::is_simm13(hi)) {
 970       or3(G0, hi, d);
 971     } else {
 972       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
 973       if (low10(hi) != 0)
 974         or3(d, low10(hi), d);
 975     }
 976     sllx(d, 32, d);
 977   }
 978   else {
 979     Assembler::sethi(hi, tmp);
 980     Assembler::sethi(lo,   d); // macro assembler version sign-extends
 981     if (low10(hi) != 0)
 982       or3 (tmp, low10(hi), tmp);
 983     if (low10(lo) != 0)
 984       or3 (  d, low10(lo),   d);
 985     sllx(tmp, 32, tmp);
 986     or3 (d, tmp, d);
 987   }
 988 }
 989 
 990 int MacroAssembler::insts_for_set64(jlong value) {
 991   v9_dep();
 992 
 993   int hi = (int) (value >> 32);
 994   int lo = (int) (value & ~0);
 995   int count = 0;
 996 
 997   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
 998   if (Assembler::is_simm13(lo) && value == lo) {
 999     count++;
1000   } else if (hi == 0) {
1001     count++;
1002     if (low10(lo) != 0)
1003       count++;
1004   }
1005   else if (hi == -1) {
1006     count += 2;
1007   }
1008   else if (lo == 0) {
1009     if (Assembler::is_simm13(hi)) {
1010       count++;
1011     } else {
1012       count++;
1013       if (low10(hi) != 0)
1014         count++;
1015     }
1016     count++;
1017   }
1018   else {
1019     count += 2;
1020     if (low10(hi) != 0)
1021       count++;
1022     if (low10(lo) != 0)
1023       count++;
1024     count += 2;
1025   }
1026   return count;
1027 }
1028 
1029 // compute size in bytes of sparc frame, given
1030 // number of extraWords
1031 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
1032 
1033   int nWords = frame::memory_parameter_word_sp_offset;
1034 
1035   nWords += extraWords;
1036 
1037   if (nWords & 1) ++nWords; // round up to double-word
1038 
1039   return nWords * BytesPerWord;
1040 }
1041 
1042 
1043 // save_frame: given number of "extra" words in frame,
1044 // issue approp. save instruction (p 200, v8 manual)
1045 
1046 void MacroAssembler::save_frame(int extraWords) {
1047   int delta = -total_frame_size_in_bytes(extraWords);
1048   if (is_simm13(delta)) {
1049     save(SP, delta, SP);
1050   } else {
1051     set(delta, G3_scratch);
1052     save(SP, G3_scratch, SP);
1053   }
1054 }
1055 
1056 
1057 void MacroAssembler::save_frame_c1(int size_in_bytes) {
1058   if (is_simm13(-size_in_bytes)) {
1059     save(SP, -size_in_bytes, SP);
1060   } else {
1061     set(-size_in_bytes, G3_scratch);
1062     save(SP, G3_scratch, SP);
1063   }
1064 }
1065 
1066 
1067 void MacroAssembler::save_frame_and_mov(int extraWords,
1068                                         Register s1, Register d1,
1069                                         Register s2, Register d2) {
1070   assert_not_delayed();
1071 
1072   // The trick here is to use precisely the same memory word
1073   // that trap handlers also use to save the register.
1074   // This word cannot be used for any other purpose, but
1075   // it works fine to save the register's value, whether or not
1076   // an interrupt flushes register windows at any given moment!
1077   Address s1_addr;
1078   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
1079     s1_addr = s1->address_in_saved_window();
1080     st_ptr(s1, s1_addr);
1081   }
1082 
1083   Address s2_addr;
1084   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
1085     s2_addr = s2->address_in_saved_window();
1086     st_ptr(s2, s2_addr);
1087   }
1088 
1089   save_frame(extraWords);
1090 
1091   if (s1_addr.base() == SP) {
1092     ld_ptr(s1_addr.after_save(), d1);
1093   } else if (s1->is_valid()) {
1094     mov(s1->after_save(), d1);
1095   }
1096 
1097   if (s2_addr.base() == SP) {
1098     ld_ptr(s2_addr.after_save(), d2);
1099   } else if (s2->is_valid()) {
1100     mov(s2->after_save(), d2);
1101   }
1102 }
1103 
1104 
1105 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
1106   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
1107   int index = oop_recorder()->allocate_metadata_index(obj);
1108   RelocationHolder rspec = metadata_Relocation::spec(index);
1109   return AddressLiteral((address)obj, rspec);
1110 }
1111 
1112 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
1113   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
1114   int index = oop_recorder()->find_index(obj);
1115   RelocationHolder rspec = metadata_Relocation::spec(index);
1116   return AddressLiteral((address)obj, rspec);
1117 }
1118 
1119 
1120 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
1121   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1122   assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
1123   int oop_index = oop_recorder()->find_index(obj);
1124   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
1125 }
1126 
1127 void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
1128   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1129   int oop_index = oop_recorder()->find_index(obj);
1130   RelocationHolder rspec = oop_Relocation::spec(oop_index);
1131 
1132   assert_not_delayed();
1133   // Relocation with special format (see relocInfo_sparc.hpp).
1134   relocate(rspec, 1);
1135   // Assembler::sethi(0x3fffff, d);
1136   emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
1137   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1138   add(d, 0x3ff, d);
1139 
1140 }
1141 
1142 void  MacroAssembler::set_narrow_klass(Klass* k, Register d) {
1143   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1144   int klass_index = oop_recorder()->find_index(k);
1145   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
1146   narrowOop encoded_k = Klass::encode_klass(k);
1147 
1148   assert_not_delayed();
1149   // Relocation with special format (see relocInfo_sparc.hpp).
1150   relocate(rspec, 1);
1151   // Assembler::sethi(encoded_k, d);
1152   emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(encoded_k) );
1153   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1154   add(d, low10(encoded_k), d);
1155 
1156 }
1157 
1158 void MacroAssembler::align(int modulus) {
1159   while (offset() % modulus != 0) nop();
1160 }
1161 
1162 void RegistersForDebugging::print(outputStream* s) {
1163   FlagSetting fs(Debugging, true);
1164   int j;
1165   for (j = 0; j < 8; ++j) {
1166     if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
1167     else        { s->print( "fp = "   ); os::print_location(s, i[j]); }
1168   }
1169   s->cr();
1170 
1171   for (j = 0;  j < 8;  ++j) {
1172     s->print("l%d = ", j); os::print_location(s, l[j]);
1173   }
1174   s->cr();
1175 
1176   for (j = 0; j < 8; ++j) {
1177     if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
1178     else        { s->print( "sp = "   ); os::print_location(s, o[j]); }
1179   }
1180   s->cr();
1181 
1182   for (j = 0; j < 8; ++j) {
1183     s->print("g%d = ", j); os::print_location(s, g[j]);
1184   }
1185   s->cr();
1186 
1187   // print out floats with compression
1188   for (j = 0; j < 32; ) {
1189     jfloat val = f[j];
1190     int last = j;
1191     for ( ;  last+1 < 32;  ++last ) {
1192       char b1[1024], b2[1024];
1193       sprintf(b1, "%f", val);
1194       sprintf(b2, "%f", f[last+1]);
1195       if (strcmp(b1, b2))
1196         break;
1197     }
1198     s->print("f%d", j);
1199     if ( j != last )  s->print(" - f%d", last);
1200     s->print(" = %f", val);
1201     s->fill_to(25);
1202     s->print_cr(" (0x%x)", *(int*)&val);
1203     j = last + 1;
1204   }
1205   s->cr();
1206 
1207   // and doubles (evens only)
1208   for (j = 0; j < 32; ) {
1209     jdouble val = d[j];
1210     int last = j;
1211     for ( ;  last+1 < 32;  ++last ) {
1212       char b1[1024], b2[1024];
1213       sprintf(b1, "%f", val);
1214       sprintf(b2, "%f", d[last+1]);
1215       if (strcmp(b1, b2))
1216         break;
1217     }
1218     s->print("d%d", 2 * j);
1219     if ( j != last )  s->print(" - d%d", last);
1220     s->print(" = %f", val);
1221     s->fill_to(30);
1222     s->print("(0x%x)", *(int*)&val);
1223     s->fill_to(42);
1224     s->print_cr("(0x%x)", *(1 + (int*)&val));
1225     j = last + 1;
1226   }
1227   s->cr();
1228 }
1229 
1230 void RegistersForDebugging::save_registers(MacroAssembler* a) {
1231   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
1232   a->flushw();
1233   int i;
1234   for (i = 0; i < 8; ++i) {
1235     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
1236     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
1237     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
1238     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
1239   }
1240   for (i = 0;  i < 32; ++i) {
1241     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
1242   }
1243   for (i = 0; i < 64; i += 2) {
1244     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
1245   }
1246 }
1247 
1248 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
1249   for (int i = 1; i < 8;  ++i) {
1250     a->ld_ptr(r, g_offset(i), as_gRegister(i));
1251   }
1252   for (int j = 0; j < 32; ++j) {
1253     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
1254   }
1255   for (int k = 0; k < 64; k += 2) {
1256     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
1257   }
1258 }
1259 
1260 
1261 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1262 void MacroAssembler::push_fTOS() {
1263   // %%%%%% need to implement this
1264 }
1265 
1266 // pops double TOS element from CPU stack and pushes on FPU stack
1267 void MacroAssembler::pop_fTOS() {
1268   // %%%%%% need to implement this
1269 }
1270 
1271 void MacroAssembler::empty_FPU_stack() {
1272   // %%%%%% need to implement this
1273 }
1274 
1275 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
1276   // plausibility check for oops
1277   if (!VerifyOops) return;
1278 
1279   if (reg == G0)  return;       // always NULL, which is always an oop
1280 
1281   BLOCK_COMMENT("verify_oop {");
1282   char buffer[64];
1283 #ifdef COMPILER1
1284   if (CommentedAssembly) {
1285     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
1286     block_comment(buffer);
1287   }
1288 #endif
1289 
1290   const char* real_msg = NULL;
1291   {
1292     ResourceMark rm;
1293     stringStream ss;
1294     ss.print("%s at offset %d (%s:%d)", msg, offset(), file, line);
1295     real_msg = code_string(ss.as_string());
1296   }
1297 
1298   // Call indirectly to solve generation ordering problem
1299   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1300 
1301   // Make some space on stack above the current register window.
1302   // Enough to hold 8 64-bit registers.
1303   add(SP,-8*8,SP);
1304 
1305   // Save some 64-bit registers; a normal 'save' chops the heads off
1306   // of 64-bit longs in the 32-bit build.
1307   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1308   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1309   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
1310   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1311 
1312   // Size of set() should stay the same
1313   patchable_set((intptr_t)real_msg, O1);
1314   // Load address to call to into O7
1315   load_ptr_contents(a, O7);
1316   // Register call to verify_oop_subroutine
1317   callr(O7, G0);
1318   delayed()->nop();
1319   // recover frame size
1320   add(SP, 8*8,SP);
1321   BLOCK_COMMENT("} verify_oop");
1322 }
1323 
1324 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
1325   // plausibility check for oops
1326   if (!VerifyOops) return;
1327 
1328   const char* real_msg = NULL;
1329   {
1330     ResourceMark rm;
1331     stringStream ss;
1332     ss.print("%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
1333     real_msg = code_string(ss.as_string());
1334   }
1335 
1336   // Call indirectly to solve generation ordering problem
1337   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1338 
1339   // Make some space on stack above the current register window.
1340   // Enough to hold 8 64-bit registers.
1341   add(SP,-8*8,SP);
1342 
1343   // Save some 64-bit registers; a normal 'save' chops the heads off
1344   // of 64-bit longs in the 32-bit build.
1345   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1346   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1347   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
1348   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1349 
1350   // Size of set() should stay the same
1351   patchable_set((intptr_t)real_msg, O1);
1352   // Load address to call to into O7
1353   load_ptr_contents(a, O7);
1354   // Register call to verify_oop_subroutine
1355   callr(O7, G0);
1356   delayed()->nop();
1357   // recover frame size
1358   add(SP, 8*8,SP);
1359 }
1360 
1361 // side-door communication with signalHandler in os_solaris.cpp
1362 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
1363 
1364 // This macro is expanded just once; it creates shared code.  Contract:
1365 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
1366 // registers, including flags.  May not use a register 'save', as this blows
1367 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
1368 // call.
1369 void MacroAssembler::verify_oop_subroutine() {
1370   // Leaf call; no frame.
1371   Label succeed, fail, null_or_fail;
1372 
1373   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
1374   // O0 is now the oop to be checked.  O7 is the return address.
1375   Register O0_obj = O0;
1376 
1377   // Save some more registers for temps.
1378   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
1379   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
1380   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
1381   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
1382 
1383   // Save flags
1384   Register O5_save_flags = O5;
1385   rdccr( O5_save_flags );
1386 
1387   { // count number of verifies
1388     Register O2_adr   = O2;
1389     Register O3_accum = O3;
1390     inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
1391   }
1392 
1393   Register O2_mask = O2;
1394   Register O3_bits = O3;
1395   Register O4_temp = O4;
1396 
1397   // mark lower end of faulting range
1398   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
1399   _verify_oop_implicit_branch[0] = pc();
1400 
1401   // We can't check the mark oop because it could be in the process of
1402   // locking or unlocking while this is running.
1403   set(Universe::verify_oop_mask (), O2_mask);
1404   set(Universe::verify_oop_bits (), O3_bits);
1405 
1406   // assert((obj & oop_mask) == oop_bits);
1407   and3(O0_obj, O2_mask, O4_temp);
1408   cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
1409 
1410   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
1411     // the null_or_fail case is useless; must test for null separately
1412     br_null_short(O0_obj, pn, succeed);
1413   }
1414 
1415   // Check the Klass* of this object for being in the right area of memory.
1416   // Cannot do the load in the delay above slot in case O0 is null
1417   load_klass(O0_obj, O0_obj);
1418   // assert((klass != NULL)
1419   br_null_short(O0_obj, pn, fail);
1420 
1421   wrccr( O5_save_flags ); // Restore CCR's
1422 
1423   // mark upper end of faulting range
1424   _verify_oop_implicit_branch[1] = pc();
1425 
1426   //-----------------------
1427   // all tests pass
1428   bind(succeed);
1429 
1430   // Restore prior 64-bit registers
1431   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
1432   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
1433   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
1434   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
1435   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
1436   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
1437 
1438   retl();                       // Leaf return; restore prior O7 in delay slot
1439   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
1440 
1441   //-----------------------
1442   bind(null_or_fail);           // nulls are less common but OK
1443   br_null(O0_obj, false, pt, succeed);
1444   delayed()->wrccr( O5_save_flags ); // Restore CCR's
1445 
1446   //-----------------------
1447   // report failure:
1448   bind(fail);
1449   _verify_oop_implicit_branch[2] = pc();
1450 
1451   wrccr( O5_save_flags ); // Restore CCR's
1452 
1453   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1454 
1455   // stop_subroutine expects message pointer in I1.
1456   mov(I1, O1);
1457 
1458   // Restore prior 64-bit registers
1459   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
1460   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
1461   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
1462   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
1463   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
1464   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
1465 
1466   // factor long stop-sequence into subroutine to save space
1467   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1468 
1469   // call indirectly to solve generation ordering problem
1470   AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
1471   load_ptr_contents(al, O5);
1472   jmpl(O5, 0, O7);
1473   delayed()->nop();
1474 }
1475 
1476 
1477 void MacroAssembler::stop(const char* msg) {
1478   // save frame first to get O7 for return address
1479   // add one word to size in case struct is odd number of words long
1480   // It must be doubleword-aligned for storing doubles into it.
1481 
1482     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1483 
1484     // stop_subroutine expects message pointer in I1.
1485     // Size of set() should stay the same
1486     patchable_set((intptr_t)msg, O1);
1487 
1488     // factor long stop-sequence into subroutine to save space
1489     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1490 
1491     // call indirectly to solve generation ordering problem
1492     AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
1493     load_ptr_contents(a, O5);
1494     jmpl(O5, 0, O7);
1495     delayed()->nop();
1496 
1497     breakpoint_trap();   // make stop actually stop rather than writing
1498                          // unnoticeable results in the output files.
1499 
1500     // restore(); done in callee to save space!
1501 }
1502 
1503 
1504 void MacroAssembler::warn(const char* msg) {
1505   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1506   RegistersForDebugging::save_registers(this);
1507   mov(O0, L0);
1508   // Size of set() should stay the same
1509   patchable_set((intptr_t)msg, O0);
1510   call( CAST_FROM_FN_PTR(address, warning) );
1511   delayed()->nop();
1512 //  ret();
1513 //  delayed()->restore();
1514   RegistersForDebugging::restore_registers(this, L0);
1515   restore();
1516 }
1517 
1518 
1519 void MacroAssembler::untested(const char* what) {
1520   // We must be able to turn interactive prompting off
1521   // in order to run automated test scripts on the VM
1522   // Use the flag ShowMessageBoxOnError
1523 
1524   const char* b = NULL;
1525   {
1526     ResourceMark rm;
1527     stringStream ss;
1528     ss.print("untested: %s", what);
1529     b = code_string(ss.as_string());
1530   }
1531   if (ShowMessageBoxOnError) { STOP(b); }
1532   else                       { warn(b); }
1533 }
1534 
1535 
1536 void MacroAssembler::stop_subroutine() {
1537   RegistersForDebugging::save_registers(this);
1538 
1539   // for the sake of the debugger, stick a PC on the current frame
1540   // (this assumes that the caller has performed an extra "save")
1541   mov(I7, L7);
1542   add(O7, -7 * BytesPerInt, I7);
1543 
1544   save_frame(); // one more save to free up another O7 register
1545   mov(I0, O1); // addr of reg save area
1546 
1547   // We expect pointer to message in I1. Caller must set it up in O1
1548   mov(I1, O0); // get msg
1549   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
1550   delayed()->nop();
1551 
1552   restore();
1553 
1554   RegistersForDebugging::restore_registers(this, O0);
1555 
1556   save_frame(0);
1557   call(CAST_FROM_FN_PTR(address,breakpoint));
1558   delayed()->nop();
1559   restore();
1560 
1561   mov(L7, I7);
1562   retl();
1563   delayed()->restore(); // see stop above
1564 }
1565 
1566 
1567 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
1568   if ( ShowMessageBoxOnError ) {
1569     JavaThread* thread = JavaThread::current();
1570     JavaThreadState saved_state = thread->thread_state();
1571     thread->set_thread_state(_thread_in_vm);
1572       {
1573         // In order to get locks work, we need to fake a in_VM state
1574         ttyLocker ttyl;
1575         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
1576         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
1577         BytecodeCounter::print();
1578         }
1579         if (os::message_box(msg, "Execution stopped, print registers?"))
1580           regs->print(::tty);
1581       }
1582     BREAKPOINT;
1583       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
1584   }
1585   else {
1586      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
1587   }
1588   assert(false, "DEBUG MESSAGE: %s", msg);
1589 }
1590 
1591 
1592 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
1593   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
1594   Label no_extras;
1595   br( negative, true, pt, no_extras ); // if neg, clear reg
1596   delayed()->set(0, Rresult);          // annuled, so only if taken
1597   bind( no_extras );
1598 }
1599 
1600 
1601 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
1602 #ifdef _LP64
1603   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
1604 #else
1605   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
1606 #endif
1607   bclr(1, Rresult);
1608   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
1609 }
1610 
1611 
1612 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
1613   calc_frame_size(Rextra_words, Rresult);
1614   neg(Rresult);
1615   save(SP, Rresult, SP);
1616 }
1617 
1618 
1619 // ---------------------------------------------------------
1620 Assembler::RCondition cond2rcond(Assembler::Condition c) {
1621   switch (c) {
1622     /*case zero: */
1623     case Assembler::equal:        return Assembler::rc_z;
1624     case Assembler::lessEqual:    return Assembler::rc_lez;
1625     case Assembler::less:         return Assembler::rc_lz;
1626     /*case notZero:*/
1627     case Assembler::notEqual:     return Assembler::rc_nz;
1628     case Assembler::greater:      return Assembler::rc_gz;
1629     case Assembler::greaterEqual: return Assembler::rc_gez;
1630   }
1631   ShouldNotReachHere();
1632   return Assembler::rc_z;
1633 }
1634 
1635 // compares (32 bit) register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
1636 void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
1637   tst(s1);
1638   br (c, a, p, L);
1639 }
1640 
1641 // Compares a pointer register with zero and branches on null.
1642 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
1643 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
1644   assert_not_delayed();
1645 #ifdef _LP64
1646   bpr( rc_z, a, p, s1, L );
1647 #else
1648   tst(s1);
1649   br ( zero, a, p, L );
1650 #endif
1651 }
1652 
1653 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
1654   assert_not_delayed();
1655 #ifdef _LP64
1656   bpr( rc_nz, a, p, s1, L );
1657 #else
1658   tst(s1);
1659   br ( notZero, a, p, L );
1660 #endif
1661 }
1662 
1663 // Compare registers and branch with nop in delay slot or cbcond without delay slot.
1664 
1665 // Compare integer (32 bit) values (icc only).
1666 void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
1667                                       Predict p, Label& L) {
1668   assert_not_delayed();
1669   if (use_cbcond(L)) {
1670     Assembler::cbcond(c, icc, s1, s2, L);
1671   } else {
1672     cmp(s1, s2);
1673     br(c, false, p, L);
1674     delayed()->nop();
1675   }
1676 }
1677 
1678 // Compare integer (32 bit) values (icc only).
1679 void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
1680                                       Predict p, Label& L) {
1681   assert_not_delayed();
1682   if (is_simm(simm13a,5) && use_cbcond(L)) {
1683     Assembler::cbcond(c, icc, s1, simm13a, L);
1684   } else {
1685     cmp(s1, simm13a);
1686     br(c, false, p, L);
1687     delayed()->nop();
1688   }
1689 }
1690 
1691 // Branch that tests xcc in LP64 and icc in !LP64
1692 void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
1693                                        Predict p, Label& L) {
1694   assert_not_delayed();
1695   if (use_cbcond(L)) {
1696     Assembler::cbcond(c, ptr_cc, s1, s2, L);
1697   } else {
1698     cmp(s1, s2);
1699     brx(c, false, p, L);
1700     delayed()->nop();
1701   }
1702 }
1703 
1704 // Branch that tests xcc in LP64 and icc in !LP64
1705 void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
1706                                        Predict p, Label& L) {
1707   assert_not_delayed();
1708   if (is_simm(simm13a,5) && use_cbcond(L)) {
1709     Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
1710   } else {
1711     cmp(s1, simm13a);
1712     brx(c, false, p, L);
1713     delayed()->nop();
1714   }
1715 }
1716 
1717 // Short branch version for compares a pointer with zero.
1718 
1719 void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
1720   assert_not_delayed();
1721   if (use_cbcond(L)) {
1722     Assembler::cbcond(zero, ptr_cc, s1, 0, L);
1723     return;
1724   }
1725   br_null(s1, false, p, L);
1726   delayed()->nop();
1727 }
1728 
1729 void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
1730   assert_not_delayed();
1731   if (use_cbcond(L)) {
1732     Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
1733     return;
1734   }
1735   br_notnull(s1, false, p, L);
1736   delayed()->nop();
1737 }
1738 
1739 // Unconditional short branch
1740 void MacroAssembler::ba_short(Label& L) {
1741   if (use_cbcond(L)) {
1742     Assembler::cbcond(equal, icc, G0, G0, L);
1743     return;
1744   }
1745   br(always, false, pt, L);
1746   delayed()->nop();
1747 }
1748 
1749 // instruction sequences factored across compiler & interpreter
1750 
1751 
1752 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
1753                            Register Rb_hi, Register Rb_low,
1754                            Register Rresult) {
1755 
1756   Label check_low_parts, done;
1757 
1758   cmp(Ra_hi, Rb_hi );  // compare hi parts
1759   br(equal, true, pt, check_low_parts);
1760   delayed()->cmp(Ra_low, Rb_low); // test low parts
1761 
1762   // And, with an unsigned comparison, it does not matter if the numbers
1763   // are negative or not.
1764   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
1765   // The second one is bigger (unsignedly).
1766 
1767   // Other notes:  The first move in each triplet can be unconditional
1768   // (and therefore probably prefetchable).
1769   // And the equals case for the high part does not need testing,
1770   // since that triplet is reached only after finding the high halves differ.
1771 
1772   mov(-1, Rresult);
1773   ba(done);
1774   delayed()->movcc(greater, false, icc,  1, Rresult);
1775 
1776   bind(check_low_parts);
1777 
1778   mov(                               -1, Rresult);
1779   movcc(equal,           false, icc,  0, Rresult);
1780   movcc(greaterUnsigned, false, icc,  1, Rresult);
1781 
1782   bind(done);
1783 }
1784 
1785 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
1786   subcc(  G0, Rlow, Rlow );
1787   subc(   G0, Rhi,  Rhi  );
1788 }
1789 
1790 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
1791                            Register Rcount,
1792                            Register Rout_high, Register Rout_low,
1793                            Register Rtemp ) {
1794 
1795 
1796   Register Ralt_count = Rtemp;
1797   Register Rxfer_bits = Rtemp;
1798 
1799   assert( Ralt_count != Rin_high
1800       &&  Ralt_count != Rin_low
1801       &&  Ralt_count != Rcount
1802       &&  Rxfer_bits != Rin_low
1803       &&  Rxfer_bits != Rin_high
1804       &&  Rxfer_bits != Rcount
1805       &&  Rxfer_bits != Rout_low
1806       &&  Rout_low   != Rin_high,
1807         "register alias checks");
1808 
1809   Label big_shift, done;
1810 
1811   // This code can be optimized to use the 64 bit shifts in V9.
1812   // Here we use the 32 bit shifts.
1813 
1814   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
1815   subcc(Rcount,   31, Ralt_count);
1816   br(greater, true, pn, big_shift);
1817   delayed()->dec(Ralt_count);
1818 
1819   // shift < 32 bits, Ralt_count = Rcount-31
1820 
1821   // We get the transfer bits by shifting right by 32-count the low
1822   // register. This is done by shifting right by 31-count and then by one
1823   // more to take care of the special (rare) case where count is zero
1824   // (shifting by 32 would not work).
1825 
1826   neg(Ralt_count);
1827 
1828   // The order of the next two instructions is critical in the case where
1829   // Rin and Rout are the same and should not be reversed.
1830 
1831   srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
1832   if (Rcount != Rout_low) {
1833     sll(Rin_low, Rcount, Rout_low); // low half
1834   }
1835   sll(Rin_high, Rcount, Rout_high);
1836   if (Rcount == Rout_low) {
1837     sll(Rin_low, Rcount, Rout_low); // low half
1838   }
1839   srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
1840   ba(done);
1841   delayed()->or3(Rout_high, Rxfer_bits, Rout_high);   // new hi value: or in shifted old hi part and xfer from low
1842 
1843   // shift >= 32 bits, Ralt_count = Rcount-32
1844   bind(big_shift);
1845   sll(Rin_low, Ralt_count, Rout_high  );
1846   clr(Rout_low);
1847 
1848   bind(done);
1849 }
1850 
1851 
1852 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
1853                            Register Rcount,
1854                            Register Rout_high, Register Rout_low,
1855                            Register Rtemp ) {
1856 
1857   Register Ralt_count = Rtemp;
1858   Register Rxfer_bits = Rtemp;
1859 
1860   assert( Ralt_count != Rin_high
1861       &&  Ralt_count != Rin_low
1862       &&  Ralt_count != Rcount
1863       &&  Rxfer_bits != Rin_low
1864       &&  Rxfer_bits != Rin_high
1865       &&  Rxfer_bits != Rcount
1866       &&  Rxfer_bits != Rout_high
1867       &&  Rout_high  != Rin_low,
1868         "register alias checks");
1869 
1870   Label big_shift, done;
1871 
1872   // This code can be optimized to use the 64 bit shifts in V9.
1873   // Here we use the 32 bit shifts.
1874 
1875   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
1876   subcc(Rcount,   31, Ralt_count);
1877   br(greater, true, pn, big_shift);
1878   delayed()->dec(Ralt_count);
1879 
1880   // shift < 32 bits, Ralt_count = Rcount-31
1881 
1882   // We get the transfer bits by shifting left by 32-count the high
1883   // register. This is done by shifting left by 31-count and then by one
1884   // more to take care of the special (rare) case where count is zero
1885   // (shifting by 32 would not work).
1886 
1887   neg(Ralt_count);
1888   if (Rcount != Rout_low) {
1889     srl(Rin_low, Rcount, Rout_low);
1890   }
1891 
1892   // The order of the next two instructions is critical in the case where
1893   // Rin and Rout are the same and should not be reversed.
1894 
1895   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
1896   sra(Rin_high,     Rcount, Rout_high ); // high half
1897   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
1898   if (Rcount == Rout_low) {
1899     srl(Rin_low, Rcount, Rout_low);
1900   }
1901   ba(done);
1902   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
1903 
1904   // shift >= 32 bits, Ralt_count = Rcount-32
1905   bind(big_shift);
1906 
1907   sra(Rin_high, Ralt_count, Rout_low);
1908   sra(Rin_high,         31, Rout_high); // sign into hi
1909 
1910   bind( done );
1911 }
1912 
1913 
1914 
1915 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
1916                             Register Rcount,
1917                             Register Rout_high, Register Rout_low,
1918                             Register Rtemp ) {
1919 
1920   Register Ralt_count = Rtemp;
1921   Register Rxfer_bits = Rtemp;
1922 
1923   assert( Ralt_count != Rin_high
1924       &&  Ralt_count != Rin_low
1925       &&  Ralt_count != Rcount
1926       &&  Rxfer_bits != Rin_low
1927       &&  Rxfer_bits != Rin_high
1928       &&  Rxfer_bits != Rcount
1929       &&  Rxfer_bits != Rout_high
1930       &&  Rout_high  != Rin_low,
1931         "register alias checks");
1932 
1933   Label big_shift, done;
1934 
1935   // This code can be optimized to use the 64 bit shifts in V9.
1936   // Here we use the 32 bit shifts.
1937 
1938   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
1939   subcc(Rcount,   31, Ralt_count);
1940   br(greater, true, pn, big_shift);
1941   delayed()->dec(Ralt_count);
1942 
1943   // shift < 32 bits, Ralt_count = Rcount-31
1944 
1945   // We get the transfer bits by shifting left by 32-count the high
1946   // register. This is done by shifting left by 31-count and then by one
1947   // more to take care of the special (rare) case where count is zero
1948   // (shifting by 32 would not work).
1949 
1950   neg(Ralt_count);
1951   if (Rcount != Rout_low) {
1952     srl(Rin_low, Rcount, Rout_low);
1953   }
1954 
1955   // The order of the next two instructions is critical in the case where
1956   // Rin and Rout are the same and should not be reversed.
1957 
1958   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
1959   srl(Rin_high,     Rcount, Rout_high ); // high half
1960   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
1961   if (Rcount == Rout_low) {
1962     srl(Rin_low, Rcount, Rout_low);
1963   }
1964   ba(done);
1965   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
1966 
1967   // shift >= 32 bits, Ralt_count = Rcount-32
1968   bind(big_shift);
1969 
1970   srl(Rin_high, Ralt_count, Rout_low);
1971   clr(Rout_high);
1972 
1973   bind( done );
1974 }
1975 
1976 #ifdef _LP64
1977 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
1978   cmp(Ra, Rb);
1979   mov(-1, Rresult);
1980   movcc(equal,   false, xcc,  0, Rresult);
1981   movcc(greater, false, xcc,  1, Rresult);
1982 }
1983 #endif
1984 
1985 
1986 void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
1987   switch (size_in_bytes) {
1988   case  8:  ld_long(src, dst); break;
1989   case  4:  ld(     src, dst); break;
1990   case  2:  is_signed ? ldsh(src, dst) : lduh(src, dst); break;
1991   case  1:  is_signed ? ldsb(src, dst) : ldub(src, dst); break;
1992   default:  ShouldNotReachHere();
1993   }
1994 }
1995 
1996 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
1997   switch (size_in_bytes) {
1998   case  8:  st_long(src, dst); break;
1999   case  4:  st(     src, dst); break;
2000   case  2:  sth(    src, dst); break;
2001   case  1:  stb(    src, dst); break;
2002   default:  ShouldNotReachHere();
2003   }
2004 }
2005 
2006 
2007 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
2008                                 FloatRegister Fa, FloatRegister Fb,
2009                                 Register Rresult) {
2010   if (is_float) {
2011     fcmp(FloatRegisterImpl::S, fcc0, Fa, Fb);
2012   } else {
2013     fcmp(FloatRegisterImpl::D, fcc0, Fa, Fb);
2014   }
2015 
2016   if (unordered_result == 1) {
2017     mov(                                    -1, Rresult);
2018     movcc(f_equal,              true, fcc0,  0, Rresult);
2019     movcc(f_unorderedOrGreater, true, fcc0,  1, Rresult);
2020   } else {
2021     mov(                                    -1, Rresult);
2022     movcc(f_equal,              true, fcc0,  0, Rresult);
2023     movcc(f_greater,            true, fcc0,  1, Rresult);
2024   }
2025 }
2026 
2027 
2028 void MacroAssembler::save_all_globals_into_locals() {
2029   mov(G1,L1);
2030   mov(G2,L2);
2031   mov(G3,L3);
2032   mov(G4,L4);
2033   mov(G5,L5);
2034   mov(G6,L6);
2035   mov(G7,L7);
2036 }
2037 
2038 void MacroAssembler::restore_globals_from_locals() {
2039   mov(L1,G1);
2040   mov(L2,G2);
2041   mov(L3,G3);
2042   mov(L4,G4);
2043   mov(L5,G5);
2044   mov(L6,G6);
2045   mov(L7,G7);
2046 }
2047 
2048 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
2049                                                       Register tmp,
2050                                                       int offset) {
2051   intptr_t value = *delayed_value_addr;
2052   if (value != 0)
2053     return RegisterOrConstant(value + offset);
2054 
2055   // load indirectly to solve generation ordering problem
2056   AddressLiteral a(delayed_value_addr);
2057   load_ptr_contents(a, tmp);
2058 
2059 #ifdef ASSERT
2060   tst(tmp);
2061   breakpoint_trap(zero, xcc);
2062 #endif
2063 
2064   if (offset != 0)
2065     add(tmp, offset, tmp);
2066 
2067   return RegisterOrConstant(tmp);
2068 }
2069 
2070 
2071 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2072   assert(d.register_or_noreg() != G0, "lost side effect");
2073   if ((s2.is_constant() && s2.as_constant() == 0) ||
2074       (s2.is_register() && s2.as_register() == G0)) {
2075     // Do nothing, just move value.
2076     if (s1.is_register()) {
2077       if (d.is_constant())  d = temp;
2078       mov(s1.as_register(), d.as_register());
2079       return d;
2080     } else {
2081       return s1;
2082     }
2083   }
2084 
2085   if (s1.is_register()) {
2086     assert_different_registers(s1.as_register(), temp);
2087     if (d.is_constant())  d = temp;
2088     andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2089     return d;
2090   } else {
2091     if (s2.is_register()) {
2092       assert_different_registers(s2.as_register(), temp);
2093       if (d.is_constant())  d = temp;
2094       set(s1.as_constant(), temp);
2095       andn(temp, s2.as_register(), d.as_register());
2096       return d;
2097     } else {
2098       intptr_t res = s1.as_constant() & ~s2.as_constant();
2099       return res;
2100     }
2101   }
2102 }
2103 
2104 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2105   assert(d.register_or_noreg() != G0, "lost side effect");
2106   if ((s2.is_constant() && s2.as_constant() == 0) ||
2107       (s2.is_register() && s2.as_register() == G0)) {
2108     // Do nothing, just move value.
2109     if (s1.is_register()) {
2110       if (d.is_constant())  d = temp;
2111       mov(s1.as_register(), d.as_register());
2112       return d;
2113     } else {
2114       return s1;
2115     }
2116   }
2117 
2118   if (s1.is_register()) {
2119     assert_different_registers(s1.as_register(), temp);
2120     if (d.is_constant())  d = temp;
2121     add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2122     return d;
2123   } else {
2124     if (s2.is_register()) {
2125       assert_different_registers(s2.as_register(), temp);
2126       if (d.is_constant())  d = temp;
2127       add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
2128       return d;
2129     } else {
2130       intptr_t res = s1.as_constant() + s2.as_constant();
2131       return res;
2132     }
2133   }
2134 }
2135 
2136 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2137   assert(d.register_or_noreg() != G0, "lost side effect");
2138   if (!is_simm13(s2.constant_or_zero()))
2139     s2 = (s2.as_constant() & 0xFF);
2140   if ((s2.is_constant() && s2.as_constant() == 0) ||
2141       (s2.is_register() && s2.as_register() == G0)) {
2142     // Do nothing, just move value.
2143     if (s1.is_register()) {
2144       if (d.is_constant())  d = temp;
2145       mov(s1.as_register(), d.as_register());
2146       return d;
2147     } else {
2148       return s1;
2149     }
2150   }
2151 
2152   if (s1.is_register()) {
2153     assert_different_registers(s1.as_register(), temp);
2154     if (d.is_constant())  d = temp;
2155     sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2156     return d;
2157   } else {
2158     if (s2.is_register()) {
2159       assert_different_registers(s2.as_register(), temp);
2160       if (d.is_constant())  d = temp;
2161       set(s1.as_constant(), temp);
2162       sll_ptr(temp, s2.as_register(), d.as_register());
2163       return d;
2164     } else {
2165       intptr_t res = s1.as_constant() << s2.as_constant();
2166       return res;
2167     }
2168   }
2169 }
2170 
2171 
2172 // Look up the method for a megamorphic invokeinterface call.
2173 // The target method is determined by <intf_klass, itable_index>.
2174 // The receiver klass is in recv_klass.
2175 // On success, the result will be in method_result, and execution falls through.
2176 // On failure, execution transfers to the given label.
2177 void MacroAssembler::lookup_interface_method(Register recv_klass,
2178                                              Register intf_klass,
2179                                              RegisterOrConstant itable_index,
2180                                              Register method_result,
2181                                              Register scan_temp,
2182                                              Register sethi_temp,
2183                                              Label& L_no_such_interface) {
2184   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
2185   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
2186          "caller must use same register for non-constant itable index as for method");
2187 
2188   Label L_no_such_interface_restore;
2189   bool did_save = false;
2190   if (scan_temp == noreg || sethi_temp == noreg) {
2191     Register recv_2 = recv_klass->is_global() ? recv_klass : L0;
2192     Register intf_2 = intf_klass->is_global() ? intf_klass : L1;
2193     assert(method_result->is_global(), "must be able to return value");
2194     scan_temp  = L2;
2195     sethi_temp = L3;
2196     save_frame_and_mov(0, recv_klass, recv_2, intf_klass, intf_2);
2197     recv_klass = recv_2;
2198     intf_klass = intf_2;
2199     did_save = true;
2200   }
2201 
2202   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
2203   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
2204   int scan_step   = itableOffsetEntry::size() * wordSize;
2205   int vte_size    = vtableEntry::size() * wordSize;
2206 
2207   lduw(recv_klass, InstanceKlass::vtable_length_offset() * wordSize, scan_temp);
2208   // %%% We should store the aligned, prescaled offset in the klassoop.
2209   // Then the next several instructions would fold away.
2210 
2211   int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
2212   int itb_offset = vtable_base;
2213   if (round_to_unit != 0) {
2214     // hoist first instruction of round_to(scan_temp, BytesPerLong):
2215     itb_offset += round_to_unit - wordSize;
2216   }
2217   int itb_scale = exact_log2(vtableEntry::size() * wordSize);
2218   sll(scan_temp, itb_scale,  scan_temp);
2219   add(scan_temp, itb_offset, scan_temp);
2220   if (round_to_unit != 0) {
2221     // Round up to align_object_offset boundary
2222     // see code for InstanceKlass::start_of_itable!
2223     // Was: round_to(scan_temp, BytesPerLong);
2224     // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
2225     and3(scan_temp, -round_to_unit, scan_temp);
2226   }
2227   add(recv_klass, scan_temp, scan_temp);
2228 
2229   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
2230   RegisterOrConstant itable_offset = itable_index;
2231   itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
2232   itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
2233   add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
2234 
2235   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
2236   //   if (scan->interface() == intf) {
2237   //     result = (klass + scan->offset() + itable_index);
2238   //   }
2239   // }
2240   Label L_search, L_found_method;
2241 
2242   for (int peel = 1; peel >= 0; peel--) {
2243     // %%%% Could load both offset and interface in one ldx, if they were
2244     // in the opposite order.  This would save a load.
2245     ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
2246 
2247     // Check that this entry is non-null.  A null entry means that
2248     // the receiver class doesn't implement the interface, and wasn't the
2249     // same as when the caller was compiled.
2250     bpr(Assembler::rc_z, false, Assembler::pn, method_result, did_save ? L_no_such_interface_restore : L_no_such_interface);
2251     delayed()->cmp(method_result, intf_klass);
2252 
2253     if (peel) {
2254       brx(Assembler::equal,    false, Assembler::pt, L_found_method);
2255     } else {
2256       brx(Assembler::notEqual, false, Assembler::pn, L_search);
2257       // (invert the test to fall through to found_method...)
2258     }
2259     delayed()->add(scan_temp, scan_step, scan_temp);
2260 
2261     if (!peel)  break;
2262 
2263     bind(L_search);
2264   }
2265 
2266   bind(L_found_method);
2267 
2268   // Got a hit.
2269   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
2270   // scan_temp[-scan_step] points to the vtable offset we need
2271   ito_offset -= scan_step;
2272   lduw(scan_temp, ito_offset, scan_temp);
2273   ld_ptr(recv_klass, scan_temp, method_result);
2274 
2275   if (did_save) {
2276     Label L_done;
2277     ba(L_done);
2278     delayed()->restore();
2279 
2280     bind(L_no_such_interface_restore);
2281     ba(L_no_such_interface);
2282     delayed()->restore();
2283 
2284     bind(L_done);
2285   }
2286 }
2287 
2288 
2289 // virtual method calling
2290 void MacroAssembler::lookup_virtual_method(Register recv_klass,
2291                                            RegisterOrConstant vtable_index,
2292                                            Register method_result) {
2293   assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
2294   Register sethi_temp = method_result;
2295   const int base = (InstanceKlass::vtable_start_offset() * wordSize +
2296                     // method pointer offset within the vtable entry:
2297                     vtableEntry::method_offset_in_bytes());
2298   RegisterOrConstant vtable_offset = vtable_index;
2299   // Each of the following three lines potentially generates an instruction.
2300   // But the total number of address formation instructions will always be
2301   // at most two, and will often be zero.  In any case, it will be optimal.
2302   // If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
2303   // If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
2304   vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size() * wordSize), vtable_offset);
2305   vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
2306   Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
2307   ld_ptr(vtable_entry_addr, method_result);
2308 }
2309 
2310 
2311 void MacroAssembler::check_klass_subtype(Register sub_klass,
2312                                          Register super_klass,
2313                                          Register temp_reg,
2314                                          Register temp2_reg,
2315                                          Label& L_success) {
2316   Register sub_2 = sub_klass;
2317   Register sup_2 = super_klass;
2318   if (!sub_2->is_global())  sub_2 = L0;
2319   if (!sup_2->is_global())  sup_2 = L1;
2320   bool did_save = false;
2321   if (temp_reg == noreg || temp2_reg == noreg) {
2322     temp_reg = L2;
2323     temp2_reg = L3;
2324     save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
2325     sub_klass = sub_2;
2326     super_klass = sup_2;
2327     did_save = true;
2328   }
2329   Label L_failure, L_pop_to_failure, L_pop_to_success;
2330   check_klass_subtype_fast_path(sub_klass, super_klass,
2331                                 temp_reg, temp2_reg,
2332                                 (did_save ? &L_pop_to_success : &L_success),
2333                                 (did_save ? &L_pop_to_failure : &L_failure), NULL);
2334 
2335   if (!did_save)
2336     save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
2337   check_klass_subtype_slow_path(sub_2, sup_2,
2338                                 L2, L3, L4, L5,
2339                                 NULL, &L_pop_to_failure);
2340 
2341   // on success:
2342   bind(L_pop_to_success);
2343   restore();
2344   ba_short(L_success);
2345 
2346   // on failure:
2347   bind(L_pop_to_failure);
2348   restore();
2349   bind(L_failure);
2350 }
2351 
2352 
2353 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
2354                                                    Register super_klass,
2355                                                    Register temp_reg,
2356                                                    Register temp2_reg,
2357                                                    Label* L_success,
2358                                                    Label* L_failure,
2359                                                    Label* L_slow_path,
2360                                         RegisterOrConstant super_check_offset) {
2361   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
2362   int sco_offset = in_bytes(Klass::super_check_offset_offset());
2363 
2364   bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
2365   bool need_slow_path = (must_load_sco ||
2366                          super_check_offset.constant_or_zero() == sco_offset);
2367 
2368   assert_different_registers(sub_klass, super_klass, temp_reg);
2369   if (super_check_offset.is_register()) {
2370     assert_different_registers(sub_klass, super_klass, temp_reg,
2371                                super_check_offset.as_register());
2372   } else if (must_load_sco) {
2373     assert(temp2_reg != noreg, "supply either a temp or a register offset");
2374   }
2375 
2376   Label L_fallthrough;
2377   int label_nulls = 0;
2378   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
2379   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
2380   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
2381   assert(label_nulls <= 1 ||
2382          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
2383          "at most one NULL in the batch, usually");
2384 
2385   // If the pointers are equal, we are done (e.g., String[] elements).
2386   // This self-check enables sharing of secondary supertype arrays among
2387   // non-primary types such as array-of-interface.  Otherwise, each such
2388   // type would need its own customized SSA.
2389   // We move this check to the front of the fast path because many
2390   // type checks are in fact trivially successful in this manner,
2391   // so we get a nicely predicted branch right at the start of the check.
2392   cmp(super_klass, sub_klass);
2393   brx(Assembler::equal, false, Assembler::pn, *L_success);
2394   delayed()->nop();
2395 
2396   // Check the supertype display:
2397   if (must_load_sco) {
2398     // The super check offset is always positive...
2399     lduw(super_klass, sco_offset, temp2_reg);
2400     super_check_offset = RegisterOrConstant(temp2_reg);
2401     // super_check_offset is register.
2402     assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
2403   }
2404   ld_ptr(sub_klass, super_check_offset, temp_reg);
2405   cmp(super_klass, temp_reg);
2406 
2407   // This check has worked decisively for primary supers.
2408   // Secondary supers are sought in the super_cache ('super_cache_addr').
2409   // (Secondary supers are interfaces and very deeply nested subtypes.)
2410   // This works in the same check above because of a tricky aliasing
2411   // between the super_cache and the primary super display elements.
2412   // (The 'super_check_addr' can address either, as the case requires.)
2413   // Note that the cache is updated below if it does not help us find
2414   // what we need immediately.
2415   // So if it was a primary super, we can just fail immediately.
2416   // Otherwise, it's the slow path for us (no success at this point).
2417 
2418   // Hacked ba(), which may only be used just before L_fallthrough.
2419 #define FINAL_JUMP(label)            \
2420   if (&(label) != &L_fallthrough) {  \
2421     ba(label);  delayed()->nop();    \
2422   }
2423 
2424   if (super_check_offset.is_register()) {
2425     brx(Assembler::equal, false, Assembler::pn, *L_success);
2426     delayed()->cmp(super_check_offset.as_register(), sc_offset);
2427 
2428     if (L_failure == &L_fallthrough) {
2429       brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
2430       delayed()->nop();
2431     } else {
2432       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
2433       delayed()->nop();
2434       FINAL_JUMP(*L_slow_path);
2435     }
2436   } else if (super_check_offset.as_constant() == sc_offset) {
2437     // Need a slow path; fast failure is impossible.
2438     if (L_slow_path == &L_fallthrough) {
2439       brx(Assembler::equal, false, Assembler::pt, *L_success);
2440       delayed()->nop();
2441     } else {
2442       brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
2443       delayed()->nop();
2444       FINAL_JUMP(*L_success);
2445     }
2446   } else {
2447     // No slow path; it's a fast decision.
2448     if (L_failure == &L_fallthrough) {
2449       brx(Assembler::equal, false, Assembler::pt, *L_success);
2450       delayed()->nop();
2451     } else {
2452       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
2453       delayed()->nop();
2454       FINAL_JUMP(*L_success);
2455     }
2456   }
2457 
2458   bind(L_fallthrough);
2459 
2460 #undef FINAL_JUMP
2461 }
2462 
2463 
2464 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
2465                                                    Register super_klass,
2466                                                    Register count_temp,
2467                                                    Register scan_temp,
2468                                                    Register scratch_reg,
2469                                                    Register coop_reg,
2470                                                    Label* L_success,
2471                                                    Label* L_failure) {
2472   assert_different_registers(sub_klass, super_klass,
2473                              count_temp, scan_temp, scratch_reg, coop_reg);
2474 
2475   Label L_fallthrough, L_loop;
2476   int label_nulls = 0;
2477   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
2478   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
2479   assert(label_nulls <= 1, "at most one NULL in the batch");
2480 
2481   // a couple of useful fields in sub_klass:
2482   int ss_offset = in_bytes(Klass::secondary_supers_offset());
2483   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
2484 
2485   // Do a linear scan of the secondary super-klass chain.
2486   // This code is rarely used, so simplicity is a virtue here.
2487 
2488 #ifndef PRODUCT
2489   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
2490   inc_counter((address) pst_counter, count_temp, scan_temp);
2491 #endif
2492 
2493   // We will consult the secondary-super array.
2494   ld_ptr(sub_klass, ss_offset, scan_temp);
2495 
2496   Register search_key = super_klass;
2497 
2498   // Load the array length.  (Positive movl does right thing on LP64.)
2499   lduw(scan_temp, Array<Klass*>::length_offset_in_bytes(), count_temp);
2500 
2501   // Check for empty secondary super list
2502   tst(count_temp);
2503 
2504   // In the array of super classes elements are pointer sized.
2505   int element_size = wordSize;
2506 
2507   // Top of search loop
2508   bind(L_loop);
2509   br(Assembler::equal, false, Assembler::pn, *L_failure);
2510   delayed()->add(scan_temp, element_size, scan_temp);
2511 
2512   // Skip the array header in all array accesses.
2513   int elem_offset = Array<Klass*>::base_offset_in_bytes();
2514   elem_offset -= element_size;   // the scan pointer was pre-incremented also
2515 
2516   // Load next super to check
2517     ld_ptr( scan_temp, elem_offset, scratch_reg );
2518 
2519   // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
2520   cmp(scratch_reg, search_key);
2521 
2522   // A miss means we are NOT a subtype and need to keep looping
2523   brx(Assembler::notEqual, false, Assembler::pn, L_loop);
2524   delayed()->deccc(count_temp); // decrement trip counter in delay slot
2525 
2526   // Success.  Cache the super we found and proceed in triumph.
2527   st_ptr(super_klass, sub_klass, sc_offset);
2528 
2529   if (L_success != &L_fallthrough) {
2530     ba(*L_success);
2531     delayed()->nop();
2532   }
2533 
2534   bind(L_fallthrough);
2535 }
2536 
2537 
2538 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
2539                                                    Register temp_reg,
2540                                                    int extra_slot_offset) {
2541   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
2542   int stackElementSize = Interpreter::stackElementSize;
2543   int offset = extra_slot_offset * stackElementSize;
2544   if (arg_slot.is_constant()) {
2545     offset += arg_slot.as_constant() * stackElementSize;
2546     return offset;
2547   } else {
2548     assert(temp_reg != noreg, "must specify");
2549     sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
2550     if (offset != 0)
2551       add(temp_reg, offset, temp_reg);
2552     return temp_reg;
2553   }
2554 }
2555 
2556 
2557 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
2558                                          Register temp_reg,
2559                                          int extra_slot_offset) {
2560   return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
2561 }
2562 
2563 
2564 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
2565                                           Register temp_reg,
2566                                           Label& done, Label* slow_case,
2567                                           BiasedLockingCounters* counters) {
2568   assert(UseBiasedLocking, "why call this otherwise?");
2569 
2570   if (PrintBiasedLockingStatistics) {
2571     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
2572     if (counters == NULL)
2573       counters = BiasedLocking::counters();
2574   }
2575 
2576   Label cas_label;
2577 
2578   // Biased locking
2579   // See whether the lock is currently biased toward our thread and
2580   // whether the epoch is still valid
2581   // Note that the runtime guarantees sufficient alignment of JavaThread
2582   // pointers to allow age to be placed into low bits
2583   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
2584   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
2585   cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
2586 
2587   load_klass(obj_reg, temp_reg);
2588   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
2589   or3(G2_thread, temp_reg, temp_reg);
2590   xor3(mark_reg, temp_reg, temp_reg);
2591   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
2592   if (counters != NULL) {
2593     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
2594     // Reload mark_reg as we may need it later
2595     ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
2596   }
2597   brx(Assembler::equal, true, Assembler::pt, done);
2598   delayed()->nop();
2599 
2600   Label try_revoke_bias;
2601   Label try_rebias;
2602   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
2603   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2604 
2605   // At this point we know that the header has the bias pattern and
2606   // that we are not the bias owner in the current epoch. We need to
2607   // figure out more details about the state of the header in order to
2608   // know what operations can be legally performed on the object's
2609   // header.
2610 
2611   // If the low three bits in the xor result aren't clear, that means
2612   // the prototype header is no longer biased and we have to revoke
2613   // the bias on this object.
2614   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
2615   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
2616 
2617   // Biasing is still enabled for this data type. See whether the
2618   // epoch of the current bias is still valid, meaning that the epoch
2619   // bits of the mark word are equal to the epoch bits of the
2620   // prototype header. (Note that the prototype header's epoch bits
2621   // only change at a safepoint.) If not, attempt to rebias the object
2622   // toward the current thread. Note that we must be absolutely sure
2623   // that the current epoch is invalid in order to do this because
2624   // otherwise the manipulations it performs on the mark word are
2625   // illegal.
2626   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
2627   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
2628 
2629   // The epoch of the current bias is still valid but we know nothing
2630   // about the owner; it might be set or it might be clear. Try to
2631   // acquire the bias of the object using an atomic operation. If this
2632   // fails we will go in to the runtime to revoke the object's bias.
2633   // Note that we first construct the presumed unbiased header so we
2634   // don't accidentally blow away another thread's valid bias.
2635   delayed()->and3(mark_reg,
2636                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
2637                   mark_reg);
2638   or3(G2_thread, mark_reg, temp_reg);
2639   cas_ptr(mark_addr.base(), mark_reg, temp_reg);
2640   // If the biasing toward our thread failed, this means that
2641   // another thread succeeded in biasing it toward itself and we
2642   // need to revoke that bias. The revocation will occur in the
2643   // interpreter runtime in the slow case.
2644   cmp(mark_reg, temp_reg);
2645   if (counters != NULL) {
2646     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
2647   }
2648   if (slow_case != NULL) {
2649     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
2650     delayed()->nop();
2651   }
2652   ba_short(done);
2653 
2654   bind(try_rebias);
2655   // At this point we know the epoch has expired, meaning that the
2656   // current "bias owner", if any, is actually invalid. Under these
2657   // circumstances _only_, we are allowed to use the current header's
2658   // value as the comparison value when doing the cas to acquire the
2659   // bias in the current epoch. In other words, we allow transfer of
2660   // the bias from one thread to another directly in this situation.
2661   //
2662   // FIXME: due to a lack of registers we currently blow away the age
2663   // bits in this situation. Should attempt to preserve them.
2664   load_klass(obj_reg, temp_reg);
2665   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
2666   or3(G2_thread, temp_reg, temp_reg);
2667   cas_ptr(mark_addr.base(), mark_reg, temp_reg);
2668   // If the biasing toward our thread failed, this means that
2669   // another thread succeeded in biasing it toward itself and we
2670   // need to revoke that bias. The revocation will occur in the
2671   // interpreter runtime in the slow case.
2672   cmp(mark_reg, temp_reg);
2673   if (counters != NULL) {
2674     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
2675   }
2676   if (slow_case != NULL) {
2677     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
2678     delayed()->nop();
2679   }
2680   ba_short(done);
2681 
2682   bind(try_revoke_bias);
2683   // The prototype mark in the klass doesn't have the bias bit set any
2684   // more, indicating that objects of this data type are not supposed
2685   // to be biased any more. We are going to try to reset the mark of
2686   // this object to the prototype value and fall through to the
2687   // CAS-based locking scheme. Note that if our CAS fails, it means
2688   // that another thread raced us for the privilege of revoking the
2689   // bias of this particular object, so it's okay to continue in the
2690   // normal locking code.
2691   //
2692   // FIXME: due to a lack of registers we currently blow away the age
2693   // bits in this situation. Should attempt to preserve them.
2694   load_klass(obj_reg, temp_reg);
2695   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
2696   cas_ptr(mark_addr.base(), mark_reg, temp_reg);
2697   // Fall through to the normal CAS-based lock, because no matter what
2698   // the result of the above CAS, some thread must have succeeded in
2699   // removing the bias bit from the object's header.
2700   if (counters != NULL) {
2701     cmp(mark_reg, temp_reg);
2702     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
2703   }
2704 
2705   bind(cas_label);
2706 }
2707 
2708 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
2709                                           bool allow_delay_slot_filling) {
2710   // Check for biased locking unlock case, which is a no-op
2711   // Note: we do not have to check the thread ID for two reasons.
2712   // First, the interpreter checks for IllegalMonitorStateException at
2713   // a higher level. Second, if the bias was revoked while we held the
2714   // lock, the object could not be rebiased toward another thread, so
2715   // the bias bit would be clear.
2716   ld_ptr(mark_addr, temp_reg);
2717   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
2718   cmp(temp_reg, markOopDesc::biased_lock_pattern);
2719   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
2720   delayed();
2721   if (!allow_delay_slot_filling) {
2722     nop();
2723   }
2724 }
2725 
2726 
2727 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
2728 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
2729 // The code could be tightened up considerably.
2730 //
2731 // box->dhw disposition - post-conditions at DONE_LABEL.
2732 // -   Successful inflated lock:  box->dhw != 0.
2733 //     Any non-zero value suffices.
2734 //     Consider G2_thread, rsp, boxReg, or markOopDesc::unused_mark()
2735 // -   Successful Stack-lock: box->dhw == mark.
2736 //     box->dhw must contain the displaced mark word value
2737 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
2738 //     The slow-path fast_enter() and slow_enter() operators
2739 //     are responsible for setting box->dhw = NonZero (typically markOopDesc::unused_mark()).
2740 // -   Biased: box->dhw is undefined
2741 //
2742 // SPARC refworkload performance - specifically jetstream and scimark - are
2743 // extremely sensitive to the size of the code emitted by compiler_lock_object
2744 // and compiler_unlock_object.  Critically, the key factor is code size, not path
2745 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
2746 // effect).
2747 
2748 
2749 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
2750                                           Register Rbox, Register Rscratch,
2751                                           BiasedLockingCounters* counters,
2752                                           bool try_bias) {
2753    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
2754 
2755    verify_oop(Roop);
2756    Label done ;
2757 
2758    if (counters != NULL) {
2759      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
2760    }
2761 
2762    if (EmitSync & 1) {
2763      mov(3, Rscratch);
2764      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2765      cmp(SP, G0);
2766      return ;
2767    }
2768 
2769    if (EmitSync & 2) {
2770 
2771      // Fetch object's markword
2772      ld_ptr(mark_addr, Rmark);
2773 
2774      if (try_bias) {
2775         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2776      }
2777 
2778      // Save Rbox in Rscratch to be used for the cas operation
2779      mov(Rbox, Rscratch);
2780 
2781      // set Rmark to markOop | markOopDesc::unlocked_value
2782      or3(Rmark, markOopDesc::unlocked_value, Rmark);
2783 
2784      // Initialize the box.  (Must happen before we update the object mark!)
2785      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2786 
2787      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
2788      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2789      cas_ptr(mark_addr.base(), Rmark, Rscratch);
2790 
2791      // if compare/exchange succeeded we found an unlocked object and we now have locked it
2792      // hence we are done
2793      cmp(Rmark, Rscratch);
2794 #ifdef _LP64
2795      sub(Rscratch, STACK_BIAS, Rscratch);
2796 #endif
2797      brx(Assembler::equal, false, Assembler::pt, done);
2798      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
2799 
2800      // we did not find an unlocked object so see if this is a recursive case
2801      // sub(Rscratch, SP, Rscratch);
2802      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2803      andcc(Rscratch, 0xfffff003, Rscratch);
2804      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2805      bind (done);
2806      return ;
2807    }
2808 
2809    Label Egress ;
2810 
2811    if (EmitSync & 256) {
2812       Label IsInflated ;
2813 
2814       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
2815       // Triage: biased, stack-locked, neutral, inflated
2816       if (try_bias) {
2817         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2818         // Invariant: if control reaches this point in the emitted stream
2819         // then Rmark has not been modified.
2820       }
2821 
2822       // Store mark into displaced mark field in the on-stack basic-lock "box"
2823       // Critically, this must happen before the CAS
2824       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
2825       st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2826       andcc(Rmark, 2, G0);
2827       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
2828       delayed()->
2829 
2830       // Try stack-lock acquisition.
2831       // Beware: the 1st instruction is in a delay slot
2832       mov(Rbox,  Rscratch);
2833       or3(Rmark, markOopDesc::unlocked_value, Rmark);
2834       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2835       cas_ptr(mark_addr.base(), Rmark, Rscratch);
2836       cmp(Rmark, Rscratch);
2837       brx(Assembler::equal, false, Assembler::pt, done);
2838       delayed()->sub(Rscratch, SP, Rscratch);
2839 
2840       // Stack-lock attempt failed - check for recursive stack-lock.
2841       // See the comments below about how we might remove this case.
2842 #ifdef _LP64
2843       sub(Rscratch, STACK_BIAS, Rscratch);
2844 #endif
2845       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2846       andcc(Rscratch, 0xfffff003, Rscratch);
2847       br(Assembler::always, false, Assembler::pt, done);
2848       delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2849 
2850       bind(IsInflated);
2851       if (EmitSync & 64) {
2852          // If m->owner != null goto IsLocked
2853          // Pessimistic form: Test-and-CAS vs CAS
2854          // The optimistic form avoids RTS->RTO cache line upgrades.
2855          ld_ptr(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rscratch);
2856          andcc(Rscratch, Rscratch, G0);
2857          brx(Assembler::notZero, false, Assembler::pn, done);
2858          delayed()->nop();
2859          // m->owner == null : it's unlocked.
2860       }
2861 
2862       // Try to CAS m->owner from null to Self
2863       // Invariant: if we acquire the lock then _recursions should be 0.
2864       add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
2865       mov(G2_thread, Rscratch);
2866       cas_ptr(Rmark, G0, Rscratch);
2867       cmp(Rscratch, G0);
2868       // Intentional fall-through into done
2869    } else {
2870       // Aggressively avoid the Store-before-CAS penalty
2871       // Defer the store into box->dhw until after the CAS
2872       Label IsInflated, Recursive ;
2873 
2874 // Anticipate CAS -- Avoid RTS->RTO upgrade
2875 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
2876 
2877       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
2878       // Triage: biased, stack-locked, neutral, inflated
2879 
2880       if (try_bias) {
2881         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2882         // Invariant: if control reaches this point in the emitted stream
2883         // then Rmark has not been modified.
2884       }
2885       andcc(Rmark, 2, G0);
2886       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
2887       delayed()->                         // Beware - dangling delay-slot
2888 
2889       // Try stack-lock acquisition.
2890       // Transiently install BUSY (0) encoding in the mark word.
2891       // if the CAS of 0 into the mark was successful then we execute:
2892       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
2893       //   ST obj->mark = box    -- overwrite transient 0 value
2894       // This presumes TSO, of course.
2895 
2896       mov(0, Rscratch);
2897       or3(Rmark, markOopDesc::unlocked_value, Rmark);
2898       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2899       cas_ptr(mark_addr.base(), Rmark, Rscratch);
2900 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
2901       cmp(Rscratch, Rmark);
2902       brx(Assembler::notZero, false, Assembler::pn, Recursive);
2903       delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2904       if (counters != NULL) {
2905         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
2906       }
2907       ba(done);
2908       delayed()->st_ptr(Rbox, mark_addr);
2909 
2910       bind(Recursive);
2911       // Stack-lock attempt failed - check for recursive stack-lock.
2912       // Tests show that we can remove the recursive case with no impact
2913       // on refworkload 0.83.  If we need to reduce the size of the code
2914       // emitted by compiler_lock_object() the recursive case is perfect
2915       // candidate.
2916       //
2917       // A more extreme idea is to always inflate on stack-lock recursion.
2918       // This lets us eliminate the recursive checks in compiler_lock_object
2919       // and compiler_unlock_object and the (box->dhw == 0) encoding.
2920       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
2921       // and showed a performance *increase*.  In the same experiment I eliminated
2922       // the fast-path stack-lock code from the interpreter and always passed
2923       // control to the "slow" operators in synchronizer.cpp.
2924 
2925       // RScratch contains the fetched obj->mark value from the failed CAS.
2926 #ifdef _LP64
2927       sub(Rscratch, STACK_BIAS, Rscratch);
2928 #endif
2929       sub(Rscratch, SP, Rscratch);
2930       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2931       andcc(Rscratch, 0xfffff003, Rscratch);
2932       if (counters != NULL) {
2933         // Accounting needs the Rscratch register
2934         st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2935         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
2936         ba_short(done);
2937       } else {
2938         ba(done);
2939         delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2940       }
2941 
2942       bind   (IsInflated);
2943 
2944       // Try to CAS m->owner from null to Self
2945       // Invariant: if we acquire the lock then _recursions should be 0.
2946       add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
2947       mov(G2_thread, Rscratch);
2948       cas_ptr(Rmark, G0, Rscratch);
2949       andcc(Rscratch, Rscratch, G0);             // set ICCs for done: icc.zf iff success
2950       // set icc.zf : 1=success 0=failure
2951       // ST box->displaced_header = NonZero.
2952       // Any non-zero value suffices:
2953       //    markOopDesc::unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
2954       st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
2955       // Intentional fall-through into done
2956    }
2957 
2958    bind   (done);
2959 }
2960 
2961 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
2962                                             Register Rbox, Register Rscratch,
2963                                             bool try_bias) {
2964    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
2965 
2966    Label done ;
2967 
2968    if (EmitSync & 4) {
2969      cmp(SP, G0);
2970      return ;
2971    }
2972 
2973    if (EmitSync & 8) {
2974      if (try_bias) {
2975         biased_locking_exit(mark_addr, Rscratch, done);
2976      }
2977 
2978      // Test first if it is a fast recursive unlock
2979      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
2980      br_null_short(Rmark, Assembler::pt, done);
2981 
2982      // Check if it is still a light weight lock, this is is true if we see
2983      // the stack address of the basicLock in the markOop of the object
2984      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2985      cas_ptr(mark_addr.base(), Rbox, Rmark);
2986      ba(done);
2987      delayed()->cmp(Rbox, Rmark);
2988      bind(done);
2989      return ;
2990    }
2991 
2992    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
2993    // is too large performance rolls abruptly off a cliff.
2994    // This could be related to inlining policies, code cache management, or
2995    // I$ effects.
2996    Label LStacked ;
2997 
2998    if (try_bias) {
2999       // TODO: eliminate redundant LDs of obj->mark
3000       biased_locking_exit(mark_addr, Rscratch, done);
3001    }
3002 
3003    ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
3004    ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
3005    andcc(Rscratch, Rscratch, G0);
3006    brx(Assembler::zero, false, Assembler::pn, done);
3007    delayed()->nop();      // consider: relocate fetch of mark, above, into this DS
3008    andcc(Rmark, 2, G0);
3009    brx(Assembler::zero, false, Assembler::pt, LStacked);
3010    delayed()->nop();
3011 
3012    // It's inflated
3013    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
3014    // the ST of 0 into _owner which releases the lock.  This prevents loads
3015    // and stores within the critical section from reordering (floating)
3016    // past the store that releases the lock.  But TSO is a strong memory model
3017    // and that particular flavor of barrier is a noop, so we can safely elide it.
3018    // Note that we use 1-0 locking by default for the inflated case.  We
3019    // close the resultant (and rare) race by having contended threads in
3020    // monitorenter periodically poll _owner.
3021 
3022    if (EmitSync & 1024) {
3023      // Emit code to check that _owner == Self
3024      // We could fold the _owner test into subsequent code more efficiently
3025      // than using a stand-alone check, but since _owner checking is off by
3026      // default we don't bother. We also might consider predicating the
3027      // _owner==Self check on Xcheck:jni or running on a debug build.
3028      ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), Rscratch);
3029      orcc(Rscratch, G0, G0);
3030      brx(Assembler::notZero, false, Assembler::pn, done);
3031      delayed()->nop();
3032    }
3033 
3034    if (EmitSync & 512) {
3035      // classic lock release code absent 1-0 locking
3036      //   m->Owner = null;
3037      //   membar #storeload
3038      //   if (m->cxq|m->EntryList) == null goto Success
3039      //   if (m->succ != null) goto Success
3040      //   if CAS (&m->Owner,0,Self) != 0 goto Success
3041      //   goto SlowPath
3042      ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)), Rbox);
3043      orcc(Rbox, G0, G0);
3044      brx(Assembler::notZero, false, Assembler::pn, done);
3045      delayed()->nop();
3046      st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
3047      if (os::is_MP()) { membar(StoreLoad); }
3048      ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)), Rscratch);
3049      ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)), Rbox);
3050      orcc(Rbox, Rscratch, G0);
3051      brx(Assembler::zero, false, Assembler::pt, done);
3052      delayed()->
3053      ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), Rscratch);
3054      andcc(Rscratch, Rscratch, G0);
3055      brx(Assembler::notZero, false, Assembler::pt, done);
3056      delayed()->andcc(G0, G0, G0);
3057      add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
3058      mov(G2_thread, Rscratch);
3059      cas_ptr(Rmark, G0, Rscratch);
3060      cmp(Rscratch, G0);
3061      // invert icc.zf and goto done
3062      brx(Assembler::notZero, false, Assembler::pt, done);
3063      delayed()->cmp(G0, G0);
3064      br(Assembler::always, false, Assembler::pt, done);
3065      delayed()->cmp(G0, 1);
3066    } else {
3067      // 1-0 form : avoids CAS and MEMBAR in the common case
3068      // Do not bother to ratify that m->Owner == Self.
3069      ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)), Rbox);
3070      orcc(Rbox, G0, G0);
3071      brx(Assembler::notZero, false, Assembler::pn, done);
3072      delayed()->
3073      ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)), Rscratch);
3074      ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)), Rbox);
3075      orcc(Rbox, Rscratch, G0);
3076      if (EmitSync & 16384) {
3077        // As an optional optimization, if (EntryList|cxq) != null and _succ is null then
3078        // we should transfer control directly to the slow-path.
3079        // This test makes the reacquire operation below very infrequent.
3080        // The logic is equivalent to :
3081        //   if (cxq|EntryList) == null : Owner=null; goto Success
3082        //   if succ == null : goto SlowPath
3083        //   Owner=null; membar #storeload
3084        //   if succ != null : goto Success
3085        //   if CAS(&Owner,null,Self) != null goto Success
3086        //   goto SlowPath
3087        brx(Assembler::zero, true, Assembler::pt, done);
3088        delayed()->
3089        st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
3090        ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), Rscratch);
3091        andcc(Rscratch, Rscratch, G0) ;
3092        brx(Assembler::zero, false, Assembler::pt, done);
3093        delayed()->orcc(G0, 1, G0);
3094        st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
3095      } else {
3096        brx(Assembler::zero, false, Assembler::pt, done);
3097        delayed()->
3098        st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
3099      }
3100      if (os::is_MP()) { membar(StoreLoad); }
3101      // Check that _succ is (or remains) non-zero
3102      ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), Rscratch);
3103      andcc(Rscratch, Rscratch, G0);
3104      brx(Assembler::notZero, false, Assembler::pt, done);
3105      delayed()->andcc(G0, G0, G0);
3106      add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
3107      mov(G2_thread, Rscratch);
3108      cas_ptr(Rmark, G0, Rscratch);
3109      cmp(Rscratch, G0);
3110      // invert icc.zf and goto done
3111      // A slightly better v8+/v9 idiom would be the following:
3112      //   movrnz Rscratch,1,Rscratch
3113      //   ba done
3114      //   xorcc Rscratch,1,G0
3115      // In v8+ mode the idiom would be valid IFF Rscratch was a G or O register
3116      brx(Assembler::notZero, false, Assembler::pt, done);
3117      delayed()->cmp(G0, G0);
3118      br(Assembler::always, false, Assembler::pt, done);
3119      delayed()->cmp(G0, 1);
3120    }
3121 
3122    bind   (LStacked);
3123    // Consider: we could replace the expensive CAS in the exit
3124    // path with a simple ST of the displaced mark value fetched from
3125    // the on-stack basiclock box.  That admits a race where a thread T2
3126    // in the slow lock path -- inflating with monitor M -- could race a
3127    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
3128    // More precisely T1 in the stack-lock unlock path could "stomp" the
3129    // inflated mark value M installed by T2, resulting in an orphan
3130    // object monitor M and T2 becoming stranded.  We can remedy that situation
3131    // by having T2 periodically poll the object's mark word using timed wait
3132    // operations.  If T2 discovers that a stomp has occurred it vacates
3133    // the monitor M and wakes any other threads stranded on the now-orphan M.
3134    // In addition the monitor scavenger, which performs deflation,
3135    // would also need to check for orpan monitors and stranded threads.
3136    //
3137    // Finally, inflation is also used when T2 needs to assign a hashCode
3138    // to O and O is stack-locked by T1.  The "stomp" race could cause
3139    // an assigned hashCode value to be lost.  We can avoid that condition
3140    // and provide the necessary hashCode stability invariants by ensuring
3141    // that hashCode generation is idempotent between copying GCs.
3142    // For example we could compute the hashCode of an object O as
3143    // O's heap address XOR some high quality RNG value that is refreshed
3144    // at GC-time.  The monitor scavenger would install the hashCode
3145    // found in any orphan monitors.  Again, the mechanism admits a
3146    // lost-update "stomp" WAW race but detects and recovers as needed.
3147    //
3148    // A prototype implementation showed excellent results, although
3149    // the scavenger and timeout code was rather involved.
3150 
3151    cas_ptr(mark_addr.base(), Rbox, Rscratch);
3152    cmp(Rbox, Rscratch);
3153    // Intentional fall through into done ...
3154 
3155    bind(done);
3156 }
3157 
3158 
3159 
3160 void MacroAssembler::print_CPU_state() {
3161   // %%%%% need to implement this
3162 }
3163 
3164 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
3165   // %%%%% need to implement this
3166 }
3167 
3168 void MacroAssembler::push_IU_state() {
3169   // %%%%% need to implement this
3170 }
3171 
3172 
3173 void MacroAssembler::pop_IU_state() {
3174   // %%%%% need to implement this
3175 }
3176 
3177 
3178 void MacroAssembler::push_FPU_state() {
3179   // %%%%% need to implement this
3180 }
3181 
3182 
3183 void MacroAssembler::pop_FPU_state() {
3184   // %%%%% need to implement this
3185 }
3186 
3187 
3188 void MacroAssembler::push_CPU_state() {
3189   // %%%%% need to implement this
3190 }
3191 
3192 
3193 void MacroAssembler::pop_CPU_state() {
3194   // %%%%% need to implement this
3195 }
3196 
3197 
3198 
3199 void MacroAssembler::verify_tlab() {
3200 #ifdef ASSERT
3201   if (UseTLAB && VerifyOops) {
3202     Label next, next2, ok;
3203     Register t1 = L0;
3204     Register t2 = L1;
3205     Register t3 = L2;
3206 
3207     save_frame(0);
3208     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3209     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
3210     or3(t1, t2, t3);
3211     cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
3212     STOP("assert(top >= start)");
3213     should_not_reach_here();
3214 
3215     bind(next);
3216     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3217     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
3218     or3(t3, t2, t3);
3219     cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
3220     STOP("assert(top <= end)");
3221     should_not_reach_here();
3222 
3223     bind(next2);
3224     and3(t3, MinObjAlignmentInBytesMask, t3);
3225     cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
3226     STOP("assert(aligned)");
3227     should_not_reach_here();
3228 
3229     bind(ok);
3230     restore();
3231   }
3232 #endif
3233 }
3234 
3235 
3236 void MacroAssembler::eden_allocate(
3237   Register obj,                        // result: pointer to object after successful allocation
3238   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3239   int      con_size_in_bytes,          // object size in bytes if   known at compile time
3240   Register t1,                         // temp register
3241   Register t2,                         // temp register
3242   Label&   slow_case                   // continuation point if fast allocation fails
3243 ){
3244   // make sure arguments make sense
3245   assert_different_registers(obj, var_size_in_bytes, t1, t2);
3246   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
3247   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3248 
3249   if (!Universe::heap()->supports_inline_contig_alloc()) {
3250     // No allocation in the shared eden.
3251     ba(slow_case);
3252     delayed()->nop();
3253   } else {
3254     // get eden boundaries
3255     // note: we need both top & top_addr!
3256     const Register top_addr = t1;
3257     const Register end      = t2;
3258 
3259     CollectedHeap* ch = Universe::heap();
3260     set((intx)ch->top_addr(), top_addr);
3261     intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
3262     ld_ptr(top_addr, delta, end);
3263     ld_ptr(top_addr, 0, obj);
3264 
3265     // try to allocate
3266     Label retry;
3267     bind(retry);
3268 #ifdef ASSERT
3269     // make sure eden top is properly aligned
3270     {
3271       Label L;
3272       btst(MinObjAlignmentInBytesMask, obj);
3273       br(Assembler::zero, false, Assembler::pt, L);
3274       delayed()->nop();
3275       STOP("eden top is not properly aligned");
3276       bind(L);
3277     }
3278 #endif // ASSERT
3279     const Register free = end;
3280     sub(end, obj, free);                                   // compute amount of free space
3281     if (var_size_in_bytes->is_valid()) {
3282       // size is unknown at compile time
3283       cmp(free, var_size_in_bytes);
3284       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3285       delayed()->add(obj, var_size_in_bytes, end);
3286     } else {
3287       // size is known at compile time
3288       cmp(free, con_size_in_bytes);
3289       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3290       delayed()->add(obj, con_size_in_bytes, end);
3291     }
3292     // Compare obj with the value at top_addr; if still equal, swap the value of
3293     // end with the value at top_addr. If not equal, read the value at top_addr
3294     // into end.
3295     cas_ptr(top_addr, obj, end);
3296     // if someone beat us on the allocation, try again, otherwise continue
3297     cmp(obj, end);
3298     brx(Assembler::notEqual, false, Assembler::pn, retry);
3299     delayed()->mov(end, obj);                              // nop if successfull since obj == end
3300 
3301 #ifdef ASSERT
3302     // make sure eden top is properly aligned
3303     {
3304       Label L;
3305       const Register top_addr = t1;
3306 
3307       set((intx)ch->top_addr(), top_addr);
3308       ld_ptr(top_addr, 0, top_addr);
3309       btst(MinObjAlignmentInBytesMask, top_addr);
3310       br(Assembler::zero, false, Assembler::pt, L);
3311       delayed()->nop();
3312       STOP("eden top is not properly aligned");
3313       bind(L);
3314     }
3315 #endif // ASSERT
3316   }
3317 }
3318 
3319 
3320 void MacroAssembler::tlab_allocate(
3321   Register obj,                        // result: pointer to object after successful allocation
3322   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3323   int      con_size_in_bytes,          // object size in bytes if   known at compile time
3324   Register t1,                         // temp register
3325   Label&   slow_case                   // continuation point if fast allocation fails
3326 ){
3327   // make sure arguments make sense
3328   assert_different_registers(obj, var_size_in_bytes, t1);
3329   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
3330   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3331 
3332   const Register free  = t1;
3333 
3334   verify_tlab();
3335 
3336   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
3337 
3338   // calculate amount of free space
3339   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
3340   sub(free, obj, free);
3341 
3342   Label done;
3343   if (var_size_in_bytes == noreg) {
3344     cmp(free, con_size_in_bytes);
3345   } else {
3346     cmp(free, var_size_in_bytes);
3347   }
3348   br(Assembler::less, false, Assembler::pn, slow_case);
3349   // calculate the new top pointer
3350   if (var_size_in_bytes == noreg) {
3351     delayed()->add(obj, con_size_in_bytes, free);
3352   } else {
3353     delayed()->add(obj, var_size_in_bytes, free);
3354   }
3355 
3356   bind(done);
3357 
3358 #ifdef ASSERT
3359   // make sure new free pointer is properly aligned
3360   {
3361     Label L;
3362     btst(MinObjAlignmentInBytesMask, free);
3363     br(Assembler::zero, false, Assembler::pt, L);
3364     delayed()->nop();
3365     STOP("updated TLAB free is not properly aligned");
3366     bind(L);
3367   }
3368 #endif // ASSERT
3369 
3370   // update the tlab top pointer
3371   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3372   verify_tlab();
3373 }
3374 
3375 
3376 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
3377   Register top = O0;
3378   Register t1 = G1;
3379   Register t2 = G3;
3380   Register t3 = O1;
3381   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
3382   Label do_refill, discard_tlab;
3383 
3384   if (!Universe::heap()->supports_inline_contig_alloc()) {
3385     // No allocation in the shared eden.
3386     ba(slow_case);
3387     delayed()->nop();
3388   }
3389 
3390   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
3391   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
3392   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
3393 
3394   // calculate amount of free space
3395   sub(t1, top, t1);
3396   srl_ptr(t1, LogHeapWordSize, t1);
3397 
3398   // Retain tlab and allocate object in shared space if
3399   // the amount free in the tlab is too large to discard.
3400   cmp(t1, t2);
3401   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
3402 
3403   // increment waste limit to prevent getting stuck on this slow path
3404   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
3405   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3406   if (TLABStats) {
3407     // increment number of slow_allocations
3408     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
3409     add(t2, 1, t2);
3410     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
3411   }
3412   ba(try_eden);
3413   delayed()->nop();
3414 
3415   bind(discard_tlab);
3416   if (TLABStats) {
3417     // increment number of refills
3418     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
3419     add(t2, 1, t2);
3420     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
3421     // accumulate wastage
3422     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
3423     add(t2, t1, t2);
3424     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
3425   }
3426 
3427   // if tlab is currently allocated (top or end != null) then
3428   // fill [top, end + alignment_reserve) with array object
3429   br_null_short(top, Assembler::pn, do_refill);
3430 
3431   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
3432   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
3433   // set klass to intArrayKlass
3434   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
3435   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
3436   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
3437   st(t1, top, arrayOopDesc::length_offset_in_bytes());
3438   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
3439   ld_ptr(t2, 0, t2);
3440   // store klass last.  concurrent gcs assumes klass length is valid if
3441   // klass field is not null.
3442   store_klass(t2, top);
3443   verify_oop(top);
3444 
3445   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
3446   sub(top, t1, t1); // size of tlab's allocated portion
3447   incr_allocated_bytes(t1, t2, t3);
3448 
3449   // refill the tlab with an eden allocation
3450   bind(do_refill);
3451   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
3452   sll_ptr(t1, LogHeapWordSize, t1);
3453   // allocate new tlab, address returned in top
3454   eden_allocate(top, t1, 0, t2, t3, slow_case);
3455 
3456   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
3457   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3458 #ifdef ASSERT
3459   // check that tlab_size (t1) is still valid
3460   {
3461     Label ok;
3462     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
3463     sll_ptr(t2, LogHeapWordSize, t2);
3464     cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
3465     STOP("assert(t1 == tlab_size)");
3466     should_not_reach_here();
3467 
3468     bind(ok);
3469   }
3470 #endif // ASSERT
3471   add(top, t1, top); // t1 is tlab_size
3472   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
3473   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
3474 
3475   if (ZeroTLAB) {
3476     // This is a fast TLAB refill, therefore the GC is not notified of it.
3477     // So compiled code must fill the new TLAB with zeroes.
3478     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
3479     zero_memory(t2, t1);
3480   }
3481   verify_tlab();
3482   ba(retry);
3483   delayed()->nop();
3484 }
3485 
3486 void MacroAssembler::zero_memory(Register base, Register index) {
3487   assert_different_registers(base, index);
3488   Label loop;
3489   bind(loop);
3490   subcc(index, HeapWordSize, index);
3491   brx(Assembler::greaterEqual, true, Assembler::pt, loop);
3492   delayed()->st_ptr(G0, base, index);
3493 }
3494 
3495 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
3496                                           Register t1, Register t2) {
3497   // Bump total bytes allocated by this thread
3498   assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
3499   assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
3500   // v8 support has gone the way of the dodo
3501   ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
3502   add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
3503   stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
3504 }
3505 
3506 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
3507   switch (cond) {
3508     // Note some conditions are synonyms for others
3509     case Assembler::never:                return Assembler::always;
3510     case Assembler::zero:                 return Assembler::notZero;
3511     case Assembler::lessEqual:            return Assembler::greater;
3512     case Assembler::less:                 return Assembler::greaterEqual;
3513     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
3514     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
3515     case Assembler::negative:             return Assembler::positive;
3516     case Assembler::overflowSet:          return Assembler::overflowClear;
3517     case Assembler::always:               return Assembler::never;
3518     case Assembler::notZero:              return Assembler::zero;
3519     case Assembler::greater:              return Assembler::lessEqual;
3520     case Assembler::greaterEqual:         return Assembler::less;
3521     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
3522     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
3523     case Assembler::positive:             return Assembler::negative;
3524     case Assembler::overflowClear:        return Assembler::overflowSet;
3525   }
3526 
3527   ShouldNotReachHere(); return Assembler::overflowClear;
3528 }
3529 
3530 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
3531                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
3532   Condition negated_cond = negate_condition(cond);
3533   Label L;
3534   brx(negated_cond, false, Assembler::pt, L);
3535   delayed()->nop();
3536   inc_counter(counter_ptr, Rtmp1, Rtmp2);
3537   bind(L);
3538 }
3539 
3540 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
3541   AddressLiteral addrlit(counter_addr);
3542   sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
3543   Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
3544   ld(addr, Rtmp2);
3545   inc(Rtmp2);
3546   st(Rtmp2, addr);
3547 }
3548 
3549 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
3550   inc_counter((address) counter_addr, Rtmp1, Rtmp2);
3551 }
3552 
3553 SkipIfEqual::SkipIfEqual(
3554     MacroAssembler* masm, Register temp, const bool* flag_addr,
3555     Assembler::Condition condition) {
3556   _masm = masm;
3557   AddressLiteral flag(flag_addr);
3558   _masm->sethi(flag, temp);
3559   _masm->ldub(temp, flag.low10(), temp);
3560   _masm->tst(temp);
3561   _masm->br(condition, false, Assembler::pt, _label);
3562   _masm->delayed()->nop();
3563 }
3564 
3565 SkipIfEqual::~SkipIfEqual() {
3566   _masm->bind(_label);
3567 }
3568 
3569 
3570 // Writes to stack successive pages until offset reached to check for
3571 // stack overflow + shadow pages.  This clobbers tsp and scratch.
3572 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
3573                                      Register Rscratch) {
3574   // Use stack pointer in temp stack pointer
3575   mov(SP, Rtsp);
3576 
3577   // Bang stack for total size given plus stack shadow page size.
3578   // Bang one page at a time because a large size can overflow yellow and
3579   // red zones (the bang will fail but stack overflow handling can't tell that
3580   // it was a stack overflow bang vs a regular segv).
3581   int offset = os::vm_page_size();
3582   Register Roffset = Rscratch;
3583 
3584   Label loop;
3585   bind(loop);
3586   set((-offset)+STACK_BIAS, Rscratch);
3587   st(G0, Rtsp, Rscratch);
3588   set(offset, Roffset);
3589   sub(Rsize, Roffset, Rsize);
3590   cmp(Rsize, G0);
3591   br(Assembler::greater, false, Assembler::pn, loop);
3592   delayed()->sub(Rtsp, Roffset, Rtsp);
3593 
3594   // Bang down shadow pages too.
3595   // At this point, (tmp-0) is the last address touched, so don't
3596   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
3597   // was post-decremented.)  Skip this address by starting at i=1, and
3598   // touch a few more pages below.  N.B.  It is important to touch all
3599   // the way down to and including i=StackShadowPages.
3600   for (int i = 1; i < StackShadowPages; i++) {
3601     set((-i*offset)+STACK_BIAS, Rscratch);
3602     st(G0, Rtsp, Rscratch);
3603   }
3604 }
3605 
3606 void MacroAssembler::reserved_stack_check() {
3607   // testing if reserved zone needs to be enabled
3608   Label no_reserved_zone_enabling;
3609 
3610   ld_ptr(G2_thread, JavaThread::reserved_stack_activation_offset(), G4_scratch);
3611   cmp_and_brx_short(SP, G4_scratch, Assembler::lessUnsigned, Assembler::pt, no_reserved_zone_enabling);
3612 
3613   call_VM_leaf(L0, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), G2_thread);
3614 
3615   AddressLiteral stub(StubRoutines::throw_delayed_StackOverflowError_entry());
3616   jump_to(stub, G4_scratch);
3617   delayed()->restore();
3618 
3619   should_not_reach_here();
3620 
3621   bind(no_reserved_zone_enabling);
3622 }
3623 
3624 ///////////////////////////////////////////////////////////////////////////////////
3625 #if INCLUDE_ALL_GCS
3626 
3627 static address satb_log_enqueue_with_frame = NULL;
3628 static u_char* satb_log_enqueue_with_frame_end = NULL;
3629 
3630 static address satb_log_enqueue_frameless = NULL;
3631 static u_char* satb_log_enqueue_frameless_end = NULL;
3632 
3633 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
3634 
3635 static void generate_satb_log_enqueue(bool with_frame) {
3636   BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
3637   CodeBuffer buf(bb);
3638   MacroAssembler masm(&buf);
3639 
3640 #define __ masm.
3641 
3642   address start = __ pc();
3643   Register pre_val;
3644 
3645   Label refill, restart;
3646   if (with_frame) {
3647     __ save_frame(0);
3648     pre_val = I0;  // Was O0 before the save.
3649   } else {
3650     pre_val = O0;
3651   }
3652 
3653   int satb_q_index_byte_offset =
3654     in_bytes(JavaThread::satb_mark_queue_offset() +
3655              SATBMarkQueue::byte_offset_of_index());
3656 
3657   int satb_q_buf_byte_offset =
3658     in_bytes(JavaThread::satb_mark_queue_offset() +
3659              SATBMarkQueue::byte_offset_of_buf());
3660 
3661   assert(in_bytes(SATBMarkQueue::byte_width_of_index()) == sizeof(intptr_t) &&
3662          in_bytes(SATBMarkQueue::byte_width_of_buf()) == sizeof(intptr_t),
3663          "check sizes in assembly below");
3664 
3665   __ bind(restart);
3666 
3667   // Load the index into the SATB buffer. SATBMarkQueue::_index is a size_t
3668   // so ld_ptr is appropriate.
3669   __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
3670 
3671   // index == 0?
3672   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
3673 
3674   __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
3675   __ sub(L0, oopSize, L0);
3676 
3677   __ st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
3678   if (!with_frame) {
3679     // Use return-from-leaf
3680     __ retl();
3681     __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
3682   } else {
3683     // Not delayed.
3684     __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
3685   }
3686   if (with_frame) {
3687     __ ret();
3688     __ delayed()->restore();
3689   }
3690   __ bind(refill);
3691 
3692   address handle_zero =
3693     CAST_FROM_FN_PTR(address,
3694                      &SATBMarkQueueSet::handle_zero_index_for_thread);
3695   // This should be rare enough that we can afford to save all the
3696   // scratch registers that the calling context might be using.
3697   __ mov(G1_scratch, L0);
3698   __ mov(G3_scratch, L1);
3699   __ mov(G4, L2);
3700   // We need the value of O0 above (for the write into the buffer), so we
3701   // save and restore it.
3702   __ mov(O0, L3);
3703   // Since the call will overwrite O7, we save and restore that, as well.
3704   __ mov(O7, L4);
3705   __ call_VM_leaf(L5, handle_zero, G2_thread);
3706   __ mov(L0, G1_scratch);
3707   __ mov(L1, G3_scratch);
3708   __ mov(L2, G4);
3709   __ mov(L3, O0);
3710   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
3711   __ delayed()->mov(L4, O7);
3712 
3713   if (with_frame) {
3714     satb_log_enqueue_with_frame = start;
3715     satb_log_enqueue_with_frame_end = __ pc();
3716   } else {
3717     satb_log_enqueue_frameless = start;
3718     satb_log_enqueue_frameless_end = __ pc();
3719   }
3720 
3721 #undef __
3722 }
3723 
3724 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
3725   if (with_frame) {
3726     if (satb_log_enqueue_with_frame == 0) {
3727       generate_satb_log_enqueue(with_frame);
3728       assert(satb_log_enqueue_with_frame != 0, "postcondition.");
3729     }
3730   } else {
3731     if (satb_log_enqueue_frameless == 0) {
3732       generate_satb_log_enqueue(with_frame);
3733       assert(satb_log_enqueue_frameless != 0, "postcondition.");
3734     }
3735   }
3736 }
3737 
3738 void MacroAssembler::g1_write_barrier_pre(Register obj,
3739                                           Register index,
3740                                           int offset,
3741                                           Register pre_val,
3742                                           Register tmp,
3743                                           bool preserve_o_regs) {
3744   Label filtered;
3745 
3746   if (obj == noreg) {
3747     // We are not loading the previous value so make
3748     // sure that we don't trash the value in pre_val
3749     // with the code below.
3750     assert_different_registers(pre_val, tmp);
3751   } else {
3752     // We will be loading the previous value
3753     // in this code so...
3754     assert(offset == 0 || index == noreg, "choose one");
3755     assert(pre_val == noreg, "check this code");
3756   }
3757 
3758   // Is marking active?
3759   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
3760     ld(G2,
3761        in_bytes(JavaThread::satb_mark_queue_offset() +
3762                 SATBMarkQueue::byte_offset_of_active()),
3763        tmp);
3764   } else {
3765     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
3766               "Assumption");
3767     ldsb(G2,
3768          in_bytes(JavaThread::satb_mark_queue_offset() +
3769                   SATBMarkQueue::byte_offset_of_active()),
3770          tmp);
3771   }
3772 
3773   // Is marking active?
3774   cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
3775 
3776   // Do we need to load the previous value?
3777   if (obj != noreg) {
3778     // Load the previous value...
3779     if (index == noreg) {
3780       if (Assembler::is_simm13(offset)) {
3781         load_heap_oop(obj, offset, tmp);
3782       } else {
3783         set(offset, tmp);
3784         load_heap_oop(obj, tmp, tmp);
3785       }
3786     } else {
3787       load_heap_oop(obj, index, tmp);
3788     }
3789     // Previous value has been loaded into tmp
3790     pre_val = tmp;
3791   }
3792 
3793   assert(pre_val != noreg, "must have a real register");
3794 
3795   // Is the previous value null?
3796   cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
3797 
3798   // OK, it's not filtered, so we'll need to call enqueue.  In the normal
3799   // case, pre_val will be a scratch G-reg, but there are some cases in
3800   // which it's an O-reg.  In the first case, do a normal call.  In the
3801   // latter, do a save here and call the frameless version.
3802 
3803   guarantee(pre_val->is_global() || pre_val->is_out(),
3804             "Or we need to think harder.");
3805 
3806   if (pre_val->is_global() && !preserve_o_regs) {
3807     generate_satb_log_enqueue_if_necessary(true); // with frame
3808 
3809     call(satb_log_enqueue_with_frame);
3810     delayed()->mov(pre_val, O0);
3811   } else {
3812     generate_satb_log_enqueue_if_necessary(false); // frameless
3813 
3814     save_frame(0);
3815     call(satb_log_enqueue_frameless);
3816     delayed()->mov(pre_val->after_save(), O0);
3817     restore();
3818   }
3819 
3820   bind(filtered);
3821 }
3822 
3823 static address dirty_card_log_enqueue = 0;
3824 static u_char* dirty_card_log_enqueue_end = 0;
3825 
3826 // This gets to assume that o0 contains the object address.
3827 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
3828   BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
3829   CodeBuffer buf(bb);
3830   MacroAssembler masm(&buf);
3831 #define __ masm.
3832   address start = __ pc();
3833 
3834   Label not_already_dirty, restart, refill, young_card;
3835 
3836 #ifdef _LP64
3837   __ srlx(O0, CardTableModRefBS::card_shift, O0);
3838 #else
3839   __ srl(O0, CardTableModRefBS::card_shift, O0);
3840 #endif
3841   AddressLiteral addrlit(byte_map_base);
3842   __ set(addrlit, O1); // O1 := <card table base>
3843   __ ldub(O0, O1, O2); // O2 := [O0 + O1]
3844 
3845   __ cmp_and_br_short(O2, G1SATBCardTableModRefBS::g1_young_card_val(), Assembler::equal, Assembler::pt, young_card);
3846 
3847   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3848   __ ldub(O0, O1, O2); // O2 := [O0 + O1]
3849 
3850   assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
3851   __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
3852 
3853   __ bind(young_card);
3854   // We didn't take the branch, so we're already dirty: return.
3855   // Use return-from-leaf
3856   __ retl();
3857   __ delayed()->nop();
3858 
3859   // Not dirty.
3860   __ bind(not_already_dirty);
3861 
3862   // Get O0 + O1 into a reg by itself
3863   __ add(O0, O1, O3);
3864 
3865   // First, dirty it.
3866   __ stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
3867 
3868   int dirty_card_q_index_byte_offset =
3869     in_bytes(JavaThread::dirty_card_queue_offset() +
3870              DirtyCardQueue::byte_offset_of_index());
3871   int dirty_card_q_buf_byte_offset =
3872     in_bytes(JavaThread::dirty_card_queue_offset() +
3873              DirtyCardQueue::byte_offset_of_buf());
3874   __ bind(restart);
3875 
3876   // Load the index into the update buffer. DirtyCardQueue::_index is
3877   // a size_t so ld_ptr is appropriate here.
3878   __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
3879 
3880   // index == 0?
3881   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
3882 
3883   __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
3884   __ sub(L0, oopSize, L0);
3885 
3886   __ st_ptr(O3, L1, L0);  // [_buf + index] := I0
3887   // Use return-from-leaf
3888   __ retl();
3889   __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
3890 
3891   __ bind(refill);
3892   address handle_zero =
3893     CAST_FROM_FN_PTR(address,
3894                      &DirtyCardQueueSet::handle_zero_index_for_thread);
3895   // This should be rare enough that we can afford to save all the
3896   // scratch registers that the calling context might be using.
3897   __ mov(G1_scratch, L3);
3898   __ mov(G3_scratch, L5);
3899   // We need the value of O3 above (for the write into the buffer), so we
3900   // save and restore it.
3901   __ mov(O3, L6);
3902   // Since the call will overwrite O7, we save and restore that, as well.
3903   __ mov(O7, L4);
3904 
3905   __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
3906   __ mov(L3, G1_scratch);
3907   __ mov(L5, G3_scratch);
3908   __ mov(L6, O3);
3909   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
3910   __ delayed()->mov(L4, O7);
3911 
3912   dirty_card_log_enqueue = start;
3913   dirty_card_log_enqueue_end = __ pc();
3914   // XXX Should have a guarantee here about not going off the end!
3915   // Does it already do so?  Do an experiment...
3916 
3917 #undef __
3918 
3919 }
3920 
3921 static inline void
3922 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
3923   if (dirty_card_log_enqueue == 0) {
3924     generate_dirty_card_log_enqueue(byte_map_base);
3925     assert(dirty_card_log_enqueue != 0, "postcondition.");
3926   }
3927 }
3928 
3929 
3930 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
3931 
3932   Label filtered;
3933   MacroAssembler* post_filter_masm = this;
3934 
3935   if (new_val == G0) return;
3936 
3937   G1SATBCardTableLoggingModRefBS* bs =
3938     barrier_set_cast<G1SATBCardTableLoggingModRefBS>(Universe::heap()->barrier_set());
3939 
3940   if (G1RSBarrierRegionFilter) {
3941     xor3(store_addr, new_val, tmp);
3942 #ifdef _LP64
3943     srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
3944 #else
3945     srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
3946 #endif
3947 
3948     // XXX Should I predict this taken or not?  Does it matter?
3949     cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
3950   }
3951 
3952   // If the "store_addr" register is an "in" or "local" register, move it to
3953   // a scratch reg so we can pass it as an argument.
3954   bool use_scr = !(store_addr->is_global() || store_addr->is_out());
3955   // Pick a scratch register different from "tmp".
3956   Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
3957   // Make sure we use up the delay slot!
3958   if (use_scr) {
3959     post_filter_masm->mov(store_addr, scr);
3960   } else {
3961     post_filter_masm->nop();
3962   }
3963   generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
3964   save_frame(0);
3965   call(dirty_card_log_enqueue);
3966   if (use_scr) {
3967     delayed()->mov(scr, O0);
3968   } else {
3969     delayed()->mov(store_addr->after_save(), O0);
3970   }
3971   restore();
3972 
3973   bind(filtered);
3974 }
3975 
3976 #endif // INCLUDE_ALL_GCS
3977 ///////////////////////////////////////////////////////////////////////////////////
3978 
3979 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
3980   // If we're writing constant NULL, we can skip the write barrier.
3981   if (new_val == G0) return;
3982   CardTableModRefBS* bs =
3983     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
3984   assert(bs->kind() == BarrierSet::CardTableForRS ||
3985          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
3986   card_table_write(bs->byte_map_base, tmp, store_addr);
3987 }
3988 
3989 void MacroAssembler::load_klass(Register src_oop, Register klass) {
3990   // The number of bytes in this code is used by
3991   // MachCallDynamicJavaNode::ret_addr_offset()
3992   // if this changes, change that.
3993   if (UseCompressedClassPointers) {
3994     lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
3995     decode_klass_not_null(klass);
3996   } else {
3997     ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
3998   }
3999 }
4000 
4001 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
4002   if (UseCompressedClassPointers) {
4003     assert(dst_oop != klass, "not enough registers");
4004     encode_klass_not_null(klass);
4005     st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4006   } else {
4007     st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4008   }
4009 }
4010 
4011 void MacroAssembler::store_klass_gap(Register s, Register d) {
4012   if (UseCompressedClassPointers) {
4013     assert(s != d, "not enough registers");
4014     st(s, d, oopDesc::klass_gap_offset_in_bytes());
4015   }
4016 }
4017 
4018 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
4019   if (UseCompressedOops) {
4020     lduw(s, d);
4021     decode_heap_oop(d);
4022   } else {
4023     ld_ptr(s, d);
4024   }
4025 }
4026 
4027 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
4028    if (UseCompressedOops) {
4029     lduw(s1, s2, d);
4030     decode_heap_oop(d, d);
4031   } else {
4032     ld_ptr(s1, s2, d);
4033   }
4034 }
4035 
4036 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
4037    if (UseCompressedOops) {
4038     lduw(s1, simm13a, d);
4039     decode_heap_oop(d, d);
4040   } else {
4041     ld_ptr(s1, simm13a, d);
4042   }
4043 }
4044 
4045 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
4046   if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
4047   else                   load_heap_oop(s1, s2.as_register(), d);
4048 }
4049 
4050 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
4051   if (UseCompressedOops) {
4052     assert(s1 != d && s2 != d, "not enough registers");
4053     encode_heap_oop(d);
4054     st(d, s1, s2);
4055   } else {
4056     st_ptr(d, s1, s2);
4057   }
4058 }
4059 
4060 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
4061   if (UseCompressedOops) {
4062     assert(s1 != d, "not enough registers");
4063     encode_heap_oop(d);
4064     st(d, s1, simm13a);
4065   } else {
4066     st_ptr(d, s1, simm13a);
4067   }
4068 }
4069 
4070 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
4071   if (UseCompressedOops) {
4072     assert(a.base() != d, "not enough registers");
4073     encode_heap_oop(d);
4074     st(d, a, offset);
4075   } else {
4076     st_ptr(d, a, offset);
4077   }
4078 }
4079 
4080 
4081 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
4082   assert (UseCompressedOops, "must be compressed");
4083   assert (Universe::heap() != NULL, "java heap should be initialized");
4084   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4085   verify_oop(src);
4086   if (Universe::narrow_oop_base() == NULL) {
4087     srlx(src, LogMinObjAlignmentInBytes, dst);
4088     return;
4089   }
4090   Label done;
4091   if (src == dst) {
4092     // optimize for frequent case src == dst
4093     bpr(rc_nz, true, Assembler::pt, src, done);
4094     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
4095     bind(done);
4096     srlx(src, LogMinObjAlignmentInBytes, dst);
4097   } else {
4098     bpr(rc_z, false, Assembler::pn, src, done);
4099     delayed() -> mov(G0, dst);
4100     // could be moved before branch, and annulate delay,
4101     // but may add some unneeded work decoding null
4102     sub(src, G6_heapbase, dst);
4103     srlx(dst, LogMinObjAlignmentInBytes, dst);
4104     bind(done);
4105   }
4106 }
4107 
4108 
4109 void MacroAssembler::encode_heap_oop_not_null(Register r) {
4110   assert (UseCompressedOops, "must be compressed");
4111   assert (Universe::heap() != NULL, "java heap should be initialized");
4112   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4113   verify_oop(r);
4114   if (Universe::narrow_oop_base() != NULL)
4115     sub(r, G6_heapbase, r);
4116   srlx(r, LogMinObjAlignmentInBytes, r);
4117 }
4118 
4119 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
4120   assert (UseCompressedOops, "must be compressed");
4121   assert (Universe::heap() != NULL, "java heap should be initialized");
4122   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4123   verify_oop(src);
4124   if (Universe::narrow_oop_base() == NULL) {
4125     srlx(src, LogMinObjAlignmentInBytes, dst);
4126   } else {
4127     sub(src, G6_heapbase, dst);
4128     srlx(dst, LogMinObjAlignmentInBytes, dst);
4129   }
4130 }
4131 
4132 // Same algorithm as oops.inline.hpp decode_heap_oop.
4133 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
4134   assert (UseCompressedOops, "must be compressed");
4135   assert (Universe::heap() != NULL, "java heap should be initialized");
4136   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4137   sllx(src, LogMinObjAlignmentInBytes, dst);
4138   if (Universe::narrow_oop_base() != NULL) {
4139     Label done;
4140     bpr(rc_nz, true, Assembler::pt, dst, done);
4141     delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
4142     bind(done);
4143   }
4144   verify_oop(dst);
4145 }
4146 
4147 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
4148   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4149   // pd_code_size_limit.
4150   // Also do not verify_oop as this is called by verify_oop.
4151   assert (UseCompressedOops, "must be compressed");
4152   assert (Universe::heap() != NULL, "java heap should be initialized");
4153   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4154   sllx(r, LogMinObjAlignmentInBytes, r);
4155   if (Universe::narrow_oop_base() != NULL)
4156     add(r, G6_heapbase, r);
4157 }
4158 
4159 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
4160   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4161   // pd_code_size_limit.
4162   // Also do not verify_oop as this is called by verify_oop.
4163   assert (UseCompressedOops, "must be compressed");
4164   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4165   sllx(src, LogMinObjAlignmentInBytes, dst);
4166   if (Universe::narrow_oop_base() != NULL)
4167     add(dst, G6_heapbase, dst);
4168 }
4169 
4170 void MacroAssembler::encode_klass_not_null(Register r) {
4171   assert (UseCompressedClassPointers, "must be compressed");
4172   if (Universe::narrow_klass_base() != NULL) {
4173     assert(r != G6_heapbase, "bad register choice");
4174     set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
4175     sub(r, G6_heapbase, r);
4176     if (Universe::narrow_klass_shift() != 0) {
4177       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
4178       srlx(r, LogKlassAlignmentInBytes, r);
4179     }
4180     reinit_heapbase();
4181   } else {
4182     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4183     srlx(r, Universe::narrow_klass_shift(), r);
4184   }
4185 }
4186 
4187 void MacroAssembler::encode_klass_not_null(Register src, Register dst) {
4188   if (src == dst) {
4189     encode_klass_not_null(src);
4190   } else {
4191     assert (UseCompressedClassPointers, "must be compressed");
4192     if (Universe::narrow_klass_base() != NULL) {
4193       set((intptr_t)Universe::narrow_klass_base(), dst);
4194       sub(src, dst, dst);
4195       if (Universe::narrow_klass_shift() != 0) {
4196         srlx(dst, LogKlassAlignmentInBytes, dst);
4197       }
4198     } else {
4199       // shift src into dst
4200       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4201       srlx(src, Universe::narrow_klass_shift(), dst);
4202     }
4203   }
4204 }
4205 
4206 // Function instr_size_for_decode_klass_not_null() counts the instructions
4207 // generated by decode_klass_not_null() and reinit_heapbase().  Hence, if
4208 // the instructions they generate change, then this method needs to be updated.
4209 int MacroAssembler::instr_size_for_decode_klass_not_null() {
4210   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
4211   int num_instrs = 1;  // shift src,dst or add
4212   if (Universe::narrow_klass_base() != NULL) {
4213     // set + add + set
4214     num_instrs += insts_for_internal_set((intptr_t)Universe::narrow_klass_base()) +
4215                   insts_for_internal_set((intptr_t)Universe::narrow_ptrs_base());
4216     if (Universe::narrow_klass_shift() != 0) {
4217       num_instrs += 1;  // sllx
4218     }
4219   }
4220   return num_instrs * BytesPerInstWord;
4221 }
4222 
4223 // !!! If the instructions that get generated here change then function
4224 // instr_size_for_decode_klass_not_null() needs to get updated.
4225 void  MacroAssembler::decode_klass_not_null(Register r) {
4226   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4227   // pd_code_size_limit.
4228   assert (UseCompressedClassPointers, "must be compressed");
4229   if (Universe::narrow_klass_base() != NULL) {
4230     assert(r != G6_heapbase, "bad register choice");
4231     set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
4232     if (Universe::narrow_klass_shift() != 0)
4233       sllx(r, LogKlassAlignmentInBytes, r);
4234     add(r, G6_heapbase, r);
4235     reinit_heapbase();
4236   } else {
4237     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4238     sllx(r, Universe::narrow_klass_shift(), r);
4239   }
4240 }
4241 
4242 void  MacroAssembler::decode_klass_not_null(Register src, Register dst) {
4243   if (src == dst) {
4244     decode_klass_not_null(src);
4245   } else {
4246     // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4247     // pd_code_size_limit.
4248     assert (UseCompressedClassPointers, "must be compressed");
4249     if (Universe::narrow_klass_base() != NULL) {
4250       if (Universe::narrow_klass_shift() != 0) {
4251         assert((src != G6_heapbase) && (dst != G6_heapbase), "bad register choice");
4252         set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
4253         sllx(src, LogKlassAlignmentInBytes, dst);
4254         add(dst, G6_heapbase, dst);
4255         reinit_heapbase();
4256       } else {
4257         set((intptr_t)Universe::narrow_klass_base(), dst);
4258         add(src, dst, dst);
4259       }
4260     } else {
4261       // shift/mov src into dst.
4262       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4263       sllx(src, Universe::narrow_klass_shift(), dst);
4264     }
4265   }
4266 }
4267 
4268 void MacroAssembler::reinit_heapbase() {
4269   if (UseCompressedOops || UseCompressedClassPointers) {
4270     if (Universe::heap() != NULL) {
4271       set((intptr_t)Universe::narrow_ptrs_base(), G6_heapbase);
4272     } else {
4273       AddressLiteral base(Universe::narrow_ptrs_base_addr());
4274       load_ptr_contents(base, G6_heapbase);
4275     }
4276   }
4277 }
4278 
4279 #ifdef COMPILER2
4280 
4281 // Compress char[] to byte[] by compressing 16 bytes at once. Return 0 on failure.
4282 void MacroAssembler::string_compress_16(Register src, Register dst, Register cnt, Register result,
4283                                         Register tmp1, Register tmp2, Register tmp3, Register tmp4,
4284                                         FloatRegister ftmp1, FloatRegister ftmp2, FloatRegister ftmp3, Label& Ldone) {
4285   Label Lloop, Lslow;
4286   assert(UseVIS >= 3, "VIS3 is required");
4287   assert_different_registers(src, dst, cnt, tmp1, tmp2, tmp3, tmp4, result);
4288   assert_different_registers(ftmp1, ftmp2, ftmp3);
4289 
4290   // Check if cnt >= 8 (= 16 bytes)
4291   cmp(cnt, 8);
4292   br(Assembler::less, false, Assembler::pn, Lslow);
4293   delayed()->mov(cnt, result); // copy count
4294 
4295   // Check for 8-byte alignment of src and dst
4296   or3(src, dst, tmp1);
4297   andcc(tmp1, 7, G0);
4298   br(Assembler::notZero, false, Assembler::pn, Lslow);
4299   delayed()->nop();
4300 
4301   // Set mask for bshuffle instruction
4302   Register mask = tmp4;
4303   set(0x13579bdf, mask);
4304   bmask(mask, G0, G0);
4305 
4306   // Set mask to 0xff00 ff00 ff00 ff00 to check for non-latin1 characters
4307   Assembler::sethi(0xff00fc00, mask); // mask = 0x0000 0000 ff00 fc00
4308   add(mask, 0x300, mask);             // mask = 0x0000 0000 ff00 ff00
4309   sllx(mask, 32, tmp1);               // tmp1 = 0xff00 ff00 0000 0000
4310   or3(mask, tmp1, mask);              // mask = 0xff00 ff00 ff00 ff00
4311 
4312   // Load first 8 bytes
4313   ldx(src, 0, tmp1);
4314 
4315   bind(Lloop);
4316   // Load next 8 bytes
4317   ldx(src, 8, tmp2);
4318 
4319   // Check for non-latin1 character by testing if the most significant byte of a char is set.
4320   // Although we have to move the data between integer and floating point registers, this is
4321   // still faster than the corresponding VIS instructions (ford/fand/fcmpd).
4322   or3(tmp1, tmp2, tmp3);
4323   btst(tmp3, mask);
4324   // annul zeroing if branch is not taken to preserve original count
4325   brx(Assembler::notZero, true, Assembler::pn, Ldone);
4326   delayed()->mov(G0, result); // 0 - failed
4327 
4328   // Move bytes into float register
4329   movxtod(tmp1, ftmp1);
4330   movxtod(tmp2, ftmp2);
4331 
4332   // Compress by copying one byte per char from ftmp1 and ftmp2 to ftmp3
4333   bshuffle(ftmp1, ftmp2, ftmp3);
4334   stf(FloatRegisterImpl::D, ftmp3, dst, 0);
4335 
4336   // Increment addresses and decrement count
4337   inc(src, 16);
4338   inc(dst, 8);
4339   dec(cnt, 8);
4340 
4341   cmp(cnt, 8);
4342   // annul LDX if branch is not taken to prevent access past end of string
4343   br(Assembler::greaterEqual, true, Assembler::pt, Lloop);
4344   delayed()->ldx(src, 0, tmp1);
4345 
4346   // Fallback to slow version
4347   bind(Lslow);
4348 }
4349 
4350 // Compress char[] to byte[]. Return 0 on failure.
4351 void MacroAssembler::string_compress(Register src, Register dst, Register cnt, Register result, Register tmp, Label& Ldone) {
4352   Label Lloop;
4353   assert_different_registers(src, dst, cnt, tmp, result);
4354 
4355   lduh(src, 0, tmp);
4356 
4357   bind(Lloop);
4358   inc(src, sizeof(jchar));
4359   cmp(tmp, 0xff);
4360   // annul zeroing if branch is not taken to preserve original count
4361   br(Assembler::greater, true, Assembler::pn, Ldone); // don't check xcc
4362   delayed()->mov(G0, result); // 0 - failed
4363   deccc(cnt);
4364   stb(tmp, dst, 0);
4365   inc(dst);
4366   // annul LDUH if branch is not taken to prevent access past end of string
4367   br(Assembler::notZero, true, Assembler::pt, Lloop);
4368   delayed()->lduh(src, 0, tmp); // hoisted
4369 }
4370 
4371 // Inflate byte[] to char[] by inflating 16 bytes at once.
4372 void MacroAssembler::string_inflate_16(Register src, Register dst, Register cnt, Register tmp,
4373                                        FloatRegister ftmp1, FloatRegister ftmp2, FloatRegister ftmp3, FloatRegister ftmp4, Label& Ldone) {
4374   Label Lloop, Lslow;
4375   assert(UseVIS >= 3, "VIS3 is required");
4376   assert_different_registers(src, dst, cnt, tmp);
4377   assert_different_registers(ftmp1, ftmp2, ftmp3, ftmp4);
4378 
4379   // Check if cnt >= 8 (= 16 bytes)
4380   cmp(cnt, 8);
4381   br(Assembler::less, false, Assembler::pn, Lslow);
4382   delayed()->nop();
4383 
4384   // Check for 8-byte alignment of src and dst
4385   or3(src, dst, tmp);
4386   andcc(tmp, 7, G0);
4387   br(Assembler::notZero, false, Assembler::pn, Lslow);
4388   // Initialize float register to zero
4389   FloatRegister zerof = ftmp4;
4390   delayed()->fzero(FloatRegisterImpl::D, zerof);
4391 
4392   // Load first 8 bytes
4393   ldf(FloatRegisterImpl::D, src, 0, ftmp1);
4394 
4395   bind(Lloop);
4396   inc(src, 8);
4397   dec(cnt, 8);
4398 
4399   // Inflate the string by interleaving each byte from the source array
4400   // with a zero byte and storing the result in the destination array.
4401   fpmerge(zerof, ftmp1->successor(), ftmp2);
4402   stf(FloatRegisterImpl::D, ftmp2, dst, 8);
4403   fpmerge(zerof, ftmp1, ftmp3);
4404   stf(FloatRegisterImpl::D, ftmp3, dst, 0);
4405 
4406   inc(dst, 16);
4407 
4408   cmp(cnt, 8);
4409   // annul LDX if branch is not taken to prevent access past end of string
4410   br(Assembler::greaterEqual, true, Assembler::pt, Lloop);
4411   delayed()->ldf(FloatRegisterImpl::D, src, 0, ftmp1);
4412 
4413   // Fallback to slow version
4414   bind(Lslow);
4415 }
4416 
4417 // Inflate byte[] to char[].
4418 void MacroAssembler::string_inflate(Register src, Register dst, Register cnt, Register tmp, Label& Ldone) {
4419   Label Loop;
4420   assert_different_registers(src, dst, cnt, tmp);
4421 
4422   ldub(src, 0, tmp);
4423   bind(Loop);
4424   inc(src);
4425   deccc(cnt);
4426   sth(tmp, dst, 0);
4427   inc(dst, sizeof(jchar));
4428   // annul LDUB if branch is not taken to prevent access past end of string
4429   br(Assembler::notZero, true, Assembler::pt, Loop);
4430   delayed()->ldub(src, 0, tmp); // hoisted
4431 }
4432 
4433 void MacroAssembler::string_compare(Register str1, Register str2,
4434                                     Register cnt1, Register cnt2,
4435                                     Register tmp1, Register tmp2,
4436                                     Register result, int ae) {
4437   Label Ldone, Lloop;
4438   assert_different_registers(str1, str2, cnt1, cnt2, tmp1, result);
4439   int stride1, stride2;
4440 
4441   // Note: Making use of the fact that compareTo(a, b) == -compareTo(b, a)
4442   // we interchange str1 and str2 in the UL case and negate the result.
4443   // Like this, str1 is always latin1 encoded, expect for the UU case.
4444 
4445   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
4446     srl(cnt2, 1, cnt2);
4447   }
4448 
4449   // See if the lengths are different, and calculate min in cnt1.
4450   // Save diff in case we need it for a tie-breaker.
4451   Label Lskip;
4452   Register diff = tmp1;
4453   subcc(cnt1, cnt2, diff);
4454   br(Assembler::greater, true, Assembler::pt, Lskip);
4455   // cnt2 is shorter, so use its count:
4456   delayed()->mov(cnt2, cnt1);
4457   bind(Lskip);
4458 
4459   // Rename registers
4460   Register limit1 = cnt1;
4461   Register limit2 = limit1;
4462   Register chr1   = result;
4463   Register chr2   = cnt2;
4464   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
4465     // We need an additional register to keep track of two limits
4466     assert_different_registers(str1, str2, cnt1, cnt2, tmp1, tmp2, result);
4467     limit2 = tmp2;
4468   }
4469 
4470   // Is the minimum length zero?
4471   cmp(limit1, (int)0); // use cast to resolve overloading ambiguity
4472   br(Assembler::equal, true, Assembler::pn, Ldone);
4473   // result is difference in lengths
4474   if (ae == StrIntrinsicNode::UU) {
4475     delayed()->sra(diff, 1, result);  // Divide by 2 to get number of chars
4476   } else {
4477     delayed()->mov(diff, result);
4478   }
4479 
4480   // Load first characters
4481   if (ae == StrIntrinsicNode::LL) {
4482     stride1 = stride2 = sizeof(jbyte);
4483     ldub(str1, 0, chr1);
4484     ldub(str2, 0, chr2);
4485   } else if (ae == StrIntrinsicNode::UU) {
4486     stride1 = stride2 = sizeof(jchar);
4487     lduh(str1, 0, chr1);
4488     lduh(str2, 0, chr2);
4489   } else {
4490     stride1 = sizeof(jbyte);
4491     stride2 = sizeof(jchar);
4492     ldub(str1, 0, chr1);
4493     lduh(str2, 0, chr2);
4494   }
4495 
4496   // Compare first characters
4497   subcc(chr1, chr2, chr1);
4498   br(Assembler::notZero, false, Assembler::pt, Ldone);
4499   assert(chr1 == result, "result must be pre-placed");
4500   delayed()->nop();
4501 
4502   // Check if the strings start at same location
4503   cmp(str1, str2);
4504   brx(Assembler::equal, true, Assembler::pn, Ldone);
4505   delayed()->mov(G0, result);  // result is zero
4506 
4507   // We have no guarantee that on 64 bit the higher half of limit is 0
4508   signx(limit1);
4509 
4510   // Get limit
4511   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
4512     sll(limit1, 1, limit2);
4513     subcc(limit2, stride2, chr2);
4514   }
4515   subcc(limit1, stride1, chr1);
4516   br(Assembler::zero, true, Assembler::pn, Ldone);
4517   // result is difference in lengths
4518   if (ae == StrIntrinsicNode::UU) {
4519     delayed()->sra(diff, 1, result);  // Divide by 2 to get number of chars
4520   } else {
4521     delayed()->mov(diff, result);
4522   }
4523 
4524   // Shift str1 and str2 to the end of the arrays, negate limit
4525   add(str1, limit1, str1);
4526   add(str2, limit2, str2);
4527   neg(chr1, limit1);  // limit1 = -(limit1-stride1)
4528   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
4529     neg(chr2, limit2);  // limit2 = -(limit2-stride2)
4530   }
4531 
4532   // Compare the rest of the characters
4533   if (ae == StrIntrinsicNode::UU) {
4534     lduh(str1, limit1, chr1);
4535   } else {
4536     ldub(str1, limit1, chr1);
4537   }
4538 
4539   bind(Lloop);
4540   if (ae == StrIntrinsicNode::LL) {
4541     ldub(str2, limit2, chr2);
4542   } else {
4543     lduh(str2, limit2, chr2);
4544   }
4545 
4546   subcc(chr1, chr2, chr1);
4547   br(Assembler::notZero, false, Assembler::pt, Ldone);
4548   assert(chr1 == result, "result must be pre-placed");
4549   delayed()->inccc(limit1, stride1);
4550   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
4551     inccc(limit2, stride2);
4552   }
4553 
4554   // annul LDUB if branch is not taken to prevent access past end of string
4555   br(Assembler::notZero, true, Assembler::pt, Lloop);
4556   if (ae == StrIntrinsicNode::UU) {
4557     delayed()->lduh(str1, limit2, chr1);
4558   } else {
4559     delayed()->ldub(str1, limit1, chr1);
4560   }
4561 
4562   // If strings are equal up to min length, return the length difference.
4563   if (ae == StrIntrinsicNode::UU) {
4564     // Divide by 2 to get number of chars
4565     sra(diff, 1, result);
4566   } else {
4567     mov(diff, result);
4568   }
4569 
4570   // Otherwise, return the difference between the first mismatched chars.
4571   bind(Ldone);
4572   if(ae == StrIntrinsicNode::UL) {
4573     // Negate result (see note above)
4574     neg(result);
4575   }
4576 }
4577 
4578 void MacroAssembler::array_equals(bool is_array_equ, Register ary1, Register ary2,
4579                                   Register limit, Register tmp, Register result, bool is_byte) {
4580   Label Ldone, Lvector, Lloop;
4581   assert_different_registers(ary1, ary2, limit, tmp, result);
4582 
4583   int length_offset  = arrayOopDesc::length_offset_in_bytes();
4584   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_byte ? T_BYTE : T_CHAR);
4585 
4586   if (is_array_equ) {
4587     // return true if the same array
4588     cmp(ary1, ary2);
4589     brx(Assembler::equal, true, Assembler::pn, Ldone);
4590     delayed()->add(G0, 1, result); // equal
4591 
4592     br_null(ary1, true, Assembler::pn, Ldone);
4593     delayed()->mov(G0, result);    // not equal
4594 
4595     br_null(ary2, true, Assembler::pn, Ldone);
4596     delayed()->mov(G0, result);    // not equal
4597 
4598     // load the lengths of arrays
4599     ld(Address(ary1, length_offset), limit);
4600     ld(Address(ary2, length_offset), tmp);
4601 
4602     // return false if the two arrays are not equal length
4603     cmp(limit, tmp);
4604     br(Assembler::notEqual, true, Assembler::pn, Ldone);
4605     delayed()->mov(G0, result);    // not equal
4606   }
4607 
4608   cmp_zero_and_br(Assembler::zero, limit, Ldone, true, Assembler::pn);
4609   delayed()->add(G0, 1, result); // zero-length arrays are equal
4610 
4611   if (is_array_equ) {
4612     // load array addresses
4613     add(ary1, base_offset, ary1);
4614     add(ary2, base_offset, ary2);
4615   } else {
4616     // We have no guarantee that on 64 bit the higher half of limit is 0
4617     signx(limit);
4618   }
4619 
4620   if (is_byte) {
4621     Label Lskip;
4622     // check for trailing byte
4623     andcc(limit, 0x1, tmp);
4624     br(Assembler::zero, false, Assembler::pt, Lskip);
4625     delayed()->nop();
4626 
4627     // compare the trailing byte
4628     sub(limit, sizeof(jbyte), limit);
4629     ldub(ary1, limit, result);
4630     ldub(ary2, limit, tmp);
4631     cmp(result, tmp);
4632     br(Assembler::notEqual, true, Assembler::pt, Ldone);
4633     delayed()->mov(G0, result);    // not equal
4634 
4635     // only one byte?
4636     cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
4637     delayed()->add(G0, 1, result); // zero-length arrays are equal
4638     bind(Lskip);
4639   } else if (is_array_equ) {
4640     // set byte count
4641     sll(limit, exact_log2(sizeof(jchar)), limit);
4642   }
4643 
4644   // check for trailing character
4645   andcc(limit, 0x2, tmp);
4646   br(Assembler::zero, false, Assembler::pt, Lvector);
4647   delayed()->nop();
4648 
4649   // compare the trailing char
4650   sub(limit, sizeof(jchar), limit);
4651   lduh(ary1, limit, result);
4652   lduh(ary2, limit, tmp);
4653   cmp(result, tmp);
4654   br(Assembler::notEqual, true, Assembler::pt, Ldone);
4655   delayed()->mov(G0, result);     // not equal
4656 
4657   // only one char?
4658   cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
4659   delayed()->add(G0, 1, result); // zero-length arrays are equal
4660 
4661   // word by word compare, dont't need alignment check
4662   bind(Lvector);
4663   // Shift ary1 and ary2 to the end of the arrays, negate limit
4664   add(ary1, limit, ary1);
4665   add(ary2, limit, ary2);
4666   neg(limit, limit);
4667 
4668   lduw(ary1, limit, result);
4669   bind(Lloop);
4670   lduw(ary2, limit, tmp);
4671   cmp(result, tmp);
4672   br(Assembler::notEqual, true, Assembler::pt, Ldone);
4673   delayed()->mov(G0, result);     // not equal
4674   inccc(limit, 2*sizeof(jchar));
4675   // annul LDUW if branch is not taken to prevent access past end of array
4676   br(Assembler::notZero, true, Assembler::pt, Lloop);
4677   delayed()->lduw(ary1, limit, result); // hoisted
4678 
4679   add(G0, 1, result); // equals
4680   bind(Ldone);
4681 }
4682 
4683 #endif
4684 
4685 // Use BIS for zeroing (count is in bytes).
4686 void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
4687   assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
4688   Register end = count;
4689   int cache_line_size = VM_Version::prefetch_data_size();
4690   // Minimum count when BIS zeroing can be used since
4691   // it needs membar which is expensive.
4692   int block_zero_size  = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
4693 
4694   Label small_loop;
4695   // Check if count is negative (dead code) or zero.
4696   // Note, count uses 64bit in 64 bit VM.
4697   cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
4698 
4699   // Use BIS zeroing only for big arrays since it requires membar.
4700   if (Assembler::is_simm13(block_zero_size)) { // < 4096
4701     cmp(count, block_zero_size);
4702   } else {
4703     set(block_zero_size, temp);
4704     cmp(count, temp);
4705   }
4706   br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
4707   delayed()->add(to, count, end);
4708 
4709   // Note: size is >= three (32 bytes) cache lines.
4710 
4711   // Clean the beginning of space up to next cache line.
4712   for (int offs = 0; offs < cache_line_size; offs += 8) {
4713     stx(G0, to, offs);
4714   }
4715 
4716   // align to next cache line
4717   add(to, cache_line_size, to);
4718   and3(to, -cache_line_size, to);
4719 
4720   // Note: size left >= two (32 bytes) cache lines.
4721 
4722   // BIS should not be used to zero tail (64 bytes)
4723   // to avoid zeroing a header of the following object.
4724   sub(end, (cache_line_size*2)-8, end);
4725 
4726   Label bis_loop;
4727   bind(bis_loop);
4728   stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
4729   add(to, cache_line_size, to);
4730   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
4731 
4732   // BIS needs membar.
4733   membar(Assembler::StoreLoad);
4734 
4735   add(end, (cache_line_size*2)-8, end); // restore end
4736   cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
4737 
4738   // Clean the tail.
4739   bind(small_loop);
4740   stx(G0, to, 0);
4741   add(to, 8, to);
4742   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
4743   nop(); // Separate short branches
4744 }
4745 
4746 /**
4747  * Update CRC-32[C] with a byte value according to constants in table
4748  *
4749  * @param [in,out]crc   Register containing the crc.
4750  * @param [in]val       Register containing the byte to fold into the CRC.
4751  * @param [in]table     Register containing the table of crc constants.
4752  *
4753  * uint32_t crc;
4754  * val = crc_table[(val ^ crc) & 0xFF];
4755  * crc = val ^ (crc >> 8);
4756  */
4757 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
4758   xor3(val, crc, val);
4759   and3(val, 0xFF, val);
4760   sllx(val, 2, val);
4761   lduw(table, val, val);
4762   srlx(crc, 8, crc);
4763   xor3(val, crc, crc);
4764 }
4765 
4766 // Reverse byte order of lower 32 bits, assuming upper 32 bits all zeros
4767 void MacroAssembler::reverse_bytes_32(Register src, Register dst, Register tmp) {
4768   srlx(src, 24, dst);
4769 
4770   sllx(src, 32+8, tmp);
4771   srlx(tmp, 32+24, tmp);
4772   sllx(tmp, 8, tmp);
4773   or3(dst, tmp, dst);
4774 
4775   sllx(src, 32+16, tmp);
4776   srlx(tmp, 32+24, tmp);
4777   sllx(tmp, 16, tmp);
4778   or3(dst, tmp, dst);
4779 
4780   sllx(src, 32+24, tmp);
4781   srlx(tmp, 32, tmp);
4782   or3(dst, tmp, dst);
4783 }
4784 
4785 void MacroAssembler::movitof_revbytes(Register src, FloatRegister dst, Register tmp1, Register tmp2) {
4786   reverse_bytes_32(src, tmp1, tmp2);
4787   movxtod(tmp1, dst);
4788 }
4789 
4790 void MacroAssembler::movftoi_revbytes(FloatRegister src, Register dst, Register tmp1, Register tmp2) {
4791   movdtox(src, tmp1);
4792   reverse_bytes_32(tmp1, dst, tmp2);
4793 }
4794 
4795 void MacroAssembler::fold_128bit_crc32(Register xcrc_hi, Register xcrc_lo, Register xK_hi, Register xK_lo, Register xtmp_hi, Register xtmp_lo, Register buf, int offset) {
4796   xmulx(xcrc_hi, xK_hi, xtmp_lo);
4797   xmulxhi(xcrc_hi, xK_hi, xtmp_hi);
4798   xmulxhi(xcrc_lo, xK_lo, xcrc_hi);
4799   xmulx(xcrc_lo, xK_lo, xcrc_lo);
4800   xor3(xcrc_lo, xtmp_lo, xcrc_lo);
4801   xor3(xcrc_hi, xtmp_hi, xcrc_hi);
4802   ldxl(buf, G0, xtmp_lo);
4803   inc(buf, 8);
4804   ldxl(buf, G0, xtmp_hi);
4805   inc(buf, 8);
4806   xor3(xcrc_lo, xtmp_lo, xcrc_lo);
4807   xor3(xcrc_hi, xtmp_hi, xcrc_hi);
4808 }
4809 
4810 void MacroAssembler::fold_128bit_crc32(Register xcrc_hi, Register xcrc_lo, Register xK_hi, Register xK_lo, Register xtmp_hi, Register xtmp_lo, Register xbuf_hi, Register xbuf_lo) {
4811   mov(xcrc_lo, xtmp_lo);
4812   mov(xcrc_hi, xtmp_hi);
4813   xmulx(xtmp_hi, xK_hi, xtmp_lo);
4814   xmulxhi(xtmp_hi, xK_hi, xtmp_hi);
4815   xmulxhi(xcrc_lo, xK_lo, xcrc_hi);
4816   xmulx(xcrc_lo, xK_lo, xcrc_lo);
4817   xor3(xcrc_lo, xbuf_lo, xcrc_lo);
4818   xor3(xcrc_hi, xbuf_hi, xcrc_hi);
4819   xor3(xcrc_lo, xtmp_lo, xcrc_lo);
4820   xor3(xcrc_hi, xtmp_hi, xcrc_hi);
4821 }
4822 
4823 void MacroAssembler::fold_8bit_crc32(Register xcrc, Register table, Register xtmp, Register tmp) {
4824   and3(xcrc, 0xFF, tmp);
4825   sllx(tmp, 2, tmp);
4826   lduw(table, tmp, xtmp);
4827   srlx(xcrc, 8, xcrc);
4828   xor3(xtmp, xcrc, xcrc);
4829 }
4830 
4831 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
4832   and3(crc, 0xFF, tmp);
4833   srlx(crc, 8, crc);
4834   sllx(tmp, 2, tmp);
4835   lduw(table, tmp, tmp);
4836   xor3(tmp, crc, crc);
4837 }
4838 
4839 #define CRC32_TMP_REG_NUM 18
4840 
4841 #define CRC32_CONST_64  0x163cd6124
4842 #define CRC32_CONST_96  0x0ccaa009e
4843 #define CRC32_CONST_160 0x1751997d0
4844 #define CRC32_CONST_480 0x1c6e41596
4845 #define CRC32_CONST_544 0x154442bd4
4846 
4847 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table) {
4848 
4849   Label L_cleanup_loop, L_cleanup_check, L_align_loop, L_align_check;
4850   Label L_main_loop_prologue;
4851   Label L_fold_512b, L_fold_512b_loop, L_fold_128b;
4852   Label L_fold_tail, L_fold_tail_loop;
4853   Label L_8byte_fold_loop, L_8byte_fold_check;
4854 
4855   const Register tmp[CRC32_TMP_REG_NUM] = {L0, L1, L2, L3, L4, L5, L6, G1, I0, I1, I2, I3, I4, I5, I7, O4, O5, G3};
4856 
4857   Register const_64  = tmp[CRC32_TMP_REG_NUM-1];
4858   Register const_96  = tmp[CRC32_TMP_REG_NUM-1];
4859   Register const_160 = tmp[CRC32_TMP_REG_NUM-2];
4860   Register const_480 = tmp[CRC32_TMP_REG_NUM-1];
4861   Register const_544 = tmp[CRC32_TMP_REG_NUM-2];
4862 
4863   set(ExternalAddress(StubRoutines::crc_table_addr()), table);
4864 
4865   not1(crc); // ~c
4866   clruwu(crc); // clear upper 32 bits of crc
4867 
4868   // Check if below cutoff, proceed directly to cleanup code
4869   mov(31, G4);
4870   cmp_and_br_short(len, G4, Assembler::lessEqualUnsigned, Assembler::pt, L_cleanup_check);
4871 
4872   // Align buffer to 8 byte boundry
4873   mov(8, O5);
4874   and3(buf, 0x7, O4);
4875   sub(O5, O4, O5);
4876   and3(O5, 0x7, O5);
4877   sub(len, O5, len);
4878   ba(L_align_check);
4879   delayed()->nop();
4880 
4881   // Alignment loop, table look up method for up to 7 bytes
4882   bind(L_align_loop);
4883   ldub(buf, 0, O4);
4884   inc(buf);
4885   dec(O5);
4886   xor3(O4, crc, O4);
4887   and3(O4, 0xFF, O4);
4888   sllx(O4, 2, O4);
4889   lduw(table, O4, O4);
4890   srlx(crc, 8, crc);
4891   xor3(O4, crc, crc);
4892   bind(L_align_check);
4893   nop();
4894   cmp_and_br_short(O5, 0, Assembler::notEqual, Assembler::pt, L_align_loop);
4895 
4896   // Aligned on 64-bit (8-byte) boundry at this point
4897   // Check if still above cutoff (31-bytes)
4898   mov(31, G4);
4899   cmp_and_br_short(len, G4, Assembler::lessEqualUnsigned, Assembler::pt, L_cleanup_check);
4900   // At least 32 bytes left to process
4901 
4902   // Free up registers by storing them to FP registers
4903   for (int i = 0; i < CRC32_TMP_REG_NUM; i++) {
4904     movxtod(tmp[i], as_FloatRegister(2*i));
4905   }
4906 
4907   // Determine which loop to enter
4908   // Shared prologue
4909   ldxl(buf, G0, tmp[0]);
4910   inc(buf, 8);
4911   ldxl(buf, G0, tmp[1]);
4912   inc(buf, 8);
4913   xor3(tmp[0], crc, tmp[0]); // Fold CRC into first few bytes
4914   and3(crc, 0, crc); // Clear out the crc register
4915   // Main loop needs 128-bytes at least
4916   mov(128, G4);
4917   mov(64, tmp[2]);
4918   cmp_and_br_short(len, G4, Assembler::greaterEqualUnsigned, Assembler::pt, L_main_loop_prologue);
4919   // Less than 64 bytes
4920   nop();
4921   cmp_and_br_short(len, tmp[2], Assembler::lessUnsigned, Assembler::pt, L_fold_tail);
4922   // Between 64 and 127 bytes
4923   set64(CRC32_CONST_96,  const_96,  tmp[8]);
4924   set64(CRC32_CONST_160, const_160, tmp[9]);
4925   fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[2], tmp[3], buf, 0);
4926   fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[4], tmp[5], buf, 16);
4927   fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[6], tmp[7], buf, 32);
4928   dec(len, 48);
4929   ba(L_fold_tail);
4930   delayed()->nop();
4931 
4932   bind(L_main_loop_prologue);
4933   for (int i = 2; i < 8; i++) {
4934     ldxl(buf, G0, tmp[i]);
4935     inc(buf, 8);
4936   }
4937 
4938   // Fold total 512 bits of polynomial on each iteration,
4939   // 128 bits per each of 4 parallel streams
4940   set64(CRC32_CONST_480, const_480, tmp[8]);
4941   set64(CRC32_CONST_544, const_544, tmp[9]);
4942 
4943   mov(128, G4);
4944   bind(L_fold_512b_loop);
4945   fold_128bit_crc32(tmp[1], tmp[0], const_480, const_544, tmp[9],  tmp[8],  buf,  0);
4946   fold_128bit_crc32(tmp[3], tmp[2], const_480, const_544, tmp[11], tmp[10], buf, 16);
4947   fold_128bit_crc32(tmp[5], tmp[4], const_480, const_544, tmp[13], tmp[12], buf, 32);
4948   fold_128bit_crc32(tmp[7], tmp[6], const_480, const_544, tmp[15], tmp[14], buf, 64);
4949   dec(len, 64);
4950   cmp_and_br_short(len, G4, Assembler::greaterEqualUnsigned, Assembler::pt, L_fold_512b_loop);
4951 
4952   // Fold 512 bits to 128 bits
4953   bind(L_fold_512b);
4954   set64(CRC32_CONST_96,  const_96,  tmp[8]);
4955   set64(CRC32_CONST_160, const_160, tmp[9]);
4956 
4957   fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[8], tmp[9], tmp[3], tmp[2]);
4958   fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[8], tmp[9], tmp[5], tmp[4]);
4959   fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[8], tmp[9], tmp[7], tmp[6]);
4960   dec(len, 48);
4961 
4962   // Fold the rest of 128 bits data chunks
4963   bind(L_fold_tail);
4964   mov(32, G4);
4965   cmp_and_br_short(len, G4, Assembler::lessEqualUnsigned, Assembler::pt, L_fold_128b);
4966 
4967   set64(CRC32_CONST_96,  const_96,  tmp[8]);
4968   set64(CRC32_CONST_160, const_160, tmp[9]);
4969 
4970   bind(L_fold_tail_loop);
4971   fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[2], tmp[3], buf, 0);
4972   sub(len, 16, len);
4973   cmp_and_br_short(len, G4, Assembler::greaterEqualUnsigned, Assembler::pt, L_fold_tail_loop);
4974 
4975   // Fold the 128 bits in tmps 0 - 1 into tmp 1
4976   bind(L_fold_128b);
4977 
4978   set64(CRC32_CONST_64, const_64, tmp[4]);
4979 
4980   xmulx(const_64, tmp[0], tmp[2]);
4981   xmulxhi(const_64, tmp[0], tmp[3]);
4982 
4983   srl(tmp[2], G0, tmp[4]);
4984   xmulx(const_64, tmp[4], tmp[4]);
4985 
4986   srlx(tmp[2], 32, tmp[2]);
4987   sllx(tmp[3], 32, tmp[3]);
4988   or3(tmp[2], tmp[3], tmp[2]);
4989 
4990   xor3(tmp[4], tmp[1], tmp[4]);
4991   xor3(tmp[4], tmp[2], tmp[1]);
4992   dec(len, 8);
4993 
4994   // Use table lookup for the 8 bytes left in tmp[1]
4995   dec(len, 8);
4996 
4997   // 8 8-bit folds to compute 32-bit CRC.
4998   for (int j = 0; j < 4; j++) {
4999     fold_8bit_crc32(tmp[1], table, tmp[2], tmp[3]);
5000   }
5001   srl(tmp[1], G0, crc); // move 32 bits to general register
5002   for (int j = 0; j < 4; j++) {
5003     fold_8bit_crc32(crc, table, tmp[3]);
5004   }
5005 
5006   bind(L_8byte_fold_check);
5007 
5008   // Restore int registers saved in FP registers
5009   for (int i = 0; i < CRC32_TMP_REG_NUM; i++) {
5010     movdtox(as_FloatRegister(2*i), tmp[i]);
5011   }
5012 
5013   ba(L_cleanup_check);
5014   delayed()->nop();
5015 
5016   // Table look-up method for the remaining few bytes
5017   bind(L_cleanup_loop);
5018   ldub(buf, 0, O4);
5019   inc(buf);
5020   dec(len);
5021   xor3(O4, crc, O4);
5022   and3(O4, 0xFF, O4);
5023   sllx(O4, 2, O4);
5024   lduw(table, O4, O4);
5025   srlx(crc, 8, crc);
5026   xor3(O4, crc, crc);
5027   bind(L_cleanup_check);
5028   nop();
5029   cmp_and_br_short(len, 0, Assembler::greaterUnsigned, Assembler::pt, L_cleanup_loop);
5030 
5031   not1(crc);
5032 }
5033