1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/biasedLocking.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/os.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/thread.hpp"
  43 #include "utilities/macros.hpp"
  44 #if INCLUDE_ALL_GCS
  45 #include "gc/g1/g1CollectedHeap.inline.hpp"
  46 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  47 #include "gc/g1/heapRegion.hpp"
  48 #endif // INCLUDE_ALL_GCS
  49 #include "crc32c.h"
  50 #ifdef COMPILER2
  51 #include "opto/intrinsicnode.hpp"
  52 #endif
  53 
  54 #ifdef PRODUCT
  55 #define BLOCK_COMMENT(str) /* nothing */
  56 #define STOP(error) stop(error)
  57 #else
  58 #define BLOCK_COMMENT(str) block_comment(str)
  59 #define STOP(error) block_comment(error); stop(error)
  60 #endif
  61 
  62 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  63 
  64 #ifdef ASSERT
  65 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  66 #endif
  67 
  68 static Assembler::Condition reverse[] = {
  69     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  70     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  71     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  72     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  73     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  74     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  75     Assembler::above          /* belowEqual    = 0x6 */ ,
  76     Assembler::belowEqual     /* above         = 0x7 */ ,
  77     Assembler::positive       /* negative      = 0x8 */ ,
  78     Assembler::negative       /* positive      = 0x9 */ ,
  79     Assembler::noParity       /* parity        = 0xa */ ,
  80     Assembler::parity         /* noParity      = 0xb */ ,
  81     Assembler::greaterEqual   /* less          = 0xc */ ,
  82     Assembler::less           /* greaterEqual  = 0xd */ ,
  83     Assembler::greater        /* lessEqual     = 0xe */ ,
  84     Assembler::lessEqual      /* greater       = 0xf, */
  85 
  86 };
  87 
  88 
  89 // Implementation of MacroAssembler
  90 
  91 // First all the versions that have distinct versions depending on 32/64 bit
  92 // Unless the difference is trivial (1 line or so).
  93 
  94 #ifndef _LP64
  95 
  96 // 32bit versions
  97 
  98 Address MacroAssembler::as_Address(AddressLiteral adr) {
  99   return Address(adr.target(), adr.rspec());
 100 }
 101 
 102 Address MacroAssembler::as_Address(ArrayAddress adr) {
 103   return Address::make_array(adr);
 104 }
 105 
 106 void MacroAssembler::call_VM_leaf_base(address entry_point,
 107                                        int number_of_arguments) {
 108   call(RuntimeAddress(entry_point));
 109   increment(rsp, number_of_arguments * wordSize);
 110 }
 111 
 112 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 114 }
 115 
 116 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 117   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 118 }
 119 
 120 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 122 }
 123 
 124 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 125   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 126 }
 127 
 128 void MacroAssembler::extend_sign(Register hi, Register lo) {
 129   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 130   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 131     cdql();
 132   } else {
 133     movl(hi, lo);
 134     sarl(hi, 31);
 135   }
 136 }
 137 
 138 void MacroAssembler::jC2(Register tmp, Label& L) {
 139   // set parity bit if FPU flag C2 is set (via rax)
 140   save_rax(tmp);
 141   fwait(); fnstsw_ax();
 142   sahf();
 143   restore_rax(tmp);
 144   // branch
 145   jcc(Assembler::parity, L);
 146 }
 147 
 148 void MacroAssembler::jnC2(Register tmp, Label& L) {
 149   // set parity bit if FPU flag C2 is set (via rax)
 150   save_rax(tmp);
 151   fwait(); fnstsw_ax();
 152   sahf();
 153   restore_rax(tmp);
 154   // branch
 155   jcc(Assembler::noParity, L);
 156 }
 157 
 158 // 32bit can do a case table jump in one instruction but we no longer allow the base
 159 // to be installed in the Address class
 160 void MacroAssembler::jump(ArrayAddress entry) {
 161   jmp(as_Address(entry));
 162 }
 163 
 164 // Note: y_lo will be destroyed
 165 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 166   // Long compare for Java (semantics as described in JVM spec.)
 167   Label high, low, done;
 168 
 169   cmpl(x_hi, y_hi);
 170   jcc(Assembler::less, low);
 171   jcc(Assembler::greater, high);
 172   // x_hi is the return register
 173   xorl(x_hi, x_hi);
 174   cmpl(x_lo, y_lo);
 175   jcc(Assembler::below, low);
 176   jcc(Assembler::equal, done);
 177 
 178   bind(high);
 179   xorl(x_hi, x_hi);
 180   increment(x_hi);
 181   jmp(done);
 182 
 183   bind(low);
 184   xorl(x_hi, x_hi);
 185   decrementl(x_hi);
 186 
 187   bind(done);
 188 }
 189 
 190 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 191     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 192 }
 193 
 194 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 195   // leal(dst, as_Address(adr));
 196   // see note in movl as to why we must use a move
 197   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 198 }
 199 
 200 void MacroAssembler::leave() {
 201   mov(rsp, rbp);
 202   pop(rbp);
 203 }
 204 
 205 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 206   // Multiplication of two Java long values stored on the stack
 207   // as illustrated below. Result is in rdx:rax.
 208   //
 209   // rsp ---> [  ??  ] \               \
 210   //            ....    | y_rsp_offset  |
 211   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 212   //          [ y_hi ]                  | (in bytes)
 213   //            ....                    |
 214   //          [ x_lo ]                 /
 215   //          [ x_hi ]
 216   //            ....
 217   //
 218   // Basic idea: lo(result) = lo(x_lo * y_lo)
 219   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 220   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 221   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 222   Label quick;
 223   // load x_hi, y_hi and check if quick
 224   // multiplication is possible
 225   movl(rbx, x_hi);
 226   movl(rcx, y_hi);
 227   movl(rax, rbx);
 228   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 229   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 230   // do full multiplication
 231   // 1st step
 232   mull(y_lo);                                    // x_hi * y_lo
 233   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 234   // 2nd step
 235   movl(rax, x_lo);
 236   mull(rcx);                                     // x_lo * y_hi
 237   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 238   // 3rd step
 239   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 240   movl(rax, x_lo);
 241   mull(y_lo);                                    // x_lo * y_lo
 242   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 243 }
 244 
 245 void MacroAssembler::lneg(Register hi, Register lo) {
 246   negl(lo);
 247   adcl(hi, 0);
 248   negl(hi);
 249 }
 250 
 251 void MacroAssembler::lshl(Register hi, Register lo) {
 252   // Java shift left long support (semantics as described in JVM spec., p.305)
 253   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 254   // shift value is in rcx !
 255   assert(hi != rcx, "must not use rcx");
 256   assert(lo != rcx, "must not use rcx");
 257   const Register s = rcx;                        // shift count
 258   const int      n = BitsPerWord;
 259   Label L;
 260   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 261   cmpl(s, n);                                    // if (s < n)
 262   jcc(Assembler::less, L);                       // else (s >= n)
 263   movl(hi, lo);                                  // x := x << n
 264   xorl(lo, lo);
 265   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 266   bind(L);                                       // s (mod n) < n
 267   shldl(hi, lo);                                 // x := x << s
 268   shll(lo);
 269 }
 270 
 271 
 272 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 273   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 274   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 275   assert(hi != rcx, "must not use rcx");
 276   assert(lo != rcx, "must not use rcx");
 277   const Register s = rcx;                        // shift count
 278   const int      n = BitsPerWord;
 279   Label L;
 280   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 281   cmpl(s, n);                                    // if (s < n)
 282   jcc(Assembler::less, L);                       // else (s >= n)
 283   movl(lo, hi);                                  // x := x >> n
 284   if (sign_extension) sarl(hi, 31);
 285   else                xorl(hi, hi);
 286   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 287   bind(L);                                       // s (mod n) < n
 288   shrdl(lo, hi);                                 // x := x >> s
 289   if (sign_extension) sarl(hi);
 290   else                shrl(hi);
 291 }
 292 
 293 void MacroAssembler::movoop(Register dst, jobject obj) {
 294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 295 }
 296 
 297 void MacroAssembler::movoop(Address dst, jobject obj) {
 298   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 299 }
 300 
 301 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 303 }
 304 
 305 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 306   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 307 }
 308 
 309 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 310   // scratch register is not used,
 311   // it is defined to match parameters of 64-bit version of this method.
 312   if (src.is_lval()) {
 313     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 314   } else {
 315     movl(dst, as_Address(src));
 316   }
 317 }
 318 
 319 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 320   movl(as_Address(dst), src);
 321 }
 322 
 323 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 324   movl(dst, as_Address(src));
 325 }
 326 
 327 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 328 void MacroAssembler::movptr(Address dst, intptr_t src) {
 329   movl(dst, src);
 330 }
 331 
 332 
 333 void MacroAssembler::pop_callee_saved_registers() {
 334   pop(rcx);
 335   pop(rdx);
 336   pop(rdi);
 337   pop(rsi);
 338 }
 339 
 340 void MacroAssembler::pop_fTOS() {
 341   fld_d(Address(rsp, 0));
 342   addl(rsp, 2 * wordSize);
 343 }
 344 
 345 void MacroAssembler::push_callee_saved_registers() {
 346   push(rsi);
 347   push(rdi);
 348   push(rdx);
 349   push(rcx);
 350 }
 351 
 352 void MacroAssembler::push_fTOS() {
 353   subl(rsp, 2 * wordSize);
 354   fstp_d(Address(rsp, 0));
 355 }
 356 
 357 
 358 void MacroAssembler::pushoop(jobject obj) {
 359   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 360 }
 361 
 362 void MacroAssembler::pushklass(Metadata* obj) {
 363   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 364 }
 365 
 366 void MacroAssembler::pushptr(AddressLiteral src) {
 367   if (src.is_lval()) {
 368     push_literal32((int32_t)src.target(), src.rspec());
 369   } else {
 370     pushl(as_Address(src));
 371   }
 372 }
 373 
 374 void MacroAssembler::set_word_if_not_zero(Register dst) {
 375   xorl(dst, dst);
 376   set_byte_if_not_zero(dst);
 377 }
 378 
 379 static void pass_arg0(MacroAssembler* masm, Register arg) {
 380   masm->push(arg);
 381 }
 382 
 383 static void pass_arg1(MacroAssembler* masm, Register arg) {
 384   masm->push(arg);
 385 }
 386 
 387 static void pass_arg2(MacroAssembler* masm, Register arg) {
 388   masm->push(arg);
 389 }
 390 
 391 static void pass_arg3(MacroAssembler* masm, Register arg) {
 392   masm->push(arg);
 393 }
 394 
 395 #ifndef PRODUCT
 396 extern "C" void findpc(intptr_t x);
 397 #endif
 398 
 399 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 400   // In order to get locks to work, we need to fake a in_VM state
 401   JavaThread* thread = JavaThread::current();
 402   JavaThreadState saved_state = thread->thread_state();
 403   thread->set_thread_state(_thread_in_vm);
 404   if (ShowMessageBoxOnError) {
 405     JavaThread* thread = JavaThread::current();
 406     JavaThreadState saved_state = thread->thread_state();
 407     thread->set_thread_state(_thread_in_vm);
 408     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 409       ttyLocker ttyl;
 410       BytecodeCounter::print();
 411     }
 412     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 413     // This is the value of eip which points to where verify_oop will return.
 414     if (os::message_box(msg, "Execution stopped, print registers?")) {
 415       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 416       BREAKPOINT;
 417     }
 418   } else {
 419     ttyLocker ttyl;
 420     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 421   }
 422   // Don't assert holding the ttyLock
 423     assert(false, "DEBUG MESSAGE: %s", msg);
 424   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 425 }
 426 
 427 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 428   ttyLocker ttyl;
 429   FlagSetting fs(Debugging, true);
 430   tty->print_cr("eip = 0x%08x", eip);
 431 #ifndef PRODUCT
 432   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 433     tty->cr();
 434     findpc(eip);
 435     tty->cr();
 436   }
 437 #endif
 438 #define PRINT_REG(rax) \
 439   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 440   PRINT_REG(rax);
 441   PRINT_REG(rbx);
 442   PRINT_REG(rcx);
 443   PRINT_REG(rdx);
 444   PRINT_REG(rdi);
 445   PRINT_REG(rsi);
 446   PRINT_REG(rbp);
 447   PRINT_REG(rsp);
 448 #undef PRINT_REG
 449   // Print some words near top of staack.
 450   int* dump_sp = (int*) rsp;
 451   for (int col1 = 0; col1 < 8; col1++) {
 452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 453     os::print_location(tty, *dump_sp++);
 454   }
 455   for (int row = 0; row < 16; row++) {
 456     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 457     for (int col = 0; col < 8; col++) {
 458       tty->print(" 0x%08x", *dump_sp++);
 459     }
 460     tty->cr();
 461   }
 462   // Print some instructions around pc:
 463   Disassembler::decode((address)eip-64, (address)eip);
 464   tty->print_cr("--------");
 465   Disassembler::decode((address)eip, (address)eip+32);
 466 }
 467 
 468 void MacroAssembler::stop(const char* msg) {
 469   ExternalAddress message((address)msg);
 470   // push address of message
 471   pushptr(message.addr());
 472   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 473   pusha();                                            // push registers
 474   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 475   hlt();
 476 }
 477 
 478 void MacroAssembler::warn(const char* msg) {
 479   push_CPU_state();
 480 
 481   ExternalAddress message((address) msg);
 482   // push address of message
 483   pushptr(message.addr());
 484 
 485   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 486   addl(rsp, wordSize);       // discard argument
 487   pop_CPU_state();
 488 }
 489 
 490 void MacroAssembler::print_state() {
 491   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 492   pusha();                                            // push registers
 493 
 494   push_CPU_state();
 495   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 496   pop_CPU_state();
 497 
 498   popa();
 499   addl(rsp, wordSize);
 500 }
 501 
 502 #else // _LP64
 503 
 504 // 64 bit versions
 505 
 506 Address MacroAssembler::as_Address(AddressLiteral adr) {
 507   // amd64 always does this as a pc-rel
 508   // we can be absolute or disp based on the instruction type
 509   // jmp/call are displacements others are absolute
 510   assert(!adr.is_lval(), "must be rval");
 511   assert(reachable(adr), "must be");
 512   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 513 
 514 }
 515 
 516 Address MacroAssembler::as_Address(ArrayAddress adr) {
 517   AddressLiteral base = adr.base();
 518   lea(rscratch1, base);
 519   Address index = adr.index();
 520   assert(index._disp == 0, "must not have disp"); // maybe it can?
 521   Address array(rscratch1, index._index, index._scale, index._disp);
 522   return array;
 523 }
 524 
 525 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 526   Label L, E;
 527 
 528 #ifdef _WIN64
 529   // Windows always allocates space for it's register args
 530   assert(num_args <= 4, "only register arguments supported");
 531   subq(rsp,  frame::arg_reg_save_area_bytes);
 532 #endif
 533 
 534   // Align stack if necessary
 535   testl(rsp, 15);
 536   jcc(Assembler::zero, L);
 537 
 538   subq(rsp, 8);
 539   {
 540     call(RuntimeAddress(entry_point));
 541   }
 542   addq(rsp, 8);
 543   jmp(E);
 544 
 545   bind(L);
 546   {
 547     call(RuntimeAddress(entry_point));
 548   }
 549 
 550   bind(E);
 551 
 552 #ifdef _WIN64
 553   // restore stack pointer
 554   addq(rsp, frame::arg_reg_save_area_bytes);
 555 #endif
 556 
 557 }
 558 
 559 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 560   assert(!src2.is_lval(), "should use cmpptr");
 561 
 562   if (reachable(src2)) {
 563     cmpq(src1, as_Address(src2));
 564   } else {
 565     lea(rscratch1, src2);
 566     Assembler::cmpq(src1, Address(rscratch1, 0));
 567   }
 568 }
 569 
 570 int MacroAssembler::corrected_idivq(Register reg) {
 571   // Full implementation of Java ldiv and lrem; checks for special
 572   // case as described in JVM spec., p.243 & p.271.  The function
 573   // returns the (pc) offset of the idivl instruction - may be needed
 574   // for implicit exceptions.
 575   //
 576   //         normal case                           special case
 577   //
 578   // input : rax: dividend                         min_long
 579   //         reg: divisor   (may not be eax/edx)   -1
 580   //
 581   // output: rax: quotient  (= rax idiv reg)       min_long
 582   //         rdx: remainder (= rax irem reg)       0
 583   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 584   static const int64_t min_long = 0x8000000000000000;
 585   Label normal_case, special_case;
 586 
 587   // check for special case
 588   cmp64(rax, ExternalAddress((address) &min_long));
 589   jcc(Assembler::notEqual, normal_case);
 590   xorl(rdx, rdx); // prepare rdx for possible special case (where
 591                   // remainder = 0)
 592   cmpq(reg, -1);
 593   jcc(Assembler::equal, special_case);
 594 
 595   // handle normal case
 596   bind(normal_case);
 597   cdqq();
 598   int idivq_offset = offset();
 599   idivq(reg);
 600 
 601   // normal and special case exit
 602   bind(special_case);
 603 
 604   return idivq_offset;
 605 }
 606 
 607 void MacroAssembler::decrementq(Register reg, int value) {
 608   if (value == min_jint) { subq(reg, value); return; }
 609   if (value <  0) { incrementq(reg, -value); return; }
 610   if (value == 0) {                        ; return; }
 611   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 612   /* else */      { subq(reg, value)       ; return; }
 613 }
 614 
 615 void MacroAssembler::decrementq(Address dst, int value) {
 616   if (value == min_jint) { subq(dst, value); return; }
 617   if (value <  0) { incrementq(dst, -value); return; }
 618   if (value == 0) {                        ; return; }
 619   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 620   /* else */      { subq(dst, value)       ; return; }
 621 }
 622 
 623 void MacroAssembler::incrementq(AddressLiteral dst) {
 624   if (reachable(dst)) {
 625     incrementq(as_Address(dst));
 626   } else {
 627     lea(rscratch1, dst);
 628     incrementq(Address(rscratch1, 0));
 629   }
 630 }
 631 
 632 void MacroAssembler::incrementq(Register reg, int value) {
 633   if (value == min_jint) { addq(reg, value); return; }
 634   if (value <  0) { decrementq(reg, -value); return; }
 635   if (value == 0) {                        ; return; }
 636   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 637   /* else */      { addq(reg, value)       ; return; }
 638 }
 639 
 640 void MacroAssembler::incrementq(Address dst, int value) {
 641   if (value == min_jint) { addq(dst, value); return; }
 642   if (value <  0) { decrementq(dst, -value); return; }
 643   if (value == 0) {                        ; return; }
 644   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 645   /* else */      { addq(dst, value)       ; return; }
 646 }
 647 
 648 // 32bit can do a case table jump in one instruction but we no longer allow the base
 649 // to be installed in the Address class
 650 void MacroAssembler::jump(ArrayAddress entry) {
 651   lea(rscratch1, entry.base());
 652   Address dispatch = entry.index();
 653   assert(dispatch._base == noreg, "must be");
 654   dispatch._base = rscratch1;
 655   jmp(dispatch);
 656 }
 657 
 658 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 659   ShouldNotReachHere(); // 64bit doesn't use two regs
 660   cmpq(x_lo, y_lo);
 661 }
 662 
 663 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 664     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 665 }
 666 
 667 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 668   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 669   movptr(dst, rscratch1);
 670 }
 671 
 672 void MacroAssembler::leave() {
 673   // %%% is this really better? Why not on 32bit too?
 674   emit_int8((unsigned char)0xC9); // LEAVE
 675 }
 676 
 677 void MacroAssembler::lneg(Register hi, Register lo) {
 678   ShouldNotReachHere(); // 64bit doesn't use two regs
 679   negq(lo);
 680 }
 681 
 682 void MacroAssembler::movoop(Register dst, jobject obj) {
 683   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 684 }
 685 
 686 void MacroAssembler::movoop(Address dst, jobject obj) {
 687   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 688   movq(dst, rscratch1);
 689 }
 690 
 691 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 692   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 693 }
 694 
 695 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 696   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 697   movq(dst, rscratch1);
 698 }
 699 
 700 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 701   if (src.is_lval()) {
 702     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 703   } else {
 704     if (reachable(src)) {
 705       movq(dst, as_Address(src));
 706     } else {
 707       lea(scratch, src);
 708       movq(dst, Address(scratch, 0));
 709     }
 710   }
 711 }
 712 
 713 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 714   movq(as_Address(dst), src);
 715 }
 716 
 717 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 718   movq(dst, as_Address(src));
 719 }
 720 
 721 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 722 void MacroAssembler::movptr(Address dst, intptr_t src) {
 723   mov64(rscratch1, src);
 724   movq(dst, rscratch1);
 725 }
 726 
 727 // These are mostly for initializing NULL
 728 void MacroAssembler::movptr(Address dst, int32_t src) {
 729   movslq(dst, src);
 730 }
 731 
 732 void MacroAssembler::movptr(Register dst, int32_t src) {
 733   mov64(dst, (intptr_t)src);
 734 }
 735 
 736 void MacroAssembler::pushoop(jobject obj) {
 737   movoop(rscratch1, obj);
 738   push(rscratch1);
 739 }
 740 
 741 void MacroAssembler::pushklass(Metadata* obj) {
 742   mov_metadata(rscratch1, obj);
 743   push(rscratch1);
 744 }
 745 
 746 void MacroAssembler::pushptr(AddressLiteral src) {
 747   lea(rscratch1, src);
 748   if (src.is_lval()) {
 749     push(rscratch1);
 750   } else {
 751     pushq(Address(rscratch1, 0));
 752   }
 753 }
 754 
 755 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
 756                                            bool clear_pc) {
 757   // we must set sp to zero to clear frame
 758   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 759   // must clear fp, so that compiled frames are not confused; it is
 760   // possible that we need it only for debugging
 761   if (clear_fp) {
 762     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 763   }
 764 
 765   if (clear_pc) {
 766     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 767   }
 768 }
 769 
 770 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 771                                          Register last_java_fp,
 772                                          address  last_java_pc) {
 773   // determine last_java_sp register
 774   if (!last_java_sp->is_valid()) {
 775     last_java_sp = rsp;
 776   }
 777 
 778   // last_java_fp is optional
 779   if (last_java_fp->is_valid()) {
 780     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 781            last_java_fp);
 782   }
 783 
 784   // last_java_pc is optional
 785   if (last_java_pc != NULL) {
 786     Address java_pc(r15_thread,
 787                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 788     lea(rscratch1, InternalAddress(last_java_pc));
 789     movptr(java_pc, rscratch1);
 790   }
 791 
 792   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 793 }
 794 
 795 static void pass_arg0(MacroAssembler* masm, Register arg) {
 796   if (c_rarg0 != arg ) {
 797     masm->mov(c_rarg0, arg);
 798   }
 799 }
 800 
 801 static void pass_arg1(MacroAssembler* masm, Register arg) {
 802   if (c_rarg1 != arg ) {
 803     masm->mov(c_rarg1, arg);
 804   }
 805 }
 806 
 807 static void pass_arg2(MacroAssembler* masm, Register arg) {
 808   if (c_rarg2 != arg ) {
 809     masm->mov(c_rarg2, arg);
 810   }
 811 }
 812 
 813 static void pass_arg3(MacroAssembler* masm, Register arg) {
 814   if (c_rarg3 != arg ) {
 815     masm->mov(c_rarg3, arg);
 816   }
 817 }
 818 
 819 void MacroAssembler::stop(const char* msg) {
 820   address rip = pc();
 821   pusha(); // get regs on stack
 822   lea(c_rarg0, ExternalAddress((address) msg));
 823   lea(c_rarg1, InternalAddress(rip));
 824   movq(c_rarg2, rsp); // pass pointer to regs array
 825   andq(rsp, -16); // align stack as required by ABI
 826   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 827   hlt();
 828 }
 829 
 830 void MacroAssembler::warn(const char* msg) {
 831   push(rbp);
 832   movq(rbp, rsp);
 833   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 834   push_CPU_state();   // keeps alignment at 16 bytes
 835   lea(c_rarg0, ExternalAddress((address) msg));
 836   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 837   pop_CPU_state();
 838   mov(rsp, rbp);
 839   pop(rbp);
 840 }
 841 
 842 void MacroAssembler::print_state() {
 843   address rip = pc();
 844   pusha();            // get regs on stack
 845   push(rbp);
 846   movq(rbp, rsp);
 847   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 848   push_CPU_state();   // keeps alignment at 16 bytes
 849 
 850   lea(c_rarg0, InternalAddress(rip));
 851   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 852   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 853 
 854   pop_CPU_state();
 855   mov(rsp, rbp);
 856   pop(rbp);
 857   popa();
 858 }
 859 
 860 #ifndef PRODUCT
 861 extern "C" void findpc(intptr_t x);
 862 #endif
 863 
 864 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 865   // In order to get locks to work, we need to fake a in_VM state
 866   if (ShowMessageBoxOnError) {
 867     JavaThread* thread = JavaThread::current();
 868     JavaThreadState saved_state = thread->thread_state();
 869     thread->set_thread_state(_thread_in_vm);
 870 #ifndef PRODUCT
 871     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 872       ttyLocker ttyl;
 873       BytecodeCounter::print();
 874     }
 875 #endif
 876     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 877     // XXX correct this offset for amd64
 878     // This is the value of eip which points to where verify_oop will return.
 879     if (os::message_box(msg, "Execution stopped, print registers?")) {
 880       print_state64(pc, regs);
 881       BREAKPOINT;
 882       assert(false, "start up GDB");
 883     }
 884     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 885   } else {
 886     ttyLocker ttyl;
 887     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 888                     msg);
 889     assert(false, "DEBUG MESSAGE: %s", msg);
 890   }
 891 }
 892 
 893 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 894   ttyLocker ttyl;
 895   FlagSetting fs(Debugging, true);
 896   tty->print_cr("rip = 0x%016lx", pc);
 897 #ifndef PRODUCT
 898   tty->cr();
 899   findpc(pc);
 900   tty->cr();
 901 #endif
 902 #define PRINT_REG(rax, value) \
 903   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 904   PRINT_REG(rax, regs[15]);
 905   PRINT_REG(rbx, regs[12]);
 906   PRINT_REG(rcx, regs[14]);
 907   PRINT_REG(rdx, regs[13]);
 908   PRINT_REG(rdi, regs[8]);
 909   PRINT_REG(rsi, regs[9]);
 910   PRINT_REG(rbp, regs[10]);
 911   PRINT_REG(rsp, regs[11]);
 912   PRINT_REG(r8 , regs[7]);
 913   PRINT_REG(r9 , regs[6]);
 914   PRINT_REG(r10, regs[5]);
 915   PRINT_REG(r11, regs[4]);
 916   PRINT_REG(r12, regs[3]);
 917   PRINT_REG(r13, regs[2]);
 918   PRINT_REG(r14, regs[1]);
 919   PRINT_REG(r15, regs[0]);
 920 #undef PRINT_REG
 921   // Print some words near top of staack.
 922   int64_t* rsp = (int64_t*) regs[11];
 923   int64_t* dump_sp = rsp;
 924   for (int col1 = 0; col1 < 8; col1++) {
 925     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 926     os::print_location(tty, *dump_sp++);
 927   }
 928   for (int row = 0; row < 25; row++) {
 929     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 930     for (int col = 0; col < 4; col++) {
 931       tty->print(" 0x%016lx", *dump_sp++);
 932     }
 933     tty->cr();
 934   }
 935   // Print some instructions around pc:
 936   Disassembler::decode((address)pc-64, (address)pc);
 937   tty->print_cr("--------");
 938   Disassembler::decode((address)pc, (address)pc+32);
 939 }
 940 
 941 #endif // _LP64
 942 
 943 // Now versions that are common to 32/64 bit
 944 
 945 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 946   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 947 }
 948 
 949 void MacroAssembler::addptr(Register dst, Register src) {
 950   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 951 }
 952 
 953 void MacroAssembler::addptr(Address dst, Register src) {
 954   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 955 }
 956 
 957 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 958   if (reachable(src)) {
 959     Assembler::addsd(dst, as_Address(src));
 960   } else {
 961     lea(rscratch1, src);
 962     Assembler::addsd(dst, Address(rscratch1, 0));
 963   }
 964 }
 965 
 966 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 967   if (reachable(src)) {
 968     addss(dst, as_Address(src));
 969   } else {
 970     lea(rscratch1, src);
 971     addss(dst, Address(rscratch1, 0));
 972   }
 973 }
 974 
 975 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 976   if (reachable(src)) {
 977     Assembler::addpd(dst, as_Address(src));
 978   } else {
 979     lea(rscratch1, src);
 980     Assembler::addpd(dst, Address(rscratch1, 0));
 981   }
 982 }
 983 
 984 void MacroAssembler::align(int modulus) {
 985   align(modulus, offset());
 986 }
 987 
 988 void MacroAssembler::align(int modulus, int target) {
 989   if (target % modulus != 0) {
 990     nop(modulus - (target % modulus));
 991   }
 992 }
 993 
 994 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 995   // Used in sign-masking with aligned address.
 996   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 997   if (reachable(src)) {
 998     Assembler::andpd(dst, as_Address(src));
 999   } else {
1000     lea(rscratch1, src);
1001     Assembler::andpd(dst, Address(rscratch1, 0));
1002   }
1003 }
1004 
1005 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
1006   // Used in sign-masking with aligned address.
1007   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1008   if (reachable(src)) {
1009     Assembler::andps(dst, as_Address(src));
1010   } else {
1011     lea(rscratch1, src);
1012     Assembler::andps(dst, Address(rscratch1, 0));
1013   }
1014 }
1015 
1016 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1017   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1018 }
1019 
1020 void MacroAssembler::atomic_incl(Address counter_addr) {
1021   if (os::is_MP())
1022     lock();
1023   incrementl(counter_addr);
1024 }
1025 
1026 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1027   if (reachable(counter_addr)) {
1028     atomic_incl(as_Address(counter_addr));
1029   } else {
1030     lea(scr, counter_addr);
1031     atomic_incl(Address(scr, 0));
1032   }
1033 }
1034 
1035 #ifdef _LP64
1036 void MacroAssembler::atomic_incq(Address counter_addr) {
1037   if (os::is_MP())
1038     lock();
1039   incrementq(counter_addr);
1040 }
1041 
1042 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1043   if (reachable(counter_addr)) {
1044     atomic_incq(as_Address(counter_addr));
1045   } else {
1046     lea(scr, counter_addr);
1047     atomic_incq(Address(scr, 0));
1048   }
1049 }
1050 #endif
1051 
1052 // Writes to stack successive pages until offset reached to check for
1053 // stack overflow + shadow pages.  This clobbers tmp.
1054 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1055   movptr(tmp, rsp);
1056   // Bang stack for total size given plus shadow page size.
1057   // Bang one page at a time because large size can bang beyond yellow and
1058   // red zones.
1059   Label loop;
1060   bind(loop);
1061   movl(Address(tmp, (-os::vm_page_size())), size );
1062   subptr(tmp, os::vm_page_size());
1063   subl(size, os::vm_page_size());
1064   jcc(Assembler::greater, loop);
1065 
1066   // Bang down shadow pages too.
1067   // At this point, (tmp-0) is the last address touched, so don't
1068   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1069   // was post-decremented.)  Skip this address by starting at i=1, and
1070   // touch a few more pages below.  N.B.  It is important to touch all
1071   // the way down to and including i=StackShadowPages.
1072   for (int i = 1; i < StackShadowPages; i++) {
1073     // this could be any sized move but this is can be a debugging crumb
1074     // so the bigger the better.
1075     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1076   }
1077 }
1078 
1079 void MacroAssembler::reserved_stack_check() {
1080     // testing if reserved zone needs to be enabled
1081     Label no_reserved_zone_enabling;
1082     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1083     NOT_LP64(get_thread(rsi);)
1084 
1085     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1086     jcc(Assembler::below, no_reserved_zone_enabling);
1087 
1088     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1089     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1090     should_not_reach_here();
1091 
1092     bind(no_reserved_zone_enabling);
1093 }
1094 
1095 int MacroAssembler::biased_locking_enter(Register lock_reg,
1096                                          Register obj_reg,
1097                                          Register swap_reg,
1098                                          Register tmp_reg,
1099                                          bool swap_reg_contains_mark,
1100                                          Label& done,
1101                                          Label* slow_case,
1102                                          BiasedLockingCounters* counters) {
1103   assert(UseBiasedLocking, "why call this otherwise?");
1104   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1105   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1106   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1107   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1108   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1109   Address saved_mark_addr(lock_reg, 0);
1110 
1111   if (PrintBiasedLockingStatistics && counters == NULL) {
1112     counters = BiasedLocking::counters();
1113   }
1114   // Biased locking
1115   // See whether the lock is currently biased toward our thread and
1116   // whether the epoch is still valid
1117   // Note that the runtime guarantees sufficient alignment of JavaThread
1118   // pointers to allow age to be placed into low bits
1119   // First check to see whether biasing is even enabled for this object
1120   Label cas_label;
1121   int null_check_offset = -1;
1122   if (!swap_reg_contains_mark) {
1123     null_check_offset = offset();
1124     movptr(swap_reg, mark_addr);
1125   }
1126   movptr(tmp_reg, swap_reg);
1127   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1128   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1129   jcc(Assembler::notEqual, cas_label);
1130   // The bias pattern is present in the object's header. Need to check
1131   // whether the bias owner and the epoch are both still current.
1132 #ifndef _LP64
1133   // Note that because there is no current thread register on x86_32 we
1134   // need to store off the mark word we read out of the object to
1135   // avoid reloading it and needing to recheck invariants below. This
1136   // store is unfortunate but it makes the overall code shorter and
1137   // simpler.
1138   movptr(saved_mark_addr, swap_reg);
1139 #endif
1140   if (swap_reg_contains_mark) {
1141     null_check_offset = offset();
1142   }
1143   load_prototype_header(tmp_reg, obj_reg);
1144 #ifdef _LP64
1145   orptr(tmp_reg, r15_thread);
1146   xorptr(tmp_reg, swap_reg);
1147   Register header_reg = tmp_reg;
1148 #else
1149   xorptr(tmp_reg, swap_reg);
1150   get_thread(swap_reg);
1151   xorptr(swap_reg, tmp_reg);
1152   Register header_reg = swap_reg;
1153 #endif
1154   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1155   if (counters != NULL) {
1156     cond_inc32(Assembler::zero,
1157                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1158   }
1159   jcc(Assembler::equal, done);
1160 
1161   Label try_revoke_bias;
1162   Label try_rebias;
1163 
1164   // At this point we know that the header has the bias pattern and
1165   // that we are not the bias owner in the current epoch. We need to
1166   // figure out more details about the state of the header in order to
1167   // know what operations can be legally performed on the object's
1168   // header.
1169 
1170   // If the low three bits in the xor result aren't clear, that means
1171   // the prototype header is no longer biased and we have to revoke
1172   // the bias on this object.
1173   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1174   jccb(Assembler::notZero, try_revoke_bias);
1175 
1176   // Biasing is still enabled for this data type. See whether the
1177   // epoch of the current bias is still valid, meaning that the epoch
1178   // bits of the mark word are equal to the epoch bits of the
1179   // prototype header. (Note that the prototype header's epoch bits
1180   // only change at a safepoint.) If not, attempt to rebias the object
1181   // toward the current thread. Note that we must be absolutely sure
1182   // that the current epoch is invalid in order to do this because
1183   // otherwise the manipulations it performs on the mark word are
1184   // illegal.
1185   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1186   jccb(Assembler::notZero, try_rebias);
1187 
1188   // The epoch of the current bias is still valid but we know nothing
1189   // about the owner; it might be set or it might be clear. Try to
1190   // acquire the bias of the object using an atomic operation. If this
1191   // fails we will go in to the runtime to revoke the object's bias.
1192   // Note that we first construct the presumed unbiased header so we
1193   // don't accidentally blow away another thread's valid bias.
1194   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1195   andptr(swap_reg,
1196          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1197 #ifdef _LP64
1198   movptr(tmp_reg, swap_reg);
1199   orptr(tmp_reg, r15_thread);
1200 #else
1201   get_thread(tmp_reg);
1202   orptr(tmp_reg, swap_reg);
1203 #endif
1204   if (os::is_MP()) {
1205     lock();
1206   }
1207   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1208   // If the biasing toward our thread failed, this means that
1209   // another thread succeeded in biasing it toward itself and we
1210   // need to revoke that bias. The revocation will occur in the
1211   // interpreter runtime in the slow case.
1212   if (counters != NULL) {
1213     cond_inc32(Assembler::zero,
1214                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1215   }
1216   if (slow_case != NULL) {
1217     jcc(Assembler::notZero, *slow_case);
1218   }
1219   jmp(done);
1220 
1221   bind(try_rebias);
1222   // At this point we know the epoch has expired, meaning that the
1223   // current "bias owner", if any, is actually invalid. Under these
1224   // circumstances _only_, we are allowed to use the current header's
1225   // value as the comparison value when doing the cas to acquire the
1226   // bias in the current epoch. In other words, we allow transfer of
1227   // the bias from one thread to another directly in this situation.
1228   //
1229   // FIXME: due to a lack of registers we currently blow away the age
1230   // bits in this situation. Should attempt to preserve them.
1231   load_prototype_header(tmp_reg, obj_reg);
1232 #ifdef _LP64
1233   orptr(tmp_reg, r15_thread);
1234 #else
1235   get_thread(swap_reg);
1236   orptr(tmp_reg, swap_reg);
1237   movptr(swap_reg, saved_mark_addr);
1238 #endif
1239   if (os::is_MP()) {
1240     lock();
1241   }
1242   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1243   // If the biasing toward our thread failed, then another thread
1244   // succeeded in biasing it toward itself and we need to revoke that
1245   // bias. The revocation will occur in the runtime in the slow case.
1246   if (counters != NULL) {
1247     cond_inc32(Assembler::zero,
1248                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1249   }
1250   if (slow_case != NULL) {
1251     jcc(Assembler::notZero, *slow_case);
1252   }
1253   jmp(done);
1254 
1255   bind(try_revoke_bias);
1256   // The prototype mark in the klass doesn't have the bias bit set any
1257   // more, indicating that objects of this data type are not supposed
1258   // to be biased any more. We are going to try to reset the mark of
1259   // this object to the prototype value and fall through to the
1260   // CAS-based locking scheme. Note that if our CAS fails, it means
1261   // that another thread raced us for the privilege of revoking the
1262   // bias of this particular object, so it's okay to continue in the
1263   // normal locking code.
1264   //
1265   // FIXME: due to a lack of registers we currently blow away the age
1266   // bits in this situation. Should attempt to preserve them.
1267   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1268   load_prototype_header(tmp_reg, obj_reg);
1269   if (os::is_MP()) {
1270     lock();
1271   }
1272   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1273   // Fall through to the normal CAS-based lock, because no matter what
1274   // the result of the above CAS, some thread must have succeeded in
1275   // removing the bias bit from the object's header.
1276   if (counters != NULL) {
1277     cond_inc32(Assembler::zero,
1278                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1279   }
1280 
1281   bind(cas_label);
1282 
1283   return null_check_offset;
1284 }
1285 
1286 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1287   assert(UseBiasedLocking, "why call this otherwise?");
1288 
1289   // Check for biased locking unlock case, which is a no-op
1290   // Note: we do not have to check the thread ID for two reasons.
1291   // First, the interpreter checks for IllegalMonitorStateException at
1292   // a higher level. Second, if the bias was revoked while we held the
1293   // lock, the object could not be rebiased toward another thread, so
1294   // the bias bit would be clear.
1295   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1296   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1297   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1298   jcc(Assembler::equal, done);
1299 }
1300 
1301 #ifdef COMPILER2
1302 
1303 #if INCLUDE_RTM_OPT
1304 
1305 // Update rtm_counters based on abort status
1306 // input: abort_status
1307 //        rtm_counters (RTMLockingCounters*)
1308 // flags are killed
1309 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1310 
1311   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1312   if (PrintPreciseRTMLockingStatistics) {
1313     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1314       Label check_abort;
1315       testl(abort_status, (1<<i));
1316       jccb(Assembler::equal, check_abort);
1317       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1318       bind(check_abort);
1319     }
1320   }
1321 }
1322 
1323 // Branch if (random & (count-1) != 0), count is 2^n
1324 // tmp, scr and flags are killed
1325 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1326   assert(tmp == rax, "");
1327   assert(scr == rdx, "");
1328   rdtsc(); // modifies EDX:EAX
1329   andptr(tmp, count-1);
1330   jccb(Assembler::notZero, brLabel);
1331 }
1332 
1333 // Perform abort ratio calculation, set no_rtm bit if high ratio
1334 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1335 // tmpReg, rtm_counters_Reg and flags are killed
1336 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1337                                                  Register rtm_counters_Reg,
1338                                                  RTMLockingCounters* rtm_counters,
1339                                                  Metadata* method_data) {
1340   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1341 
1342   if (RTMLockingCalculationDelay > 0) {
1343     // Delay calculation
1344     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1345     testptr(tmpReg, tmpReg);
1346     jccb(Assembler::equal, L_done);
1347   }
1348   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1349   //   Aborted transactions = abort_count * 100
1350   //   All transactions = total_count *  RTMTotalCountIncrRate
1351   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1352 
1353   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1354   cmpptr(tmpReg, RTMAbortThreshold);
1355   jccb(Assembler::below, L_check_always_rtm2);
1356   imulptr(tmpReg, tmpReg, 100);
1357 
1358   Register scrReg = rtm_counters_Reg;
1359   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1360   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1361   imulptr(scrReg, scrReg, RTMAbortRatio);
1362   cmpptr(tmpReg, scrReg);
1363   jccb(Assembler::below, L_check_always_rtm1);
1364   if (method_data != NULL) {
1365     // set rtm_state to "no rtm" in MDO
1366     mov_metadata(tmpReg, method_data);
1367     if (os::is_MP()) {
1368       lock();
1369     }
1370     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1371   }
1372   jmpb(L_done);
1373   bind(L_check_always_rtm1);
1374   // Reload RTMLockingCounters* address
1375   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1376   bind(L_check_always_rtm2);
1377   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1378   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1379   jccb(Assembler::below, L_done);
1380   if (method_data != NULL) {
1381     // set rtm_state to "always rtm" in MDO
1382     mov_metadata(tmpReg, method_data);
1383     if (os::is_MP()) {
1384       lock();
1385     }
1386     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1387   }
1388   bind(L_done);
1389 }
1390 
1391 // Update counters and perform abort ratio calculation
1392 // input:  abort_status_Reg
1393 // rtm_counters_Reg, flags are killed
1394 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1395                                    Register rtm_counters_Reg,
1396                                    RTMLockingCounters* rtm_counters,
1397                                    Metadata* method_data,
1398                                    bool profile_rtm) {
1399 
1400   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1401   // update rtm counters based on rax value at abort
1402   // reads abort_status_Reg, updates flags
1403   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1404   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1405   if (profile_rtm) {
1406     // Save abort status because abort_status_Reg is used by following code.
1407     if (RTMRetryCount > 0) {
1408       push(abort_status_Reg);
1409     }
1410     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1411     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1412     // restore abort status
1413     if (RTMRetryCount > 0) {
1414       pop(abort_status_Reg);
1415     }
1416   }
1417 }
1418 
1419 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1420 // inputs: retry_count_Reg
1421 //       : abort_status_Reg
1422 // output: retry_count_Reg decremented by 1
1423 // flags are killed
1424 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1425   Label doneRetry;
1426   assert(abort_status_Reg == rax, "");
1427   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1428   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1429   // if reason is in 0x6 and retry count != 0 then retry
1430   andptr(abort_status_Reg, 0x6);
1431   jccb(Assembler::zero, doneRetry);
1432   testl(retry_count_Reg, retry_count_Reg);
1433   jccb(Assembler::zero, doneRetry);
1434   pause();
1435   decrementl(retry_count_Reg);
1436   jmp(retryLabel);
1437   bind(doneRetry);
1438 }
1439 
1440 // Spin and retry if lock is busy,
1441 // inputs: box_Reg (monitor address)
1442 //       : retry_count_Reg
1443 // output: retry_count_Reg decremented by 1
1444 //       : clear z flag if retry count exceeded
1445 // tmp_Reg, scr_Reg, flags are killed
1446 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1447                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1448   Label SpinLoop, SpinExit, doneRetry;
1449   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1450 
1451   testl(retry_count_Reg, retry_count_Reg);
1452   jccb(Assembler::zero, doneRetry);
1453   decrementl(retry_count_Reg);
1454   movptr(scr_Reg, RTMSpinLoopCount);
1455 
1456   bind(SpinLoop);
1457   pause();
1458   decrementl(scr_Reg);
1459   jccb(Assembler::lessEqual, SpinExit);
1460   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1461   testptr(tmp_Reg, tmp_Reg);
1462   jccb(Assembler::notZero, SpinLoop);
1463 
1464   bind(SpinExit);
1465   jmp(retryLabel);
1466   bind(doneRetry);
1467   incrementl(retry_count_Reg); // clear z flag
1468 }
1469 
1470 // Use RTM for normal stack locks
1471 // Input: objReg (object to lock)
1472 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1473                                        Register retry_on_abort_count_Reg,
1474                                        RTMLockingCounters* stack_rtm_counters,
1475                                        Metadata* method_data, bool profile_rtm,
1476                                        Label& DONE_LABEL, Label& IsInflated) {
1477   assert(UseRTMForStackLocks, "why call this otherwise?");
1478   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1479   assert(tmpReg == rax, "");
1480   assert(scrReg == rdx, "");
1481   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1482 
1483   if (RTMRetryCount > 0) {
1484     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1485     bind(L_rtm_retry);
1486   }
1487   movptr(tmpReg, Address(objReg, 0));
1488   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1489   jcc(Assembler::notZero, IsInflated);
1490 
1491   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1492     Label L_noincrement;
1493     if (RTMTotalCountIncrRate > 1) {
1494       // tmpReg, scrReg and flags are killed
1495       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1496     }
1497     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1498     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1499     bind(L_noincrement);
1500   }
1501   xbegin(L_on_abort);
1502   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1503   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1504   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1505   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1506 
1507   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1508   if (UseRTMXendForLockBusy) {
1509     xend();
1510     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1511     jmp(L_decrement_retry);
1512   }
1513   else {
1514     xabort(0);
1515   }
1516   bind(L_on_abort);
1517   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1518     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1519   }
1520   bind(L_decrement_retry);
1521   if (RTMRetryCount > 0) {
1522     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1523     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1524   }
1525 }
1526 
1527 // Use RTM for inflating locks
1528 // inputs: objReg (object to lock)
1529 //         boxReg (on-stack box address (displaced header location) - KILLED)
1530 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1531 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1532                                           Register scrReg, Register retry_on_busy_count_Reg,
1533                                           Register retry_on_abort_count_Reg,
1534                                           RTMLockingCounters* rtm_counters,
1535                                           Metadata* method_data, bool profile_rtm,
1536                                           Label& DONE_LABEL) {
1537   assert(UseRTMLocking, "why call this otherwise?");
1538   assert(tmpReg == rax, "");
1539   assert(scrReg == rdx, "");
1540   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1541   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1542 
1543   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1544   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1545   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1546 
1547   if (RTMRetryCount > 0) {
1548     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1549     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1550     bind(L_rtm_retry);
1551   }
1552   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1553     Label L_noincrement;
1554     if (RTMTotalCountIncrRate > 1) {
1555       // tmpReg, scrReg and flags are killed
1556       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1557     }
1558     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1559     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1560     bind(L_noincrement);
1561   }
1562   xbegin(L_on_abort);
1563   movptr(tmpReg, Address(objReg, 0));
1564   movptr(tmpReg, Address(tmpReg, owner_offset));
1565   testptr(tmpReg, tmpReg);
1566   jcc(Assembler::zero, DONE_LABEL);
1567   if (UseRTMXendForLockBusy) {
1568     xend();
1569     jmp(L_decrement_retry);
1570   }
1571   else {
1572     xabort(0);
1573   }
1574   bind(L_on_abort);
1575   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1576   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1577     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1578   }
1579   if (RTMRetryCount > 0) {
1580     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1581     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1582   }
1583 
1584   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1585   testptr(tmpReg, tmpReg) ;
1586   jccb(Assembler::notZero, L_decrement_retry) ;
1587 
1588   // Appears unlocked - try to swing _owner from null to non-null.
1589   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1590 #ifdef _LP64
1591   Register threadReg = r15_thread;
1592 #else
1593   get_thread(scrReg);
1594   Register threadReg = scrReg;
1595 #endif
1596   if (os::is_MP()) {
1597     lock();
1598   }
1599   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1600 
1601   if (RTMRetryCount > 0) {
1602     // success done else retry
1603     jccb(Assembler::equal, DONE_LABEL) ;
1604     bind(L_decrement_retry);
1605     // Spin and retry if lock is busy.
1606     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1607   }
1608   else {
1609     bind(L_decrement_retry);
1610   }
1611 }
1612 
1613 #endif //  INCLUDE_RTM_OPT
1614 
1615 // Fast_Lock and Fast_Unlock used by C2
1616 
1617 // Because the transitions from emitted code to the runtime
1618 // monitorenter/exit helper stubs are so slow it's critical that
1619 // we inline both the stack-locking fast-path and the inflated fast path.
1620 //
1621 // See also: cmpFastLock and cmpFastUnlock.
1622 //
1623 // What follows is a specialized inline transliteration of the code
1624 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1625 // another option would be to emit TrySlowEnter and TrySlowExit methods
1626 // at startup-time.  These methods would accept arguments as
1627 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1628 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1629 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1630 // In practice, however, the # of lock sites is bounded and is usually small.
1631 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1632 // if the processor uses simple bimodal branch predictors keyed by EIP
1633 // Since the helper routines would be called from multiple synchronization
1634 // sites.
1635 //
1636 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1637 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1638 // to those specialized methods.  That'd give us a mostly platform-independent
1639 // implementation that the JITs could optimize and inline at their pleasure.
1640 // Done correctly, the only time we'd need to cross to native could would be
1641 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1642 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1643 // (b) explicit barriers or fence operations.
1644 //
1645 // TODO:
1646 //
1647 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1648 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1649 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1650 //    the lock operators would typically be faster than reifying Self.
1651 //
1652 // *  Ideally I'd define the primitives as:
1653 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1654 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1655 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1656 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1657 //    Furthermore the register assignments are overconstrained, possibly resulting in
1658 //    sub-optimal code near the synchronization site.
1659 //
1660 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1661 //    Alternately, use a better sp-proximity test.
1662 //
1663 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1664 //    Either one is sufficient to uniquely identify a thread.
1665 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1666 //
1667 // *  Intrinsify notify() and notifyAll() for the common cases where the
1668 //    object is locked by the calling thread but the waitlist is empty.
1669 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1670 //
1671 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1672 //    But beware of excessive branch density on AMD Opterons.
1673 //
1674 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1675 //    or failure of the fast-path.  If the fast-path fails then we pass
1676 //    control to the slow-path, typically in C.  In Fast_Lock and
1677 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1678 //    will emit a conditional branch immediately after the node.
1679 //    So we have branches to branches and lots of ICC.ZF games.
1680 //    Instead, it might be better to have C2 pass a "FailureLabel"
1681 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1682 //    will drop through the node.  ICC.ZF is undefined at exit.
1683 //    In the case of failure, the node will branch directly to the
1684 //    FailureLabel
1685 
1686 
1687 // obj: object to lock
1688 // box: on-stack box address (displaced header location) - KILLED
1689 // rax,: tmp -- KILLED
1690 // scr: tmp -- KILLED
1691 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1692                                Register scrReg, Register cx1Reg, Register cx2Reg,
1693                                BiasedLockingCounters* counters,
1694                                RTMLockingCounters* rtm_counters,
1695                                RTMLockingCounters* stack_rtm_counters,
1696                                Metadata* method_data,
1697                                bool use_rtm, bool profile_rtm) {
1698   // Ensure the register assignents are disjoint
1699   assert(tmpReg == rax, "");
1700 
1701   if (use_rtm) {
1702     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1703   } else {
1704     assert(cx1Reg == noreg, "");
1705     assert(cx2Reg == noreg, "");
1706     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1707   }
1708 
1709   if (counters != NULL) {
1710     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1711   }
1712   if (EmitSync & 1) {
1713       // set box->dhw = markOopDesc::unused_mark()
1714       // Force all sync thru slow-path: slow_enter() and slow_exit()
1715       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1716       cmpptr (rsp, (int32_t)NULL_WORD);
1717   } else {
1718     // Possible cases that we'll encounter in fast_lock
1719     // ------------------------------------------------
1720     // * Inflated
1721     //    -- unlocked
1722     //    -- Locked
1723     //       = by self
1724     //       = by other
1725     // * biased
1726     //    -- by Self
1727     //    -- by other
1728     // * neutral
1729     // * stack-locked
1730     //    -- by self
1731     //       = sp-proximity test hits
1732     //       = sp-proximity test generates false-negative
1733     //    -- by other
1734     //
1735 
1736     Label IsInflated, DONE_LABEL;
1737 
1738     // it's stack-locked, biased or neutral
1739     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1740     // order to reduce the number of conditional branches in the most common cases.
1741     // Beware -- there's a subtle invariant that fetch of the markword
1742     // at [FETCH], below, will never observe a biased encoding (*101b).
1743     // If this invariant is not held we risk exclusion (safety) failure.
1744     if (UseBiasedLocking && !UseOptoBiasInlining) {
1745       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1746     }
1747 
1748 #if INCLUDE_RTM_OPT
1749     if (UseRTMForStackLocks && use_rtm) {
1750       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1751                         stack_rtm_counters, method_data, profile_rtm,
1752                         DONE_LABEL, IsInflated);
1753     }
1754 #endif // INCLUDE_RTM_OPT
1755 
1756     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1757     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1758     jccb(Assembler::notZero, IsInflated);
1759 
1760     // Attempt stack-locking ...
1761     orptr (tmpReg, markOopDesc::unlocked_value);
1762     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1763     if (os::is_MP()) {
1764       lock();
1765     }
1766     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1767     if (counters != NULL) {
1768       cond_inc32(Assembler::equal,
1769                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1770     }
1771     jcc(Assembler::equal, DONE_LABEL);           // Success
1772 
1773     // Recursive locking.
1774     // The object is stack-locked: markword contains stack pointer to BasicLock.
1775     // Locked by current thread if difference with current SP is less than one page.
1776     subptr(tmpReg, rsp);
1777     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1778     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1779     movptr(Address(boxReg, 0), tmpReg);
1780     if (counters != NULL) {
1781       cond_inc32(Assembler::equal,
1782                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1783     }
1784     jmp(DONE_LABEL);
1785 
1786     bind(IsInflated);
1787     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1788 
1789 #if INCLUDE_RTM_OPT
1790     // Use the same RTM locking code in 32- and 64-bit VM.
1791     if (use_rtm) {
1792       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1793                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1794     } else {
1795 #endif // INCLUDE_RTM_OPT
1796 
1797 #ifndef _LP64
1798     // The object is inflated.
1799 
1800     // boxReg refers to the on-stack BasicLock in the current frame.
1801     // We'd like to write:
1802     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1803     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1804     // additional latency as we have another ST in the store buffer that must drain.
1805 
1806     if (EmitSync & 8192) {
1807        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1808        get_thread (scrReg);
1809        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1810        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1811        if (os::is_MP()) {
1812          lock();
1813        }
1814        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1815     } else
1816     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1817        // register juggle because we need tmpReg for cmpxchgptr below
1818        movptr(scrReg, boxReg);
1819        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1820 
1821        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1822        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1823           // prefetchw [eax + Offset(_owner)-2]
1824           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1825        }
1826 
1827        if ((EmitSync & 64) == 0) {
1828          // Optimistic form: consider XORL tmpReg,tmpReg
1829          movptr(tmpReg, NULL_WORD);
1830        } else {
1831          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1832          // Test-And-CAS instead of CAS
1833          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1834          testptr(tmpReg, tmpReg);                   // Locked ?
1835          jccb  (Assembler::notZero, DONE_LABEL);
1836        }
1837 
1838        // Appears unlocked - try to swing _owner from null to non-null.
1839        // Ideally, I'd manifest "Self" with get_thread and then attempt
1840        // to CAS the register containing Self into m->Owner.
1841        // But we don't have enough registers, so instead we can either try to CAS
1842        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1843        // we later store "Self" into m->Owner.  Transiently storing a stack address
1844        // (rsp or the address of the box) into  m->owner is harmless.
1845        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1846        if (os::is_MP()) {
1847          lock();
1848        }
1849        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1850        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1851        // If we weren't able to swing _owner from NULL to the BasicLock
1852        // then take the slow path.
1853        jccb  (Assembler::notZero, DONE_LABEL);
1854        // update _owner from BasicLock to thread
1855        get_thread (scrReg);                    // beware: clobbers ICCs
1856        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1857        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1858 
1859        // If the CAS fails we can either retry or pass control to the slow-path.
1860        // We use the latter tactic.
1861        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1862        // If the CAS was successful ...
1863        //   Self has acquired the lock
1864        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1865        // Intentional fall-through into DONE_LABEL ...
1866     } else {
1867        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1868        movptr(boxReg, tmpReg);
1869 
1870        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1871        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1872           // prefetchw [eax + Offset(_owner)-2]
1873           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1874        }
1875 
1876        if ((EmitSync & 64) == 0) {
1877          // Optimistic form
1878          xorptr  (tmpReg, tmpReg);
1879        } else {
1880          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1881          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1882          testptr(tmpReg, tmpReg);                   // Locked ?
1883          jccb  (Assembler::notZero, DONE_LABEL);
1884        }
1885 
1886        // Appears unlocked - try to swing _owner from null to non-null.
1887        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1888        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1889        get_thread (scrReg);
1890        if (os::is_MP()) {
1891          lock();
1892        }
1893        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1894 
1895        // If the CAS fails we can either retry or pass control to the slow-path.
1896        // We use the latter tactic.
1897        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1898        // If the CAS was successful ...
1899        //   Self has acquired the lock
1900        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1901        // Intentional fall-through into DONE_LABEL ...
1902     }
1903 #else // _LP64
1904     // It's inflated
1905     movq(scrReg, tmpReg);
1906     xorq(tmpReg, tmpReg);
1907 
1908     if (os::is_MP()) {
1909       lock();
1910     }
1911     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1912     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1913     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1914     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1915     // Intentional fall-through into DONE_LABEL ...
1916     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1917 #endif // _LP64
1918 #if INCLUDE_RTM_OPT
1919     } // use_rtm()
1920 #endif
1921     // DONE_LABEL is a hot target - we'd really like to place it at the
1922     // start of cache line by padding with NOPs.
1923     // See the AMD and Intel software optimization manuals for the
1924     // most efficient "long" NOP encodings.
1925     // Unfortunately none of our alignment mechanisms suffice.
1926     bind(DONE_LABEL);
1927 
1928     // At DONE_LABEL the icc ZFlag is set as follows ...
1929     // Fast_Unlock uses the same protocol.
1930     // ZFlag == 1 -> Success
1931     // ZFlag == 0 -> Failure - force control through the slow-path
1932   }
1933 }
1934 
1935 // obj: object to unlock
1936 // box: box address (displaced header location), killed.  Must be EAX.
1937 // tmp: killed, cannot be obj nor box.
1938 //
1939 // Some commentary on balanced locking:
1940 //
1941 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1942 // Methods that don't have provably balanced locking are forced to run in the
1943 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1944 // The interpreter provides two properties:
1945 // I1:  At return-time the interpreter automatically and quietly unlocks any
1946 //      objects acquired the current activation (frame).  Recall that the
1947 //      interpreter maintains an on-stack list of locks currently held by
1948 //      a frame.
1949 // I2:  If a method attempts to unlock an object that is not held by the
1950 //      the frame the interpreter throws IMSX.
1951 //
1952 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1953 // B() doesn't have provably balanced locking so it runs in the interpreter.
1954 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1955 // is still locked by A().
1956 //
1957 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1958 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1959 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1960 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1961 // Arguably given that the spec legislates the JNI case as undefined our implementation
1962 // could reasonably *avoid* checking owner in Fast_Unlock().
1963 // In the interest of performance we elide m->Owner==Self check in unlock.
1964 // A perfectly viable alternative is to elide the owner check except when
1965 // Xcheck:jni is enabled.
1966 
1967 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1968   assert(boxReg == rax, "");
1969   assert_different_registers(objReg, boxReg, tmpReg);
1970 
1971   if (EmitSync & 4) {
1972     // Disable - inhibit all inlining.  Force control through the slow-path
1973     cmpptr (rsp, 0);
1974   } else {
1975     Label DONE_LABEL, Stacked, CheckSucc;
1976 
1977     // Critically, the biased locking test must have precedence over
1978     // and appear before the (box->dhw == 0) recursive stack-lock test.
1979     if (UseBiasedLocking && !UseOptoBiasInlining) {
1980        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1981     }
1982 
1983 #if INCLUDE_RTM_OPT
1984     if (UseRTMForStackLocks && use_rtm) {
1985       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1986       Label L_regular_unlock;
1987       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1988       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1989       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1990       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1991       xend();                                       // otherwise end...
1992       jmp(DONE_LABEL);                              // ... and we're done
1993       bind(L_regular_unlock);
1994     }
1995 #endif
1996 
1997     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1998     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1999     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
2000     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2001     jccb  (Assembler::zero, Stacked);
2002 
2003     // It's inflated.
2004 #if INCLUDE_RTM_OPT
2005     if (use_rtm) {
2006       Label L_regular_inflated_unlock;
2007       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2008       movptr(boxReg, Address(tmpReg, owner_offset));
2009       testptr(boxReg, boxReg);
2010       jccb(Assembler::notZero, L_regular_inflated_unlock);
2011       xend();
2012       jmpb(DONE_LABEL);
2013       bind(L_regular_inflated_unlock);
2014     }
2015 #endif
2016 
2017     // Despite our balanced locking property we still check that m->_owner == Self
2018     // as java routines or native JNI code called by this thread might
2019     // have released the lock.
2020     // Refer to the comments in synchronizer.cpp for how we might encode extra
2021     // state in _succ so we can avoid fetching EntryList|cxq.
2022     //
2023     // I'd like to add more cases in fast_lock() and fast_unlock() --
2024     // such as recursive enter and exit -- but we have to be wary of
2025     // I$ bloat, T$ effects and BP$ effects.
2026     //
2027     // If there's no contention try a 1-0 exit.  That is, exit without
2028     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2029     // we detect and recover from the race that the 1-0 exit admits.
2030     //
2031     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2032     // before it STs null into _owner, releasing the lock.  Updates
2033     // to data protected by the critical section must be visible before
2034     // we drop the lock (and thus before any other thread could acquire
2035     // the lock and observe the fields protected by the lock).
2036     // IA32's memory-model is SPO, so STs are ordered with respect to
2037     // each other and there's no need for an explicit barrier (fence).
2038     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2039 #ifndef _LP64
2040     get_thread (boxReg);
2041     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2042       // prefetchw [ebx + Offset(_owner)-2]
2043       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2044     }
2045 
2046     // Note that we could employ various encoding schemes to reduce
2047     // the number of loads below (currently 4) to just 2 or 3.
2048     // Refer to the comments in synchronizer.cpp.
2049     // In practice the chain of fetches doesn't seem to impact performance, however.
2050     xorptr(boxReg, boxReg);
2051     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2052        // Attempt to reduce branch density - AMD's branch predictor.
2053        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2054        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2055        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2056        jccb  (Assembler::notZero, DONE_LABEL);
2057        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2058        jmpb  (DONE_LABEL);
2059     } else {
2060        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2061        jccb  (Assembler::notZero, DONE_LABEL);
2062        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2063        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2064        jccb  (Assembler::notZero, CheckSucc);
2065        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2066        jmpb  (DONE_LABEL);
2067     }
2068 
2069     // The Following code fragment (EmitSync & 65536) improves the performance of
2070     // contended applications and contended synchronization microbenchmarks.
2071     // Unfortunately the emission of the code - even though not executed - causes regressions
2072     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2073     // with an equal number of never-executed NOPs results in the same regression.
2074     // We leave it off by default.
2075 
2076     if ((EmitSync & 65536) != 0) {
2077        Label LSuccess, LGoSlowPath ;
2078 
2079        bind  (CheckSucc);
2080 
2081        // Optional pre-test ... it's safe to elide this
2082        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2083        jccb(Assembler::zero, LGoSlowPath);
2084 
2085        // We have a classic Dekker-style idiom:
2086        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2087        // There are a number of ways to implement the barrier:
2088        // (1) lock:andl &m->_owner, 0
2089        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2090        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2091        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2092        // (2) If supported, an explicit MFENCE is appealing.
2093        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2094        //     particularly if the write-buffer is full as might be the case if
2095        //     if stores closely precede the fence or fence-equivalent instruction.
2096        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2097        //     as the situation has changed with Nehalem and Shanghai.
2098        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2099        //     The $lines underlying the top-of-stack should be in M-state.
2100        //     The locked add instruction is serializing, of course.
2101        // (4) Use xchg, which is serializing
2102        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2103        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2104        //     The integer condition codes will tell us if succ was 0.
2105        //     Since _succ and _owner should reside in the same $line and
2106        //     we just stored into _owner, it's likely that the $line
2107        //     remains in M-state for the lock:orl.
2108        //
2109        // We currently use (3), although it's likely that switching to (2)
2110        // is correct for the future.
2111 
2112        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2113        if (os::is_MP()) {
2114          lock(); addptr(Address(rsp, 0), 0);
2115        }
2116        // Ratify _succ remains non-null
2117        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2118        jccb  (Assembler::notZero, LSuccess);
2119 
2120        xorptr(boxReg, boxReg);                  // box is really EAX
2121        if (os::is_MP()) { lock(); }
2122        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2123        // There's no successor so we tried to regrab the lock with the
2124        // placeholder value. If that didn't work, then another thread
2125        // grabbed the lock so we're done (and exit was a success).
2126        jccb  (Assembler::notEqual, LSuccess);
2127        // Since we're low on registers we installed rsp as a placeholding in _owner.
2128        // Now install Self over rsp.  This is safe as we're transitioning from
2129        // non-null to non=null
2130        get_thread (boxReg);
2131        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2132        // Intentional fall-through into LGoSlowPath ...
2133 
2134        bind  (LGoSlowPath);
2135        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2136        jmpb  (DONE_LABEL);
2137 
2138        bind  (LSuccess);
2139        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2140        jmpb  (DONE_LABEL);
2141     }
2142 
2143     bind (Stacked);
2144     // It's not inflated and it's not recursively stack-locked and it's not biased.
2145     // It must be stack-locked.
2146     // Try to reset the header to displaced header.
2147     // The "box" value on the stack is stable, so we can reload
2148     // and be assured we observe the same value as above.
2149     movptr(tmpReg, Address(boxReg, 0));
2150     if (os::is_MP()) {
2151       lock();
2152     }
2153     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2154     // Intention fall-thru into DONE_LABEL
2155 
2156     // DONE_LABEL is a hot target - we'd really like to place it at the
2157     // start of cache line by padding with NOPs.
2158     // See the AMD and Intel software optimization manuals for the
2159     // most efficient "long" NOP encodings.
2160     // Unfortunately none of our alignment mechanisms suffice.
2161     if ((EmitSync & 65536) == 0) {
2162        bind (CheckSucc);
2163     }
2164 #else // _LP64
2165     // It's inflated
2166     if (EmitSync & 1024) {
2167       // Emit code to check that _owner == Self
2168       // We could fold the _owner test into subsequent code more efficiently
2169       // than using a stand-alone check, but since _owner checking is off by
2170       // default we don't bother. We also might consider predicating the
2171       // _owner==Self check on Xcheck:jni or running on a debug build.
2172       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2173       xorptr(boxReg, r15_thread);
2174     } else {
2175       xorptr(boxReg, boxReg);
2176     }
2177     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2178     jccb  (Assembler::notZero, DONE_LABEL);
2179     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2180     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2181     jccb  (Assembler::notZero, CheckSucc);
2182     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2183     jmpb  (DONE_LABEL);
2184 
2185     if ((EmitSync & 65536) == 0) {
2186       // Try to avoid passing control into the slow_path ...
2187       Label LSuccess, LGoSlowPath ;
2188       bind  (CheckSucc);
2189 
2190       // The following optional optimization can be elided if necessary
2191       // Effectively: if (succ == null) goto SlowPath
2192       // The code reduces the window for a race, however,
2193       // and thus benefits performance.
2194       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2195       jccb  (Assembler::zero, LGoSlowPath);
2196 
2197       if ((EmitSync & 16) && os::is_MP()) {
2198         orptr(boxReg, boxReg);
2199         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2200       } else {
2201         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2202         if (os::is_MP()) {
2203           // Memory barrier/fence
2204           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2205           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2206           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2207           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2208           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2209           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2210           lock(); addl(Address(rsp, 0), 0);
2211         }
2212       }
2213       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2214       jccb  (Assembler::notZero, LSuccess);
2215 
2216       // Rare inopportune interleaving - race.
2217       // The successor vanished in the small window above.
2218       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2219       // We need to ensure progress and succession.
2220       // Try to reacquire the lock.
2221       // If that fails then the new owner is responsible for succession and this
2222       // thread needs to take no further action and can exit via the fast path (success).
2223       // If the re-acquire succeeds then pass control into the slow path.
2224       // As implemented, this latter mode is horrible because we generated more
2225       // coherence traffic on the lock *and* artifically extended the critical section
2226       // length while by virtue of passing control into the slow path.
2227 
2228       // box is really RAX -- the following CMPXCHG depends on that binding
2229       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2230       movptr(boxReg, (int32_t)NULL_WORD);
2231       if (os::is_MP()) { lock(); }
2232       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2233       // There's no successor so we tried to regrab the lock.
2234       // If that didn't work, then another thread grabbed the
2235       // lock so we're done (and exit was a success).
2236       jccb  (Assembler::notEqual, LSuccess);
2237       // Intentional fall-through into slow-path
2238 
2239       bind  (LGoSlowPath);
2240       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2241       jmpb  (DONE_LABEL);
2242 
2243       bind  (LSuccess);
2244       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2245       jmpb  (DONE_LABEL);
2246     }
2247 
2248     bind  (Stacked);
2249     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2250     if (os::is_MP()) { lock(); }
2251     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2252 
2253     if (EmitSync & 65536) {
2254        bind (CheckSucc);
2255     }
2256 #endif
2257     bind(DONE_LABEL);
2258   }
2259 }
2260 #endif // COMPILER2
2261 
2262 void MacroAssembler::c2bool(Register x) {
2263   // implements x == 0 ? 0 : 1
2264   // note: must only look at least-significant byte of x
2265   //       since C-style booleans are stored in one byte
2266   //       only! (was bug)
2267   andl(x, 0xFF);
2268   setb(Assembler::notZero, x);
2269 }
2270 
2271 // Wouldn't need if AddressLiteral version had new name
2272 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2273   Assembler::call(L, rtype);
2274 }
2275 
2276 void MacroAssembler::call(Register entry) {
2277   Assembler::call(entry);
2278 }
2279 
2280 void MacroAssembler::call(AddressLiteral entry) {
2281   if (reachable(entry)) {
2282     Assembler::call_literal(entry.target(), entry.rspec());
2283   } else {
2284     lea(rscratch1, entry);
2285     Assembler::call(rscratch1);
2286   }
2287 }
2288 
2289 void MacroAssembler::ic_call(address entry, jint method_index) {
2290   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2291   movptr(rax, (intptr_t)Universe::non_oop_word());
2292   call(AddressLiteral(entry, rh));
2293 }
2294 
2295 // Implementation of call_VM versions
2296 
2297 void MacroAssembler::call_VM(Register oop_result,
2298                              address entry_point,
2299                              bool check_exceptions) {
2300   Label C, E;
2301   call(C, relocInfo::none);
2302   jmp(E);
2303 
2304   bind(C);
2305   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2306   ret(0);
2307 
2308   bind(E);
2309 }
2310 
2311 void MacroAssembler::call_VM(Register oop_result,
2312                              address entry_point,
2313                              Register arg_1,
2314                              bool check_exceptions) {
2315   Label C, E;
2316   call(C, relocInfo::none);
2317   jmp(E);
2318 
2319   bind(C);
2320   pass_arg1(this, arg_1);
2321   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2322   ret(0);
2323 
2324   bind(E);
2325 }
2326 
2327 void MacroAssembler::call_VM(Register oop_result,
2328                              address entry_point,
2329                              Register arg_1,
2330                              Register arg_2,
2331                              bool check_exceptions) {
2332   Label C, E;
2333   call(C, relocInfo::none);
2334   jmp(E);
2335 
2336   bind(C);
2337 
2338   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2339 
2340   pass_arg2(this, arg_2);
2341   pass_arg1(this, arg_1);
2342   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2343   ret(0);
2344 
2345   bind(E);
2346 }
2347 
2348 void MacroAssembler::call_VM(Register oop_result,
2349                              address entry_point,
2350                              Register arg_1,
2351                              Register arg_2,
2352                              Register arg_3,
2353                              bool check_exceptions) {
2354   Label C, E;
2355   call(C, relocInfo::none);
2356   jmp(E);
2357 
2358   bind(C);
2359 
2360   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2361   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2362   pass_arg3(this, arg_3);
2363 
2364   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2365   pass_arg2(this, arg_2);
2366 
2367   pass_arg1(this, arg_1);
2368   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2369   ret(0);
2370 
2371   bind(E);
2372 }
2373 
2374 void MacroAssembler::call_VM(Register oop_result,
2375                              Register last_java_sp,
2376                              address entry_point,
2377                              int number_of_arguments,
2378                              bool check_exceptions) {
2379   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2380   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2381 }
2382 
2383 void MacroAssembler::call_VM(Register oop_result,
2384                              Register last_java_sp,
2385                              address entry_point,
2386                              Register arg_1,
2387                              bool check_exceptions) {
2388   pass_arg1(this, arg_1);
2389   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2390 }
2391 
2392 void MacroAssembler::call_VM(Register oop_result,
2393                              Register last_java_sp,
2394                              address entry_point,
2395                              Register arg_1,
2396                              Register arg_2,
2397                              bool check_exceptions) {
2398 
2399   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2400   pass_arg2(this, arg_2);
2401   pass_arg1(this, arg_1);
2402   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2403 }
2404 
2405 void MacroAssembler::call_VM(Register oop_result,
2406                              Register last_java_sp,
2407                              address entry_point,
2408                              Register arg_1,
2409                              Register arg_2,
2410                              Register arg_3,
2411                              bool check_exceptions) {
2412   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2413   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2414   pass_arg3(this, arg_3);
2415   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2416   pass_arg2(this, arg_2);
2417   pass_arg1(this, arg_1);
2418   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2419 }
2420 
2421 void MacroAssembler::super_call_VM(Register oop_result,
2422                                    Register last_java_sp,
2423                                    address entry_point,
2424                                    int number_of_arguments,
2425                                    bool check_exceptions) {
2426   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2427   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2428 }
2429 
2430 void MacroAssembler::super_call_VM(Register oop_result,
2431                                    Register last_java_sp,
2432                                    address entry_point,
2433                                    Register arg_1,
2434                                    bool check_exceptions) {
2435   pass_arg1(this, arg_1);
2436   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2437 }
2438 
2439 void MacroAssembler::super_call_VM(Register oop_result,
2440                                    Register last_java_sp,
2441                                    address entry_point,
2442                                    Register arg_1,
2443                                    Register arg_2,
2444                                    bool check_exceptions) {
2445 
2446   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2447   pass_arg2(this, arg_2);
2448   pass_arg1(this, arg_1);
2449   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2450 }
2451 
2452 void MacroAssembler::super_call_VM(Register oop_result,
2453                                    Register last_java_sp,
2454                                    address entry_point,
2455                                    Register arg_1,
2456                                    Register arg_2,
2457                                    Register arg_3,
2458                                    bool check_exceptions) {
2459   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2460   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2461   pass_arg3(this, arg_3);
2462   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2463   pass_arg2(this, arg_2);
2464   pass_arg1(this, arg_1);
2465   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2466 }
2467 
2468 void MacroAssembler::call_VM_base(Register oop_result,
2469                                   Register java_thread,
2470                                   Register last_java_sp,
2471                                   address  entry_point,
2472                                   int      number_of_arguments,
2473                                   bool     check_exceptions) {
2474   // determine java_thread register
2475   if (!java_thread->is_valid()) {
2476 #ifdef _LP64
2477     java_thread = r15_thread;
2478 #else
2479     java_thread = rdi;
2480     get_thread(java_thread);
2481 #endif // LP64
2482   }
2483   // determine last_java_sp register
2484   if (!last_java_sp->is_valid()) {
2485     last_java_sp = rsp;
2486   }
2487   // debugging support
2488   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2489   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2490 #ifdef ASSERT
2491   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2492   // r12 is the heapbase.
2493   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2494 #endif // ASSERT
2495 
2496   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2497   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2498 
2499   // push java thread (becomes first argument of C function)
2500 
2501   NOT_LP64(push(java_thread); number_of_arguments++);
2502   LP64_ONLY(mov(c_rarg0, r15_thread));
2503 
2504   // set last Java frame before call
2505   assert(last_java_sp != rbp, "can't use ebp/rbp");
2506 
2507   // Only interpreter should have to set fp
2508   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2509 
2510   // do the call, remove parameters
2511   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2512 
2513   // restore the thread (cannot use the pushed argument since arguments
2514   // may be overwritten by C code generated by an optimizing compiler);
2515   // however can use the register value directly if it is callee saved.
2516   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2517     // rdi & rsi (also r15) are callee saved -> nothing to do
2518 #ifdef ASSERT
2519     guarantee(java_thread != rax, "change this code");
2520     push(rax);
2521     { Label L;
2522       get_thread(rax);
2523       cmpptr(java_thread, rax);
2524       jcc(Assembler::equal, L);
2525       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2526       bind(L);
2527     }
2528     pop(rax);
2529 #endif
2530   } else {
2531     get_thread(java_thread);
2532   }
2533   // reset last Java frame
2534   // Only interpreter should have to clear fp
2535   reset_last_Java_frame(java_thread, true, false);
2536 
2537 #ifndef CC_INTERP
2538    // C++ interp handles this in the interpreter
2539   check_and_handle_popframe(java_thread);
2540   check_and_handle_earlyret(java_thread);
2541 #endif /* CC_INTERP */
2542 
2543   if (check_exceptions) {
2544     // check for pending exceptions (java_thread is set upon return)
2545     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2546 #ifndef _LP64
2547     jump_cc(Assembler::notEqual,
2548             RuntimeAddress(StubRoutines::forward_exception_entry()));
2549 #else
2550     // This used to conditionally jump to forward_exception however it is
2551     // possible if we relocate that the branch will not reach. So we must jump
2552     // around so we can always reach
2553 
2554     Label ok;
2555     jcc(Assembler::equal, ok);
2556     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2557     bind(ok);
2558 #endif // LP64
2559   }
2560 
2561   // get oop result if there is one and reset the value in the thread
2562   if (oop_result->is_valid()) {
2563     get_vm_result(oop_result, java_thread);
2564   }
2565 }
2566 
2567 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2568 
2569   // Calculate the value for last_Java_sp
2570   // somewhat subtle. call_VM does an intermediate call
2571   // which places a return address on the stack just under the
2572   // stack pointer as the user finsihed with it. This allows
2573   // use to retrieve last_Java_pc from last_Java_sp[-1].
2574   // On 32bit we then have to push additional args on the stack to accomplish
2575   // the actual requested call. On 64bit call_VM only can use register args
2576   // so the only extra space is the return address that call_VM created.
2577   // This hopefully explains the calculations here.
2578 
2579 #ifdef _LP64
2580   // We've pushed one address, correct last_Java_sp
2581   lea(rax, Address(rsp, wordSize));
2582 #else
2583   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2584 #endif // LP64
2585 
2586   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2587 
2588 }
2589 
2590 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2591   call_VM_leaf_base(entry_point, number_of_arguments);
2592 }
2593 
2594 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2595   pass_arg0(this, arg_0);
2596   call_VM_leaf(entry_point, 1);
2597 }
2598 
2599 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2600 
2601   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2602   pass_arg1(this, arg_1);
2603   pass_arg0(this, arg_0);
2604   call_VM_leaf(entry_point, 2);
2605 }
2606 
2607 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2608   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2609   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2610   pass_arg2(this, arg_2);
2611   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2612   pass_arg1(this, arg_1);
2613   pass_arg0(this, arg_0);
2614   call_VM_leaf(entry_point, 3);
2615 }
2616 
2617 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2618   pass_arg0(this, arg_0);
2619   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2620 }
2621 
2622 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2623 
2624   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2625   pass_arg1(this, arg_1);
2626   pass_arg0(this, arg_0);
2627   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2628 }
2629 
2630 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2631   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2632   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2633   pass_arg2(this, arg_2);
2634   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2635   pass_arg1(this, arg_1);
2636   pass_arg0(this, arg_0);
2637   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2638 }
2639 
2640 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2641   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2642   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2643   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2644   pass_arg3(this, arg_3);
2645   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2646   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2647   pass_arg2(this, arg_2);
2648   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2649   pass_arg1(this, arg_1);
2650   pass_arg0(this, arg_0);
2651   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2652 }
2653 
2654 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2655   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2656   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2657   verify_oop(oop_result, "broken oop in call_VM_base");
2658 }
2659 
2660 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2661   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2662   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2663 }
2664 
2665 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2666 }
2667 
2668 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2669 }
2670 
2671 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2672   if (reachable(src1)) {
2673     cmpl(as_Address(src1), imm);
2674   } else {
2675     lea(rscratch1, src1);
2676     cmpl(Address(rscratch1, 0), imm);
2677   }
2678 }
2679 
2680 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2681   assert(!src2.is_lval(), "use cmpptr");
2682   if (reachable(src2)) {
2683     cmpl(src1, as_Address(src2));
2684   } else {
2685     lea(rscratch1, src2);
2686     cmpl(src1, Address(rscratch1, 0));
2687   }
2688 }
2689 
2690 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2691   Assembler::cmpl(src1, imm);
2692 }
2693 
2694 void MacroAssembler::cmp32(Register src1, Address src2) {
2695   Assembler::cmpl(src1, src2);
2696 }
2697 
2698 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2699   ucomisd(opr1, opr2);
2700 
2701   Label L;
2702   if (unordered_is_less) {
2703     movl(dst, -1);
2704     jcc(Assembler::parity, L);
2705     jcc(Assembler::below , L);
2706     movl(dst, 0);
2707     jcc(Assembler::equal , L);
2708     increment(dst);
2709   } else { // unordered is greater
2710     movl(dst, 1);
2711     jcc(Assembler::parity, L);
2712     jcc(Assembler::above , L);
2713     movl(dst, 0);
2714     jcc(Assembler::equal , L);
2715     decrementl(dst);
2716   }
2717   bind(L);
2718 }
2719 
2720 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2721   ucomiss(opr1, opr2);
2722 
2723   Label L;
2724   if (unordered_is_less) {
2725     movl(dst, -1);
2726     jcc(Assembler::parity, L);
2727     jcc(Assembler::below , L);
2728     movl(dst, 0);
2729     jcc(Assembler::equal , L);
2730     increment(dst);
2731   } else { // unordered is greater
2732     movl(dst, 1);
2733     jcc(Assembler::parity, L);
2734     jcc(Assembler::above , L);
2735     movl(dst, 0);
2736     jcc(Assembler::equal , L);
2737     decrementl(dst);
2738   }
2739   bind(L);
2740 }
2741 
2742 
2743 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2744   if (reachable(src1)) {
2745     cmpb(as_Address(src1), imm);
2746   } else {
2747     lea(rscratch1, src1);
2748     cmpb(Address(rscratch1, 0), imm);
2749   }
2750 }
2751 
2752 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2753 #ifdef _LP64
2754   if (src2.is_lval()) {
2755     movptr(rscratch1, src2);
2756     Assembler::cmpq(src1, rscratch1);
2757   } else if (reachable(src2)) {
2758     cmpq(src1, as_Address(src2));
2759   } else {
2760     lea(rscratch1, src2);
2761     Assembler::cmpq(src1, Address(rscratch1, 0));
2762   }
2763 #else
2764   if (src2.is_lval()) {
2765     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2766   } else {
2767     cmpl(src1, as_Address(src2));
2768   }
2769 #endif // _LP64
2770 }
2771 
2772 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2773   assert(src2.is_lval(), "not a mem-mem compare");
2774 #ifdef _LP64
2775   // moves src2's literal address
2776   movptr(rscratch1, src2);
2777   Assembler::cmpq(src1, rscratch1);
2778 #else
2779   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2780 #endif // _LP64
2781 }
2782 
2783 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2784   if (reachable(adr)) {
2785     if (os::is_MP())
2786       lock();
2787     cmpxchgptr(reg, as_Address(adr));
2788   } else {
2789     lea(rscratch1, adr);
2790     if (os::is_MP())
2791       lock();
2792     cmpxchgptr(reg, Address(rscratch1, 0));
2793   }
2794 }
2795 
2796 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2797   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2798 }
2799 
2800 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2801   if (reachable(src)) {
2802     Assembler::comisd(dst, as_Address(src));
2803   } else {
2804     lea(rscratch1, src);
2805     Assembler::comisd(dst, Address(rscratch1, 0));
2806   }
2807 }
2808 
2809 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2810   if (reachable(src)) {
2811     Assembler::comiss(dst, as_Address(src));
2812   } else {
2813     lea(rscratch1, src);
2814     Assembler::comiss(dst, Address(rscratch1, 0));
2815   }
2816 }
2817 
2818 
2819 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2820   Condition negated_cond = negate_condition(cond);
2821   Label L;
2822   jcc(negated_cond, L);
2823   pushf(); // Preserve flags
2824   atomic_incl(counter_addr);
2825   popf();
2826   bind(L);
2827 }
2828 
2829 int MacroAssembler::corrected_idivl(Register reg) {
2830   // Full implementation of Java idiv and irem; checks for
2831   // special case as described in JVM spec., p.243 & p.271.
2832   // The function returns the (pc) offset of the idivl
2833   // instruction - may be needed for implicit exceptions.
2834   //
2835   //         normal case                           special case
2836   //
2837   // input : rax,: dividend                         min_int
2838   //         reg: divisor   (may not be rax,/rdx)   -1
2839   //
2840   // output: rax,: quotient  (= rax, idiv reg)       min_int
2841   //         rdx: remainder (= rax, irem reg)       0
2842   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2843   const int min_int = 0x80000000;
2844   Label normal_case, special_case;
2845 
2846   // check for special case
2847   cmpl(rax, min_int);
2848   jcc(Assembler::notEqual, normal_case);
2849   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2850   cmpl(reg, -1);
2851   jcc(Assembler::equal, special_case);
2852 
2853   // handle normal case
2854   bind(normal_case);
2855   cdql();
2856   int idivl_offset = offset();
2857   idivl(reg);
2858 
2859   // normal and special case exit
2860   bind(special_case);
2861 
2862   return idivl_offset;
2863 }
2864 
2865 
2866 
2867 void MacroAssembler::decrementl(Register reg, int value) {
2868   if (value == min_jint) {subl(reg, value) ; return; }
2869   if (value <  0) { incrementl(reg, -value); return; }
2870   if (value == 0) {                        ; return; }
2871   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2872   /* else */      { subl(reg, value)       ; return; }
2873 }
2874 
2875 void MacroAssembler::decrementl(Address dst, int value) {
2876   if (value == min_jint) {subl(dst, value) ; return; }
2877   if (value <  0) { incrementl(dst, -value); return; }
2878   if (value == 0) {                        ; return; }
2879   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2880   /* else */      { subl(dst, value)       ; return; }
2881 }
2882 
2883 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2884   assert (shift_value > 0, "illegal shift value");
2885   Label _is_positive;
2886   testl (reg, reg);
2887   jcc (Assembler::positive, _is_positive);
2888   int offset = (1 << shift_value) - 1 ;
2889 
2890   if (offset == 1) {
2891     incrementl(reg);
2892   } else {
2893     addl(reg, offset);
2894   }
2895 
2896   bind (_is_positive);
2897   sarl(reg, shift_value);
2898 }
2899 
2900 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2901   if (reachable(src)) {
2902     Assembler::divsd(dst, as_Address(src));
2903   } else {
2904     lea(rscratch1, src);
2905     Assembler::divsd(dst, Address(rscratch1, 0));
2906   }
2907 }
2908 
2909 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2910   if (reachable(src)) {
2911     Assembler::divss(dst, as_Address(src));
2912   } else {
2913     lea(rscratch1, src);
2914     Assembler::divss(dst, Address(rscratch1, 0));
2915   }
2916 }
2917 
2918 // !defined(COMPILER2) is because of stupid core builds
2919 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2920 void MacroAssembler::empty_FPU_stack() {
2921   if (VM_Version::supports_mmx()) {
2922     emms();
2923   } else {
2924     for (int i = 8; i-- > 0; ) ffree(i);
2925   }
2926 }
2927 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2928 
2929 
2930 // Defines obj, preserves var_size_in_bytes
2931 void MacroAssembler::eden_allocate(Register obj,
2932                                    Register var_size_in_bytes,
2933                                    int con_size_in_bytes,
2934                                    Register t1,
2935                                    Label& slow_case) {
2936   assert(obj == rax, "obj must be in rax, for cmpxchg");
2937   assert_different_registers(obj, var_size_in_bytes, t1);
2938   if (!Universe::heap()->supports_inline_contig_alloc()) {
2939     jmp(slow_case);
2940   } else {
2941     Register end = t1;
2942     Label retry;
2943     bind(retry);
2944     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2945     movptr(obj, heap_top);
2946     if (var_size_in_bytes == noreg) {
2947       lea(end, Address(obj, con_size_in_bytes));
2948     } else {
2949       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2950     }
2951     // if end < obj then we wrapped around => object too long => slow case
2952     cmpptr(end, obj);
2953     jcc(Assembler::below, slow_case);
2954     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2955     jcc(Assembler::above, slow_case);
2956     // Compare obj with the top addr, and if still equal, store the new top addr in
2957     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2958     // it otherwise. Use lock prefix for atomicity on MPs.
2959     locked_cmpxchgptr(end, heap_top);
2960     jcc(Assembler::notEqual, retry);
2961   }
2962 }
2963 
2964 void MacroAssembler::enter() {
2965   push(rbp);
2966   mov(rbp, rsp);
2967 }
2968 
2969 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2970 void MacroAssembler::fat_nop() {
2971   if (UseAddressNop) {
2972     addr_nop_5();
2973   } else {
2974     emit_int8(0x26); // es:
2975     emit_int8(0x2e); // cs:
2976     emit_int8(0x64); // fs:
2977     emit_int8(0x65); // gs:
2978     emit_int8((unsigned char)0x90);
2979   }
2980 }
2981 
2982 void MacroAssembler::fcmp(Register tmp) {
2983   fcmp(tmp, 1, true, true);
2984 }
2985 
2986 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2987   assert(!pop_right || pop_left, "usage error");
2988   if (VM_Version::supports_cmov()) {
2989     assert(tmp == noreg, "unneeded temp");
2990     if (pop_left) {
2991       fucomip(index);
2992     } else {
2993       fucomi(index);
2994     }
2995     if (pop_right) {
2996       fpop();
2997     }
2998   } else {
2999     assert(tmp != noreg, "need temp");
3000     if (pop_left) {
3001       if (pop_right) {
3002         fcompp();
3003       } else {
3004         fcomp(index);
3005       }
3006     } else {
3007       fcom(index);
3008     }
3009     // convert FPU condition into eflags condition via rax,
3010     save_rax(tmp);
3011     fwait(); fnstsw_ax();
3012     sahf();
3013     restore_rax(tmp);
3014   }
3015   // condition codes set as follows:
3016   //
3017   // CF (corresponds to C0) if x < y
3018   // PF (corresponds to C2) if unordered
3019   // ZF (corresponds to C3) if x = y
3020 }
3021 
3022 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3023   fcmp2int(dst, unordered_is_less, 1, true, true);
3024 }
3025 
3026 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3027   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3028   Label L;
3029   if (unordered_is_less) {
3030     movl(dst, -1);
3031     jcc(Assembler::parity, L);
3032     jcc(Assembler::below , L);
3033     movl(dst, 0);
3034     jcc(Assembler::equal , L);
3035     increment(dst);
3036   } else { // unordered is greater
3037     movl(dst, 1);
3038     jcc(Assembler::parity, L);
3039     jcc(Assembler::above , L);
3040     movl(dst, 0);
3041     jcc(Assembler::equal , L);
3042     decrementl(dst);
3043   }
3044   bind(L);
3045 }
3046 
3047 void MacroAssembler::fld_d(AddressLiteral src) {
3048   fld_d(as_Address(src));
3049 }
3050 
3051 void MacroAssembler::fld_s(AddressLiteral src) {
3052   fld_s(as_Address(src));
3053 }
3054 
3055 void MacroAssembler::fld_x(AddressLiteral src) {
3056   Assembler::fld_x(as_Address(src));
3057 }
3058 
3059 void MacroAssembler::fldcw(AddressLiteral src) {
3060   Assembler::fldcw(as_Address(src));
3061 }
3062 
3063 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3064   if (reachable(src)) {
3065     Assembler::mulpd(dst, as_Address(src));
3066   } else {
3067     lea(rscratch1, src);
3068     Assembler::mulpd(dst, Address(rscratch1, 0));
3069   }
3070 }
3071 
3072 void MacroAssembler::increase_precision() {
3073   subptr(rsp, BytesPerWord);
3074   fnstcw(Address(rsp, 0));
3075   movl(rax, Address(rsp, 0));
3076   orl(rax, 0x300);
3077   push(rax);
3078   fldcw(Address(rsp, 0));
3079   pop(rax);
3080 }
3081 
3082 void MacroAssembler::restore_precision() {
3083   fldcw(Address(rsp, 0));
3084   addptr(rsp, BytesPerWord);
3085 }
3086 
3087 void MacroAssembler::fpop() {
3088   ffree();
3089   fincstp();
3090 }
3091 
3092 void MacroAssembler::load_float(Address src) {
3093   if (UseSSE >= 1) {
3094     movflt(xmm0, src);
3095   } else {
3096     LP64_ONLY(ShouldNotReachHere());
3097     NOT_LP64(fld_s(src));
3098   }
3099 }
3100 
3101 void MacroAssembler::store_float(Address dst) {
3102   if (UseSSE >= 1) {
3103     movflt(dst, xmm0);
3104   } else {
3105     LP64_ONLY(ShouldNotReachHere());
3106     NOT_LP64(fstp_s(dst));
3107   }
3108 }
3109 
3110 void MacroAssembler::load_double(Address src) {
3111   if (UseSSE >= 2) {
3112     movdbl(xmm0, src);
3113   } else {
3114     LP64_ONLY(ShouldNotReachHere());
3115     NOT_LP64(fld_d(src));
3116   }
3117 }
3118 
3119 void MacroAssembler::store_double(Address dst) {
3120   if (UseSSE >= 2) {
3121     movdbl(dst, xmm0);
3122   } else {
3123     LP64_ONLY(ShouldNotReachHere());
3124     NOT_LP64(fstp_d(dst));
3125   }
3126 }
3127 
3128 void MacroAssembler::fremr(Register tmp) {
3129   save_rax(tmp);
3130   { Label L;
3131     bind(L);
3132     fprem();
3133     fwait(); fnstsw_ax();
3134 #ifdef _LP64
3135     testl(rax, 0x400);
3136     jcc(Assembler::notEqual, L);
3137 #else
3138     sahf();
3139     jcc(Assembler::parity, L);
3140 #endif // _LP64
3141   }
3142   restore_rax(tmp);
3143   // Result is in ST0.
3144   // Note: fxch & fpop to get rid of ST1
3145   // (otherwise FPU stack could overflow eventually)
3146   fxch(1);
3147   fpop();
3148 }
3149 
3150 
3151 void MacroAssembler::incrementl(AddressLiteral dst) {
3152   if (reachable(dst)) {
3153     incrementl(as_Address(dst));
3154   } else {
3155     lea(rscratch1, dst);
3156     incrementl(Address(rscratch1, 0));
3157   }
3158 }
3159 
3160 void MacroAssembler::incrementl(ArrayAddress dst) {
3161   incrementl(as_Address(dst));
3162 }
3163 
3164 void MacroAssembler::incrementl(Register reg, int value) {
3165   if (value == min_jint) {addl(reg, value) ; return; }
3166   if (value <  0) { decrementl(reg, -value); return; }
3167   if (value == 0) {                        ; return; }
3168   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3169   /* else */      { addl(reg, value)       ; return; }
3170 }
3171 
3172 void MacroAssembler::incrementl(Address dst, int value) {
3173   if (value == min_jint) {addl(dst, value) ; return; }
3174   if (value <  0) { decrementl(dst, -value); return; }
3175   if (value == 0) {                        ; return; }
3176   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3177   /* else */      { addl(dst, value)       ; return; }
3178 }
3179 
3180 void MacroAssembler::jump(AddressLiteral dst) {
3181   if (reachable(dst)) {
3182     jmp_literal(dst.target(), dst.rspec());
3183   } else {
3184     lea(rscratch1, dst);
3185     jmp(rscratch1);
3186   }
3187 }
3188 
3189 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3190   if (reachable(dst)) {
3191     InstructionMark im(this);
3192     relocate(dst.reloc());
3193     const int short_size = 2;
3194     const int long_size = 6;
3195     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3196     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3197       // 0111 tttn #8-bit disp
3198       emit_int8(0x70 | cc);
3199       emit_int8((offs - short_size) & 0xFF);
3200     } else {
3201       // 0000 1111 1000 tttn #32-bit disp
3202       emit_int8(0x0F);
3203       emit_int8((unsigned char)(0x80 | cc));
3204       emit_int32(offs - long_size);
3205     }
3206   } else {
3207 #ifdef ASSERT
3208     warning("reversing conditional branch");
3209 #endif /* ASSERT */
3210     Label skip;
3211     jccb(reverse[cc], skip);
3212     lea(rscratch1, dst);
3213     Assembler::jmp(rscratch1);
3214     bind(skip);
3215   }
3216 }
3217 
3218 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3219   if (reachable(src)) {
3220     Assembler::ldmxcsr(as_Address(src));
3221   } else {
3222     lea(rscratch1, src);
3223     Assembler::ldmxcsr(Address(rscratch1, 0));
3224   }
3225 }
3226 
3227 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3228   int off;
3229   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3230     off = offset();
3231     movsbl(dst, src); // movsxb
3232   } else {
3233     off = load_unsigned_byte(dst, src);
3234     shll(dst, 24);
3235     sarl(dst, 24);
3236   }
3237   return off;
3238 }
3239 
3240 // Note: load_signed_short used to be called load_signed_word.
3241 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3242 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3243 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3244 int MacroAssembler::load_signed_short(Register dst, Address src) {
3245   int off;
3246   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3247     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3248     // version but this is what 64bit has always done. This seems to imply
3249     // that users are only using 32bits worth.
3250     off = offset();
3251     movswl(dst, src); // movsxw
3252   } else {
3253     off = load_unsigned_short(dst, src);
3254     shll(dst, 16);
3255     sarl(dst, 16);
3256   }
3257   return off;
3258 }
3259 
3260 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3261   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3262   // and "3.9 Partial Register Penalties", p. 22).
3263   int off;
3264   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3265     off = offset();
3266     movzbl(dst, src); // movzxb
3267   } else {
3268     xorl(dst, dst);
3269     off = offset();
3270     movb(dst, src);
3271   }
3272   return off;
3273 }
3274 
3275 // Note: load_unsigned_short used to be called load_unsigned_word.
3276 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3277   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3278   // and "3.9 Partial Register Penalties", p. 22).
3279   int off;
3280   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3281     off = offset();
3282     movzwl(dst, src); // movzxw
3283   } else {
3284     xorl(dst, dst);
3285     off = offset();
3286     movw(dst, src);
3287   }
3288   return off;
3289 }
3290 
3291 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3292   switch (size_in_bytes) {
3293 #ifndef _LP64
3294   case  8:
3295     assert(dst2 != noreg, "second dest register required");
3296     movl(dst,  src);
3297     movl(dst2, src.plus_disp(BytesPerInt));
3298     break;
3299 #else
3300   case  8:  movq(dst, src); break;
3301 #endif
3302   case  4:  movl(dst, src); break;
3303   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3304   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3305   default:  ShouldNotReachHere();
3306   }
3307 }
3308 
3309 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3310   switch (size_in_bytes) {
3311 #ifndef _LP64
3312   case  8:
3313     assert(src2 != noreg, "second source register required");
3314     movl(dst,                        src);
3315     movl(dst.plus_disp(BytesPerInt), src2);
3316     break;
3317 #else
3318   case  8:  movq(dst, src); break;
3319 #endif
3320   case  4:  movl(dst, src); break;
3321   case  2:  movw(dst, src); break;
3322   case  1:  movb(dst, src); break;
3323   default:  ShouldNotReachHere();
3324   }
3325 }
3326 
3327 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3328   if (reachable(dst)) {
3329     movl(as_Address(dst), src);
3330   } else {
3331     lea(rscratch1, dst);
3332     movl(Address(rscratch1, 0), src);
3333   }
3334 }
3335 
3336 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3337   if (reachable(src)) {
3338     movl(dst, as_Address(src));
3339   } else {
3340     lea(rscratch1, src);
3341     movl(dst, Address(rscratch1, 0));
3342   }
3343 }
3344 
3345 // C++ bool manipulation
3346 
3347 void MacroAssembler::movbool(Register dst, Address src) {
3348   if(sizeof(bool) == 1)
3349     movb(dst, src);
3350   else if(sizeof(bool) == 2)
3351     movw(dst, src);
3352   else if(sizeof(bool) == 4)
3353     movl(dst, src);
3354   else
3355     // unsupported
3356     ShouldNotReachHere();
3357 }
3358 
3359 void MacroAssembler::movbool(Address dst, bool boolconst) {
3360   if(sizeof(bool) == 1)
3361     movb(dst, (int) boolconst);
3362   else if(sizeof(bool) == 2)
3363     movw(dst, (int) boolconst);
3364   else if(sizeof(bool) == 4)
3365     movl(dst, (int) boolconst);
3366   else
3367     // unsupported
3368     ShouldNotReachHere();
3369 }
3370 
3371 void MacroAssembler::movbool(Address dst, Register src) {
3372   if(sizeof(bool) == 1)
3373     movb(dst, src);
3374   else if(sizeof(bool) == 2)
3375     movw(dst, src);
3376   else if(sizeof(bool) == 4)
3377     movl(dst, src);
3378   else
3379     // unsupported
3380     ShouldNotReachHere();
3381 }
3382 
3383 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3384   movb(as_Address(dst), src);
3385 }
3386 
3387 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3388   if (reachable(src)) {
3389     movdl(dst, as_Address(src));
3390   } else {
3391     lea(rscratch1, src);
3392     movdl(dst, Address(rscratch1, 0));
3393   }
3394 }
3395 
3396 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3397   if (reachable(src)) {
3398     movq(dst, as_Address(src));
3399   } else {
3400     lea(rscratch1, src);
3401     movq(dst, Address(rscratch1, 0));
3402   }
3403 }
3404 
3405 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3406   if (reachable(src)) {
3407     if (UseXmmLoadAndClearUpper) {
3408       movsd (dst, as_Address(src));
3409     } else {
3410       movlpd(dst, as_Address(src));
3411     }
3412   } else {
3413     lea(rscratch1, src);
3414     if (UseXmmLoadAndClearUpper) {
3415       movsd (dst, Address(rscratch1, 0));
3416     } else {
3417       movlpd(dst, Address(rscratch1, 0));
3418     }
3419   }
3420 }
3421 
3422 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3423   if (reachable(src)) {
3424     movss(dst, as_Address(src));
3425   } else {
3426     lea(rscratch1, src);
3427     movss(dst, Address(rscratch1, 0));
3428   }
3429 }
3430 
3431 void MacroAssembler::movptr(Register dst, Register src) {
3432   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3433 }
3434 
3435 void MacroAssembler::movptr(Register dst, Address src) {
3436   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3437 }
3438 
3439 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3440 void MacroAssembler::movptr(Register dst, intptr_t src) {
3441   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3442 }
3443 
3444 void MacroAssembler::movptr(Address dst, Register src) {
3445   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3446 }
3447 
3448 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3449   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3450     Assembler::vextractf32x4h(dst, src, 0);
3451   } else {
3452     Assembler::movdqu(dst, src);
3453   }
3454 }
3455 
3456 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3457   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3458     Assembler::vinsertf32x4h(dst, src, 0);
3459   } else {
3460     Assembler::movdqu(dst, src);
3461   }
3462 }
3463 
3464 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3465   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3466     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3467   } else {
3468     Assembler::movdqu(dst, src);
3469   }
3470 }
3471 
3472 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
3473   if (reachable(src)) {
3474     movdqu(dst, as_Address(src));
3475   } else {
3476     lea(rscratch1, src);
3477     movdqu(dst, Address(rscratch1, 0));
3478   }
3479 }
3480 
3481 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3482   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3483     Assembler::vextractf64x4h(dst, src, 0);
3484   } else {
3485     Assembler::vmovdqu(dst, src);
3486   }
3487 }
3488 
3489 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3490   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3491     Assembler::vinsertf64x4h(dst, src, 0);
3492   } else {
3493     Assembler::vmovdqu(dst, src);
3494   }
3495 }
3496 
3497 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3498   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3499     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3500   }
3501   else {
3502     Assembler::vmovdqu(dst, src);
3503   }
3504 }
3505 
3506 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src) {
3507   if (reachable(src)) {
3508     vmovdqu(dst, as_Address(src));
3509   }
3510   else {
3511     lea(rscratch1, src);
3512     vmovdqu(dst, Address(rscratch1, 0));
3513   }
3514 }
3515 
3516 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3517   if (reachable(src)) {
3518     Assembler::movdqa(dst, as_Address(src));
3519   } else {
3520     lea(rscratch1, src);
3521     Assembler::movdqa(dst, Address(rscratch1, 0));
3522   }
3523 }
3524 
3525 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3526   if (reachable(src)) {
3527     Assembler::movsd(dst, as_Address(src));
3528   } else {
3529     lea(rscratch1, src);
3530     Assembler::movsd(dst, Address(rscratch1, 0));
3531   }
3532 }
3533 
3534 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3535   if (reachable(src)) {
3536     Assembler::movss(dst, as_Address(src));
3537   } else {
3538     lea(rscratch1, src);
3539     Assembler::movss(dst, Address(rscratch1, 0));
3540   }
3541 }
3542 
3543 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3544   if (reachable(src)) {
3545     Assembler::mulsd(dst, as_Address(src));
3546   } else {
3547     lea(rscratch1, src);
3548     Assembler::mulsd(dst, Address(rscratch1, 0));
3549   }
3550 }
3551 
3552 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3553   if (reachable(src)) {
3554     Assembler::mulss(dst, as_Address(src));
3555   } else {
3556     lea(rscratch1, src);
3557     Assembler::mulss(dst, Address(rscratch1, 0));
3558   }
3559 }
3560 
3561 void MacroAssembler::null_check(Register reg, int offset) {
3562   if (needs_explicit_null_check(offset)) {
3563     // provoke OS NULL exception if reg = NULL by
3564     // accessing M[reg] w/o changing any (non-CC) registers
3565     // NOTE: cmpl is plenty here to provoke a segv
3566     cmpptr(rax, Address(reg, 0));
3567     // Note: should probably use testl(rax, Address(reg, 0));
3568     //       may be shorter code (however, this version of
3569     //       testl needs to be implemented first)
3570   } else {
3571     // nothing to do, (later) access of M[reg + offset]
3572     // will provoke OS NULL exception if reg = NULL
3573   }
3574 }
3575 
3576 void MacroAssembler::os_breakpoint() {
3577   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3578   // (e.g., MSVC can't call ps() otherwise)
3579   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3580 }
3581 
3582 #ifdef _LP64
3583 #define XSTATE_BV 0x200
3584 #endif
3585 
3586 void MacroAssembler::pop_CPU_state() {
3587   pop_FPU_state();
3588   pop_IU_state();
3589 }
3590 
3591 void MacroAssembler::pop_FPU_state() {
3592 #ifndef _LP64
3593   frstor(Address(rsp, 0));
3594 #else
3595   fxrstor(Address(rsp, 0));
3596 #endif
3597   addptr(rsp, FPUStateSizeInWords * wordSize);
3598 }
3599 
3600 void MacroAssembler::pop_IU_state() {
3601   popa();
3602   LP64_ONLY(addq(rsp, 8));
3603   popf();
3604 }
3605 
3606 // Save Integer and Float state
3607 // Warning: Stack must be 16 byte aligned (64bit)
3608 void MacroAssembler::push_CPU_state() {
3609   push_IU_state();
3610   push_FPU_state();
3611 }
3612 
3613 void MacroAssembler::push_FPU_state() {
3614   subptr(rsp, FPUStateSizeInWords * wordSize);
3615 #ifndef _LP64
3616   fnsave(Address(rsp, 0));
3617   fwait();
3618 #else
3619   fxsave(Address(rsp, 0));
3620 #endif // LP64
3621 }
3622 
3623 void MacroAssembler::push_IU_state() {
3624   // Push flags first because pusha kills them
3625   pushf();
3626   // Make sure rsp stays 16-byte aligned
3627   LP64_ONLY(subq(rsp, 8));
3628   pusha();
3629 }
3630 
3631 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
3632   // determine java_thread register
3633   if (!java_thread->is_valid()) {
3634     java_thread = rdi;
3635     get_thread(java_thread);
3636   }
3637   // we must set sp to zero to clear frame
3638   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3639   if (clear_fp) {
3640     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3641   }
3642 
3643   if (clear_pc)
3644     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3645 
3646 }
3647 
3648 void MacroAssembler::restore_rax(Register tmp) {
3649   if (tmp == noreg) pop(rax);
3650   else if (tmp != rax) mov(rax, tmp);
3651 }
3652 
3653 void MacroAssembler::round_to(Register reg, int modulus) {
3654   addptr(reg, modulus - 1);
3655   andptr(reg, -modulus);
3656 }
3657 
3658 void MacroAssembler::save_rax(Register tmp) {
3659   if (tmp == noreg) push(rax);
3660   else if (tmp != rax) mov(tmp, rax);
3661 }
3662 
3663 // Write serialization page so VM thread can do a pseudo remote membar.
3664 // We use the current thread pointer to calculate a thread specific
3665 // offset to write to within the page. This minimizes bus traffic
3666 // due to cache line collision.
3667 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3668   movl(tmp, thread);
3669   shrl(tmp, os::get_serialize_page_shift_count());
3670   andl(tmp, (os::vm_page_size() - sizeof(int)));
3671 
3672   Address index(noreg, tmp, Address::times_1);
3673   ExternalAddress page(os::get_memory_serialize_page());
3674 
3675   // Size of store must match masking code above
3676   movl(as_Address(ArrayAddress(page, index)), tmp);
3677 }
3678 
3679 // Calls to C land
3680 //
3681 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3682 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3683 // has to be reset to 0. This is required to allow proper stack traversal.
3684 void MacroAssembler::set_last_Java_frame(Register java_thread,
3685                                          Register last_java_sp,
3686                                          Register last_java_fp,
3687                                          address  last_java_pc) {
3688   // determine java_thread register
3689   if (!java_thread->is_valid()) {
3690     java_thread = rdi;
3691     get_thread(java_thread);
3692   }
3693   // determine last_java_sp register
3694   if (!last_java_sp->is_valid()) {
3695     last_java_sp = rsp;
3696   }
3697 
3698   // last_java_fp is optional
3699 
3700   if (last_java_fp->is_valid()) {
3701     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3702   }
3703 
3704   // last_java_pc is optional
3705 
3706   if (last_java_pc != NULL) {
3707     lea(Address(java_thread,
3708                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3709         InternalAddress(last_java_pc));
3710 
3711   }
3712   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3713 }
3714 
3715 void MacroAssembler::shlptr(Register dst, int imm8) {
3716   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3717 }
3718 
3719 void MacroAssembler::shrptr(Register dst, int imm8) {
3720   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3721 }
3722 
3723 void MacroAssembler::sign_extend_byte(Register reg) {
3724   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3725     movsbl(reg, reg); // movsxb
3726   } else {
3727     shll(reg, 24);
3728     sarl(reg, 24);
3729   }
3730 }
3731 
3732 void MacroAssembler::sign_extend_short(Register reg) {
3733   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3734     movswl(reg, reg); // movsxw
3735   } else {
3736     shll(reg, 16);
3737     sarl(reg, 16);
3738   }
3739 }
3740 
3741 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3742   assert(reachable(src), "Address should be reachable");
3743   testl(dst, as_Address(src));
3744 }
3745 
3746 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3747   int dst_enc = dst->encoding();
3748   int src_enc = src->encoding();
3749   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3750     Assembler::pcmpeqb(dst, src);
3751   } else if ((dst_enc < 16) && (src_enc < 16)) {
3752     Assembler::pcmpeqb(dst, src);
3753   } else if (src_enc < 16) {
3754     subptr(rsp, 64);
3755     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3756     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3757     Assembler::pcmpeqb(xmm0, src);
3758     movdqu(dst, xmm0);
3759     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3760     addptr(rsp, 64);
3761   } else if (dst_enc < 16) {
3762     subptr(rsp, 64);
3763     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3764     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3765     Assembler::pcmpeqb(dst, xmm0);
3766     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3767     addptr(rsp, 64);
3768   } else {
3769     subptr(rsp, 64);
3770     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3771     subptr(rsp, 64);
3772     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3773     movdqu(xmm0, src);
3774     movdqu(xmm1, dst);
3775     Assembler::pcmpeqb(xmm1, xmm0);
3776     movdqu(dst, xmm1);
3777     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3778     addptr(rsp, 64);
3779     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3780     addptr(rsp, 64);
3781   }
3782 }
3783 
3784 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3785   int dst_enc = dst->encoding();
3786   int src_enc = src->encoding();
3787   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3788     Assembler::pcmpeqw(dst, src);
3789   } else if ((dst_enc < 16) && (src_enc < 16)) {
3790     Assembler::pcmpeqw(dst, src);
3791   } else if (src_enc < 16) {
3792     subptr(rsp, 64);
3793     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3794     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3795     Assembler::pcmpeqw(xmm0, src);
3796     movdqu(dst, xmm0);
3797     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3798     addptr(rsp, 64);
3799   } else if (dst_enc < 16) {
3800     subptr(rsp, 64);
3801     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3802     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3803     Assembler::pcmpeqw(dst, xmm0);
3804     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3805     addptr(rsp, 64);
3806   } else {
3807     subptr(rsp, 64);
3808     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3809     subptr(rsp, 64);
3810     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3811     movdqu(xmm0, src);
3812     movdqu(xmm1, dst);
3813     Assembler::pcmpeqw(xmm1, xmm0);
3814     movdqu(dst, xmm1);
3815     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3816     addptr(rsp, 64);
3817     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3818     addptr(rsp, 64);
3819   }
3820 }
3821 
3822 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3823   int dst_enc = dst->encoding();
3824   if (dst_enc < 16) {
3825     Assembler::pcmpestri(dst, src, imm8);
3826   } else {
3827     subptr(rsp, 64);
3828     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3829     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3830     Assembler::pcmpestri(xmm0, src, imm8);
3831     movdqu(dst, xmm0);
3832     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3833     addptr(rsp, 64);
3834   }
3835 }
3836 
3837 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3838   int dst_enc = dst->encoding();
3839   int src_enc = src->encoding();
3840   if ((dst_enc < 16) && (src_enc < 16)) {
3841     Assembler::pcmpestri(dst, src, imm8);
3842   } else if (src_enc < 16) {
3843     subptr(rsp, 64);
3844     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3845     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3846     Assembler::pcmpestri(xmm0, src, imm8);
3847     movdqu(dst, xmm0);
3848     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3849     addptr(rsp, 64);
3850   } else if (dst_enc < 16) {
3851     subptr(rsp, 64);
3852     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3853     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3854     Assembler::pcmpestri(dst, xmm0, imm8);
3855     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3856     addptr(rsp, 64);
3857   } else {
3858     subptr(rsp, 64);
3859     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3860     subptr(rsp, 64);
3861     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3862     movdqu(xmm0, src);
3863     movdqu(xmm1, dst);
3864     Assembler::pcmpestri(xmm1, xmm0, imm8);
3865     movdqu(dst, xmm1);
3866     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3867     addptr(rsp, 64);
3868     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3869     addptr(rsp, 64);
3870   }
3871 }
3872 
3873 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3874   int dst_enc = dst->encoding();
3875   int src_enc = src->encoding();
3876   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3877     Assembler::pmovzxbw(dst, src);
3878   } else if ((dst_enc < 16) && (src_enc < 16)) {
3879     Assembler::pmovzxbw(dst, src);
3880   } else if (src_enc < 16) {
3881     subptr(rsp, 64);
3882     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3883     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3884     Assembler::pmovzxbw(xmm0, src);
3885     movdqu(dst, xmm0);
3886     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3887     addptr(rsp, 64);
3888   } else if (dst_enc < 16) {
3889     subptr(rsp, 64);
3890     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3891     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3892     Assembler::pmovzxbw(dst, xmm0);
3893     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3894     addptr(rsp, 64);
3895   } else {
3896     subptr(rsp, 64);
3897     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3898     subptr(rsp, 64);
3899     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3900     movdqu(xmm0, src);
3901     movdqu(xmm1, dst);
3902     Assembler::pmovzxbw(xmm1, xmm0);
3903     movdqu(dst, xmm1);
3904     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3905     addptr(rsp, 64);
3906     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3907     addptr(rsp, 64);
3908   }
3909 }
3910 
3911 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3912   int dst_enc = dst->encoding();
3913   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3914     Assembler::pmovzxbw(dst, src);
3915   } else if (dst_enc < 16) {
3916     Assembler::pmovzxbw(dst, src);
3917   } else {
3918     subptr(rsp, 64);
3919     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3920     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3921     Assembler::pmovzxbw(xmm0, src);
3922     movdqu(dst, xmm0);
3923     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3924     addptr(rsp, 64);
3925   }
3926 }
3927 
3928 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
3929   int src_enc = src->encoding();
3930   if (src_enc < 16) {
3931     Assembler::pmovmskb(dst, src);
3932   } else {
3933     subptr(rsp, 64);
3934     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3935     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3936     Assembler::pmovmskb(dst, xmm0);
3937     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3938     addptr(rsp, 64);
3939   }
3940 }
3941 
3942 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
3943   int dst_enc = dst->encoding();
3944   int src_enc = src->encoding();
3945   if ((dst_enc < 16) && (src_enc < 16)) {
3946     Assembler::ptest(dst, src);
3947   } else if (src_enc < 16) {
3948     subptr(rsp, 64);
3949     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3950     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3951     Assembler::ptest(xmm0, src);
3952     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3953     addptr(rsp, 64);
3954   } else if (dst_enc < 16) {
3955     subptr(rsp, 64);
3956     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3957     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3958     Assembler::ptest(dst, xmm0);
3959     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3960     addptr(rsp, 64);
3961   } else {
3962     subptr(rsp, 64);
3963     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3964     subptr(rsp, 64);
3965     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3966     movdqu(xmm0, src);
3967     movdqu(xmm1, dst);
3968     Assembler::ptest(xmm1, xmm0);
3969     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3970     addptr(rsp, 64);
3971     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3972     addptr(rsp, 64);
3973   }
3974 }
3975 
3976 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3977   if (reachable(src)) {
3978     Assembler::sqrtsd(dst, as_Address(src));
3979   } else {
3980     lea(rscratch1, src);
3981     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3982   }
3983 }
3984 
3985 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3986   if (reachable(src)) {
3987     Assembler::sqrtss(dst, as_Address(src));
3988   } else {
3989     lea(rscratch1, src);
3990     Assembler::sqrtss(dst, Address(rscratch1, 0));
3991   }
3992 }
3993 
3994 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3995   if (reachable(src)) {
3996     Assembler::subsd(dst, as_Address(src));
3997   } else {
3998     lea(rscratch1, src);
3999     Assembler::subsd(dst, Address(rscratch1, 0));
4000   }
4001 }
4002 
4003 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
4004   if (reachable(src)) {
4005     Assembler::subss(dst, as_Address(src));
4006   } else {
4007     lea(rscratch1, src);
4008     Assembler::subss(dst, Address(rscratch1, 0));
4009   }
4010 }
4011 
4012 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
4013   if (reachable(src)) {
4014     Assembler::ucomisd(dst, as_Address(src));
4015   } else {
4016     lea(rscratch1, src);
4017     Assembler::ucomisd(dst, Address(rscratch1, 0));
4018   }
4019 }
4020 
4021 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
4022   if (reachable(src)) {
4023     Assembler::ucomiss(dst, as_Address(src));
4024   } else {
4025     lea(rscratch1, src);
4026     Assembler::ucomiss(dst, Address(rscratch1, 0));
4027   }
4028 }
4029 
4030 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
4031   // Used in sign-bit flipping with aligned address.
4032   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4033   if (reachable(src)) {
4034     Assembler::xorpd(dst, as_Address(src));
4035   } else {
4036     lea(rscratch1, src);
4037     Assembler::xorpd(dst, Address(rscratch1, 0));
4038   }
4039 }
4040 
4041 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
4042   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4043     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4044   }
4045   else {
4046     Assembler::xorpd(dst, src);
4047   }
4048 }
4049 
4050 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
4051   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4052     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4053   } else {
4054     Assembler::xorps(dst, src);
4055   }
4056 }
4057 
4058 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4059   // Used in sign-bit flipping with aligned address.
4060   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4061   if (reachable(src)) {
4062     Assembler::xorps(dst, as_Address(src));
4063   } else {
4064     lea(rscratch1, src);
4065     Assembler::xorps(dst, Address(rscratch1, 0));
4066   }
4067 }
4068 
4069 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4070   // Used in sign-bit flipping with aligned address.
4071   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4072   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4073   if (reachable(src)) {
4074     Assembler::pshufb(dst, as_Address(src));
4075   } else {
4076     lea(rscratch1, src);
4077     Assembler::pshufb(dst, Address(rscratch1, 0));
4078   }
4079 }
4080 
4081 // AVX 3-operands instructions
4082 
4083 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4084   if (reachable(src)) {
4085     vaddsd(dst, nds, as_Address(src));
4086   } else {
4087     lea(rscratch1, src);
4088     vaddsd(dst, nds, Address(rscratch1, 0));
4089   }
4090 }
4091 
4092 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4093   if (reachable(src)) {
4094     vaddss(dst, nds, as_Address(src));
4095   } else {
4096     lea(rscratch1, src);
4097     vaddss(dst, nds, Address(rscratch1, 0));
4098   }
4099 }
4100 
4101 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4102   int dst_enc = dst->encoding();
4103   int nds_enc = nds->encoding();
4104   int src_enc = src->encoding();
4105   if ((dst_enc < 16) && (nds_enc < 16)) {
4106     vandps(dst, nds, negate_field, vector_len);
4107   } else if ((src_enc < 16) && (dst_enc < 16)) {
4108     movss(src, nds);
4109     vandps(dst, src, negate_field, vector_len);
4110   } else if (src_enc < 16) {
4111     movss(src, nds);
4112     vandps(src, src, negate_field, vector_len);
4113     movss(dst, src);
4114   } else if (dst_enc < 16) {
4115     movdqu(src, xmm0);
4116     movss(xmm0, nds);
4117     vandps(dst, xmm0, negate_field, vector_len);
4118     movdqu(xmm0, src);
4119   } else if (nds_enc < 16) {
4120     movdqu(src, xmm0);
4121     vandps(xmm0, nds, negate_field, vector_len);
4122     movss(dst, xmm0);
4123     movdqu(xmm0, src);
4124   } else {
4125     movdqu(src, xmm0);
4126     movss(xmm0, nds);
4127     vandps(xmm0, xmm0, negate_field, vector_len);
4128     movss(dst, xmm0);
4129     movdqu(xmm0, src);
4130   }
4131 }
4132 
4133 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4134   int dst_enc = dst->encoding();
4135   int nds_enc = nds->encoding();
4136   int src_enc = src->encoding();
4137   if ((dst_enc < 16) && (nds_enc < 16)) {
4138     vandpd(dst, nds, negate_field, vector_len);
4139   } else if ((src_enc < 16) && (dst_enc < 16)) {
4140     movsd(src, nds);
4141     vandpd(dst, src, negate_field, vector_len);
4142   } else if (src_enc < 16) {
4143     movsd(src, nds);
4144     vandpd(src, src, negate_field, vector_len);
4145     movsd(dst, src);
4146   } else if (dst_enc < 16) {
4147     movdqu(src, xmm0);
4148     movsd(xmm0, nds);
4149     vandpd(dst, xmm0, negate_field, vector_len);
4150     movdqu(xmm0, src);
4151   } else if (nds_enc < 16) {
4152     movdqu(src, xmm0);
4153     vandpd(xmm0, nds, negate_field, vector_len);
4154     movsd(dst, xmm0);
4155     movdqu(xmm0, src);
4156   } else {
4157     movdqu(src, xmm0);
4158     movsd(xmm0, nds);
4159     vandpd(xmm0, xmm0, negate_field, vector_len);
4160     movsd(dst, xmm0);
4161     movdqu(xmm0, src);
4162   }
4163 }
4164 
4165 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4166   int dst_enc = dst->encoding();
4167   int nds_enc = nds->encoding();
4168   int src_enc = src->encoding();
4169   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4170     Assembler::vpaddb(dst, nds, src, vector_len);
4171   } else if ((dst_enc < 16) && (src_enc < 16)) {
4172     Assembler::vpaddb(dst, dst, src, vector_len);
4173   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4174     // use nds as scratch for src
4175     evmovdqul(nds, src, Assembler::AVX_512bit);
4176     Assembler::vpaddb(dst, dst, nds, vector_len);
4177   } else if ((src_enc < 16) && (nds_enc < 16)) {
4178     // use nds as scratch for dst
4179     evmovdqul(nds, dst, Assembler::AVX_512bit);
4180     Assembler::vpaddb(nds, nds, src, vector_len);
4181     evmovdqul(dst, nds, Assembler::AVX_512bit);
4182   } else if (dst_enc < 16) {
4183     // use nds as scatch for xmm0 to hold src
4184     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4185     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4186     Assembler::vpaddb(dst, dst, xmm0, vector_len);
4187     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4188   } else {
4189     // worse case scenario, all regs are in the upper bank
4190     subptr(rsp, 64);
4191     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4192     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4193     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4194     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4195     Assembler::vpaddb(xmm0, xmm0, xmm1, vector_len);
4196     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4197     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4198     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4199     addptr(rsp, 64);
4200   }
4201 }
4202 
4203 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4204   int dst_enc = dst->encoding();
4205   int nds_enc = nds->encoding();
4206   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4207     Assembler::vpaddb(dst, nds, src, vector_len);
4208   } else if (dst_enc < 16) {
4209     Assembler::vpaddb(dst, dst, src, vector_len);
4210   } else if (nds_enc < 16) {
4211     // implies dst_enc in upper bank with src as scratch
4212     evmovdqul(nds, dst, Assembler::AVX_512bit);
4213     Assembler::vpaddb(nds, nds, src, vector_len);
4214     evmovdqul(dst, nds, Assembler::AVX_512bit);
4215   } else {
4216     // worse case scenario, all regs in upper bank
4217     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4218     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4219     Assembler::vpaddb(xmm0, xmm0, src, vector_len);
4220     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4221   }
4222 }
4223 
4224 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4225   int dst_enc = dst->encoding();
4226   int nds_enc = nds->encoding();
4227   int src_enc = src->encoding();
4228   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4229     Assembler::vpaddw(dst, nds, src, vector_len);
4230   } else if ((dst_enc < 16) && (src_enc < 16)) {
4231     Assembler::vpaddw(dst, dst, src, vector_len);
4232   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4233     // use nds as scratch for src
4234     evmovdqul(nds, src, Assembler::AVX_512bit);
4235     Assembler::vpaddw(dst, dst, nds, vector_len);
4236   } else if ((src_enc < 16) && (nds_enc < 16)) {
4237     // use nds as scratch for dst
4238     evmovdqul(nds, dst, Assembler::AVX_512bit);
4239     Assembler::vpaddw(nds, nds, src, vector_len);
4240     evmovdqul(dst, nds, Assembler::AVX_512bit);
4241   } else if (dst_enc < 16) {
4242     // use nds as scatch for xmm0 to hold src
4243     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4244     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4245     Assembler::vpaddw(dst, dst, xmm0, vector_len);
4246     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4247   } else {
4248     // worse case scenario, all regs are in the upper bank
4249     subptr(rsp, 64);
4250     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4251     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4252     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4253     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4254     Assembler::vpaddw(xmm0, xmm0, xmm1, vector_len);
4255     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4256     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4257     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4258     addptr(rsp, 64);
4259   }
4260 }
4261 
4262 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4263   int dst_enc = dst->encoding();
4264   int nds_enc = nds->encoding();
4265   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4266     Assembler::vpaddw(dst, nds, src, vector_len);
4267   } else if (dst_enc < 16) {
4268     Assembler::vpaddw(dst, dst, src, vector_len);
4269   } else if (nds_enc < 16) {
4270     // implies dst_enc in upper bank with src as scratch
4271     evmovdqul(nds, dst, Assembler::AVX_512bit);
4272     Assembler::vpaddw(nds, nds, src, vector_len);
4273     evmovdqul(dst, nds, Assembler::AVX_512bit);
4274   } else {
4275     // worse case scenario, all regs in upper bank
4276     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4277     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4278     Assembler::vpaddw(xmm0, xmm0, src, vector_len);
4279     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4280   }
4281 }
4282 
4283 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
4284   int dst_enc = dst->encoding();
4285   int src_enc = src->encoding();
4286   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4287     Assembler::vpbroadcastw(dst, src);
4288   } else if ((dst_enc < 16) && (src_enc < 16)) {
4289     Assembler::vpbroadcastw(dst, src);
4290   } else if (src_enc < 16) {
4291     subptr(rsp, 64);
4292     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4293     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4294     Assembler::vpbroadcastw(xmm0, src);
4295     movdqu(dst, xmm0);
4296     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4297     addptr(rsp, 64);
4298   } else if (dst_enc < 16) {
4299     subptr(rsp, 64);
4300     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4301     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4302     Assembler::vpbroadcastw(dst, xmm0);
4303     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4304     addptr(rsp, 64);
4305   } else {
4306     subptr(rsp, 64);
4307     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4308     subptr(rsp, 64);
4309     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4310     movdqu(xmm0, src);
4311     movdqu(xmm1, dst);
4312     Assembler::vpbroadcastw(xmm1, xmm0);
4313     movdqu(dst, xmm1);
4314     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4315     addptr(rsp, 64);
4316     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4317     addptr(rsp, 64);
4318   }
4319 }
4320 
4321 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4322   int dst_enc = dst->encoding();
4323   int nds_enc = nds->encoding();
4324   int src_enc = src->encoding();
4325   assert(dst_enc == nds_enc, "");
4326   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4327     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4328   } else if ((dst_enc < 16) && (src_enc < 16)) {
4329     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4330   } else if (src_enc < 16) {
4331     subptr(rsp, 64);
4332     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4333     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4334     Assembler::vpcmpeqb(xmm0, xmm0, src, vector_len);
4335     movdqu(dst, xmm0);
4336     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4337     addptr(rsp, 64);
4338   } else if (dst_enc < 16) {
4339     subptr(rsp, 64);
4340     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4341     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4342     Assembler::vpcmpeqb(dst, dst, xmm0, vector_len);
4343     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4344     addptr(rsp, 64);
4345   } else {
4346     subptr(rsp, 64);
4347     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4348     subptr(rsp, 64);
4349     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4350     movdqu(xmm0, src);
4351     movdqu(xmm1, dst);
4352     Assembler::vpcmpeqb(xmm1, xmm1, xmm0, vector_len);
4353     movdqu(dst, xmm1);
4354     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4355     addptr(rsp, 64);
4356     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4357     addptr(rsp, 64);
4358   }
4359 }
4360 
4361 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4362   int dst_enc = dst->encoding();
4363   int nds_enc = nds->encoding();
4364   int src_enc = src->encoding();
4365   assert(dst_enc == nds_enc, "");
4366   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4367     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4368   } else if ((dst_enc < 16) && (src_enc < 16)) {
4369     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4370   } else if (src_enc < 16) {
4371     subptr(rsp, 64);
4372     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4373     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4374     Assembler::vpcmpeqw(xmm0, xmm0, src, vector_len);
4375     movdqu(dst, xmm0);
4376     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4377     addptr(rsp, 64);
4378   } else if (dst_enc < 16) {
4379     subptr(rsp, 64);
4380     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4381     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4382     Assembler::vpcmpeqw(dst, dst, xmm0, vector_len);
4383     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4384     addptr(rsp, 64);
4385   } else {
4386     subptr(rsp, 64);
4387     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4388     subptr(rsp, 64);
4389     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4390     movdqu(xmm0, src);
4391     movdqu(xmm1, dst);
4392     Assembler::vpcmpeqw(xmm1, xmm1, xmm0, vector_len);
4393     movdqu(dst, xmm1);
4394     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4395     addptr(rsp, 64);
4396     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4397     addptr(rsp, 64);
4398   }
4399 }
4400 
4401 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
4402   int dst_enc = dst->encoding();
4403   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4404     Assembler::vpmovzxbw(dst, src, vector_len);
4405   } else if (dst_enc < 16) {
4406     Assembler::vpmovzxbw(dst, src, vector_len);
4407   } else {
4408     subptr(rsp, 64);
4409     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4410     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4411     Assembler::vpmovzxbw(xmm0, src, vector_len);
4412     movdqu(dst, xmm0);
4413     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4414     addptr(rsp, 64);
4415   }
4416 }
4417 
4418 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
4419   int src_enc = src->encoding();
4420   if (src_enc < 16) {
4421     Assembler::vpmovmskb(dst, src);
4422   } else {
4423     subptr(rsp, 64);
4424     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4425     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4426     Assembler::vpmovmskb(dst, xmm0);
4427     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4428     addptr(rsp, 64);
4429   }
4430 }
4431 
4432 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4433   int dst_enc = dst->encoding();
4434   int nds_enc = nds->encoding();
4435   int src_enc = src->encoding();
4436   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4437     Assembler::vpmullw(dst, nds, src, vector_len);
4438   } else if ((dst_enc < 16) && (src_enc < 16)) {
4439     Assembler::vpmullw(dst, dst, src, vector_len);
4440   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4441     // use nds as scratch for src
4442     evmovdqul(nds, src, Assembler::AVX_512bit);
4443     Assembler::vpmullw(dst, dst, nds, vector_len);
4444   } else if ((src_enc < 16) && (nds_enc < 16)) {
4445     // use nds as scratch for dst
4446     evmovdqul(nds, dst, Assembler::AVX_512bit);
4447     Assembler::vpmullw(nds, nds, src, vector_len);
4448     evmovdqul(dst, nds, Assembler::AVX_512bit);
4449   } else if (dst_enc < 16) {
4450     // use nds as scatch for xmm0 to hold src
4451     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4452     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4453     Assembler::vpmullw(dst, dst, xmm0, vector_len);
4454     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4455   } else {
4456     // worse case scenario, all regs are in the upper bank
4457     subptr(rsp, 64);
4458     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4459     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4460     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4461     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4462     Assembler::vpmullw(xmm0, xmm0, xmm1, vector_len);
4463     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4464     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4465     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4466     addptr(rsp, 64);
4467   }
4468 }
4469 
4470 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4471   int dst_enc = dst->encoding();
4472   int nds_enc = nds->encoding();
4473   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4474     Assembler::vpmullw(dst, nds, src, vector_len);
4475   } else if (dst_enc < 16) {
4476     Assembler::vpmullw(dst, dst, src, vector_len);
4477   } else if (nds_enc < 16) {
4478     // implies dst_enc in upper bank with src as scratch
4479     evmovdqul(nds, dst, Assembler::AVX_512bit);
4480     Assembler::vpmullw(nds, nds, src, vector_len);
4481     evmovdqul(dst, nds, Assembler::AVX_512bit);
4482   } else {
4483     // worse case scenario, all regs in upper bank
4484     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4485     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4486     Assembler::vpmullw(xmm0, xmm0, src, vector_len);
4487     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4488   }
4489 }
4490 
4491 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4492   int dst_enc = dst->encoding();
4493   int nds_enc = nds->encoding();
4494   int src_enc = src->encoding();
4495   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4496     Assembler::vpsubb(dst, nds, src, vector_len);
4497   } else if ((dst_enc < 16) && (src_enc < 16)) {
4498     Assembler::vpsubb(dst, dst, src, vector_len);
4499   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4500     // use nds as scratch for src
4501     evmovdqul(nds, src, Assembler::AVX_512bit);
4502     Assembler::vpsubb(dst, dst, nds, vector_len);
4503   } else if ((src_enc < 16) && (nds_enc < 16)) {
4504     // use nds as scratch for dst
4505     evmovdqul(nds, dst, Assembler::AVX_512bit);
4506     Assembler::vpsubb(nds, nds, src, vector_len);
4507     evmovdqul(dst, nds, Assembler::AVX_512bit);
4508   } else if (dst_enc < 16) {
4509     // use nds as scatch for xmm0 to hold src
4510     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4511     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4512     Assembler::vpsubb(dst, dst, xmm0, vector_len);
4513     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4514   } else {
4515     // worse case scenario, all regs are in the upper bank
4516     subptr(rsp, 64);
4517     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4518     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4519     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4520     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4521     Assembler::vpsubb(xmm0, xmm0, xmm1, vector_len);
4522     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4523     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4524     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4525     addptr(rsp, 64);
4526   }
4527 }
4528 
4529 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4530   int dst_enc = dst->encoding();
4531   int nds_enc = nds->encoding();
4532   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4533     Assembler::vpsubb(dst, nds, src, vector_len);
4534   } else if (dst_enc < 16) {
4535     Assembler::vpsubb(dst, dst, src, vector_len);
4536   } else if (nds_enc < 16) {
4537     // implies dst_enc in upper bank with src as scratch
4538     evmovdqul(nds, dst, Assembler::AVX_512bit);
4539     Assembler::vpsubb(nds, nds, src, vector_len);
4540     evmovdqul(dst, nds, Assembler::AVX_512bit);
4541   } else {
4542     // worse case scenario, all regs in upper bank
4543     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4544     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4545     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4546     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4547   }
4548 }
4549 
4550 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4551   int dst_enc = dst->encoding();
4552   int nds_enc = nds->encoding();
4553   int src_enc = src->encoding();
4554   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4555     Assembler::vpsubw(dst, nds, src, vector_len);
4556   } else if ((dst_enc < 16) && (src_enc < 16)) {
4557     Assembler::vpsubw(dst, dst, src, vector_len);
4558   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4559     // use nds as scratch for src
4560     evmovdqul(nds, src, Assembler::AVX_512bit);
4561     Assembler::vpsubw(dst, dst, nds, vector_len);
4562   } else if ((src_enc < 16) && (nds_enc < 16)) {
4563     // use nds as scratch for dst
4564     evmovdqul(nds, dst, Assembler::AVX_512bit);
4565     Assembler::vpsubw(nds, nds, src, vector_len);
4566     evmovdqul(dst, nds, Assembler::AVX_512bit);
4567   } else if (dst_enc < 16) {
4568     // use nds as scatch for xmm0 to hold src
4569     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4570     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4571     Assembler::vpsubw(dst, dst, xmm0, vector_len);
4572     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4573   } else {
4574     // worse case scenario, all regs are in the upper bank
4575     subptr(rsp, 64);
4576     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4577     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4578     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4579     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4580     Assembler::vpsubw(xmm0, xmm0, xmm1, vector_len);
4581     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4582     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4583     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4584     addptr(rsp, 64);
4585   }
4586 }
4587 
4588 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4589   int dst_enc = dst->encoding();
4590   int nds_enc = nds->encoding();
4591   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4592     Assembler::vpsubw(dst, nds, src, vector_len);
4593   } else if (dst_enc < 16) {
4594     Assembler::vpsubw(dst, dst, src, vector_len);
4595   } else if (nds_enc < 16) {
4596     // implies dst_enc in upper bank with src as scratch
4597     evmovdqul(nds, dst, Assembler::AVX_512bit);
4598     Assembler::vpsubw(nds, nds, src, vector_len);
4599     evmovdqul(dst, nds, Assembler::AVX_512bit);
4600   } else {
4601     // worse case scenario, all regs in upper bank
4602     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4603     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4604     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4605     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4606   }
4607 }
4608 
4609 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4610   int dst_enc = dst->encoding();
4611   int nds_enc = nds->encoding();
4612   int shift_enc = shift->encoding();
4613   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4614     Assembler::vpsraw(dst, nds, shift, vector_len);
4615   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4616     Assembler::vpsraw(dst, dst, shift, vector_len);
4617   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4618     // use nds_enc as scratch with shift
4619     evmovdqul(nds, shift, Assembler::AVX_512bit);
4620     Assembler::vpsraw(dst, dst, nds, vector_len);
4621   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4622     // use nds as scratch with dst
4623     evmovdqul(nds, dst, Assembler::AVX_512bit);
4624     Assembler::vpsraw(nds, nds, shift, vector_len);
4625     evmovdqul(dst, nds, Assembler::AVX_512bit);
4626   } else if (dst_enc < 16) {
4627     // use nds to save a copy of xmm0 and hold shift
4628     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4629     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4630     Assembler::vpsraw(dst, dst, xmm0, vector_len);
4631     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4632   } else if (nds_enc < 16) {
4633     // use nds as dest as temps
4634     evmovdqul(nds, dst, Assembler::AVX_512bit);
4635     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4636     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4637     Assembler::vpsraw(nds, nds, xmm0, vector_len);
4638     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4639     evmovdqul(dst, nds, Assembler::AVX_512bit);
4640   } else {
4641     // worse case scenario, all regs are in the upper bank
4642     subptr(rsp, 64);
4643     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4644     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4645     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4646     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4647     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4648     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4649     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4650     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4651     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4652     addptr(rsp, 64);
4653   }
4654 }
4655 
4656 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4657   int dst_enc = dst->encoding();
4658   int nds_enc = nds->encoding();
4659   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4660     Assembler::vpsraw(dst, nds, shift, vector_len);
4661   } else if (dst_enc < 16) {
4662     Assembler::vpsraw(dst, dst, shift, vector_len);
4663   } else if (nds_enc < 16) {
4664     // use nds as scratch
4665     evmovdqul(nds, dst, Assembler::AVX_512bit);
4666     Assembler::vpsraw(nds, nds, shift, vector_len);
4667     evmovdqul(dst, nds, Assembler::AVX_512bit);
4668   } else {
4669     // use nds as scratch for xmm0
4670     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4671     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4672     Assembler::vpsraw(xmm0, xmm0, shift, vector_len);
4673     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4674   }
4675 }
4676 
4677 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4678   int dst_enc = dst->encoding();
4679   int nds_enc = nds->encoding();
4680   int shift_enc = shift->encoding();
4681   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4682     Assembler::vpsrlw(dst, nds, shift, vector_len);
4683   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4684     Assembler::vpsrlw(dst, dst, shift, vector_len);
4685   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4686     // use nds_enc as scratch with shift
4687     evmovdqul(nds, shift, Assembler::AVX_512bit);
4688     Assembler::vpsrlw(dst, dst, nds, vector_len);
4689   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4690     // use nds as scratch with dst
4691     evmovdqul(nds, dst, Assembler::AVX_512bit);
4692     Assembler::vpsrlw(nds, nds, shift, vector_len);
4693     evmovdqul(dst, nds, Assembler::AVX_512bit);
4694   } else if (dst_enc < 16) {
4695     // use nds to save a copy of xmm0 and hold shift
4696     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4697     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4698     Assembler::vpsrlw(dst, dst, xmm0, vector_len);
4699     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4700   } else if (nds_enc < 16) {
4701     // use nds as dest as temps
4702     evmovdqul(nds, dst, Assembler::AVX_512bit);
4703     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4704     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4705     Assembler::vpsrlw(nds, nds, xmm0, vector_len);
4706     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4707     evmovdqul(dst, nds, Assembler::AVX_512bit);
4708   } else {
4709     // worse case scenario, all regs are in the upper bank
4710     subptr(rsp, 64);
4711     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4712     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4713     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4714     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4715     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4716     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4717     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4718     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4719     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4720     addptr(rsp, 64);
4721   }
4722 }
4723 
4724 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4725   int dst_enc = dst->encoding();
4726   int nds_enc = nds->encoding();
4727   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4728     Assembler::vpsrlw(dst, nds, shift, vector_len);
4729   } else if (dst_enc < 16) {
4730     Assembler::vpsrlw(dst, dst, shift, vector_len);
4731   } else if (nds_enc < 16) {
4732     // use nds as scratch
4733     evmovdqul(nds, dst, Assembler::AVX_512bit);
4734     Assembler::vpsrlw(nds, nds, shift, vector_len);
4735     evmovdqul(dst, nds, Assembler::AVX_512bit);
4736   } else {
4737     // use nds as scratch for xmm0
4738     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4739     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4740     Assembler::vpsrlw(xmm0, xmm0, shift, vector_len);
4741     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4742   }
4743 }
4744 
4745 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4746   int dst_enc = dst->encoding();
4747   int nds_enc = nds->encoding();
4748   int shift_enc = shift->encoding();
4749   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4750     Assembler::vpsllw(dst, nds, shift, vector_len);
4751   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4752     Assembler::vpsllw(dst, dst, shift, vector_len);
4753   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4754     // use nds_enc as scratch with shift
4755     evmovdqul(nds, shift, Assembler::AVX_512bit);
4756     Assembler::vpsllw(dst, dst, nds, vector_len);
4757   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4758     // use nds as scratch with dst
4759     evmovdqul(nds, dst, Assembler::AVX_512bit);
4760     Assembler::vpsllw(nds, nds, shift, vector_len);
4761     evmovdqul(dst, nds, Assembler::AVX_512bit);
4762   } else if (dst_enc < 16) {
4763     // use nds to save a copy of xmm0 and hold shift
4764     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4765     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4766     Assembler::vpsllw(dst, dst, xmm0, vector_len);
4767     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4768   } else if (nds_enc < 16) {
4769     // use nds as dest as temps
4770     evmovdqul(nds, dst, Assembler::AVX_512bit);
4771     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4772     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4773     Assembler::vpsllw(nds, nds, xmm0, vector_len);
4774     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4775     evmovdqul(dst, nds, Assembler::AVX_512bit);
4776   } else {
4777     // worse case scenario, all regs are in the upper bank
4778     subptr(rsp, 64);
4779     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4780     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4781     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4782     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4783     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4784     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4785     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4786     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4787     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4788     addptr(rsp, 64);
4789   }
4790 }
4791 
4792 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4793   int dst_enc = dst->encoding();
4794   int nds_enc = nds->encoding();
4795   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4796     Assembler::vpsllw(dst, nds, shift, vector_len);
4797   } else if (dst_enc < 16) {
4798     Assembler::vpsllw(dst, dst, shift, vector_len);
4799   } else if (nds_enc < 16) {
4800     // use nds as scratch
4801     evmovdqul(nds, dst, Assembler::AVX_512bit);
4802     Assembler::vpsllw(nds, nds, shift, vector_len);
4803     evmovdqul(dst, nds, Assembler::AVX_512bit);
4804   } else {
4805     // use nds as scratch for xmm0
4806     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4807     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4808     Assembler::vpsllw(xmm0, xmm0, shift, vector_len);
4809     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4810   }
4811 }
4812 
4813 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
4814   int dst_enc = dst->encoding();
4815   int src_enc = src->encoding();
4816   if ((dst_enc < 16) && (src_enc < 16)) {
4817     Assembler::vptest(dst, src);
4818   } else if (src_enc < 16) {
4819     subptr(rsp, 64);
4820     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4821     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4822     Assembler::vptest(xmm0, src);
4823     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4824     addptr(rsp, 64);
4825   } else if (dst_enc < 16) {
4826     subptr(rsp, 64);
4827     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4828     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4829     Assembler::vptest(dst, xmm0);
4830     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4831     addptr(rsp, 64);
4832   } else {
4833     subptr(rsp, 64);
4834     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4835     subptr(rsp, 64);
4836     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4837     movdqu(xmm0, src);
4838     movdqu(xmm1, dst);
4839     Assembler::vptest(xmm1, xmm0);
4840     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4841     addptr(rsp, 64);
4842     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4843     addptr(rsp, 64);
4844   }
4845 }
4846 
4847 // This instruction exists within macros, ergo we cannot control its input
4848 // when emitted through those patterns.
4849 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4850   if (VM_Version::supports_avx512nobw()) {
4851     int dst_enc = dst->encoding();
4852     int src_enc = src->encoding();
4853     if (dst_enc == src_enc) {
4854       if (dst_enc < 16) {
4855         Assembler::punpcklbw(dst, src);
4856       } else {
4857         subptr(rsp, 64);
4858         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4859         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4860         Assembler::punpcklbw(xmm0, xmm0);
4861         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4862         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4863         addptr(rsp, 64);
4864       }
4865     } else {
4866       if ((src_enc < 16) && (dst_enc < 16)) {
4867         Assembler::punpcklbw(dst, src);
4868       } else if (src_enc < 16) {
4869         subptr(rsp, 64);
4870         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4871         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4872         Assembler::punpcklbw(xmm0, src);
4873         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4874         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4875         addptr(rsp, 64);
4876       } else if (dst_enc < 16) {
4877         subptr(rsp, 64);
4878         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4879         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4880         Assembler::punpcklbw(dst, xmm0);
4881         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4882         addptr(rsp, 64);
4883       } else {
4884         subptr(rsp, 64);
4885         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4886         subptr(rsp, 64);
4887         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4888         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4889         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4890         Assembler::punpcklbw(xmm0, xmm1);
4891         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4892         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4893         addptr(rsp, 64);
4894         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4895         addptr(rsp, 64);
4896       }
4897     }
4898   } else {
4899     Assembler::punpcklbw(dst, src);
4900   }
4901 }
4902 
4903 // This instruction exists within macros, ergo we cannot control its input
4904 // when emitted through those patterns.
4905 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4906   if (VM_Version::supports_avx512nobw()) {
4907     int dst_enc = dst->encoding();
4908     int src_enc = src->encoding();
4909     if (dst_enc == src_enc) {
4910       if (dst_enc < 16) {
4911         Assembler::pshuflw(dst, src, mode);
4912       } else {
4913         subptr(rsp, 64);
4914         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4915         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4916         Assembler::pshuflw(xmm0, xmm0, mode);
4917         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4918         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4919         addptr(rsp, 64);
4920       }
4921     } else {
4922       if ((src_enc < 16) && (dst_enc < 16)) {
4923         Assembler::pshuflw(dst, src, mode);
4924       } else if (src_enc < 16) {
4925         subptr(rsp, 64);
4926         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4927         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4928         Assembler::pshuflw(xmm0, src, mode);
4929         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4930         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4931         addptr(rsp, 64);
4932       } else if (dst_enc < 16) {
4933         subptr(rsp, 64);
4934         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4935         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4936         Assembler::pshuflw(dst, xmm0, mode);
4937         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4938         addptr(rsp, 64);
4939       } else {
4940         subptr(rsp, 64);
4941         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4942         subptr(rsp, 64);
4943         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4944         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4945         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4946         Assembler::pshuflw(xmm0, xmm1, mode);
4947         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4948         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4949         addptr(rsp, 64);
4950         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4951         addptr(rsp, 64);
4952       }
4953     }
4954   } else {
4955     Assembler::pshuflw(dst, src, mode);
4956   }
4957 }
4958 
4959 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4960   if (reachable(src)) {
4961     vandpd(dst, nds, as_Address(src), vector_len);
4962   } else {
4963     lea(rscratch1, src);
4964     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
4965   }
4966 }
4967 
4968 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4969   if (reachable(src)) {
4970     vandps(dst, nds, as_Address(src), vector_len);
4971   } else {
4972     lea(rscratch1, src);
4973     vandps(dst, nds, Address(rscratch1, 0), vector_len);
4974   }
4975 }
4976 
4977 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4978   if (reachable(src)) {
4979     vdivsd(dst, nds, as_Address(src));
4980   } else {
4981     lea(rscratch1, src);
4982     vdivsd(dst, nds, Address(rscratch1, 0));
4983   }
4984 }
4985 
4986 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4987   if (reachable(src)) {
4988     vdivss(dst, nds, as_Address(src));
4989   } else {
4990     lea(rscratch1, src);
4991     vdivss(dst, nds, Address(rscratch1, 0));
4992   }
4993 }
4994 
4995 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4996   if (reachable(src)) {
4997     vmulsd(dst, nds, as_Address(src));
4998   } else {
4999     lea(rscratch1, src);
5000     vmulsd(dst, nds, Address(rscratch1, 0));
5001   }
5002 }
5003 
5004 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5005   if (reachable(src)) {
5006     vmulss(dst, nds, as_Address(src));
5007   } else {
5008     lea(rscratch1, src);
5009     vmulss(dst, nds, Address(rscratch1, 0));
5010   }
5011 }
5012 
5013 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5014   if (reachable(src)) {
5015     vsubsd(dst, nds, as_Address(src));
5016   } else {
5017     lea(rscratch1, src);
5018     vsubsd(dst, nds, Address(rscratch1, 0));
5019   }
5020 }
5021 
5022 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5023   if (reachable(src)) {
5024     vsubss(dst, nds, as_Address(src));
5025   } else {
5026     lea(rscratch1, src);
5027     vsubss(dst, nds, Address(rscratch1, 0));
5028   }
5029 }
5030 
5031 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5032   int nds_enc = nds->encoding();
5033   int dst_enc = dst->encoding();
5034   bool dst_upper_bank = (dst_enc > 15);
5035   bool nds_upper_bank = (nds_enc > 15);
5036   if (VM_Version::supports_avx512novl() &&
5037       (nds_upper_bank || dst_upper_bank)) {
5038     if (dst_upper_bank) {
5039       subptr(rsp, 64);
5040       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5041       movflt(xmm0, nds);
5042       vxorps(xmm0, xmm0, src, Assembler::AVX_128bit);
5043       movflt(dst, xmm0);
5044       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5045       addptr(rsp, 64);
5046     } else {
5047       movflt(dst, nds);
5048       vxorps(dst, dst, src, Assembler::AVX_128bit);
5049     }
5050   } else {
5051     vxorps(dst, nds, src, Assembler::AVX_128bit);
5052   }
5053 }
5054 
5055 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5056   int nds_enc = nds->encoding();
5057   int dst_enc = dst->encoding();
5058   bool dst_upper_bank = (dst_enc > 15);
5059   bool nds_upper_bank = (nds_enc > 15);
5060   if (VM_Version::supports_avx512novl() &&
5061       (nds_upper_bank || dst_upper_bank)) {
5062     if (dst_upper_bank) {
5063       subptr(rsp, 64);
5064       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5065       movdbl(xmm0, nds);
5066       vxorpd(xmm0, xmm0, src, Assembler::AVX_128bit);
5067       movdbl(dst, xmm0);
5068       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5069       addptr(rsp, 64);
5070     } else {
5071       movdbl(dst, nds);
5072       vxorpd(dst, dst, src, Assembler::AVX_128bit);
5073     }
5074   } else {
5075     vxorpd(dst, nds, src, Assembler::AVX_128bit);
5076   }
5077 }
5078 
5079 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5080   if (reachable(src)) {
5081     vxorpd(dst, nds, as_Address(src), vector_len);
5082   } else {
5083     lea(rscratch1, src);
5084     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
5085   }
5086 }
5087 
5088 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5089   if (reachable(src)) {
5090     vxorps(dst, nds, as_Address(src), vector_len);
5091   } else {
5092     lea(rscratch1, src);
5093     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
5094   }
5095 }
5096 
5097 
5098 //////////////////////////////////////////////////////////////////////////////////
5099 #if INCLUDE_ALL_GCS
5100 
5101 void MacroAssembler::g1_write_barrier_pre(Register obj,
5102                                           Register pre_val,
5103                                           Register thread,
5104                                           Register tmp,
5105                                           bool tosca_live,
5106                                           bool expand_call) {
5107 
5108   // If expand_call is true then we expand the call_VM_leaf macro
5109   // directly to skip generating the check by
5110   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
5111 
5112 #ifdef _LP64
5113   assert(thread == r15_thread, "must be");
5114 #endif // _LP64
5115 
5116   Label done;
5117   Label runtime;
5118 
5119   assert(pre_val != noreg, "check this code");
5120 
5121   if (obj != noreg) {
5122     assert_different_registers(obj, pre_val, tmp);
5123     assert(pre_val != rax, "check this code");
5124   }
5125 
5126   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5127                                        SATBMarkQueue::byte_offset_of_active()));
5128   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5129                                        SATBMarkQueue::byte_offset_of_index()));
5130   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5131                                        SATBMarkQueue::byte_offset_of_buf()));
5132 
5133 
5134   // Is marking active?
5135   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
5136     cmpl(in_progress, 0);
5137   } else {
5138     assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
5139     cmpb(in_progress, 0);
5140   }
5141   jcc(Assembler::equal, done);
5142 
5143   // Do we need to load the previous value?
5144   if (obj != noreg) {
5145     load_heap_oop(pre_val, Address(obj, 0));
5146   }
5147 
5148   // Is the previous value null?
5149   cmpptr(pre_val, (int32_t) NULL_WORD);
5150   jcc(Assembler::equal, done);
5151 
5152   // Can we store original value in the thread's buffer?
5153   // Is index == 0?
5154   // (The index field is typed as size_t.)
5155 
5156   movptr(tmp, index);                   // tmp := *index_adr
5157   cmpptr(tmp, 0);                       // tmp == 0?
5158   jcc(Assembler::equal, runtime);       // If yes, goto runtime
5159 
5160   subptr(tmp, wordSize);                // tmp := tmp - wordSize
5161   movptr(index, tmp);                   // *index_adr := tmp
5162   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
5163 
5164   // Record the previous value
5165   movptr(Address(tmp, 0), pre_val);
5166   jmp(done);
5167 
5168   bind(runtime);
5169   // save the live input values
5170   if(tosca_live) push(rax);
5171 
5172   if (obj != noreg && obj != rax)
5173     push(obj);
5174 
5175   if (pre_val != rax)
5176     push(pre_val);
5177 
5178   // Calling the runtime using the regular call_VM_leaf mechanism generates
5179   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
5180   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
5181   //
5182   // If we care generating the pre-barrier without a frame (e.g. in the
5183   // intrinsified Reference.get() routine) then ebp might be pointing to
5184   // the caller frame and so this check will most likely fail at runtime.
5185   //
5186   // Expanding the call directly bypasses the generation of the check.
5187   // So when we do not have have a full interpreter frame on the stack
5188   // expand_call should be passed true.
5189 
5190   NOT_LP64( push(thread); )
5191 
5192   if (expand_call) {
5193     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
5194     pass_arg1(this, thread);
5195     pass_arg0(this, pre_val);
5196     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
5197   } else {
5198     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
5199   }
5200 
5201   NOT_LP64( pop(thread); )
5202 
5203   // save the live input values
5204   if (pre_val != rax)
5205     pop(pre_val);
5206 
5207   if (obj != noreg && obj != rax)
5208     pop(obj);
5209 
5210   if(tosca_live) pop(rax);
5211 
5212   bind(done);
5213 }
5214 
5215 void MacroAssembler::g1_write_barrier_post(Register store_addr,
5216                                            Register new_val,
5217                                            Register thread,
5218                                            Register tmp,
5219                                            Register tmp2) {
5220 #ifdef _LP64
5221   assert(thread == r15_thread, "must be");
5222 #endif // _LP64
5223 
5224   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5225                                        DirtyCardQueue::byte_offset_of_index()));
5226   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5227                                        DirtyCardQueue::byte_offset_of_buf()));
5228 
5229   CardTableModRefBS* ct =
5230     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
5231   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5232 
5233   Label done;
5234   Label runtime;
5235 
5236   // Does store cross heap regions?
5237 
5238   movptr(tmp, store_addr);
5239   xorptr(tmp, new_val);
5240   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
5241   jcc(Assembler::equal, done);
5242 
5243   // crosses regions, storing NULL?
5244 
5245   cmpptr(new_val, (int32_t) NULL_WORD);
5246   jcc(Assembler::equal, done);
5247 
5248   // storing region crossing non-NULL, is card already dirty?
5249 
5250   const Register card_addr = tmp;
5251   const Register cardtable = tmp2;
5252 
5253   movptr(card_addr, store_addr);
5254   shrptr(card_addr, CardTableModRefBS::card_shift);
5255   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
5256   // a valid address and therefore is not properly handled by the relocation code.
5257   movptr(cardtable, (intptr_t)ct->byte_map_base);
5258   addptr(card_addr, cardtable);
5259 
5260   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
5261   jcc(Assembler::equal, done);
5262 
5263   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
5264   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5265   jcc(Assembler::equal, done);
5266 
5267 
5268   // storing a region crossing, non-NULL oop, card is clean.
5269   // dirty card and log.
5270 
5271   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5272 
5273   cmpl(queue_index, 0);
5274   jcc(Assembler::equal, runtime);
5275   subl(queue_index, wordSize);
5276   movptr(tmp2, buffer);
5277 #ifdef _LP64
5278   movslq(rscratch1, queue_index);
5279   addq(tmp2, rscratch1);
5280   movq(Address(tmp2, 0), card_addr);
5281 #else
5282   addl(tmp2, queue_index);
5283   movl(Address(tmp2, 0), card_addr);
5284 #endif
5285   jmp(done);
5286 
5287   bind(runtime);
5288   // save the live input values
5289   push(store_addr);
5290   push(new_val);
5291 #ifdef _LP64
5292   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
5293 #else
5294   push(thread);
5295   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
5296   pop(thread);
5297 #endif
5298   pop(new_val);
5299   pop(store_addr);
5300 
5301   bind(done);
5302 }
5303 
5304 #endif // INCLUDE_ALL_GCS
5305 //////////////////////////////////////////////////////////////////////////////////
5306 
5307 
5308 void MacroAssembler::store_check(Register obj, Address dst) {
5309   store_check(obj);
5310 }
5311 
5312 void MacroAssembler::store_check(Register obj) {
5313   // Does a store check for the oop in register obj. The content of
5314   // register obj is destroyed afterwards.
5315   BarrierSet* bs = Universe::heap()->barrier_set();
5316   assert(bs->kind() == BarrierSet::CardTableForRS ||
5317          bs->kind() == BarrierSet::CardTableExtension,
5318          "Wrong barrier set kind");
5319 
5320   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
5321   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5322 
5323   shrptr(obj, CardTableModRefBS::card_shift);
5324 
5325   Address card_addr;
5326 
5327   // The calculation for byte_map_base is as follows:
5328   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
5329   // So this essentially converts an address to a displacement and it will
5330   // never need to be relocated. On 64bit however the value may be too
5331   // large for a 32bit displacement.
5332   intptr_t disp = (intptr_t) ct->byte_map_base;
5333   if (is_simm32(disp)) {
5334     card_addr = Address(noreg, obj, Address::times_1, disp);
5335   } else {
5336     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
5337     // displacement and done in a single instruction given favorable mapping and a
5338     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
5339     // entry and that entry is not properly handled by the relocation code.
5340     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
5341     Address index(noreg, obj, Address::times_1);
5342     card_addr = as_Address(ArrayAddress(cardtable, index));
5343   }
5344 
5345   int dirty = CardTableModRefBS::dirty_card_val();
5346   if (UseCondCardMark) {
5347     Label L_already_dirty;
5348     if (UseConcMarkSweepGC) {
5349       membar(Assembler::StoreLoad);
5350     }
5351     cmpb(card_addr, dirty);
5352     jcc(Assembler::equal, L_already_dirty);
5353     movb(card_addr, dirty);
5354     bind(L_already_dirty);
5355   } else {
5356     movb(card_addr, dirty);
5357   }
5358 }
5359 
5360 void MacroAssembler::subptr(Register dst, int32_t imm32) {
5361   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
5362 }
5363 
5364 // Force generation of a 4 byte immediate value even if it fits into 8bit
5365 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
5366   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
5367 }
5368 
5369 void MacroAssembler::subptr(Register dst, Register src) {
5370   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
5371 }
5372 
5373 // C++ bool manipulation
5374 void MacroAssembler::testbool(Register dst) {
5375   if(sizeof(bool) == 1)
5376     testb(dst, 0xff);
5377   else if(sizeof(bool) == 2) {
5378     // testw implementation needed for two byte bools
5379     ShouldNotReachHere();
5380   } else if(sizeof(bool) == 4)
5381     testl(dst, dst);
5382   else
5383     // unsupported
5384     ShouldNotReachHere();
5385 }
5386 
5387 void MacroAssembler::testptr(Register dst, Register src) {
5388   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
5389 }
5390 
5391 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5392 void MacroAssembler::tlab_allocate(Register obj,
5393                                    Register var_size_in_bytes,
5394                                    int con_size_in_bytes,
5395                                    Register t1,
5396                                    Register t2,
5397                                    Label& slow_case) {
5398   assert_different_registers(obj, t1, t2);
5399   assert_different_registers(obj, var_size_in_bytes, t1);
5400   Register end = t2;
5401   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
5402 
5403   verify_tlab();
5404 
5405   NOT_LP64(get_thread(thread));
5406 
5407   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
5408   if (var_size_in_bytes == noreg) {
5409     lea(end, Address(obj, con_size_in_bytes));
5410   } else {
5411     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
5412   }
5413   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
5414   jcc(Assembler::above, slow_case);
5415 
5416   // update the tlab top pointer
5417   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
5418 
5419   // recover var_size_in_bytes if necessary
5420   if (var_size_in_bytes == end) {
5421     subptr(var_size_in_bytes, obj);
5422   }
5423   verify_tlab();
5424 }
5425 
5426 // Preserves rbx, and rdx.
5427 Register MacroAssembler::tlab_refill(Label& retry,
5428                                      Label& try_eden,
5429                                      Label& slow_case) {
5430   Register top = rax;
5431   Register t1  = rcx;
5432   Register t2  = rsi;
5433   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
5434   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
5435   Label do_refill, discard_tlab;
5436 
5437   if (!Universe::heap()->supports_inline_contig_alloc()) {
5438     // No allocation in the shared eden.
5439     jmp(slow_case);
5440   }
5441 
5442   NOT_LP64(get_thread(thread_reg));
5443 
5444   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5445   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5446 
5447   // calculate amount of free space
5448   subptr(t1, top);
5449   shrptr(t1, LogHeapWordSize);
5450 
5451   // Retain tlab and allocate object in shared space if
5452   // the amount free in the tlab is too large to discard.
5453   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
5454   jcc(Assembler::lessEqual, discard_tlab);
5455 
5456   // Retain
5457   // %%% yuck as movptr...
5458   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
5459   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
5460   if (TLABStats) {
5461     // increment number of slow_allocations
5462     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
5463   }
5464   jmp(try_eden);
5465 
5466   bind(discard_tlab);
5467   if (TLABStats) {
5468     // increment number of refills
5469     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
5470     // accumulate wastage -- t1 is amount free in tlab
5471     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
5472   }
5473 
5474   // if tlab is currently allocated (top or end != null) then
5475   // fill [top, end + alignment_reserve) with array object
5476   testptr(top, top);
5477   jcc(Assembler::zero, do_refill);
5478 
5479   // set up the mark word
5480   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
5481   // set the length to the remaining space
5482   subptr(t1, typeArrayOopDesc::header_size(T_INT));
5483   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
5484   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
5485   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
5486   // set klass to intArrayKlass
5487   // dubious reloc why not an oop reloc?
5488   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
5489   // store klass last.  concurrent gcs assumes klass length is valid if
5490   // klass field is not null.
5491   store_klass(top, t1);
5492 
5493   movptr(t1, top);
5494   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5495   incr_allocated_bytes(thread_reg, t1, 0);
5496 
5497   // refill the tlab with an eden allocation
5498   bind(do_refill);
5499   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5500   shlptr(t1, LogHeapWordSize);
5501   // allocate new tlab, address returned in top
5502   eden_allocate(top, t1, 0, t2, slow_case);
5503 
5504   // Check that t1 was preserved in eden_allocate.
5505 #ifdef ASSERT
5506   if (UseTLAB) {
5507     Label ok;
5508     Register tsize = rsi;
5509     assert_different_registers(tsize, thread_reg, t1);
5510     push(tsize);
5511     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5512     shlptr(tsize, LogHeapWordSize);
5513     cmpptr(t1, tsize);
5514     jcc(Assembler::equal, ok);
5515     STOP("assert(t1 != tlab size)");
5516     should_not_reach_here();
5517 
5518     bind(ok);
5519     pop(tsize);
5520   }
5521 #endif
5522   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
5523   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
5524   addptr(top, t1);
5525   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
5526   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
5527   verify_tlab();
5528   jmp(retry);
5529 
5530   return thread_reg; // for use by caller
5531 }
5532 
5533 void MacroAssembler::incr_allocated_bytes(Register thread,
5534                                           Register var_size_in_bytes,
5535                                           int con_size_in_bytes,
5536                                           Register t1) {
5537   if (!thread->is_valid()) {
5538 #ifdef _LP64
5539     thread = r15_thread;
5540 #else
5541     assert(t1->is_valid(), "need temp reg");
5542     thread = t1;
5543     get_thread(thread);
5544 #endif
5545   }
5546 
5547 #ifdef _LP64
5548   if (var_size_in_bytes->is_valid()) {
5549     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5550   } else {
5551     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5552   }
5553 #else
5554   if (var_size_in_bytes->is_valid()) {
5555     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5556   } else {
5557     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5558   }
5559   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
5560 #endif
5561 }
5562 
5563 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
5564   pusha();
5565 
5566   // if we are coming from c1, xmm registers may be live
5567   int num_xmm_regs = LP64_ONLY(16) NOT_LP64(8);
5568   if (UseAVX > 2) {
5569     num_xmm_regs = LP64_ONLY(32) NOT_LP64(8);
5570   }
5571 
5572   if (UseSSE == 1)  {
5573     subptr(rsp, sizeof(jdouble)*8);
5574     for (int n = 0; n < 8; n++) {
5575       movflt(Address(rsp, n*sizeof(jdouble)), as_XMMRegister(n));
5576     }
5577   } else if (UseSSE >= 2)  {
5578     if (UseAVX > 2) {
5579       push(rbx);
5580       movl(rbx, 0xffff);
5581       kmovwl(k1, rbx);
5582       pop(rbx);
5583     }
5584 #ifdef COMPILER2
5585     if (MaxVectorSize > 16) {
5586       if(UseAVX > 2) {
5587         // Save upper half of ZMM registers
5588         subptr(rsp, 32*num_xmm_regs);
5589         for (int n = 0; n < num_xmm_regs; n++) {
5590           vextractf64x4h(Address(rsp, n*32), as_XMMRegister(n), 1);
5591         }
5592       }
5593       assert(UseAVX > 0, "256 bit vectors are supported only with AVX");
5594       // Save upper half of YMM registers
5595       subptr(rsp, 16*num_xmm_regs);
5596       for (int n = 0; n < num_xmm_regs; n++) {
5597         vextractf128h(Address(rsp, n*16), as_XMMRegister(n));
5598       }
5599     }
5600 #endif
5601     // Save whole 128bit (16 bytes) XMM registers
5602     subptr(rsp, 16*num_xmm_regs);
5603 #ifdef _LP64
5604     if (VM_Version::supports_evex()) {
5605       for (int n = 0; n < num_xmm_regs; n++) {
5606         vextractf32x4h(Address(rsp, n*16), as_XMMRegister(n), 0);
5607       }
5608     } else {
5609       for (int n = 0; n < num_xmm_regs; n++) {
5610         movdqu(Address(rsp, n*16), as_XMMRegister(n));
5611       }
5612     }
5613 #else
5614     for (int n = 0; n < num_xmm_regs; n++) {
5615       movdqu(Address(rsp, n*16), as_XMMRegister(n));
5616     }
5617 #endif
5618   }
5619 
5620   // Preserve registers across runtime call
5621   int incoming_argument_and_return_value_offset = -1;
5622   if (num_fpu_regs_in_use > 1) {
5623     // Must preserve all other FPU regs (could alternatively convert
5624     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
5625     // FPU state, but can not trust C compiler)
5626     NEEDS_CLEANUP;
5627     // NOTE that in this case we also push the incoming argument(s) to
5628     // the stack and restore it later; we also use this stack slot to
5629     // hold the return value from dsin, dcos etc.
5630     for (int i = 0; i < num_fpu_regs_in_use; i++) {
5631       subptr(rsp, sizeof(jdouble));
5632       fstp_d(Address(rsp, 0));
5633     }
5634     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
5635     for (int i = nb_args-1; i >= 0; i--) {
5636       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
5637     }
5638   }
5639 
5640   subptr(rsp, nb_args*sizeof(jdouble));
5641   for (int i = 0; i < nb_args; i++) {
5642     fstp_d(Address(rsp, i*sizeof(jdouble)));
5643   }
5644 
5645 #ifdef _LP64
5646   if (nb_args > 0) {
5647     movdbl(xmm0, Address(rsp, 0));
5648   }
5649   if (nb_args > 1) {
5650     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
5651   }
5652   assert(nb_args <= 2, "unsupported number of args");
5653 #endif // _LP64
5654 
5655   // NOTE: we must not use call_VM_leaf here because that requires a
5656   // complete interpreter frame in debug mode -- same bug as 4387334
5657   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
5658   // do proper 64bit abi
5659 
5660   NEEDS_CLEANUP;
5661   // Need to add stack banging before this runtime call if it needs to
5662   // be taken; however, there is no generic stack banging routine at
5663   // the MacroAssembler level
5664 
5665   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
5666 
5667 #ifdef _LP64
5668   movsd(Address(rsp, 0), xmm0);
5669   fld_d(Address(rsp, 0));
5670 #endif // _LP64
5671   addptr(rsp, sizeof(jdouble)*nb_args);
5672   if (num_fpu_regs_in_use > 1) {
5673     // Must save return value to stack and then restore entire FPU
5674     // stack except incoming arguments
5675     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
5676     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
5677       fld_d(Address(rsp, 0));
5678       addptr(rsp, sizeof(jdouble));
5679     }
5680     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
5681     addptr(rsp, sizeof(jdouble)*nb_args);
5682   }
5683 
5684   if (UseSSE == 1)  {
5685     for (int n = 0; n < 8; n++) {
5686       movflt(as_XMMRegister(n), Address(rsp, n*sizeof(jdouble)));
5687     }
5688     addptr(rsp, sizeof(jdouble)*8);
5689   } else if (UseSSE >= 2)  {
5690     // Restore whole 128bit (16 bytes) XMM registers
5691 #ifdef _LP64
5692   if (VM_Version::supports_evex()) {
5693     for (int n = 0; n < num_xmm_regs; n++) {
5694       vinsertf32x4h(as_XMMRegister(n), Address(rsp, n*16), 0);
5695     }
5696   } else {
5697     for (int n = 0; n < num_xmm_regs; n++) {
5698       movdqu(as_XMMRegister(n), Address(rsp, n*16));
5699     }
5700   }
5701 #else
5702   for (int n = 0; n < num_xmm_regs; n++) {
5703     movdqu(as_XMMRegister(n), Address(rsp, n*16));
5704   }
5705 #endif
5706     addptr(rsp, 16*num_xmm_regs);
5707 
5708 #ifdef COMPILER2
5709     if (MaxVectorSize > 16) {
5710       // Restore upper half of YMM registers.
5711       for (int n = 0; n < num_xmm_regs; n++) {
5712         vinsertf128h(as_XMMRegister(n), Address(rsp, n*16));
5713       }
5714       addptr(rsp, 16*num_xmm_regs);
5715       if(UseAVX > 2) {
5716         for (int n = 0; n < num_xmm_regs; n++) {
5717           vinsertf64x4h(as_XMMRegister(n), Address(rsp, n*32), 1);
5718         }
5719         addptr(rsp, 32*num_xmm_regs);
5720       }
5721     }
5722 #endif
5723   }
5724   popa();
5725 }
5726 
5727 static const double     pi_4 =  0.7853981633974483;
5728 
5729 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
5730   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
5731   // was attempted in this code; unfortunately it appears that the
5732   // switch to 80-bit precision and back causes this to be
5733   // unprofitable compared with simply performing a runtime call if
5734   // the argument is out of the (-pi/4, pi/4) range.
5735 
5736   Register tmp = noreg;
5737   if (!VM_Version::supports_cmov()) {
5738     // fcmp needs a temporary so preserve rbx,
5739     tmp = rbx;
5740     push(tmp);
5741   }
5742 
5743   Label slow_case, done;
5744   if (trig == 't') {
5745     ExternalAddress pi4_adr = (address)&pi_4;
5746     if (reachable(pi4_adr)) {
5747       // x ?<= pi/4
5748       fld_d(pi4_adr);
5749       fld_s(1);                // Stack:  X  PI/4  X
5750       fabs();                  // Stack: |X| PI/4  X
5751       fcmp(tmp);
5752       jcc(Assembler::above, slow_case);
5753 
5754       // fastest case: -pi/4 <= x <= pi/4
5755       ftan();
5756 
5757       jmp(done);
5758     }
5759   }
5760   // slow case: runtime call
5761   bind(slow_case);
5762 
5763   switch(trig) {
5764   case 's':
5765     {
5766       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
5767     }
5768     break;
5769   case 'c':
5770     {
5771       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
5772     }
5773     break;
5774   case 't':
5775     {
5776       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
5777     }
5778     break;
5779   default:
5780     assert(false, "bad intrinsic");
5781     break;
5782   }
5783 
5784   // Come here with result in F-TOS
5785   bind(done);
5786 
5787   if (tmp != noreg) {
5788     pop(tmp);
5789   }
5790 }
5791 
5792 // Look up the method for a megamorphic invokeinterface call.
5793 // The target method is determined by <intf_klass, itable_index>.
5794 // The receiver klass is in recv_klass.
5795 // On success, the result will be in method_result, and execution falls through.
5796 // On failure, execution transfers to the given label.
5797 void MacroAssembler::lookup_interface_method(Register recv_klass,
5798                                              Register intf_klass,
5799                                              RegisterOrConstant itable_index,
5800                                              Register method_result,
5801                                              Register scan_temp,
5802                                              Label& L_no_such_interface) {
5803   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
5804   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
5805          "caller must use same register for non-constant itable index as for method");
5806 
5807   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
5808   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
5809   int itentry_off = itableMethodEntry::method_offset_in_bytes();
5810   int scan_step   = itableOffsetEntry::size() * wordSize;
5811   int vte_size    = vtableEntry::size() * wordSize;
5812   Address::ScaleFactor times_vte_scale = Address::times_ptr;
5813   assert(vte_size == wordSize, "else adjust times_vte_scale");
5814 
5815   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
5816 
5817   // %%% Could store the aligned, prescaled offset in the klassoop.
5818   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
5819   if (HeapWordsPerLong > 1) {
5820     // Round up to align_object_offset boundary
5821     // see code for InstanceKlass::start_of_itable!
5822     round_to(scan_temp, BytesPerLong);
5823   }
5824 
5825   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
5826   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
5827   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
5828 
5829   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
5830   //   if (scan->interface() == intf) {
5831   //     result = (klass + scan->offset() + itable_index);
5832   //   }
5833   // }
5834   Label search, found_method;
5835 
5836   for (int peel = 1; peel >= 0; peel--) {
5837     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
5838     cmpptr(intf_klass, method_result);
5839 
5840     if (peel) {
5841       jccb(Assembler::equal, found_method);
5842     } else {
5843       jccb(Assembler::notEqual, search);
5844       // (invert the test to fall through to found_method...)
5845     }
5846 
5847     if (!peel)  break;
5848 
5849     bind(search);
5850 
5851     // Check that the previous entry is non-null.  A null entry means that
5852     // the receiver class doesn't implement the interface, and wasn't the
5853     // same as when the caller was compiled.
5854     testptr(method_result, method_result);
5855     jcc(Assembler::zero, L_no_such_interface);
5856     addptr(scan_temp, scan_step);
5857   }
5858 
5859   bind(found_method);
5860 
5861   // Got a hit.
5862   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5863   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5864 }
5865 
5866 
5867 // virtual method calling
5868 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5869                                            RegisterOrConstant vtable_index,
5870                                            Register method_result) {
5871   const int base = InstanceKlass::vtable_start_offset() * wordSize;
5872   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5873   Address vtable_entry_addr(recv_klass,
5874                             vtable_index, Address::times_ptr,
5875                             base + vtableEntry::method_offset_in_bytes());
5876   movptr(method_result, vtable_entry_addr);
5877 }
5878 
5879 
5880 void MacroAssembler::check_klass_subtype(Register sub_klass,
5881                            Register super_klass,
5882                            Register temp_reg,
5883                            Label& L_success) {
5884   Label L_failure;
5885   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5886   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5887   bind(L_failure);
5888 }
5889 
5890 
5891 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5892                                                    Register super_klass,
5893                                                    Register temp_reg,
5894                                                    Label* L_success,
5895                                                    Label* L_failure,
5896                                                    Label* L_slow_path,
5897                                         RegisterOrConstant super_check_offset) {
5898   assert_different_registers(sub_klass, super_klass, temp_reg);
5899   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5900   if (super_check_offset.is_register()) {
5901     assert_different_registers(sub_klass, super_klass,
5902                                super_check_offset.as_register());
5903   } else if (must_load_sco) {
5904     assert(temp_reg != noreg, "supply either a temp or a register offset");
5905   }
5906 
5907   Label L_fallthrough;
5908   int label_nulls = 0;
5909   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5910   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5911   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5912   assert(label_nulls <= 1, "at most one NULL in the batch");
5913 
5914   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5915   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5916   Address super_check_offset_addr(super_klass, sco_offset);
5917 
5918   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5919   // range of a jccb.  If this routine grows larger, reconsider at
5920   // least some of these.
5921 #define local_jcc(assembler_cond, label)                                \
5922   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5923   else                             jcc( assembler_cond, label) /*omit semi*/
5924 
5925   // Hacked jmp, which may only be used just before L_fallthrough.
5926 #define final_jmp(label)                                                \
5927   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5928   else                            jmp(label)                /*omit semi*/
5929 
5930   // If the pointers are equal, we are done (e.g., String[] elements).
5931   // This self-check enables sharing of secondary supertype arrays among
5932   // non-primary types such as array-of-interface.  Otherwise, each such
5933   // type would need its own customized SSA.
5934   // We move this check to the front of the fast path because many
5935   // type checks are in fact trivially successful in this manner,
5936   // so we get a nicely predicted branch right at the start of the check.
5937   cmpptr(sub_klass, super_klass);
5938   local_jcc(Assembler::equal, *L_success);
5939 
5940   // Check the supertype display:
5941   if (must_load_sco) {
5942     // Positive movl does right thing on LP64.
5943     movl(temp_reg, super_check_offset_addr);
5944     super_check_offset = RegisterOrConstant(temp_reg);
5945   }
5946   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
5947   cmpptr(super_klass, super_check_addr); // load displayed supertype
5948 
5949   // This check has worked decisively for primary supers.
5950   // Secondary supers are sought in the super_cache ('super_cache_addr').
5951   // (Secondary supers are interfaces and very deeply nested subtypes.)
5952   // This works in the same check above because of a tricky aliasing
5953   // between the super_cache and the primary super display elements.
5954   // (The 'super_check_addr' can address either, as the case requires.)
5955   // Note that the cache is updated below if it does not help us find
5956   // what we need immediately.
5957   // So if it was a primary super, we can just fail immediately.
5958   // Otherwise, it's the slow path for us (no success at this point).
5959 
5960   if (super_check_offset.is_register()) {
5961     local_jcc(Assembler::equal, *L_success);
5962     cmpl(super_check_offset.as_register(), sc_offset);
5963     if (L_failure == &L_fallthrough) {
5964       local_jcc(Assembler::equal, *L_slow_path);
5965     } else {
5966       local_jcc(Assembler::notEqual, *L_failure);
5967       final_jmp(*L_slow_path);
5968     }
5969   } else if (super_check_offset.as_constant() == sc_offset) {
5970     // Need a slow path; fast failure is impossible.
5971     if (L_slow_path == &L_fallthrough) {
5972       local_jcc(Assembler::equal, *L_success);
5973     } else {
5974       local_jcc(Assembler::notEqual, *L_slow_path);
5975       final_jmp(*L_success);
5976     }
5977   } else {
5978     // No slow path; it's a fast decision.
5979     if (L_failure == &L_fallthrough) {
5980       local_jcc(Assembler::equal, *L_success);
5981     } else {
5982       local_jcc(Assembler::notEqual, *L_failure);
5983       final_jmp(*L_success);
5984     }
5985   }
5986 
5987   bind(L_fallthrough);
5988 
5989 #undef local_jcc
5990 #undef final_jmp
5991 }
5992 
5993 
5994 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5995                                                    Register super_klass,
5996                                                    Register temp_reg,
5997                                                    Register temp2_reg,
5998                                                    Label* L_success,
5999                                                    Label* L_failure,
6000                                                    bool set_cond_codes) {
6001   assert_different_registers(sub_klass, super_klass, temp_reg);
6002   if (temp2_reg != noreg)
6003     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
6004 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
6005 
6006   Label L_fallthrough;
6007   int label_nulls = 0;
6008   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
6009   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
6010   assert(label_nulls <= 1, "at most one NULL in the batch");
6011 
6012   // a couple of useful fields in sub_klass:
6013   int ss_offset = in_bytes(Klass::secondary_supers_offset());
6014   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
6015   Address secondary_supers_addr(sub_klass, ss_offset);
6016   Address super_cache_addr(     sub_klass, sc_offset);
6017 
6018   // Do a linear scan of the secondary super-klass chain.
6019   // This code is rarely used, so simplicity is a virtue here.
6020   // The repne_scan instruction uses fixed registers, which we must spill.
6021   // Don't worry too much about pre-existing connections with the input regs.
6022 
6023   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
6024   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
6025 
6026   // Get super_klass value into rax (even if it was in rdi or rcx).
6027   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
6028   if (super_klass != rax || UseCompressedOops) {
6029     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
6030     mov(rax, super_klass);
6031   }
6032   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
6033   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
6034 
6035 #ifndef PRODUCT
6036   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
6037   ExternalAddress pst_counter_addr((address) pst_counter);
6038   NOT_LP64(  incrementl(pst_counter_addr) );
6039   LP64_ONLY( lea(rcx, pst_counter_addr) );
6040   LP64_ONLY( incrementl(Address(rcx, 0)) );
6041 #endif //PRODUCT
6042 
6043   // We will consult the secondary-super array.
6044   movptr(rdi, secondary_supers_addr);
6045   // Load the array length.  (Positive movl does right thing on LP64.)
6046   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
6047   // Skip to start of data.
6048   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
6049 
6050   // Scan RCX words at [RDI] for an occurrence of RAX.
6051   // Set NZ/Z based on last compare.
6052   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
6053   // not change flags (only scas instruction which is repeated sets flags).
6054   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
6055 
6056     testptr(rax,rax); // Set Z = 0
6057     repne_scan();
6058 
6059   // Unspill the temp. registers:
6060   if (pushed_rdi)  pop(rdi);
6061   if (pushed_rcx)  pop(rcx);
6062   if (pushed_rax)  pop(rax);
6063 
6064   if (set_cond_codes) {
6065     // Special hack for the AD files:  rdi is guaranteed non-zero.
6066     assert(!pushed_rdi, "rdi must be left non-NULL");
6067     // Also, the condition codes are properly set Z/NZ on succeed/failure.
6068   }
6069 
6070   if (L_failure == &L_fallthrough)
6071         jccb(Assembler::notEqual, *L_failure);
6072   else  jcc(Assembler::notEqual, *L_failure);
6073 
6074   // Success.  Cache the super we found and proceed in triumph.
6075   movptr(super_cache_addr, super_klass);
6076 
6077   if (L_success != &L_fallthrough) {
6078     jmp(*L_success);
6079   }
6080 
6081 #undef IS_A_TEMP
6082 
6083   bind(L_fallthrough);
6084 }
6085 
6086 
6087 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
6088   if (VM_Version::supports_cmov()) {
6089     cmovl(cc, dst, src);
6090   } else {
6091     Label L;
6092     jccb(negate_condition(cc), L);
6093     movl(dst, src);
6094     bind(L);
6095   }
6096 }
6097 
6098 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
6099   if (VM_Version::supports_cmov()) {
6100     cmovl(cc, dst, src);
6101   } else {
6102     Label L;
6103     jccb(negate_condition(cc), L);
6104     movl(dst, src);
6105     bind(L);
6106   }
6107 }
6108 
6109 void MacroAssembler::verify_oop(Register reg, const char* s) {
6110   if (!VerifyOops) return;
6111 
6112   // Pass register number to verify_oop_subroutine
6113   const char* b = NULL;
6114   {
6115     ResourceMark rm;
6116     stringStream ss;
6117     ss.print("verify_oop: %s: %s", reg->name(), s);
6118     b = code_string(ss.as_string());
6119   }
6120   BLOCK_COMMENT("verify_oop {");
6121 #ifdef _LP64
6122   push(rscratch1);                    // save r10, trashed by movptr()
6123 #endif
6124   push(rax);                          // save rax,
6125   push(reg);                          // pass register argument
6126   ExternalAddress buffer((address) b);
6127   // avoid using pushptr, as it modifies scratch registers
6128   // and our contract is not to modify anything
6129   movptr(rax, buffer.addr());
6130   push(rax);
6131   // call indirectly to solve generation ordering problem
6132   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6133   call(rax);
6134   // Caller pops the arguments (oop, message) and restores rax, r10
6135   BLOCK_COMMENT("} verify_oop");
6136 }
6137 
6138 
6139 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
6140                                                       Register tmp,
6141                                                       int offset) {
6142   intptr_t value = *delayed_value_addr;
6143   if (value != 0)
6144     return RegisterOrConstant(value + offset);
6145 
6146   // load indirectly to solve generation ordering problem
6147   movptr(tmp, ExternalAddress((address) delayed_value_addr));
6148 
6149 #ifdef ASSERT
6150   { Label L;
6151     testptr(tmp, tmp);
6152     if (WizardMode) {
6153       const char* buf = NULL;
6154       {
6155         ResourceMark rm;
6156         stringStream ss;
6157         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
6158         buf = code_string(ss.as_string());
6159       }
6160       jcc(Assembler::notZero, L);
6161       STOP(buf);
6162     } else {
6163       jccb(Assembler::notZero, L);
6164       hlt();
6165     }
6166     bind(L);
6167   }
6168 #endif
6169 
6170   if (offset != 0)
6171     addptr(tmp, offset);
6172 
6173   return RegisterOrConstant(tmp);
6174 }
6175 
6176 
6177 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
6178                                          int extra_slot_offset) {
6179   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
6180   int stackElementSize = Interpreter::stackElementSize;
6181   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
6182 #ifdef ASSERT
6183   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
6184   assert(offset1 - offset == stackElementSize, "correct arithmetic");
6185 #endif
6186   Register             scale_reg    = noreg;
6187   Address::ScaleFactor scale_factor = Address::no_scale;
6188   if (arg_slot.is_constant()) {
6189     offset += arg_slot.as_constant() * stackElementSize;
6190   } else {
6191     scale_reg    = arg_slot.as_register();
6192     scale_factor = Address::times(stackElementSize);
6193   }
6194   offset += wordSize;           // return PC is on stack
6195   return Address(rsp, scale_reg, scale_factor, offset);
6196 }
6197 
6198 
6199 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
6200   if (!VerifyOops) return;
6201 
6202   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
6203   // Pass register number to verify_oop_subroutine
6204   const char* b = NULL;
6205   {
6206     ResourceMark rm;
6207     stringStream ss;
6208     ss.print("verify_oop_addr: %s", s);
6209     b = code_string(ss.as_string());
6210   }
6211 #ifdef _LP64
6212   push(rscratch1);                    // save r10, trashed by movptr()
6213 #endif
6214   push(rax);                          // save rax,
6215   // addr may contain rsp so we will have to adjust it based on the push
6216   // we just did (and on 64 bit we do two pushes)
6217   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
6218   // stores rax into addr which is backwards of what was intended.
6219   if (addr.uses(rsp)) {
6220     lea(rax, addr);
6221     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
6222   } else {
6223     pushptr(addr);
6224   }
6225 
6226   ExternalAddress buffer((address) b);
6227   // pass msg argument
6228   // avoid using pushptr, as it modifies scratch registers
6229   // and our contract is not to modify anything
6230   movptr(rax, buffer.addr());
6231   push(rax);
6232 
6233   // call indirectly to solve generation ordering problem
6234   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6235   call(rax);
6236   // Caller pops the arguments (addr, message) and restores rax, r10.
6237 }
6238 
6239 void MacroAssembler::verify_tlab() {
6240 #ifdef ASSERT
6241   if (UseTLAB && VerifyOops) {
6242     Label next, ok;
6243     Register t1 = rsi;
6244     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
6245 
6246     push(t1);
6247     NOT_LP64(push(thread_reg));
6248     NOT_LP64(get_thread(thread_reg));
6249 
6250     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6251     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
6252     jcc(Assembler::aboveEqual, next);
6253     STOP("assert(top >= start)");
6254     should_not_reach_here();
6255 
6256     bind(next);
6257     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
6258     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6259     jcc(Assembler::aboveEqual, ok);
6260     STOP("assert(top <= end)");
6261     should_not_reach_here();
6262 
6263     bind(ok);
6264     NOT_LP64(pop(thread_reg));
6265     pop(t1);
6266   }
6267 #endif
6268 }
6269 
6270 class ControlWord {
6271  public:
6272   int32_t _value;
6273 
6274   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
6275   int  precision_control() const       { return  (_value >>  8) & 3      ; }
6276   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6277   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6278   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6279   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6280   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6281   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6282 
6283   void print() const {
6284     // rounding control
6285     const char* rc;
6286     switch (rounding_control()) {
6287       case 0: rc = "round near"; break;
6288       case 1: rc = "round down"; break;
6289       case 2: rc = "round up  "; break;
6290       case 3: rc = "chop      "; break;
6291     };
6292     // precision control
6293     const char* pc;
6294     switch (precision_control()) {
6295       case 0: pc = "24 bits "; break;
6296       case 1: pc = "reserved"; break;
6297       case 2: pc = "53 bits "; break;
6298       case 3: pc = "64 bits "; break;
6299     };
6300     // flags
6301     char f[9];
6302     f[0] = ' ';
6303     f[1] = ' ';
6304     f[2] = (precision   ()) ? 'P' : 'p';
6305     f[3] = (underflow   ()) ? 'U' : 'u';
6306     f[4] = (overflow    ()) ? 'O' : 'o';
6307     f[5] = (zero_divide ()) ? 'Z' : 'z';
6308     f[6] = (denormalized()) ? 'D' : 'd';
6309     f[7] = (invalid     ()) ? 'I' : 'i';
6310     f[8] = '\x0';
6311     // output
6312     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
6313   }
6314 
6315 };
6316 
6317 class StatusWord {
6318  public:
6319   int32_t _value;
6320 
6321   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
6322   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
6323   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
6324   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
6325   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
6326   int  top() const                     { return  (_value >> 11) & 7      ; }
6327   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
6328   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
6329   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6330   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6331   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6332   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6333   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6334   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6335 
6336   void print() const {
6337     // condition codes
6338     char c[5];
6339     c[0] = (C3()) ? '3' : '-';
6340     c[1] = (C2()) ? '2' : '-';
6341     c[2] = (C1()) ? '1' : '-';
6342     c[3] = (C0()) ? '0' : '-';
6343     c[4] = '\x0';
6344     // flags
6345     char f[9];
6346     f[0] = (error_status()) ? 'E' : '-';
6347     f[1] = (stack_fault ()) ? 'S' : '-';
6348     f[2] = (precision   ()) ? 'P' : '-';
6349     f[3] = (underflow   ()) ? 'U' : '-';
6350     f[4] = (overflow    ()) ? 'O' : '-';
6351     f[5] = (zero_divide ()) ? 'Z' : '-';
6352     f[6] = (denormalized()) ? 'D' : '-';
6353     f[7] = (invalid     ()) ? 'I' : '-';
6354     f[8] = '\x0';
6355     // output
6356     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
6357   }
6358 
6359 };
6360 
6361 class TagWord {
6362  public:
6363   int32_t _value;
6364 
6365   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
6366 
6367   void print() const {
6368     printf("%04x", _value & 0xFFFF);
6369   }
6370 
6371 };
6372 
6373 class FPU_Register {
6374  public:
6375   int32_t _m0;
6376   int32_t _m1;
6377   int16_t _ex;
6378 
6379   bool is_indefinite() const           {
6380     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
6381   }
6382 
6383   void print() const {
6384     char  sign = (_ex < 0) ? '-' : '+';
6385     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
6386     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
6387   };
6388 
6389 };
6390 
6391 class FPU_State {
6392  public:
6393   enum {
6394     register_size       = 10,
6395     number_of_registers =  8,
6396     register_mask       =  7
6397   };
6398 
6399   ControlWord  _control_word;
6400   StatusWord   _status_word;
6401   TagWord      _tag_word;
6402   int32_t      _error_offset;
6403   int32_t      _error_selector;
6404   int32_t      _data_offset;
6405   int32_t      _data_selector;
6406   int8_t       _register[register_size * number_of_registers];
6407 
6408   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
6409   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
6410 
6411   const char* tag_as_string(int tag) const {
6412     switch (tag) {
6413       case 0: return "valid";
6414       case 1: return "zero";
6415       case 2: return "special";
6416       case 3: return "empty";
6417     }
6418     ShouldNotReachHere();
6419     return NULL;
6420   }
6421 
6422   void print() const {
6423     // print computation registers
6424     { int t = _status_word.top();
6425       for (int i = 0; i < number_of_registers; i++) {
6426         int j = (i - t) & register_mask;
6427         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
6428         st(j)->print();
6429         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
6430       }
6431     }
6432     printf("\n");
6433     // print control registers
6434     printf("ctrl = "); _control_word.print(); printf("\n");
6435     printf("stat = "); _status_word .print(); printf("\n");
6436     printf("tags = "); _tag_word    .print(); printf("\n");
6437   }
6438 
6439 };
6440 
6441 class Flag_Register {
6442  public:
6443   int32_t _value;
6444 
6445   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
6446   bool direction() const               { return ((_value >> 10) & 1) != 0; }
6447   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
6448   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
6449   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
6450   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
6451   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
6452 
6453   void print() const {
6454     // flags
6455     char f[8];
6456     f[0] = (overflow       ()) ? 'O' : '-';
6457     f[1] = (direction      ()) ? 'D' : '-';
6458     f[2] = (sign           ()) ? 'S' : '-';
6459     f[3] = (zero           ()) ? 'Z' : '-';
6460     f[4] = (auxiliary_carry()) ? 'A' : '-';
6461     f[5] = (parity         ()) ? 'P' : '-';
6462     f[6] = (carry          ()) ? 'C' : '-';
6463     f[7] = '\x0';
6464     // output
6465     printf("%08x  flags = %s", _value, f);
6466   }
6467 
6468 };
6469 
6470 class IU_Register {
6471  public:
6472   int32_t _value;
6473 
6474   void print() const {
6475     printf("%08x  %11d", _value, _value);
6476   }
6477 
6478 };
6479 
6480 class IU_State {
6481  public:
6482   Flag_Register _eflags;
6483   IU_Register   _rdi;
6484   IU_Register   _rsi;
6485   IU_Register   _rbp;
6486   IU_Register   _rsp;
6487   IU_Register   _rbx;
6488   IU_Register   _rdx;
6489   IU_Register   _rcx;
6490   IU_Register   _rax;
6491 
6492   void print() const {
6493     // computation registers
6494     printf("rax,  = "); _rax.print(); printf("\n");
6495     printf("rbx,  = "); _rbx.print(); printf("\n");
6496     printf("rcx  = "); _rcx.print(); printf("\n");
6497     printf("rdx  = "); _rdx.print(); printf("\n");
6498     printf("rdi  = "); _rdi.print(); printf("\n");
6499     printf("rsi  = "); _rsi.print(); printf("\n");
6500     printf("rbp,  = "); _rbp.print(); printf("\n");
6501     printf("rsp  = "); _rsp.print(); printf("\n");
6502     printf("\n");
6503     // control registers
6504     printf("flgs = "); _eflags.print(); printf("\n");
6505   }
6506 };
6507 
6508 
6509 class CPU_State {
6510  public:
6511   FPU_State _fpu_state;
6512   IU_State  _iu_state;
6513 
6514   void print() const {
6515     printf("--------------------------------------------------\n");
6516     _iu_state .print();
6517     printf("\n");
6518     _fpu_state.print();
6519     printf("--------------------------------------------------\n");
6520   }
6521 
6522 };
6523 
6524 
6525 static void _print_CPU_state(CPU_State* state) {
6526   state->print();
6527 };
6528 
6529 
6530 void MacroAssembler::print_CPU_state() {
6531   push_CPU_state();
6532   push(rsp);                // pass CPU state
6533   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
6534   addptr(rsp, wordSize);       // discard argument
6535   pop_CPU_state();
6536 }
6537 
6538 
6539 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
6540   static int counter = 0;
6541   FPU_State* fs = &state->_fpu_state;
6542   counter++;
6543   // For leaf calls, only verify that the top few elements remain empty.
6544   // We only need 1 empty at the top for C2 code.
6545   if( stack_depth < 0 ) {
6546     if( fs->tag_for_st(7) != 3 ) {
6547       printf("FPR7 not empty\n");
6548       state->print();
6549       assert(false, "error");
6550       return false;
6551     }
6552     return true;                // All other stack states do not matter
6553   }
6554 
6555   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
6556          "bad FPU control word");
6557 
6558   // compute stack depth
6559   int i = 0;
6560   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
6561   int d = i;
6562   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
6563   // verify findings
6564   if (i != FPU_State::number_of_registers) {
6565     // stack not contiguous
6566     printf("%s: stack not contiguous at ST%d\n", s, i);
6567     state->print();
6568     assert(false, "error");
6569     return false;
6570   }
6571   // check if computed stack depth corresponds to expected stack depth
6572   if (stack_depth < 0) {
6573     // expected stack depth is -stack_depth or less
6574     if (d > -stack_depth) {
6575       // too many elements on the stack
6576       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
6577       state->print();
6578       assert(false, "error");
6579       return false;
6580     }
6581   } else {
6582     // expected stack depth is stack_depth
6583     if (d != stack_depth) {
6584       // wrong stack depth
6585       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
6586       state->print();
6587       assert(false, "error");
6588       return false;
6589     }
6590   }
6591   // everything is cool
6592   return true;
6593 }
6594 
6595 
6596 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
6597   if (!VerifyFPU) return;
6598   push_CPU_state();
6599   push(rsp);                // pass CPU state
6600   ExternalAddress msg((address) s);
6601   // pass message string s
6602   pushptr(msg.addr());
6603   push(stack_depth);        // pass stack depth
6604   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
6605   addptr(rsp, 3 * wordSize);   // discard arguments
6606   // check for error
6607   { Label L;
6608     testl(rax, rax);
6609     jcc(Assembler::notZero, L);
6610     int3();                  // break if error condition
6611     bind(L);
6612   }
6613   pop_CPU_state();
6614 }
6615 
6616 void MacroAssembler::restore_cpu_control_state_after_jni() {
6617   // Either restore the MXCSR register after returning from the JNI Call
6618   // or verify that it wasn't changed (with -Xcheck:jni flag).
6619   if (VM_Version::supports_sse()) {
6620     if (RestoreMXCSROnJNICalls) {
6621       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
6622     } else if (CheckJNICalls) {
6623       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
6624     }
6625   }
6626   if (VM_Version::supports_avx()) {
6627     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
6628     vzeroupper();
6629   }
6630 
6631 #ifndef _LP64
6632   // Either restore the x87 floating pointer control word after returning
6633   // from the JNI call or verify that it wasn't changed.
6634   if (CheckJNICalls) {
6635     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
6636   }
6637 #endif // _LP64
6638 }
6639 
6640 
6641 void MacroAssembler::load_klass(Register dst, Register src) {
6642 #ifdef _LP64
6643   if (UseCompressedClassPointers) {
6644     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6645     decode_klass_not_null(dst);
6646   } else
6647 #endif
6648     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6649 }
6650 
6651 void MacroAssembler::load_prototype_header(Register dst, Register src) {
6652   load_klass(dst, src);
6653   movptr(dst, Address(dst, Klass::prototype_header_offset()));
6654 }
6655 
6656 void MacroAssembler::store_klass(Register dst, Register src) {
6657 #ifdef _LP64
6658   if (UseCompressedClassPointers) {
6659     encode_klass_not_null(src);
6660     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6661   } else
6662 #endif
6663     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6664 }
6665 
6666 void MacroAssembler::load_heap_oop(Register dst, Address src) {
6667 #ifdef _LP64
6668   // FIXME: Must change all places where we try to load the klass.
6669   if (UseCompressedOops) {
6670     movl(dst, src);
6671     decode_heap_oop(dst);
6672   } else
6673 #endif
6674     movptr(dst, src);
6675 }
6676 
6677 // Doesn't do verfication, generates fixed size code
6678 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
6679 #ifdef _LP64
6680   if (UseCompressedOops) {
6681     movl(dst, src);
6682     decode_heap_oop_not_null(dst);
6683   } else
6684 #endif
6685     movptr(dst, src);
6686 }
6687 
6688 void MacroAssembler::store_heap_oop(Address dst, Register src) {
6689 #ifdef _LP64
6690   if (UseCompressedOops) {
6691     assert(!dst.uses(src), "not enough registers");
6692     encode_heap_oop(src);
6693     movl(dst, src);
6694   } else
6695 #endif
6696     movptr(dst, src);
6697 }
6698 
6699 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
6700   assert_different_registers(src1, tmp);
6701 #ifdef _LP64
6702   if (UseCompressedOops) {
6703     bool did_push = false;
6704     if (tmp == noreg) {
6705       tmp = rax;
6706       push(tmp);
6707       did_push = true;
6708       assert(!src2.uses(rsp), "can't push");
6709     }
6710     load_heap_oop(tmp, src2);
6711     cmpptr(src1, tmp);
6712     if (did_push)  pop(tmp);
6713   } else
6714 #endif
6715     cmpptr(src1, src2);
6716 }
6717 
6718 // Used for storing NULLs.
6719 void MacroAssembler::store_heap_oop_null(Address dst) {
6720 #ifdef _LP64
6721   if (UseCompressedOops) {
6722     movl(dst, (int32_t)NULL_WORD);
6723   } else {
6724     movslq(dst, (int32_t)NULL_WORD);
6725   }
6726 #else
6727   movl(dst, (int32_t)NULL_WORD);
6728 #endif
6729 }
6730 
6731 #ifdef _LP64
6732 void MacroAssembler::store_klass_gap(Register dst, Register src) {
6733   if (UseCompressedClassPointers) {
6734     // Store to klass gap in destination
6735     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
6736   }
6737 }
6738 
6739 #ifdef ASSERT
6740 void MacroAssembler::verify_heapbase(const char* msg) {
6741   assert (UseCompressedOops, "should be compressed");
6742   assert (Universe::heap() != NULL, "java heap should be initialized");
6743   if (CheckCompressedOops) {
6744     Label ok;
6745     push(rscratch1); // cmpptr trashes rscratch1
6746     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6747     jcc(Assembler::equal, ok);
6748     STOP(msg);
6749     bind(ok);
6750     pop(rscratch1);
6751   }
6752 }
6753 #endif
6754 
6755 // Algorithm must match oop.inline.hpp encode_heap_oop.
6756 void MacroAssembler::encode_heap_oop(Register r) {
6757 #ifdef ASSERT
6758   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
6759 #endif
6760   verify_oop(r, "broken oop in encode_heap_oop");
6761   if (Universe::narrow_oop_base() == NULL) {
6762     if (Universe::narrow_oop_shift() != 0) {
6763       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6764       shrq(r, LogMinObjAlignmentInBytes);
6765     }
6766     return;
6767   }
6768   testq(r, r);
6769   cmovq(Assembler::equal, r, r12_heapbase);
6770   subq(r, r12_heapbase);
6771   shrq(r, LogMinObjAlignmentInBytes);
6772 }
6773 
6774 void MacroAssembler::encode_heap_oop_not_null(Register r) {
6775 #ifdef ASSERT
6776   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
6777   if (CheckCompressedOops) {
6778     Label ok;
6779     testq(r, r);
6780     jcc(Assembler::notEqual, ok);
6781     STOP("null oop passed to encode_heap_oop_not_null");
6782     bind(ok);
6783   }
6784 #endif
6785   verify_oop(r, "broken oop in encode_heap_oop_not_null");
6786   if (Universe::narrow_oop_base() != NULL) {
6787     subq(r, r12_heapbase);
6788   }
6789   if (Universe::narrow_oop_shift() != 0) {
6790     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6791     shrq(r, LogMinObjAlignmentInBytes);
6792   }
6793 }
6794 
6795 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
6796 #ifdef ASSERT
6797   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
6798   if (CheckCompressedOops) {
6799     Label ok;
6800     testq(src, src);
6801     jcc(Assembler::notEqual, ok);
6802     STOP("null oop passed to encode_heap_oop_not_null2");
6803     bind(ok);
6804   }
6805 #endif
6806   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
6807   if (dst != src) {
6808     movq(dst, src);
6809   }
6810   if (Universe::narrow_oop_base() != NULL) {
6811     subq(dst, r12_heapbase);
6812   }
6813   if (Universe::narrow_oop_shift() != 0) {
6814     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6815     shrq(dst, LogMinObjAlignmentInBytes);
6816   }
6817 }
6818 
6819 void  MacroAssembler::decode_heap_oop(Register r) {
6820 #ifdef ASSERT
6821   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
6822 #endif
6823   if (Universe::narrow_oop_base() == NULL) {
6824     if (Universe::narrow_oop_shift() != 0) {
6825       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6826       shlq(r, LogMinObjAlignmentInBytes);
6827     }
6828   } else {
6829     Label done;
6830     shlq(r, LogMinObjAlignmentInBytes);
6831     jccb(Assembler::equal, done);
6832     addq(r, r12_heapbase);
6833     bind(done);
6834   }
6835   verify_oop(r, "broken oop in decode_heap_oop");
6836 }
6837 
6838 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
6839   // Note: it will change flags
6840   assert (UseCompressedOops, "should only be used for compressed headers");
6841   assert (Universe::heap() != NULL, "java heap should be initialized");
6842   // Cannot assert, unverified entry point counts instructions (see .ad file)
6843   // vtableStubs also counts instructions in pd_code_size_limit.
6844   // Also do not verify_oop as this is called by verify_oop.
6845   if (Universe::narrow_oop_shift() != 0) {
6846     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6847     shlq(r, LogMinObjAlignmentInBytes);
6848     if (Universe::narrow_oop_base() != NULL) {
6849       addq(r, r12_heapbase);
6850     }
6851   } else {
6852     assert (Universe::narrow_oop_base() == NULL, "sanity");
6853   }
6854 }
6855 
6856 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
6857   // Note: it will change flags
6858   assert (UseCompressedOops, "should only be used for compressed headers");
6859   assert (Universe::heap() != NULL, "java heap should be initialized");
6860   // Cannot assert, unverified entry point counts instructions (see .ad file)
6861   // vtableStubs also counts instructions in pd_code_size_limit.
6862   // Also do not verify_oop as this is called by verify_oop.
6863   if (Universe::narrow_oop_shift() != 0) {
6864     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6865     if (LogMinObjAlignmentInBytes == Address::times_8) {
6866       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6867     } else {
6868       if (dst != src) {
6869         movq(dst, src);
6870       }
6871       shlq(dst, LogMinObjAlignmentInBytes);
6872       if (Universe::narrow_oop_base() != NULL) {
6873         addq(dst, r12_heapbase);
6874       }
6875     }
6876   } else {
6877     assert (Universe::narrow_oop_base() == NULL, "sanity");
6878     if (dst != src) {
6879       movq(dst, src);
6880     }
6881   }
6882 }
6883 
6884 void MacroAssembler::encode_klass_not_null(Register r) {
6885   if (Universe::narrow_klass_base() != NULL) {
6886     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6887     assert(r != r12_heapbase, "Encoding a klass in r12");
6888     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6889     subq(r, r12_heapbase);
6890   }
6891   if (Universe::narrow_klass_shift() != 0) {
6892     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6893     shrq(r, LogKlassAlignmentInBytes);
6894   }
6895   if (Universe::narrow_klass_base() != NULL) {
6896     reinit_heapbase();
6897   }
6898 }
6899 
6900 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6901   if (dst == src) {
6902     encode_klass_not_null(src);
6903   } else {
6904     if (Universe::narrow_klass_base() != NULL) {
6905       mov64(dst, (int64_t)Universe::narrow_klass_base());
6906       negq(dst);
6907       addq(dst, src);
6908     } else {
6909       movptr(dst, src);
6910     }
6911     if (Universe::narrow_klass_shift() != 0) {
6912       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6913       shrq(dst, LogKlassAlignmentInBytes);
6914     }
6915   }
6916 }
6917 
6918 // Function instr_size_for_decode_klass_not_null() counts the instructions
6919 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6920 // when (Universe::heap() != NULL).  Hence, if the instructions they
6921 // generate change, then this method needs to be updated.
6922 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6923   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6924   if (Universe::narrow_klass_base() != NULL) {
6925     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6926     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6927   } else {
6928     // longest load decode klass function, mov64, leaq
6929     return 16;
6930   }
6931 }
6932 
6933 // !!! If the instructions that get generated here change then function
6934 // instr_size_for_decode_klass_not_null() needs to get updated.
6935 void  MacroAssembler::decode_klass_not_null(Register r) {
6936   // Note: it will change flags
6937   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6938   assert(r != r12_heapbase, "Decoding a klass in r12");
6939   // Cannot assert, unverified entry point counts instructions (see .ad file)
6940   // vtableStubs also counts instructions in pd_code_size_limit.
6941   // Also do not verify_oop as this is called by verify_oop.
6942   if (Universe::narrow_klass_shift() != 0) {
6943     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6944     shlq(r, LogKlassAlignmentInBytes);
6945   }
6946   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6947   if (Universe::narrow_klass_base() != NULL) {
6948     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6949     addq(r, r12_heapbase);
6950     reinit_heapbase();
6951   }
6952 }
6953 
6954 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
6955   // Note: it will change flags
6956   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6957   if (dst == src) {
6958     decode_klass_not_null(dst);
6959   } else {
6960     // Cannot assert, unverified entry point counts instructions (see .ad file)
6961     // vtableStubs also counts instructions in pd_code_size_limit.
6962     // Also do not verify_oop as this is called by verify_oop.
6963     mov64(dst, (int64_t)Universe::narrow_klass_base());
6964     if (Universe::narrow_klass_shift() != 0) {
6965       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6966       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6967       leaq(dst, Address(dst, src, Address::times_8, 0));
6968     } else {
6969       addq(dst, src);
6970     }
6971   }
6972 }
6973 
6974 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6975   assert (UseCompressedOops, "should only be used for compressed headers");
6976   assert (Universe::heap() != NULL, "java heap should be initialized");
6977   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6978   int oop_index = oop_recorder()->find_index(obj);
6979   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6980   mov_narrow_oop(dst, oop_index, rspec);
6981 }
6982 
6983 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6984   assert (UseCompressedOops, "should only be used for compressed headers");
6985   assert (Universe::heap() != NULL, "java heap should be initialized");
6986   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6987   int oop_index = oop_recorder()->find_index(obj);
6988   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6989   mov_narrow_oop(dst, oop_index, rspec);
6990 }
6991 
6992 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6993   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6994   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6995   int klass_index = oop_recorder()->find_index(k);
6996   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6997   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6998 }
6999 
7000 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
7001   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7002   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7003   int klass_index = oop_recorder()->find_index(k);
7004   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7005   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
7006 }
7007 
7008 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
7009   assert (UseCompressedOops, "should only be used for compressed headers");
7010   assert (Universe::heap() != NULL, "java heap should be initialized");
7011   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7012   int oop_index = oop_recorder()->find_index(obj);
7013   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7014   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
7015 }
7016 
7017 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
7018   assert (UseCompressedOops, "should only be used for compressed headers");
7019   assert (Universe::heap() != NULL, "java heap should be initialized");
7020   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7021   int oop_index = oop_recorder()->find_index(obj);
7022   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7023   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
7024 }
7025 
7026 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
7027   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7028   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7029   int klass_index = oop_recorder()->find_index(k);
7030   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7031   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
7032 }
7033 
7034 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
7035   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7036   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7037   int klass_index = oop_recorder()->find_index(k);
7038   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7039   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
7040 }
7041 
7042 void MacroAssembler::reinit_heapbase() {
7043   if (UseCompressedOops || UseCompressedClassPointers) {
7044     if (Universe::heap() != NULL) {
7045       if (Universe::narrow_oop_base() == NULL) {
7046         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
7047       } else {
7048         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
7049       }
7050     } else {
7051       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
7052     }
7053   }
7054 }
7055 
7056 #endif // _LP64
7057 
7058 
7059 // C2 compiled method's prolog code.
7060 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
7061 
7062   // WARNING: Initial instruction MUST be 5 bytes or longer so that
7063   // NativeJump::patch_verified_entry will be able to patch out the entry
7064   // code safely. The push to verify stack depth is ok at 5 bytes,
7065   // the frame allocation can be either 3 or 6 bytes. So if we don't do
7066   // stack bang then we must use the 6 byte frame allocation even if
7067   // we have no frame. :-(
7068   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
7069 
7070   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
7071   // Remove word for return addr
7072   framesize -= wordSize;
7073   stack_bang_size -= wordSize;
7074 
7075   // Calls to C2R adapters often do not accept exceptional returns.
7076   // We require that their callers must bang for them.  But be careful, because
7077   // some VM calls (such as call site linkage) can use several kilobytes of
7078   // stack.  But the stack safety zone should account for that.
7079   // See bugs 4446381, 4468289, 4497237.
7080   if (stack_bang_size > 0) {
7081     generate_stack_overflow_check(stack_bang_size);
7082 
7083     // We always push rbp, so that on return to interpreter rbp, will be
7084     // restored correctly and we can correct the stack.
7085     push(rbp);
7086     // Save caller's stack pointer into RBP if the frame pointer is preserved.
7087     if (PreserveFramePointer) {
7088       mov(rbp, rsp);
7089     }
7090     // Remove word for ebp
7091     framesize -= wordSize;
7092 
7093     // Create frame
7094     if (framesize) {
7095       subptr(rsp, framesize);
7096     }
7097   } else {
7098     // Create frame (force generation of a 4 byte immediate value)
7099     subptr_imm32(rsp, framesize);
7100 
7101     // Save RBP register now.
7102     framesize -= wordSize;
7103     movptr(Address(rsp, framesize), rbp);
7104     // Save caller's stack pointer into RBP if the frame pointer is preserved.
7105     if (PreserveFramePointer) {
7106       movptr(rbp, rsp);
7107       if (framesize > 0) {
7108         addptr(rbp, framesize);
7109       }
7110     }
7111   }
7112 
7113   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
7114     framesize -= wordSize;
7115     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
7116   }
7117 
7118 #ifndef _LP64
7119   // If method sets FPU control word do it now
7120   if (fp_mode_24b) {
7121     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
7122   }
7123   if (UseSSE >= 2 && VerifyFPU) {
7124     verify_FPU(0, "FPU stack must be clean on entry");
7125   }
7126 #endif
7127 
7128 #ifdef ASSERT
7129   if (VerifyStackAtCalls) {
7130     Label L;
7131     push(rax);
7132     mov(rax, rsp);
7133     andptr(rax, StackAlignmentInBytes-1);
7134     cmpptr(rax, StackAlignmentInBytes-wordSize);
7135     pop(rax);
7136     jcc(Assembler::equal, L);
7137     STOP("Stack is not properly aligned!");
7138     bind(L);
7139   }
7140 #endif
7141 
7142 }
7143 
7144 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
7145   // cnt - number of qwords (8-byte words).
7146   // base - start address, qword aligned.
7147   assert(base==rdi, "base register must be edi for rep stos");
7148   assert(tmp==rax,   "tmp register must be eax for rep stos");
7149   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
7150 
7151   xorptr(tmp, tmp);
7152   if (UseFastStosb) {
7153     shlptr(cnt,3); // convert to number of bytes
7154     rep_stosb();
7155   } else {
7156     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
7157     rep_stos();
7158   }
7159 }
7160 
7161 #ifdef COMPILER2
7162 
7163 // IndexOf for constant substrings with size >= 8 chars
7164 // which don't need to be loaded through stack.
7165 void MacroAssembler::string_indexofC8(Register str1, Register str2,
7166                                       Register cnt1, Register cnt2,
7167                                       int int_cnt2,  Register result,
7168                                       XMMRegister vec, Register tmp,
7169                                       int ae) {
7170   ShortBranchVerifier sbv(this);
7171   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7172   assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7173   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7174 
7175   // This method uses the pcmpestri instruction with bound registers
7176   //   inputs:
7177   //     xmm - substring
7178   //     rax - substring length (elements count)
7179   //     mem - scanned string
7180   //     rdx - string length (elements count)
7181   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7182   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7183   //   outputs:
7184   //     rcx - matched index in string
7185   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7186   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7187   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7188   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7189   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7190 
7191   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
7192         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
7193         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
7194 
7195   // Note, inline_string_indexOf() generates checks:
7196   // if (substr.count > string.count) return -1;
7197   // if (substr.count == 0) return 0;
7198   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
7199 
7200   // Load substring.
7201   if (ae == StrIntrinsicNode::UL) {
7202     pmovzxbw(vec, Address(str2, 0));
7203   } else {
7204     movdqu(vec, Address(str2, 0));
7205   }
7206   movl(cnt2, int_cnt2);
7207   movptr(result, str1); // string addr
7208 
7209   if (int_cnt2 > stride) {
7210     jmpb(SCAN_TO_SUBSTR);
7211 
7212     // Reload substr for rescan, this code
7213     // is executed only for large substrings (> 8 chars)
7214     bind(RELOAD_SUBSTR);
7215     if (ae == StrIntrinsicNode::UL) {
7216       pmovzxbw(vec, Address(str2, 0));
7217     } else {
7218       movdqu(vec, Address(str2, 0));
7219     }
7220     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
7221 
7222     bind(RELOAD_STR);
7223     // We came here after the beginning of the substring was
7224     // matched but the rest of it was not so we need to search
7225     // again. Start from the next element after the previous match.
7226 
7227     // cnt2 is number of substring reminding elements and
7228     // cnt1 is number of string reminding elements when cmp failed.
7229     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
7230     subl(cnt1, cnt2);
7231     addl(cnt1, int_cnt2);
7232     movl(cnt2, int_cnt2); // Now restore cnt2
7233 
7234     decrementl(cnt1);     // Shift to next element
7235     cmpl(cnt1, cnt2);
7236     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7237 
7238     addptr(result, (1<<scale1));
7239 
7240   } // (int_cnt2 > 8)
7241 
7242   // Scan string for start of substr in 16-byte vectors
7243   bind(SCAN_TO_SUBSTR);
7244   pcmpestri(vec, Address(result, 0), mode);
7245   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7246   subl(cnt1, stride);
7247   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7248   cmpl(cnt1, cnt2);
7249   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7250   addptr(result, 16);
7251   jmpb(SCAN_TO_SUBSTR);
7252 
7253   // Found a potential substr
7254   bind(FOUND_CANDIDATE);
7255   // Matched whole vector if first element matched (tmp(rcx) == 0).
7256   if (int_cnt2 == stride) {
7257     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
7258   } else { // int_cnt2 > 8
7259     jccb(Assembler::overflow, FOUND_SUBSTR);
7260   }
7261   // After pcmpestri tmp(rcx) contains matched element index
7262   // Compute start addr of substr
7263   lea(result, Address(result, tmp, scale1));
7264 
7265   // Make sure string is still long enough
7266   subl(cnt1, tmp);
7267   cmpl(cnt1, cnt2);
7268   if (int_cnt2 == stride) {
7269     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7270   } else { // int_cnt2 > 8
7271     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
7272   }
7273   // Left less then substring.
7274 
7275   bind(RET_NOT_FOUND);
7276   movl(result, -1);
7277   jmpb(EXIT);
7278 
7279   if (int_cnt2 > stride) {
7280     // This code is optimized for the case when whole substring
7281     // is matched if its head is matched.
7282     bind(MATCH_SUBSTR_HEAD);
7283     pcmpestri(vec, Address(result, 0), mode);
7284     // Reload only string if does not match
7285     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
7286 
7287     Label CONT_SCAN_SUBSTR;
7288     // Compare the rest of substring (> 8 chars).
7289     bind(FOUND_SUBSTR);
7290     // First 8 chars are already matched.
7291     negptr(cnt2);
7292     addptr(cnt2, stride);
7293 
7294     bind(SCAN_SUBSTR);
7295     subl(cnt1, stride);
7296     cmpl(cnt2, -stride); // Do not read beyond substring
7297     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
7298     // Back-up strings to avoid reading beyond substring:
7299     // cnt1 = cnt1 - cnt2 + 8
7300     addl(cnt1, cnt2); // cnt2 is negative
7301     addl(cnt1, stride);
7302     movl(cnt2, stride); negptr(cnt2);
7303     bind(CONT_SCAN_SUBSTR);
7304     if (int_cnt2 < (int)G) {
7305       int tail_off1 = int_cnt2<<scale1;
7306       int tail_off2 = int_cnt2<<scale2;
7307       if (ae == StrIntrinsicNode::UL) {
7308         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
7309       } else {
7310         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
7311       }
7312       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
7313     } else {
7314       // calculate index in register to avoid integer overflow (int_cnt2*2)
7315       movl(tmp, int_cnt2);
7316       addptr(tmp, cnt2);
7317       if (ae == StrIntrinsicNode::UL) {
7318         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
7319       } else {
7320         movdqu(vec, Address(str2, tmp, scale2, 0));
7321       }
7322       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
7323     }
7324     // Need to reload strings pointers if not matched whole vector
7325     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7326     addptr(cnt2, stride);
7327     jcc(Assembler::negative, SCAN_SUBSTR);
7328     // Fall through if found full substring
7329 
7330   } // (int_cnt2 > 8)
7331 
7332   bind(RET_FOUND);
7333   // Found result if we matched full small substring.
7334   // Compute substr offset
7335   subptr(result, str1);
7336   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7337     shrl(result, 1); // index
7338   }
7339   bind(EXIT);
7340 
7341 } // string_indexofC8
7342 
7343 // Small strings are loaded through stack if they cross page boundary.
7344 void MacroAssembler::string_indexof(Register str1, Register str2,
7345                                     Register cnt1, Register cnt2,
7346                                     int int_cnt2,  Register result,
7347                                     XMMRegister vec, Register tmp,
7348                                     int ae) {
7349   ShortBranchVerifier sbv(this);
7350   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7351   assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7352   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7353 
7354   //
7355   // int_cnt2 is length of small (< 8 chars) constant substring
7356   // or (-1) for non constant substring in which case its length
7357   // is in cnt2 register.
7358   //
7359   // Note, inline_string_indexOf() generates checks:
7360   // if (substr.count > string.count) return -1;
7361   // if (substr.count == 0) return 0;
7362   //
7363   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7364   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
7365   // This method uses the pcmpestri instruction with bound registers
7366   //   inputs:
7367   //     xmm - substring
7368   //     rax - substring length (elements count)
7369   //     mem - scanned string
7370   //     rdx - string length (elements count)
7371   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7372   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7373   //   outputs:
7374   //     rcx - matched index in string
7375   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7376   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7377   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7378   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7379 
7380   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
7381         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
7382         FOUND_CANDIDATE;
7383 
7384   { //========================================================
7385     // We don't know where these strings are located
7386     // and we can't read beyond them. Load them through stack.
7387     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
7388 
7389     movptr(tmp, rsp); // save old SP
7390 
7391     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
7392       if (int_cnt2 == (1>>scale2)) { // One byte
7393         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
7394         load_unsigned_byte(result, Address(str2, 0));
7395         movdl(vec, result); // move 32 bits
7396       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
7397         // Not enough header space in 32-bit VM: 12+3 = 15.
7398         movl(result, Address(str2, -1));
7399         shrl(result, 8);
7400         movdl(vec, result); // move 32 bits
7401       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
7402         load_unsigned_short(result, Address(str2, 0));
7403         movdl(vec, result); // move 32 bits
7404       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
7405         movdl(vec, Address(str2, 0)); // move 32 bits
7406       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
7407         movq(vec, Address(str2, 0));  // move 64 bits
7408       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
7409         // Array header size is 12 bytes in 32-bit VM
7410         // + 6 bytes for 3 chars == 18 bytes,
7411         // enough space to load vec and shift.
7412         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
7413         if (ae == StrIntrinsicNode::UL) {
7414           int tail_off = int_cnt2-8;
7415           pmovzxbw(vec, Address(str2, tail_off));
7416           psrldq(vec, -2*tail_off);
7417         }
7418         else {
7419           int tail_off = int_cnt2*(1<<scale2);
7420           movdqu(vec, Address(str2, tail_off-16));
7421           psrldq(vec, 16-tail_off);
7422         }
7423       }
7424     } else { // not constant substring
7425       cmpl(cnt2, stride);
7426       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
7427 
7428       // We can read beyond string if srt+16 does not cross page boundary
7429       // since heaps are aligned and mapped by pages.
7430       assert(os::vm_page_size() < (int)G, "default page should be small");
7431       movl(result, str2); // We need only low 32 bits
7432       andl(result, (os::vm_page_size()-1));
7433       cmpl(result, (os::vm_page_size()-16));
7434       jccb(Assembler::belowEqual, CHECK_STR);
7435 
7436       // Move small strings to stack to allow load 16 bytes into vec.
7437       subptr(rsp, 16);
7438       int stk_offset = wordSize-(1<<scale2);
7439       push(cnt2);
7440 
7441       bind(COPY_SUBSTR);
7442       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
7443         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
7444         movb(Address(rsp, cnt2, scale2, stk_offset), result);
7445       } else if (ae == StrIntrinsicNode::UU) {
7446         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
7447         movw(Address(rsp, cnt2, scale2, stk_offset), result);
7448       }
7449       decrement(cnt2);
7450       jccb(Assembler::notZero, COPY_SUBSTR);
7451 
7452       pop(cnt2);
7453       movptr(str2, rsp);  // New substring address
7454     } // non constant
7455 
7456     bind(CHECK_STR);
7457     cmpl(cnt1, stride);
7458     jccb(Assembler::aboveEqual, BIG_STRINGS);
7459 
7460     // Check cross page boundary.
7461     movl(result, str1); // We need only low 32 bits
7462     andl(result, (os::vm_page_size()-1));
7463     cmpl(result, (os::vm_page_size()-16));
7464     jccb(Assembler::belowEqual, BIG_STRINGS);
7465 
7466     subptr(rsp, 16);
7467     int stk_offset = -(1<<scale1);
7468     if (int_cnt2 < 0) { // not constant
7469       push(cnt2);
7470       stk_offset += wordSize;
7471     }
7472     movl(cnt2, cnt1);
7473 
7474     bind(COPY_STR);
7475     if (ae == StrIntrinsicNode::LL) {
7476       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
7477       movb(Address(rsp, cnt2, scale1, stk_offset), result);
7478     } else {
7479       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
7480       movw(Address(rsp, cnt2, scale1, stk_offset), result);
7481     }
7482     decrement(cnt2);
7483     jccb(Assembler::notZero, COPY_STR);
7484 
7485     if (int_cnt2 < 0) { // not constant
7486       pop(cnt2);
7487     }
7488     movptr(str1, rsp);  // New string address
7489 
7490     bind(BIG_STRINGS);
7491     // Load substring.
7492     if (int_cnt2 < 0) { // -1
7493       if (ae == StrIntrinsicNode::UL) {
7494         pmovzxbw(vec, Address(str2, 0));
7495       } else {
7496         movdqu(vec, Address(str2, 0));
7497       }
7498       push(cnt2);       // substr count
7499       push(str2);       // substr addr
7500       push(str1);       // string addr
7501     } else {
7502       // Small (< 8 chars) constant substrings are loaded already.
7503       movl(cnt2, int_cnt2);
7504     }
7505     push(tmp);  // original SP
7506 
7507   } // Finished loading
7508 
7509   //========================================================
7510   // Start search
7511   //
7512 
7513   movptr(result, str1); // string addr
7514 
7515   if (int_cnt2  < 0) {  // Only for non constant substring
7516     jmpb(SCAN_TO_SUBSTR);
7517 
7518     // SP saved at sp+0
7519     // String saved at sp+1*wordSize
7520     // Substr saved at sp+2*wordSize
7521     // Substr count saved at sp+3*wordSize
7522 
7523     // Reload substr for rescan, this code
7524     // is executed only for large substrings (> 8 chars)
7525     bind(RELOAD_SUBSTR);
7526     movptr(str2, Address(rsp, 2*wordSize));
7527     movl(cnt2, Address(rsp, 3*wordSize));
7528     if (ae == StrIntrinsicNode::UL) {
7529       pmovzxbw(vec, Address(str2, 0));
7530     } else {
7531       movdqu(vec, Address(str2, 0));
7532     }
7533     // We came here after the beginning of the substring was
7534     // matched but the rest of it was not so we need to search
7535     // again. Start from the next element after the previous match.
7536     subptr(str1, result); // Restore counter
7537     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7538       shrl(str1, 1);
7539     }
7540     addl(cnt1, str1);
7541     decrementl(cnt1);   // Shift to next element
7542     cmpl(cnt1, cnt2);
7543     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7544 
7545     addptr(result, (1<<scale1));
7546   } // non constant
7547 
7548   // Scan string for start of substr in 16-byte vectors
7549   bind(SCAN_TO_SUBSTR);
7550   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7551   pcmpestri(vec, Address(result, 0), mode);
7552   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7553   subl(cnt1, stride);
7554   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7555   cmpl(cnt1, cnt2);
7556   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7557   addptr(result, 16);
7558 
7559   bind(ADJUST_STR);
7560   cmpl(cnt1, stride); // Do not read beyond string
7561   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7562   // Back-up string to avoid reading beyond string.
7563   lea(result, Address(result, cnt1, scale1, -16));
7564   movl(cnt1, stride);
7565   jmpb(SCAN_TO_SUBSTR);
7566 
7567   // Found a potential substr
7568   bind(FOUND_CANDIDATE);
7569   // After pcmpestri tmp(rcx) contains matched element index
7570 
7571   // Make sure string is still long enough
7572   subl(cnt1, tmp);
7573   cmpl(cnt1, cnt2);
7574   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
7575   // Left less then substring.
7576 
7577   bind(RET_NOT_FOUND);
7578   movl(result, -1);
7579   jmpb(CLEANUP);
7580 
7581   bind(FOUND_SUBSTR);
7582   // Compute start addr of substr
7583   lea(result, Address(result, tmp, scale1));
7584   if (int_cnt2 > 0) { // Constant substring
7585     // Repeat search for small substring (< 8 chars)
7586     // from new point without reloading substring.
7587     // Have to check that we don't read beyond string.
7588     cmpl(tmp, stride-int_cnt2);
7589     jccb(Assembler::greater, ADJUST_STR);
7590     // Fall through if matched whole substring.
7591   } else { // non constant
7592     assert(int_cnt2 == -1, "should be != 0");
7593 
7594     addl(tmp, cnt2);
7595     // Found result if we matched whole substring.
7596     cmpl(tmp, stride);
7597     jccb(Assembler::lessEqual, RET_FOUND);
7598 
7599     // Repeat search for small substring (<= 8 chars)
7600     // from new point 'str1' without reloading substring.
7601     cmpl(cnt2, stride);
7602     // Have to check that we don't read beyond string.
7603     jccb(Assembler::lessEqual, ADJUST_STR);
7604 
7605     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
7606     // Compare the rest of substring (> 8 chars).
7607     movptr(str1, result);
7608 
7609     cmpl(tmp, cnt2);
7610     // First 8 chars are already matched.
7611     jccb(Assembler::equal, CHECK_NEXT);
7612 
7613     bind(SCAN_SUBSTR);
7614     pcmpestri(vec, Address(str1, 0), mode);
7615     // Need to reload strings pointers if not matched whole vector
7616     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7617 
7618     bind(CHECK_NEXT);
7619     subl(cnt2, stride);
7620     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
7621     addptr(str1, 16);
7622     if (ae == StrIntrinsicNode::UL) {
7623       addptr(str2, 8);
7624     } else {
7625       addptr(str2, 16);
7626     }
7627     subl(cnt1, stride);
7628     cmpl(cnt2, stride); // Do not read beyond substring
7629     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
7630     // Back-up strings to avoid reading beyond substring.
7631 
7632     if (ae == StrIntrinsicNode::UL) {
7633       lea(str2, Address(str2, cnt2, scale2, -8));
7634       lea(str1, Address(str1, cnt2, scale1, -16));
7635     } else {
7636       lea(str2, Address(str2, cnt2, scale2, -16));
7637       lea(str1, Address(str1, cnt2, scale1, -16));
7638     }
7639     subl(cnt1, cnt2);
7640     movl(cnt2, stride);
7641     addl(cnt1, stride);
7642     bind(CONT_SCAN_SUBSTR);
7643     if (ae == StrIntrinsicNode::UL) {
7644       pmovzxbw(vec, Address(str2, 0));
7645     } else {
7646       movdqu(vec, Address(str2, 0));
7647     }
7648     jmpb(SCAN_SUBSTR);
7649 
7650     bind(RET_FOUND_LONG);
7651     movptr(str1, Address(rsp, wordSize));
7652   } // non constant
7653 
7654   bind(RET_FOUND);
7655   // Compute substr offset
7656   subptr(result, str1);
7657   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7658     shrl(result, 1); // index
7659   }
7660   bind(CLEANUP);
7661   pop(rsp); // restore SP
7662 
7663 } // string_indexof
7664 
7665 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
7666                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
7667   ShortBranchVerifier sbv(this);
7668   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7669   assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7670 
7671   int stride = 8;
7672 
7673   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
7674         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
7675         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
7676         FOUND_SEQ_CHAR, DONE_LABEL;
7677 
7678   movptr(result, str1);
7679   if (UseAVX >= 2) {
7680     cmpl(cnt1, stride);
7681     jccb(Assembler::less, SCAN_TO_CHAR_LOOP);
7682     cmpl(cnt1, 2*stride);
7683     jccb(Assembler::less, SCAN_TO_8_CHAR_INIT);
7684     movdl(vec1, ch);
7685     vpbroadcastw(vec1, vec1);
7686     vpxor(vec2, vec2);
7687     movl(tmp, cnt1);
7688     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
7689     andl(cnt1,0x0000000F);  //tail count (in chars)
7690 
7691     bind(SCAN_TO_16_CHAR_LOOP);
7692     vmovdqu(vec3, Address(result, 0));
7693     vpcmpeqw(vec3, vec3, vec1, 1);
7694     vptest(vec2, vec3);
7695     jcc(Assembler::carryClear, FOUND_CHAR);
7696     addptr(result, 32);
7697     subl(tmp, 2*stride);
7698     jccb(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
7699     jmp(SCAN_TO_8_CHAR);
7700     bind(SCAN_TO_8_CHAR_INIT);
7701     movdl(vec1, ch);
7702     pshuflw(vec1, vec1, 0x00);
7703     pshufd(vec1, vec1, 0);
7704     pxor(vec2, vec2);
7705   }
7706   bind(SCAN_TO_8_CHAR);
7707   cmpl(cnt1, stride);
7708   if (UseAVX >= 2) {
7709     jccb(Assembler::less, SCAN_TO_CHAR);
7710   } else {
7711     jccb(Assembler::less, SCAN_TO_CHAR_LOOP);
7712     movdl(vec1, ch);
7713     pshuflw(vec1, vec1, 0x00);
7714     pshufd(vec1, vec1, 0);
7715     pxor(vec2, vec2);
7716   }
7717   movl(tmp, cnt1);
7718   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
7719   andl(cnt1,0x00000007);  //tail count (in chars)
7720 
7721   bind(SCAN_TO_8_CHAR_LOOP);
7722   movdqu(vec3, Address(result, 0));
7723   pcmpeqw(vec3, vec1);
7724   ptest(vec2, vec3);
7725   jcc(Assembler::carryClear, FOUND_CHAR);
7726   addptr(result, 16);
7727   subl(tmp, stride);
7728   jccb(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
7729   bind(SCAN_TO_CHAR);
7730   testl(cnt1, cnt1);
7731   jcc(Assembler::zero, RET_NOT_FOUND);
7732   bind(SCAN_TO_CHAR_LOOP);
7733   load_unsigned_short(tmp, Address(result, 0));
7734   cmpl(ch, tmp);
7735   jccb(Assembler::equal, FOUND_SEQ_CHAR);
7736   addptr(result, 2);
7737   subl(cnt1, 1);
7738   jccb(Assembler::zero, RET_NOT_FOUND);
7739   jmp(SCAN_TO_CHAR_LOOP);
7740 
7741   bind(RET_NOT_FOUND);
7742   movl(result, -1);
7743   jmpb(DONE_LABEL);
7744 
7745   bind(FOUND_CHAR);
7746   if (UseAVX >= 2) {
7747     vpmovmskb(tmp, vec3);
7748   } else {
7749     pmovmskb(tmp, vec3);
7750   }
7751   bsfl(ch, tmp);
7752   addl(result, ch);
7753 
7754   bind(FOUND_SEQ_CHAR);
7755   subptr(result, str1);
7756   shrl(result, 1);
7757 
7758   bind(DONE_LABEL);
7759 } // string_indexof_char
7760 
7761 // helper function for string_compare
7762 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
7763                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
7764                                         Address::ScaleFactor scale2, Register index, int ae) {
7765   if (ae == StrIntrinsicNode::LL) {
7766     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
7767     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
7768   } else if (ae == StrIntrinsicNode::UU) {
7769     load_unsigned_short(elem1, Address(str1, index, scale, 0));
7770     load_unsigned_short(elem2, Address(str2, index, scale, 0));
7771   } else {
7772     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
7773     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
7774   }
7775 }
7776 
7777 // Compare strings, used for char[] and byte[].
7778 void MacroAssembler::string_compare(Register str1, Register str2,
7779                                     Register cnt1, Register cnt2, Register result,
7780                                     XMMRegister vec1, int ae) {
7781   ShortBranchVerifier sbv(this);
7782   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
7783   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
7784   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
7785   int stride2x2 = 0x40;
7786   Address::ScaleFactor scale, scale1, scale2;
7787 
7788   if (ae != StrIntrinsicNode::LL) {
7789     stride2x2 = 0x20;
7790   }
7791 
7792   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
7793     shrl(cnt2, 1);
7794   }
7795   // Compute the minimum of the string lengths and the
7796   // difference of the string lengths (stack).
7797   // Do the conditional move stuff
7798   movl(result, cnt1);
7799   subl(cnt1, cnt2);
7800   push(cnt1);
7801   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
7802 
7803   // Is the minimum length zero?
7804   testl(cnt2, cnt2);
7805   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7806   if (ae == StrIntrinsicNode::LL) {
7807     // Load first bytes
7808     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
7809     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
7810   } else if (ae == StrIntrinsicNode::UU) {
7811     // Load first characters
7812     load_unsigned_short(result, Address(str1, 0));
7813     load_unsigned_short(cnt1, Address(str2, 0));
7814   } else {
7815     load_unsigned_byte(result, Address(str1, 0));
7816     load_unsigned_short(cnt1, Address(str2, 0));
7817   }
7818   subl(result, cnt1);
7819   jcc(Assembler::notZero,  POP_LABEL);
7820 
7821   if (ae == StrIntrinsicNode::UU) {
7822     // Divide length by 2 to get number of chars
7823     shrl(cnt2, 1);
7824   }
7825   cmpl(cnt2, 1);
7826   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7827 
7828   // Check if the strings start at the same location and setup scale and stride
7829   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7830     cmpptr(str1, str2);
7831     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7832     if (ae == StrIntrinsicNode::LL) {
7833       scale = Address::times_1;
7834       stride = 16;
7835     } else {
7836       scale = Address::times_2;
7837       stride = 8;
7838     }
7839   } else {
7840     scale = Address::no_scale;  // not used
7841     scale1 = Address::times_1;
7842     scale2 = Address::times_2;
7843     stride = 8;
7844   }
7845 
7846   if (UseAVX >= 2 && UseSSE42Intrinsics) {
7847     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7848     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
7849     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
7850     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
7851     Label COMPARE_TAIL_LONG;
7852     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
7853 
7854     int pcmpmask = 0x19;
7855     if (ae == StrIntrinsicNode::LL) {
7856       pcmpmask &= ~0x01;
7857     }
7858 
7859     // Setup to compare 16-chars (32-bytes) vectors,
7860     // start from first character again because it has aligned address.
7861     if (ae == StrIntrinsicNode::LL) {
7862       stride2 = 32;
7863     } else {
7864       stride2 = 16;
7865     }
7866     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7867       adr_stride = stride << scale;
7868     } else {
7869       adr_stride1 = 8;  //stride << scale1;
7870       adr_stride2 = 16; //stride << scale2;
7871     }
7872 
7873     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7874     // rax and rdx are used by pcmpestri as elements counters
7875     movl(result, cnt2);
7876     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
7877     jcc(Assembler::zero, COMPARE_TAIL_LONG);
7878 
7879     // fast path : compare first 2 8-char vectors.
7880     bind(COMPARE_16_CHARS);
7881     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7882       movdqu(vec1, Address(str1, 0));
7883     } else {
7884       pmovzxbw(vec1, Address(str1, 0));
7885     }
7886     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7887     jccb(Assembler::below, COMPARE_INDEX_CHAR);
7888 
7889     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7890       movdqu(vec1, Address(str1, adr_stride));
7891       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
7892     } else {
7893       pmovzxbw(vec1, Address(str1, adr_stride1));
7894       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
7895     }
7896     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
7897     addl(cnt1, stride);
7898 
7899     // Compare the characters at index in cnt1
7900     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
7901     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7902     subl(result, cnt2);
7903     jmp(POP_LABEL);
7904 
7905     // Setup the registers to start vector comparison loop
7906     bind(COMPARE_WIDE_VECTORS);
7907     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7908       lea(str1, Address(str1, result, scale));
7909       lea(str2, Address(str2, result, scale));
7910     } else {
7911       lea(str1, Address(str1, result, scale1));
7912       lea(str2, Address(str2, result, scale2));
7913     }
7914     subl(result, stride2);
7915     subl(cnt2, stride2);
7916     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
7917     negptr(result);
7918 
7919     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
7920     bind(COMPARE_WIDE_VECTORS_LOOP);
7921 
7922 #ifdef _LP64
7923     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7924       cmpl(cnt2, stride2x2);
7925       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7926       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
7927       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
7928 
7929       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7930       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7931         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
7932         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7933       } else {
7934         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
7935         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7936       }
7937       kortestql(k7, k7);
7938       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
7939       addptr(result, stride2x2);  // update since we already compared at this addr
7940       subl(cnt2, stride2x2);      // and sub the size too
7941       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7942 
7943       vpxor(vec1, vec1);
7944       jmpb(COMPARE_WIDE_TAIL);
7945     }//if (VM_Version::supports_avx512vlbw())
7946 #endif // _LP64
7947 
7948 
7949     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7950     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7951       vmovdqu(vec1, Address(str1, result, scale));
7952       vpxor(vec1, Address(str2, result, scale));
7953     } else {
7954       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
7955       vpxor(vec1, Address(str2, result, scale2));
7956     }
7957     vptest(vec1, vec1);
7958     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
7959     addptr(result, stride2);
7960     subl(cnt2, stride2);
7961     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
7962     // clean upper bits of YMM registers
7963     vpxor(vec1, vec1);
7964 
7965     // compare wide vectors tail
7966     bind(COMPARE_WIDE_TAIL);
7967     testptr(result, result);
7968     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
7969 
7970     movl(result, stride2);
7971     movl(cnt2, result);
7972     negptr(result);
7973     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7974 
7975     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
7976     bind(VECTOR_NOT_EQUAL);
7977     // clean upper bits of YMM registers
7978     vpxor(vec1, vec1);
7979     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7980       lea(str1, Address(str1, result, scale));
7981       lea(str2, Address(str2, result, scale));
7982     } else {
7983       lea(str1, Address(str1, result, scale1));
7984       lea(str2, Address(str2, result, scale2));
7985     }
7986     jmp(COMPARE_16_CHARS);
7987 
7988     // Compare tail chars, length between 1 to 15 chars
7989     bind(COMPARE_TAIL_LONG);
7990     movl(cnt2, result);
7991     cmpl(cnt2, stride);
7992     jccb(Assembler::less, COMPARE_SMALL_STR);
7993 
7994     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7995       movdqu(vec1, Address(str1, 0));
7996     } else {
7997       pmovzxbw(vec1, Address(str1, 0));
7998     }
7999     pcmpestri(vec1, Address(str2, 0), pcmpmask);
8000     jcc(Assembler::below, COMPARE_INDEX_CHAR);
8001     subptr(cnt2, stride);
8002     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
8003     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8004       lea(str1, Address(str1, result, scale));
8005       lea(str2, Address(str2, result, scale));
8006     } else {
8007       lea(str1, Address(str1, result, scale1));
8008       lea(str2, Address(str2, result, scale2));
8009     }
8010     negptr(cnt2);
8011     jmpb(WHILE_HEAD_LABEL);
8012 
8013     bind(COMPARE_SMALL_STR);
8014   } else if (UseSSE42Intrinsics) {
8015     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
8016     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
8017     int pcmpmask = 0x19;
8018     // Setup to compare 8-char (16-byte) vectors,
8019     // start from first character again because it has aligned address.
8020     movl(result, cnt2);
8021     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
8022     if (ae == StrIntrinsicNode::LL) {
8023       pcmpmask &= ~0x01;
8024     }
8025     jccb(Assembler::zero, COMPARE_TAIL);
8026     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8027       lea(str1, Address(str1, result, scale));
8028       lea(str2, Address(str2, result, scale));
8029     } else {
8030       lea(str1, Address(str1, result, scale1));
8031       lea(str2, Address(str2, result, scale2));
8032     }
8033     negptr(result);
8034 
8035     // pcmpestri
8036     //   inputs:
8037     //     vec1- substring
8038     //     rax - negative string length (elements count)
8039     //     mem - scanned string
8040     //     rdx - string length (elements count)
8041     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
8042     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
8043     //   outputs:
8044     //     rcx - first mismatched element index
8045     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
8046 
8047     bind(COMPARE_WIDE_VECTORS);
8048     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8049       movdqu(vec1, Address(str1, result, scale));
8050       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
8051     } else {
8052       pmovzxbw(vec1, Address(str1, result, scale1));
8053       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
8054     }
8055     // After pcmpestri cnt1(rcx) contains mismatched element index
8056 
8057     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
8058     addptr(result, stride);
8059     subptr(cnt2, stride);
8060     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
8061 
8062     // compare wide vectors tail
8063     testptr(result, result);
8064     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
8065 
8066     movl(cnt2, stride);
8067     movl(result, stride);
8068     negptr(result);
8069     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8070       movdqu(vec1, Address(str1, result, scale));
8071       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
8072     } else {
8073       pmovzxbw(vec1, Address(str1, result, scale1));
8074       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
8075     }
8076     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
8077 
8078     // Mismatched characters in the vectors
8079     bind(VECTOR_NOT_EQUAL);
8080     addptr(cnt1, result);
8081     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
8082     subl(result, cnt2);
8083     jmpb(POP_LABEL);
8084 
8085     bind(COMPARE_TAIL); // limit is zero
8086     movl(cnt2, result);
8087     // Fallthru to tail compare
8088   }
8089   // Shift str2 and str1 to the end of the arrays, negate min
8090   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8091     lea(str1, Address(str1, cnt2, scale));
8092     lea(str2, Address(str2, cnt2, scale));
8093   } else {
8094     lea(str1, Address(str1, cnt2, scale1));
8095     lea(str2, Address(str2, cnt2, scale2));
8096   }
8097   decrementl(cnt2);  // first character was compared already
8098   negptr(cnt2);
8099 
8100   // Compare the rest of the elements
8101   bind(WHILE_HEAD_LABEL);
8102   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
8103   subl(result, cnt1);
8104   jccb(Assembler::notZero, POP_LABEL);
8105   increment(cnt2);
8106   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
8107 
8108   // Strings are equal up to min length.  Return the length difference.
8109   bind(LENGTH_DIFF_LABEL);
8110   pop(result);
8111   if (ae == StrIntrinsicNode::UU) {
8112     // Divide diff by 2 to get number of chars
8113     sarl(result, 1);
8114   }
8115   jmpb(DONE_LABEL);
8116 
8117 #ifdef _LP64
8118   if (VM_Version::supports_avx512vlbw()) {
8119 
8120     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
8121 
8122     kmovql(cnt1, k7);
8123     notq(cnt1);
8124     bsfq(cnt2, cnt1);
8125     if (ae != StrIntrinsicNode::LL) {
8126       // Divide diff by 2 to get number of chars
8127       sarl(cnt2, 1);
8128     }
8129     addq(result, cnt2);
8130     if (ae == StrIntrinsicNode::LL) {
8131       load_unsigned_byte(cnt1, Address(str2, result));
8132       load_unsigned_byte(result, Address(str1, result));
8133     } else if (ae == StrIntrinsicNode::UU) {
8134       load_unsigned_short(cnt1, Address(str2, result, scale));
8135       load_unsigned_short(result, Address(str1, result, scale));
8136     } else {
8137       load_unsigned_short(cnt1, Address(str2, result, scale2));
8138       load_unsigned_byte(result, Address(str1, result, scale1));
8139     }
8140     subl(result, cnt1);
8141     jmpb(POP_LABEL);
8142   }//if (VM_Version::supports_avx512vlbw())
8143 #endif // _LP64
8144 
8145   // Discard the stored length difference
8146   bind(POP_LABEL);
8147   pop(cnt1);
8148 
8149   // That's it
8150   bind(DONE_LABEL);
8151   if(ae == StrIntrinsicNode::UL) {
8152     negl(result);
8153   }
8154 
8155 }
8156 
8157 // Search for Non-ASCII character (Negative byte value) in a byte array,
8158 // return true if it has any and false otherwise.
8159 void MacroAssembler::has_negatives(Register ary1, Register len,
8160                                    Register result, Register tmp1,
8161                                    XMMRegister vec1, XMMRegister vec2) {
8162 
8163   // rsi: byte array
8164   // rcx: len
8165   // rax: result
8166   ShortBranchVerifier sbv(this);
8167   assert_different_registers(ary1, len, result, tmp1);
8168   assert_different_registers(vec1, vec2);
8169   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
8170 
8171   // len == 0
8172   testl(len, len);
8173   jcc(Assembler::zero, FALSE_LABEL);
8174 
8175   movl(result, len); // copy
8176 
8177   if (UseAVX >= 2 && UseSSE >= 2) {
8178     // With AVX2, use 32-byte vector compare
8179     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8180 
8181     // Compare 32-byte vectors
8182     andl(result, 0x0000001f);  //   tail count (in bytes)
8183     andl(len, 0xffffffe0);   // vector count (in bytes)
8184     jccb(Assembler::zero, COMPARE_TAIL);
8185 
8186     lea(ary1, Address(ary1, len, Address::times_1));
8187     negptr(len);
8188 
8189     movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
8190     movdl(vec2, tmp1);
8191     vpbroadcastd(vec2, vec2);
8192 
8193     bind(COMPARE_WIDE_VECTORS);
8194     vmovdqu(vec1, Address(ary1, len, Address::times_1));
8195     vptest(vec1, vec2);
8196     jccb(Assembler::notZero, TRUE_LABEL);
8197     addptr(len, 32);
8198     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8199 
8200     testl(result, result);
8201     jccb(Assembler::zero, FALSE_LABEL);
8202 
8203     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8204     vptest(vec1, vec2);
8205     jccb(Assembler::notZero, TRUE_LABEL);
8206     jmpb(FALSE_LABEL);
8207 
8208     bind(COMPARE_TAIL); // len is zero
8209     movl(len, result);
8210     // Fallthru to tail compare
8211   } else if (UseSSE42Intrinsics) {
8212     assert(UseSSE >= 4, "SSE4 must be  for SSE4.2 intrinsics to be available");
8213     // With SSE4.2, use double quad vector compare
8214     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8215 
8216     // Compare 16-byte vectors
8217     andl(result, 0x0000000f);  //   tail count (in bytes)
8218     andl(len, 0xfffffff0);   // vector count (in bytes)
8219     jccb(Assembler::zero, COMPARE_TAIL);
8220 
8221     lea(ary1, Address(ary1, len, Address::times_1));
8222     negptr(len);
8223 
8224     movl(tmp1, 0x80808080);
8225     movdl(vec2, tmp1);
8226     pshufd(vec2, vec2, 0);
8227 
8228     bind(COMPARE_WIDE_VECTORS);
8229     movdqu(vec1, Address(ary1, len, Address::times_1));
8230     ptest(vec1, vec2);
8231     jccb(Assembler::notZero, TRUE_LABEL);
8232     addptr(len, 16);
8233     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8234 
8235     testl(result, result);
8236     jccb(Assembler::zero, FALSE_LABEL);
8237 
8238     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8239     ptest(vec1, vec2);
8240     jccb(Assembler::notZero, TRUE_LABEL);
8241     jmpb(FALSE_LABEL);
8242 
8243     bind(COMPARE_TAIL); // len is zero
8244     movl(len, result);
8245     // Fallthru to tail compare
8246   }
8247 
8248   // Compare 4-byte vectors
8249   andl(len, 0xfffffffc); // vector count (in bytes)
8250   jccb(Assembler::zero, COMPARE_CHAR);
8251 
8252   lea(ary1, Address(ary1, len, Address::times_1));
8253   negptr(len);
8254 
8255   bind(COMPARE_VECTORS);
8256   movl(tmp1, Address(ary1, len, Address::times_1));
8257   andl(tmp1, 0x80808080);
8258   jccb(Assembler::notZero, TRUE_LABEL);
8259   addptr(len, 4);
8260   jcc(Assembler::notZero, COMPARE_VECTORS);
8261 
8262   // Compare trailing char (final 2 bytes), if any
8263   bind(COMPARE_CHAR);
8264   testl(result, 0x2);   // tail  char
8265   jccb(Assembler::zero, COMPARE_BYTE);
8266   load_unsigned_short(tmp1, Address(ary1, 0));
8267   andl(tmp1, 0x00008080);
8268   jccb(Assembler::notZero, TRUE_LABEL);
8269   subptr(result, 2);
8270   lea(ary1, Address(ary1, 2));
8271 
8272   bind(COMPARE_BYTE);
8273   testl(result, 0x1);   // tail  byte
8274   jccb(Assembler::zero, FALSE_LABEL);
8275   load_unsigned_byte(tmp1, Address(ary1, 0));
8276   andl(tmp1, 0x00000080);
8277   jccb(Assembler::notEqual, TRUE_LABEL);
8278   jmpb(FALSE_LABEL);
8279 
8280   bind(TRUE_LABEL);
8281   movl(result, 1);   // return true
8282   jmpb(DONE);
8283 
8284   bind(FALSE_LABEL);
8285   xorl(result, result); // return false
8286 
8287   // That's it
8288   bind(DONE);
8289   if (UseAVX >= 2 && UseSSE >= 2) {
8290     // clean upper bits of YMM registers
8291     vpxor(vec1, vec1);
8292     vpxor(vec2, vec2);
8293   }
8294 }
8295 
8296 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
8297 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
8298                                    Register limit, Register result, Register chr,
8299                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
8300   ShortBranchVerifier sbv(this);
8301   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
8302 
8303   int length_offset  = arrayOopDesc::length_offset_in_bytes();
8304   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
8305 
8306   if (is_array_equ) {
8307     // Check the input args
8308     cmpptr(ary1, ary2);
8309     jcc(Assembler::equal, TRUE_LABEL);
8310 
8311     // Need additional checks for arrays_equals.
8312     testptr(ary1, ary1);
8313     jcc(Assembler::zero, FALSE_LABEL);
8314     testptr(ary2, ary2);
8315     jcc(Assembler::zero, FALSE_LABEL);
8316 
8317     // Check the lengths
8318     movl(limit, Address(ary1, length_offset));
8319     cmpl(limit, Address(ary2, length_offset));
8320     jcc(Assembler::notEqual, FALSE_LABEL);
8321   }
8322 
8323   // count == 0
8324   testl(limit, limit);
8325   jcc(Assembler::zero, TRUE_LABEL);
8326 
8327   if (is_array_equ) {
8328     // Load array address
8329     lea(ary1, Address(ary1, base_offset));
8330     lea(ary2, Address(ary2, base_offset));
8331   }
8332 
8333   if (is_array_equ && is_char) {
8334     // arrays_equals when used for char[].
8335     shll(limit, 1);      // byte count != 0
8336   }
8337   movl(result, limit); // copy
8338 
8339   if (UseAVX >= 2) {
8340     // With AVX2, use 32-byte vector compare
8341     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8342 
8343     // Compare 32-byte vectors
8344     andl(result, 0x0000001f);  //   tail count (in bytes)
8345     andl(limit, 0xffffffe0);   // vector count (in bytes)
8346     jcc(Assembler::zero, COMPARE_TAIL);
8347 
8348     lea(ary1, Address(ary1, limit, Address::times_1));
8349     lea(ary2, Address(ary2, limit, Address::times_1));
8350     negptr(limit);
8351 
8352     bind(COMPARE_WIDE_VECTORS);
8353 
8354 #ifdef _LP64
8355     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
8356       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
8357 
8358       cmpl(limit, -64);
8359       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8360 
8361       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8362 
8363       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
8364       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
8365       kortestql(k7, k7);
8366       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8367       addptr(limit, 64);  // update since we already compared at this addr
8368       cmpl(limit, -64);
8369       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8370 
8371       // At this point we may still need to compare -limit+result bytes.
8372       // We could execute the next two instruction and just continue via non-wide path:
8373       //  cmpl(limit, 0);
8374       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
8375       // But since we stopped at the points ary{1,2}+limit which are
8376       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
8377       // (|limit| <= 32 and result < 32),
8378       // we may just compare the last 64 bytes.
8379       //
8380       addptr(result, -64);   // it is safe, bc we just came from this area
8381       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
8382       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
8383       kortestql(k7, k7);
8384       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8385 
8386       jmp(TRUE_LABEL);
8387 
8388       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8389 
8390     }//if (VM_Version::supports_avx512vlbw())
8391 #endif //_LP64
8392 
8393     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
8394     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
8395     vpxor(vec1, vec2);
8396 
8397     vptest(vec1, vec1);
8398     jccb(Assembler::notZero, FALSE_LABEL);
8399     addptr(limit, 32);
8400     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8401 
8402     testl(result, result);
8403     jccb(Assembler::zero, TRUE_LABEL);
8404 
8405     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8406     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
8407     vpxor(vec1, vec2);
8408 
8409     vptest(vec1, vec1);
8410     jccb(Assembler::notZero, FALSE_LABEL);
8411     jmpb(TRUE_LABEL);
8412 
8413     bind(COMPARE_TAIL); // limit is zero
8414     movl(limit, result);
8415     // Fallthru to tail compare
8416   } else if (UseSSE42Intrinsics) {
8417     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
8418     // With SSE4.2, use double quad vector compare
8419     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8420 
8421     // Compare 16-byte vectors
8422     andl(result, 0x0000000f);  //   tail count (in bytes)
8423     andl(limit, 0xfffffff0);   // vector count (in bytes)
8424     jccb(Assembler::zero, COMPARE_TAIL);
8425 
8426     lea(ary1, Address(ary1, limit, Address::times_1));
8427     lea(ary2, Address(ary2, limit, Address::times_1));
8428     negptr(limit);
8429 
8430     bind(COMPARE_WIDE_VECTORS);
8431     movdqu(vec1, Address(ary1, limit, Address::times_1));
8432     movdqu(vec2, Address(ary2, limit, Address::times_1));
8433     pxor(vec1, vec2);
8434 
8435     ptest(vec1, vec1);
8436     jccb(Assembler::notZero, FALSE_LABEL);
8437     addptr(limit, 16);
8438     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8439 
8440     testl(result, result);
8441     jccb(Assembler::zero, TRUE_LABEL);
8442 
8443     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8444     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
8445     pxor(vec1, vec2);
8446 
8447     ptest(vec1, vec1);
8448     jccb(Assembler::notZero, FALSE_LABEL);
8449     jmpb(TRUE_LABEL);
8450 
8451     bind(COMPARE_TAIL); // limit is zero
8452     movl(limit, result);
8453     // Fallthru to tail compare
8454   }
8455 
8456   // Compare 4-byte vectors
8457   andl(limit, 0xfffffffc); // vector count (in bytes)
8458   jccb(Assembler::zero, COMPARE_CHAR);
8459 
8460   lea(ary1, Address(ary1, limit, Address::times_1));
8461   lea(ary2, Address(ary2, limit, Address::times_1));
8462   negptr(limit);
8463 
8464   bind(COMPARE_VECTORS);
8465   movl(chr, Address(ary1, limit, Address::times_1));
8466   cmpl(chr, Address(ary2, limit, Address::times_1));
8467   jccb(Assembler::notEqual, FALSE_LABEL);
8468   addptr(limit, 4);
8469   jcc(Assembler::notZero, COMPARE_VECTORS);
8470 
8471   // Compare trailing char (final 2 bytes), if any
8472   bind(COMPARE_CHAR);
8473   testl(result, 0x2);   // tail  char
8474   jccb(Assembler::zero, COMPARE_BYTE);
8475   load_unsigned_short(chr, Address(ary1, 0));
8476   load_unsigned_short(limit, Address(ary2, 0));
8477   cmpl(chr, limit);
8478   jccb(Assembler::notEqual, FALSE_LABEL);
8479 
8480   if (is_array_equ && is_char) {
8481     bind(COMPARE_BYTE);
8482   } else {
8483     lea(ary1, Address(ary1, 2));
8484     lea(ary2, Address(ary2, 2));
8485 
8486     bind(COMPARE_BYTE);
8487     testl(result, 0x1);   // tail  byte
8488     jccb(Assembler::zero, TRUE_LABEL);
8489     load_unsigned_byte(chr, Address(ary1, 0));
8490     load_unsigned_byte(limit, Address(ary2, 0));
8491     cmpl(chr, limit);
8492     jccb(Assembler::notEqual, FALSE_LABEL);
8493   }
8494   bind(TRUE_LABEL);
8495   movl(result, 1);   // return true
8496   jmpb(DONE);
8497 
8498   bind(FALSE_LABEL);
8499   xorl(result, result); // return false
8500 
8501   // That's it
8502   bind(DONE);
8503   if (UseAVX >= 2) {
8504     // clean upper bits of YMM registers
8505     vpxor(vec1, vec1);
8506     vpxor(vec2, vec2);
8507   }
8508 }
8509 
8510 #endif
8511 
8512 void MacroAssembler::generate_fill(BasicType t, bool aligned,
8513                                    Register to, Register value, Register count,
8514                                    Register rtmp, XMMRegister xtmp) {
8515   ShortBranchVerifier sbv(this);
8516   assert_different_registers(to, value, count, rtmp);
8517   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
8518   Label L_fill_2_bytes, L_fill_4_bytes;
8519 
8520   int shift = -1;
8521   switch (t) {
8522     case T_BYTE:
8523       shift = 2;
8524       break;
8525     case T_SHORT:
8526       shift = 1;
8527       break;
8528     case T_INT:
8529       shift = 0;
8530       break;
8531     default: ShouldNotReachHere();
8532   }
8533 
8534   if (t == T_BYTE) {
8535     andl(value, 0xff);
8536     movl(rtmp, value);
8537     shll(rtmp, 8);
8538     orl(value, rtmp);
8539   }
8540   if (t == T_SHORT) {
8541     andl(value, 0xffff);
8542   }
8543   if (t == T_BYTE || t == T_SHORT) {
8544     movl(rtmp, value);
8545     shll(rtmp, 16);
8546     orl(value, rtmp);
8547   }
8548 
8549   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
8550   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
8551   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
8552     // align source address at 4 bytes address boundary
8553     if (t == T_BYTE) {
8554       // One byte misalignment happens only for byte arrays
8555       testptr(to, 1);
8556       jccb(Assembler::zero, L_skip_align1);
8557       movb(Address(to, 0), value);
8558       increment(to);
8559       decrement(count);
8560       BIND(L_skip_align1);
8561     }
8562     // Two bytes misalignment happens only for byte and short (char) arrays
8563     testptr(to, 2);
8564     jccb(Assembler::zero, L_skip_align2);
8565     movw(Address(to, 0), value);
8566     addptr(to, 2);
8567     subl(count, 1<<(shift-1));
8568     BIND(L_skip_align2);
8569   }
8570   if (UseSSE < 2) {
8571     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8572     // Fill 32-byte chunks
8573     subl(count, 8 << shift);
8574     jcc(Assembler::less, L_check_fill_8_bytes);
8575     align(16);
8576 
8577     BIND(L_fill_32_bytes_loop);
8578 
8579     for (int i = 0; i < 32; i += 4) {
8580       movl(Address(to, i), value);
8581     }
8582 
8583     addptr(to, 32);
8584     subl(count, 8 << shift);
8585     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8586     BIND(L_check_fill_8_bytes);
8587     addl(count, 8 << shift);
8588     jccb(Assembler::zero, L_exit);
8589     jmpb(L_fill_8_bytes);
8590 
8591     //
8592     // length is too short, just fill qwords
8593     //
8594     BIND(L_fill_8_bytes_loop);
8595     movl(Address(to, 0), value);
8596     movl(Address(to, 4), value);
8597     addptr(to, 8);
8598     BIND(L_fill_8_bytes);
8599     subl(count, 1 << (shift + 1));
8600     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8601     // fall through to fill 4 bytes
8602   } else {
8603     Label L_fill_32_bytes;
8604     if (!UseUnalignedLoadStores) {
8605       // align to 8 bytes, we know we are 4 byte aligned to start
8606       testptr(to, 4);
8607       jccb(Assembler::zero, L_fill_32_bytes);
8608       movl(Address(to, 0), value);
8609       addptr(to, 4);
8610       subl(count, 1<<shift);
8611     }
8612     BIND(L_fill_32_bytes);
8613     {
8614       assert( UseSSE >= 2, "supported cpu only" );
8615       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8616       if (UseAVX > 2) {
8617         movl(rtmp, 0xffff);
8618         kmovwl(k1, rtmp);
8619       }
8620       movdl(xtmp, value);
8621       if (UseAVX > 2 && UseUnalignedLoadStores) {
8622         // Fill 64-byte chunks
8623         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8624         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
8625 
8626         subl(count, 16 << shift);
8627         jcc(Assembler::less, L_check_fill_32_bytes);
8628         align(16);
8629 
8630         BIND(L_fill_64_bytes_loop);
8631         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
8632         addptr(to, 64);
8633         subl(count, 16 << shift);
8634         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8635 
8636         BIND(L_check_fill_32_bytes);
8637         addl(count, 8 << shift);
8638         jccb(Assembler::less, L_check_fill_8_bytes);
8639         vmovdqu(Address(to, 0), xtmp);
8640         addptr(to, 32);
8641         subl(count, 8 << shift);
8642 
8643         BIND(L_check_fill_8_bytes);
8644       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
8645         // Fill 64-byte chunks
8646         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8647         vpbroadcastd(xtmp, xtmp);
8648 
8649         subl(count, 16 << shift);
8650         jcc(Assembler::less, L_check_fill_32_bytes);
8651         align(16);
8652 
8653         BIND(L_fill_64_bytes_loop);
8654         vmovdqu(Address(to, 0), xtmp);
8655         vmovdqu(Address(to, 32), xtmp);
8656         addptr(to, 64);
8657         subl(count, 16 << shift);
8658         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8659 
8660         BIND(L_check_fill_32_bytes);
8661         addl(count, 8 << shift);
8662         jccb(Assembler::less, L_check_fill_8_bytes);
8663         vmovdqu(Address(to, 0), xtmp);
8664         addptr(to, 32);
8665         subl(count, 8 << shift);
8666 
8667         BIND(L_check_fill_8_bytes);
8668         // clean upper bits of YMM registers
8669         movdl(xtmp, value);
8670         pshufd(xtmp, xtmp, 0);
8671       } else {
8672         // Fill 32-byte chunks
8673         pshufd(xtmp, xtmp, 0);
8674 
8675         subl(count, 8 << shift);
8676         jcc(Assembler::less, L_check_fill_8_bytes);
8677         align(16);
8678 
8679         BIND(L_fill_32_bytes_loop);
8680 
8681         if (UseUnalignedLoadStores) {
8682           movdqu(Address(to, 0), xtmp);
8683           movdqu(Address(to, 16), xtmp);
8684         } else {
8685           movq(Address(to, 0), xtmp);
8686           movq(Address(to, 8), xtmp);
8687           movq(Address(to, 16), xtmp);
8688           movq(Address(to, 24), xtmp);
8689         }
8690 
8691         addptr(to, 32);
8692         subl(count, 8 << shift);
8693         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8694 
8695         BIND(L_check_fill_8_bytes);
8696       }
8697       addl(count, 8 << shift);
8698       jccb(Assembler::zero, L_exit);
8699       jmpb(L_fill_8_bytes);
8700 
8701       //
8702       // length is too short, just fill qwords
8703       //
8704       BIND(L_fill_8_bytes_loop);
8705       movq(Address(to, 0), xtmp);
8706       addptr(to, 8);
8707       BIND(L_fill_8_bytes);
8708       subl(count, 1 << (shift + 1));
8709       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8710     }
8711   }
8712   // fill trailing 4 bytes
8713   BIND(L_fill_4_bytes);
8714   testl(count, 1<<shift);
8715   jccb(Assembler::zero, L_fill_2_bytes);
8716   movl(Address(to, 0), value);
8717   if (t == T_BYTE || t == T_SHORT) {
8718     addptr(to, 4);
8719     BIND(L_fill_2_bytes);
8720     // fill trailing 2 bytes
8721     testl(count, 1<<(shift-1));
8722     jccb(Assembler::zero, L_fill_byte);
8723     movw(Address(to, 0), value);
8724     if (t == T_BYTE) {
8725       addptr(to, 2);
8726       BIND(L_fill_byte);
8727       // fill trailing byte
8728       testl(count, 1);
8729       jccb(Assembler::zero, L_exit);
8730       movb(Address(to, 0), value);
8731     } else {
8732       BIND(L_fill_byte);
8733     }
8734   } else {
8735     BIND(L_fill_2_bytes);
8736   }
8737   BIND(L_exit);
8738 }
8739 
8740 // encode char[] to byte[] in ISO_8859_1
8741 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
8742                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
8743                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
8744                                       Register tmp5, Register result) {
8745   // rsi: src
8746   // rdi: dst
8747   // rdx: len
8748   // rcx: tmp5
8749   // rax: result
8750   ShortBranchVerifier sbv(this);
8751   assert_different_registers(src, dst, len, tmp5, result);
8752   Label L_done, L_copy_1_char, L_copy_1_char_exit;
8753 
8754   // set result
8755   xorl(result, result);
8756   // check for zero length
8757   testl(len, len);
8758   jcc(Assembler::zero, L_done);
8759   movl(result, len);
8760 
8761   // Setup pointers
8762   lea(src, Address(src, len, Address::times_2)); // char[]
8763   lea(dst, Address(dst, len, Address::times_1)); // byte[]
8764   negptr(len);
8765 
8766   if (UseSSE42Intrinsics || UseAVX >= 2) {
8767     assert(UseSSE42Intrinsics ? UseSSE >= 4 : true, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
8768     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
8769     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
8770 
8771     if (UseAVX >= 2) {
8772       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
8773       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8774       movdl(tmp1Reg, tmp5);
8775       vpbroadcastd(tmp1Reg, tmp1Reg);
8776       jmpb(L_chars_32_check);
8777 
8778       bind(L_copy_32_chars);
8779       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
8780       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
8781       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8782       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8783       jccb(Assembler::notZero, L_copy_32_chars_exit);
8784       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8785       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
8786       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
8787 
8788       bind(L_chars_32_check);
8789       addptr(len, 32);
8790       jccb(Assembler::lessEqual, L_copy_32_chars);
8791 
8792       bind(L_copy_32_chars_exit);
8793       subptr(len, 16);
8794       jccb(Assembler::greater, L_copy_16_chars_exit);
8795 
8796     } else if (UseSSE42Intrinsics) {
8797       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8798       movdl(tmp1Reg, tmp5);
8799       pshufd(tmp1Reg, tmp1Reg, 0);
8800       jmpb(L_chars_16_check);
8801     }
8802 
8803     bind(L_copy_16_chars);
8804     if (UseAVX >= 2) {
8805       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
8806       vptest(tmp2Reg, tmp1Reg);
8807       jccb(Assembler::notZero, L_copy_16_chars_exit);
8808       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
8809       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
8810     } else {
8811       if (UseAVX > 0) {
8812         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8813         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8814         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
8815       } else {
8816         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8817         por(tmp2Reg, tmp3Reg);
8818         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8819         por(tmp2Reg, tmp4Reg);
8820       }
8821       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8822       jccb(Assembler::notZero, L_copy_16_chars_exit);
8823       packuswb(tmp3Reg, tmp4Reg);
8824     }
8825     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
8826 
8827     bind(L_chars_16_check);
8828     addptr(len, 16);
8829     jccb(Assembler::lessEqual, L_copy_16_chars);
8830 
8831     bind(L_copy_16_chars_exit);
8832     if (UseAVX >= 2) {
8833       // clean upper bits of YMM registers
8834       vpxor(tmp2Reg, tmp2Reg);
8835       vpxor(tmp3Reg, tmp3Reg);
8836       vpxor(tmp4Reg, tmp4Reg);
8837       movdl(tmp1Reg, tmp5);
8838       pshufd(tmp1Reg, tmp1Reg, 0);
8839     }
8840     subptr(len, 8);
8841     jccb(Assembler::greater, L_copy_8_chars_exit);
8842 
8843     bind(L_copy_8_chars);
8844     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
8845     ptest(tmp3Reg, tmp1Reg);
8846     jccb(Assembler::notZero, L_copy_8_chars_exit);
8847     packuswb(tmp3Reg, tmp1Reg);
8848     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
8849     addptr(len, 8);
8850     jccb(Assembler::lessEqual, L_copy_8_chars);
8851 
8852     bind(L_copy_8_chars_exit);
8853     subptr(len, 8);
8854     jccb(Assembler::zero, L_done);
8855   }
8856 
8857   bind(L_copy_1_char);
8858   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
8859   testl(tmp5, 0xff00);      // check if Unicode char
8860   jccb(Assembler::notZero, L_copy_1_char_exit);
8861   movb(Address(dst, len, Address::times_1, 0), tmp5);
8862   addptr(len, 1);
8863   jccb(Assembler::less, L_copy_1_char);
8864 
8865   bind(L_copy_1_char_exit);
8866   addptr(result, len); // len is negative count of not processed elements
8867   bind(L_done);
8868 }
8869 
8870 #ifdef _LP64
8871 /**
8872  * Helper for multiply_to_len().
8873  */
8874 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
8875   addq(dest_lo, src1);
8876   adcq(dest_hi, 0);
8877   addq(dest_lo, src2);
8878   adcq(dest_hi, 0);
8879 }
8880 
8881 /**
8882  * Multiply 64 bit by 64 bit first loop.
8883  */
8884 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
8885                                            Register y, Register y_idx, Register z,
8886                                            Register carry, Register product,
8887                                            Register idx, Register kdx) {
8888   //
8889   //  jlong carry, x[], y[], z[];
8890   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8891   //    huge_128 product = y[idx] * x[xstart] + carry;
8892   //    z[kdx] = (jlong)product;
8893   //    carry  = (jlong)(product >>> 64);
8894   //  }
8895   //  z[xstart] = carry;
8896   //
8897 
8898   Label L_first_loop, L_first_loop_exit;
8899   Label L_one_x, L_one_y, L_multiply;
8900 
8901   decrementl(xstart);
8902   jcc(Assembler::negative, L_one_x);
8903 
8904   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8905   rorq(x_xstart, 32); // convert big-endian to little-endian
8906 
8907   bind(L_first_loop);
8908   decrementl(idx);
8909   jcc(Assembler::negative, L_first_loop_exit);
8910   decrementl(idx);
8911   jcc(Assembler::negative, L_one_y);
8912   movq(y_idx, Address(y, idx, Address::times_4,  0));
8913   rorq(y_idx, 32); // convert big-endian to little-endian
8914   bind(L_multiply);
8915   movq(product, x_xstart);
8916   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
8917   addq(product, carry);
8918   adcq(rdx, 0);
8919   subl(kdx, 2);
8920   movl(Address(z, kdx, Address::times_4,  4), product);
8921   shrq(product, 32);
8922   movl(Address(z, kdx, Address::times_4,  0), product);
8923   movq(carry, rdx);
8924   jmp(L_first_loop);
8925 
8926   bind(L_one_y);
8927   movl(y_idx, Address(y,  0));
8928   jmp(L_multiply);
8929 
8930   bind(L_one_x);
8931   movl(x_xstart, Address(x,  0));
8932   jmp(L_first_loop);
8933 
8934   bind(L_first_loop_exit);
8935 }
8936 
8937 /**
8938  * Multiply 64 bit by 64 bit and add 128 bit.
8939  */
8940 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
8941                                             Register yz_idx, Register idx,
8942                                             Register carry, Register product, int offset) {
8943   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
8944   //     z[kdx] = (jlong)product;
8945 
8946   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
8947   rorq(yz_idx, 32); // convert big-endian to little-endian
8948   movq(product, x_xstart);
8949   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
8950   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
8951   rorq(yz_idx, 32); // convert big-endian to little-endian
8952 
8953   add2_with_carry(rdx, product, carry, yz_idx);
8954 
8955   movl(Address(z, idx, Address::times_4,  offset+4), product);
8956   shrq(product, 32);
8957   movl(Address(z, idx, Address::times_4,  offset), product);
8958 
8959 }
8960 
8961 /**
8962  * Multiply 128 bit by 128 bit. Unrolled inner loop.
8963  */
8964 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
8965                                              Register yz_idx, Register idx, Register jdx,
8966                                              Register carry, Register product,
8967                                              Register carry2) {
8968   //   jlong carry, x[], y[], z[];
8969   //   int kdx = ystart+1;
8970   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
8971   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
8972   //     z[kdx+idx+1] = (jlong)product;
8973   //     jlong carry2  = (jlong)(product >>> 64);
8974   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
8975   //     z[kdx+idx] = (jlong)product;
8976   //     carry  = (jlong)(product >>> 64);
8977   //   }
8978   //   idx += 2;
8979   //   if (idx > 0) {
8980   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
8981   //     z[kdx+idx] = (jlong)product;
8982   //     carry  = (jlong)(product >>> 64);
8983   //   }
8984   //
8985 
8986   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
8987 
8988   movl(jdx, idx);
8989   andl(jdx, 0xFFFFFFFC);
8990   shrl(jdx, 2);
8991 
8992   bind(L_third_loop);
8993   subl(jdx, 1);
8994   jcc(Assembler::negative, L_third_loop_exit);
8995   subl(idx, 4);
8996 
8997   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
8998   movq(carry2, rdx);
8999 
9000   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
9001   movq(carry, rdx);
9002   jmp(L_third_loop);
9003 
9004   bind (L_third_loop_exit);
9005 
9006   andl (idx, 0x3);
9007   jcc(Assembler::zero, L_post_third_loop_done);
9008 
9009   Label L_check_1;
9010   subl(idx, 2);
9011   jcc(Assembler::negative, L_check_1);
9012 
9013   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
9014   movq(carry, rdx);
9015 
9016   bind (L_check_1);
9017   addl (idx, 0x2);
9018   andl (idx, 0x1);
9019   subl(idx, 1);
9020   jcc(Assembler::negative, L_post_third_loop_done);
9021 
9022   movl(yz_idx, Address(y, idx, Address::times_4,  0));
9023   movq(product, x_xstart);
9024   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
9025   movl(yz_idx, Address(z, idx, Address::times_4,  0));
9026 
9027   add2_with_carry(rdx, product, yz_idx, carry);
9028 
9029   movl(Address(z, idx, Address::times_4,  0), product);
9030   shrq(product, 32);
9031 
9032   shlq(rdx, 32);
9033   orq(product, rdx);
9034   movq(carry, product);
9035 
9036   bind(L_post_third_loop_done);
9037 }
9038 
9039 /**
9040  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
9041  *
9042  */
9043 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
9044                                                   Register carry, Register carry2,
9045                                                   Register idx, Register jdx,
9046                                                   Register yz_idx1, Register yz_idx2,
9047                                                   Register tmp, Register tmp3, Register tmp4) {
9048   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
9049 
9050   //   jlong carry, x[], y[], z[];
9051   //   int kdx = ystart+1;
9052   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9053   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
9054   //     jlong carry2  = (jlong)(tmp3 >>> 64);
9055   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
9056   //     carry  = (jlong)(tmp4 >>> 64);
9057   //     z[kdx+idx+1] = (jlong)tmp3;
9058   //     z[kdx+idx] = (jlong)tmp4;
9059   //   }
9060   //   idx += 2;
9061   //   if (idx > 0) {
9062   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
9063   //     z[kdx+idx] = (jlong)yz_idx1;
9064   //     carry  = (jlong)(yz_idx1 >>> 64);
9065   //   }
9066   //
9067 
9068   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9069 
9070   movl(jdx, idx);
9071   andl(jdx, 0xFFFFFFFC);
9072   shrl(jdx, 2);
9073 
9074   bind(L_third_loop);
9075   subl(jdx, 1);
9076   jcc(Assembler::negative, L_third_loop_exit);
9077   subl(idx, 4);
9078 
9079   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
9080   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
9081   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
9082   rorxq(yz_idx2, yz_idx2, 32);
9083 
9084   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
9085   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
9086 
9087   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
9088   rorxq(yz_idx1, yz_idx1, 32);
9089   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9090   rorxq(yz_idx2, yz_idx2, 32);
9091 
9092   if (VM_Version::supports_adx()) {
9093     adcxq(tmp3, carry);
9094     adoxq(tmp3, yz_idx1);
9095 
9096     adcxq(tmp4, tmp);
9097     adoxq(tmp4, yz_idx2);
9098 
9099     movl(carry, 0); // does not affect flags
9100     adcxq(carry2, carry);
9101     adoxq(carry2, carry);
9102   } else {
9103     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
9104     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
9105   }
9106   movq(carry, carry2);
9107 
9108   movl(Address(z, idx, Address::times_4, 12), tmp3);
9109   shrq(tmp3, 32);
9110   movl(Address(z, idx, Address::times_4,  8), tmp3);
9111 
9112   movl(Address(z, idx, Address::times_4,  4), tmp4);
9113   shrq(tmp4, 32);
9114   movl(Address(z, idx, Address::times_4,  0), tmp4);
9115 
9116   jmp(L_third_loop);
9117 
9118   bind (L_third_loop_exit);
9119 
9120   andl (idx, 0x3);
9121   jcc(Assembler::zero, L_post_third_loop_done);
9122 
9123   Label L_check_1;
9124   subl(idx, 2);
9125   jcc(Assembler::negative, L_check_1);
9126 
9127   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
9128   rorxq(yz_idx1, yz_idx1, 32);
9129   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
9130   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9131   rorxq(yz_idx2, yz_idx2, 32);
9132 
9133   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
9134 
9135   movl(Address(z, idx, Address::times_4,  4), tmp3);
9136   shrq(tmp3, 32);
9137   movl(Address(z, idx, Address::times_4,  0), tmp3);
9138   movq(carry, tmp4);
9139 
9140   bind (L_check_1);
9141   addl (idx, 0x2);
9142   andl (idx, 0x1);
9143   subl(idx, 1);
9144   jcc(Assembler::negative, L_post_third_loop_done);
9145   movl(tmp4, Address(y, idx, Address::times_4,  0));
9146   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
9147   movl(tmp4, Address(z, idx, Address::times_4,  0));
9148 
9149   add2_with_carry(carry2, tmp3, tmp4, carry);
9150 
9151   movl(Address(z, idx, Address::times_4,  0), tmp3);
9152   shrq(tmp3, 32);
9153 
9154   shlq(carry2, 32);
9155   orq(tmp3, carry2);
9156   movq(carry, tmp3);
9157 
9158   bind(L_post_third_loop_done);
9159 }
9160 
9161 /**
9162  * Code for BigInteger::multiplyToLen() instrinsic.
9163  *
9164  * rdi: x
9165  * rax: xlen
9166  * rsi: y
9167  * rcx: ylen
9168  * r8:  z
9169  * r11: zlen
9170  * r12: tmp1
9171  * r13: tmp2
9172  * r14: tmp3
9173  * r15: tmp4
9174  * rbx: tmp5
9175  *
9176  */
9177 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
9178                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
9179   ShortBranchVerifier sbv(this);
9180   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
9181 
9182   push(tmp1);
9183   push(tmp2);
9184   push(tmp3);
9185   push(tmp4);
9186   push(tmp5);
9187 
9188   push(xlen);
9189   push(zlen);
9190 
9191   const Register idx = tmp1;
9192   const Register kdx = tmp2;
9193   const Register xstart = tmp3;
9194 
9195   const Register y_idx = tmp4;
9196   const Register carry = tmp5;
9197   const Register product  = xlen;
9198   const Register x_xstart = zlen;  // reuse register
9199 
9200   // First Loop.
9201   //
9202   //  final static long LONG_MASK = 0xffffffffL;
9203   //  int xstart = xlen - 1;
9204   //  int ystart = ylen - 1;
9205   //  long carry = 0;
9206   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
9207   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
9208   //    z[kdx] = (int)product;
9209   //    carry = product >>> 32;
9210   //  }
9211   //  z[xstart] = (int)carry;
9212   //
9213 
9214   movl(idx, ylen);      // idx = ylen;
9215   movl(kdx, zlen);      // kdx = xlen+ylen;
9216   xorq(carry, carry);   // carry = 0;
9217 
9218   Label L_done;
9219 
9220   movl(xstart, xlen);
9221   decrementl(xstart);
9222   jcc(Assembler::negative, L_done);
9223 
9224   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
9225 
9226   Label L_second_loop;
9227   testl(kdx, kdx);
9228   jcc(Assembler::zero, L_second_loop);
9229 
9230   Label L_carry;
9231   subl(kdx, 1);
9232   jcc(Assembler::zero, L_carry);
9233 
9234   movl(Address(z, kdx, Address::times_4,  0), carry);
9235   shrq(carry, 32);
9236   subl(kdx, 1);
9237 
9238   bind(L_carry);
9239   movl(Address(z, kdx, Address::times_4,  0), carry);
9240 
9241   // Second and third (nested) loops.
9242   //
9243   // for (int i = xstart-1; i >= 0; i--) { // Second loop
9244   //   carry = 0;
9245   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
9246   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
9247   //                    (z[k] & LONG_MASK) + carry;
9248   //     z[k] = (int)product;
9249   //     carry = product >>> 32;
9250   //   }
9251   //   z[i] = (int)carry;
9252   // }
9253   //
9254   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
9255 
9256   const Register jdx = tmp1;
9257 
9258   bind(L_second_loop);
9259   xorl(carry, carry);    // carry = 0;
9260   movl(jdx, ylen);       // j = ystart+1
9261 
9262   subl(xstart, 1);       // i = xstart-1;
9263   jcc(Assembler::negative, L_done);
9264 
9265   push (z);
9266 
9267   Label L_last_x;
9268   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
9269   subl(xstart, 1);       // i = xstart-1;
9270   jcc(Assembler::negative, L_last_x);
9271 
9272   if (UseBMI2Instructions) {
9273     movq(rdx,  Address(x, xstart, Address::times_4,  0));
9274     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
9275   } else {
9276     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
9277     rorq(x_xstart, 32);  // convert big-endian to little-endian
9278   }
9279 
9280   Label L_third_loop_prologue;
9281   bind(L_third_loop_prologue);
9282 
9283   push (x);
9284   push (xstart);
9285   push (ylen);
9286 
9287 
9288   if (UseBMI2Instructions) {
9289     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
9290   } else { // !UseBMI2Instructions
9291     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
9292   }
9293 
9294   pop(ylen);
9295   pop(xlen);
9296   pop(x);
9297   pop(z);
9298 
9299   movl(tmp3, xlen);
9300   addl(tmp3, 1);
9301   movl(Address(z, tmp3, Address::times_4,  0), carry);
9302   subl(tmp3, 1);
9303   jccb(Assembler::negative, L_done);
9304 
9305   shrq(carry, 32);
9306   movl(Address(z, tmp3, Address::times_4,  0), carry);
9307   jmp(L_second_loop);
9308 
9309   // Next infrequent code is moved outside loops.
9310   bind(L_last_x);
9311   if (UseBMI2Instructions) {
9312     movl(rdx, Address(x,  0));
9313   } else {
9314     movl(x_xstart, Address(x,  0));
9315   }
9316   jmp(L_third_loop_prologue);
9317 
9318   bind(L_done);
9319 
9320   pop(zlen);
9321   pop(xlen);
9322 
9323   pop(tmp5);
9324   pop(tmp4);
9325   pop(tmp3);
9326   pop(tmp2);
9327   pop(tmp1);
9328 }
9329 
9330 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
9331   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
9332   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
9333   Label VECTOR32_LOOP, VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
9334   Label VECTOR16_TAIL, VECTOR8_TAIL, VECTOR4_TAIL;
9335   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
9336   Label SAME_TILL_END, DONE;
9337   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
9338 
9339   //scale is in rcx in both Win64 and Unix
9340   ShortBranchVerifier sbv(this);
9341 
9342   shlq(length);
9343   xorq(result, result);
9344 
9345   cmpq(length, 8);
9346   jcc(Assembler::equal, VECTOR8_LOOP);
9347   jcc(Assembler::less, VECTOR4_TAIL);
9348 
9349   if (UseAVX >= 2){
9350 
9351     cmpq(length, 16);
9352     jcc(Assembler::equal, VECTOR16_LOOP);
9353     jcc(Assembler::less, VECTOR8_LOOP);
9354 
9355     cmpq(length, 32);
9356     jccb(Assembler::less, VECTOR16_TAIL);
9357 
9358     subq(length, 32);
9359     bind(VECTOR32_LOOP);
9360     vmovdqu(rymm0, Address(obja, result));
9361     vmovdqu(rymm1, Address(objb, result));
9362     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
9363     vptest(rymm2, rymm2);
9364     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
9365     addq(result, 32);
9366     subq(length, 32);
9367     jccb(Assembler::greaterEqual, VECTOR32_LOOP);
9368     addq(length, 32);
9369     jcc(Assembler::equal, SAME_TILL_END);
9370     //falling through if less than 32 bytes left //close the branch here.
9371 
9372     bind(VECTOR16_TAIL);
9373     cmpq(length, 16);
9374     jccb(Assembler::less, VECTOR8_TAIL);
9375     bind(VECTOR16_LOOP);
9376     movdqu(rymm0, Address(obja, result));
9377     movdqu(rymm1, Address(objb, result));
9378     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
9379     ptest(rymm2, rymm2);
9380     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9381     addq(result, 16);
9382     subq(length, 16);
9383     jcc(Assembler::equal, SAME_TILL_END);
9384     //falling through if less than 16 bytes left
9385   } else {//regular intrinsics
9386 
9387     cmpq(length, 16);
9388     jccb(Assembler::less, VECTOR8_TAIL);
9389 
9390     subq(length, 16);
9391     bind(VECTOR16_LOOP);
9392     movdqu(rymm0, Address(obja, result));
9393     movdqu(rymm1, Address(objb, result));
9394     pxor(rymm0, rymm1);
9395     ptest(rymm0, rymm0);
9396     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9397     addq(result, 16);
9398     subq(length, 16);
9399     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
9400     addq(length, 16);
9401     jcc(Assembler::equal, SAME_TILL_END);
9402     //falling through if less than 16 bytes left
9403   }
9404 
9405   bind(VECTOR8_TAIL);
9406   cmpq(length, 8);
9407   jccb(Assembler::less, VECTOR4_TAIL);
9408   bind(VECTOR8_LOOP);
9409   movq(tmp1, Address(obja, result));
9410   movq(tmp2, Address(objb, result));
9411   xorq(tmp1, tmp2);
9412   testq(tmp1, tmp1);
9413   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
9414   addq(result, 8);
9415   subq(length, 8);
9416   jcc(Assembler::equal, SAME_TILL_END);
9417   //falling through if less than 8 bytes left
9418 
9419   bind(VECTOR4_TAIL);
9420   cmpq(length, 4);
9421   jccb(Assembler::less, BYTES_TAIL);
9422   bind(VECTOR4_LOOP);
9423   movl(tmp1, Address(obja, result));
9424   xorl(tmp1, Address(objb, result));
9425   testl(tmp1, tmp1);
9426   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
9427   addq(result, 4);
9428   subq(length, 4);
9429   jcc(Assembler::equal, SAME_TILL_END);
9430   //falling through if less than 4 bytes left
9431 
9432   bind(BYTES_TAIL);
9433   bind(BYTES_LOOP);
9434   load_unsigned_byte(tmp1, Address(obja, result));
9435   load_unsigned_byte(tmp2, Address(objb, result));
9436   xorl(tmp1, tmp2);
9437   testl(tmp1, tmp1);
9438   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9439   decq(length);
9440   jccb(Assembler::zero, SAME_TILL_END);
9441   incq(result);
9442   load_unsigned_byte(tmp1, Address(obja, result));
9443   load_unsigned_byte(tmp2, Address(objb, result));
9444   xorl(tmp1, tmp2);
9445   testl(tmp1, tmp1);
9446   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9447   decq(length);
9448   jccb(Assembler::zero, SAME_TILL_END);
9449   incq(result);
9450   load_unsigned_byte(tmp1, Address(obja, result));
9451   load_unsigned_byte(tmp2, Address(objb, result));
9452   xorl(tmp1, tmp2);
9453   testl(tmp1, tmp1);
9454   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9455   jmpb(SAME_TILL_END);
9456 
9457   if (UseAVX >= 2){
9458     bind(VECTOR32_NOT_EQUAL);
9459     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
9460     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
9461     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
9462     vpmovmskb(tmp1, rymm0);
9463     bsfq(tmp1, tmp1);
9464     addq(result, tmp1);
9465     shrq(result);
9466     jmpb(DONE);
9467   }
9468 
9469   bind(VECTOR16_NOT_EQUAL);
9470   if (UseAVX >= 2){
9471     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
9472     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
9473     pxor(rymm0, rymm2);
9474   } else {
9475     pcmpeqb(rymm2, rymm2);
9476     pxor(rymm0, rymm1);
9477     pcmpeqb(rymm0, rymm1);
9478     pxor(rymm0, rymm2);
9479   }
9480   pmovmskb(tmp1, rymm0);
9481   bsfq(tmp1, tmp1);
9482   addq(result, tmp1);
9483   shrq(result);
9484   jmpb(DONE);
9485 
9486   bind(VECTOR8_NOT_EQUAL);
9487   bind(VECTOR4_NOT_EQUAL);
9488   bsfq(tmp1, tmp1);
9489   shrq(tmp1, 3);
9490   addq(result, tmp1);
9491   bind(BYTES_NOT_EQUAL);
9492   shrq(result);
9493   jmpb(DONE);
9494 
9495   bind(SAME_TILL_END);
9496   mov64(result, -1);
9497 
9498   bind(DONE);
9499 }
9500 
9501 
9502 //Helper functions for square_to_len()
9503 
9504 /**
9505  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
9506  * Preserves x and z and modifies rest of the registers.
9507  */
9508 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9509   // Perform square and right shift by 1
9510   // Handle odd xlen case first, then for even xlen do the following
9511   // jlong carry = 0;
9512   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
9513   //     huge_128 product = x[j:j+1] * x[j:j+1];
9514   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
9515   //     z[i+2:i+3] = (jlong)(product >>> 1);
9516   //     carry = (jlong)product;
9517   // }
9518 
9519   xorq(tmp5, tmp5);     // carry
9520   xorq(rdxReg, rdxReg);
9521   xorl(tmp1, tmp1);     // index for x
9522   xorl(tmp4, tmp4);     // index for z
9523 
9524   Label L_first_loop, L_first_loop_exit;
9525 
9526   testl(xlen, 1);
9527   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
9528 
9529   // Square and right shift by 1 the odd element using 32 bit multiply
9530   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
9531   imulq(raxReg, raxReg);
9532   shrq(raxReg, 1);
9533   adcq(tmp5, 0);
9534   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
9535   incrementl(tmp1);
9536   addl(tmp4, 2);
9537 
9538   // Square and  right shift by 1 the rest using 64 bit multiply
9539   bind(L_first_loop);
9540   cmpptr(tmp1, xlen);
9541   jccb(Assembler::equal, L_first_loop_exit);
9542 
9543   // Square
9544   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
9545   rorq(raxReg, 32);    // convert big-endian to little-endian
9546   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
9547 
9548   // Right shift by 1 and save carry
9549   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
9550   rcrq(rdxReg, 1);
9551   rcrq(raxReg, 1);
9552   adcq(tmp5, 0);
9553 
9554   // Store result in z
9555   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
9556   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
9557 
9558   // Update indices for x and z
9559   addl(tmp1, 2);
9560   addl(tmp4, 4);
9561   jmp(L_first_loop);
9562 
9563   bind(L_first_loop_exit);
9564 }
9565 
9566 
9567 /**
9568  * Perform the following multiply add operation using BMI2 instructions
9569  * carry:sum = sum + op1*op2 + carry
9570  * op2 should be in rdx
9571  * op2 is preserved, all other registers are modified
9572  */
9573 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
9574   // assert op2 is rdx
9575   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
9576   addq(sum, carry);
9577   adcq(tmp2, 0);
9578   addq(sum, op1);
9579   adcq(tmp2, 0);
9580   movq(carry, tmp2);
9581 }
9582 
9583 /**
9584  * Perform the following multiply add operation:
9585  * carry:sum = sum + op1*op2 + carry
9586  * Preserves op1, op2 and modifies rest of registers
9587  */
9588 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
9589   // rdx:rax = op1 * op2
9590   movq(raxReg, op2);
9591   mulq(op1);
9592 
9593   //  rdx:rax = sum + carry + rdx:rax
9594   addq(sum, carry);
9595   adcq(rdxReg, 0);
9596   addq(sum, raxReg);
9597   adcq(rdxReg, 0);
9598 
9599   // carry:sum = rdx:sum
9600   movq(carry, rdxReg);
9601 }
9602 
9603 /**
9604  * Add 64 bit long carry into z[] with carry propogation.
9605  * Preserves z and carry register values and modifies rest of registers.
9606  *
9607  */
9608 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
9609   Label L_fourth_loop, L_fourth_loop_exit;
9610 
9611   movl(tmp1, 1);
9612   subl(zlen, 2);
9613   addq(Address(z, zlen, Address::times_4, 0), carry);
9614 
9615   bind(L_fourth_loop);
9616   jccb(Assembler::carryClear, L_fourth_loop_exit);
9617   subl(zlen, 2);
9618   jccb(Assembler::negative, L_fourth_loop_exit);
9619   addq(Address(z, zlen, Address::times_4, 0), tmp1);
9620   jmp(L_fourth_loop);
9621   bind(L_fourth_loop_exit);
9622 }
9623 
9624 /**
9625  * Shift z[] left by 1 bit.
9626  * Preserves x, len, z and zlen registers and modifies rest of the registers.
9627  *
9628  */
9629 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
9630 
9631   Label L_fifth_loop, L_fifth_loop_exit;
9632 
9633   // Fifth loop
9634   // Perform primitiveLeftShift(z, zlen, 1)
9635 
9636   const Register prev_carry = tmp1;
9637   const Register new_carry = tmp4;
9638   const Register value = tmp2;
9639   const Register zidx = tmp3;
9640 
9641   // int zidx, carry;
9642   // long value;
9643   // carry = 0;
9644   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
9645   //    (carry:value)  = (z[i] << 1) | carry ;
9646   //    z[i] = value;
9647   // }
9648 
9649   movl(zidx, zlen);
9650   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
9651 
9652   bind(L_fifth_loop);
9653   decl(zidx);  // Use decl to preserve carry flag
9654   decl(zidx);
9655   jccb(Assembler::negative, L_fifth_loop_exit);
9656 
9657   if (UseBMI2Instructions) {
9658      movq(value, Address(z, zidx, Address::times_4, 0));
9659      rclq(value, 1);
9660      rorxq(value, value, 32);
9661      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9662   }
9663   else {
9664     // clear new_carry
9665     xorl(new_carry, new_carry);
9666 
9667     // Shift z[i] by 1, or in previous carry and save new carry
9668     movq(value, Address(z, zidx, Address::times_4, 0));
9669     shlq(value, 1);
9670     adcl(new_carry, 0);
9671 
9672     orq(value, prev_carry);
9673     rorq(value, 0x20);
9674     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9675 
9676     // Set previous carry = new carry
9677     movl(prev_carry, new_carry);
9678   }
9679   jmp(L_fifth_loop);
9680 
9681   bind(L_fifth_loop_exit);
9682 }
9683 
9684 
9685 /**
9686  * Code for BigInteger::squareToLen() intrinsic
9687  *
9688  * rdi: x
9689  * rsi: len
9690  * r8:  z
9691  * rcx: zlen
9692  * r12: tmp1
9693  * r13: tmp2
9694  * r14: tmp3
9695  * r15: tmp4
9696  * rbx: tmp5
9697  *
9698  */
9699 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9700 
9701   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
9702   push(tmp1);
9703   push(tmp2);
9704   push(tmp3);
9705   push(tmp4);
9706   push(tmp5);
9707 
9708   // First loop
9709   // Store the squares, right shifted one bit (i.e., divided by 2).
9710   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
9711 
9712   // Add in off-diagonal sums.
9713   //
9714   // Second, third (nested) and fourth loops.
9715   // zlen +=2;
9716   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
9717   //    carry = 0;
9718   //    long op2 = x[xidx:xidx+1];
9719   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
9720   //       k -= 2;
9721   //       long op1 = x[j:j+1];
9722   //       long sum = z[k:k+1];
9723   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
9724   //       z[k:k+1] = sum;
9725   //    }
9726   //    add_one_64(z, k, carry, tmp_regs);
9727   // }
9728 
9729   const Register carry = tmp5;
9730   const Register sum = tmp3;
9731   const Register op1 = tmp4;
9732   Register op2 = tmp2;
9733 
9734   push(zlen);
9735   push(len);
9736   addl(zlen,2);
9737   bind(L_second_loop);
9738   xorq(carry, carry);
9739   subl(zlen, 4);
9740   subl(len, 2);
9741   push(zlen);
9742   push(len);
9743   cmpl(len, 0);
9744   jccb(Assembler::lessEqual, L_second_loop_exit);
9745 
9746   // Multiply an array by one 64 bit long.
9747   if (UseBMI2Instructions) {
9748     op2 = rdxReg;
9749     movq(op2, Address(x, len, Address::times_4,  0));
9750     rorxq(op2, op2, 32);
9751   }
9752   else {
9753     movq(op2, Address(x, len, Address::times_4,  0));
9754     rorq(op2, 32);
9755   }
9756 
9757   bind(L_third_loop);
9758   decrementl(len);
9759   jccb(Assembler::negative, L_third_loop_exit);
9760   decrementl(len);
9761   jccb(Assembler::negative, L_last_x);
9762 
9763   movq(op1, Address(x, len, Address::times_4,  0));
9764   rorq(op1, 32);
9765 
9766   bind(L_multiply);
9767   subl(zlen, 2);
9768   movq(sum, Address(z, zlen, Address::times_4,  0));
9769 
9770   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
9771   if (UseBMI2Instructions) {
9772     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
9773   }
9774   else {
9775     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9776   }
9777 
9778   movq(Address(z, zlen, Address::times_4, 0), sum);
9779 
9780   jmp(L_third_loop);
9781   bind(L_third_loop_exit);
9782 
9783   // Fourth loop
9784   // Add 64 bit long carry into z with carry propogation.
9785   // Uses offsetted zlen.
9786   add_one_64(z, zlen, carry, tmp1);
9787 
9788   pop(len);
9789   pop(zlen);
9790   jmp(L_second_loop);
9791 
9792   // Next infrequent code is moved outside loops.
9793   bind(L_last_x);
9794   movl(op1, Address(x, 0));
9795   jmp(L_multiply);
9796 
9797   bind(L_second_loop_exit);
9798   pop(len);
9799   pop(zlen);
9800   pop(len);
9801   pop(zlen);
9802 
9803   // Fifth loop
9804   // Shift z left 1 bit.
9805   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
9806 
9807   // z[zlen-1] |= x[len-1] & 1;
9808   movl(tmp3, Address(x, len, Address::times_4, -4));
9809   andl(tmp3, 1);
9810   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
9811 
9812   pop(tmp5);
9813   pop(tmp4);
9814   pop(tmp3);
9815   pop(tmp2);
9816   pop(tmp1);
9817 }
9818 
9819 /**
9820  * Helper function for mul_add()
9821  * Multiply the in[] by int k and add to out[] starting at offset offs using
9822  * 128 bit by 32 bit multiply and return the carry in tmp5.
9823  * Only quad int aligned length of in[] is operated on in this function.
9824  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
9825  * This function preserves out, in and k registers.
9826  * len and offset point to the appropriate index in "in" & "out" correspondingly
9827  * tmp5 has the carry.
9828  * other registers are temporary and are modified.
9829  *
9830  */
9831 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
9832   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
9833   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9834 
9835   Label L_first_loop, L_first_loop_exit;
9836 
9837   movl(tmp1, len);
9838   shrl(tmp1, 2);
9839 
9840   bind(L_first_loop);
9841   subl(tmp1, 1);
9842   jccb(Assembler::negative, L_first_loop_exit);
9843 
9844   subl(len, 4);
9845   subl(offset, 4);
9846 
9847   Register op2 = tmp2;
9848   const Register sum = tmp3;
9849   const Register op1 = tmp4;
9850   const Register carry = tmp5;
9851 
9852   if (UseBMI2Instructions) {
9853     op2 = rdxReg;
9854   }
9855 
9856   movq(op1, Address(in, len, Address::times_4,  8));
9857   rorq(op1, 32);
9858   movq(sum, Address(out, offset, Address::times_4,  8));
9859   rorq(sum, 32);
9860   if (UseBMI2Instructions) {
9861     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9862   }
9863   else {
9864     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9865   }
9866   // Store back in big endian from little endian
9867   rorq(sum, 0x20);
9868   movq(Address(out, offset, Address::times_4,  8), sum);
9869 
9870   movq(op1, Address(in, len, Address::times_4,  0));
9871   rorq(op1, 32);
9872   movq(sum, Address(out, offset, Address::times_4,  0));
9873   rorq(sum, 32);
9874   if (UseBMI2Instructions) {
9875     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9876   }
9877   else {
9878     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9879   }
9880   // Store back in big endian from little endian
9881   rorq(sum, 0x20);
9882   movq(Address(out, offset, Address::times_4,  0), sum);
9883 
9884   jmp(L_first_loop);
9885   bind(L_first_loop_exit);
9886 }
9887 
9888 /**
9889  * Code for BigInteger::mulAdd() intrinsic
9890  *
9891  * rdi: out
9892  * rsi: in
9893  * r11: offs (out.length - offset)
9894  * rcx: len
9895  * r8:  k
9896  * r12: tmp1
9897  * r13: tmp2
9898  * r14: tmp3
9899  * r15: tmp4
9900  * rbx: tmp5
9901  * Multiply the in[] by word k and add to out[], return the carry in rax
9902  */
9903 void MacroAssembler::mul_add(Register out, Register in, Register offs,
9904    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
9905    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9906 
9907   Label L_carry, L_last_in, L_done;
9908 
9909 // carry = 0;
9910 // for (int j=len-1; j >= 0; j--) {
9911 //    long product = (in[j] & LONG_MASK) * kLong +
9912 //                   (out[offs] & LONG_MASK) + carry;
9913 //    out[offs--] = (int)product;
9914 //    carry = product >>> 32;
9915 // }
9916 //
9917   push(tmp1);
9918   push(tmp2);
9919   push(tmp3);
9920   push(tmp4);
9921   push(tmp5);
9922 
9923   Register op2 = tmp2;
9924   const Register sum = tmp3;
9925   const Register op1 = tmp4;
9926   const Register carry =  tmp5;
9927 
9928   if (UseBMI2Instructions) {
9929     op2 = rdxReg;
9930     movl(op2, k);
9931   }
9932   else {
9933     movl(op2, k);
9934   }
9935 
9936   xorq(carry, carry);
9937 
9938   //First loop
9939 
9940   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
9941   //The carry is in tmp5
9942   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
9943 
9944   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
9945   decrementl(len);
9946   jccb(Assembler::negative, L_carry);
9947   decrementl(len);
9948   jccb(Assembler::negative, L_last_in);
9949 
9950   movq(op1, Address(in, len, Address::times_4,  0));
9951   rorq(op1, 32);
9952 
9953   subl(offs, 2);
9954   movq(sum, Address(out, offs, Address::times_4,  0));
9955   rorq(sum, 32);
9956 
9957   if (UseBMI2Instructions) {
9958     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9959   }
9960   else {
9961     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9962   }
9963 
9964   // Store back in big endian from little endian
9965   rorq(sum, 0x20);
9966   movq(Address(out, offs, Address::times_4,  0), sum);
9967 
9968   testl(len, len);
9969   jccb(Assembler::zero, L_carry);
9970 
9971   //Multiply the last in[] entry, if any
9972   bind(L_last_in);
9973   movl(op1, Address(in, 0));
9974   movl(sum, Address(out, offs, Address::times_4,  -4));
9975 
9976   movl(raxReg, k);
9977   mull(op1); //tmp4 * eax -> edx:eax
9978   addl(sum, carry);
9979   adcl(rdxReg, 0);
9980   addl(sum, raxReg);
9981   adcl(rdxReg, 0);
9982   movl(carry, rdxReg);
9983 
9984   movl(Address(out, offs, Address::times_4,  -4), sum);
9985 
9986   bind(L_carry);
9987   //return tmp5/carry as carry in rax
9988   movl(rax, carry);
9989 
9990   bind(L_done);
9991   pop(tmp5);
9992   pop(tmp4);
9993   pop(tmp3);
9994   pop(tmp2);
9995   pop(tmp1);
9996 }
9997 #endif
9998 
9999 /**
10000  * Emits code to update CRC-32 with a byte value according to constants in table
10001  *
10002  * @param [in,out]crc   Register containing the crc.
10003  * @param [in]val       Register containing the byte to fold into the CRC.
10004  * @param [in]table     Register containing the table of crc constants.
10005  *
10006  * uint32_t crc;
10007  * val = crc_table[(val ^ crc) & 0xFF];
10008  * crc = val ^ (crc >> 8);
10009  *
10010  */
10011 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
10012   xorl(val, crc);
10013   andl(val, 0xFF);
10014   shrl(crc, 8); // unsigned shift
10015   xorl(crc, Address(table, val, Address::times_4, 0));
10016 }
10017 
10018 /**
10019  * Fold 128-bit data chunk
10020  */
10021 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
10022   if (UseAVX > 0) {
10023     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
10024     vpclmulldq(xcrc, xK, xcrc); // [63:0]
10025     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
10026     pxor(xcrc, xtmp);
10027   } else {
10028     movdqa(xtmp, xcrc);
10029     pclmulhdq(xtmp, xK);   // [123:64]
10030     pclmulldq(xcrc, xK);   // [63:0]
10031     pxor(xcrc, xtmp);
10032     movdqu(xtmp, Address(buf, offset));
10033     pxor(xcrc, xtmp);
10034   }
10035 }
10036 
10037 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
10038   if (UseAVX > 0) {
10039     vpclmulhdq(xtmp, xK, xcrc);
10040     vpclmulldq(xcrc, xK, xcrc);
10041     pxor(xcrc, xbuf);
10042     pxor(xcrc, xtmp);
10043   } else {
10044     movdqa(xtmp, xcrc);
10045     pclmulhdq(xtmp, xK);
10046     pclmulldq(xcrc, xK);
10047     pxor(xcrc, xbuf);
10048     pxor(xcrc, xtmp);
10049   }
10050 }
10051 
10052 /**
10053  * 8-bit folds to compute 32-bit CRC
10054  *
10055  * uint64_t xcrc;
10056  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
10057  */
10058 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
10059   movdl(tmp, xcrc);
10060   andl(tmp, 0xFF);
10061   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
10062   psrldq(xcrc, 1); // unsigned shift one byte
10063   pxor(xcrc, xtmp);
10064 }
10065 
10066 /**
10067  * uint32_t crc;
10068  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
10069  */
10070 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
10071   movl(tmp, crc);
10072   andl(tmp, 0xFF);
10073   shrl(crc, 8);
10074   xorl(crc, Address(table, tmp, Address::times_4, 0));
10075 }
10076 
10077 /**
10078  * @param crc   register containing existing CRC (32-bit)
10079  * @param buf   register pointing to input byte buffer (byte*)
10080  * @param len   register containing number of bytes
10081  * @param table register that will contain address of CRC table
10082  * @param tmp   scratch register
10083  */
10084 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
10085   assert_different_registers(crc, buf, len, table, tmp, rax);
10086 
10087   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
10088   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
10089 
10090   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
10091   // context for the registers used, where all instructions below are using 128-bit mode
10092   // On EVEX without VL and BW, these instructions will all be AVX.
10093   if (VM_Version::supports_avx512vlbw()) {
10094     movl(tmp, 0xffff);
10095     kmovwl(k1, tmp);
10096   }
10097 
10098   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
10099   notl(crc); // ~crc
10100   cmpl(len, 16);
10101   jcc(Assembler::less, L_tail);
10102 
10103   // Align buffer to 16 bytes
10104   movl(tmp, buf);
10105   andl(tmp, 0xF);
10106   jccb(Assembler::zero, L_aligned);
10107   subl(tmp,  16);
10108   addl(len, tmp);
10109 
10110   align(4);
10111   BIND(L_align_loop);
10112   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10113   update_byte_crc32(crc, rax, table);
10114   increment(buf);
10115   incrementl(tmp);
10116   jccb(Assembler::less, L_align_loop);
10117 
10118   BIND(L_aligned);
10119   movl(tmp, len); // save
10120   shrl(len, 4);
10121   jcc(Assembler::zero, L_tail_restore);
10122 
10123   // Fold crc into first bytes of vector
10124   movdqa(xmm1, Address(buf, 0));
10125   movdl(rax, xmm1);
10126   xorl(crc, rax);
10127   pinsrd(xmm1, crc, 0);
10128   addptr(buf, 16);
10129   subl(len, 4); // len > 0
10130   jcc(Assembler::less, L_fold_tail);
10131 
10132   movdqa(xmm2, Address(buf,  0));
10133   movdqa(xmm3, Address(buf, 16));
10134   movdqa(xmm4, Address(buf, 32));
10135   addptr(buf, 48);
10136   subl(len, 3);
10137   jcc(Assembler::lessEqual, L_fold_512b);
10138 
10139   // Fold total 512 bits of polynomial on each iteration,
10140   // 128 bits per each of 4 parallel streams.
10141   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
10142 
10143   align(32);
10144   BIND(L_fold_512b_loop);
10145   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10146   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
10147   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
10148   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
10149   addptr(buf, 64);
10150   subl(len, 4);
10151   jcc(Assembler::greater, L_fold_512b_loop);
10152 
10153   // Fold 512 bits to 128 bits.
10154   BIND(L_fold_512b);
10155   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10156   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
10157   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
10158   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
10159 
10160   // Fold the rest of 128 bits data chunks
10161   BIND(L_fold_tail);
10162   addl(len, 3);
10163   jccb(Assembler::lessEqual, L_fold_128b);
10164   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10165 
10166   BIND(L_fold_tail_loop);
10167   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10168   addptr(buf, 16);
10169   decrementl(len);
10170   jccb(Assembler::greater, L_fold_tail_loop);
10171 
10172   // Fold 128 bits in xmm1 down into 32 bits in crc register.
10173   BIND(L_fold_128b);
10174   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
10175   if (UseAVX > 0) {
10176     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
10177     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
10178     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
10179   } else {
10180     movdqa(xmm2, xmm0);
10181     pclmulqdq(xmm2, xmm1, 0x1);
10182     movdqa(xmm3, xmm0);
10183     pand(xmm3, xmm2);
10184     pclmulqdq(xmm0, xmm3, 0x1);
10185   }
10186   psrldq(xmm1, 8);
10187   psrldq(xmm2, 4);
10188   pxor(xmm0, xmm1);
10189   pxor(xmm0, xmm2);
10190 
10191   // 8 8-bit folds to compute 32-bit CRC.
10192   for (int j = 0; j < 4; j++) {
10193     fold_8bit_crc32(xmm0, table, xmm1, rax);
10194   }
10195   movdl(crc, xmm0); // mov 32 bits to general register
10196   for (int j = 0; j < 4; j++) {
10197     fold_8bit_crc32(crc, table, rax);
10198   }
10199 
10200   BIND(L_tail_restore);
10201   movl(len, tmp); // restore
10202   BIND(L_tail);
10203   andl(len, 0xf);
10204   jccb(Assembler::zero, L_exit);
10205 
10206   // Fold the rest of bytes
10207   align(4);
10208   BIND(L_tail_loop);
10209   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10210   update_byte_crc32(crc, rax, table);
10211   increment(buf);
10212   decrementl(len);
10213   jccb(Assembler::greater, L_tail_loop);
10214 
10215   BIND(L_exit);
10216   notl(crc); // ~c
10217 }
10218 
10219 #ifdef _LP64
10220 // S. Gueron / Information Processing Letters 112 (2012) 184
10221 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
10222 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
10223 // Output: the 64-bit carry-less product of B * CONST
10224 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
10225                                      Register tmp1, Register tmp2, Register tmp3) {
10226   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10227   if (n > 0) {
10228     addq(tmp3, n * 256 * 8);
10229   }
10230   //    Q1 = TABLEExt[n][B & 0xFF];
10231   movl(tmp1, in);
10232   andl(tmp1, 0x000000FF);
10233   shll(tmp1, 3);
10234   addq(tmp1, tmp3);
10235   movq(tmp1, Address(tmp1, 0));
10236 
10237   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10238   movl(tmp2, in);
10239   shrl(tmp2, 8);
10240   andl(tmp2, 0x000000FF);
10241   shll(tmp2, 3);
10242   addq(tmp2, tmp3);
10243   movq(tmp2, Address(tmp2, 0));
10244 
10245   shlq(tmp2, 8);
10246   xorq(tmp1, tmp2);
10247 
10248   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10249   movl(tmp2, in);
10250   shrl(tmp2, 16);
10251   andl(tmp2, 0x000000FF);
10252   shll(tmp2, 3);
10253   addq(tmp2, tmp3);
10254   movq(tmp2, Address(tmp2, 0));
10255 
10256   shlq(tmp2, 16);
10257   xorq(tmp1, tmp2);
10258 
10259   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10260   shrl(in, 24);
10261   andl(in, 0x000000FF);
10262   shll(in, 3);
10263   addq(in, tmp3);
10264   movq(in, Address(in, 0));
10265 
10266   shlq(in, 24);
10267   xorq(in, tmp1);
10268   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10269 }
10270 
10271 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10272                                       Register in_out,
10273                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10274                                       XMMRegister w_xtmp2,
10275                                       Register tmp1,
10276                                       Register n_tmp2, Register n_tmp3) {
10277   if (is_pclmulqdq_supported) {
10278     movdl(w_xtmp1, in_out); // modified blindly
10279 
10280     movl(tmp1, const_or_pre_comp_const_index);
10281     movdl(w_xtmp2, tmp1);
10282     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10283 
10284     movdq(in_out, w_xtmp1);
10285   } else {
10286     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
10287   }
10288 }
10289 
10290 // Recombination Alternative 2: No bit-reflections
10291 // T1 = (CRC_A * U1) << 1
10292 // T2 = (CRC_B * U2) << 1
10293 // C1 = T1 >> 32
10294 // C2 = T2 >> 32
10295 // T1 = T1 & 0xFFFFFFFF
10296 // T2 = T2 & 0xFFFFFFFF
10297 // T1 = CRC32(0, T1)
10298 // T2 = CRC32(0, T2)
10299 // C1 = C1 ^ T1
10300 // C2 = C2 ^ T2
10301 // CRC = C1 ^ C2 ^ CRC_C
10302 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10303                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10304                                      Register tmp1, Register tmp2,
10305                                      Register n_tmp3) {
10306   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10307   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10308   shlq(in_out, 1);
10309   movl(tmp1, in_out);
10310   shrq(in_out, 32);
10311   xorl(tmp2, tmp2);
10312   crc32(tmp2, tmp1, 4);
10313   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
10314   shlq(in1, 1);
10315   movl(tmp1, in1);
10316   shrq(in1, 32);
10317   xorl(tmp2, tmp2);
10318   crc32(tmp2, tmp1, 4);
10319   xorl(in1, tmp2);
10320   xorl(in_out, in1);
10321   xorl(in_out, in2);
10322 }
10323 
10324 // Set N to predefined value
10325 // Subtract from a lenght of a buffer
10326 // execute in a loop:
10327 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
10328 // for i = 1 to N do
10329 //  CRC_A = CRC32(CRC_A, A[i])
10330 //  CRC_B = CRC32(CRC_B, B[i])
10331 //  CRC_C = CRC32(CRC_C, C[i])
10332 // end for
10333 // Recombine
10334 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10335                                        Register in_out1, Register in_out2, Register in_out3,
10336                                        Register tmp1, Register tmp2, Register tmp3,
10337                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10338                                        Register tmp4, Register tmp5,
10339                                        Register n_tmp6) {
10340   Label L_processPartitions;
10341   Label L_processPartition;
10342   Label L_exit;
10343 
10344   bind(L_processPartitions);
10345   cmpl(in_out1, 3 * size);
10346   jcc(Assembler::less, L_exit);
10347     xorl(tmp1, tmp1);
10348     xorl(tmp2, tmp2);
10349     movq(tmp3, in_out2);
10350     addq(tmp3, size);
10351 
10352     bind(L_processPartition);
10353       crc32(in_out3, Address(in_out2, 0), 8);
10354       crc32(tmp1, Address(in_out2, size), 8);
10355       crc32(tmp2, Address(in_out2, size * 2), 8);
10356       addq(in_out2, 8);
10357       cmpq(in_out2, tmp3);
10358       jcc(Assembler::less, L_processPartition);
10359     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10360             w_xtmp1, w_xtmp2, w_xtmp3,
10361             tmp4, tmp5,
10362             n_tmp6);
10363     addq(in_out2, 2 * size);
10364     subl(in_out1, 3 * size);
10365     jmp(L_processPartitions);
10366 
10367   bind(L_exit);
10368 }
10369 #else
10370 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
10371                                      Register tmp1, Register tmp2, Register tmp3,
10372                                      XMMRegister xtmp1, XMMRegister xtmp2) {
10373   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10374   if (n > 0) {
10375     addl(tmp3, n * 256 * 8);
10376   }
10377   //    Q1 = TABLEExt[n][B & 0xFF];
10378   movl(tmp1, in_out);
10379   andl(tmp1, 0x000000FF);
10380   shll(tmp1, 3);
10381   addl(tmp1, tmp3);
10382   movq(xtmp1, Address(tmp1, 0));
10383 
10384   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10385   movl(tmp2, in_out);
10386   shrl(tmp2, 8);
10387   andl(tmp2, 0x000000FF);
10388   shll(tmp2, 3);
10389   addl(tmp2, tmp3);
10390   movq(xtmp2, Address(tmp2, 0));
10391 
10392   psllq(xtmp2, 8);
10393   pxor(xtmp1, xtmp2);
10394 
10395   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10396   movl(tmp2, in_out);
10397   shrl(tmp2, 16);
10398   andl(tmp2, 0x000000FF);
10399   shll(tmp2, 3);
10400   addl(tmp2, tmp3);
10401   movq(xtmp2, Address(tmp2, 0));
10402 
10403   psllq(xtmp2, 16);
10404   pxor(xtmp1, xtmp2);
10405 
10406   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10407   shrl(in_out, 24);
10408   andl(in_out, 0x000000FF);
10409   shll(in_out, 3);
10410   addl(in_out, tmp3);
10411   movq(xtmp2, Address(in_out, 0));
10412 
10413   psllq(xtmp2, 24);
10414   pxor(xtmp1, xtmp2); // Result in CXMM
10415   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10416 }
10417 
10418 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10419                                       Register in_out,
10420                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10421                                       XMMRegister w_xtmp2,
10422                                       Register tmp1,
10423                                       Register n_tmp2, Register n_tmp3) {
10424   if (is_pclmulqdq_supported) {
10425     movdl(w_xtmp1, in_out);
10426 
10427     movl(tmp1, const_or_pre_comp_const_index);
10428     movdl(w_xtmp2, tmp1);
10429     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10430     // Keep result in XMM since GPR is 32 bit in length
10431   } else {
10432     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
10433   }
10434 }
10435 
10436 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10437                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10438                                      Register tmp1, Register tmp2,
10439                                      Register n_tmp3) {
10440   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10441   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10442 
10443   psllq(w_xtmp1, 1);
10444   movdl(tmp1, w_xtmp1);
10445   psrlq(w_xtmp1, 32);
10446   movdl(in_out, w_xtmp1);
10447 
10448   xorl(tmp2, tmp2);
10449   crc32(tmp2, tmp1, 4);
10450   xorl(in_out, tmp2);
10451 
10452   psllq(w_xtmp2, 1);
10453   movdl(tmp1, w_xtmp2);
10454   psrlq(w_xtmp2, 32);
10455   movdl(in1, w_xtmp2);
10456 
10457   xorl(tmp2, tmp2);
10458   crc32(tmp2, tmp1, 4);
10459   xorl(in1, tmp2);
10460   xorl(in_out, in1);
10461   xorl(in_out, in2);
10462 }
10463 
10464 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10465                                        Register in_out1, Register in_out2, Register in_out3,
10466                                        Register tmp1, Register tmp2, Register tmp3,
10467                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10468                                        Register tmp4, Register tmp5,
10469                                        Register n_tmp6) {
10470   Label L_processPartitions;
10471   Label L_processPartition;
10472   Label L_exit;
10473 
10474   bind(L_processPartitions);
10475   cmpl(in_out1, 3 * size);
10476   jcc(Assembler::less, L_exit);
10477     xorl(tmp1, tmp1);
10478     xorl(tmp2, tmp2);
10479     movl(tmp3, in_out2);
10480     addl(tmp3, size);
10481 
10482     bind(L_processPartition);
10483       crc32(in_out3, Address(in_out2, 0), 4);
10484       crc32(tmp1, Address(in_out2, size), 4);
10485       crc32(tmp2, Address(in_out2, size*2), 4);
10486       crc32(in_out3, Address(in_out2, 0+4), 4);
10487       crc32(tmp1, Address(in_out2, size+4), 4);
10488       crc32(tmp2, Address(in_out2, size*2+4), 4);
10489       addl(in_out2, 8);
10490       cmpl(in_out2, tmp3);
10491       jcc(Assembler::less, L_processPartition);
10492 
10493         push(tmp3);
10494         push(in_out1);
10495         push(in_out2);
10496         tmp4 = tmp3;
10497         tmp5 = in_out1;
10498         n_tmp6 = in_out2;
10499 
10500       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10501             w_xtmp1, w_xtmp2, w_xtmp3,
10502             tmp4, tmp5,
10503             n_tmp6);
10504 
10505         pop(in_out2);
10506         pop(in_out1);
10507         pop(tmp3);
10508 
10509     addl(in_out2, 2 * size);
10510     subl(in_out1, 3 * size);
10511     jmp(L_processPartitions);
10512 
10513   bind(L_exit);
10514 }
10515 #endif //LP64
10516 
10517 #ifdef _LP64
10518 // Algorithm 2: Pipelined usage of the CRC32 instruction.
10519 // Input: A buffer I of L bytes.
10520 // Output: the CRC32C value of the buffer.
10521 // Notations:
10522 // Write L = 24N + r, with N = floor (L/24).
10523 // r = L mod 24 (0 <= r < 24).
10524 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
10525 // N quadwords, and R consists of r bytes.
10526 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
10527 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
10528 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
10529 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
10530 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10531                                           Register tmp1, Register tmp2, Register tmp3,
10532                                           Register tmp4, Register tmp5, Register tmp6,
10533                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10534                                           bool is_pclmulqdq_supported) {
10535   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10536   Label L_wordByWord;
10537   Label L_byteByByteProlog;
10538   Label L_byteByByte;
10539   Label L_exit;
10540 
10541   if (is_pclmulqdq_supported ) {
10542     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10543     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
10544 
10545     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10546     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10547 
10548     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10549     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10550     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
10551   } else {
10552     const_or_pre_comp_const_index[0] = 1;
10553     const_or_pre_comp_const_index[1] = 0;
10554 
10555     const_or_pre_comp_const_index[2] = 3;
10556     const_or_pre_comp_const_index[3] = 2;
10557 
10558     const_or_pre_comp_const_index[4] = 5;
10559     const_or_pre_comp_const_index[5] = 4;
10560    }
10561   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10562                     in2, in1, in_out,
10563                     tmp1, tmp2, tmp3,
10564                     w_xtmp1, w_xtmp2, w_xtmp3,
10565                     tmp4, tmp5,
10566                     tmp6);
10567   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10568                     in2, in1, in_out,
10569                     tmp1, tmp2, tmp3,
10570                     w_xtmp1, w_xtmp2, w_xtmp3,
10571                     tmp4, tmp5,
10572                     tmp6);
10573   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10574                     in2, in1, in_out,
10575                     tmp1, tmp2, tmp3,
10576                     w_xtmp1, w_xtmp2, w_xtmp3,
10577                     tmp4, tmp5,
10578                     tmp6);
10579   movl(tmp1, in2);
10580   andl(tmp1, 0x00000007);
10581   negl(tmp1);
10582   addl(tmp1, in2);
10583   addq(tmp1, in1);
10584 
10585   BIND(L_wordByWord);
10586   cmpq(in1, tmp1);
10587   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10588     crc32(in_out, Address(in1, 0), 4);
10589     addq(in1, 4);
10590     jmp(L_wordByWord);
10591 
10592   BIND(L_byteByByteProlog);
10593   andl(in2, 0x00000007);
10594   movl(tmp2, 1);
10595 
10596   BIND(L_byteByByte);
10597   cmpl(tmp2, in2);
10598   jccb(Assembler::greater, L_exit);
10599     crc32(in_out, Address(in1, 0), 1);
10600     incq(in1);
10601     incl(tmp2);
10602     jmp(L_byteByByte);
10603 
10604   BIND(L_exit);
10605 }
10606 #else
10607 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10608                                           Register tmp1, Register  tmp2, Register tmp3,
10609                                           Register tmp4, Register  tmp5, Register tmp6,
10610                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10611                                           bool is_pclmulqdq_supported) {
10612   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10613   Label L_wordByWord;
10614   Label L_byteByByteProlog;
10615   Label L_byteByByte;
10616   Label L_exit;
10617 
10618   if (is_pclmulqdq_supported) {
10619     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10620     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
10621 
10622     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10623     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10624 
10625     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10626     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10627   } else {
10628     const_or_pre_comp_const_index[0] = 1;
10629     const_or_pre_comp_const_index[1] = 0;
10630 
10631     const_or_pre_comp_const_index[2] = 3;
10632     const_or_pre_comp_const_index[3] = 2;
10633 
10634     const_or_pre_comp_const_index[4] = 5;
10635     const_or_pre_comp_const_index[5] = 4;
10636   }
10637   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10638                     in2, in1, in_out,
10639                     tmp1, tmp2, tmp3,
10640                     w_xtmp1, w_xtmp2, w_xtmp3,
10641                     tmp4, tmp5,
10642                     tmp6);
10643   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10644                     in2, in1, in_out,
10645                     tmp1, tmp2, tmp3,
10646                     w_xtmp1, w_xtmp2, w_xtmp3,
10647                     tmp4, tmp5,
10648                     tmp6);
10649   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10650                     in2, in1, in_out,
10651                     tmp1, tmp2, tmp3,
10652                     w_xtmp1, w_xtmp2, w_xtmp3,
10653                     tmp4, tmp5,
10654                     tmp6);
10655   movl(tmp1, in2);
10656   andl(tmp1, 0x00000007);
10657   negl(tmp1);
10658   addl(tmp1, in2);
10659   addl(tmp1, in1);
10660 
10661   BIND(L_wordByWord);
10662   cmpl(in1, tmp1);
10663   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10664     crc32(in_out, Address(in1,0), 4);
10665     addl(in1, 4);
10666     jmp(L_wordByWord);
10667 
10668   BIND(L_byteByByteProlog);
10669   andl(in2, 0x00000007);
10670   movl(tmp2, 1);
10671 
10672   BIND(L_byteByByte);
10673   cmpl(tmp2, in2);
10674   jccb(Assembler::greater, L_exit);
10675     movb(tmp1, Address(in1, 0));
10676     crc32(in_out, tmp1, 1);
10677     incl(in1);
10678     incl(tmp2);
10679     jmp(L_byteByByte);
10680 
10681   BIND(L_exit);
10682 }
10683 #endif // LP64
10684 #undef BIND
10685 #undef BLOCK_COMMENT
10686 
10687 
10688 // Compress char[] array to byte[].
10689 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
10690                                          XMMRegister tmp1Reg, XMMRegister tmp2Reg,
10691                                          XMMRegister tmp3Reg, XMMRegister tmp4Reg,
10692                                          Register tmp5, Register result) {
10693   Label copy_chars_loop, return_length, return_zero, done;
10694 
10695   // rsi: src
10696   // rdi: dst
10697   // rdx: len
10698   // rcx: tmp5
10699   // rax: result
10700 
10701   // rsi holds start addr of source char[] to be compressed
10702   // rdi holds start addr of destination byte[]
10703   // rdx holds length
10704 
10705   assert(len != result, "");
10706 
10707   // save length for return
10708   push(len);
10709 
10710   if (UseSSE42Intrinsics) {
10711     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
10712     Label copy_32_loop, copy_16, copy_tail;
10713 
10714     movl(result, len);
10715     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
10716 
10717     // vectored compression
10718     andl(len, 0xfffffff0);    // vector count (in chars)
10719     andl(result, 0x0000000f);    // tail count (in chars)
10720     testl(len, len);
10721     jccb(Assembler::zero, copy_16);
10722 
10723     // compress 16 chars per iter
10724     movdl(tmp1Reg, tmp5);
10725     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10726     pxor(tmp4Reg, tmp4Reg);
10727 
10728     lea(src, Address(src, len, Address::times_2));
10729     lea(dst, Address(dst, len, Address::times_1));
10730     negptr(len);
10731 
10732     bind(copy_32_loop);
10733     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
10734     por(tmp4Reg, tmp2Reg);
10735     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
10736     por(tmp4Reg, tmp3Reg);
10737     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
10738     jcc(Assembler::notZero, return_zero);
10739     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
10740     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
10741     addptr(len, 16);
10742     jcc(Assembler::notZero, copy_32_loop);
10743 
10744     // compress next vector of 8 chars (if any)
10745     bind(copy_16);
10746     movl(len, result);
10747     andl(len, 0xfffffff8);    // vector count (in chars)
10748     andl(result, 0x00000007);    // tail count (in chars)
10749     testl(len, len);
10750     jccb(Assembler::zero, copy_tail);
10751 
10752     movdl(tmp1Reg, tmp5);
10753     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10754     pxor(tmp3Reg, tmp3Reg);
10755 
10756     movdqu(tmp2Reg, Address(src, 0));
10757     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
10758     jccb(Assembler::notZero, return_zero);
10759     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
10760     movq(Address(dst, 0), tmp2Reg);
10761     addptr(src, 16);
10762     addptr(dst, 8);
10763 
10764     bind(copy_tail);
10765     movl(len, result);
10766   }
10767   // compress 1 char per iter
10768   testl(len, len);
10769   jccb(Assembler::zero, return_length);
10770   lea(src, Address(src, len, Address::times_2));
10771   lea(dst, Address(dst, len, Address::times_1));
10772   negptr(len);
10773 
10774   bind(copy_chars_loop);
10775   load_unsigned_short(result, Address(src, len, Address::times_2));
10776   testl(result, 0xff00);      // check if Unicode char
10777   jccb(Assembler::notZero, return_zero);
10778   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
10779   increment(len);
10780   jcc(Assembler::notZero, copy_chars_loop);
10781 
10782   // if compression succeeded, return length
10783   bind(return_length);
10784   pop(result);
10785   jmpb(done);
10786 
10787   // if compression failed, return 0
10788   bind(return_zero);
10789   xorl(result, result);
10790   addptr(rsp, wordSize);
10791 
10792   bind(done);
10793 }
10794 
10795 // Inflate byte[] array to char[].
10796 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
10797                                         XMMRegister tmp1, Register tmp2) {
10798   Label copy_chars_loop, done;
10799 
10800   // rsi: src
10801   // rdi: dst
10802   // rdx: len
10803   // rcx: tmp2
10804 
10805   // rsi holds start addr of source byte[] to be inflated
10806   // rdi holds start addr of destination char[]
10807   // rdx holds length
10808   assert_different_registers(src, dst, len, tmp2);
10809 
10810   if (UseSSE42Intrinsics) {
10811     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
10812     Label copy_8_loop, copy_bytes, copy_tail;
10813 
10814     movl(tmp2, len);
10815     andl(tmp2, 0x00000007);   // tail count (in chars)
10816     andl(len, 0xfffffff8);    // vector count (in chars)
10817     jccb(Assembler::zero, copy_tail);
10818 
10819     // vectored inflation
10820     lea(src, Address(src, len, Address::times_1));
10821     lea(dst, Address(dst, len, Address::times_2));
10822     negptr(len);
10823 
10824     // inflate 8 chars per iter
10825     bind(copy_8_loop);
10826     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
10827     movdqu(Address(dst, len, Address::times_2), tmp1);
10828     addptr(len, 8);
10829     jcc(Assembler::notZero, copy_8_loop);
10830 
10831     bind(copy_tail);
10832     movl(len, tmp2);
10833 
10834     cmpl(len, 4);
10835     jccb(Assembler::less, copy_bytes);
10836 
10837     movdl(tmp1, Address(src, 0));  // load 4 byte chars
10838     pmovzxbw(tmp1, tmp1);
10839     movq(Address(dst, 0), tmp1);
10840     subptr(len, 4);
10841     addptr(src, 4);
10842     addptr(dst, 8);
10843 
10844     bind(copy_bytes);
10845   }
10846   testl(len, len);
10847   jccb(Assembler::zero, done);
10848   lea(src, Address(src, len, Address::times_1));
10849   lea(dst, Address(dst, len, Address::times_2));
10850   negptr(len);
10851 
10852   // inflate 1 char per iter
10853   bind(copy_chars_loop);
10854   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
10855   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
10856   increment(len);
10857   jcc(Assembler::notZero, copy_chars_loop);
10858 
10859   bind(done);
10860 }
10861 
10862 
10863 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
10864   switch (cond) {
10865     // Note some conditions are synonyms for others
10866     case Assembler::zero:         return Assembler::notZero;
10867     case Assembler::notZero:      return Assembler::zero;
10868     case Assembler::less:         return Assembler::greaterEqual;
10869     case Assembler::lessEqual:    return Assembler::greater;
10870     case Assembler::greater:      return Assembler::lessEqual;
10871     case Assembler::greaterEqual: return Assembler::less;
10872     case Assembler::below:        return Assembler::aboveEqual;
10873     case Assembler::belowEqual:   return Assembler::above;
10874     case Assembler::above:        return Assembler::belowEqual;
10875     case Assembler::aboveEqual:   return Assembler::below;
10876     case Assembler::overflow:     return Assembler::noOverflow;
10877     case Assembler::noOverflow:   return Assembler::overflow;
10878     case Assembler::negative:     return Assembler::positive;
10879     case Assembler::positive:     return Assembler::negative;
10880     case Assembler::parity:       return Assembler::noParity;
10881     case Assembler::noParity:     return Assembler::parity;
10882   }
10883   ShouldNotReachHere(); return Assembler::overflow;
10884 }
10885 
10886 SkipIfEqual::SkipIfEqual(
10887     MacroAssembler* masm, const bool* flag_addr, bool value) {
10888   _masm = masm;
10889   _masm->cmp8(ExternalAddress((address)flag_addr), value);
10890   _masm->jcc(Assembler::equal, _label);
10891 }
10892 
10893 SkipIfEqual::~SkipIfEqual() {
10894   _masm->bind(_label);
10895 }
10896 
10897 // 32-bit Windows has its own fast-path implementation
10898 // of get_thread
10899 #if !defined(WIN32) || defined(_LP64)
10900 
10901 // This is simply a call to Thread::current()
10902 void MacroAssembler::get_thread(Register thread) {
10903   if (thread != rax) {
10904     push(rax);
10905   }
10906   LP64_ONLY(push(rdi);)
10907   LP64_ONLY(push(rsi);)
10908   push(rdx);
10909   push(rcx);
10910 #ifdef _LP64
10911   push(r8);
10912   push(r9);
10913   push(r10);
10914   push(r11);
10915 #endif
10916 
10917   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
10918 
10919 #ifdef _LP64
10920   pop(r11);
10921   pop(r10);
10922   pop(r9);
10923   pop(r8);
10924 #endif
10925   pop(rcx);
10926   pop(rdx);
10927   LP64_ONLY(pop(rsi);)
10928   LP64_ONLY(pop(rdi);)
10929   if (thread != rax) {
10930     mov(thread, rax);
10931     pop(rax);
10932   }
10933 }
10934 
10935 #endif