1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/biasedLocking.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/os.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/thread.hpp"
  43 #include "utilities/macros.hpp"
  44 #if INCLUDE_ALL_GCS
  45 #include "gc/g1/g1CollectedHeap.inline.hpp"
  46 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  47 #include "gc/g1/heapRegion.hpp"
  48 #endif // INCLUDE_ALL_GCS
  49 #include "crc32c.h"
  50 #ifdef COMPILER2
  51 #include "opto/intrinsicnode.hpp"
  52 #endif
  53 
  54 #ifdef PRODUCT
  55 #define BLOCK_COMMENT(str) /* nothing */
  56 #define STOP(error) stop(error)
  57 #else
  58 #define BLOCK_COMMENT(str) block_comment(str)
  59 #define STOP(error) block_comment(error); stop(error)
  60 #endif
  61 
  62 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  63 
  64 #ifdef ASSERT
  65 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  66 #endif
  67 
  68 static Assembler::Condition reverse[] = {
  69     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  70     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  71     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  72     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  73     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  74     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  75     Assembler::above          /* belowEqual    = 0x6 */ ,
  76     Assembler::belowEqual     /* above         = 0x7 */ ,
  77     Assembler::positive       /* negative      = 0x8 */ ,
  78     Assembler::negative       /* positive      = 0x9 */ ,
  79     Assembler::noParity       /* parity        = 0xa */ ,
  80     Assembler::parity         /* noParity      = 0xb */ ,
  81     Assembler::greaterEqual   /* less          = 0xc */ ,
  82     Assembler::less           /* greaterEqual  = 0xd */ ,
  83     Assembler::greater        /* lessEqual     = 0xe */ ,
  84     Assembler::lessEqual      /* greater       = 0xf, */
  85 
  86 };
  87 
  88 
  89 // Implementation of MacroAssembler
  90 
  91 // First all the versions that have distinct versions depending on 32/64 bit
  92 // Unless the difference is trivial (1 line or so).
  93 
  94 #ifndef _LP64
  95 
  96 // 32bit versions
  97 
  98 Address MacroAssembler::as_Address(AddressLiteral adr) {
  99   return Address(adr.target(), adr.rspec());
 100 }
 101 
 102 Address MacroAssembler::as_Address(ArrayAddress adr) {
 103   return Address::make_array(adr);
 104 }
 105 
 106 void MacroAssembler::call_VM_leaf_base(address entry_point,
 107                                        int number_of_arguments) {
 108   call(RuntimeAddress(entry_point));
 109   increment(rsp, number_of_arguments * wordSize);
 110 }
 111 
 112 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 114 }
 115 
 116 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 117   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 118 }
 119 
 120 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 122 }
 123 
 124 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 125   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 126 }
 127 
 128 void MacroAssembler::extend_sign(Register hi, Register lo) {
 129   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 130   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 131     cdql();
 132   } else {
 133     movl(hi, lo);
 134     sarl(hi, 31);
 135   }
 136 }
 137 
 138 void MacroAssembler::jC2(Register tmp, Label& L) {
 139   // set parity bit if FPU flag C2 is set (via rax)
 140   save_rax(tmp);
 141   fwait(); fnstsw_ax();
 142   sahf();
 143   restore_rax(tmp);
 144   // branch
 145   jcc(Assembler::parity, L);
 146 }
 147 
 148 void MacroAssembler::jnC2(Register tmp, Label& L) {
 149   // set parity bit if FPU flag C2 is set (via rax)
 150   save_rax(tmp);
 151   fwait(); fnstsw_ax();
 152   sahf();
 153   restore_rax(tmp);
 154   // branch
 155   jcc(Assembler::noParity, L);
 156 }
 157 
 158 // 32bit can do a case table jump in one instruction but we no longer allow the base
 159 // to be installed in the Address class
 160 void MacroAssembler::jump(ArrayAddress entry) {
 161   jmp(as_Address(entry));
 162 }
 163 
 164 // Note: y_lo will be destroyed
 165 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 166   // Long compare for Java (semantics as described in JVM spec.)
 167   Label high, low, done;
 168 
 169   cmpl(x_hi, y_hi);
 170   jcc(Assembler::less, low);
 171   jcc(Assembler::greater, high);
 172   // x_hi is the return register
 173   xorl(x_hi, x_hi);
 174   cmpl(x_lo, y_lo);
 175   jcc(Assembler::below, low);
 176   jcc(Assembler::equal, done);
 177 
 178   bind(high);
 179   xorl(x_hi, x_hi);
 180   increment(x_hi);
 181   jmp(done);
 182 
 183   bind(low);
 184   xorl(x_hi, x_hi);
 185   decrementl(x_hi);
 186 
 187   bind(done);
 188 }
 189 
 190 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 191     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 192 }
 193 
 194 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 195   // leal(dst, as_Address(adr));
 196   // see note in movl as to why we must use a move
 197   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 198 }
 199 
 200 void MacroAssembler::leave() {
 201   mov(rsp, rbp);
 202   pop(rbp);
 203 }
 204 
 205 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 206   // Multiplication of two Java long values stored on the stack
 207   // as illustrated below. Result is in rdx:rax.
 208   //
 209   // rsp ---> [  ??  ] \               \
 210   //            ....    | y_rsp_offset  |
 211   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 212   //          [ y_hi ]                  | (in bytes)
 213   //            ....                    |
 214   //          [ x_lo ]                 /
 215   //          [ x_hi ]
 216   //            ....
 217   //
 218   // Basic idea: lo(result) = lo(x_lo * y_lo)
 219   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 220   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 221   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 222   Label quick;
 223   // load x_hi, y_hi and check if quick
 224   // multiplication is possible
 225   movl(rbx, x_hi);
 226   movl(rcx, y_hi);
 227   movl(rax, rbx);
 228   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 229   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 230   // do full multiplication
 231   // 1st step
 232   mull(y_lo);                                    // x_hi * y_lo
 233   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 234   // 2nd step
 235   movl(rax, x_lo);
 236   mull(rcx);                                     // x_lo * y_hi
 237   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 238   // 3rd step
 239   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 240   movl(rax, x_lo);
 241   mull(y_lo);                                    // x_lo * y_lo
 242   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 243 }
 244 
 245 void MacroAssembler::lneg(Register hi, Register lo) {
 246   negl(lo);
 247   adcl(hi, 0);
 248   negl(hi);
 249 }
 250 
 251 void MacroAssembler::lshl(Register hi, Register lo) {
 252   // Java shift left long support (semantics as described in JVM spec., p.305)
 253   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 254   // shift value is in rcx !
 255   assert(hi != rcx, "must not use rcx");
 256   assert(lo != rcx, "must not use rcx");
 257   const Register s = rcx;                        // shift count
 258   const int      n = BitsPerWord;
 259   Label L;
 260   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 261   cmpl(s, n);                                    // if (s < n)
 262   jcc(Assembler::less, L);                       // else (s >= n)
 263   movl(hi, lo);                                  // x := x << n
 264   xorl(lo, lo);
 265   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 266   bind(L);                                       // s (mod n) < n
 267   shldl(hi, lo);                                 // x := x << s
 268   shll(lo);
 269 }
 270 
 271 
 272 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 273   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 274   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 275   assert(hi != rcx, "must not use rcx");
 276   assert(lo != rcx, "must not use rcx");
 277   const Register s = rcx;                        // shift count
 278   const int      n = BitsPerWord;
 279   Label L;
 280   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 281   cmpl(s, n);                                    // if (s < n)
 282   jcc(Assembler::less, L);                       // else (s >= n)
 283   movl(lo, hi);                                  // x := x >> n
 284   if (sign_extension) sarl(hi, 31);
 285   else                xorl(hi, hi);
 286   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 287   bind(L);                                       // s (mod n) < n
 288   shrdl(lo, hi);                                 // x := x >> s
 289   if (sign_extension) sarl(hi);
 290   else                shrl(hi);
 291 }
 292 
 293 void MacroAssembler::movoop(Register dst, jobject obj) {
 294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 295 }
 296 
 297 void MacroAssembler::movoop(Address dst, jobject obj) {
 298   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 299 }
 300 
 301 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 303 }
 304 
 305 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 306   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 307 }
 308 
 309 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 310   // scratch register is not used,
 311   // it is defined to match parameters of 64-bit version of this method.
 312   if (src.is_lval()) {
 313     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 314   } else {
 315     movl(dst, as_Address(src));
 316   }
 317 }
 318 
 319 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 320   movl(as_Address(dst), src);
 321 }
 322 
 323 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 324   movl(dst, as_Address(src));
 325 }
 326 
 327 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 328 void MacroAssembler::movptr(Address dst, intptr_t src) {
 329   movl(dst, src);
 330 }
 331 
 332 
 333 void MacroAssembler::pop_callee_saved_registers() {
 334   pop(rcx);
 335   pop(rdx);
 336   pop(rdi);
 337   pop(rsi);
 338 }
 339 
 340 void MacroAssembler::pop_fTOS() {
 341   fld_d(Address(rsp, 0));
 342   addl(rsp, 2 * wordSize);
 343 }
 344 
 345 void MacroAssembler::push_callee_saved_registers() {
 346   push(rsi);
 347   push(rdi);
 348   push(rdx);
 349   push(rcx);
 350 }
 351 
 352 void MacroAssembler::push_fTOS() {
 353   subl(rsp, 2 * wordSize);
 354   fstp_d(Address(rsp, 0));
 355 }
 356 
 357 
 358 void MacroAssembler::pushoop(jobject obj) {
 359   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 360 }
 361 
 362 void MacroAssembler::pushklass(Metadata* obj) {
 363   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 364 }
 365 
 366 void MacroAssembler::pushptr(AddressLiteral src) {
 367   if (src.is_lval()) {
 368     push_literal32((int32_t)src.target(), src.rspec());
 369   } else {
 370     pushl(as_Address(src));
 371   }
 372 }
 373 
 374 void MacroAssembler::set_word_if_not_zero(Register dst) {
 375   xorl(dst, dst);
 376   set_byte_if_not_zero(dst);
 377 }
 378 
 379 static void pass_arg0(MacroAssembler* masm, Register arg) {
 380   masm->push(arg);
 381 }
 382 
 383 static void pass_arg1(MacroAssembler* masm, Register arg) {
 384   masm->push(arg);
 385 }
 386 
 387 static void pass_arg2(MacroAssembler* masm, Register arg) {
 388   masm->push(arg);
 389 }
 390 
 391 static void pass_arg3(MacroAssembler* masm, Register arg) {
 392   masm->push(arg);
 393 }
 394 
 395 #ifndef PRODUCT
 396 extern "C" void findpc(intptr_t x);
 397 #endif
 398 
 399 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 400   // In order to get locks to work, we need to fake a in_VM state
 401   JavaThread* thread = JavaThread::current();
 402   JavaThreadState saved_state = thread->thread_state();
 403   thread->set_thread_state(_thread_in_vm);
 404   if (ShowMessageBoxOnError) {
 405     JavaThread* thread = JavaThread::current();
 406     JavaThreadState saved_state = thread->thread_state();
 407     thread->set_thread_state(_thread_in_vm);
 408     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 409       ttyLocker ttyl;
 410       BytecodeCounter::print();
 411     }
 412     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 413     // This is the value of eip which points to where verify_oop will return.
 414     if (os::message_box(msg, "Execution stopped, print registers?")) {
 415       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 416       BREAKPOINT;
 417     }
 418   } else {
 419     ttyLocker ttyl;
 420     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 421   }
 422   // Don't assert holding the ttyLock
 423     assert(false, "DEBUG MESSAGE: %s", msg);
 424   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 425 }
 426 
 427 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 428   ttyLocker ttyl;
 429   FlagSetting fs(Debugging, true);
 430   tty->print_cr("eip = 0x%08x", eip);
 431 #ifndef PRODUCT
 432   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 433     tty->cr();
 434     findpc(eip);
 435     tty->cr();
 436   }
 437 #endif
 438 #define PRINT_REG(rax) \
 439   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 440   PRINT_REG(rax);
 441   PRINT_REG(rbx);
 442   PRINT_REG(rcx);
 443   PRINT_REG(rdx);
 444   PRINT_REG(rdi);
 445   PRINT_REG(rsi);
 446   PRINT_REG(rbp);
 447   PRINT_REG(rsp);
 448 #undef PRINT_REG
 449   // Print some words near top of staack.
 450   int* dump_sp = (int*) rsp;
 451   for (int col1 = 0; col1 < 8; col1++) {
 452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 453     os::print_location(tty, *dump_sp++);
 454   }
 455   for (int row = 0; row < 16; row++) {
 456     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 457     for (int col = 0; col < 8; col++) {
 458       tty->print(" 0x%08x", *dump_sp++);
 459     }
 460     tty->cr();
 461   }
 462   // Print some instructions around pc:
 463   Disassembler::decode((address)eip-64, (address)eip);
 464   tty->print_cr("--------");
 465   Disassembler::decode((address)eip, (address)eip+32);
 466 }
 467 
 468 void MacroAssembler::stop(const char* msg) {
 469   ExternalAddress message((address)msg);
 470   // push address of message
 471   pushptr(message.addr());
 472   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 473   pusha();                                            // push registers
 474   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 475   hlt();
 476 }
 477 
 478 void MacroAssembler::warn(const char* msg) {
 479   push_CPU_state();
 480 
 481   ExternalAddress message((address) msg);
 482   // push address of message
 483   pushptr(message.addr());
 484 
 485   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 486   addl(rsp, wordSize);       // discard argument
 487   pop_CPU_state();
 488 }
 489 
 490 void MacroAssembler::print_state() {
 491   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 492   pusha();                                            // push registers
 493 
 494   push_CPU_state();
 495   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 496   pop_CPU_state();
 497 
 498   popa();
 499   addl(rsp, wordSize);
 500 }
 501 
 502 #else // _LP64
 503 
 504 // 64 bit versions
 505 
 506 Address MacroAssembler::as_Address(AddressLiteral adr) {
 507   // amd64 always does this as a pc-rel
 508   // we can be absolute or disp based on the instruction type
 509   // jmp/call are displacements others are absolute
 510   assert(!adr.is_lval(), "must be rval");
 511   assert(reachable(adr), "must be");
 512   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 513 
 514 }
 515 
 516 Address MacroAssembler::as_Address(ArrayAddress adr) {
 517   AddressLiteral base = adr.base();
 518   lea(rscratch1, base);
 519   Address index = adr.index();
 520   assert(index._disp == 0, "must not have disp"); // maybe it can?
 521   Address array(rscratch1, index._index, index._scale, index._disp);
 522   return array;
 523 }
 524 
 525 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 526   Label L, E;
 527 
 528 #ifdef _WIN64
 529   // Windows always allocates space for it's register args
 530   assert(num_args <= 4, "only register arguments supported");
 531   subq(rsp,  frame::arg_reg_save_area_bytes);
 532 #endif
 533 
 534   // Align stack if necessary
 535   testl(rsp, 15);
 536   jcc(Assembler::zero, L);
 537 
 538   subq(rsp, 8);
 539   {
 540     call(RuntimeAddress(entry_point));
 541   }
 542   addq(rsp, 8);
 543   jmp(E);
 544 
 545   bind(L);
 546   {
 547     call(RuntimeAddress(entry_point));
 548   }
 549 
 550   bind(E);
 551 
 552 #ifdef _WIN64
 553   // restore stack pointer
 554   addq(rsp, frame::arg_reg_save_area_bytes);
 555 #endif
 556 
 557 }
 558 
 559 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 560   assert(!src2.is_lval(), "should use cmpptr");
 561 
 562   if (reachable(src2)) {
 563     cmpq(src1, as_Address(src2));
 564   } else {
 565     lea(rscratch1, src2);
 566     Assembler::cmpq(src1, Address(rscratch1, 0));
 567   }
 568 }
 569 
 570 int MacroAssembler::corrected_idivq(Register reg) {
 571   // Full implementation of Java ldiv and lrem; checks for special
 572   // case as described in JVM spec., p.243 & p.271.  The function
 573   // returns the (pc) offset of the idivl instruction - may be needed
 574   // for implicit exceptions.
 575   //
 576   //         normal case                           special case
 577   //
 578   // input : rax: dividend                         min_long
 579   //         reg: divisor   (may not be eax/edx)   -1
 580   //
 581   // output: rax: quotient  (= rax idiv reg)       min_long
 582   //         rdx: remainder (= rax irem reg)       0
 583   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 584   static const int64_t min_long = 0x8000000000000000;
 585   Label normal_case, special_case;
 586 
 587   // check for special case
 588   cmp64(rax, ExternalAddress((address) &min_long));
 589   jcc(Assembler::notEqual, normal_case);
 590   xorl(rdx, rdx); // prepare rdx for possible special case (where
 591                   // remainder = 0)
 592   cmpq(reg, -1);
 593   jcc(Assembler::equal, special_case);
 594 
 595   // handle normal case
 596   bind(normal_case);
 597   cdqq();
 598   int idivq_offset = offset();
 599   idivq(reg);
 600 
 601   // normal and special case exit
 602   bind(special_case);
 603 
 604   return idivq_offset;
 605 }
 606 
 607 void MacroAssembler::decrementq(Register reg, int value) {
 608   if (value == min_jint) { subq(reg, value); return; }
 609   if (value <  0) { incrementq(reg, -value); return; }
 610   if (value == 0) {                        ; return; }
 611   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 612   /* else */      { subq(reg, value)       ; return; }
 613 }
 614 
 615 void MacroAssembler::decrementq(Address dst, int value) {
 616   if (value == min_jint) { subq(dst, value); return; }
 617   if (value <  0) { incrementq(dst, -value); return; }
 618   if (value == 0) {                        ; return; }
 619   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 620   /* else */      { subq(dst, value)       ; return; }
 621 }
 622 
 623 void MacroAssembler::incrementq(AddressLiteral dst) {
 624   if (reachable(dst)) {
 625     incrementq(as_Address(dst));
 626   } else {
 627     lea(rscratch1, dst);
 628     incrementq(Address(rscratch1, 0));
 629   }
 630 }
 631 
 632 void MacroAssembler::incrementq(Register reg, int value) {
 633   if (value == min_jint) { addq(reg, value); return; }
 634   if (value <  0) { decrementq(reg, -value); return; }
 635   if (value == 0) {                        ; return; }
 636   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 637   /* else */      { addq(reg, value)       ; return; }
 638 }
 639 
 640 void MacroAssembler::incrementq(Address dst, int value) {
 641   if (value == min_jint) { addq(dst, value); return; }
 642   if (value <  0) { decrementq(dst, -value); return; }
 643   if (value == 0) {                        ; return; }
 644   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 645   /* else */      { addq(dst, value)       ; return; }
 646 }
 647 
 648 // 32bit can do a case table jump in one instruction but we no longer allow the base
 649 // to be installed in the Address class
 650 void MacroAssembler::jump(ArrayAddress entry) {
 651   lea(rscratch1, entry.base());
 652   Address dispatch = entry.index();
 653   assert(dispatch._base == noreg, "must be");
 654   dispatch._base = rscratch1;
 655   jmp(dispatch);
 656 }
 657 
 658 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 659   ShouldNotReachHere(); // 64bit doesn't use two regs
 660   cmpq(x_lo, y_lo);
 661 }
 662 
 663 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 664     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 665 }
 666 
 667 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 668   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 669   movptr(dst, rscratch1);
 670 }
 671 
 672 void MacroAssembler::leave() {
 673   // %%% is this really better? Why not on 32bit too?
 674   emit_int8((unsigned char)0xC9); // LEAVE
 675 }
 676 
 677 void MacroAssembler::lneg(Register hi, Register lo) {
 678   ShouldNotReachHere(); // 64bit doesn't use two regs
 679   negq(lo);
 680 }
 681 
 682 void MacroAssembler::movoop(Register dst, jobject obj) {
 683   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 684 }
 685 
 686 void MacroAssembler::movoop(Address dst, jobject obj) {
 687   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 688   movq(dst, rscratch1);
 689 }
 690 
 691 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 692   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 693 }
 694 
 695 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 696   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 697   movq(dst, rscratch1);
 698 }
 699 
 700 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 701   if (src.is_lval()) {
 702     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 703   } else {
 704     if (reachable(src)) {
 705       movq(dst, as_Address(src));
 706     } else {
 707       lea(scratch, src);
 708       movq(dst, Address(scratch, 0));
 709     }
 710   }
 711 }
 712 
 713 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 714   movq(as_Address(dst), src);
 715 }
 716 
 717 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 718   movq(dst, as_Address(src));
 719 }
 720 
 721 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 722 void MacroAssembler::movptr(Address dst, intptr_t src) {
 723   mov64(rscratch1, src);
 724   movq(dst, rscratch1);
 725 }
 726 
 727 // These are mostly for initializing NULL
 728 void MacroAssembler::movptr(Address dst, int32_t src) {
 729   movslq(dst, src);
 730 }
 731 
 732 void MacroAssembler::movptr(Register dst, int32_t src) {
 733   mov64(dst, (intptr_t)src);
 734 }
 735 
 736 void MacroAssembler::pushoop(jobject obj) {
 737   movoop(rscratch1, obj);
 738   push(rscratch1);
 739 }
 740 
 741 void MacroAssembler::pushklass(Metadata* obj) {
 742   mov_metadata(rscratch1, obj);
 743   push(rscratch1);
 744 }
 745 
 746 void MacroAssembler::pushptr(AddressLiteral src) {
 747   lea(rscratch1, src);
 748   if (src.is_lval()) {
 749     push(rscratch1);
 750   } else {
 751     pushq(Address(rscratch1, 0));
 752   }
 753 }
 754 
 755 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
 756                                            bool clear_pc) {
 757   // we must set sp to zero to clear frame
 758   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 759   // must clear fp, so that compiled frames are not confused; it is
 760   // possible that we need it only for debugging
 761   if (clear_fp) {
 762     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 763   }
 764 
 765   if (clear_pc) {
 766     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 767   }
 768 }
 769 
 770 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 771                                          Register last_java_fp,
 772                                          address  last_java_pc) {
 773   // determine last_java_sp register
 774   if (!last_java_sp->is_valid()) {
 775     last_java_sp = rsp;
 776   }
 777 
 778   // last_java_fp is optional
 779   if (last_java_fp->is_valid()) {
 780     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 781            last_java_fp);
 782   }
 783 
 784   // last_java_pc is optional
 785   if (last_java_pc != NULL) {
 786     Address java_pc(r15_thread,
 787                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 788     lea(rscratch1, InternalAddress(last_java_pc));
 789     movptr(java_pc, rscratch1);
 790   }
 791 
 792   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 793 }
 794 
 795 static void pass_arg0(MacroAssembler* masm, Register arg) {
 796   if (c_rarg0 != arg ) {
 797     masm->mov(c_rarg0, arg);
 798   }
 799 }
 800 
 801 static void pass_arg1(MacroAssembler* masm, Register arg) {
 802   if (c_rarg1 != arg ) {
 803     masm->mov(c_rarg1, arg);
 804   }
 805 }
 806 
 807 static void pass_arg2(MacroAssembler* masm, Register arg) {
 808   if (c_rarg2 != arg ) {
 809     masm->mov(c_rarg2, arg);
 810   }
 811 }
 812 
 813 static void pass_arg3(MacroAssembler* masm, Register arg) {
 814   if (c_rarg3 != arg ) {
 815     masm->mov(c_rarg3, arg);
 816   }
 817 }
 818 
 819 void MacroAssembler::stop(const char* msg) {
 820   address rip = pc();
 821   pusha(); // get regs on stack
 822   lea(c_rarg0, ExternalAddress((address) msg));
 823   lea(c_rarg1, InternalAddress(rip));
 824   movq(c_rarg2, rsp); // pass pointer to regs array
 825   andq(rsp, -16); // align stack as required by ABI
 826   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 827   hlt();
 828 }
 829 
 830 void MacroAssembler::warn(const char* msg) {
 831   push(rbp);
 832   movq(rbp, rsp);
 833   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 834   push_CPU_state();   // keeps alignment at 16 bytes
 835   lea(c_rarg0, ExternalAddress((address) msg));
 836   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 837   pop_CPU_state();
 838   mov(rsp, rbp);
 839   pop(rbp);
 840 }
 841 
 842 void MacroAssembler::print_state() {
 843   address rip = pc();
 844   pusha();            // get regs on stack
 845   push(rbp);
 846   movq(rbp, rsp);
 847   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 848   push_CPU_state();   // keeps alignment at 16 bytes
 849 
 850   lea(c_rarg0, InternalAddress(rip));
 851   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 852   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 853 
 854   pop_CPU_state();
 855   mov(rsp, rbp);
 856   pop(rbp);
 857   popa();
 858 }
 859 
 860 #ifndef PRODUCT
 861 extern "C" void findpc(intptr_t x);
 862 #endif
 863 
 864 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 865   // In order to get locks to work, we need to fake a in_VM state
 866   if (ShowMessageBoxOnError) {
 867     JavaThread* thread = JavaThread::current();
 868     JavaThreadState saved_state = thread->thread_state();
 869     thread->set_thread_state(_thread_in_vm);
 870 #ifndef PRODUCT
 871     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 872       ttyLocker ttyl;
 873       BytecodeCounter::print();
 874     }
 875 #endif
 876     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 877     // XXX correct this offset for amd64
 878     // This is the value of eip which points to where verify_oop will return.
 879     if (os::message_box(msg, "Execution stopped, print registers?")) {
 880       print_state64(pc, regs);
 881       BREAKPOINT;
 882       assert(false, "start up GDB");
 883     }
 884     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 885   } else {
 886     ttyLocker ttyl;
 887     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 888                     msg);
 889     assert(false, "DEBUG MESSAGE: %s", msg);
 890   }
 891 }
 892 
 893 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 894   ttyLocker ttyl;
 895   FlagSetting fs(Debugging, true);
 896   tty->print_cr("rip = 0x%016lx", pc);
 897 #ifndef PRODUCT
 898   tty->cr();
 899   findpc(pc);
 900   tty->cr();
 901 #endif
 902 #define PRINT_REG(rax, value) \
 903   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 904   PRINT_REG(rax, regs[15]);
 905   PRINT_REG(rbx, regs[12]);
 906   PRINT_REG(rcx, regs[14]);
 907   PRINT_REG(rdx, regs[13]);
 908   PRINT_REG(rdi, regs[8]);
 909   PRINT_REG(rsi, regs[9]);
 910   PRINT_REG(rbp, regs[10]);
 911   PRINT_REG(rsp, regs[11]);
 912   PRINT_REG(r8 , regs[7]);
 913   PRINT_REG(r9 , regs[6]);
 914   PRINT_REG(r10, regs[5]);
 915   PRINT_REG(r11, regs[4]);
 916   PRINT_REG(r12, regs[3]);
 917   PRINT_REG(r13, regs[2]);
 918   PRINT_REG(r14, regs[1]);
 919   PRINT_REG(r15, regs[0]);
 920 #undef PRINT_REG
 921   // Print some words near top of staack.
 922   int64_t* rsp = (int64_t*) regs[11];
 923   int64_t* dump_sp = rsp;
 924   for (int col1 = 0; col1 < 8; col1++) {
 925     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 926     os::print_location(tty, *dump_sp++);
 927   }
 928   for (int row = 0; row < 25; row++) {
 929     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 930     for (int col = 0; col < 4; col++) {
 931       tty->print(" 0x%016lx", *dump_sp++);
 932     }
 933     tty->cr();
 934   }
 935   // Print some instructions around pc:
 936   Disassembler::decode((address)pc-64, (address)pc);
 937   tty->print_cr("--------");
 938   Disassembler::decode((address)pc, (address)pc+32);
 939 }
 940 
 941 #endif // _LP64
 942 
 943 // Now versions that are common to 32/64 bit
 944 
 945 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 946   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 947 }
 948 
 949 void MacroAssembler::addptr(Register dst, Register src) {
 950   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 951 }
 952 
 953 void MacroAssembler::addptr(Address dst, Register src) {
 954   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 955 }
 956 
 957 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 958   if (reachable(src)) {
 959     Assembler::addsd(dst, as_Address(src));
 960   } else {
 961     lea(rscratch1, src);
 962     Assembler::addsd(dst, Address(rscratch1, 0));
 963   }
 964 }
 965 
 966 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 967   if (reachable(src)) {
 968     addss(dst, as_Address(src));
 969   } else {
 970     lea(rscratch1, src);
 971     addss(dst, Address(rscratch1, 0));
 972   }
 973 }
 974 
 975 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 976   if (reachable(src)) {
 977     Assembler::addpd(dst, as_Address(src));
 978   } else {
 979     lea(rscratch1, src);
 980     Assembler::addpd(dst, Address(rscratch1, 0));
 981   }
 982 }
 983 
 984 void MacroAssembler::align(int modulus) {
 985   align(modulus, offset());
 986 }
 987 
 988 void MacroAssembler::align(int modulus, int target) {
 989   if (target % modulus != 0) {
 990     nop(modulus - (target % modulus));
 991   }
 992 }
 993 
 994 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 995   // Used in sign-masking with aligned address.
 996   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 997   if (reachable(src)) {
 998     Assembler::andpd(dst, as_Address(src));
 999   } else {
1000     lea(rscratch1, src);
1001     Assembler::andpd(dst, Address(rscratch1, 0));
1002   }
1003 }
1004 
1005 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
1006   // Used in sign-masking with aligned address.
1007   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1008   if (reachable(src)) {
1009     Assembler::andps(dst, as_Address(src));
1010   } else {
1011     lea(rscratch1, src);
1012     Assembler::andps(dst, Address(rscratch1, 0));
1013   }
1014 }
1015 
1016 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1017   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1018 }
1019 
1020 void MacroAssembler::atomic_incl(Address counter_addr) {
1021   if (os::is_MP())
1022     lock();
1023   incrementl(counter_addr);
1024 }
1025 
1026 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1027   if (reachable(counter_addr)) {
1028     atomic_incl(as_Address(counter_addr));
1029   } else {
1030     lea(scr, counter_addr);
1031     atomic_incl(Address(scr, 0));
1032   }
1033 }
1034 
1035 #ifdef _LP64
1036 void MacroAssembler::atomic_incq(Address counter_addr) {
1037   if (os::is_MP())
1038     lock();
1039   incrementq(counter_addr);
1040 }
1041 
1042 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1043   if (reachable(counter_addr)) {
1044     atomic_incq(as_Address(counter_addr));
1045   } else {
1046     lea(scr, counter_addr);
1047     atomic_incq(Address(scr, 0));
1048   }
1049 }
1050 #endif
1051 
1052 // Writes to stack successive pages until offset reached to check for
1053 // stack overflow + shadow pages.  This clobbers tmp.
1054 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1055   movptr(tmp, rsp);
1056   // Bang stack for total size given plus shadow page size.
1057   // Bang one page at a time because large size can bang beyond yellow and
1058   // red zones.
1059   Label loop;
1060   bind(loop);
1061   movl(Address(tmp, (-os::vm_page_size())), size );
1062   subptr(tmp, os::vm_page_size());
1063   subl(size, os::vm_page_size());
1064   jcc(Assembler::greater, loop);
1065 
1066   // Bang down shadow pages too.
1067   // At this point, (tmp-0) is the last address touched, so don't
1068   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1069   // was post-decremented.)  Skip this address by starting at i=1, and
1070   // touch a few more pages below.  N.B.  It is important to touch all
1071   // the way down to and including i=StackShadowPages.
1072   for (int i = 1; i < StackShadowPages; i++) {
1073     // this could be any sized move but this is can be a debugging crumb
1074     // so the bigger the better.
1075     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1076   }
1077 }
1078 
1079 void MacroAssembler::reserved_stack_check() {
1080     // testing if reserved zone needs to be enabled
1081     Label no_reserved_zone_enabling;
1082     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1083     NOT_LP64(get_thread(rsi);)
1084 
1085     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1086     jcc(Assembler::below, no_reserved_zone_enabling);
1087 
1088     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1089     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1090     should_not_reach_here();
1091 
1092     bind(no_reserved_zone_enabling);
1093 }
1094 
1095 int MacroAssembler::biased_locking_enter(Register lock_reg,
1096                                          Register obj_reg,
1097                                          Register swap_reg,
1098                                          Register tmp_reg,
1099                                          bool swap_reg_contains_mark,
1100                                          Label& done,
1101                                          Label* slow_case,
1102                                          BiasedLockingCounters* counters) {
1103   assert(UseBiasedLocking, "why call this otherwise?");
1104   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1105   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1106   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1107   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1108   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1109   Address saved_mark_addr(lock_reg, 0);
1110 
1111   if (PrintBiasedLockingStatistics && counters == NULL) {
1112     counters = BiasedLocking::counters();
1113   }
1114   // Biased locking
1115   // See whether the lock is currently biased toward our thread and
1116   // whether the epoch is still valid
1117   // Note that the runtime guarantees sufficient alignment of JavaThread
1118   // pointers to allow age to be placed into low bits
1119   // First check to see whether biasing is even enabled for this object
1120   Label cas_label;
1121   int null_check_offset = -1;
1122   if (!swap_reg_contains_mark) {
1123     null_check_offset = offset();
1124     movptr(swap_reg, mark_addr);
1125   }
1126   movptr(tmp_reg, swap_reg);
1127   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1128   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1129   jcc(Assembler::notEqual, cas_label);
1130   // The bias pattern is present in the object's header. Need to check
1131   // whether the bias owner and the epoch are both still current.
1132 #ifndef _LP64
1133   // Note that because there is no current thread register on x86_32 we
1134   // need to store off the mark word we read out of the object to
1135   // avoid reloading it and needing to recheck invariants below. This
1136   // store is unfortunate but it makes the overall code shorter and
1137   // simpler.
1138   movptr(saved_mark_addr, swap_reg);
1139 #endif
1140   if (swap_reg_contains_mark) {
1141     null_check_offset = offset();
1142   }
1143   load_prototype_header(tmp_reg, obj_reg);
1144 #ifdef _LP64
1145   orptr(tmp_reg, r15_thread);
1146   xorptr(tmp_reg, swap_reg);
1147   Register header_reg = tmp_reg;
1148 #else
1149   xorptr(tmp_reg, swap_reg);
1150   get_thread(swap_reg);
1151   xorptr(swap_reg, tmp_reg);
1152   Register header_reg = swap_reg;
1153 #endif
1154   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1155   if (counters != NULL) {
1156     cond_inc32(Assembler::zero,
1157                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1158   }
1159   jcc(Assembler::equal, done);
1160 
1161   Label try_revoke_bias;
1162   Label try_rebias;
1163 
1164   // At this point we know that the header has the bias pattern and
1165   // that we are not the bias owner in the current epoch. We need to
1166   // figure out more details about the state of the header in order to
1167   // know what operations can be legally performed on the object's
1168   // header.
1169 
1170   // If the low three bits in the xor result aren't clear, that means
1171   // the prototype header is no longer biased and we have to revoke
1172   // the bias on this object.
1173   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1174   jccb(Assembler::notZero, try_revoke_bias);
1175 
1176   // Biasing is still enabled for this data type. See whether the
1177   // epoch of the current bias is still valid, meaning that the epoch
1178   // bits of the mark word are equal to the epoch bits of the
1179   // prototype header. (Note that the prototype header's epoch bits
1180   // only change at a safepoint.) If not, attempt to rebias the object
1181   // toward the current thread. Note that we must be absolutely sure
1182   // that the current epoch is invalid in order to do this because
1183   // otherwise the manipulations it performs on the mark word are
1184   // illegal.
1185   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1186   jccb(Assembler::notZero, try_rebias);
1187 
1188   // The epoch of the current bias is still valid but we know nothing
1189   // about the owner; it might be set or it might be clear. Try to
1190   // acquire the bias of the object using an atomic operation. If this
1191   // fails we will go in to the runtime to revoke the object's bias.
1192   // Note that we first construct the presumed unbiased header so we
1193   // don't accidentally blow away another thread's valid bias.
1194   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1195   andptr(swap_reg,
1196          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1197 #ifdef _LP64
1198   movptr(tmp_reg, swap_reg);
1199   orptr(tmp_reg, r15_thread);
1200 #else
1201   get_thread(tmp_reg);
1202   orptr(tmp_reg, swap_reg);
1203 #endif
1204   if (os::is_MP()) {
1205     lock();
1206   }
1207   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1208   // If the biasing toward our thread failed, this means that
1209   // another thread succeeded in biasing it toward itself and we
1210   // need to revoke that bias. The revocation will occur in the
1211   // interpreter runtime in the slow case.
1212   if (counters != NULL) {
1213     cond_inc32(Assembler::zero,
1214                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1215   }
1216   if (slow_case != NULL) {
1217     jcc(Assembler::notZero, *slow_case);
1218   }
1219   jmp(done);
1220 
1221   bind(try_rebias);
1222   // At this point we know the epoch has expired, meaning that the
1223   // current "bias owner", if any, is actually invalid. Under these
1224   // circumstances _only_, we are allowed to use the current header's
1225   // value as the comparison value when doing the cas to acquire the
1226   // bias in the current epoch. In other words, we allow transfer of
1227   // the bias from one thread to another directly in this situation.
1228   //
1229   // FIXME: due to a lack of registers we currently blow away the age
1230   // bits in this situation. Should attempt to preserve them.
1231   load_prototype_header(tmp_reg, obj_reg);
1232 #ifdef _LP64
1233   orptr(tmp_reg, r15_thread);
1234 #else
1235   get_thread(swap_reg);
1236   orptr(tmp_reg, swap_reg);
1237   movptr(swap_reg, saved_mark_addr);
1238 #endif
1239   if (os::is_MP()) {
1240     lock();
1241   }
1242   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1243   // If the biasing toward our thread failed, then another thread
1244   // succeeded in biasing it toward itself and we need to revoke that
1245   // bias. The revocation will occur in the runtime in the slow case.
1246   if (counters != NULL) {
1247     cond_inc32(Assembler::zero,
1248                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1249   }
1250   if (slow_case != NULL) {
1251     jcc(Assembler::notZero, *slow_case);
1252   }
1253   jmp(done);
1254 
1255   bind(try_revoke_bias);
1256   // The prototype mark in the klass doesn't have the bias bit set any
1257   // more, indicating that objects of this data type are not supposed
1258   // to be biased any more. We are going to try to reset the mark of
1259   // this object to the prototype value and fall through to the
1260   // CAS-based locking scheme. Note that if our CAS fails, it means
1261   // that another thread raced us for the privilege of revoking the
1262   // bias of this particular object, so it's okay to continue in the
1263   // normal locking code.
1264   //
1265   // FIXME: due to a lack of registers we currently blow away the age
1266   // bits in this situation. Should attempt to preserve them.
1267   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1268   load_prototype_header(tmp_reg, obj_reg);
1269   if (os::is_MP()) {
1270     lock();
1271   }
1272   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1273   // Fall through to the normal CAS-based lock, because no matter what
1274   // the result of the above CAS, some thread must have succeeded in
1275   // removing the bias bit from the object's header.
1276   if (counters != NULL) {
1277     cond_inc32(Assembler::zero,
1278                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1279   }
1280 
1281   bind(cas_label);
1282 
1283   return null_check_offset;
1284 }
1285 
1286 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1287   assert(UseBiasedLocking, "why call this otherwise?");
1288 
1289   // Check for biased locking unlock case, which is a no-op
1290   // Note: we do not have to check the thread ID for two reasons.
1291   // First, the interpreter checks for IllegalMonitorStateException at
1292   // a higher level. Second, if the bias was revoked while we held the
1293   // lock, the object could not be rebiased toward another thread, so
1294   // the bias bit would be clear.
1295   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1296   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1297   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1298   jcc(Assembler::equal, done);
1299 }
1300 
1301 #ifdef COMPILER2
1302 
1303 #if INCLUDE_RTM_OPT
1304 
1305 // Update rtm_counters based on abort status
1306 // input: abort_status
1307 //        rtm_counters (RTMLockingCounters*)
1308 // flags are killed
1309 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1310 
1311   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1312   if (PrintPreciseRTMLockingStatistics) {
1313     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1314       Label check_abort;
1315       testl(abort_status, (1<<i));
1316       jccb(Assembler::equal, check_abort);
1317       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1318       bind(check_abort);
1319     }
1320   }
1321 }
1322 
1323 // Branch if (random & (count-1) != 0), count is 2^n
1324 // tmp, scr and flags are killed
1325 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1326   assert(tmp == rax, "");
1327   assert(scr == rdx, "");
1328   rdtsc(); // modifies EDX:EAX
1329   andptr(tmp, count-1);
1330   jccb(Assembler::notZero, brLabel);
1331 }
1332 
1333 // Perform abort ratio calculation, set no_rtm bit if high ratio
1334 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1335 // tmpReg, rtm_counters_Reg and flags are killed
1336 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1337                                                  Register rtm_counters_Reg,
1338                                                  RTMLockingCounters* rtm_counters,
1339                                                  Metadata* method_data) {
1340   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1341 
1342   if (RTMLockingCalculationDelay > 0) {
1343     // Delay calculation
1344     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1345     testptr(tmpReg, tmpReg);
1346     jccb(Assembler::equal, L_done);
1347   }
1348   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1349   //   Aborted transactions = abort_count * 100
1350   //   All transactions = total_count *  RTMTotalCountIncrRate
1351   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1352 
1353   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1354   cmpptr(tmpReg, RTMAbortThreshold);
1355   jccb(Assembler::below, L_check_always_rtm2);
1356   imulptr(tmpReg, tmpReg, 100);
1357 
1358   Register scrReg = rtm_counters_Reg;
1359   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1360   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1361   imulptr(scrReg, scrReg, RTMAbortRatio);
1362   cmpptr(tmpReg, scrReg);
1363   jccb(Assembler::below, L_check_always_rtm1);
1364   if (method_data != NULL) {
1365     // set rtm_state to "no rtm" in MDO
1366     mov_metadata(tmpReg, method_data);
1367     if (os::is_MP()) {
1368       lock();
1369     }
1370     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1371   }
1372   jmpb(L_done);
1373   bind(L_check_always_rtm1);
1374   // Reload RTMLockingCounters* address
1375   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1376   bind(L_check_always_rtm2);
1377   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1378   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1379   jccb(Assembler::below, L_done);
1380   if (method_data != NULL) {
1381     // set rtm_state to "always rtm" in MDO
1382     mov_metadata(tmpReg, method_data);
1383     if (os::is_MP()) {
1384       lock();
1385     }
1386     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1387   }
1388   bind(L_done);
1389 }
1390 
1391 // Update counters and perform abort ratio calculation
1392 // input:  abort_status_Reg
1393 // rtm_counters_Reg, flags are killed
1394 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1395                                    Register rtm_counters_Reg,
1396                                    RTMLockingCounters* rtm_counters,
1397                                    Metadata* method_data,
1398                                    bool profile_rtm) {
1399 
1400   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1401   // update rtm counters based on rax value at abort
1402   // reads abort_status_Reg, updates flags
1403   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1404   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1405   if (profile_rtm) {
1406     // Save abort status because abort_status_Reg is used by following code.
1407     if (RTMRetryCount > 0) {
1408       push(abort_status_Reg);
1409     }
1410     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1411     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1412     // restore abort status
1413     if (RTMRetryCount > 0) {
1414       pop(abort_status_Reg);
1415     }
1416   }
1417 }
1418 
1419 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1420 // inputs: retry_count_Reg
1421 //       : abort_status_Reg
1422 // output: retry_count_Reg decremented by 1
1423 // flags are killed
1424 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1425   Label doneRetry;
1426   assert(abort_status_Reg == rax, "");
1427   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1428   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1429   // if reason is in 0x6 and retry count != 0 then retry
1430   andptr(abort_status_Reg, 0x6);
1431   jccb(Assembler::zero, doneRetry);
1432   testl(retry_count_Reg, retry_count_Reg);
1433   jccb(Assembler::zero, doneRetry);
1434   pause();
1435   decrementl(retry_count_Reg);
1436   jmp(retryLabel);
1437   bind(doneRetry);
1438 }
1439 
1440 // Spin and retry if lock is busy,
1441 // inputs: box_Reg (monitor address)
1442 //       : retry_count_Reg
1443 // output: retry_count_Reg decremented by 1
1444 //       : clear z flag if retry count exceeded
1445 // tmp_Reg, scr_Reg, flags are killed
1446 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1447                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1448   Label SpinLoop, SpinExit, doneRetry;
1449   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1450 
1451   testl(retry_count_Reg, retry_count_Reg);
1452   jccb(Assembler::zero, doneRetry);
1453   decrementl(retry_count_Reg);
1454   movptr(scr_Reg, RTMSpinLoopCount);
1455 
1456   bind(SpinLoop);
1457   pause();
1458   decrementl(scr_Reg);
1459   jccb(Assembler::lessEqual, SpinExit);
1460   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1461   testptr(tmp_Reg, tmp_Reg);
1462   jccb(Assembler::notZero, SpinLoop);
1463 
1464   bind(SpinExit);
1465   jmp(retryLabel);
1466   bind(doneRetry);
1467   incrementl(retry_count_Reg); // clear z flag
1468 }
1469 
1470 // Use RTM for normal stack locks
1471 // Input: objReg (object to lock)
1472 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1473                                        Register retry_on_abort_count_Reg,
1474                                        RTMLockingCounters* stack_rtm_counters,
1475                                        Metadata* method_data, bool profile_rtm,
1476                                        Label& DONE_LABEL, Label& IsInflated) {
1477   assert(UseRTMForStackLocks, "why call this otherwise?");
1478   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1479   assert(tmpReg == rax, "");
1480   assert(scrReg == rdx, "");
1481   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1482 
1483   if (RTMRetryCount > 0) {
1484     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1485     bind(L_rtm_retry);
1486   }
1487   movptr(tmpReg, Address(objReg, 0));
1488   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1489   jcc(Assembler::notZero, IsInflated);
1490 
1491   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1492     Label L_noincrement;
1493     if (RTMTotalCountIncrRate > 1) {
1494       // tmpReg, scrReg and flags are killed
1495       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1496     }
1497     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1498     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1499     bind(L_noincrement);
1500   }
1501   xbegin(L_on_abort);
1502   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1503   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1504   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1505   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1506 
1507   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1508   if (UseRTMXendForLockBusy) {
1509     xend();
1510     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1511     jmp(L_decrement_retry);
1512   }
1513   else {
1514     xabort(0);
1515   }
1516   bind(L_on_abort);
1517   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1518     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1519   }
1520   bind(L_decrement_retry);
1521   if (RTMRetryCount > 0) {
1522     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1523     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1524   }
1525 }
1526 
1527 // Use RTM for inflating locks
1528 // inputs: objReg (object to lock)
1529 //         boxReg (on-stack box address (displaced header location) - KILLED)
1530 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1531 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1532                                           Register scrReg, Register retry_on_busy_count_Reg,
1533                                           Register retry_on_abort_count_Reg,
1534                                           RTMLockingCounters* rtm_counters,
1535                                           Metadata* method_data, bool profile_rtm,
1536                                           Label& DONE_LABEL) {
1537   assert(UseRTMLocking, "why call this otherwise?");
1538   assert(tmpReg == rax, "");
1539   assert(scrReg == rdx, "");
1540   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1541   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1542 
1543   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1544   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1545   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1546 
1547   if (RTMRetryCount > 0) {
1548     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1549     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1550     bind(L_rtm_retry);
1551   }
1552   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1553     Label L_noincrement;
1554     if (RTMTotalCountIncrRate > 1) {
1555       // tmpReg, scrReg and flags are killed
1556       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1557     }
1558     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1559     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1560     bind(L_noincrement);
1561   }
1562   xbegin(L_on_abort);
1563   movptr(tmpReg, Address(objReg, 0));
1564   movptr(tmpReg, Address(tmpReg, owner_offset));
1565   testptr(tmpReg, tmpReg);
1566   jcc(Assembler::zero, DONE_LABEL);
1567   if (UseRTMXendForLockBusy) {
1568     xend();
1569     jmp(L_decrement_retry);
1570   }
1571   else {
1572     xabort(0);
1573   }
1574   bind(L_on_abort);
1575   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1576   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1577     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1578   }
1579   if (RTMRetryCount > 0) {
1580     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1581     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1582   }
1583 
1584   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1585   testptr(tmpReg, tmpReg) ;
1586   jccb(Assembler::notZero, L_decrement_retry) ;
1587 
1588   // Appears unlocked - try to swing _owner from null to non-null.
1589   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1590 #ifdef _LP64
1591   Register threadReg = r15_thread;
1592 #else
1593   get_thread(scrReg);
1594   Register threadReg = scrReg;
1595 #endif
1596   if (os::is_MP()) {
1597     lock();
1598   }
1599   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1600 
1601   if (RTMRetryCount > 0) {
1602     // success done else retry
1603     jccb(Assembler::equal, DONE_LABEL) ;
1604     bind(L_decrement_retry);
1605     // Spin and retry if lock is busy.
1606     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1607   }
1608   else {
1609     bind(L_decrement_retry);
1610   }
1611 }
1612 
1613 #endif //  INCLUDE_RTM_OPT
1614 
1615 // Fast_Lock and Fast_Unlock used by C2
1616 
1617 // Because the transitions from emitted code to the runtime
1618 // monitorenter/exit helper stubs are so slow it's critical that
1619 // we inline both the stack-locking fast-path and the inflated fast path.
1620 //
1621 // See also: cmpFastLock and cmpFastUnlock.
1622 //
1623 // What follows is a specialized inline transliteration of the code
1624 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1625 // another option would be to emit TrySlowEnter and TrySlowExit methods
1626 // at startup-time.  These methods would accept arguments as
1627 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1628 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1629 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1630 // In practice, however, the # of lock sites is bounded and is usually small.
1631 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1632 // if the processor uses simple bimodal branch predictors keyed by EIP
1633 // Since the helper routines would be called from multiple synchronization
1634 // sites.
1635 //
1636 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1637 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1638 // to those specialized methods.  That'd give us a mostly platform-independent
1639 // implementation that the JITs could optimize and inline at their pleasure.
1640 // Done correctly, the only time we'd need to cross to native could would be
1641 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1642 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1643 // (b) explicit barriers or fence operations.
1644 //
1645 // TODO:
1646 //
1647 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1648 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1649 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1650 //    the lock operators would typically be faster than reifying Self.
1651 //
1652 // *  Ideally I'd define the primitives as:
1653 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1654 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1655 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1656 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1657 //    Furthermore the register assignments are overconstrained, possibly resulting in
1658 //    sub-optimal code near the synchronization site.
1659 //
1660 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1661 //    Alternately, use a better sp-proximity test.
1662 //
1663 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1664 //    Either one is sufficient to uniquely identify a thread.
1665 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1666 //
1667 // *  Intrinsify notify() and notifyAll() for the common cases where the
1668 //    object is locked by the calling thread but the waitlist is empty.
1669 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1670 //
1671 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1672 //    But beware of excessive branch density on AMD Opterons.
1673 //
1674 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1675 //    or failure of the fast-path.  If the fast-path fails then we pass
1676 //    control to the slow-path, typically in C.  In Fast_Lock and
1677 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1678 //    will emit a conditional branch immediately after the node.
1679 //    So we have branches to branches and lots of ICC.ZF games.
1680 //    Instead, it might be better to have C2 pass a "FailureLabel"
1681 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1682 //    will drop through the node.  ICC.ZF is undefined at exit.
1683 //    In the case of failure, the node will branch directly to the
1684 //    FailureLabel
1685 
1686 
1687 // obj: object to lock
1688 // box: on-stack box address (displaced header location) - KILLED
1689 // rax,: tmp -- KILLED
1690 // scr: tmp -- KILLED
1691 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1692                                Register scrReg, Register cx1Reg, Register cx2Reg,
1693                                BiasedLockingCounters* counters,
1694                                RTMLockingCounters* rtm_counters,
1695                                RTMLockingCounters* stack_rtm_counters,
1696                                Metadata* method_data,
1697                                bool use_rtm, bool profile_rtm) {
1698   // Ensure the register assignents are disjoint
1699   assert(tmpReg == rax, "");
1700 
1701   if (use_rtm) {
1702     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1703   } else {
1704     assert(cx1Reg == noreg, "");
1705     assert(cx2Reg == noreg, "");
1706     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1707   }
1708 
1709   if (counters != NULL) {
1710     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1711   }
1712   if (EmitSync & 1) {
1713       // set box->dhw = markOopDesc::unused_mark()
1714       // Force all sync thru slow-path: slow_enter() and slow_exit()
1715       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1716       cmpptr (rsp, (int32_t)NULL_WORD);
1717   } else {
1718     // Possible cases that we'll encounter in fast_lock
1719     // ------------------------------------------------
1720     // * Inflated
1721     //    -- unlocked
1722     //    -- Locked
1723     //       = by self
1724     //       = by other
1725     // * biased
1726     //    -- by Self
1727     //    -- by other
1728     // * neutral
1729     // * stack-locked
1730     //    -- by self
1731     //       = sp-proximity test hits
1732     //       = sp-proximity test generates false-negative
1733     //    -- by other
1734     //
1735 
1736     Label IsInflated, DONE_LABEL;
1737 
1738     // it's stack-locked, biased or neutral
1739     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1740     // order to reduce the number of conditional branches in the most common cases.
1741     // Beware -- there's a subtle invariant that fetch of the markword
1742     // at [FETCH], below, will never observe a biased encoding (*101b).
1743     // If this invariant is not held we risk exclusion (safety) failure.
1744     if (UseBiasedLocking && !UseOptoBiasInlining) {
1745       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1746     }
1747 
1748 #if INCLUDE_RTM_OPT
1749     if (UseRTMForStackLocks && use_rtm) {
1750       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1751                         stack_rtm_counters, method_data, profile_rtm,
1752                         DONE_LABEL, IsInflated);
1753     }
1754 #endif // INCLUDE_RTM_OPT
1755 
1756     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1757     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1758     jccb(Assembler::notZero, IsInflated);
1759 
1760     // Attempt stack-locking ...
1761     orptr (tmpReg, markOopDesc::unlocked_value);
1762     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1763     if (os::is_MP()) {
1764       lock();
1765     }
1766     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1767     if (counters != NULL) {
1768       cond_inc32(Assembler::equal,
1769                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1770     }
1771     jcc(Assembler::equal, DONE_LABEL);           // Success
1772 
1773     // Recursive locking.
1774     // The object is stack-locked: markword contains stack pointer to BasicLock.
1775     // Locked by current thread if difference with current SP is less than one page.
1776     subptr(tmpReg, rsp);
1777     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1778     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1779     movptr(Address(boxReg, 0), tmpReg);
1780     if (counters != NULL) {
1781       cond_inc32(Assembler::equal,
1782                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1783     }
1784     jmp(DONE_LABEL);
1785 
1786     bind(IsInflated);
1787     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1788 
1789 #if INCLUDE_RTM_OPT
1790     // Use the same RTM locking code in 32- and 64-bit VM.
1791     if (use_rtm) {
1792       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1793                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1794     } else {
1795 #endif // INCLUDE_RTM_OPT
1796 
1797 #ifndef _LP64
1798     // The object is inflated.
1799 
1800     // boxReg refers to the on-stack BasicLock in the current frame.
1801     // We'd like to write:
1802     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1803     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1804     // additional latency as we have another ST in the store buffer that must drain.
1805 
1806     if (EmitSync & 8192) {
1807        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1808        get_thread (scrReg);
1809        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1810        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1811        if (os::is_MP()) {
1812          lock();
1813        }
1814        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1815     } else
1816     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1817        // register juggle because we need tmpReg for cmpxchgptr below
1818        movptr(scrReg, boxReg);
1819        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1820 
1821        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1822        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1823           // prefetchw [eax + Offset(_owner)-2]
1824           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1825        }
1826 
1827        if ((EmitSync & 64) == 0) {
1828          // Optimistic form: consider XORL tmpReg,tmpReg
1829          movptr(tmpReg, NULL_WORD);
1830        } else {
1831          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1832          // Test-And-CAS instead of CAS
1833          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1834          testptr(tmpReg, tmpReg);                   // Locked ?
1835          jccb  (Assembler::notZero, DONE_LABEL);
1836        }
1837 
1838        // Appears unlocked - try to swing _owner from null to non-null.
1839        // Ideally, I'd manifest "Self" with get_thread and then attempt
1840        // to CAS the register containing Self into m->Owner.
1841        // But we don't have enough registers, so instead we can either try to CAS
1842        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1843        // we later store "Self" into m->Owner.  Transiently storing a stack address
1844        // (rsp or the address of the box) into  m->owner is harmless.
1845        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1846        if (os::is_MP()) {
1847          lock();
1848        }
1849        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1850        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1851        // If we weren't able to swing _owner from NULL to the BasicLock
1852        // then take the slow path.
1853        jccb  (Assembler::notZero, DONE_LABEL);
1854        // update _owner from BasicLock to thread
1855        get_thread (scrReg);                    // beware: clobbers ICCs
1856        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1857        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1858 
1859        // If the CAS fails we can either retry or pass control to the slow-path.
1860        // We use the latter tactic.
1861        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1862        // If the CAS was successful ...
1863        //   Self has acquired the lock
1864        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1865        // Intentional fall-through into DONE_LABEL ...
1866     } else {
1867        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1868        movptr(boxReg, tmpReg);
1869 
1870        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1871        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1872           // prefetchw [eax + Offset(_owner)-2]
1873           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1874        }
1875 
1876        if ((EmitSync & 64) == 0) {
1877          // Optimistic form
1878          xorptr  (tmpReg, tmpReg);
1879        } else {
1880          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1881          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1882          testptr(tmpReg, tmpReg);                   // Locked ?
1883          jccb  (Assembler::notZero, DONE_LABEL);
1884        }
1885 
1886        // Appears unlocked - try to swing _owner from null to non-null.
1887        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1888        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1889        get_thread (scrReg);
1890        if (os::is_MP()) {
1891          lock();
1892        }
1893        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1894 
1895        // If the CAS fails we can either retry or pass control to the slow-path.
1896        // We use the latter tactic.
1897        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1898        // If the CAS was successful ...
1899        //   Self has acquired the lock
1900        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1901        // Intentional fall-through into DONE_LABEL ...
1902     }
1903 #else // _LP64
1904     // It's inflated
1905     movq(scrReg, tmpReg);
1906     xorq(tmpReg, tmpReg);
1907 
1908     if (os::is_MP()) {
1909       lock();
1910     }
1911     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1912     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1913     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1914     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1915     // Intentional fall-through into DONE_LABEL ...
1916     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1917 #endif // _LP64
1918 #if INCLUDE_RTM_OPT
1919     } // use_rtm()
1920 #endif
1921     // DONE_LABEL is a hot target - we'd really like to place it at the
1922     // start of cache line by padding with NOPs.
1923     // See the AMD and Intel software optimization manuals for the
1924     // most efficient "long" NOP encodings.
1925     // Unfortunately none of our alignment mechanisms suffice.
1926     bind(DONE_LABEL);
1927 
1928     // At DONE_LABEL the icc ZFlag is set as follows ...
1929     // Fast_Unlock uses the same protocol.
1930     // ZFlag == 1 -> Success
1931     // ZFlag == 0 -> Failure - force control through the slow-path
1932   }
1933 }
1934 
1935 // obj: object to unlock
1936 // box: box address (displaced header location), killed.  Must be EAX.
1937 // tmp: killed, cannot be obj nor box.
1938 //
1939 // Some commentary on balanced locking:
1940 //
1941 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1942 // Methods that don't have provably balanced locking are forced to run in the
1943 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1944 // The interpreter provides two properties:
1945 // I1:  At return-time the interpreter automatically and quietly unlocks any
1946 //      objects acquired the current activation (frame).  Recall that the
1947 //      interpreter maintains an on-stack list of locks currently held by
1948 //      a frame.
1949 // I2:  If a method attempts to unlock an object that is not held by the
1950 //      the frame the interpreter throws IMSX.
1951 //
1952 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1953 // B() doesn't have provably balanced locking so it runs in the interpreter.
1954 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1955 // is still locked by A().
1956 //
1957 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1958 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1959 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1960 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1961 // Arguably given that the spec legislates the JNI case as undefined our implementation
1962 // could reasonably *avoid* checking owner in Fast_Unlock().
1963 // In the interest of performance we elide m->Owner==Self check in unlock.
1964 // A perfectly viable alternative is to elide the owner check except when
1965 // Xcheck:jni is enabled.
1966 
1967 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1968   assert(boxReg == rax, "");
1969   assert_different_registers(objReg, boxReg, tmpReg);
1970 
1971   if (EmitSync & 4) {
1972     // Disable - inhibit all inlining.  Force control through the slow-path
1973     cmpptr (rsp, 0);
1974   } else {
1975     Label DONE_LABEL, Stacked, CheckSucc;
1976 
1977     // Critically, the biased locking test must have precedence over
1978     // and appear before the (box->dhw == 0) recursive stack-lock test.
1979     if (UseBiasedLocking && !UseOptoBiasInlining) {
1980        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1981     }
1982 
1983 #if INCLUDE_RTM_OPT
1984     if (UseRTMForStackLocks && use_rtm) {
1985       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1986       Label L_regular_unlock;
1987       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1988       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1989       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1990       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1991       xend();                                       // otherwise end...
1992       jmp(DONE_LABEL);                              // ... and we're done
1993       bind(L_regular_unlock);
1994     }
1995 #endif
1996 
1997     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1998     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1999     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
2000     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2001     jccb  (Assembler::zero, Stacked);
2002 
2003     // It's inflated.
2004 #if INCLUDE_RTM_OPT
2005     if (use_rtm) {
2006       Label L_regular_inflated_unlock;
2007       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2008       movptr(boxReg, Address(tmpReg, owner_offset));
2009       testptr(boxReg, boxReg);
2010       jccb(Assembler::notZero, L_regular_inflated_unlock);
2011       xend();
2012       jmpb(DONE_LABEL);
2013       bind(L_regular_inflated_unlock);
2014     }
2015 #endif
2016 
2017     // Despite our balanced locking property we still check that m->_owner == Self
2018     // as java routines or native JNI code called by this thread might
2019     // have released the lock.
2020     // Refer to the comments in synchronizer.cpp for how we might encode extra
2021     // state in _succ so we can avoid fetching EntryList|cxq.
2022     //
2023     // I'd like to add more cases in fast_lock() and fast_unlock() --
2024     // such as recursive enter and exit -- but we have to be wary of
2025     // I$ bloat, T$ effects and BP$ effects.
2026     //
2027     // If there's no contention try a 1-0 exit.  That is, exit without
2028     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2029     // we detect and recover from the race that the 1-0 exit admits.
2030     //
2031     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2032     // before it STs null into _owner, releasing the lock.  Updates
2033     // to data protected by the critical section must be visible before
2034     // we drop the lock (and thus before any other thread could acquire
2035     // the lock and observe the fields protected by the lock).
2036     // IA32's memory-model is SPO, so STs are ordered with respect to
2037     // each other and there's no need for an explicit barrier (fence).
2038     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2039 #ifndef _LP64
2040     get_thread (boxReg);
2041     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2042       // prefetchw [ebx + Offset(_owner)-2]
2043       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2044     }
2045 
2046     // Note that we could employ various encoding schemes to reduce
2047     // the number of loads below (currently 4) to just 2 or 3.
2048     // Refer to the comments in synchronizer.cpp.
2049     // In practice the chain of fetches doesn't seem to impact performance, however.
2050     xorptr(boxReg, boxReg);
2051     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2052        // Attempt to reduce branch density - AMD's branch predictor.
2053        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2054        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2055        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2056        jccb  (Assembler::notZero, DONE_LABEL);
2057        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2058        jmpb  (DONE_LABEL);
2059     } else {
2060        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2061        jccb  (Assembler::notZero, DONE_LABEL);
2062        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2063        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2064        jccb  (Assembler::notZero, CheckSucc);
2065        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2066        jmpb  (DONE_LABEL);
2067     }
2068 
2069     // The Following code fragment (EmitSync & 65536) improves the performance of
2070     // contended applications and contended synchronization microbenchmarks.
2071     // Unfortunately the emission of the code - even though not executed - causes regressions
2072     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2073     // with an equal number of never-executed NOPs results in the same regression.
2074     // We leave it off by default.
2075 
2076     if ((EmitSync & 65536) != 0) {
2077        Label LSuccess, LGoSlowPath ;
2078 
2079        bind  (CheckSucc);
2080 
2081        // Optional pre-test ... it's safe to elide this
2082        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2083        jccb(Assembler::zero, LGoSlowPath);
2084 
2085        // We have a classic Dekker-style idiom:
2086        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2087        // There are a number of ways to implement the barrier:
2088        // (1) lock:andl &m->_owner, 0
2089        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2090        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2091        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2092        // (2) If supported, an explicit MFENCE is appealing.
2093        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2094        //     particularly if the write-buffer is full as might be the case if
2095        //     if stores closely precede the fence or fence-equivalent instruction.
2096        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2097        //     as the situation has changed with Nehalem and Shanghai.
2098        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2099        //     The $lines underlying the top-of-stack should be in M-state.
2100        //     The locked add instruction is serializing, of course.
2101        // (4) Use xchg, which is serializing
2102        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2103        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2104        //     The integer condition codes will tell us if succ was 0.
2105        //     Since _succ and _owner should reside in the same $line and
2106        //     we just stored into _owner, it's likely that the $line
2107        //     remains in M-state for the lock:orl.
2108        //
2109        // We currently use (3), although it's likely that switching to (2)
2110        // is correct for the future.
2111 
2112        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2113        if (os::is_MP()) {
2114          lock(); addptr(Address(rsp, 0), 0);
2115        }
2116        // Ratify _succ remains non-null
2117        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2118        jccb  (Assembler::notZero, LSuccess);
2119 
2120        xorptr(boxReg, boxReg);                  // box is really EAX
2121        if (os::is_MP()) { lock(); }
2122        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2123        // There's no successor so we tried to regrab the lock with the
2124        // placeholder value. If that didn't work, then another thread
2125        // grabbed the lock so we're done (and exit was a success).
2126        jccb  (Assembler::notEqual, LSuccess);
2127        // Since we're low on registers we installed rsp as a placeholding in _owner.
2128        // Now install Self over rsp.  This is safe as we're transitioning from
2129        // non-null to non=null
2130        get_thread (boxReg);
2131        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2132        // Intentional fall-through into LGoSlowPath ...
2133 
2134        bind  (LGoSlowPath);
2135        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2136        jmpb  (DONE_LABEL);
2137 
2138        bind  (LSuccess);
2139        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2140        jmpb  (DONE_LABEL);
2141     }
2142 
2143     bind (Stacked);
2144     // It's not inflated and it's not recursively stack-locked and it's not biased.
2145     // It must be stack-locked.
2146     // Try to reset the header to displaced header.
2147     // The "box" value on the stack is stable, so we can reload
2148     // and be assured we observe the same value as above.
2149     movptr(tmpReg, Address(boxReg, 0));
2150     if (os::is_MP()) {
2151       lock();
2152     }
2153     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2154     // Intention fall-thru into DONE_LABEL
2155 
2156     // DONE_LABEL is a hot target - we'd really like to place it at the
2157     // start of cache line by padding with NOPs.
2158     // See the AMD and Intel software optimization manuals for the
2159     // most efficient "long" NOP encodings.
2160     // Unfortunately none of our alignment mechanisms suffice.
2161     if ((EmitSync & 65536) == 0) {
2162        bind (CheckSucc);
2163     }
2164 #else // _LP64
2165     // It's inflated
2166     if (EmitSync & 1024) {
2167       // Emit code to check that _owner == Self
2168       // We could fold the _owner test into subsequent code more efficiently
2169       // than using a stand-alone check, but since _owner checking is off by
2170       // default we don't bother. We also might consider predicating the
2171       // _owner==Self check on Xcheck:jni or running on a debug build.
2172       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2173       xorptr(boxReg, r15_thread);
2174     } else {
2175       xorptr(boxReg, boxReg);
2176     }
2177     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2178     jccb  (Assembler::notZero, DONE_LABEL);
2179     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2180     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2181     jccb  (Assembler::notZero, CheckSucc);
2182     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2183     jmpb  (DONE_LABEL);
2184 
2185     if ((EmitSync & 65536) == 0) {
2186       // Try to avoid passing control into the slow_path ...
2187       Label LSuccess, LGoSlowPath ;
2188       bind  (CheckSucc);
2189 
2190       // The following optional optimization can be elided if necessary
2191       // Effectively: if (succ == null) goto SlowPath
2192       // The code reduces the window for a race, however,
2193       // and thus benefits performance.
2194       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2195       jccb  (Assembler::zero, LGoSlowPath);
2196 
2197       if ((EmitSync & 16) && os::is_MP()) {
2198         orptr(boxReg, boxReg);
2199         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2200       } else {
2201         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2202         if (os::is_MP()) {
2203           // Memory barrier/fence
2204           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2205           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2206           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2207           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2208           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2209           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2210           lock(); addl(Address(rsp, 0), 0);
2211         }
2212       }
2213       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2214       jccb  (Assembler::notZero, LSuccess);
2215 
2216       // Rare inopportune interleaving - race.
2217       // The successor vanished in the small window above.
2218       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2219       // We need to ensure progress and succession.
2220       // Try to reacquire the lock.
2221       // If that fails then the new owner is responsible for succession and this
2222       // thread needs to take no further action and can exit via the fast path (success).
2223       // If the re-acquire succeeds then pass control into the slow path.
2224       // As implemented, this latter mode is horrible because we generated more
2225       // coherence traffic on the lock *and* artifically extended the critical section
2226       // length while by virtue of passing control into the slow path.
2227 
2228       // box is really RAX -- the following CMPXCHG depends on that binding
2229       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2230       movptr(boxReg, (int32_t)NULL_WORD);
2231       if (os::is_MP()) { lock(); }
2232       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2233       // There's no successor so we tried to regrab the lock.
2234       // If that didn't work, then another thread grabbed the
2235       // lock so we're done (and exit was a success).
2236       jccb  (Assembler::notEqual, LSuccess);
2237       // Intentional fall-through into slow-path
2238 
2239       bind  (LGoSlowPath);
2240       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2241       jmpb  (DONE_LABEL);
2242 
2243       bind  (LSuccess);
2244       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2245       jmpb  (DONE_LABEL);
2246     }
2247 
2248     bind  (Stacked);
2249     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2250     if (os::is_MP()) { lock(); }
2251     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2252 
2253     if (EmitSync & 65536) {
2254        bind (CheckSucc);
2255     }
2256 #endif
2257     bind(DONE_LABEL);
2258   }
2259 }
2260 #endif // COMPILER2
2261 
2262 void MacroAssembler::c2bool(Register x) {
2263   // implements x == 0 ? 0 : 1
2264   // note: must only look at least-significant byte of x
2265   //       since C-style booleans are stored in one byte
2266   //       only! (was bug)
2267   andl(x, 0xFF);
2268   setb(Assembler::notZero, x);
2269 }
2270 
2271 // Wouldn't need if AddressLiteral version had new name
2272 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2273   Assembler::call(L, rtype);
2274 }
2275 
2276 void MacroAssembler::call(Register entry) {
2277   Assembler::call(entry);
2278 }
2279 
2280 void MacroAssembler::call(AddressLiteral entry) {
2281   if (reachable(entry)) {
2282     Assembler::call_literal(entry.target(), entry.rspec());
2283   } else {
2284     lea(rscratch1, entry);
2285     Assembler::call(rscratch1);
2286   }
2287 }
2288 
2289 void MacroAssembler::ic_call(address entry, jint method_index) {
2290   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2291   movptr(rax, (intptr_t)Universe::non_oop_word());
2292   call(AddressLiteral(entry, rh));
2293 }
2294 
2295 // Implementation of call_VM versions
2296 
2297 void MacroAssembler::call_VM(Register oop_result,
2298                              address entry_point,
2299                              bool check_exceptions) {
2300   Label C, E;
2301   call(C, relocInfo::none);
2302   jmp(E);
2303 
2304   bind(C);
2305   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2306   ret(0);
2307 
2308   bind(E);
2309 }
2310 
2311 void MacroAssembler::call_VM(Register oop_result,
2312                              address entry_point,
2313                              Register arg_1,
2314                              bool check_exceptions) {
2315   Label C, E;
2316   call(C, relocInfo::none);
2317   jmp(E);
2318 
2319   bind(C);
2320   pass_arg1(this, arg_1);
2321   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2322   ret(0);
2323 
2324   bind(E);
2325 }
2326 
2327 void MacroAssembler::call_VM(Register oop_result,
2328                              address entry_point,
2329                              Register arg_1,
2330                              Register arg_2,
2331                              bool check_exceptions) {
2332   Label C, E;
2333   call(C, relocInfo::none);
2334   jmp(E);
2335 
2336   bind(C);
2337 
2338   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2339 
2340   pass_arg2(this, arg_2);
2341   pass_arg1(this, arg_1);
2342   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2343   ret(0);
2344 
2345   bind(E);
2346 }
2347 
2348 void MacroAssembler::call_VM(Register oop_result,
2349                              address entry_point,
2350                              Register arg_1,
2351                              Register arg_2,
2352                              Register arg_3,
2353                              bool check_exceptions) {
2354   Label C, E;
2355   call(C, relocInfo::none);
2356   jmp(E);
2357 
2358   bind(C);
2359 
2360   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2361   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2362   pass_arg3(this, arg_3);
2363 
2364   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2365   pass_arg2(this, arg_2);
2366 
2367   pass_arg1(this, arg_1);
2368   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2369   ret(0);
2370 
2371   bind(E);
2372 }
2373 
2374 void MacroAssembler::call_VM(Register oop_result,
2375                              Register last_java_sp,
2376                              address entry_point,
2377                              int number_of_arguments,
2378                              bool check_exceptions) {
2379   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2380   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2381 }
2382 
2383 void MacroAssembler::call_VM(Register oop_result,
2384                              Register last_java_sp,
2385                              address entry_point,
2386                              Register arg_1,
2387                              bool check_exceptions) {
2388   pass_arg1(this, arg_1);
2389   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2390 }
2391 
2392 void MacroAssembler::call_VM(Register oop_result,
2393                              Register last_java_sp,
2394                              address entry_point,
2395                              Register arg_1,
2396                              Register arg_2,
2397                              bool check_exceptions) {
2398 
2399   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2400   pass_arg2(this, arg_2);
2401   pass_arg1(this, arg_1);
2402   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2403 }
2404 
2405 void MacroAssembler::call_VM(Register oop_result,
2406                              Register last_java_sp,
2407                              address entry_point,
2408                              Register arg_1,
2409                              Register arg_2,
2410                              Register arg_3,
2411                              bool check_exceptions) {
2412   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2413   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2414   pass_arg3(this, arg_3);
2415   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2416   pass_arg2(this, arg_2);
2417   pass_arg1(this, arg_1);
2418   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2419 }
2420 
2421 void MacroAssembler::super_call_VM(Register oop_result,
2422                                    Register last_java_sp,
2423                                    address entry_point,
2424                                    int number_of_arguments,
2425                                    bool check_exceptions) {
2426   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2427   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2428 }
2429 
2430 void MacroAssembler::super_call_VM(Register oop_result,
2431                                    Register last_java_sp,
2432                                    address entry_point,
2433                                    Register arg_1,
2434                                    bool check_exceptions) {
2435   pass_arg1(this, arg_1);
2436   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2437 }
2438 
2439 void MacroAssembler::super_call_VM(Register oop_result,
2440                                    Register last_java_sp,
2441                                    address entry_point,
2442                                    Register arg_1,
2443                                    Register arg_2,
2444                                    bool check_exceptions) {
2445 
2446   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2447   pass_arg2(this, arg_2);
2448   pass_arg1(this, arg_1);
2449   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2450 }
2451 
2452 void MacroAssembler::super_call_VM(Register oop_result,
2453                                    Register last_java_sp,
2454                                    address entry_point,
2455                                    Register arg_1,
2456                                    Register arg_2,
2457                                    Register arg_3,
2458                                    bool check_exceptions) {
2459   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2460   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2461   pass_arg3(this, arg_3);
2462   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2463   pass_arg2(this, arg_2);
2464   pass_arg1(this, arg_1);
2465   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2466 }
2467 
2468 void MacroAssembler::call_VM_base(Register oop_result,
2469                                   Register java_thread,
2470                                   Register last_java_sp,
2471                                   address  entry_point,
2472                                   int      number_of_arguments,
2473                                   bool     check_exceptions) {
2474   // determine java_thread register
2475   if (!java_thread->is_valid()) {
2476 #ifdef _LP64
2477     java_thread = r15_thread;
2478 #else
2479     java_thread = rdi;
2480     get_thread(java_thread);
2481 #endif // LP64
2482   }
2483   // determine last_java_sp register
2484   if (!last_java_sp->is_valid()) {
2485     last_java_sp = rsp;
2486   }
2487   // debugging support
2488   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2489   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2490 #ifdef ASSERT
2491   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2492   // r12 is the heapbase.
2493   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2494 #endif // ASSERT
2495 
2496   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2497   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2498 
2499   // push java thread (becomes first argument of C function)
2500 
2501   NOT_LP64(push(java_thread); number_of_arguments++);
2502   LP64_ONLY(mov(c_rarg0, r15_thread));
2503 
2504   // set last Java frame before call
2505   assert(last_java_sp != rbp, "can't use ebp/rbp");
2506 
2507   // Only interpreter should have to set fp
2508   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2509 
2510   // do the call, remove parameters
2511   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2512 
2513   // restore the thread (cannot use the pushed argument since arguments
2514   // may be overwritten by C code generated by an optimizing compiler);
2515   // however can use the register value directly if it is callee saved.
2516   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2517     // rdi & rsi (also r15) are callee saved -> nothing to do
2518 #ifdef ASSERT
2519     guarantee(java_thread != rax, "change this code");
2520     push(rax);
2521     { Label L;
2522       get_thread(rax);
2523       cmpptr(java_thread, rax);
2524       jcc(Assembler::equal, L);
2525       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2526       bind(L);
2527     }
2528     pop(rax);
2529 #endif
2530   } else {
2531     get_thread(java_thread);
2532   }
2533   // reset last Java frame
2534   // Only interpreter should have to clear fp
2535   reset_last_Java_frame(java_thread, true, false);
2536 
2537 #ifndef CC_INTERP
2538    // C++ interp handles this in the interpreter
2539   check_and_handle_popframe(java_thread);
2540   check_and_handle_earlyret(java_thread);
2541 #endif /* CC_INTERP */
2542 
2543   if (check_exceptions) {
2544     // check for pending exceptions (java_thread is set upon return)
2545     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2546 #ifndef _LP64
2547     jump_cc(Assembler::notEqual,
2548             RuntimeAddress(StubRoutines::forward_exception_entry()));
2549 #else
2550     // This used to conditionally jump to forward_exception however it is
2551     // possible if we relocate that the branch will not reach. So we must jump
2552     // around so we can always reach
2553 
2554     Label ok;
2555     jcc(Assembler::equal, ok);
2556     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2557     bind(ok);
2558 #endif // LP64
2559   }
2560 
2561   // get oop result if there is one and reset the value in the thread
2562   if (oop_result->is_valid()) {
2563     get_vm_result(oop_result, java_thread);
2564   }
2565 }
2566 
2567 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2568 
2569   // Calculate the value for last_Java_sp
2570   // somewhat subtle. call_VM does an intermediate call
2571   // which places a return address on the stack just under the
2572   // stack pointer as the user finsihed with it. This allows
2573   // use to retrieve last_Java_pc from last_Java_sp[-1].
2574   // On 32bit we then have to push additional args on the stack to accomplish
2575   // the actual requested call. On 64bit call_VM only can use register args
2576   // so the only extra space is the return address that call_VM created.
2577   // This hopefully explains the calculations here.
2578 
2579 #ifdef _LP64
2580   // We've pushed one address, correct last_Java_sp
2581   lea(rax, Address(rsp, wordSize));
2582 #else
2583   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2584 #endif // LP64
2585 
2586   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2587 
2588 }
2589 
2590 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2591   call_VM_leaf_base(entry_point, number_of_arguments);
2592 }
2593 
2594 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2595   pass_arg0(this, arg_0);
2596   call_VM_leaf(entry_point, 1);
2597 }
2598 
2599 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2600 
2601   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2602   pass_arg1(this, arg_1);
2603   pass_arg0(this, arg_0);
2604   call_VM_leaf(entry_point, 2);
2605 }
2606 
2607 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2608   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2609   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2610   pass_arg2(this, arg_2);
2611   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2612   pass_arg1(this, arg_1);
2613   pass_arg0(this, arg_0);
2614   call_VM_leaf(entry_point, 3);
2615 }
2616 
2617 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2618   pass_arg0(this, arg_0);
2619   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2620 }
2621 
2622 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2623 
2624   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2625   pass_arg1(this, arg_1);
2626   pass_arg0(this, arg_0);
2627   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2628 }
2629 
2630 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2631   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2632   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2633   pass_arg2(this, arg_2);
2634   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2635   pass_arg1(this, arg_1);
2636   pass_arg0(this, arg_0);
2637   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2638 }
2639 
2640 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2641   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2642   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2643   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2644   pass_arg3(this, arg_3);
2645   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2646   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2647   pass_arg2(this, arg_2);
2648   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2649   pass_arg1(this, arg_1);
2650   pass_arg0(this, arg_0);
2651   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2652 }
2653 
2654 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2655   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2656   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2657   verify_oop(oop_result, "broken oop in call_VM_base");
2658 }
2659 
2660 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2661   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2662   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2663 }
2664 
2665 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2666 }
2667 
2668 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2669 }
2670 
2671 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2672   if (reachable(src1)) {
2673     cmpl(as_Address(src1), imm);
2674   } else {
2675     lea(rscratch1, src1);
2676     cmpl(Address(rscratch1, 0), imm);
2677   }
2678 }
2679 
2680 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2681   assert(!src2.is_lval(), "use cmpptr");
2682   if (reachable(src2)) {
2683     cmpl(src1, as_Address(src2));
2684   } else {
2685     lea(rscratch1, src2);
2686     cmpl(src1, Address(rscratch1, 0));
2687   }
2688 }
2689 
2690 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2691   Assembler::cmpl(src1, imm);
2692 }
2693 
2694 void MacroAssembler::cmp32(Register src1, Address src2) {
2695   Assembler::cmpl(src1, src2);
2696 }
2697 
2698 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2699   ucomisd(opr1, opr2);
2700 
2701   Label L;
2702   if (unordered_is_less) {
2703     movl(dst, -1);
2704     jcc(Assembler::parity, L);
2705     jcc(Assembler::below , L);
2706     movl(dst, 0);
2707     jcc(Assembler::equal , L);
2708     increment(dst);
2709   } else { // unordered is greater
2710     movl(dst, 1);
2711     jcc(Assembler::parity, L);
2712     jcc(Assembler::above , L);
2713     movl(dst, 0);
2714     jcc(Assembler::equal , L);
2715     decrementl(dst);
2716   }
2717   bind(L);
2718 }
2719 
2720 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2721   ucomiss(opr1, opr2);
2722 
2723   Label L;
2724   if (unordered_is_less) {
2725     movl(dst, -1);
2726     jcc(Assembler::parity, L);
2727     jcc(Assembler::below , L);
2728     movl(dst, 0);
2729     jcc(Assembler::equal , L);
2730     increment(dst);
2731   } else { // unordered is greater
2732     movl(dst, 1);
2733     jcc(Assembler::parity, L);
2734     jcc(Assembler::above , L);
2735     movl(dst, 0);
2736     jcc(Assembler::equal , L);
2737     decrementl(dst);
2738   }
2739   bind(L);
2740 }
2741 
2742 
2743 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2744   if (reachable(src1)) {
2745     cmpb(as_Address(src1), imm);
2746   } else {
2747     lea(rscratch1, src1);
2748     cmpb(Address(rscratch1, 0), imm);
2749   }
2750 }
2751 
2752 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2753 #ifdef _LP64
2754   if (src2.is_lval()) {
2755     movptr(rscratch1, src2);
2756     Assembler::cmpq(src1, rscratch1);
2757   } else if (reachable(src2)) {
2758     cmpq(src1, as_Address(src2));
2759   } else {
2760     lea(rscratch1, src2);
2761     Assembler::cmpq(src1, Address(rscratch1, 0));
2762   }
2763 #else
2764   if (src2.is_lval()) {
2765     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2766   } else {
2767     cmpl(src1, as_Address(src2));
2768   }
2769 #endif // _LP64
2770 }
2771 
2772 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2773   assert(src2.is_lval(), "not a mem-mem compare");
2774 #ifdef _LP64
2775   // moves src2's literal address
2776   movptr(rscratch1, src2);
2777   Assembler::cmpq(src1, rscratch1);
2778 #else
2779   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2780 #endif // _LP64
2781 }
2782 
2783 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2784   if (reachable(adr)) {
2785     if (os::is_MP())
2786       lock();
2787     cmpxchgptr(reg, as_Address(adr));
2788   } else {
2789     lea(rscratch1, adr);
2790     if (os::is_MP())
2791       lock();
2792     cmpxchgptr(reg, Address(rscratch1, 0));
2793   }
2794 }
2795 
2796 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2797   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2798 }
2799 
2800 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2801   if (reachable(src)) {
2802     Assembler::comisd(dst, as_Address(src));
2803   } else {
2804     lea(rscratch1, src);
2805     Assembler::comisd(dst, Address(rscratch1, 0));
2806   }
2807 }
2808 
2809 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2810   if (reachable(src)) {
2811     Assembler::comiss(dst, as_Address(src));
2812   } else {
2813     lea(rscratch1, src);
2814     Assembler::comiss(dst, Address(rscratch1, 0));
2815   }
2816 }
2817 
2818 
2819 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2820   Condition negated_cond = negate_condition(cond);
2821   Label L;
2822   jcc(negated_cond, L);
2823   pushf(); // Preserve flags
2824   atomic_incl(counter_addr);
2825   popf();
2826   bind(L);
2827 }
2828 
2829 int MacroAssembler::corrected_idivl(Register reg) {
2830   // Full implementation of Java idiv and irem; checks for
2831   // special case as described in JVM spec., p.243 & p.271.
2832   // The function returns the (pc) offset of the idivl
2833   // instruction - may be needed for implicit exceptions.
2834   //
2835   //         normal case                           special case
2836   //
2837   // input : rax,: dividend                         min_int
2838   //         reg: divisor   (may not be rax,/rdx)   -1
2839   //
2840   // output: rax,: quotient  (= rax, idiv reg)       min_int
2841   //         rdx: remainder (= rax, irem reg)       0
2842   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2843   const int min_int = 0x80000000;
2844   Label normal_case, special_case;
2845 
2846   // check for special case
2847   cmpl(rax, min_int);
2848   jcc(Assembler::notEqual, normal_case);
2849   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2850   cmpl(reg, -1);
2851   jcc(Assembler::equal, special_case);
2852 
2853   // handle normal case
2854   bind(normal_case);
2855   cdql();
2856   int idivl_offset = offset();
2857   idivl(reg);
2858 
2859   // normal and special case exit
2860   bind(special_case);
2861 
2862   return idivl_offset;
2863 }
2864 
2865 
2866 
2867 void MacroAssembler::decrementl(Register reg, int value) {
2868   if (value == min_jint) {subl(reg, value) ; return; }
2869   if (value <  0) { incrementl(reg, -value); return; }
2870   if (value == 0) {                        ; return; }
2871   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2872   /* else */      { subl(reg, value)       ; return; }
2873 }
2874 
2875 void MacroAssembler::decrementl(Address dst, int value) {
2876   if (value == min_jint) {subl(dst, value) ; return; }
2877   if (value <  0) { incrementl(dst, -value); return; }
2878   if (value == 0) {                        ; return; }
2879   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2880   /* else */      { subl(dst, value)       ; return; }
2881 }
2882 
2883 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2884   assert (shift_value > 0, "illegal shift value");
2885   Label _is_positive;
2886   testl (reg, reg);
2887   jcc (Assembler::positive, _is_positive);
2888   int offset = (1 << shift_value) - 1 ;
2889 
2890   if (offset == 1) {
2891     incrementl(reg);
2892   } else {
2893     addl(reg, offset);
2894   }
2895 
2896   bind (_is_positive);
2897   sarl(reg, shift_value);
2898 }
2899 
2900 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2901   if (reachable(src)) {
2902     Assembler::divsd(dst, as_Address(src));
2903   } else {
2904     lea(rscratch1, src);
2905     Assembler::divsd(dst, Address(rscratch1, 0));
2906   }
2907 }
2908 
2909 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2910   if (reachable(src)) {
2911     Assembler::divss(dst, as_Address(src));
2912   } else {
2913     lea(rscratch1, src);
2914     Assembler::divss(dst, Address(rscratch1, 0));
2915   }
2916 }
2917 
2918 // !defined(COMPILER2) is because of stupid core builds
2919 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2920 void MacroAssembler::empty_FPU_stack() {
2921   if (VM_Version::supports_mmx()) {
2922     emms();
2923   } else {
2924     for (int i = 8; i-- > 0; ) ffree(i);
2925   }
2926 }
2927 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2928 
2929 
2930 // Defines obj, preserves var_size_in_bytes
2931 void MacroAssembler::eden_allocate(Register obj,
2932                                    Register var_size_in_bytes,
2933                                    int con_size_in_bytes,
2934                                    Register t1,
2935                                    Label& slow_case) {
2936   assert(obj == rax, "obj must be in rax, for cmpxchg");
2937   assert_different_registers(obj, var_size_in_bytes, t1);
2938   if (!Universe::heap()->supports_inline_contig_alloc()) {
2939     jmp(slow_case);
2940   } else {
2941     Register end = t1;
2942     Label retry;
2943     bind(retry);
2944     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2945     movptr(obj, heap_top);
2946     if (var_size_in_bytes == noreg) {
2947       lea(end, Address(obj, con_size_in_bytes));
2948     } else {
2949       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2950     }
2951     // if end < obj then we wrapped around => object too long => slow case
2952     cmpptr(end, obj);
2953     jcc(Assembler::below, slow_case);
2954     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2955     jcc(Assembler::above, slow_case);
2956     // Compare obj with the top addr, and if still equal, store the new top addr in
2957     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2958     // it otherwise. Use lock prefix for atomicity on MPs.
2959     locked_cmpxchgptr(end, heap_top);
2960     jcc(Assembler::notEqual, retry);
2961   }
2962 }
2963 
2964 void MacroAssembler::enter() {
2965   push(rbp);
2966   mov(rbp, rsp);
2967 }
2968 
2969 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2970 void MacroAssembler::fat_nop() {
2971   if (UseAddressNop) {
2972     addr_nop_5();
2973   } else {
2974     emit_int8(0x26); // es:
2975     emit_int8(0x2e); // cs:
2976     emit_int8(0x64); // fs:
2977     emit_int8(0x65); // gs:
2978     emit_int8((unsigned char)0x90);
2979   }
2980 }
2981 
2982 void MacroAssembler::fcmp(Register tmp) {
2983   fcmp(tmp, 1, true, true);
2984 }
2985 
2986 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2987   assert(!pop_right || pop_left, "usage error");
2988   if (VM_Version::supports_cmov()) {
2989     assert(tmp == noreg, "unneeded temp");
2990     if (pop_left) {
2991       fucomip(index);
2992     } else {
2993       fucomi(index);
2994     }
2995     if (pop_right) {
2996       fpop();
2997     }
2998   } else {
2999     assert(tmp != noreg, "need temp");
3000     if (pop_left) {
3001       if (pop_right) {
3002         fcompp();
3003       } else {
3004         fcomp(index);
3005       }
3006     } else {
3007       fcom(index);
3008     }
3009     // convert FPU condition into eflags condition via rax,
3010     save_rax(tmp);
3011     fwait(); fnstsw_ax();
3012     sahf();
3013     restore_rax(tmp);
3014   }
3015   // condition codes set as follows:
3016   //
3017   // CF (corresponds to C0) if x < y
3018   // PF (corresponds to C2) if unordered
3019   // ZF (corresponds to C3) if x = y
3020 }
3021 
3022 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3023   fcmp2int(dst, unordered_is_less, 1, true, true);
3024 }
3025 
3026 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3027   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3028   Label L;
3029   if (unordered_is_less) {
3030     movl(dst, -1);
3031     jcc(Assembler::parity, L);
3032     jcc(Assembler::below , L);
3033     movl(dst, 0);
3034     jcc(Assembler::equal , L);
3035     increment(dst);
3036   } else { // unordered is greater
3037     movl(dst, 1);
3038     jcc(Assembler::parity, L);
3039     jcc(Assembler::above , L);
3040     movl(dst, 0);
3041     jcc(Assembler::equal , L);
3042     decrementl(dst);
3043   }
3044   bind(L);
3045 }
3046 
3047 void MacroAssembler::fld_d(AddressLiteral src) {
3048   fld_d(as_Address(src));
3049 }
3050 
3051 void MacroAssembler::fld_s(AddressLiteral src) {
3052   fld_s(as_Address(src));
3053 }
3054 
3055 void MacroAssembler::fld_x(AddressLiteral src) {
3056   Assembler::fld_x(as_Address(src));
3057 }
3058 
3059 void MacroAssembler::fldcw(AddressLiteral src) {
3060   Assembler::fldcw(as_Address(src));
3061 }
3062 
3063 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3064   if (reachable(src)) {
3065     Assembler::mulpd(dst, as_Address(src));
3066   } else {
3067     lea(rscratch1, src);
3068     Assembler::mulpd(dst, Address(rscratch1, 0));
3069   }
3070 }
3071 
3072 void MacroAssembler::increase_precision() {
3073   subptr(rsp, BytesPerWord);
3074   fnstcw(Address(rsp, 0));
3075   movl(rax, Address(rsp, 0));
3076   orl(rax, 0x300);
3077   push(rax);
3078   fldcw(Address(rsp, 0));
3079   pop(rax);
3080 }
3081 
3082 void MacroAssembler::restore_precision() {
3083   fldcw(Address(rsp, 0));
3084   addptr(rsp, BytesPerWord);
3085 }
3086 
3087 void MacroAssembler::fpop() {
3088   ffree();
3089   fincstp();
3090 }
3091 
3092 void MacroAssembler::load_float(Address src) {
3093   if (UseSSE >= 1) {
3094     movflt(xmm0, src);
3095   } else {
3096     LP64_ONLY(ShouldNotReachHere());
3097     NOT_LP64(fld_s(src));
3098   }
3099 }
3100 
3101 void MacroAssembler::store_float(Address dst) {
3102   if (UseSSE >= 1) {
3103     movflt(dst, xmm0);
3104   } else {
3105     LP64_ONLY(ShouldNotReachHere());
3106     NOT_LP64(fstp_s(dst));
3107   }
3108 }
3109 
3110 void MacroAssembler::load_double(Address src) {
3111   if (UseSSE >= 2) {
3112     movdbl(xmm0, src);
3113   } else {
3114     LP64_ONLY(ShouldNotReachHere());
3115     NOT_LP64(fld_d(src));
3116   }
3117 }
3118 
3119 void MacroAssembler::store_double(Address dst) {
3120   if (UseSSE >= 2) {
3121     movdbl(dst, xmm0);
3122   } else {
3123     LP64_ONLY(ShouldNotReachHere());
3124     NOT_LP64(fstp_d(dst));
3125   }
3126 }
3127 
3128 void MacroAssembler::fremr(Register tmp) {
3129   save_rax(tmp);
3130   { Label L;
3131     bind(L);
3132     fprem();
3133     fwait(); fnstsw_ax();
3134 #ifdef _LP64
3135     testl(rax, 0x400);
3136     jcc(Assembler::notEqual, L);
3137 #else
3138     sahf();
3139     jcc(Assembler::parity, L);
3140 #endif // _LP64
3141   }
3142   restore_rax(tmp);
3143   // Result is in ST0.
3144   // Note: fxch & fpop to get rid of ST1
3145   // (otherwise FPU stack could overflow eventually)
3146   fxch(1);
3147   fpop();
3148 }
3149 
3150 
3151 void MacroAssembler::incrementl(AddressLiteral dst) {
3152   if (reachable(dst)) {
3153     incrementl(as_Address(dst));
3154   } else {
3155     lea(rscratch1, dst);
3156     incrementl(Address(rscratch1, 0));
3157   }
3158 }
3159 
3160 void MacroAssembler::incrementl(ArrayAddress dst) {
3161   incrementl(as_Address(dst));
3162 }
3163 
3164 void MacroAssembler::incrementl(Register reg, int value) {
3165   if (value == min_jint) {addl(reg, value) ; return; }
3166   if (value <  0) { decrementl(reg, -value); return; }
3167   if (value == 0) {                        ; return; }
3168   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3169   /* else */      { addl(reg, value)       ; return; }
3170 }
3171 
3172 void MacroAssembler::incrementl(Address dst, int value) {
3173   if (value == min_jint) {addl(dst, value) ; return; }
3174   if (value <  0) { decrementl(dst, -value); return; }
3175   if (value == 0) {                        ; return; }
3176   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3177   /* else */      { addl(dst, value)       ; return; }
3178 }
3179 
3180 void MacroAssembler::jump(AddressLiteral dst) {
3181   if (reachable(dst)) {
3182     jmp_literal(dst.target(), dst.rspec());
3183   } else {
3184     lea(rscratch1, dst);
3185     jmp(rscratch1);
3186   }
3187 }
3188 
3189 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3190   if (reachable(dst)) {
3191     InstructionMark im(this);
3192     relocate(dst.reloc());
3193     const int short_size = 2;
3194     const int long_size = 6;
3195     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3196     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3197       // 0111 tttn #8-bit disp
3198       emit_int8(0x70 | cc);
3199       emit_int8((offs - short_size) & 0xFF);
3200     } else {
3201       // 0000 1111 1000 tttn #32-bit disp
3202       emit_int8(0x0F);
3203       emit_int8((unsigned char)(0x80 | cc));
3204       emit_int32(offs - long_size);
3205     }
3206   } else {
3207 #ifdef ASSERT
3208     warning("reversing conditional branch");
3209 #endif /* ASSERT */
3210     Label skip;
3211     jccb(reverse[cc], skip);
3212     lea(rscratch1, dst);
3213     Assembler::jmp(rscratch1);
3214     bind(skip);
3215   }
3216 }
3217 
3218 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3219   if (reachable(src)) {
3220     Assembler::ldmxcsr(as_Address(src));
3221   } else {
3222     lea(rscratch1, src);
3223     Assembler::ldmxcsr(Address(rscratch1, 0));
3224   }
3225 }
3226 
3227 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3228   int off;
3229   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3230     off = offset();
3231     movsbl(dst, src); // movsxb
3232   } else {
3233     off = load_unsigned_byte(dst, src);
3234     shll(dst, 24);
3235     sarl(dst, 24);
3236   }
3237   return off;
3238 }
3239 
3240 // Note: load_signed_short used to be called load_signed_word.
3241 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3242 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3243 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3244 int MacroAssembler::load_signed_short(Register dst, Address src) {
3245   int off;
3246   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3247     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3248     // version but this is what 64bit has always done. This seems to imply
3249     // that users are only using 32bits worth.
3250     off = offset();
3251     movswl(dst, src); // movsxw
3252   } else {
3253     off = load_unsigned_short(dst, src);
3254     shll(dst, 16);
3255     sarl(dst, 16);
3256   }
3257   return off;
3258 }
3259 
3260 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3261   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3262   // and "3.9 Partial Register Penalties", p. 22).
3263   int off;
3264   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3265     off = offset();
3266     movzbl(dst, src); // movzxb
3267   } else {
3268     xorl(dst, dst);
3269     off = offset();
3270     movb(dst, src);
3271   }
3272   return off;
3273 }
3274 
3275 // Note: load_unsigned_short used to be called load_unsigned_word.
3276 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3277   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3278   // and "3.9 Partial Register Penalties", p. 22).
3279   int off;
3280   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3281     off = offset();
3282     movzwl(dst, src); // movzxw
3283   } else {
3284     xorl(dst, dst);
3285     off = offset();
3286     movw(dst, src);
3287   }
3288   return off;
3289 }
3290 
3291 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3292   switch (size_in_bytes) {
3293 #ifndef _LP64
3294   case  8:
3295     assert(dst2 != noreg, "second dest register required");
3296     movl(dst,  src);
3297     movl(dst2, src.plus_disp(BytesPerInt));
3298     break;
3299 #else
3300   case  8:  movq(dst, src); break;
3301 #endif
3302   case  4:  movl(dst, src); break;
3303   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3304   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3305   default:  ShouldNotReachHere();
3306   }
3307 }
3308 
3309 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3310   switch (size_in_bytes) {
3311 #ifndef _LP64
3312   case  8:
3313     assert(src2 != noreg, "second source register required");
3314     movl(dst,                        src);
3315     movl(dst.plus_disp(BytesPerInt), src2);
3316     break;
3317 #else
3318   case  8:  movq(dst, src); break;
3319 #endif
3320   case  4:  movl(dst, src); break;
3321   case  2:  movw(dst, src); break;
3322   case  1:  movb(dst, src); break;
3323   default:  ShouldNotReachHere();
3324   }
3325 }
3326 
3327 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3328   if (reachable(dst)) {
3329     movl(as_Address(dst), src);
3330   } else {
3331     lea(rscratch1, dst);
3332     movl(Address(rscratch1, 0), src);
3333   }
3334 }
3335 
3336 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3337   if (reachable(src)) {
3338     movl(dst, as_Address(src));
3339   } else {
3340     lea(rscratch1, src);
3341     movl(dst, Address(rscratch1, 0));
3342   }
3343 }
3344 
3345 // C++ bool manipulation
3346 
3347 void MacroAssembler::movbool(Register dst, Address src) {
3348   if(sizeof(bool) == 1)
3349     movb(dst, src);
3350   else if(sizeof(bool) == 2)
3351     movw(dst, src);
3352   else if(sizeof(bool) == 4)
3353     movl(dst, src);
3354   else
3355     // unsupported
3356     ShouldNotReachHere();
3357 }
3358 
3359 void MacroAssembler::movbool(Address dst, bool boolconst) {
3360   if(sizeof(bool) == 1)
3361     movb(dst, (int) boolconst);
3362   else if(sizeof(bool) == 2)
3363     movw(dst, (int) boolconst);
3364   else if(sizeof(bool) == 4)
3365     movl(dst, (int) boolconst);
3366   else
3367     // unsupported
3368     ShouldNotReachHere();
3369 }
3370 
3371 void MacroAssembler::movbool(Address dst, Register src) {
3372   if(sizeof(bool) == 1)
3373     movb(dst, src);
3374   else if(sizeof(bool) == 2)
3375     movw(dst, src);
3376   else if(sizeof(bool) == 4)
3377     movl(dst, src);
3378   else
3379     // unsupported
3380     ShouldNotReachHere();
3381 }
3382 
3383 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3384   movb(as_Address(dst), src);
3385 }
3386 
3387 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3388   if (reachable(src)) {
3389     movdl(dst, as_Address(src));
3390   } else {
3391     lea(rscratch1, src);
3392     movdl(dst, Address(rscratch1, 0));
3393   }
3394 }
3395 
3396 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3397   if (reachable(src)) {
3398     movq(dst, as_Address(src));
3399   } else {
3400     lea(rscratch1, src);
3401     movq(dst, Address(rscratch1, 0));
3402   }
3403 }
3404 
3405 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3406   if (reachable(src)) {
3407     if (UseXmmLoadAndClearUpper) {
3408       movsd (dst, as_Address(src));
3409     } else {
3410       movlpd(dst, as_Address(src));
3411     }
3412   } else {
3413     lea(rscratch1, src);
3414     if (UseXmmLoadAndClearUpper) {
3415       movsd (dst, Address(rscratch1, 0));
3416     } else {
3417       movlpd(dst, Address(rscratch1, 0));
3418     }
3419   }
3420 }
3421 
3422 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3423   if (reachable(src)) {
3424     movss(dst, as_Address(src));
3425   } else {
3426     lea(rscratch1, src);
3427     movss(dst, Address(rscratch1, 0));
3428   }
3429 }
3430 
3431 void MacroAssembler::movptr(Register dst, Register src) {
3432   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3433 }
3434 
3435 void MacroAssembler::movptr(Register dst, Address src) {
3436   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3437 }
3438 
3439 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3440 void MacroAssembler::movptr(Register dst, intptr_t src) {
3441   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3442 }
3443 
3444 void MacroAssembler::movptr(Address dst, Register src) {
3445   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3446 }
3447 
3448 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3449   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3450     Assembler::vextractf32x4h(dst, src, 0);
3451   } else {
3452     Assembler::movdqu(dst, src);
3453   }
3454 }
3455 
3456 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3457   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3458     Assembler::vinsertf32x4h(dst, src, 0);
3459   } else {
3460     Assembler::movdqu(dst, src);
3461   }
3462 }
3463 
3464 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3465   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3466     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3467   } else {
3468     Assembler::movdqu(dst, src);
3469   }
3470 }
3471 
3472 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
3473   if (reachable(src)) {
3474     movdqu(dst, as_Address(src));
3475   } else {
3476     lea(rscratch1, src);
3477     movdqu(dst, Address(rscratch1, 0));
3478   }
3479 }
3480 
3481 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3482   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3483     Assembler::vextractf64x4h(dst, src, 0);
3484   } else {
3485     Assembler::vmovdqu(dst, src);
3486   }
3487 }
3488 
3489 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3490   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3491     Assembler::vinsertf64x4h(dst, src, 0);
3492   } else {
3493     Assembler::vmovdqu(dst, src);
3494   }
3495 }
3496 
3497 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3498   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3499     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3500   }
3501   else {
3502     Assembler::vmovdqu(dst, src);
3503   }
3504 }
3505 
3506 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src) {
3507   if (reachable(src)) {
3508     vmovdqu(dst, as_Address(src));
3509   }
3510   else {
3511     lea(rscratch1, src);
3512     vmovdqu(dst, Address(rscratch1, 0));
3513   }
3514 }
3515 
3516 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3517   if (reachable(src)) {
3518     Assembler::movdqa(dst, as_Address(src));
3519   } else {
3520     lea(rscratch1, src);
3521     Assembler::movdqa(dst, Address(rscratch1, 0));
3522   }
3523 }
3524 
3525 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3526   if (reachable(src)) {
3527     Assembler::movsd(dst, as_Address(src));
3528   } else {
3529     lea(rscratch1, src);
3530     Assembler::movsd(dst, Address(rscratch1, 0));
3531   }
3532 }
3533 
3534 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3535   if (reachable(src)) {
3536     Assembler::movss(dst, as_Address(src));
3537   } else {
3538     lea(rscratch1, src);
3539     Assembler::movss(dst, Address(rscratch1, 0));
3540   }
3541 }
3542 
3543 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3544   if (reachable(src)) {
3545     Assembler::mulsd(dst, as_Address(src));
3546   } else {
3547     lea(rscratch1, src);
3548     Assembler::mulsd(dst, Address(rscratch1, 0));
3549   }
3550 }
3551 
3552 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3553   if (reachable(src)) {
3554     Assembler::mulss(dst, as_Address(src));
3555   } else {
3556     lea(rscratch1, src);
3557     Assembler::mulss(dst, Address(rscratch1, 0));
3558   }
3559 }
3560 
3561 void MacroAssembler::null_check(Register reg, int offset) {
3562   if (needs_explicit_null_check(offset)) {
3563     // provoke OS NULL exception if reg = NULL by
3564     // accessing M[reg] w/o changing any (non-CC) registers
3565     // NOTE: cmpl is plenty here to provoke a segv
3566     cmpptr(rax, Address(reg, 0));
3567     // Note: should probably use testl(rax, Address(reg, 0));
3568     //       may be shorter code (however, this version of
3569     //       testl needs to be implemented first)
3570   } else {
3571     // nothing to do, (later) access of M[reg + offset]
3572     // will provoke OS NULL exception if reg = NULL
3573   }
3574 }
3575 
3576 void MacroAssembler::os_breakpoint() {
3577   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3578   // (e.g., MSVC can't call ps() otherwise)
3579   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3580 }
3581 
3582 #ifdef _LP64
3583 #define XSTATE_BV 0x200
3584 #endif
3585 
3586 void MacroAssembler::pop_CPU_state() {
3587   pop_FPU_state();
3588   pop_IU_state();
3589 }
3590 
3591 void MacroAssembler::pop_FPU_state() {
3592 #ifndef _LP64
3593   frstor(Address(rsp, 0));
3594 #else
3595   fxrstor(Address(rsp, 0));
3596 #endif
3597   addptr(rsp, FPUStateSizeInWords * wordSize);
3598 }
3599 
3600 void MacroAssembler::pop_IU_state() {
3601   popa();
3602   LP64_ONLY(addq(rsp, 8));
3603   popf();
3604 }
3605 
3606 // Save Integer and Float state
3607 // Warning: Stack must be 16 byte aligned (64bit)
3608 void MacroAssembler::push_CPU_state() {
3609   push_IU_state();
3610   push_FPU_state();
3611 }
3612 
3613 void MacroAssembler::push_FPU_state() {
3614   subptr(rsp, FPUStateSizeInWords * wordSize);
3615 #ifndef _LP64
3616   fnsave(Address(rsp, 0));
3617   fwait();
3618 #else
3619   fxsave(Address(rsp, 0));
3620 #endif // LP64
3621 }
3622 
3623 void MacroAssembler::push_IU_state() {
3624   // Push flags first because pusha kills them
3625   pushf();
3626   // Make sure rsp stays 16-byte aligned
3627   LP64_ONLY(subq(rsp, 8));
3628   pusha();
3629 }
3630 
3631 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
3632   // determine java_thread register
3633   if (!java_thread->is_valid()) {
3634     java_thread = rdi;
3635     get_thread(java_thread);
3636   }
3637   // we must set sp to zero to clear frame
3638   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3639   if (clear_fp) {
3640     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3641   }
3642 
3643   if (clear_pc)
3644     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3645 
3646 }
3647 
3648 void MacroAssembler::restore_rax(Register tmp) {
3649   if (tmp == noreg) pop(rax);
3650   else if (tmp != rax) mov(rax, tmp);
3651 }
3652 
3653 void MacroAssembler::round_to(Register reg, int modulus) {
3654   addptr(reg, modulus - 1);
3655   andptr(reg, -modulus);
3656 }
3657 
3658 void MacroAssembler::save_rax(Register tmp) {
3659   if (tmp == noreg) push(rax);
3660   else if (tmp != rax) mov(tmp, rax);
3661 }
3662 
3663 // Write serialization page so VM thread can do a pseudo remote membar.
3664 // We use the current thread pointer to calculate a thread specific
3665 // offset to write to within the page. This minimizes bus traffic
3666 // due to cache line collision.
3667 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3668   movl(tmp, thread);
3669   shrl(tmp, os::get_serialize_page_shift_count());
3670   andl(tmp, (os::vm_page_size() - sizeof(int)));
3671 
3672   Address index(noreg, tmp, Address::times_1);
3673   ExternalAddress page(os::get_memory_serialize_page());
3674 
3675   // Size of store must match masking code above
3676   movl(as_Address(ArrayAddress(page, index)), tmp);
3677 }
3678 
3679 // Calls to C land
3680 //
3681 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3682 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3683 // has to be reset to 0. This is required to allow proper stack traversal.
3684 void MacroAssembler::set_last_Java_frame(Register java_thread,
3685                                          Register last_java_sp,
3686                                          Register last_java_fp,
3687                                          address  last_java_pc) {
3688   // determine java_thread register
3689   if (!java_thread->is_valid()) {
3690     java_thread = rdi;
3691     get_thread(java_thread);
3692   }
3693   // determine last_java_sp register
3694   if (!last_java_sp->is_valid()) {
3695     last_java_sp = rsp;
3696   }
3697 
3698   // last_java_fp is optional
3699 
3700   if (last_java_fp->is_valid()) {
3701     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3702   }
3703 
3704   // last_java_pc is optional
3705 
3706   if (last_java_pc != NULL) {
3707     lea(Address(java_thread,
3708                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3709         InternalAddress(last_java_pc));
3710 
3711   }
3712   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3713 }
3714 
3715 void MacroAssembler::shlptr(Register dst, int imm8) {
3716   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3717 }
3718 
3719 void MacroAssembler::shrptr(Register dst, int imm8) {
3720   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3721 }
3722 
3723 void MacroAssembler::sign_extend_byte(Register reg) {
3724   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3725     movsbl(reg, reg); // movsxb
3726   } else {
3727     shll(reg, 24);
3728     sarl(reg, 24);
3729   }
3730 }
3731 
3732 void MacroAssembler::sign_extend_short(Register reg) {
3733   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3734     movswl(reg, reg); // movsxw
3735   } else {
3736     shll(reg, 16);
3737     sarl(reg, 16);
3738   }
3739 }
3740 
3741 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3742   assert(reachable(src), "Address should be reachable");
3743   testl(dst, as_Address(src));
3744 }
3745 
3746 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3747   int dst_enc = dst->encoding();
3748   int src_enc = src->encoding();
3749   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3750     Assembler::pcmpeqb(dst, src);
3751   } else if ((dst_enc < 16) && (src_enc < 16)) {
3752     Assembler::pcmpeqb(dst, src);
3753   } else if (src_enc < 16) {
3754     subptr(rsp, 64);
3755     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3756     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3757     Assembler::pcmpeqb(xmm0, src);
3758     movdqu(dst, xmm0);
3759     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3760     addptr(rsp, 64);
3761   } else if (dst_enc < 16) {
3762     subptr(rsp, 64);
3763     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3764     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3765     Assembler::pcmpeqb(dst, xmm0);
3766     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3767     addptr(rsp, 64);
3768   } else {
3769     subptr(rsp, 64);
3770     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3771     subptr(rsp, 64);
3772     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3773     movdqu(xmm0, src);
3774     movdqu(xmm1, dst);
3775     Assembler::pcmpeqb(xmm1, xmm0);
3776     movdqu(dst, xmm1);
3777     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3778     addptr(rsp, 64);
3779     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3780     addptr(rsp, 64);
3781   }
3782 }
3783 
3784 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3785   int dst_enc = dst->encoding();
3786   int src_enc = src->encoding();
3787   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3788     Assembler::pcmpeqw(dst, src);
3789   } else if ((dst_enc < 16) && (src_enc < 16)) {
3790     Assembler::pcmpeqw(dst, src);
3791   } else if (src_enc < 16) {
3792     subptr(rsp, 64);
3793     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3794     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3795     Assembler::pcmpeqw(xmm0, src);
3796     movdqu(dst, xmm0);
3797     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3798     addptr(rsp, 64);
3799   } else if (dst_enc < 16) {
3800     subptr(rsp, 64);
3801     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3802     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3803     Assembler::pcmpeqw(dst, xmm0);
3804     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3805     addptr(rsp, 64);
3806   } else {
3807     subptr(rsp, 64);
3808     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3809     subptr(rsp, 64);
3810     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3811     movdqu(xmm0, src);
3812     movdqu(xmm1, dst);
3813     Assembler::pcmpeqw(xmm1, xmm0);
3814     movdqu(dst, xmm1);
3815     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3816     addptr(rsp, 64);
3817     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3818     addptr(rsp, 64);
3819   }
3820 }
3821 
3822 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3823   int dst_enc = dst->encoding();
3824   if (dst_enc < 16) {
3825     Assembler::pcmpestri(dst, src, imm8);
3826   } else {
3827     subptr(rsp, 64);
3828     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3829     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3830     Assembler::pcmpestri(xmm0, src, imm8);
3831     movdqu(dst, xmm0);
3832     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3833     addptr(rsp, 64);
3834   }
3835 }
3836 
3837 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3838   int dst_enc = dst->encoding();
3839   int src_enc = src->encoding();
3840   if ((dst_enc < 16) && (src_enc < 16)) {
3841     Assembler::pcmpestri(dst, src, imm8);
3842   } else if (src_enc < 16) {
3843     subptr(rsp, 64);
3844     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3845     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3846     Assembler::pcmpestri(xmm0, src, imm8);
3847     movdqu(dst, xmm0);
3848     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3849     addptr(rsp, 64);
3850   } else if (dst_enc < 16) {
3851     subptr(rsp, 64);
3852     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3853     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3854     Assembler::pcmpestri(dst, xmm0, imm8);
3855     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3856     addptr(rsp, 64);
3857   } else {
3858     subptr(rsp, 64);
3859     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3860     subptr(rsp, 64);
3861     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3862     movdqu(xmm0, src);
3863     movdqu(xmm1, dst);
3864     Assembler::pcmpestri(xmm1, xmm0, imm8);
3865     movdqu(dst, xmm1);
3866     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3867     addptr(rsp, 64);
3868     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3869     addptr(rsp, 64);
3870   }
3871 }
3872 
3873 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3874   int dst_enc = dst->encoding();
3875   int src_enc = src->encoding();
3876   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3877     Assembler::pmovzxbw(dst, src);
3878   } else if ((dst_enc < 16) && (src_enc < 16)) {
3879     Assembler::pmovzxbw(dst, src);
3880   } else if (src_enc < 16) {
3881     subptr(rsp, 64);
3882     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3883     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3884     Assembler::pmovzxbw(xmm0, src);
3885     movdqu(dst, xmm0);
3886     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3887     addptr(rsp, 64);
3888   } else if (dst_enc < 16) {
3889     subptr(rsp, 64);
3890     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3891     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3892     Assembler::pmovzxbw(dst, xmm0);
3893     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3894     addptr(rsp, 64);
3895   } else {
3896     subptr(rsp, 64);
3897     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3898     subptr(rsp, 64);
3899     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3900     movdqu(xmm0, src);
3901     movdqu(xmm1, dst);
3902     Assembler::pmovzxbw(xmm1, xmm0);
3903     movdqu(dst, xmm1);
3904     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3905     addptr(rsp, 64);
3906     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3907     addptr(rsp, 64);
3908   }
3909 }
3910 
3911 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3912   int dst_enc = dst->encoding();
3913   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3914     Assembler::pmovzxbw(dst, src);
3915   } else if (dst_enc < 16) {
3916     Assembler::pmovzxbw(dst, src);
3917   } else {
3918     subptr(rsp, 64);
3919     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3920     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3921     Assembler::pmovzxbw(xmm0, src);
3922     movdqu(dst, xmm0);
3923     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3924     addptr(rsp, 64);
3925   }
3926 }
3927 
3928 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
3929   int src_enc = src->encoding();
3930   if (src_enc < 16) {
3931     Assembler::pmovmskb(dst, src);
3932   } else {
3933     subptr(rsp, 64);
3934     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3935     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3936     Assembler::pmovmskb(dst, xmm0);
3937     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3938     addptr(rsp, 64);
3939   }
3940 }
3941 
3942 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
3943   int dst_enc = dst->encoding();
3944   int src_enc = src->encoding();
3945   if ((dst_enc < 16) && (src_enc < 16)) {
3946     Assembler::ptest(dst, src);
3947   } else if (src_enc < 16) {
3948     subptr(rsp, 64);
3949     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3950     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3951     Assembler::ptest(xmm0, src);
3952     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3953     addptr(rsp, 64);
3954   } else if (dst_enc < 16) {
3955     subptr(rsp, 64);
3956     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3957     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3958     Assembler::ptest(dst, xmm0);
3959     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3960     addptr(rsp, 64);
3961   } else {
3962     subptr(rsp, 64);
3963     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3964     subptr(rsp, 64);
3965     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3966     movdqu(xmm0, src);
3967     movdqu(xmm1, dst);
3968     Assembler::ptest(xmm1, xmm0);
3969     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3970     addptr(rsp, 64);
3971     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3972     addptr(rsp, 64);
3973   }
3974 }
3975 
3976 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3977   if (reachable(src)) {
3978     Assembler::sqrtsd(dst, as_Address(src));
3979   } else {
3980     lea(rscratch1, src);
3981     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3982   }
3983 }
3984 
3985 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3986   if (reachable(src)) {
3987     Assembler::sqrtss(dst, as_Address(src));
3988   } else {
3989     lea(rscratch1, src);
3990     Assembler::sqrtss(dst, Address(rscratch1, 0));
3991   }
3992 }
3993 
3994 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3995   if (reachable(src)) {
3996     Assembler::subsd(dst, as_Address(src));
3997   } else {
3998     lea(rscratch1, src);
3999     Assembler::subsd(dst, Address(rscratch1, 0));
4000   }
4001 }
4002 
4003 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
4004   if (reachable(src)) {
4005     Assembler::subss(dst, as_Address(src));
4006   } else {
4007     lea(rscratch1, src);
4008     Assembler::subss(dst, Address(rscratch1, 0));
4009   }
4010 }
4011 
4012 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
4013   if (reachable(src)) {
4014     Assembler::ucomisd(dst, as_Address(src));
4015   } else {
4016     lea(rscratch1, src);
4017     Assembler::ucomisd(dst, Address(rscratch1, 0));
4018   }
4019 }
4020 
4021 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
4022   if (reachable(src)) {
4023     Assembler::ucomiss(dst, as_Address(src));
4024   } else {
4025     lea(rscratch1, src);
4026     Assembler::ucomiss(dst, Address(rscratch1, 0));
4027   }
4028 }
4029 
4030 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
4031   // Used in sign-bit flipping with aligned address.
4032   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4033   if (reachable(src)) {
4034     Assembler::xorpd(dst, as_Address(src));
4035   } else {
4036     lea(rscratch1, src);
4037     Assembler::xorpd(dst, Address(rscratch1, 0));
4038   }
4039 }
4040 
4041 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
4042   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4043     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4044   }
4045   else {
4046     Assembler::xorpd(dst, src);
4047   }
4048 }
4049 
4050 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
4051   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4052     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4053   } else {
4054     Assembler::xorps(dst, src);
4055   }
4056 }
4057 
4058 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4059   // Used in sign-bit flipping with aligned address.
4060   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4061   if (reachable(src)) {
4062     Assembler::xorps(dst, as_Address(src));
4063   } else {
4064     lea(rscratch1, src);
4065     Assembler::xorps(dst, Address(rscratch1, 0));
4066   }
4067 }
4068 
4069 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4070   // Used in sign-bit flipping with aligned address.
4071   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4072   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4073   if (reachable(src)) {
4074     Assembler::pshufb(dst, as_Address(src));
4075   } else {
4076     lea(rscratch1, src);
4077     Assembler::pshufb(dst, Address(rscratch1, 0));
4078   }
4079 }
4080 
4081 // AVX 3-operands instructions
4082 
4083 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4084   if (reachable(src)) {
4085     vaddsd(dst, nds, as_Address(src));
4086   } else {
4087     lea(rscratch1, src);
4088     vaddsd(dst, nds, Address(rscratch1, 0));
4089   }
4090 }
4091 
4092 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4093   if (reachable(src)) {
4094     vaddss(dst, nds, as_Address(src));
4095   } else {
4096     lea(rscratch1, src);
4097     vaddss(dst, nds, Address(rscratch1, 0));
4098   }
4099 }
4100 
4101 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4102   int dst_enc = dst->encoding();
4103   int nds_enc = nds->encoding();
4104   int src_enc = src->encoding();
4105   if ((dst_enc < 16) && (nds_enc < 16)) {
4106     vandps(dst, nds, negate_field, vector_len);
4107   } else if ((src_enc < 16) && (dst_enc < 16)) {
4108     movss(src, nds);
4109     vandps(dst, src, negate_field, vector_len);
4110   } else if (src_enc < 16) {
4111     movss(src, nds);
4112     vandps(src, src, negate_field, vector_len);
4113     movss(dst, src);
4114   } else if (dst_enc < 16) {
4115     movdqu(src, xmm0);
4116     movss(xmm0, nds);
4117     vandps(dst, xmm0, negate_field, vector_len);
4118     movdqu(xmm0, src);
4119   } else if (nds_enc < 16) {
4120     movdqu(src, xmm0);
4121     vandps(xmm0, nds, negate_field, vector_len);
4122     movss(dst, xmm0);
4123     movdqu(xmm0, src);
4124   } else {
4125     movdqu(src, xmm0);
4126     movss(xmm0, nds);
4127     vandps(xmm0, xmm0, negate_field, vector_len);
4128     movss(dst, xmm0);
4129     movdqu(xmm0, src);
4130   }
4131 }
4132 
4133 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4134   int dst_enc = dst->encoding();
4135   int nds_enc = nds->encoding();
4136   int src_enc = src->encoding();
4137   if ((dst_enc < 16) && (nds_enc < 16)) {
4138     vandpd(dst, nds, negate_field, vector_len);
4139   } else if ((src_enc < 16) && (dst_enc < 16)) {
4140     movsd(src, nds);
4141     vandpd(dst, src, negate_field, vector_len);
4142   } else if (src_enc < 16) {
4143     movsd(src, nds);
4144     vandpd(src, src, negate_field, vector_len);
4145     movsd(dst, src);
4146   } else if (dst_enc < 16) {
4147     movdqu(src, xmm0);
4148     movsd(xmm0, nds);
4149     vandpd(dst, xmm0, negate_field, vector_len);
4150     movdqu(xmm0, src);
4151   } else if (nds_enc < 16) {
4152     movdqu(src, xmm0);
4153     vandpd(xmm0, nds, negate_field, vector_len);
4154     movsd(dst, xmm0);
4155     movdqu(xmm0, src);
4156   } else {
4157     movdqu(src, xmm0);
4158     movsd(xmm0, nds);
4159     vandpd(xmm0, xmm0, negate_field, vector_len);
4160     movsd(dst, xmm0);
4161     movdqu(xmm0, src);
4162   }
4163 }
4164 
4165 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4166   int dst_enc = dst->encoding();
4167   int nds_enc = nds->encoding();
4168   int src_enc = src->encoding();
4169   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4170     Assembler::vpaddb(dst, nds, src, vector_len);
4171   } else if ((dst_enc < 16) && (src_enc < 16)) {
4172     Assembler::vpaddb(dst, dst, src, vector_len);
4173   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4174     // use nds as scratch for src
4175     evmovdqul(nds, src, Assembler::AVX_512bit);
4176     Assembler::vpaddb(dst, dst, nds, vector_len);
4177   } else if ((src_enc < 16) && (nds_enc < 16)) {
4178     // use nds as scratch for dst
4179     evmovdqul(nds, dst, Assembler::AVX_512bit);
4180     Assembler::vpaddb(nds, nds, src, vector_len);
4181     evmovdqul(dst, nds, Assembler::AVX_512bit);
4182   } else if (dst_enc < 16) {
4183     // use nds as scatch for xmm0 to hold src
4184     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4185     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4186     Assembler::vpaddb(dst, dst, xmm0, vector_len);
4187     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4188   } else {
4189     // worse case scenario, all regs are in the upper bank
4190     subptr(rsp, 64);
4191     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4192     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4193     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4194     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4195     Assembler::vpaddb(xmm0, xmm0, xmm1, vector_len);
4196     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4197     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4198     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4199     addptr(rsp, 64);
4200   }
4201 }
4202 
4203 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4204   int dst_enc = dst->encoding();
4205   int nds_enc = nds->encoding();
4206   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4207     Assembler::vpaddb(dst, nds, src, vector_len);
4208   } else if (dst_enc < 16) {
4209     Assembler::vpaddb(dst, dst, src, vector_len);
4210   } else if (nds_enc < 16) {
4211     // implies dst_enc in upper bank with src as scratch
4212     evmovdqul(nds, dst, Assembler::AVX_512bit);
4213     Assembler::vpaddb(nds, nds, src, vector_len);
4214     evmovdqul(dst, nds, Assembler::AVX_512bit);
4215   } else {
4216     // worse case scenario, all regs in upper bank
4217     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4218     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4219     Assembler::vpaddb(xmm0, xmm0, src, vector_len);
4220     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4221   }
4222 }
4223 
4224 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4225   int dst_enc = dst->encoding();
4226   int nds_enc = nds->encoding();
4227   int src_enc = src->encoding();
4228   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4229     Assembler::vpaddw(dst, nds, src, vector_len);
4230   } else if ((dst_enc < 16) && (src_enc < 16)) {
4231     Assembler::vpaddw(dst, dst, src, vector_len);
4232   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4233     // use nds as scratch for src
4234     evmovdqul(nds, src, Assembler::AVX_512bit);
4235     Assembler::vpaddw(dst, dst, nds, vector_len);
4236   } else if ((src_enc < 16) && (nds_enc < 16)) {
4237     // use nds as scratch for dst
4238     evmovdqul(nds, dst, Assembler::AVX_512bit);
4239     Assembler::vpaddw(nds, nds, src, vector_len);
4240     evmovdqul(dst, nds, Assembler::AVX_512bit);
4241   } else if (dst_enc < 16) {
4242     // use nds as scatch for xmm0 to hold src
4243     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4244     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4245     Assembler::vpaddw(dst, dst, xmm0, vector_len);
4246     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4247   } else {
4248     // worse case scenario, all regs are in the upper bank
4249     subptr(rsp, 64);
4250     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4251     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4252     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4253     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4254     Assembler::vpaddw(xmm0, xmm0, xmm1, vector_len);
4255     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4256     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4257     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4258     addptr(rsp, 64);
4259   }
4260 }
4261 
4262 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4263   int dst_enc = dst->encoding();
4264   int nds_enc = nds->encoding();
4265   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4266     Assembler::vpaddw(dst, nds, src, vector_len);
4267   } else if (dst_enc < 16) {
4268     Assembler::vpaddw(dst, dst, src, vector_len);
4269   } else if (nds_enc < 16) {
4270     // implies dst_enc in upper bank with src as scratch
4271     evmovdqul(nds, dst, Assembler::AVX_512bit);
4272     Assembler::vpaddw(nds, nds, src, vector_len);
4273     evmovdqul(dst, nds, Assembler::AVX_512bit);
4274   } else {
4275     // worse case scenario, all regs in upper bank
4276     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4277     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4278     Assembler::vpaddw(xmm0, xmm0, src, vector_len);
4279     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4280   }
4281 }
4282 
4283 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
4284   int dst_enc = dst->encoding();
4285   int src_enc = src->encoding();
4286   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4287     Assembler::vpbroadcastw(dst, src);
4288   } else if ((dst_enc < 16) && (src_enc < 16)) {
4289     Assembler::vpbroadcastw(dst, src);
4290   } else if (src_enc < 16) {
4291     subptr(rsp, 64);
4292     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4293     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4294     Assembler::vpbroadcastw(xmm0, src);
4295     movdqu(dst, xmm0);
4296     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4297     addptr(rsp, 64);
4298   } else if (dst_enc < 16) {
4299     subptr(rsp, 64);
4300     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4301     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4302     Assembler::vpbroadcastw(dst, xmm0);
4303     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4304     addptr(rsp, 64);
4305   } else {
4306     subptr(rsp, 64);
4307     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4308     subptr(rsp, 64);
4309     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4310     movdqu(xmm0, src);
4311     movdqu(xmm1, dst);
4312     Assembler::vpbroadcastw(xmm1, xmm0);
4313     movdqu(dst, xmm1);
4314     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4315     addptr(rsp, 64);
4316     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4317     addptr(rsp, 64);
4318   }
4319 }
4320 
4321 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4322   int dst_enc = dst->encoding();
4323   int nds_enc = nds->encoding();
4324   int src_enc = src->encoding();
4325   assert(dst_enc == nds_enc, "");
4326   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4327     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4328   } else if ((dst_enc < 16) && (src_enc < 16)) {
4329     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4330   } else if (src_enc < 16) {
4331     subptr(rsp, 64);
4332     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4333     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4334     Assembler::vpcmpeqb(xmm0, xmm0, src, vector_len);
4335     movdqu(dst, xmm0);
4336     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4337     addptr(rsp, 64);
4338   } else if (dst_enc < 16) {
4339     subptr(rsp, 64);
4340     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4341     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4342     Assembler::vpcmpeqb(dst, dst, xmm0, vector_len);
4343     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4344     addptr(rsp, 64);
4345   } else {
4346     subptr(rsp, 64);
4347     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4348     subptr(rsp, 64);
4349     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4350     movdqu(xmm0, src);
4351     movdqu(xmm1, dst);
4352     Assembler::vpcmpeqb(xmm1, xmm1, xmm0, vector_len);
4353     movdqu(dst, xmm1);
4354     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4355     addptr(rsp, 64);
4356     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4357     addptr(rsp, 64);
4358   }
4359 }
4360 
4361 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4362   int dst_enc = dst->encoding();
4363   int nds_enc = nds->encoding();
4364   int src_enc = src->encoding();
4365   assert(dst_enc == nds_enc, "");
4366   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4367     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4368   } else if ((dst_enc < 16) && (src_enc < 16)) {
4369     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4370   } else if (src_enc < 16) {
4371     subptr(rsp, 64);
4372     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4373     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4374     Assembler::vpcmpeqw(xmm0, xmm0, src, vector_len);
4375     movdqu(dst, xmm0);
4376     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4377     addptr(rsp, 64);
4378   } else if (dst_enc < 16) {
4379     subptr(rsp, 64);
4380     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4381     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4382     Assembler::vpcmpeqw(dst, dst, xmm0, vector_len);
4383     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4384     addptr(rsp, 64);
4385   } else {
4386     subptr(rsp, 64);
4387     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4388     subptr(rsp, 64);
4389     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4390     movdqu(xmm0, src);
4391     movdqu(xmm1, dst);
4392     Assembler::vpcmpeqw(xmm1, xmm1, xmm0, vector_len);
4393     movdqu(dst, xmm1);
4394     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4395     addptr(rsp, 64);
4396     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4397     addptr(rsp, 64);
4398   }
4399 }
4400 
4401 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
4402   int dst_enc = dst->encoding();
4403   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4404     Assembler::vpmovzxbw(dst, src, vector_len);
4405   } else if (dst_enc < 16) {
4406     Assembler::vpmovzxbw(dst, src, vector_len);
4407   } else {
4408     subptr(rsp, 64);
4409     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4410     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4411     Assembler::vpmovzxbw(xmm0, src, vector_len);
4412     movdqu(dst, xmm0);
4413     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4414     addptr(rsp, 64);
4415   }
4416 }
4417 
4418 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
4419   int src_enc = src->encoding();
4420   if (src_enc < 16) {
4421     Assembler::vpmovmskb(dst, src);
4422   } else {
4423     subptr(rsp, 64);
4424     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4425     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4426     Assembler::vpmovmskb(dst, xmm0);
4427     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4428     addptr(rsp, 64);
4429   }
4430 }
4431 
4432 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4433   int dst_enc = dst->encoding();
4434   int nds_enc = nds->encoding();
4435   int src_enc = src->encoding();
4436   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4437     Assembler::vpmullw(dst, nds, src, vector_len);
4438   } else if ((dst_enc < 16) && (src_enc < 16)) {
4439     Assembler::vpmullw(dst, dst, src, vector_len);
4440   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4441     // use nds as scratch for src
4442     evmovdqul(nds, src, Assembler::AVX_512bit);
4443     Assembler::vpmullw(dst, dst, nds, vector_len);
4444   } else if ((src_enc < 16) && (nds_enc < 16)) {
4445     // use nds as scratch for dst
4446     evmovdqul(nds, dst, Assembler::AVX_512bit);
4447     Assembler::vpmullw(nds, nds, src, vector_len);
4448     evmovdqul(dst, nds, Assembler::AVX_512bit);
4449   } else if (dst_enc < 16) {
4450     // use nds as scatch for xmm0 to hold src
4451     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4452     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4453     Assembler::vpmullw(dst, dst, xmm0, vector_len);
4454     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4455   } else {
4456     // worse case scenario, all regs are in the upper bank
4457     subptr(rsp, 64);
4458     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4459     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4460     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4461     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4462     Assembler::vpmullw(xmm0, xmm0, xmm1, vector_len);
4463     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4464     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4465     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4466     addptr(rsp, 64);
4467   }
4468 }
4469 
4470 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4471   int dst_enc = dst->encoding();
4472   int nds_enc = nds->encoding();
4473   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4474     Assembler::vpmullw(dst, nds, src, vector_len);
4475   } else if (dst_enc < 16) {
4476     Assembler::vpmullw(dst, dst, src, vector_len);
4477   } else if (nds_enc < 16) {
4478     // implies dst_enc in upper bank with src as scratch
4479     evmovdqul(nds, dst, Assembler::AVX_512bit);
4480     Assembler::vpmullw(nds, nds, src, vector_len);
4481     evmovdqul(dst, nds, Assembler::AVX_512bit);
4482   } else {
4483     // worse case scenario, all regs in upper bank
4484     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4485     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4486     Assembler::vpmullw(xmm0, xmm0, src, vector_len);
4487     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4488   }
4489 }
4490 
4491 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4492   int dst_enc = dst->encoding();
4493   int nds_enc = nds->encoding();
4494   int src_enc = src->encoding();
4495   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4496     Assembler::vpsubb(dst, nds, src, vector_len);
4497   } else if ((dst_enc < 16) && (src_enc < 16)) {
4498     Assembler::vpsubb(dst, dst, src, vector_len);
4499   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4500     // use nds as scratch for src
4501     evmovdqul(nds, src, Assembler::AVX_512bit);
4502     Assembler::vpsubb(dst, dst, nds, vector_len);
4503   } else if ((src_enc < 16) && (nds_enc < 16)) {
4504     // use nds as scratch for dst
4505     evmovdqul(nds, dst, Assembler::AVX_512bit);
4506     Assembler::vpsubb(nds, nds, src, vector_len);
4507     evmovdqul(dst, nds, Assembler::AVX_512bit);
4508   } else if (dst_enc < 16) {
4509     // use nds as scatch for xmm0 to hold src
4510     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4511     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4512     Assembler::vpsubb(dst, dst, xmm0, vector_len);
4513     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4514   } else {
4515     // worse case scenario, all regs are in the upper bank
4516     subptr(rsp, 64);
4517     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4518     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4519     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4520     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4521     Assembler::vpsubb(xmm0, xmm0, xmm1, vector_len);
4522     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4523     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4524     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4525     addptr(rsp, 64);
4526   }
4527 }
4528 
4529 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4530   int dst_enc = dst->encoding();
4531   int nds_enc = nds->encoding();
4532   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4533     Assembler::vpsubb(dst, nds, src, vector_len);
4534   } else if (dst_enc < 16) {
4535     Assembler::vpsubb(dst, dst, src, vector_len);
4536   } else if (nds_enc < 16) {
4537     // implies dst_enc in upper bank with src as scratch
4538     evmovdqul(nds, dst, Assembler::AVX_512bit);
4539     Assembler::vpsubb(nds, nds, src, vector_len);
4540     evmovdqul(dst, nds, Assembler::AVX_512bit);
4541   } else {
4542     // worse case scenario, all regs in upper bank
4543     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4544     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4545     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4546     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4547   }
4548 }
4549 
4550 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4551   int dst_enc = dst->encoding();
4552   int nds_enc = nds->encoding();
4553   int src_enc = src->encoding();
4554   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4555     Assembler::vpsubw(dst, nds, src, vector_len);
4556   } else if ((dst_enc < 16) && (src_enc < 16)) {
4557     Assembler::vpsubw(dst, dst, src, vector_len);
4558   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4559     // use nds as scratch for src
4560     evmovdqul(nds, src, Assembler::AVX_512bit);
4561     Assembler::vpsubw(dst, dst, nds, vector_len);
4562   } else if ((src_enc < 16) && (nds_enc < 16)) {
4563     // use nds as scratch for dst
4564     evmovdqul(nds, dst, Assembler::AVX_512bit);
4565     Assembler::vpsubw(nds, nds, src, vector_len);
4566     evmovdqul(dst, nds, Assembler::AVX_512bit);
4567   } else if (dst_enc < 16) {
4568     // use nds as scatch for xmm0 to hold src
4569     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4570     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4571     Assembler::vpsubw(dst, dst, xmm0, vector_len);
4572     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4573   } else {
4574     // worse case scenario, all regs are in the upper bank
4575     subptr(rsp, 64);
4576     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4577     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4578     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4579     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4580     Assembler::vpsubw(xmm0, xmm0, xmm1, vector_len);
4581     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4582     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4583     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4584     addptr(rsp, 64);
4585   }
4586 }
4587 
4588 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4589   int dst_enc = dst->encoding();
4590   int nds_enc = nds->encoding();
4591   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4592     Assembler::vpsubw(dst, nds, src, vector_len);
4593   } else if (dst_enc < 16) {
4594     Assembler::vpsubw(dst, dst, src, vector_len);
4595   } else if (nds_enc < 16) {
4596     // implies dst_enc in upper bank with src as scratch
4597     evmovdqul(nds, dst, Assembler::AVX_512bit);
4598     Assembler::vpsubw(nds, nds, src, vector_len);
4599     evmovdqul(dst, nds, Assembler::AVX_512bit);
4600   } else {
4601     // worse case scenario, all regs in upper bank
4602     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4603     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4604     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4605     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4606   }
4607 }
4608 
4609 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4610   int dst_enc = dst->encoding();
4611   int nds_enc = nds->encoding();
4612   int shift_enc = shift->encoding();
4613   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4614     Assembler::vpsraw(dst, nds, shift, vector_len);
4615   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4616     Assembler::vpsraw(dst, dst, shift, vector_len);
4617   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4618     // use nds_enc as scratch with shift
4619     evmovdqul(nds, shift, Assembler::AVX_512bit);
4620     Assembler::vpsraw(dst, dst, nds, vector_len);
4621   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4622     // use nds as scratch with dst
4623     evmovdqul(nds, dst, Assembler::AVX_512bit);
4624     Assembler::vpsraw(nds, nds, shift, vector_len);
4625     evmovdqul(dst, nds, Assembler::AVX_512bit);
4626   } else if (dst_enc < 16) {
4627     // use nds to save a copy of xmm0 and hold shift
4628     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4629     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4630     Assembler::vpsraw(dst, dst, xmm0, vector_len);
4631     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4632   } else if (nds_enc < 16) {
4633     // use nds as dest as temps
4634     evmovdqul(nds, dst, Assembler::AVX_512bit);
4635     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4636     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4637     Assembler::vpsraw(nds, nds, xmm0, vector_len);
4638     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4639     evmovdqul(dst, nds, Assembler::AVX_512bit);
4640   } else {
4641     // worse case scenario, all regs are in the upper bank
4642     subptr(rsp, 64);
4643     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4644     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4645     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4646     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4647     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4648     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4649     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4650     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4651     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4652     addptr(rsp, 64);
4653   }
4654 }
4655 
4656 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4657   int dst_enc = dst->encoding();
4658   int nds_enc = nds->encoding();
4659   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4660     Assembler::vpsraw(dst, nds, shift, vector_len);
4661   } else if (dst_enc < 16) {
4662     Assembler::vpsraw(dst, dst, shift, vector_len);
4663   } else if (nds_enc < 16) {
4664     // use nds as scratch
4665     evmovdqul(nds, dst, Assembler::AVX_512bit);
4666     Assembler::vpsraw(nds, nds, shift, vector_len);
4667     evmovdqul(dst, nds, Assembler::AVX_512bit);
4668   } else {
4669     // use nds as scratch for xmm0
4670     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4671     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4672     Assembler::vpsraw(xmm0, xmm0, shift, vector_len);
4673     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4674   }
4675 }
4676 
4677 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4678   int dst_enc = dst->encoding();
4679   int nds_enc = nds->encoding();
4680   int shift_enc = shift->encoding();
4681   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4682     Assembler::vpsrlw(dst, nds, shift, vector_len);
4683   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4684     Assembler::vpsrlw(dst, dst, shift, vector_len);
4685   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4686     // use nds_enc as scratch with shift
4687     evmovdqul(nds, shift, Assembler::AVX_512bit);
4688     Assembler::vpsrlw(dst, dst, nds, vector_len);
4689   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4690     // use nds as scratch with dst
4691     evmovdqul(nds, dst, Assembler::AVX_512bit);
4692     Assembler::vpsrlw(nds, nds, shift, vector_len);
4693     evmovdqul(dst, nds, Assembler::AVX_512bit);
4694   } else if (dst_enc < 16) {
4695     // use nds to save a copy of xmm0 and hold shift
4696     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4697     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4698     Assembler::vpsrlw(dst, dst, xmm0, vector_len);
4699     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4700   } else if (nds_enc < 16) {
4701     // use nds as dest as temps
4702     evmovdqul(nds, dst, Assembler::AVX_512bit);
4703     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4704     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4705     Assembler::vpsrlw(nds, nds, xmm0, vector_len);
4706     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4707     evmovdqul(dst, nds, Assembler::AVX_512bit);
4708   } else {
4709     // worse case scenario, all regs are in the upper bank
4710     subptr(rsp, 64);
4711     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4712     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4713     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4714     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4715     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4716     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4717     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4718     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4719     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4720     addptr(rsp, 64);
4721   }
4722 }
4723 
4724 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4725   int dst_enc = dst->encoding();
4726   int nds_enc = nds->encoding();
4727   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4728     Assembler::vpsrlw(dst, nds, shift, vector_len);
4729   } else if (dst_enc < 16) {
4730     Assembler::vpsrlw(dst, dst, shift, vector_len);
4731   } else if (nds_enc < 16) {
4732     // use nds as scratch
4733     evmovdqul(nds, dst, Assembler::AVX_512bit);
4734     Assembler::vpsrlw(nds, nds, shift, vector_len);
4735     evmovdqul(dst, nds, Assembler::AVX_512bit);
4736   } else {
4737     // use nds as scratch for xmm0
4738     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4739     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4740     Assembler::vpsrlw(xmm0, xmm0, shift, vector_len);
4741     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4742   }
4743 }
4744 
4745 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4746   int dst_enc = dst->encoding();
4747   int nds_enc = nds->encoding();
4748   int shift_enc = shift->encoding();
4749   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4750     Assembler::vpsllw(dst, nds, shift, vector_len);
4751   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4752     Assembler::vpsllw(dst, dst, shift, vector_len);
4753   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4754     // use nds_enc as scratch with shift
4755     evmovdqul(nds, shift, Assembler::AVX_512bit);
4756     Assembler::vpsllw(dst, dst, nds, vector_len);
4757   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4758     // use nds as scratch with dst
4759     evmovdqul(nds, dst, Assembler::AVX_512bit);
4760     Assembler::vpsllw(nds, nds, shift, vector_len);
4761     evmovdqul(dst, nds, Assembler::AVX_512bit);
4762   } else if (dst_enc < 16) {
4763     // use nds to save a copy of xmm0 and hold shift
4764     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4765     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4766     Assembler::vpsllw(dst, dst, xmm0, vector_len);
4767     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4768   } else if (nds_enc < 16) {
4769     // use nds as dest as temps
4770     evmovdqul(nds, dst, Assembler::AVX_512bit);
4771     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4772     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4773     Assembler::vpsllw(nds, nds, xmm0, vector_len);
4774     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4775     evmovdqul(dst, nds, Assembler::AVX_512bit);
4776   } else {
4777     // worse case scenario, all regs are in the upper bank
4778     subptr(rsp, 64);
4779     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4780     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4781     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4782     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4783     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4784     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4785     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4786     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4787     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4788     addptr(rsp, 64);
4789   }
4790 }
4791 
4792 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4793   int dst_enc = dst->encoding();
4794   int nds_enc = nds->encoding();
4795   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4796     Assembler::vpsllw(dst, nds, shift, vector_len);
4797   } else if (dst_enc < 16) {
4798     Assembler::vpsllw(dst, dst, shift, vector_len);
4799   } else if (nds_enc < 16) {
4800     // use nds as scratch
4801     evmovdqul(nds, dst, Assembler::AVX_512bit);
4802     Assembler::vpsllw(nds, nds, shift, vector_len);
4803     evmovdqul(dst, nds, Assembler::AVX_512bit);
4804   } else {
4805     // use nds as scratch for xmm0
4806     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4807     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4808     Assembler::vpsllw(xmm0, xmm0, shift, vector_len);
4809     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4810   }
4811 }
4812 
4813 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
4814   int dst_enc = dst->encoding();
4815   int src_enc = src->encoding();
4816   if ((dst_enc < 16) && (src_enc < 16)) {
4817     Assembler::vptest(dst, src);
4818   } else if (src_enc < 16) {
4819     subptr(rsp, 64);
4820     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4821     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4822     Assembler::vptest(xmm0, src);
4823     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4824     addptr(rsp, 64);
4825   } else if (dst_enc < 16) {
4826     subptr(rsp, 64);
4827     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4828     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4829     Assembler::vptest(dst, xmm0);
4830     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4831     addptr(rsp, 64);
4832   } else {
4833     subptr(rsp, 64);
4834     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4835     subptr(rsp, 64);
4836     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4837     movdqu(xmm0, src);
4838     movdqu(xmm1, dst);
4839     Assembler::vptest(xmm1, xmm0);
4840     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4841     addptr(rsp, 64);
4842     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4843     addptr(rsp, 64);
4844   }
4845 }
4846 
4847 // This instruction exists within macros, ergo we cannot control its input
4848 // when emitted through those patterns.
4849 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4850   if (VM_Version::supports_avx512nobw()) {
4851     int dst_enc = dst->encoding();
4852     int src_enc = src->encoding();
4853     if (dst_enc == src_enc) {
4854       if (dst_enc < 16) {
4855         Assembler::punpcklbw(dst, src);
4856       } else {
4857         subptr(rsp, 64);
4858         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4859         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4860         Assembler::punpcklbw(xmm0, xmm0);
4861         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4862         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4863         addptr(rsp, 64);
4864       }
4865     } else {
4866       if ((src_enc < 16) && (dst_enc < 16)) {
4867         Assembler::punpcklbw(dst, src);
4868       } else if (src_enc < 16) {
4869         subptr(rsp, 64);
4870         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4871         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4872         Assembler::punpcklbw(xmm0, src);
4873         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4874         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4875         addptr(rsp, 64);
4876       } else if (dst_enc < 16) {
4877         subptr(rsp, 64);
4878         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4879         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4880         Assembler::punpcklbw(dst, xmm0);
4881         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4882         addptr(rsp, 64);
4883       } else {
4884         subptr(rsp, 64);
4885         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4886         subptr(rsp, 64);
4887         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4888         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4889         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4890         Assembler::punpcklbw(xmm0, xmm1);
4891         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4892         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4893         addptr(rsp, 64);
4894         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4895         addptr(rsp, 64);
4896       }
4897     }
4898   } else {
4899     Assembler::punpcklbw(dst, src);
4900   }
4901 }
4902 
4903 // This instruction exists within macros, ergo we cannot control its input
4904 // when emitted through those patterns.
4905 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4906   if (VM_Version::supports_avx512nobw()) {
4907     int dst_enc = dst->encoding();
4908     int src_enc = src->encoding();
4909     if (dst_enc == src_enc) {
4910       if (dst_enc < 16) {
4911         Assembler::pshuflw(dst, src, mode);
4912       } else {
4913         subptr(rsp, 64);
4914         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4915         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4916         Assembler::pshuflw(xmm0, xmm0, mode);
4917         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4918         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4919         addptr(rsp, 64);
4920       }
4921     } else {
4922       if ((src_enc < 16) && (dst_enc < 16)) {
4923         Assembler::pshuflw(dst, src, mode);
4924       } else if (src_enc < 16) {
4925         subptr(rsp, 64);
4926         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4927         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4928         Assembler::pshuflw(xmm0, src, mode);
4929         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4930         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4931         addptr(rsp, 64);
4932       } else if (dst_enc < 16) {
4933         subptr(rsp, 64);
4934         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4935         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4936         Assembler::pshuflw(dst, xmm0, mode);
4937         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4938         addptr(rsp, 64);
4939       } else {
4940         subptr(rsp, 64);
4941         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4942         subptr(rsp, 64);
4943         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4944         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4945         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4946         Assembler::pshuflw(xmm0, xmm1, mode);
4947         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4948         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4949         addptr(rsp, 64);
4950         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4951         addptr(rsp, 64);
4952       }
4953     }
4954   } else {
4955     Assembler::pshuflw(dst, src, mode);
4956   }
4957 }
4958 
4959 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4960   if (reachable(src)) {
4961     vandpd(dst, nds, as_Address(src), vector_len);
4962   } else {
4963     lea(rscratch1, src);
4964     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
4965   }
4966 }
4967 
4968 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4969   if (reachable(src)) {
4970     vandps(dst, nds, as_Address(src), vector_len);
4971   } else {
4972     lea(rscratch1, src);
4973     vandps(dst, nds, Address(rscratch1, 0), vector_len);
4974   }
4975 }
4976 
4977 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4978   if (reachable(src)) {
4979     vdivsd(dst, nds, as_Address(src));
4980   } else {
4981     lea(rscratch1, src);
4982     vdivsd(dst, nds, Address(rscratch1, 0));
4983   }
4984 }
4985 
4986 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4987   if (reachable(src)) {
4988     vdivss(dst, nds, as_Address(src));
4989   } else {
4990     lea(rscratch1, src);
4991     vdivss(dst, nds, Address(rscratch1, 0));
4992   }
4993 }
4994 
4995 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4996   if (reachable(src)) {
4997     vmulsd(dst, nds, as_Address(src));
4998   } else {
4999     lea(rscratch1, src);
5000     vmulsd(dst, nds, Address(rscratch1, 0));
5001   }
5002 }
5003 
5004 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5005   if (reachable(src)) {
5006     vmulss(dst, nds, as_Address(src));
5007   } else {
5008     lea(rscratch1, src);
5009     vmulss(dst, nds, Address(rscratch1, 0));
5010   }
5011 }
5012 
5013 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5014   if (reachable(src)) {
5015     vsubsd(dst, nds, as_Address(src));
5016   } else {
5017     lea(rscratch1, src);
5018     vsubsd(dst, nds, Address(rscratch1, 0));
5019   }
5020 }
5021 
5022 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5023   if (reachable(src)) {
5024     vsubss(dst, nds, as_Address(src));
5025   } else {
5026     lea(rscratch1, src);
5027     vsubss(dst, nds, Address(rscratch1, 0));
5028   }
5029 }
5030 
5031 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5032   int nds_enc = nds->encoding();
5033   int dst_enc = dst->encoding();
5034   bool dst_upper_bank = (dst_enc > 15);
5035   bool nds_upper_bank = (nds_enc > 15);
5036   if (VM_Version::supports_avx512novl() &&
5037       (nds_upper_bank || dst_upper_bank)) {
5038     if (dst_upper_bank) {
5039       subptr(rsp, 64);
5040       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5041       movflt(xmm0, nds);
5042       vxorps(xmm0, xmm0, src, Assembler::AVX_128bit);
5043       movflt(dst, xmm0);
5044       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5045       addptr(rsp, 64);
5046     } else {
5047       movflt(dst, nds);
5048       vxorps(dst, dst, src, Assembler::AVX_128bit);
5049     }
5050   } else {
5051     vxorps(dst, nds, src, Assembler::AVX_128bit);
5052   }
5053 }
5054 
5055 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5056   int nds_enc = nds->encoding();
5057   int dst_enc = dst->encoding();
5058   bool dst_upper_bank = (dst_enc > 15);
5059   bool nds_upper_bank = (nds_enc > 15);
5060   if (VM_Version::supports_avx512novl() &&
5061       (nds_upper_bank || dst_upper_bank)) {
5062     if (dst_upper_bank) {
5063       subptr(rsp, 64);
5064       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5065       movdbl(xmm0, nds);
5066       vxorpd(xmm0, xmm0, src, Assembler::AVX_128bit);
5067       movdbl(dst, xmm0);
5068       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5069       addptr(rsp, 64);
5070     } else {
5071       movdbl(dst, nds);
5072       vxorpd(dst, dst, src, Assembler::AVX_128bit);
5073     }
5074   } else {
5075     vxorpd(dst, nds, src, Assembler::AVX_128bit);
5076   }
5077 }
5078 
5079 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5080   if (reachable(src)) {
5081     vxorpd(dst, nds, as_Address(src), vector_len);
5082   } else {
5083     lea(rscratch1, src);
5084     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
5085   }
5086 }
5087 
5088 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5089   if (reachable(src)) {
5090     vxorps(dst, nds, as_Address(src), vector_len);
5091   } else {
5092     lea(rscratch1, src);
5093     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
5094   }
5095 }
5096 
5097 
5098 //////////////////////////////////////////////////////////////////////////////////
5099 #if INCLUDE_ALL_GCS
5100 
5101 void MacroAssembler::g1_write_barrier_pre(Register obj,
5102                                           Register pre_val,
5103                                           Register thread,
5104                                           Register tmp,
5105                                           bool tosca_live,
5106                                           bool expand_call) {
5107 
5108   // If expand_call is true then we expand the call_VM_leaf macro
5109   // directly to skip generating the check by
5110   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
5111 
5112 #ifdef _LP64
5113   assert(thread == r15_thread, "must be");
5114 #endif // _LP64
5115 
5116   Label done;
5117   Label runtime;
5118 
5119   assert(pre_val != noreg, "check this code");
5120 
5121   if (obj != noreg) {
5122     assert_different_registers(obj, pre_val, tmp);
5123     assert(pre_val != rax, "check this code");
5124   }
5125 
5126   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5127                                        SATBMarkQueue::byte_offset_of_active()));
5128   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5129                                        SATBMarkQueue::byte_offset_of_index()));
5130   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5131                                        SATBMarkQueue::byte_offset_of_buf()));
5132 
5133 
5134   // Is marking active?
5135   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
5136     cmpl(in_progress, 0);
5137   } else {
5138     assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
5139     cmpb(in_progress, 0);
5140   }
5141   jcc(Assembler::equal, done);
5142 
5143   // Do we need to load the previous value?
5144   if (obj != noreg) {
5145     load_heap_oop(pre_val, Address(obj, 0));
5146   }
5147 
5148   // Is the previous value null?
5149   cmpptr(pre_val, (int32_t) NULL_WORD);
5150   jcc(Assembler::equal, done);
5151 
5152   // Can we store original value in the thread's buffer?
5153   // Is index == 0?
5154   // (The index field is typed as size_t.)
5155 
5156   movptr(tmp, index);                   // tmp := *index_adr
5157   cmpptr(tmp, 0);                       // tmp == 0?
5158   jcc(Assembler::equal, runtime);       // If yes, goto runtime
5159 
5160   subptr(tmp, wordSize);                // tmp := tmp - wordSize
5161   movptr(index, tmp);                   // *index_adr := tmp
5162   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
5163 
5164   // Record the previous value
5165   movptr(Address(tmp, 0), pre_val);
5166   jmp(done);
5167 
5168   bind(runtime);
5169   // save the live input values
5170   if(tosca_live) push(rax);
5171 
5172   if (obj != noreg && obj != rax)
5173     push(obj);
5174 
5175   if (pre_val != rax)
5176     push(pre_val);
5177 
5178   // Calling the runtime using the regular call_VM_leaf mechanism generates
5179   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
5180   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
5181   //
5182   // If we care generating the pre-barrier without a frame (e.g. in the
5183   // intrinsified Reference.get() routine) then ebp might be pointing to
5184   // the caller frame and so this check will most likely fail at runtime.
5185   //
5186   // Expanding the call directly bypasses the generation of the check.
5187   // So when we do not have have a full interpreter frame on the stack
5188   // expand_call should be passed true.
5189 
5190   NOT_LP64( push(thread); )
5191 
5192   if (expand_call) {
5193     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
5194     pass_arg1(this, thread);
5195     pass_arg0(this, pre_val);
5196     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
5197   } else {
5198     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
5199   }
5200 
5201   NOT_LP64( pop(thread); )
5202 
5203   // save the live input values
5204   if (pre_val != rax)
5205     pop(pre_val);
5206 
5207   if (obj != noreg && obj != rax)
5208     pop(obj);
5209 
5210   if(tosca_live) pop(rax);
5211 
5212   bind(done);
5213 }
5214 
5215 void MacroAssembler::g1_write_barrier_post(Register store_addr,
5216                                            Register new_val,
5217                                            Register thread,
5218                                            Register tmp,
5219                                            Register tmp2) {
5220 #ifdef _LP64
5221   assert(thread == r15_thread, "must be");
5222 #endif // _LP64
5223 
5224   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5225                                        DirtyCardQueue::byte_offset_of_index()));
5226   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5227                                        DirtyCardQueue::byte_offset_of_buf()));
5228 
5229   CardTableModRefBS* ct =
5230     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
5231   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5232 
5233   Label done;
5234   Label runtime;
5235 
5236   // Does store cross heap regions?
5237 
5238   movptr(tmp, store_addr);
5239   xorptr(tmp, new_val);
5240   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
5241   jcc(Assembler::equal, done);
5242 
5243   // crosses regions, storing NULL?
5244 
5245   cmpptr(new_val, (int32_t) NULL_WORD);
5246   jcc(Assembler::equal, done);
5247 
5248   // storing region crossing non-NULL, is card already dirty?
5249 
5250   const Register card_addr = tmp;
5251   const Register cardtable = tmp2;
5252 
5253   movptr(card_addr, store_addr);
5254   shrptr(card_addr, CardTableModRefBS::card_shift);
5255   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
5256   // a valid address and therefore is not properly handled by the relocation code.
5257   movptr(cardtable, (intptr_t)ct->byte_map_base);
5258   addptr(card_addr, cardtable);
5259 
5260   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
5261   jcc(Assembler::equal, done);
5262 
5263   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
5264   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5265   jcc(Assembler::equal, done);
5266 
5267 
5268   // storing a region crossing, non-NULL oop, card is clean.
5269   // dirty card and log.
5270 
5271   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5272 
5273   cmpl(queue_index, 0);
5274   jcc(Assembler::equal, runtime);
5275   subl(queue_index, wordSize);
5276   movptr(tmp2, buffer);
5277 #ifdef _LP64
5278   movslq(rscratch1, queue_index);
5279   addq(tmp2, rscratch1);
5280   movq(Address(tmp2, 0), card_addr);
5281 #else
5282   addl(tmp2, queue_index);
5283   movl(Address(tmp2, 0), card_addr);
5284 #endif
5285   jmp(done);
5286 
5287   bind(runtime);
5288   // save the live input values
5289   push(store_addr);
5290   push(new_val);
5291 #ifdef _LP64
5292   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
5293 #else
5294   push(thread);
5295   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
5296   pop(thread);
5297 #endif
5298   pop(new_val);
5299   pop(store_addr);
5300 
5301   bind(done);
5302 }
5303 
5304 #endif // INCLUDE_ALL_GCS
5305 //////////////////////////////////////////////////////////////////////////////////
5306 
5307 
5308 void MacroAssembler::store_check(Register obj, Address dst) {
5309   store_check(obj);
5310 }
5311 
5312 void MacroAssembler::store_check(Register obj) {
5313   // Does a store check for the oop in register obj. The content of
5314   // register obj is destroyed afterwards.
5315   BarrierSet* bs = Universe::heap()->barrier_set();
5316   assert(bs->kind() == BarrierSet::CardTableForRS ||
5317          bs->kind() == BarrierSet::CardTableExtension,
5318          "Wrong barrier set kind");
5319 
5320   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
5321   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5322 
5323   shrptr(obj, CardTableModRefBS::card_shift);
5324 
5325   Address card_addr;
5326 
5327   // The calculation for byte_map_base is as follows:
5328   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
5329   // So this essentially converts an address to a displacement and it will
5330   // never need to be relocated. On 64bit however the value may be too
5331   // large for a 32bit displacement.
5332   intptr_t disp = (intptr_t) ct->byte_map_base;
5333   if (is_simm32(disp)) {
5334     card_addr = Address(noreg, obj, Address::times_1, disp);
5335   } else {
5336     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
5337     // displacement and done in a single instruction given favorable mapping and a
5338     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
5339     // entry and that entry is not properly handled by the relocation code.
5340     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
5341     Address index(noreg, obj, Address::times_1);
5342     card_addr = as_Address(ArrayAddress(cardtable, index));
5343   }
5344 
5345   int dirty = CardTableModRefBS::dirty_card_val();
5346   if (UseCondCardMark) {
5347     Label L_already_dirty;
5348     if (UseConcMarkSweepGC) {
5349       membar(Assembler::StoreLoad);
5350     }
5351     cmpb(card_addr, dirty);
5352     jcc(Assembler::equal, L_already_dirty);
5353     movb(card_addr, dirty);
5354     bind(L_already_dirty);
5355   } else {
5356     movb(card_addr, dirty);
5357   }
5358 }
5359 
5360 void MacroAssembler::subptr(Register dst, int32_t imm32) {
5361   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
5362 }
5363 
5364 // Force generation of a 4 byte immediate value even if it fits into 8bit
5365 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
5366   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
5367 }
5368 
5369 void MacroAssembler::subptr(Register dst, Register src) {
5370   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
5371 }
5372 
5373 // C++ bool manipulation
5374 void MacroAssembler::testbool(Register dst) {
5375   if(sizeof(bool) == 1)
5376     testb(dst, 0xff);
5377   else if(sizeof(bool) == 2) {
5378     // testw implementation needed for two byte bools
5379     ShouldNotReachHere();
5380   } else if(sizeof(bool) == 4)
5381     testl(dst, dst);
5382   else
5383     // unsupported
5384     ShouldNotReachHere();
5385 }
5386 
5387 void MacroAssembler::testptr(Register dst, Register src) {
5388   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
5389 }
5390 
5391 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5392 void MacroAssembler::tlab_allocate(Register obj,
5393                                    Register var_size_in_bytes,
5394                                    int con_size_in_bytes,
5395                                    Register t1,
5396                                    Register t2,
5397                                    Label& slow_case) {
5398   assert_different_registers(obj, t1, t2);
5399   assert_different_registers(obj, var_size_in_bytes, t1);
5400   Register end = t2;
5401   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
5402 
5403   verify_tlab();
5404 
5405   NOT_LP64(get_thread(thread));
5406 
5407   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
5408   if (var_size_in_bytes == noreg) {
5409     lea(end, Address(obj, con_size_in_bytes));
5410   } else {
5411     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
5412   }
5413   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
5414   jcc(Assembler::above, slow_case);
5415 
5416   // update the tlab top pointer
5417   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
5418 
5419   // recover var_size_in_bytes if necessary
5420   if (var_size_in_bytes == end) {
5421     subptr(var_size_in_bytes, obj);
5422   }
5423   verify_tlab();
5424 }
5425 
5426 // Preserves rbx, and rdx.
5427 Register MacroAssembler::tlab_refill(Label& retry,
5428                                      Label& try_eden,
5429                                      Label& slow_case) {
5430   Register top = rax;
5431   Register t1  = rcx; // object size
5432   Register t2  = rsi;
5433   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
5434   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
5435   Label do_refill, discard_tlab;
5436 
5437   if (!Universe::heap()->supports_inline_contig_alloc()) {
5438     // No allocation in the shared eden.
5439     jmp(slow_case);
5440   }
5441 
5442   NOT_LP64(get_thread(thread_reg));
5443 
5444   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5445   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5446 
5447   // calculate amount of free space
5448   subptr(t1, top);
5449   shrptr(t1, LogHeapWordSize);
5450 
5451   // Retain tlab and allocate object in shared space if
5452   // the amount free in the tlab is too large to discard.
5453   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
5454   jcc(Assembler::lessEqual, discard_tlab);
5455 
5456   // Retain
5457   // %%% yuck as movptr...
5458   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
5459   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
5460   if (TLABStats) {
5461     // increment number of slow_allocations
5462     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
5463   }
5464   jmp(try_eden);
5465 
5466   bind(discard_tlab);
5467   if (TLABStats) {
5468     // increment number of refills
5469     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
5470     // accumulate wastage -- t1 is amount free in tlab
5471     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
5472   }
5473 
5474   // if tlab is currently allocated (top or end != null) then
5475   // fill [top, end + alignment_reserve) with array object
5476   testptr(top, top);
5477   jcc(Assembler::zero, do_refill);
5478 
5479   // set up the mark word
5480   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
5481   // set the length to the remaining space
5482   subptr(t1, typeArrayOopDesc::header_size(T_INT));
5483   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
5484   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
5485   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
5486   // set klass to intArrayKlass
5487   // dubious reloc why not an oop reloc?
5488   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
5489   // store klass last.  concurrent gcs assumes klass length is valid if
5490   // klass field is not null.
5491   store_klass(top, t1);
5492 
5493   movptr(t1, top);
5494   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5495   incr_allocated_bytes(thread_reg, t1, 0);
5496 
5497   // refill the tlab with an eden allocation
5498   bind(do_refill);
5499   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5500   shlptr(t1, LogHeapWordSize);
5501   // allocate new tlab, address returned in top
5502   eden_allocate(top, t1, 0, t2, slow_case);
5503 
5504   // Check that t1 was preserved in eden_allocate.
5505 #ifdef ASSERT
5506   if (UseTLAB) {
5507     Label ok;
5508     Register tsize = rsi;
5509     assert_different_registers(tsize, thread_reg, t1);
5510     push(tsize);
5511     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5512     shlptr(tsize, LogHeapWordSize);
5513     cmpptr(t1, tsize);
5514     jcc(Assembler::equal, ok);
5515     STOP("assert(t1 != tlab size)");
5516     should_not_reach_here();
5517 
5518     bind(ok);
5519     pop(tsize);
5520   }
5521 #endif
5522   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
5523   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
5524   addptr(top, t1);
5525   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
5526   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
5527 
5528   if (ZeroTLAB) {
5529     // This is a fast TLAB refill, therefore the GC is not notified of it.
5530     // So compiled code must fill the new TLAB with zeroes.
5531     movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5532     zero_memory(top, t1, 0, t2);
5533   }
5534 
5535   verify_tlab();
5536   jmp(retry);
5537 
5538   return thread_reg; // for use by caller
5539 }
5540 
5541 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
5542 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
5543   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
5544   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
5545   Label done;
5546 
5547   testptr(length_in_bytes, length_in_bytes);
5548   jcc(Assembler::zero, done);
5549 
5550   // initialize topmost word, divide index by 2, check if odd and test if zero
5551   // note: for the remaining code to work, index must be a multiple of BytesPerWord
5552 #ifdef ASSERT
5553   {
5554     Label L;
5555     testptr(length_in_bytes, BytesPerWord - 1);
5556     jcc(Assembler::zero, L);
5557     stop("length must be a multiple of BytesPerWord");
5558     bind(L);
5559   }
5560 #endif
5561   Register index = length_in_bytes;
5562   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
5563   if (UseIncDec) {
5564     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
5565   } else {
5566     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
5567     shrptr(index, 1);
5568   }
5569 #ifndef _LP64
5570   // index could have not been a multiple of 8 (i.e., bit 2 was set)
5571   {
5572     Label even;
5573     // note: if index was a multiple of 8, then it cannot
5574     //       be 0 now otherwise it must have been 0 before
5575     //       => if it is even, we don't need to check for 0 again
5576     jcc(Assembler::carryClear, even);
5577     // clear topmost word (no jump would be needed if conditional assignment worked here)
5578     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
5579     // index could be 0 now, must check again
5580     jcc(Assembler::zero, done);
5581     bind(even);
5582   }
5583 #endif // !_LP64
5584   // initialize remaining object fields: index is a multiple of 2 now
5585   {
5586     Label loop;
5587     bind(loop);
5588     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
5589     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
5590     decrement(index);
5591     jcc(Assembler::notZero, loop);
5592   }
5593 
5594   bind(done);
5595 }
5596 
5597 void MacroAssembler::incr_allocated_bytes(Register thread,
5598                                           Register var_size_in_bytes,
5599                                           int con_size_in_bytes,
5600                                           Register t1) {
5601   if (!thread->is_valid()) {
5602 #ifdef _LP64
5603     thread = r15_thread;
5604 #else
5605     assert(t1->is_valid(), "need temp reg");
5606     thread = t1;
5607     get_thread(thread);
5608 #endif
5609   }
5610 
5611 #ifdef _LP64
5612   if (var_size_in_bytes->is_valid()) {
5613     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5614   } else {
5615     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5616   }
5617 #else
5618   if (var_size_in_bytes->is_valid()) {
5619     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5620   } else {
5621     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5622   }
5623   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
5624 #endif
5625 }
5626 
5627 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
5628   pusha();
5629 
5630   // if we are coming from c1, xmm registers may be live
5631   int num_xmm_regs = LP64_ONLY(16) NOT_LP64(8);
5632   if (UseAVX > 2) {
5633     num_xmm_regs = LP64_ONLY(32) NOT_LP64(8);
5634   }
5635 
5636   if (UseSSE == 1)  {
5637     subptr(rsp, sizeof(jdouble)*8);
5638     for (int n = 0; n < 8; n++) {
5639       movflt(Address(rsp, n*sizeof(jdouble)), as_XMMRegister(n));
5640     }
5641   } else if (UseSSE >= 2)  {
5642     if (UseAVX > 2) {
5643       push(rbx);
5644       movl(rbx, 0xffff);
5645       kmovwl(k1, rbx);
5646       pop(rbx);
5647     }
5648 #ifdef COMPILER2
5649     if (MaxVectorSize > 16) {
5650       if(UseAVX > 2) {
5651         // Save upper half of ZMM registers
5652         subptr(rsp, 32*num_xmm_regs);
5653         for (int n = 0; n < num_xmm_regs; n++) {
5654           vextractf64x4h(Address(rsp, n*32), as_XMMRegister(n), 1);
5655         }
5656       }
5657       assert(UseAVX > 0, "256 bit vectors are supported only with AVX");
5658       // Save upper half of YMM registers
5659       subptr(rsp, 16*num_xmm_regs);
5660       for (int n = 0; n < num_xmm_regs; n++) {
5661         vextractf128h(Address(rsp, n*16), as_XMMRegister(n));
5662       }
5663     }
5664 #endif
5665     // Save whole 128bit (16 bytes) XMM registers
5666     subptr(rsp, 16*num_xmm_regs);
5667 #ifdef _LP64
5668     if (VM_Version::supports_evex()) {
5669       for (int n = 0; n < num_xmm_regs; n++) {
5670         vextractf32x4h(Address(rsp, n*16), as_XMMRegister(n), 0);
5671       }
5672     } else {
5673       for (int n = 0; n < num_xmm_regs; n++) {
5674         movdqu(Address(rsp, n*16), as_XMMRegister(n));
5675       }
5676     }
5677 #else
5678     for (int n = 0; n < num_xmm_regs; n++) {
5679       movdqu(Address(rsp, n*16), as_XMMRegister(n));
5680     }
5681 #endif
5682   }
5683 
5684   // Preserve registers across runtime call
5685   int incoming_argument_and_return_value_offset = -1;
5686   if (num_fpu_regs_in_use > 1) {
5687     // Must preserve all other FPU regs (could alternatively convert
5688     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
5689     // FPU state, but can not trust C compiler)
5690     NEEDS_CLEANUP;
5691     // NOTE that in this case we also push the incoming argument(s) to
5692     // the stack and restore it later; we also use this stack slot to
5693     // hold the return value from dsin, dcos etc.
5694     for (int i = 0; i < num_fpu_regs_in_use; i++) {
5695       subptr(rsp, sizeof(jdouble));
5696       fstp_d(Address(rsp, 0));
5697     }
5698     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
5699     for (int i = nb_args-1; i >= 0; i--) {
5700       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
5701     }
5702   }
5703 
5704   subptr(rsp, nb_args*sizeof(jdouble));
5705   for (int i = 0; i < nb_args; i++) {
5706     fstp_d(Address(rsp, i*sizeof(jdouble)));
5707   }
5708 
5709 #ifdef _LP64
5710   if (nb_args > 0) {
5711     movdbl(xmm0, Address(rsp, 0));
5712   }
5713   if (nb_args > 1) {
5714     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
5715   }
5716   assert(nb_args <= 2, "unsupported number of args");
5717 #endif // _LP64
5718 
5719   // NOTE: we must not use call_VM_leaf here because that requires a
5720   // complete interpreter frame in debug mode -- same bug as 4387334
5721   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
5722   // do proper 64bit abi
5723 
5724   NEEDS_CLEANUP;
5725   // Need to add stack banging before this runtime call if it needs to
5726   // be taken; however, there is no generic stack banging routine at
5727   // the MacroAssembler level
5728 
5729   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
5730 
5731 #ifdef _LP64
5732   movsd(Address(rsp, 0), xmm0);
5733   fld_d(Address(rsp, 0));
5734 #endif // _LP64
5735   addptr(rsp, sizeof(jdouble)*nb_args);
5736   if (num_fpu_regs_in_use > 1) {
5737     // Must save return value to stack and then restore entire FPU
5738     // stack except incoming arguments
5739     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
5740     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
5741       fld_d(Address(rsp, 0));
5742       addptr(rsp, sizeof(jdouble));
5743     }
5744     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
5745     addptr(rsp, sizeof(jdouble)*nb_args);
5746   }
5747 
5748   if (UseSSE == 1)  {
5749     for (int n = 0; n < 8; n++) {
5750       movflt(as_XMMRegister(n), Address(rsp, n*sizeof(jdouble)));
5751     }
5752     addptr(rsp, sizeof(jdouble)*8);
5753   } else if (UseSSE >= 2)  {
5754     // Restore whole 128bit (16 bytes) XMM registers
5755 #ifdef _LP64
5756   if (VM_Version::supports_evex()) {
5757     for (int n = 0; n < num_xmm_regs; n++) {
5758       vinsertf32x4h(as_XMMRegister(n), Address(rsp, n*16), 0);
5759     }
5760   } else {
5761     for (int n = 0; n < num_xmm_regs; n++) {
5762       movdqu(as_XMMRegister(n), Address(rsp, n*16));
5763     }
5764   }
5765 #else
5766   for (int n = 0; n < num_xmm_regs; n++) {
5767     movdqu(as_XMMRegister(n), Address(rsp, n*16));
5768   }
5769 #endif
5770     addptr(rsp, 16*num_xmm_regs);
5771 
5772 #ifdef COMPILER2
5773     if (MaxVectorSize > 16) {
5774       // Restore upper half of YMM registers.
5775       for (int n = 0; n < num_xmm_regs; n++) {
5776         vinsertf128h(as_XMMRegister(n), Address(rsp, n*16));
5777       }
5778       addptr(rsp, 16*num_xmm_regs);
5779       if(UseAVX > 2) {
5780         for (int n = 0; n < num_xmm_regs; n++) {
5781           vinsertf64x4h(as_XMMRegister(n), Address(rsp, n*32), 1);
5782         }
5783         addptr(rsp, 32*num_xmm_regs);
5784       }
5785     }
5786 #endif
5787   }
5788   popa();
5789 }
5790 
5791 static const double     pi_4 =  0.7853981633974483;
5792 
5793 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
5794   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
5795   // was attempted in this code; unfortunately it appears that the
5796   // switch to 80-bit precision and back causes this to be
5797   // unprofitable compared with simply performing a runtime call if
5798   // the argument is out of the (-pi/4, pi/4) range.
5799 
5800   Register tmp = noreg;
5801   if (!VM_Version::supports_cmov()) {
5802     // fcmp needs a temporary so preserve rbx,
5803     tmp = rbx;
5804     push(tmp);
5805   }
5806 
5807   Label slow_case, done;
5808   if (trig == 't') {
5809     ExternalAddress pi4_adr = (address)&pi_4;
5810     if (reachable(pi4_adr)) {
5811       // x ?<= pi/4
5812       fld_d(pi4_adr);
5813       fld_s(1);                // Stack:  X  PI/4  X
5814       fabs();                  // Stack: |X| PI/4  X
5815       fcmp(tmp);
5816       jcc(Assembler::above, slow_case);
5817 
5818       // fastest case: -pi/4 <= x <= pi/4
5819       ftan();
5820 
5821       jmp(done);
5822     }
5823   }
5824   // slow case: runtime call
5825   bind(slow_case);
5826 
5827   switch(trig) {
5828   case 's':
5829     {
5830       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
5831     }
5832     break;
5833   case 'c':
5834     {
5835       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
5836     }
5837     break;
5838   case 't':
5839     {
5840       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
5841     }
5842     break;
5843   default:
5844     assert(false, "bad intrinsic");
5845     break;
5846   }
5847 
5848   // Come here with result in F-TOS
5849   bind(done);
5850 
5851   if (tmp != noreg) {
5852     pop(tmp);
5853   }
5854 }
5855 
5856 // Look up the method for a megamorphic invokeinterface call.
5857 // The target method is determined by <intf_klass, itable_index>.
5858 // The receiver klass is in recv_klass.
5859 // On success, the result will be in method_result, and execution falls through.
5860 // On failure, execution transfers to the given label.
5861 void MacroAssembler::lookup_interface_method(Register recv_klass,
5862                                              Register intf_klass,
5863                                              RegisterOrConstant itable_index,
5864                                              Register method_result,
5865                                              Register scan_temp,
5866                                              Label& L_no_such_interface) {
5867   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
5868   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
5869          "caller must use same register for non-constant itable index as for method");
5870 
5871   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
5872   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
5873   int itentry_off = itableMethodEntry::method_offset_in_bytes();
5874   int scan_step   = itableOffsetEntry::size() * wordSize;
5875   int vte_size    = vtableEntry::size() * wordSize;
5876   Address::ScaleFactor times_vte_scale = Address::times_ptr;
5877   assert(vte_size == wordSize, "else adjust times_vte_scale");
5878 
5879   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
5880 
5881   // %%% Could store the aligned, prescaled offset in the klassoop.
5882   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
5883   if (HeapWordsPerLong > 1) {
5884     // Round up to align_object_offset boundary
5885     // see code for InstanceKlass::start_of_itable!
5886     round_to(scan_temp, BytesPerLong);
5887   }
5888 
5889   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
5890   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
5891   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
5892 
5893   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
5894   //   if (scan->interface() == intf) {
5895   //     result = (klass + scan->offset() + itable_index);
5896   //   }
5897   // }
5898   Label search, found_method;
5899 
5900   for (int peel = 1; peel >= 0; peel--) {
5901     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
5902     cmpptr(intf_klass, method_result);
5903 
5904     if (peel) {
5905       jccb(Assembler::equal, found_method);
5906     } else {
5907       jccb(Assembler::notEqual, search);
5908       // (invert the test to fall through to found_method...)
5909     }
5910 
5911     if (!peel)  break;
5912 
5913     bind(search);
5914 
5915     // Check that the previous entry is non-null.  A null entry means that
5916     // the receiver class doesn't implement the interface, and wasn't the
5917     // same as when the caller was compiled.
5918     testptr(method_result, method_result);
5919     jcc(Assembler::zero, L_no_such_interface);
5920     addptr(scan_temp, scan_step);
5921   }
5922 
5923   bind(found_method);
5924 
5925   // Got a hit.
5926   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5927   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5928 }
5929 
5930 
5931 // virtual method calling
5932 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5933                                            RegisterOrConstant vtable_index,
5934                                            Register method_result) {
5935   const int base = InstanceKlass::vtable_start_offset() * wordSize;
5936   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5937   Address vtable_entry_addr(recv_klass,
5938                             vtable_index, Address::times_ptr,
5939                             base + vtableEntry::method_offset_in_bytes());
5940   movptr(method_result, vtable_entry_addr);
5941 }
5942 
5943 
5944 void MacroAssembler::check_klass_subtype(Register sub_klass,
5945                            Register super_klass,
5946                            Register temp_reg,
5947                            Label& L_success) {
5948   Label L_failure;
5949   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5950   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5951   bind(L_failure);
5952 }
5953 
5954 
5955 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5956                                                    Register super_klass,
5957                                                    Register temp_reg,
5958                                                    Label* L_success,
5959                                                    Label* L_failure,
5960                                                    Label* L_slow_path,
5961                                         RegisterOrConstant super_check_offset) {
5962   assert_different_registers(sub_klass, super_klass, temp_reg);
5963   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5964   if (super_check_offset.is_register()) {
5965     assert_different_registers(sub_klass, super_klass,
5966                                super_check_offset.as_register());
5967   } else if (must_load_sco) {
5968     assert(temp_reg != noreg, "supply either a temp or a register offset");
5969   }
5970 
5971   Label L_fallthrough;
5972   int label_nulls = 0;
5973   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5974   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5975   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5976   assert(label_nulls <= 1, "at most one NULL in the batch");
5977 
5978   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5979   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5980   Address super_check_offset_addr(super_klass, sco_offset);
5981 
5982   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5983   // range of a jccb.  If this routine grows larger, reconsider at
5984   // least some of these.
5985 #define local_jcc(assembler_cond, label)                                \
5986   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5987   else                             jcc( assembler_cond, label) /*omit semi*/
5988 
5989   // Hacked jmp, which may only be used just before L_fallthrough.
5990 #define final_jmp(label)                                                \
5991   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5992   else                            jmp(label)                /*omit semi*/
5993 
5994   // If the pointers are equal, we are done (e.g., String[] elements).
5995   // This self-check enables sharing of secondary supertype arrays among
5996   // non-primary types such as array-of-interface.  Otherwise, each such
5997   // type would need its own customized SSA.
5998   // We move this check to the front of the fast path because many
5999   // type checks are in fact trivially successful in this manner,
6000   // so we get a nicely predicted branch right at the start of the check.
6001   cmpptr(sub_klass, super_klass);
6002   local_jcc(Assembler::equal, *L_success);
6003 
6004   // Check the supertype display:
6005   if (must_load_sco) {
6006     // Positive movl does right thing on LP64.
6007     movl(temp_reg, super_check_offset_addr);
6008     super_check_offset = RegisterOrConstant(temp_reg);
6009   }
6010   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
6011   cmpptr(super_klass, super_check_addr); // load displayed supertype
6012 
6013   // This check has worked decisively for primary supers.
6014   // Secondary supers are sought in the super_cache ('super_cache_addr').
6015   // (Secondary supers are interfaces and very deeply nested subtypes.)
6016   // This works in the same check above because of a tricky aliasing
6017   // between the super_cache and the primary super display elements.
6018   // (The 'super_check_addr' can address either, as the case requires.)
6019   // Note that the cache is updated below if it does not help us find
6020   // what we need immediately.
6021   // So if it was a primary super, we can just fail immediately.
6022   // Otherwise, it's the slow path for us (no success at this point).
6023 
6024   if (super_check_offset.is_register()) {
6025     local_jcc(Assembler::equal, *L_success);
6026     cmpl(super_check_offset.as_register(), sc_offset);
6027     if (L_failure == &L_fallthrough) {
6028       local_jcc(Assembler::equal, *L_slow_path);
6029     } else {
6030       local_jcc(Assembler::notEqual, *L_failure);
6031       final_jmp(*L_slow_path);
6032     }
6033   } else if (super_check_offset.as_constant() == sc_offset) {
6034     // Need a slow path; fast failure is impossible.
6035     if (L_slow_path == &L_fallthrough) {
6036       local_jcc(Assembler::equal, *L_success);
6037     } else {
6038       local_jcc(Assembler::notEqual, *L_slow_path);
6039       final_jmp(*L_success);
6040     }
6041   } else {
6042     // No slow path; it's a fast decision.
6043     if (L_failure == &L_fallthrough) {
6044       local_jcc(Assembler::equal, *L_success);
6045     } else {
6046       local_jcc(Assembler::notEqual, *L_failure);
6047       final_jmp(*L_success);
6048     }
6049   }
6050 
6051   bind(L_fallthrough);
6052 
6053 #undef local_jcc
6054 #undef final_jmp
6055 }
6056 
6057 
6058 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
6059                                                    Register super_klass,
6060                                                    Register temp_reg,
6061                                                    Register temp2_reg,
6062                                                    Label* L_success,
6063                                                    Label* L_failure,
6064                                                    bool set_cond_codes) {
6065   assert_different_registers(sub_klass, super_klass, temp_reg);
6066   if (temp2_reg != noreg)
6067     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
6068 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
6069 
6070   Label L_fallthrough;
6071   int label_nulls = 0;
6072   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
6073   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
6074   assert(label_nulls <= 1, "at most one NULL in the batch");
6075 
6076   // a couple of useful fields in sub_klass:
6077   int ss_offset = in_bytes(Klass::secondary_supers_offset());
6078   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
6079   Address secondary_supers_addr(sub_klass, ss_offset);
6080   Address super_cache_addr(     sub_klass, sc_offset);
6081 
6082   // Do a linear scan of the secondary super-klass chain.
6083   // This code is rarely used, so simplicity is a virtue here.
6084   // The repne_scan instruction uses fixed registers, which we must spill.
6085   // Don't worry too much about pre-existing connections with the input regs.
6086 
6087   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
6088   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
6089 
6090   // Get super_klass value into rax (even if it was in rdi or rcx).
6091   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
6092   if (super_klass != rax || UseCompressedOops) {
6093     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
6094     mov(rax, super_klass);
6095   }
6096   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
6097   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
6098 
6099 #ifndef PRODUCT
6100   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
6101   ExternalAddress pst_counter_addr((address) pst_counter);
6102   NOT_LP64(  incrementl(pst_counter_addr) );
6103   LP64_ONLY( lea(rcx, pst_counter_addr) );
6104   LP64_ONLY( incrementl(Address(rcx, 0)) );
6105 #endif //PRODUCT
6106 
6107   // We will consult the secondary-super array.
6108   movptr(rdi, secondary_supers_addr);
6109   // Load the array length.  (Positive movl does right thing on LP64.)
6110   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
6111   // Skip to start of data.
6112   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
6113 
6114   // Scan RCX words at [RDI] for an occurrence of RAX.
6115   // Set NZ/Z based on last compare.
6116   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
6117   // not change flags (only scas instruction which is repeated sets flags).
6118   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
6119 
6120     testptr(rax,rax); // Set Z = 0
6121     repne_scan();
6122 
6123   // Unspill the temp. registers:
6124   if (pushed_rdi)  pop(rdi);
6125   if (pushed_rcx)  pop(rcx);
6126   if (pushed_rax)  pop(rax);
6127 
6128   if (set_cond_codes) {
6129     // Special hack for the AD files:  rdi is guaranteed non-zero.
6130     assert(!pushed_rdi, "rdi must be left non-NULL");
6131     // Also, the condition codes are properly set Z/NZ on succeed/failure.
6132   }
6133 
6134   if (L_failure == &L_fallthrough)
6135         jccb(Assembler::notEqual, *L_failure);
6136   else  jcc(Assembler::notEqual, *L_failure);
6137 
6138   // Success.  Cache the super we found and proceed in triumph.
6139   movptr(super_cache_addr, super_klass);
6140 
6141   if (L_success != &L_fallthrough) {
6142     jmp(*L_success);
6143   }
6144 
6145 #undef IS_A_TEMP
6146 
6147   bind(L_fallthrough);
6148 }
6149 
6150 
6151 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
6152   if (VM_Version::supports_cmov()) {
6153     cmovl(cc, dst, src);
6154   } else {
6155     Label L;
6156     jccb(negate_condition(cc), L);
6157     movl(dst, src);
6158     bind(L);
6159   }
6160 }
6161 
6162 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
6163   if (VM_Version::supports_cmov()) {
6164     cmovl(cc, dst, src);
6165   } else {
6166     Label L;
6167     jccb(negate_condition(cc), L);
6168     movl(dst, src);
6169     bind(L);
6170   }
6171 }
6172 
6173 void MacroAssembler::verify_oop(Register reg, const char* s) {
6174   if (!VerifyOops) return;
6175 
6176   // Pass register number to verify_oop_subroutine
6177   const char* b = NULL;
6178   {
6179     ResourceMark rm;
6180     stringStream ss;
6181     ss.print("verify_oop: %s: %s", reg->name(), s);
6182     b = code_string(ss.as_string());
6183   }
6184   BLOCK_COMMENT("verify_oop {");
6185 #ifdef _LP64
6186   push(rscratch1);                    // save r10, trashed by movptr()
6187 #endif
6188   push(rax);                          // save rax,
6189   push(reg);                          // pass register argument
6190   ExternalAddress buffer((address) b);
6191   // avoid using pushptr, as it modifies scratch registers
6192   // and our contract is not to modify anything
6193   movptr(rax, buffer.addr());
6194   push(rax);
6195   // call indirectly to solve generation ordering problem
6196   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6197   call(rax);
6198   // Caller pops the arguments (oop, message) and restores rax, r10
6199   BLOCK_COMMENT("} verify_oop");
6200 }
6201 
6202 
6203 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
6204                                                       Register tmp,
6205                                                       int offset) {
6206   intptr_t value = *delayed_value_addr;
6207   if (value != 0)
6208     return RegisterOrConstant(value + offset);
6209 
6210   // load indirectly to solve generation ordering problem
6211   movptr(tmp, ExternalAddress((address) delayed_value_addr));
6212 
6213 #ifdef ASSERT
6214   { Label L;
6215     testptr(tmp, tmp);
6216     if (WizardMode) {
6217       const char* buf = NULL;
6218       {
6219         ResourceMark rm;
6220         stringStream ss;
6221         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
6222         buf = code_string(ss.as_string());
6223       }
6224       jcc(Assembler::notZero, L);
6225       STOP(buf);
6226     } else {
6227       jccb(Assembler::notZero, L);
6228       hlt();
6229     }
6230     bind(L);
6231   }
6232 #endif
6233 
6234   if (offset != 0)
6235     addptr(tmp, offset);
6236 
6237   return RegisterOrConstant(tmp);
6238 }
6239 
6240 
6241 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
6242                                          int extra_slot_offset) {
6243   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
6244   int stackElementSize = Interpreter::stackElementSize;
6245   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
6246 #ifdef ASSERT
6247   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
6248   assert(offset1 - offset == stackElementSize, "correct arithmetic");
6249 #endif
6250   Register             scale_reg    = noreg;
6251   Address::ScaleFactor scale_factor = Address::no_scale;
6252   if (arg_slot.is_constant()) {
6253     offset += arg_slot.as_constant() * stackElementSize;
6254   } else {
6255     scale_reg    = arg_slot.as_register();
6256     scale_factor = Address::times(stackElementSize);
6257   }
6258   offset += wordSize;           // return PC is on stack
6259   return Address(rsp, scale_reg, scale_factor, offset);
6260 }
6261 
6262 
6263 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
6264   if (!VerifyOops) return;
6265 
6266   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
6267   // Pass register number to verify_oop_subroutine
6268   const char* b = NULL;
6269   {
6270     ResourceMark rm;
6271     stringStream ss;
6272     ss.print("verify_oop_addr: %s", s);
6273     b = code_string(ss.as_string());
6274   }
6275 #ifdef _LP64
6276   push(rscratch1);                    // save r10, trashed by movptr()
6277 #endif
6278   push(rax);                          // save rax,
6279   // addr may contain rsp so we will have to adjust it based on the push
6280   // we just did (and on 64 bit we do two pushes)
6281   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
6282   // stores rax into addr which is backwards of what was intended.
6283   if (addr.uses(rsp)) {
6284     lea(rax, addr);
6285     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
6286   } else {
6287     pushptr(addr);
6288   }
6289 
6290   ExternalAddress buffer((address) b);
6291   // pass msg argument
6292   // avoid using pushptr, as it modifies scratch registers
6293   // and our contract is not to modify anything
6294   movptr(rax, buffer.addr());
6295   push(rax);
6296 
6297   // call indirectly to solve generation ordering problem
6298   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6299   call(rax);
6300   // Caller pops the arguments (addr, message) and restores rax, r10.
6301 }
6302 
6303 void MacroAssembler::verify_tlab() {
6304 #ifdef ASSERT
6305   if (UseTLAB && VerifyOops) {
6306     Label next, ok;
6307     Register t1 = rsi;
6308     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
6309 
6310     push(t1);
6311     NOT_LP64(push(thread_reg));
6312     NOT_LP64(get_thread(thread_reg));
6313 
6314     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6315     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
6316     jcc(Assembler::aboveEqual, next);
6317     STOP("assert(top >= start)");
6318     should_not_reach_here();
6319 
6320     bind(next);
6321     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
6322     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6323     jcc(Assembler::aboveEqual, ok);
6324     STOP("assert(top <= end)");
6325     should_not_reach_here();
6326 
6327     bind(ok);
6328     NOT_LP64(pop(thread_reg));
6329     pop(t1);
6330   }
6331 #endif
6332 }
6333 
6334 class ControlWord {
6335  public:
6336   int32_t _value;
6337 
6338   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
6339   int  precision_control() const       { return  (_value >>  8) & 3      ; }
6340   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6341   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6342   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6343   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6344   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6345   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6346 
6347   void print() const {
6348     // rounding control
6349     const char* rc;
6350     switch (rounding_control()) {
6351       case 0: rc = "round near"; break;
6352       case 1: rc = "round down"; break;
6353       case 2: rc = "round up  "; break;
6354       case 3: rc = "chop      "; break;
6355     };
6356     // precision control
6357     const char* pc;
6358     switch (precision_control()) {
6359       case 0: pc = "24 bits "; break;
6360       case 1: pc = "reserved"; break;
6361       case 2: pc = "53 bits "; break;
6362       case 3: pc = "64 bits "; break;
6363     };
6364     // flags
6365     char f[9];
6366     f[0] = ' ';
6367     f[1] = ' ';
6368     f[2] = (precision   ()) ? 'P' : 'p';
6369     f[3] = (underflow   ()) ? 'U' : 'u';
6370     f[4] = (overflow    ()) ? 'O' : 'o';
6371     f[5] = (zero_divide ()) ? 'Z' : 'z';
6372     f[6] = (denormalized()) ? 'D' : 'd';
6373     f[7] = (invalid     ()) ? 'I' : 'i';
6374     f[8] = '\x0';
6375     // output
6376     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
6377   }
6378 
6379 };
6380 
6381 class StatusWord {
6382  public:
6383   int32_t _value;
6384 
6385   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
6386   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
6387   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
6388   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
6389   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
6390   int  top() const                     { return  (_value >> 11) & 7      ; }
6391   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
6392   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
6393   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6394   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6395   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6396   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6397   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6398   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6399 
6400   void print() const {
6401     // condition codes
6402     char c[5];
6403     c[0] = (C3()) ? '3' : '-';
6404     c[1] = (C2()) ? '2' : '-';
6405     c[2] = (C1()) ? '1' : '-';
6406     c[3] = (C0()) ? '0' : '-';
6407     c[4] = '\x0';
6408     // flags
6409     char f[9];
6410     f[0] = (error_status()) ? 'E' : '-';
6411     f[1] = (stack_fault ()) ? 'S' : '-';
6412     f[2] = (precision   ()) ? 'P' : '-';
6413     f[3] = (underflow   ()) ? 'U' : '-';
6414     f[4] = (overflow    ()) ? 'O' : '-';
6415     f[5] = (zero_divide ()) ? 'Z' : '-';
6416     f[6] = (denormalized()) ? 'D' : '-';
6417     f[7] = (invalid     ()) ? 'I' : '-';
6418     f[8] = '\x0';
6419     // output
6420     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
6421   }
6422 
6423 };
6424 
6425 class TagWord {
6426  public:
6427   int32_t _value;
6428 
6429   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
6430 
6431   void print() const {
6432     printf("%04x", _value & 0xFFFF);
6433   }
6434 
6435 };
6436 
6437 class FPU_Register {
6438  public:
6439   int32_t _m0;
6440   int32_t _m1;
6441   int16_t _ex;
6442 
6443   bool is_indefinite() const           {
6444     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
6445   }
6446 
6447   void print() const {
6448     char  sign = (_ex < 0) ? '-' : '+';
6449     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
6450     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
6451   };
6452 
6453 };
6454 
6455 class FPU_State {
6456  public:
6457   enum {
6458     register_size       = 10,
6459     number_of_registers =  8,
6460     register_mask       =  7
6461   };
6462 
6463   ControlWord  _control_word;
6464   StatusWord   _status_word;
6465   TagWord      _tag_word;
6466   int32_t      _error_offset;
6467   int32_t      _error_selector;
6468   int32_t      _data_offset;
6469   int32_t      _data_selector;
6470   int8_t       _register[register_size * number_of_registers];
6471 
6472   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
6473   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
6474 
6475   const char* tag_as_string(int tag) const {
6476     switch (tag) {
6477       case 0: return "valid";
6478       case 1: return "zero";
6479       case 2: return "special";
6480       case 3: return "empty";
6481     }
6482     ShouldNotReachHere();
6483     return NULL;
6484   }
6485 
6486   void print() const {
6487     // print computation registers
6488     { int t = _status_word.top();
6489       for (int i = 0; i < number_of_registers; i++) {
6490         int j = (i - t) & register_mask;
6491         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
6492         st(j)->print();
6493         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
6494       }
6495     }
6496     printf("\n");
6497     // print control registers
6498     printf("ctrl = "); _control_word.print(); printf("\n");
6499     printf("stat = "); _status_word .print(); printf("\n");
6500     printf("tags = "); _tag_word    .print(); printf("\n");
6501   }
6502 
6503 };
6504 
6505 class Flag_Register {
6506  public:
6507   int32_t _value;
6508 
6509   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
6510   bool direction() const               { return ((_value >> 10) & 1) != 0; }
6511   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
6512   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
6513   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
6514   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
6515   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
6516 
6517   void print() const {
6518     // flags
6519     char f[8];
6520     f[0] = (overflow       ()) ? 'O' : '-';
6521     f[1] = (direction      ()) ? 'D' : '-';
6522     f[2] = (sign           ()) ? 'S' : '-';
6523     f[3] = (zero           ()) ? 'Z' : '-';
6524     f[4] = (auxiliary_carry()) ? 'A' : '-';
6525     f[5] = (parity         ()) ? 'P' : '-';
6526     f[6] = (carry          ()) ? 'C' : '-';
6527     f[7] = '\x0';
6528     // output
6529     printf("%08x  flags = %s", _value, f);
6530   }
6531 
6532 };
6533 
6534 class IU_Register {
6535  public:
6536   int32_t _value;
6537 
6538   void print() const {
6539     printf("%08x  %11d", _value, _value);
6540   }
6541 
6542 };
6543 
6544 class IU_State {
6545  public:
6546   Flag_Register _eflags;
6547   IU_Register   _rdi;
6548   IU_Register   _rsi;
6549   IU_Register   _rbp;
6550   IU_Register   _rsp;
6551   IU_Register   _rbx;
6552   IU_Register   _rdx;
6553   IU_Register   _rcx;
6554   IU_Register   _rax;
6555 
6556   void print() const {
6557     // computation registers
6558     printf("rax,  = "); _rax.print(); printf("\n");
6559     printf("rbx,  = "); _rbx.print(); printf("\n");
6560     printf("rcx  = "); _rcx.print(); printf("\n");
6561     printf("rdx  = "); _rdx.print(); printf("\n");
6562     printf("rdi  = "); _rdi.print(); printf("\n");
6563     printf("rsi  = "); _rsi.print(); printf("\n");
6564     printf("rbp,  = "); _rbp.print(); printf("\n");
6565     printf("rsp  = "); _rsp.print(); printf("\n");
6566     printf("\n");
6567     // control registers
6568     printf("flgs = "); _eflags.print(); printf("\n");
6569   }
6570 };
6571 
6572 
6573 class CPU_State {
6574  public:
6575   FPU_State _fpu_state;
6576   IU_State  _iu_state;
6577 
6578   void print() const {
6579     printf("--------------------------------------------------\n");
6580     _iu_state .print();
6581     printf("\n");
6582     _fpu_state.print();
6583     printf("--------------------------------------------------\n");
6584   }
6585 
6586 };
6587 
6588 
6589 static void _print_CPU_state(CPU_State* state) {
6590   state->print();
6591 };
6592 
6593 
6594 void MacroAssembler::print_CPU_state() {
6595   push_CPU_state();
6596   push(rsp);                // pass CPU state
6597   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
6598   addptr(rsp, wordSize);       // discard argument
6599   pop_CPU_state();
6600 }
6601 
6602 
6603 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
6604   static int counter = 0;
6605   FPU_State* fs = &state->_fpu_state;
6606   counter++;
6607   // For leaf calls, only verify that the top few elements remain empty.
6608   // We only need 1 empty at the top for C2 code.
6609   if( stack_depth < 0 ) {
6610     if( fs->tag_for_st(7) != 3 ) {
6611       printf("FPR7 not empty\n");
6612       state->print();
6613       assert(false, "error");
6614       return false;
6615     }
6616     return true;                // All other stack states do not matter
6617   }
6618 
6619   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
6620          "bad FPU control word");
6621 
6622   // compute stack depth
6623   int i = 0;
6624   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
6625   int d = i;
6626   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
6627   // verify findings
6628   if (i != FPU_State::number_of_registers) {
6629     // stack not contiguous
6630     printf("%s: stack not contiguous at ST%d\n", s, i);
6631     state->print();
6632     assert(false, "error");
6633     return false;
6634   }
6635   // check if computed stack depth corresponds to expected stack depth
6636   if (stack_depth < 0) {
6637     // expected stack depth is -stack_depth or less
6638     if (d > -stack_depth) {
6639       // too many elements on the stack
6640       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
6641       state->print();
6642       assert(false, "error");
6643       return false;
6644     }
6645   } else {
6646     // expected stack depth is stack_depth
6647     if (d != stack_depth) {
6648       // wrong stack depth
6649       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
6650       state->print();
6651       assert(false, "error");
6652       return false;
6653     }
6654   }
6655   // everything is cool
6656   return true;
6657 }
6658 
6659 
6660 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
6661   if (!VerifyFPU) return;
6662   push_CPU_state();
6663   push(rsp);                // pass CPU state
6664   ExternalAddress msg((address) s);
6665   // pass message string s
6666   pushptr(msg.addr());
6667   push(stack_depth);        // pass stack depth
6668   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
6669   addptr(rsp, 3 * wordSize);   // discard arguments
6670   // check for error
6671   { Label L;
6672     testl(rax, rax);
6673     jcc(Assembler::notZero, L);
6674     int3();                  // break if error condition
6675     bind(L);
6676   }
6677   pop_CPU_state();
6678 }
6679 
6680 void MacroAssembler::restore_cpu_control_state_after_jni() {
6681   // Either restore the MXCSR register after returning from the JNI Call
6682   // or verify that it wasn't changed (with -Xcheck:jni flag).
6683   if (VM_Version::supports_sse()) {
6684     if (RestoreMXCSROnJNICalls) {
6685       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
6686     } else if (CheckJNICalls) {
6687       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
6688     }
6689   }
6690   if (VM_Version::supports_avx()) {
6691     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
6692     vzeroupper();
6693   }
6694 
6695 #ifndef _LP64
6696   // Either restore the x87 floating pointer control word after returning
6697   // from the JNI call or verify that it wasn't changed.
6698   if (CheckJNICalls) {
6699     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
6700   }
6701 #endif // _LP64
6702 }
6703 
6704 
6705 void MacroAssembler::load_klass(Register dst, Register src) {
6706 #ifdef _LP64
6707   if (UseCompressedClassPointers) {
6708     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6709     decode_klass_not_null(dst);
6710   } else
6711 #endif
6712     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6713 }
6714 
6715 void MacroAssembler::load_prototype_header(Register dst, Register src) {
6716   load_klass(dst, src);
6717   movptr(dst, Address(dst, Klass::prototype_header_offset()));
6718 }
6719 
6720 void MacroAssembler::store_klass(Register dst, Register src) {
6721 #ifdef _LP64
6722   if (UseCompressedClassPointers) {
6723     encode_klass_not_null(src);
6724     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6725   } else
6726 #endif
6727     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6728 }
6729 
6730 void MacroAssembler::load_heap_oop(Register dst, Address src) {
6731 #ifdef _LP64
6732   // FIXME: Must change all places where we try to load the klass.
6733   if (UseCompressedOops) {
6734     movl(dst, src);
6735     decode_heap_oop(dst);
6736   } else
6737 #endif
6738     movptr(dst, src);
6739 }
6740 
6741 // Doesn't do verfication, generates fixed size code
6742 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
6743 #ifdef _LP64
6744   if (UseCompressedOops) {
6745     movl(dst, src);
6746     decode_heap_oop_not_null(dst);
6747   } else
6748 #endif
6749     movptr(dst, src);
6750 }
6751 
6752 void MacroAssembler::store_heap_oop(Address dst, Register src) {
6753 #ifdef _LP64
6754   if (UseCompressedOops) {
6755     assert(!dst.uses(src), "not enough registers");
6756     encode_heap_oop(src);
6757     movl(dst, src);
6758   } else
6759 #endif
6760     movptr(dst, src);
6761 }
6762 
6763 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
6764   assert_different_registers(src1, tmp);
6765 #ifdef _LP64
6766   if (UseCompressedOops) {
6767     bool did_push = false;
6768     if (tmp == noreg) {
6769       tmp = rax;
6770       push(tmp);
6771       did_push = true;
6772       assert(!src2.uses(rsp), "can't push");
6773     }
6774     load_heap_oop(tmp, src2);
6775     cmpptr(src1, tmp);
6776     if (did_push)  pop(tmp);
6777   } else
6778 #endif
6779     cmpptr(src1, src2);
6780 }
6781 
6782 // Used for storing NULLs.
6783 void MacroAssembler::store_heap_oop_null(Address dst) {
6784 #ifdef _LP64
6785   if (UseCompressedOops) {
6786     movl(dst, (int32_t)NULL_WORD);
6787   } else {
6788     movslq(dst, (int32_t)NULL_WORD);
6789   }
6790 #else
6791   movl(dst, (int32_t)NULL_WORD);
6792 #endif
6793 }
6794 
6795 #ifdef _LP64
6796 void MacroAssembler::store_klass_gap(Register dst, Register src) {
6797   if (UseCompressedClassPointers) {
6798     // Store to klass gap in destination
6799     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
6800   }
6801 }
6802 
6803 #ifdef ASSERT
6804 void MacroAssembler::verify_heapbase(const char* msg) {
6805   assert (UseCompressedOops, "should be compressed");
6806   assert (Universe::heap() != NULL, "java heap should be initialized");
6807   if (CheckCompressedOops) {
6808     Label ok;
6809     push(rscratch1); // cmpptr trashes rscratch1
6810     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6811     jcc(Assembler::equal, ok);
6812     STOP(msg);
6813     bind(ok);
6814     pop(rscratch1);
6815   }
6816 }
6817 #endif
6818 
6819 // Algorithm must match oop.inline.hpp encode_heap_oop.
6820 void MacroAssembler::encode_heap_oop(Register r) {
6821 #ifdef ASSERT
6822   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
6823 #endif
6824   verify_oop(r, "broken oop in encode_heap_oop");
6825   if (Universe::narrow_oop_base() == NULL) {
6826     if (Universe::narrow_oop_shift() != 0) {
6827       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6828       shrq(r, LogMinObjAlignmentInBytes);
6829     }
6830     return;
6831   }
6832   testq(r, r);
6833   cmovq(Assembler::equal, r, r12_heapbase);
6834   subq(r, r12_heapbase);
6835   shrq(r, LogMinObjAlignmentInBytes);
6836 }
6837 
6838 void MacroAssembler::encode_heap_oop_not_null(Register r) {
6839 #ifdef ASSERT
6840   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
6841   if (CheckCompressedOops) {
6842     Label ok;
6843     testq(r, r);
6844     jcc(Assembler::notEqual, ok);
6845     STOP("null oop passed to encode_heap_oop_not_null");
6846     bind(ok);
6847   }
6848 #endif
6849   verify_oop(r, "broken oop in encode_heap_oop_not_null");
6850   if (Universe::narrow_oop_base() != NULL) {
6851     subq(r, r12_heapbase);
6852   }
6853   if (Universe::narrow_oop_shift() != 0) {
6854     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6855     shrq(r, LogMinObjAlignmentInBytes);
6856   }
6857 }
6858 
6859 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
6860 #ifdef ASSERT
6861   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
6862   if (CheckCompressedOops) {
6863     Label ok;
6864     testq(src, src);
6865     jcc(Assembler::notEqual, ok);
6866     STOP("null oop passed to encode_heap_oop_not_null2");
6867     bind(ok);
6868   }
6869 #endif
6870   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
6871   if (dst != src) {
6872     movq(dst, src);
6873   }
6874   if (Universe::narrow_oop_base() != NULL) {
6875     subq(dst, r12_heapbase);
6876   }
6877   if (Universe::narrow_oop_shift() != 0) {
6878     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6879     shrq(dst, LogMinObjAlignmentInBytes);
6880   }
6881 }
6882 
6883 void  MacroAssembler::decode_heap_oop(Register r) {
6884 #ifdef ASSERT
6885   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
6886 #endif
6887   if (Universe::narrow_oop_base() == NULL) {
6888     if (Universe::narrow_oop_shift() != 0) {
6889       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6890       shlq(r, LogMinObjAlignmentInBytes);
6891     }
6892   } else {
6893     Label done;
6894     shlq(r, LogMinObjAlignmentInBytes);
6895     jccb(Assembler::equal, done);
6896     addq(r, r12_heapbase);
6897     bind(done);
6898   }
6899   verify_oop(r, "broken oop in decode_heap_oop");
6900 }
6901 
6902 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
6903   // Note: it will change flags
6904   assert (UseCompressedOops, "should only be used for compressed headers");
6905   assert (Universe::heap() != NULL, "java heap should be initialized");
6906   // Cannot assert, unverified entry point counts instructions (see .ad file)
6907   // vtableStubs also counts instructions in pd_code_size_limit.
6908   // Also do not verify_oop as this is called by verify_oop.
6909   if (Universe::narrow_oop_shift() != 0) {
6910     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6911     shlq(r, LogMinObjAlignmentInBytes);
6912     if (Universe::narrow_oop_base() != NULL) {
6913       addq(r, r12_heapbase);
6914     }
6915   } else {
6916     assert (Universe::narrow_oop_base() == NULL, "sanity");
6917   }
6918 }
6919 
6920 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
6921   // Note: it will change flags
6922   assert (UseCompressedOops, "should only be used for compressed headers");
6923   assert (Universe::heap() != NULL, "java heap should be initialized");
6924   // Cannot assert, unverified entry point counts instructions (see .ad file)
6925   // vtableStubs also counts instructions in pd_code_size_limit.
6926   // Also do not verify_oop as this is called by verify_oop.
6927   if (Universe::narrow_oop_shift() != 0) {
6928     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6929     if (LogMinObjAlignmentInBytes == Address::times_8) {
6930       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6931     } else {
6932       if (dst != src) {
6933         movq(dst, src);
6934       }
6935       shlq(dst, LogMinObjAlignmentInBytes);
6936       if (Universe::narrow_oop_base() != NULL) {
6937         addq(dst, r12_heapbase);
6938       }
6939     }
6940   } else {
6941     assert (Universe::narrow_oop_base() == NULL, "sanity");
6942     if (dst != src) {
6943       movq(dst, src);
6944     }
6945   }
6946 }
6947 
6948 void MacroAssembler::encode_klass_not_null(Register r) {
6949   if (Universe::narrow_klass_base() != NULL) {
6950     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6951     assert(r != r12_heapbase, "Encoding a klass in r12");
6952     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6953     subq(r, r12_heapbase);
6954   }
6955   if (Universe::narrow_klass_shift() != 0) {
6956     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6957     shrq(r, LogKlassAlignmentInBytes);
6958   }
6959   if (Universe::narrow_klass_base() != NULL) {
6960     reinit_heapbase();
6961   }
6962 }
6963 
6964 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6965   if (dst == src) {
6966     encode_klass_not_null(src);
6967   } else {
6968     if (Universe::narrow_klass_base() != NULL) {
6969       mov64(dst, (int64_t)Universe::narrow_klass_base());
6970       negq(dst);
6971       addq(dst, src);
6972     } else {
6973       movptr(dst, src);
6974     }
6975     if (Universe::narrow_klass_shift() != 0) {
6976       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6977       shrq(dst, LogKlassAlignmentInBytes);
6978     }
6979   }
6980 }
6981 
6982 // Function instr_size_for_decode_klass_not_null() counts the instructions
6983 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6984 // when (Universe::heap() != NULL).  Hence, if the instructions they
6985 // generate change, then this method needs to be updated.
6986 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6987   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6988   if (Universe::narrow_klass_base() != NULL) {
6989     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6990     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6991   } else {
6992     // longest load decode klass function, mov64, leaq
6993     return 16;
6994   }
6995 }
6996 
6997 // !!! If the instructions that get generated here change then function
6998 // instr_size_for_decode_klass_not_null() needs to get updated.
6999 void  MacroAssembler::decode_klass_not_null(Register r) {
7000   // Note: it will change flags
7001   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7002   assert(r != r12_heapbase, "Decoding a klass in r12");
7003   // Cannot assert, unverified entry point counts instructions (see .ad file)
7004   // vtableStubs also counts instructions in pd_code_size_limit.
7005   // Also do not verify_oop as this is called by verify_oop.
7006   if (Universe::narrow_klass_shift() != 0) {
7007     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
7008     shlq(r, LogKlassAlignmentInBytes);
7009   }
7010   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
7011   if (Universe::narrow_klass_base() != NULL) {
7012     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
7013     addq(r, r12_heapbase);
7014     reinit_heapbase();
7015   }
7016 }
7017 
7018 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
7019   // Note: it will change flags
7020   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7021   if (dst == src) {
7022     decode_klass_not_null(dst);
7023   } else {
7024     // Cannot assert, unverified entry point counts instructions (see .ad file)
7025     // vtableStubs also counts instructions in pd_code_size_limit.
7026     // Also do not verify_oop as this is called by verify_oop.
7027     mov64(dst, (int64_t)Universe::narrow_klass_base());
7028     if (Universe::narrow_klass_shift() != 0) {
7029       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
7030       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
7031       leaq(dst, Address(dst, src, Address::times_8, 0));
7032     } else {
7033       addq(dst, src);
7034     }
7035   }
7036 }
7037 
7038 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
7039   assert (UseCompressedOops, "should only be used for compressed headers");
7040   assert (Universe::heap() != NULL, "java heap should be initialized");
7041   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7042   int oop_index = oop_recorder()->find_index(obj);
7043   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7044   mov_narrow_oop(dst, oop_index, rspec);
7045 }
7046 
7047 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
7048   assert (UseCompressedOops, "should only be used for compressed headers");
7049   assert (Universe::heap() != NULL, "java heap should be initialized");
7050   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7051   int oop_index = oop_recorder()->find_index(obj);
7052   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7053   mov_narrow_oop(dst, oop_index, rspec);
7054 }
7055 
7056 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
7057   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7058   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7059   int klass_index = oop_recorder()->find_index(k);
7060   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7061   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
7062 }
7063 
7064 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
7065   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7066   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7067   int klass_index = oop_recorder()->find_index(k);
7068   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7069   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
7070 }
7071 
7072 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
7073   assert (UseCompressedOops, "should only be used for compressed headers");
7074   assert (Universe::heap() != NULL, "java heap should be initialized");
7075   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7076   int oop_index = oop_recorder()->find_index(obj);
7077   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7078   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
7079 }
7080 
7081 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
7082   assert (UseCompressedOops, "should only be used for compressed headers");
7083   assert (Universe::heap() != NULL, "java heap should be initialized");
7084   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7085   int oop_index = oop_recorder()->find_index(obj);
7086   RelocationHolder rspec = oop_Relocation::spec(oop_index);
7087   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
7088 }
7089 
7090 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
7091   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7092   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7093   int klass_index = oop_recorder()->find_index(k);
7094   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7095   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
7096 }
7097 
7098 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
7099   assert (UseCompressedClassPointers, "should only be used for compressed headers");
7100   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
7101   int klass_index = oop_recorder()->find_index(k);
7102   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
7103   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
7104 }
7105 
7106 void MacroAssembler::reinit_heapbase() {
7107   if (UseCompressedOops || UseCompressedClassPointers) {
7108     if (Universe::heap() != NULL) {
7109       if (Universe::narrow_oop_base() == NULL) {
7110         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
7111       } else {
7112         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
7113       }
7114     } else {
7115       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
7116     }
7117   }
7118 }
7119 
7120 #endif // _LP64
7121 
7122 
7123 // C2 compiled method's prolog code.
7124 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
7125 
7126   // WARNING: Initial instruction MUST be 5 bytes or longer so that
7127   // NativeJump::patch_verified_entry will be able to patch out the entry
7128   // code safely. The push to verify stack depth is ok at 5 bytes,
7129   // the frame allocation can be either 3 or 6 bytes. So if we don't do
7130   // stack bang then we must use the 6 byte frame allocation even if
7131   // we have no frame. :-(
7132   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
7133 
7134   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
7135   // Remove word for return addr
7136   framesize -= wordSize;
7137   stack_bang_size -= wordSize;
7138 
7139   // Calls to C2R adapters often do not accept exceptional returns.
7140   // We require that their callers must bang for them.  But be careful, because
7141   // some VM calls (such as call site linkage) can use several kilobytes of
7142   // stack.  But the stack safety zone should account for that.
7143   // See bugs 4446381, 4468289, 4497237.
7144   if (stack_bang_size > 0) {
7145     generate_stack_overflow_check(stack_bang_size);
7146 
7147     // We always push rbp, so that on return to interpreter rbp, will be
7148     // restored correctly and we can correct the stack.
7149     push(rbp);
7150     // Save caller's stack pointer into RBP if the frame pointer is preserved.
7151     if (PreserveFramePointer) {
7152       mov(rbp, rsp);
7153     }
7154     // Remove word for ebp
7155     framesize -= wordSize;
7156 
7157     // Create frame
7158     if (framesize) {
7159       subptr(rsp, framesize);
7160     }
7161   } else {
7162     // Create frame (force generation of a 4 byte immediate value)
7163     subptr_imm32(rsp, framesize);
7164 
7165     // Save RBP register now.
7166     framesize -= wordSize;
7167     movptr(Address(rsp, framesize), rbp);
7168     // Save caller's stack pointer into RBP if the frame pointer is preserved.
7169     if (PreserveFramePointer) {
7170       movptr(rbp, rsp);
7171       if (framesize > 0) {
7172         addptr(rbp, framesize);
7173       }
7174     }
7175   }
7176 
7177   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
7178     framesize -= wordSize;
7179     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
7180   }
7181 
7182 #ifndef _LP64
7183   // If method sets FPU control word do it now
7184   if (fp_mode_24b) {
7185     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
7186   }
7187   if (UseSSE >= 2 && VerifyFPU) {
7188     verify_FPU(0, "FPU stack must be clean on entry");
7189   }
7190 #endif
7191 
7192 #ifdef ASSERT
7193   if (VerifyStackAtCalls) {
7194     Label L;
7195     push(rax);
7196     mov(rax, rsp);
7197     andptr(rax, StackAlignmentInBytes-1);
7198     cmpptr(rax, StackAlignmentInBytes-wordSize);
7199     pop(rax);
7200     jcc(Assembler::equal, L);
7201     STOP("Stack is not properly aligned!");
7202     bind(L);
7203   }
7204 #endif
7205 
7206 }
7207 
7208 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
7209   // cnt - number of qwords (8-byte words).
7210   // base - start address, qword aligned.
7211   assert(base==rdi, "base register must be edi for rep stos");
7212   assert(tmp==rax,   "tmp register must be eax for rep stos");
7213   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
7214 
7215   xorptr(tmp, tmp);
7216   if (UseFastStosb) {
7217     shlptr(cnt,3); // convert to number of bytes
7218     rep_stosb();
7219   } else {
7220     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
7221     rep_stos();
7222   }
7223 }
7224 
7225 #ifdef COMPILER2
7226 
7227 // IndexOf for constant substrings with size >= 8 chars
7228 // which don't need to be loaded through stack.
7229 void MacroAssembler::string_indexofC8(Register str1, Register str2,
7230                                       Register cnt1, Register cnt2,
7231                                       int int_cnt2,  Register result,
7232                                       XMMRegister vec, Register tmp,
7233                                       int ae) {
7234   ShortBranchVerifier sbv(this);
7235   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7236   assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7237   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7238 
7239   // This method uses the pcmpestri instruction with bound registers
7240   //   inputs:
7241   //     xmm - substring
7242   //     rax - substring length (elements count)
7243   //     mem - scanned string
7244   //     rdx - string length (elements count)
7245   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7246   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7247   //   outputs:
7248   //     rcx - matched index in string
7249   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7250   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7251   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7252   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7253   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7254 
7255   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
7256         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
7257         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
7258 
7259   // Note, inline_string_indexOf() generates checks:
7260   // if (substr.count > string.count) return -1;
7261   // if (substr.count == 0) return 0;
7262   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
7263 
7264   // Load substring.
7265   if (ae == StrIntrinsicNode::UL) {
7266     pmovzxbw(vec, Address(str2, 0));
7267   } else {
7268     movdqu(vec, Address(str2, 0));
7269   }
7270   movl(cnt2, int_cnt2);
7271   movptr(result, str1); // string addr
7272 
7273   if (int_cnt2 > stride) {
7274     jmpb(SCAN_TO_SUBSTR);
7275 
7276     // Reload substr for rescan, this code
7277     // is executed only for large substrings (> 8 chars)
7278     bind(RELOAD_SUBSTR);
7279     if (ae == StrIntrinsicNode::UL) {
7280       pmovzxbw(vec, Address(str2, 0));
7281     } else {
7282       movdqu(vec, Address(str2, 0));
7283     }
7284     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
7285 
7286     bind(RELOAD_STR);
7287     // We came here after the beginning of the substring was
7288     // matched but the rest of it was not so we need to search
7289     // again. Start from the next element after the previous match.
7290 
7291     // cnt2 is number of substring reminding elements and
7292     // cnt1 is number of string reminding elements when cmp failed.
7293     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
7294     subl(cnt1, cnt2);
7295     addl(cnt1, int_cnt2);
7296     movl(cnt2, int_cnt2); // Now restore cnt2
7297 
7298     decrementl(cnt1);     // Shift to next element
7299     cmpl(cnt1, cnt2);
7300     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7301 
7302     addptr(result, (1<<scale1));
7303 
7304   } // (int_cnt2 > 8)
7305 
7306   // Scan string for start of substr in 16-byte vectors
7307   bind(SCAN_TO_SUBSTR);
7308   pcmpestri(vec, Address(result, 0), mode);
7309   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7310   subl(cnt1, stride);
7311   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7312   cmpl(cnt1, cnt2);
7313   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7314   addptr(result, 16);
7315   jmpb(SCAN_TO_SUBSTR);
7316 
7317   // Found a potential substr
7318   bind(FOUND_CANDIDATE);
7319   // Matched whole vector if first element matched (tmp(rcx) == 0).
7320   if (int_cnt2 == stride) {
7321     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
7322   } else { // int_cnt2 > 8
7323     jccb(Assembler::overflow, FOUND_SUBSTR);
7324   }
7325   // After pcmpestri tmp(rcx) contains matched element index
7326   // Compute start addr of substr
7327   lea(result, Address(result, tmp, scale1));
7328 
7329   // Make sure string is still long enough
7330   subl(cnt1, tmp);
7331   cmpl(cnt1, cnt2);
7332   if (int_cnt2 == stride) {
7333     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7334   } else { // int_cnt2 > 8
7335     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
7336   }
7337   // Left less then substring.
7338 
7339   bind(RET_NOT_FOUND);
7340   movl(result, -1);
7341   jmpb(EXIT);
7342 
7343   if (int_cnt2 > stride) {
7344     // This code is optimized for the case when whole substring
7345     // is matched if its head is matched.
7346     bind(MATCH_SUBSTR_HEAD);
7347     pcmpestri(vec, Address(result, 0), mode);
7348     // Reload only string if does not match
7349     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
7350 
7351     Label CONT_SCAN_SUBSTR;
7352     // Compare the rest of substring (> 8 chars).
7353     bind(FOUND_SUBSTR);
7354     // First 8 chars are already matched.
7355     negptr(cnt2);
7356     addptr(cnt2, stride);
7357 
7358     bind(SCAN_SUBSTR);
7359     subl(cnt1, stride);
7360     cmpl(cnt2, -stride); // Do not read beyond substring
7361     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
7362     // Back-up strings to avoid reading beyond substring:
7363     // cnt1 = cnt1 - cnt2 + 8
7364     addl(cnt1, cnt2); // cnt2 is negative
7365     addl(cnt1, stride);
7366     movl(cnt2, stride); negptr(cnt2);
7367     bind(CONT_SCAN_SUBSTR);
7368     if (int_cnt2 < (int)G) {
7369       int tail_off1 = int_cnt2<<scale1;
7370       int tail_off2 = int_cnt2<<scale2;
7371       if (ae == StrIntrinsicNode::UL) {
7372         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
7373       } else {
7374         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
7375       }
7376       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
7377     } else {
7378       // calculate index in register to avoid integer overflow (int_cnt2*2)
7379       movl(tmp, int_cnt2);
7380       addptr(tmp, cnt2);
7381       if (ae == StrIntrinsicNode::UL) {
7382         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
7383       } else {
7384         movdqu(vec, Address(str2, tmp, scale2, 0));
7385       }
7386       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
7387     }
7388     // Need to reload strings pointers if not matched whole vector
7389     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7390     addptr(cnt2, stride);
7391     jcc(Assembler::negative, SCAN_SUBSTR);
7392     // Fall through if found full substring
7393 
7394   } // (int_cnt2 > 8)
7395 
7396   bind(RET_FOUND);
7397   // Found result if we matched full small substring.
7398   // Compute substr offset
7399   subptr(result, str1);
7400   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7401     shrl(result, 1); // index
7402   }
7403   bind(EXIT);
7404 
7405 } // string_indexofC8
7406 
7407 // Small strings are loaded through stack if they cross page boundary.
7408 void MacroAssembler::string_indexof(Register str1, Register str2,
7409                                     Register cnt1, Register cnt2,
7410                                     int int_cnt2,  Register result,
7411                                     XMMRegister vec, Register tmp,
7412                                     int ae) {
7413   ShortBranchVerifier sbv(this);
7414   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7415   assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7416   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7417 
7418   //
7419   // int_cnt2 is length of small (< 8 chars) constant substring
7420   // or (-1) for non constant substring in which case its length
7421   // is in cnt2 register.
7422   //
7423   // Note, inline_string_indexOf() generates checks:
7424   // if (substr.count > string.count) return -1;
7425   // if (substr.count == 0) return 0;
7426   //
7427   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7428   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
7429   // This method uses the pcmpestri instruction with bound registers
7430   //   inputs:
7431   //     xmm - substring
7432   //     rax - substring length (elements count)
7433   //     mem - scanned string
7434   //     rdx - string length (elements count)
7435   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7436   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7437   //   outputs:
7438   //     rcx - matched index in string
7439   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7440   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7441   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7442   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7443 
7444   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
7445         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
7446         FOUND_CANDIDATE;
7447 
7448   { //========================================================
7449     // We don't know where these strings are located
7450     // and we can't read beyond them. Load them through stack.
7451     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
7452 
7453     movptr(tmp, rsp); // save old SP
7454 
7455     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
7456       if (int_cnt2 == (1>>scale2)) { // One byte
7457         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
7458         load_unsigned_byte(result, Address(str2, 0));
7459         movdl(vec, result); // move 32 bits
7460       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
7461         // Not enough header space in 32-bit VM: 12+3 = 15.
7462         movl(result, Address(str2, -1));
7463         shrl(result, 8);
7464         movdl(vec, result); // move 32 bits
7465       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
7466         load_unsigned_short(result, Address(str2, 0));
7467         movdl(vec, result); // move 32 bits
7468       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
7469         movdl(vec, Address(str2, 0)); // move 32 bits
7470       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
7471         movq(vec, Address(str2, 0));  // move 64 bits
7472       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
7473         // Array header size is 12 bytes in 32-bit VM
7474         // + 6 bytes for 3 chars == 18 bytes,
7475         // enough space to load vec and shift.
7476         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
7477         if (ae == StrIntrinsicNode::UL) {
7478           int tail_off = int_cnt2-8;
7479           pmovzxbw(vec, Address(str2, tail_off));
7480           psrldq(vec, -2*tail_off);
7481         }
7482         else {
7483           int tail_off = int_cnt2*(1<<scale2);
7484           movdqu(vec, Address(str2, tail_off-16));
7485           psrldq(vec, 16-tail_off);
7486         }
7487       }
7488     } else { // not constant substring
7489       cmpl(cnt2, stride);
7490       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
7491 
7492       // We can read beyond string if srt+16 does not cross page boundary
7493       // since heaps are aligned and mapped by pages.
7494       assert(os::vm_page_size() < (int)G, "default page should be small");
7495       movl(result, str2); // We need only low 32 bits
7496       andl(result, (os::vm_page_size()-1));
7497       cmpl(result, (os::vm_page_size()-16));
7498       jccb(Assembler::belowEqual, CHECK_STR);
7499 
7500       // Move small strings to stack to allow load 16 bytes into vec.
7501       subptr(rsp, 16);
7502       int stk_offset = wordSize-(1<<scale2);
7503       push(cnt2);
7504 
7505       bind(COPY_SUBSTR);
7506       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
7507         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
7508         movb(Address(rsp, cnt2, scale2, stk_offset), result);
7509       } else if (ae == StrIntrinsicNode::UU) {
7510         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
7511         movw(Address(rsp, cnt2, scale2, stk_offset), result);
7512       }
7513       decrement(cnt2);
7514       jccb(Assembler::notZero, COPY_SUBSTR);
7515 
7516       pop(cnt2);
7517       movptr(str2, rsp);  // New substring address
7518     } // non constant
7519 
7520     bind(CHECK_STR);
7521     cmpl(cnt1, stride);
7522     jccb(Assembler::aboveEqual, BIG_STRINGS);
7523 
7524     // Check cross page boundary.
7525     movl(result, str1); // We need only low 32 bits
7526     andl(result, (os::vm_page_size()-1));
7527     cmpl(result, (os::vm_page_size()-16));
7528     jccb(Assembler::belowEqual, BIG_STRINGS);
7529 
7530     subptr(rsp, 16);
7531     int stk_offset = -(1<<scale1);
7532     if (int_cnt2 < 0) { // not constant
7533       push(cnt2);
7534       stk_offset += wordSize;
7535     }
7536     movl(cnt2, cnt1);
7537 
7538     bind(COPY_STR);
7539     if (ae == StrIntrinsicNode::LL) {
7540       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
7541       movb(Address(rsp, cnt2, scale1, stk_offset), result);
7542     } else {
7543       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
7544       movw(Address(rsp, cnt2, scale1, stk_offset), result);
7545     }
7546     decrement(cnt2);
7547     jccb(Assembler::notZero, COPY_STR);
7548 
7549     if (int_cnt2 < 0) { // not constant
7550       pop(cnt2);
7551     }
7552     movptr(str1, rsp);  // New string address
7553 
7554     bind(BIG_STRINGS);
7555     // Load substring.
7556     if (int_cnt2 < 0) { // -1
7557       if (ae == StrIntrinsicNode::UL) {
7558         pmovzxbw(vec, Address(str2, 0));
7559       } else {
7560         movdqu(vec, Address(str2, 0));
7561       }
7562       push(cnt2);       // substr count
7563       push(str2);       // substr addr
7564       push(str1);       // string addr
7565     } else {
7566       // Small (< 8 chars) constant substrings are loaded already.
7567       movl(cnt2, int_cnt2);
7568     }
7569     push(tmp);  // original SP
7570 
7571   } // Finished loading
7572 
7573   //========================================================
7574   // Start search
7575   //
7576 
7577   movptr(result, str1); // string addr
7578 
7579   if (int_cnt2  < 0) {  // Only for non constant substring
7580     jmpb(SCAN_TO_SUBSTR);
7581 
7582     // SP saved at sp+0
7583     // String saved at sp+1*wordSize
7584     // Substr saved at sp+2*wordSize
7585     // Substr count saved at sp+3*wordSize
7586 
7587     // Reload substr for rescan, this code
7588     // is executed only for large substrings (> 8 chars)
7589     bind(RELOAD_SUBSTR);
7590     movptr(str2, Address(rsp, 2*wordSize));
7591     movl(cnt2, Address(rsp, 3*wordSize));
7592     if (ae == StrIntrinsicNode::UL) {
7593       pmovzxbw(vec, Address(str2, 0));
7594     } else {
7595       movdqu(vec, Address(str2, 0));
7596     }
7597     // We came here after the beginning of the substring was
7598     // matched but the rest of it was not so we need to search
7599     // again. Start from the next element after the previous match.
7600     subptr(str1, result); // Restore counter
7601     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7602       shrl(str1, 1);
7603     }
7604     addl(cnt1, str1);
7605     decrementl(cnt1);   // Shift to next element
7606     cmpl(cnt1, cnt2);
7607     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7608 
7609     addptr(result, (1<<scale1));
7610   } // non constant
7611 
7612   // Scan string for start of substr in 16-byte vectors
7613   bind(SCAN_TO_SUBSTR);
7614   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7615   pcmpestri(vec, Address(result, 0), mode);
7616   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7617   subl(cnt1, stride);
7618   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7619   cmpl(cnt1, cnt2);
7620   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7621   addptr(result, 16);
7622 
7623   bind(ADJUST_STR);
7624   cmpl(cnt1, stride); // Do not read beyond string
7625   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7626   // Back-up string to avoid reading beyond string.
7627   lea(result, Address(result, cnt1, scale1, -16));
7628   movl(cnt1, stride);
7629   jmpb(SCAN_TO_SUBSTR);
7630 
7631   // Found a potential substr
7632   bind(FOUND_CANDIDATE);
7633   // After pcmpestri tmp(rcx) contains matched element index
7634 
7635   // Make sure string is still long enough
7636   subl(cnt1, tmp);
7637   cmpl(cnt1, cnt2);
7638   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
7639   // Left less then substring.
7640 
7641   bind(RET_NOT_FOUND);
7642   movl(result, -1);
7643   jmpb(CLEANUP);
7644 
7645   bind(FOUND_SUBSTR);
7646   // Compute start addr of substr
7647   lea(result, Address(result, tmp, scale1));
7648   if (int_cnt2 > 0) { // Constant substring
7649     // Repeat search for small substring (< 8 chars)
7650     // from new point without reloading substring.
7651     // Have to check that we don't read beyond string.
7652     cmpl(tmp, stride-int_cnt2);
7653     jccb(Assembler::greater, ADJUST_STR);
7654     // Fall through if matched whole substring.
7655   } else { // non constant
7656     assert(int_cnt2 == -1, "should be != 0");
7657 
7658     addl(tmp, cnt2);
7659     // Found result if we matched whole substring.
7660     cmpl(tmp, stride);
7661     jccb(Assembler::lessEqual, RET_FOUND);
7662 
7663     // Repeat search for small substring (<= 8 chars)
7664     // from new point 'str1' without reloading substring.
7665     cmpl(cnt2, stride);
7666     // Have to check that we don't read beyond string.
7667     jccb(Assembler::lessEqual, ADJUST_STR);
7668 
7669     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
7670     // Compare the rest of substring (> 8 chars).
7671     movptr(str1, result);
7672 
7673     cmpl(tmp, cnt2);
7674     // First 8 chars are already matched.
7675     jccb(Assembler::equal, CHECK_NEXT);
7676 
7677     bind(SCAN_SUBSTR);
7678     pcmpestri(vec, Address(str1, 0), mode);
7679     // Need to reload strings pointers if not matched whole vector
7680     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7681 
7682     bind(CHECK_NEXT);
7683     subl(cnt2, stride);
7684     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
7685     addptr(str1, 16);
7686     if (ae == StrIntrinsicNode::UL) {
7687       addptr(str2, 8);
7688     } else {
7689       addptr(str2, 16);
7690     }
7691     subl(cnt1, stride);
7692     cmpl(cnt2, stride); // Do not read beyond substring
7693     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
7694     // Back-up strings to avoid reading beyond substring.
7695 
7696     if (ae == StrIntrinsicNode::UL) {
7697       lea(str2, Address(str2, cnt2, scale2, -8));
7698       lea(str1, Address(str1, cnt2, scale1, -16));
7699     } else {
7700       lea(str2, Address(str2, cnt2, scale2, -16));
7701       lea(str1, Address(str1, cnt2, scale1, -16));
7702     }
7703     subl(cnt1, cnt2);
7704     movl(cnt2, stride);
7705     addl(cnt1, stride);
7706     bind(CONT_SCAN_SUBSTR);
7707     if (ae == StrIntrinsicNode::UL) {
7708       pmovzxbw(vec, Address(str2, 0));
7709     } else {
7710       movdqu(vec, Address(str2, 0));
7711     }
7712     jmpb(SCAN_SUBSTR);
7713 
7714     bind(RET_FOUND_LONG);
7715     movptr(str1, Address(rsp, wordSize));
7716   } // non constant
7717 
7718   bind(RET_FOUND);
7719   // Compute substr offset
7720   subptr(result, str1);
7721   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7722     shrl(result, 1); // index
7723   }
7724   bind(CLEANUP);
7725   pop(rsp); // restore SP
7726 
7727 } // string_indexof
7728 
7729 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
7730                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
7731   ShortBranchVerifier sbv(this);
7732   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7733   assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7734 
7735   int stride = 8;
7736 
7737   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
7738         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
7739         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
7740         FOUND_SEQ_CHAR, DONE_LABEL;
7741 
7742   movptr(result, str1);
7743   if (UseAVX >= 2) {
7744     cmpl(cnt1, stride);
7745     jccb(Assembler::less, SCAN_TO_CHAR_LOOP);
7746     cmpl(cnt1, 2*stride);
7747     jccb(Assembler::less, SCAN_TO_8_CHAR_INIT);
7748     movdl(vec1, ch);
7749     vpbroadcastw(vec1, vec1);
7750     vpxor(vec2, vec2);
7751     movl(tmp, cnt1);
7752     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
7753     andl(cnt1,0x0000000F);  //tail count (in chars)
7754 
7755     bind(SCAN_TO_16_CHAR_LOOP);
7756     vmovdqu(vec3, Address(result, 0));
7757     vpcmpeqw(vec3, vec3, vec1, 1);
7758     vptest(vec2, vec3);
7759     jcc(Assembler::carryClear, FOUND_CHAR);
7760     addptr(result, 32);
7761     subl(tmp, 2*stride);
7762     jccb(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
7763     jmp(SCAN_TO_8_CHAR);
7764     bind(SCAN_TO_8_CHAR_INIT);
7765     movdl(vec1, ch);
7766     pshuflw(vec1, vec1, 0x00);
7767     pshufd(vec1, vec1, 0);
7768     pxor(vec2, vec2);
7769   }
7770   bind(SCAN_TO_8_CHAR);
7771   cmpl(cnt1, stride);
7772   if (UseAVX >= 2) {
7773     jccb(Assembler::less, SCAN_TO_CHAR);
7774   } else {
7775     jccb(Assembler::less, SCAN_TO_CHAR_LOOP);
7776     movdl(vec1, ch);
7777     pshuflw(vec1, vec1, 0x00);
7778     pshufd(vec1, vec1, 0);
7779     pxor(vec2, vec2);
7780   }
7781   movl(tmp, cnt1);
7782   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
7783   andl(cnt1,0x00000007);  //tail count (in chars)
7784 
7785   bind(SCAN_TO_8_CHAR_LOOP);
7786   movdqu(vec3, Address(result, 0));
7787   pcmpeqw(vec3, vec1);
7788   ptest(vec2, vec3);
7789   jcc(Assembler::carryClear, FOUND_CHAR);
7790   addptr(result, 16);
7791   subl(tmp, stride);
7792   jccb(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
7793   bind(SCAN_TO_CHAR);
7794   testl(cnt1, cnt1);
7795   jcc(Assembler::zero, RET_NOT_FOUND);
7796   bind(SCAN_TO_CHAR_LOOP);
7797   load_unsigned_short(tmp, Address(result, 0));
7798   cmpl(ch, tmp);
7799   jccb(Assembler::equal, FOUND_SEQ_CHAR);
7800   addptr(result, 2);
7801   subl(cnt1, 1);
7802   jccb(Assembler::zero, RET_NOT_FOUND);
7803   jmp(SCAN_TO_CHAR_LOOP);
7804 
7805   bind(RET_NOT_FOUND);
7806   movl(result, -1);
7807   jmpb(DONE_LABEL);
7808 
7809   bind(FOUND_CHAR);
7810   if (UseAVX >= 2) {
7811     vpmovmskb(tmp, vec3);
7812   } else {
7813     pmovmskb(tmp, vec3);
7814   }
7815   bsfl(ch, tmp);
7816   addl(result, ch);
7817 
7818   bind(FOUND_SEQ_CHAR);
7819   subptr(result, str1);
7820   shrl(result, 1);
7821 
7822   bind(DONE_LABEL);
7823 } // string_indexof_char
7824 
7825 // helper function for string_compare
7826 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
7827                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
7828                                         Address::ScaleFactor scale2, Register index, int ae) {
7829   if (ae == StrIntrinsicNode::LL) {
7830     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
7831     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
7832   } else if (ae == StrIntrinsicNode::UU) {
7833     load_unsigned_short(elem1, Address(str1, index, scale, 0));
7834     load_unsigned_short(elem2, Address(str2, index, scale, 0));
7835   } else {
7836     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
7837     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
7838   }
7839 }
7840 
7841 // Compare strings, used for char[] and byte[].
7842 void MacroAssembler::string_compare(Register str1, Register str2,
7843                                     Register cnt1, Register cnt2, Register result,
7844                                     XMMRegister vec1, int ae) {
7845   ShortBranchVerifier sbv(this);
7846   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
7847   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
7848   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
7849   int stride2x2 = 0x40;
7850   Address::ScaleFactor scale, scale1, scale2;
7851 
7852   if (ae != StrIntrinsicNode::LL) {
7853     stride2x2 = 0x20;
7854   }
7855 
7856   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
7857     shrl(cnt2, 1);
7858   }
7859   // Compute the minimum of the string lengths and the
7860   // difference of the string lengths (stack).
7861   // Do the conditional move stuff
7862   movl(result, cnt1);
7863   subl(cnt1, cnt2);
7864   push(cnt1);
7865   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
7866 
7867   // Is the minimum length zero?
7868   testl(cnt2, cnt2);
7869   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7870   if (ae == StrIntrinsicNode::LL) {
7871     // Load first bytes
7872     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
7873     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
7874   } else if (ae == StrIntrinsicNode::UU) {
7875     // Load first characters
7876     load_unsigned_short(result, Address(str1, 0));
7877     load_unsigned_short(cnt1, Address(str2, 0));
7878   } else {
7879     load_unsigned_byte(result, Address(str1, 0));
7880     load_unsigned_short(cnt1, Address(str2, 0));
7881   }
7882   subl(result, cnt1);
7883   jcc(Assembler::notZero,  POP_LABEL);
7884 
7885   if (ae == StrIntrinsicNode::UU) {
7886     // Divide length by 2 to get number of chars
7887     shrl(cnt2, 1);
7888   }
7889   cmpl(cnt2, 1);
7890   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7891 
7892   // Check if the strings start at the same location and setup scale and stride
7893   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7894     cmpptr(str1, str2);
7895     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7896     if (ae == StrIntrinsicNode::LL) {
7897       scale = Address::times_1;
7898       stride = 16;
7899     } else {
7900       scale = Address::times_2;
7901       stride = 8;
7902     }
7903   } else {
7904     scale = Address::no_scale;  // not used
7905     scale1 = Address::times_1;
7906     scale2 = Address::times_2;
7907     stride = 8;
7908   }
7909 
7910   if (UseAVX >= 2 && UseSSE42Intrinsics) {
7911     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
7912     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
7913     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
7914     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
7915     Label COMPARE_TAIL_LONG;
7916     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
7917 
7918     int pcmpmask = 0x19;
7919     if (ae == StrIntrinsicNode::LL) {
7920       pcmpmask &= ~0x01;
7921     }
7922 
7923     // Setup to compare 16-chars (32-bytes) vectors,
7924     // start from first character again because it has aligned address.
7925     if (ae == StrIntrinsicNode::LL) {
7926       stride2 = 32;
7927     } else {
7928       stride2 = 16;
7929     }
7930     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7931       adr_stride = stride << scale;
7932     } else {
7933       adr_stride1 = 8;  //stride << scale1;
7934       adr_stride2 = 16; //stride << scale2;
7935     }
7936 
7937     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7938     // rax and rdx are used by pcmpestri as elements counters
7939     movl(result, cnt2);
7940     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
7941     jcc(Assembler::zero, COMPARE_TAIL_LONG);
7942 
7943     // fast path : compare first 2 8-char vectors.
7944     bind(COMPARE_16_CHARS);
7945     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7946       movdqu(vec1, Address(str1, 0));
7947     } else {
7948       pmovzxbw(vec1, Address(str1, 0));
7949     }
7950     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7951     jccb(Assembler::below, COMPARE_INDEX_CHAR);
7952 
7953     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7954       movdqu(vec1, Address(str1, adr_stride));
7955       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
7956     } else {
7957       pmovzxbw(vec1, Address(str1, adr_stride1));
7958       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
7959     }
7960     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
7961     addl(cnt1, stride);
7962 
7963     // Compare the characters at index in cnt1
7964     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
7965     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7966     subl(result, cnt2);
7967     jmp(POP_LABEL);
7968 
7969     // Setup the registers to start vector comparison loop
7970     bind(COMPARE_WIDE_VECTORS);
7971     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7972       lea(str1, Address(str1, result, scale));
7973       lea(str2, Address(str2, result, scale));
7974     } else {
7975       lea(str1, Address(str1, result, scale1));
7976       lea(str2, Address(str2, result, scale2));
7977     }
7978     subl(result, stride2);
7979     subl(cnt2, stride2);
7980     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
7981     negptr(result);
7982 
7983     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
7984     bind(COMPARE_WIDE_VECTORS_LOOP);
7985 
7986 #ifdef _LP64
7987     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7988       cmpl(cnt2, stride2x2);
7989       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7990       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
7991       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
7992 
7993       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7994       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7995         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
7996         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7997       } else {
7998         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
7999         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
8000       }
8001       kortestql(k7, k7);
8002       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
8003       addptr(result, stride2x2);  // update since we already compared at this addr
8004       subl(cnt2, stride2x2);      // and sub the size too
8005       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8006 
8007       vpxor(vec1, vec1);
8008       jmpb(COMPARE_WIDE_TAIL);
8009     }//if (VM_Version::supports_avx512vlbw())
8010 #endif // _LP64
8011 
8012 
8013     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8014     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8015       vmovdqu(vec1, Address(str1, result, scale));
8016       vpxor(vec1, Address(str2, result, scale));
8017     } else {
8018       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
8019       vpxor(vec1, Address(str2, result, scale2));
8020     }
8021     vptest(vec1, vec1);
8022     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
8023     addptr(result, stride2);
8024     subl(cnt2, stride2);
8025     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
8026     // clean upper bits of YMM registers
8027     vpxor(vec1, vec1);
8028 
8029     // compare wide vectors tail
8030     bind(COMPARE_WIDE_TAIL);
8031     testptr(result, result);
8032     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
8033 
8034     movl(result, stride2);
8035     movl(cnt2, result);
8036     negptr(result);
8037     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8038 
8039     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
8040     bind(VECTOR_NOT_EQUAL);
8041     // clean upper bits of YMM registers
8042     vpxor(vec1, vec1);
8043     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8044       lea(str1, Address(str1, result, scale));
8045       lea(str2, Address(str2, result, scale));
8046     } else {
8047       lea(str1, Address(str1, result, scale1));
8048       lea(str2, Address(str2, result, scale2));
8049     }
8050     jmp(COMPARE_16_CHARS);
8051 
8052     // Compare tail chars, length between 1 to 15 chars
8053     bind(COMPARE_TAIL_LONG);
8054     movl(cnt2, result);
8055     cmpl(cnt2, stride);
8056     jccb(Assembler::less, COMPARE_SMALL_STR);
8057 
8058     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8059       movdqu(vec1, Address(str1, 0));
8060     } else {
8061       pmovzxbw(vec1, Address(str1, 0));
8062     }
8063     pcmpestri(vec1, Address(str2, 0), pcmpmask);
8064     jcc(Assembler::below, COMPARE_INDEX_CHAR);
8065     subptr(cnt2, stride);
8066     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
8067     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8068       lea(str1, Address(str1, result, scale));
8069       lea(str2, Address(str2, result, scale));
8070     } else {
8071       lea(str1, Address(str1, result, scale1));
8072       lea(str2, Address(str2, result, scale2));
8073     }
8074     negptr(cnt2);
8075     jmpb(WHILE_HEAD_LABEL);
8076 
8077     bind(COMPARE_SMALL_STR);
8078   } else if (UseSSE42Intrinsics) {
8079     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
8080     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
8081     int pcmpmask = 0x19;
8082     // Setup to compare 8-char (16-byte) vectors,
8083     // start from first character again because it has aligned address.
8084     movl(result, cnt2);
8085     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
8086     if (ae == StrIntrinsicNode::LL) {
8087       pcmpmask &= ~0x01;
8088     }
8089     jccb(Assembler::zero, COMPARE_TAIL);
8090     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8091       lea(str1, Address(str1, result, scale));
8092       lea(str2, Address(str2, result, scale));
8093     } else {
8094       lea(str1, Address(str1, result, scale1));
8095       lea(str2, Address(str2, result, scale2));
8096     }
8097     negptr(result);
8098 
8099     // pcmpestri
8100     //   inputs:
8101     //     vec1- substring
8102     //     rax - negative string length (elements count)
8103     //     mem - scanned string
8104     //     rdx - string length (elements count)
8105     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
8106     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
8107     //   outputs:
8108     //     rcx - first mismatched element index
8109     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
8110 
8111     bind(COMPARE_WIDE_VECTORS);
8112     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8113       movdqu(vec1, Address(str1, result, scale));
8114       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
8115     } else {
8116       pmovzxbw(vec1, Address(str1, result, scale1));
8117       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
8118     }
8119     // After pcmpestri cnt1(rcx) contains mismatched element index
8120 
8121     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
8122     addptr(result, stride);
8123     subptr(cnt2, stride);
8124     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
8125 
8126     // compare wide vectors tail
8127     testptr(result, result);
8128     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
8129 
8130     movl(cnt2, stride);
8131     movl(result, stride);
8132     negptr(result);
8133     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8134       movdqu(vec1, Address(str1, result, scale));
8135       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
8136     } else {
8137       pmovzxbw(vec1, Address(str1, result, scale1));
8138       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
8139     }
8140     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
8141 
8142     // Mismatched characters in the vectors
8143     bind(VECTOR_NOT_EQUAL);
8144     addptr(cnt1, result);
8145     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
8146     subl(result, cnt2);
8147     jmpb(POP_LABEL);
8148 
8149     bind(COMPARE_TAIL); // limit is zero
8150     movl(cnt2, result);
8151     // Fallthru to tail compare
8152   }
8153   // Shift str2 and str1 to the end of the arrays, negate min
8154   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8155     lea(str1, Address(str1, cnt2, scale));
8156     lea(str2, Address(str2, cnt2, scale));
8157   } else {
8158     lea(str1, Address(str1, cnt2, scale1));
8159     lea(str2, Address(str2, cnt2, scale2));
8160   }
8161   decrementl(cnt2);  // first character was compared already
8162   negptr(cnt2);
8163 
8164   // Compare the rest of the elements
8165   bind(WHILE_HEAD_LABEL);
8166   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
8167   subl(result, cnt1);
8168   jccb(Assembler::notZero, POP_LABEL);
8169   increment(cnt2);
8170   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
8171 
8172   // Strings are equal up to min length.  Return the length difference.
8173   bind(LENGTH_DIFF_LABEL);
8174   pop(result);
8175   if (ae == StrIntrinsicNode::UU) {
8176     // Divide diff by 2 to get number of chars
8177     sarl(result, 1);
8178   }
8179   jmpb(DONE_LABEL);
8180 
8181 #ifdef _LP64
8182   if (VM_Version::supports_avx512vlbw()) {
8183 
8184     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
8185 
8186     kmovql(cnt1, k7);
8187     notq(cnt1);
8188     bsfq(cnt2, cnt1);
8189     if (ae != StrIntrinsicNode::LL) {
8190       // Divide diff by 2 to get number of chars
8191       sarl(cnt2, 1);
8192     }
8193     addq(result, cnt2);
8194     if (ae == StrIntrinsicNode::LL) {
8195       load_unsigned_byte(cnt1, Address(str2, result));
8196       load_unsigned_byte(result, Address(str1, result));
8197     } else if (ae == StrIntrinsicNode::UU) {
8198       load_unsigned_short(cnt1, Address(str2, result, scale));
8199       load_unsigned_short(result, Address(str1, result, scale));
8200     } else {
8201       load_unsigned_short(cnt1, Address(str2, result, scale2));
8202       load_unsigned_byte(result, Address(str1, result, scale1));
8203     }
8204     subl(result, cnt1);
8205     jmpb(POP_LABEL);
8206   }//if (VM_Version::supports_avx512vlbw())
8207 #endif // _LP64
8208 
8209   // Discard the stored length difference
8210   bind(POP_LABEL);
8211   pop(cnt1);
8212 
8213   // That's it
8214   bind(DONE_LABEL);
8215   if(ae == StrIntrinsicNode::UL) {
8216     negl(result);
8217   }
8218 
8219 }
8220 
8221 // Search for Non-ASCII character (Negative byte value) in a byte array,
8222 // return true if it has any and false otherwise.
8223 void MacroAssembler::has_negatives(Register ary1, Register len,
8224                                    Register result, Register tmp1,
8225                                    XMMRegister vec1, XMMRegister vec2) {
8226 
8227   // rsi: byte array
8228   // rcx: len
8229   // rax: result
8230   ShortBranchVerifier sbv(this);
8231   assert_different_registers(ary1, len, result, tmp1);
8232   assert_different_registers(vec1, vec2);
8233   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
8234 
8235   // len == 0
8236   testl(len, len);
8237   jcc(Assembler::zero, FALSE_LABEL);
8238 
8239   movl(result, len); // copy
8240 
8241   if (UseAVX >= 2 && UseSSE >= 2) {
8242     // With AVX2, use 32-byte vector compare
8243     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8244 
8245     // Compare 32-byte vectors
8246     andl(result, 0x0000001f);  //   tail count (in bytes)
8247     andl(len, 0xffffffe0);   // vector count (in bytes)
8248     jccb(Assembler::zero, COMPARE_TAIL);
8249 
8250     lea(ary1, Address(ary1, len, Address::times_1));
8251     negptr(len);
8252 
8253     movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
8254     movdl(vec2, tmp1);
8255     vpbroadcastd(vec2, vec2);
8256 
8257     bind(COMPARE_WIDE_VECTORS);
8258     vmovdqu(vec1, Address(ary1, len, Address::times_1));
8259     vptest(vec1, vec2);
8260     jccb(Assembler::notZero, TRUE_LABEL);
8261     addptr(len, 32);
8262     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8263 
8264     testl(result, result);
8265     jccb(Assembler::zero, FALSE_LABEL);
8266 
8267     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8268     vptest(vec1, vec2);
8269     jccb(Assembler::notZero, TRUE_LABEL);
8270     jmpb(FALSE_LABEL);
8271 
8272     bind(COMPARE_TAIL); // len is zero
8273     movl(len, result);
8274     // Fallthru to tail compare
8275   } else if (UseSSE42Intrinsics) {
8276     assert(UseSSE >= 4, "SSE4 must be  for SSE4.2 intrinsics to be available");
8277     // With SSE4.2, use double quad vector compare
8278     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8279 
8280     // Compare 16-byte vectors
8281     andl(result, 0x0000000f);  //   tail count (in bytes)
8282     andl(len, 0xfffffff0);   // vector count (in bytes)
8283     jccb(Assembler::zero, COMPARE_TAIL);
8284 
8285     lea(ary1, Address(ary1, len, Address::times_1));
8286     negptr(len);
8287 
8288     movl(tmp1, 0x80808080);
8289     movdl(vec2, tmp1);
8290     pshufd(vec2, vec2, 0);
8291 
8292     bind(COMPARE_WIDE_VECTORS);
8293     movdqu(vec1, Address(ary1, len, Address::times_1));
8294     ptest(vec1, vec2);
8295     jccb(Assembler::notZero, TRUE_LABEL);
8296     addptr(len, 16);
8297     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8298 
8299     testl(result, result);
8300     jccb(Assembler::zero, FALSE_LABEL);
8301 
8302     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8303     ptest(vec1, vec2);
8304     jccb(Assembler::notZero, TRUE_LABEL);
8305     jmpb(FALSE_LABEL);
8306 
8307     bind(COMPARE_TAIL); // len is zero
8308     movl(len, result);
8309     // Fallthru to tail compare
8310   }
8311 
8312   // Compare 4-byte vectors
8313   andl(len, 0xfffffffc); // vector count (in bytes)
8314   jccb(Assembler::zero, COMPARE_CHAR);
8315 
8316   lea(ary1, Address(ary1, len, Address::times_1));
8317   negptr(len);
8318 
8319   bind(COMPARE_VECTORS);
8320   movl(tmp1, Address(ary1, len, Address::times_1));
8321   andl(tmp1, 0x80808080);
8322   jccb(Assembler::notZero, TRUE_LABEL);
8323   addptr(len, 4);
8324   jcc(Assembler::notZero, COMPARE_VECTORS);
8325 
8326   // Compare trailing char (final 2 bytes), if any
8327   bind(COMPARE_CHAR);
8328   testl(result, 0x2);   // tail  char
8329   jccb(Assembler::zero, COMPARE_BYTE);
8330   load_unsigned_short(tmp1, Address(ary1, 0));
8331   andl(tmp1, 0x00008080);
8332   jccb(Assembler::notZero, TRUE_LABEL);
8333   subptr(result, 2);
8334   lea(ary1, Address(ary1, 2));
8335 
8336   bind(COMPARE_BYTE);
8337   testl(result, 0x1);   // tail  byte
8338   jccb(Assembler::zero, FALSE_LABEL);
8339   load_unsigned_byte(tmp1, Address(ary1, 0));
8340   andl(tmp1, 0x00000080);
8341   jccb(Assembler::notEqual, TRUE_LABEL);
8342   jmpb(FALSE_LABEL);
8343 
8344   bind(TRUE_LABEL);
8345   movl(result, 1);   // return true
8346   jmpb(DONE);
8347 
8348   bind(FALSE_LABEL);
8349   xorl(result, result); // return false
8350 
8351   // That's it
8352   bind(DONE);
8353   if (UseAVX >= 2 && UseSSE >= 2) {
8354     // clean upper bits of YMM registers
8355     vpxor(vec1, vec1);
8356     vpxor(vec2, vec2);
8357   }
8358 }
8359 
8360 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
8361 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
8362                                    Register limit, Register result, Register chr,
8363                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
8364   ShortBranchVerifier sbv(this);
8365   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
8366 
8367   int length_offset  = arrayOopDesc::length_offset_in_bytes();
8368   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
8369 
8370   if (is_array_equ) {
8371     // Check the input args
8372     cmpptr(ary1, ary2);
8373     jcc(Assembler::equal, TRUE_LABEL);
8374 
8375     // Need additional checks for arrays_equals.
8376     testptr(ary1, ary1);
8377     jcc(Assembler::zero, FALSE_LABEL);
8378     testptr(ary2, ary2);
8379     jcc(Assembler::zero, FALSE_LABEL);
8380 
8381     // Check the lengths
8382     movl(limit, Address(ary1, length_offset));
8383     cmpl(limit, Address(ary2, length_offset));
8384     jcc(Assembler::notEqual, FALSE_LABEL);
8385   }
8386 
8387   // count == 0
8388   testl(limit, limit);
8389   jcc(Assembler::zero, TRUE_LABEL);
8390 
8391   if (is_array_equ) {
8392     // Load array address
8393     lea(ary1, Address(ary1, base_offset));
8394     lea(ary2, Address(ary2, base_offset));
8395   }
8396 
8397   if (is_array_equ && is_char) {
8398     // arrays_equals when used for char[].
8399     shll(limit, 1);      // byte count != 0
8400   }
8401   movl(result, limit); // copy
8402 
8403   if (UseAVX >= 2) {
8404     // With AVX2, use 32-byte vector compare
8405     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8406 
8407     // Compare 32-byte vectors
8408     andl(result, 0x0000001f);  //   tail count (in bytes)
8409     andl(limit, 0xffffffe0);   // vector count (in bytes)
8410     jcc(Assembler::zero, COMPARE_TAIL);
8411 
8412     lea(ary1, Address(ary1, limit, Address::times_1));
8413     lea(ary2, Address(ary2, limit, Address::times_1));
8414     negptr(limit);
8415 
8416     bind(COMPARE_WIDE_VECTORS);
8417 
8418 #ifdef _LP64
8419     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
8420       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
8421 
8422       cmpl(limit, -64);
8423       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8424 
8425       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8426 
8427       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
8428       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
8429       kortestql(k7, k7);
8430       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8431       addptr(limit, 64);  // update since we already compared at this addr
8432       cmpl(limit, -64);
8433       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8434 
8435       // At this point we may still need to compare -limit+result bytes.
8436       // We could execute the next two instruction and just continue via non-wide path:
8437       //  cmpl(limit, 0);
8438       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
8439       // But since we stopped at the points ary{1,2}+limit which are
8440       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
8441       // (|limit| <= 32 and result < 32),
8442       // we may just compare the last 64 bytes.
8443       //
8444       addptr(result, -64);   // it is safe, bc we just came from this area
8445       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
8446       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
8447       kortestql(k7, k7);
8448       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8449 
8450       jmp(TRUE_LABEL);
8451 
8452       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8453 
8454     }//if (VM_Version::supports_avx512vlbw())
8455 #endif //_LP64
8456 
8457     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
8458     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
8459     vpxor(vec1, vec2);
8460 
8461     vptest(vec1, vec1);
8462     jccb(Assembler::notZero, FALSE_LABEL);
8463     addptr(limit, 32);
8464     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8465 
8466     testl(result, result);
8467     jccb(Assembler::zero, TRUE_LABEL);
8468 
8469     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8470     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
8471     vpxor(vec1, vec2);
8472 
8473     vptest(vec1, vec1);
8474     jccb(Assembler::notZero, FALSE_LABEL);
8475     jmpb(TRUE_LABEL);
8476 
8477     bind(COMPARE_TAIL); // limit is zero
8478     movl(limit, result);
8479     // Fallthru to tail compare
8480   } else if (UseSSE42Intrinsics) {
8481     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
8482     // With SSE4.2, use double quad vector compare
8483     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8484 
8485     // Compare 16-byte vectors
8486     andl(result, 0x0000000f);  //   tail count (in bytes)
8487     andl(limit, 0xfffffff0);   // vector count (in bytes)
8488     jccb(Assembler::zero, COMPARE_TAIL);
8489 
8490     lea(ary1, Address(ary1, limit, Address::times_1));
8491     lea(ary2, Address(ary2, limit, Address::times_1));
8492     negptr(limit);
8493 
8494     bind(COMPARE_WIDE_VECTORS);
8495     movdqu(vec1, Address(ary1, limit, Address::times_1));
8496     movdqu(vec2, Address(ary2, limit, Address::times_1));
8497     pxor(vec1, vec2);
8498 
8499     ptest(vec1, vec1);
8500     jccb(Assembler::notZero, FALSE_LABEL);
8501     addptr(limit, 16);
8502     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8503 
8504     testl(result, result);
8505     jccb(Assembler::zero, TRUE_LABEL);
8506 
8507     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8508     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
8509     pxor(vec1, vec2);
8510 
8511     ptest(vec1, vec1);
8512     jccb(Assembler::notZero, FALSE_LABEL);
8513     jmpb(TRUE_LABEL);
8514 
8515     bind(COMPARE_TAIL); // limit is zero
8516     movl(limit, result);
8517     // Fallthru to tail compare
8518   }
8519 
8520   // Compare 4-byte vectors
8521   andl(limit, 0xfffffffc); // vector count (in bytes)
8522   jccb(Assembler::zero, COMPARE_CHAR);
8523 
8524   lea(ary1, Address(ary1, limit, Address::times_1));
8525   lea(ary2, Address(ary2, limit, Address::times_1));
8526   negptr(limit);
8527 
8528   bind(COMPARE_VECTORS);
8529   movl(chr, Address(ary1, limit, Address::times_1));
8530   cmpl(chr, Address(ary2, limit, Address::times_1));
8531   jccb(Assembler::notEqual, FALSE_LABEL);
8532   addptr(limit, 4);
8533   jcc(Assembler::notZero, COMPARE_VECTORS);
8534 
8535   // Compare trailing char (final 2 bytes), if any
8536   bind(COMPARE_CHAR);
8537   testl(result, 0x2);   // tail  char
8538   jccb(Assembler::zero, COMPARE_BYTE);
8539   load_unsigned_short(chr, Address(ary1, 0));
8540   load_unsigned_short(limit, Address(ary2, 0));
8541   cmpl(chr, limit);
8542   jccb(Assembler::notEqual, FALSE_LABEL);
8543 
8544   if (is_array_equ && is_char) {
8545     bind(COMPARE_BYTE);
8546   } else {
8547     lea(ary1, Address(ary1, 2));
8548     lea(ary2, Address(ary2, 2));
8549 
8550     bind(COMPARE_BYTE);
8551     testl(result, 0x1);   // tail  byte
8552     jccb(Assembler::zero, TRUE_LABEL);
8553     load_unsigned_byte(chr, Address(ary1, 0));
8554     load_unsigned_byte(limit, Address(ary2, 0));
8555     cmpl(chr, limit);
8556     jccb(Assembler::notEqual, FALSE_LABEL);
8557   }
8558   bind(TRUE_LABEL);
8559   movl(result, 1);   // return true
8560   jmpb(DONE);
8561 
8562   bind(FALSE_LABEL);
8563   xorl(result, result); // return false
8564 
8565   // That's it
8566   bind(DONE);
8567   if (UseAVX >= 2) {
8568     // clean upper bits of YMM registers
8569     vpxor(vec1, vec1);
8570     vpxor(vec2, vec2);
8571   }
8572 }
8573 
8574 #endif
8575 
8576 void MacroAssembler::generate_fill(BasicType t, bool aligned,
8577                                    Register to, Register value, Register count,
8578                                    Register rtmp, XMMRegister xtmp) {
8579   ShortBranchVerifier sbv(this);
8580   assert_different_registers(to, value, count, rtmp);
8581   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
8582   Label L_fill_2_bytes, L_fill_4_bytes;
8583 
8584   int shift = -1;
8585   switch (t) {
8586     case T_BYTE:
8587       shift = 2;
8588       break;
8589     case T_SHORT:
8590       shift = 1;
8591       break;
8592     case T_INT:
8593       shift = 0;
8594       break;
8595     default: ShouldNotReachHere();
8596   }
8597 
8598   if (t == T_BYTE) {
8599     andl(value, 0xff);
8600     movl(rtmp, value);
8601     shll(rtmp, 8);
8602     orl(value, rtmp);
8603   }
8604   if (t == T_SHORT) {
8605     andl(value, 0xffff);
8606   }
8607   if (t == T_BYTE || t == T_SHORT) {
8608     movl(rtmp, value);
8609     shll(rtmp, 16);
8610     orl(value, rtmp);
8611   }
8612 
8613   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
8614   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
8615   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
8616     // align source address at 4 bytes address boundary
8617     if (t == T_BYTE) {
8618       // One byte misalignment happens only for byte arrays
8619       testptr(to, 1);
8620       jccb(Assembler::zero, L_skip_align1);
8621       movb(Address(to, 0), value);
8622       increment(to);
8623       decrement(count);
8624       BIND(L_skip_align1);
8625     }
8626     // Two bytes misalignment happens only for byte and short (char) arrays
8627     testptr(to, 2);
8628     jccb(Assembler::zero, L_skip_align2);
8629     movw(Address(to, 0), value);
8630     addptr(to, 2);
8631     subl(count, 1<<(shift-1));
8632     BIND(L_skip_align2);
8633   }
8634   if (UseSSE < 2) {
8635     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8636     // Fill 32-byte chunks
8637     subl(count, 8 << shift);
8638     jcc(Assembler::less, L_check_fill_8_bytes);
8639     align(16);
8640 
8641     BIND(L_fill_32_bytes_loop);
8642 
8643     for (int i = 0; i < 32; i += 4) {
8644       movl(Address(to, i), value);
8645     }
8646 
8647     addptr(to, 32);
8648     subl(count, 8 << shift);
8649     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8650     BIND(L_check_fill_8_bytes);
8651     addl(count, 8 << shift);
8652     jccb(Assembler::zero, L_exit);
8653     jmpb(L_fill_8_bytes);
8654 
8655     //
8656     // length is too short, just fill qwords
8657     //
8658     BIND(L_fill_8_bytes_loop);
8659     movl(Address(to, 0), value);
8660     movl(Address(to, 4), value);
8661     addptr(to, 8);
8662     BIND(L_fill_8_bytes);
8663     subl(count, 1 << (shift + 1));
8664     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8665     // fall through to fill 4 bytes
8666   } else {
8667     Label L_fill_32_bytes;
8668     if (!UseUnalignedLoadStores) {
8669       // align to 8 bytes, we know we are 4 byte aligned to start
8670       testptr(to, 4);
8671       jccb(Assembler::zero, L_fill_32_bytes);
8672       movl(Address(to, 0), value);
8673       addptr(to, 4);
8674       subl(count, 1<<shift);
8675     }
8676     BIND(L_fill_32_bytes);
8677     {
8678       assert( UseSSE >= 2, "supported cpu only" );
8679       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8680       if (UseAVX > 2) {
8681         movl(rtmp, 0xffff);
8682         kmovwl(k1, rtmp);
8683       }
8684       movdl(xtmp, value);
8685       if (UseAVX > 2 && UseUnalignedLoadStores) {
8686         // Fill 64-byte chunks
8687         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8688         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
8689 
8690         subl(count, 16 << shift);
8691         jcc(Assembler::less, L_check_fill_32_bytes);
8692         align(16);
8693 
8694         BIND(L_fill_64_bytes_loop);
8695         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
8696         addptr(to, 64);
8697         subl(count, 16 << shift);
8698         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8699 
8700         BIND(L_check_fill_32_bytes);
8701         addl(count, 8 << shift);
8702         jccb(Assembler::less, L_check_fill_8_bytes);
8703         vmovdqu(Address(to, 0), xtmp);
8704         addptr(to, 32);
8705         subl(count, 8 << shift);
8706 
8707         BIND(L_check_fill_8_bytes);
8708       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
8709         // Fill 64-byte chunks
8710         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8711         vpbroadcastd(xtmp, xtmp);
8712 
8713         subl(count, 16 << shift);
8714         jcc(Assembler::less, L_check_fill_32_bytes);
8715         align(16);
8716 
8717         BIND(L_fill_64_bytes_loop);
8718         vmovdqu(Address(to, 0), xtmp);
8719         vmovdqu(Address(to, 32), xtmp);
8720         addptr(to, 64);
8721         subl(count, 16 << shift);
8722         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8723 
8724         BIND(L_check_fill_32_bytes);
8725         addl(count, 8 << shift);
8726         jccb(Assembler::less, L_check_fill_8_bytes);
8727         vmovdqu(Address(to, 0), xtmp);
8728         addptr(to, 32);
8729         subl(count, 8 << shift);
8730 
8731         BIND(L_check_fill_8_bytes);
8732         // clean upper bits of YMM registers
8733         movdl(xtmp, value);
8734         pshufd(xtmp, xtmp, 0);
8735       } else {
8736         // Fill 32-byte chunks
8737         pshufd(xtmp, xtmp, 0);
8738 
8739         subl(count, 8 << shift);
8740         jcc(Assembler::less, L_check_fill_8_bytes);
8741         align(16);
8742 
8743         BIND(L_fill_32_bytes_loop);
8744 
8745         if (UseUnalignedLoadStores) {
8746           movdqu(Address(to, 0), xtmp);
8747           movdqu(Address(to, 16), xtmp);
8748         } else {
8749           movq(Address(to, 0), xtmp);
8750           movq(Address(to, 8), xtmp);
8751           movq(Address(to, 16), xtmp);
8752           movq(Address(to, 24), xtmp);
8753         }
8754 
8755         addptr(to, 32);
8756         subl(count, 8 << shift);
8757         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8758 
8759         BIND(L_check_fill_8_bytes);
8760       }
8761       addl(count, 8 << shift);
8762       jccb(Assembler::zero, L_exit);
8763       jmpb(L_fill_8_bytes);
8764 
8765       //
8766       // length is too short, just fill qwords
8767       //
8768       BIND(L_fill_8_bytes_loop);
8769       movq(Address(to, 0), xtmp);
8770       addptr(to, 8);
8771       BIND(L_fill_8_bytes);
8772       subl(count, 1 << (shift + 1));
8773       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8774     }
8775   }
8776   // fill trailing 4 bytes
8777   BIND(L_fill_4_bytes);
8778   testl(count, 1<<shift);
8779   jccb(Assembler::zero, L_fill_2_bytes);
8780   movl(Address(to, 0), value);
8781   if (t == T_BYTE || t == T_SHORT) {
8782     addptr(to, 4);
8783     BIND(L_fill_2_bytes);
8784     // fill trailing 2 bytes
8785     testl(count, 1<<(shift-1));
8786     jccb(Assembler::zero, L_fill_byte);
8787     movw(Address(to, 0), value);
8788     if (t == T_BYTE) {
8789       addptr(to, 2);
8790       BIND(L_fill_byte);
8791       // fill trailing byte
8792       testl(count, 1);
8793       jccb(Assembler::zero, L_exit);
8794       movb(Address(to, 0), value);
8795     } else {
8796       BIND(L_fill_byte);
8797     }
8798   } else {
8799     BIND(L_fill_2_bytes);
8800   }
8801   BIND(L_exit);
8802 }
8803 
8804 // encode char[] to byte[] in ISO_8859_1
8805 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
8806                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
8807                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
8808                                       Register tmp5, Register result) {
8809   // rsi: src
8810   // rdi: dst
8811   // rdx: len
8812   // rcx: tmp5
8813   // rax: result
8814   ShortBranchVerifier sbv(this);
8815   assert_different_registers(src, dst, len, tmp5, result);
8816   Label L_done, L_copy_1_char, L_copy_1_char_exit;
8817 
8818   // set result
8819   xorl(result, result);
8820   // check for zero length
8821   testl(len, len);
8822   jcc(Assembler::zero, L_done);
8823   movl(result, len);
8824 
8825   // Setup pointers
8826   lea(src, Address(src, len, Address::times_2)); // char[]
8827   lea(dst, Address(dst, len, Address::times_1)); // byte[]
8828   negptr(len);
8829 
8830   if (UseSSE42Intrinsics || UseAVX >= 2) {
8831     assert(UseSSE42Intrinsics ? UseSSE >= 4 : true, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
8832     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
8833     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
8834 
8835     if (UseAVX >= 2) {
8836       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
8837       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8838       movdl(tmp1Reg, tmp5);
8839       vpbroadcastd(tmp1Reg, tmp1Reg);
8840       jmpb(L_chars_32_check);
8841 
8842       bind(L_copy_32_chars);
8843       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
8844       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
8845       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8846       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8847       jccb(Assembler::notZero, L_copy_32_chars_exit);
8848       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8849       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
8850       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
8851 
8852       bind(L_chars_32_check);
8853       addptr(len, 32);
8854       jccb(Assembler::lessEqual, L_copy_32_chars);
8855 
8856       bind(L_copy_32_chars_exit);
8857       subptr(len, 16);
8858       jccb(Assembler::greater, L_copy_16_chars_exit);
8859 
8860     } else if (UseSSE42Intrinsics) {
8861       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8862       movdl(tmp1Reg, tmp5);
8863       pshufd(tmp1Reg, tmp1Reg, 0);
8864       jmpb(L_chars_16_check);
8865     }
8866 
8867     bind(L_copy_16_chars);
8868     if (UseAVX >= 2) {
8869       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
8870       vptest(tmp2Reg, tmp1Reg);
8871       jccb(Assembler::notZero, L_copy_16_chars_exit);
8872       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
8873       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
8874     } else {
8875       if (UseAVX > 0) {
8876         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8877         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8878         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
8879       } else {
8880         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8881         por(tmp2Reg, tmp3Reg);
8882         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8883         por(tmp2Reg, tmp4Reg);
8884       }
8885       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8886       jccb(Assembler::notZero, L_copy_16_chars_exit);
8887       packuswb(tmp3Reg, tmp4Reg);
8888     }
8889     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
8890 
8891     bind(L_chars_16_check);
8892     addptr(len, 16);
8893     jccb(Assembler::lessEqual, L_copy_16_chars);
8894 
8895     bind(L_copy_16_chars_exit);
8896     if (UseAVX >= 2) {
8897       // clean upper bits of YMM registers
8898       vpxor(tmp2Reg, tmp2Reg);
8899       vpxor(tmp3Reg, tmp3Reg);
8900       vpxor(tmp4Reg, tmp4Reg);
8901       movdl(tmp1Reg, tmp5);
8902       pshufd(tmp1Reg, tmp1Reg, 0);
8903     }
8904     subptr(len, 8);
8905     jccb(Assembler::greater, L_copy_8_chars_exit);
8906 
8907     bind(L_copy_8_chars);
8908     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
8909     ptest(tmp3Reg, tmp1Reg);
8910     jccb(Assembler::notZero, L_copy_8_chars_exit);
8911     packuswb(tmp3Reg, tmp1Reg);
8912     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
8913     addptr(len, 8);
8914     jccb(Assembler::lessEqual, L_copy_8_chars);
8915 
8916     bind(L_copy_8_chars_exit);
8917     subptr(len, 8);
8918     jccb(Assembler::zero, L_done);
8919   }
8920 
8921   bind(L_copy_1_char);
8922   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
8923   testl(tmp5, 0xff00);      // check if Unicode char
8924   jccb(Assembler::notZero, L_copy_1_char_exit);
8925   movb(Address(dst, len, Address::times_1, 0), tmp5);
8926   addptr(len, 1);
8927   jccb(Assembler::less, L_copy_1_char);
8928 
8929   bind(L_copy_1_char_exit);
8930   addptr(result, len); // len is negative count of not processed elements
8931   bind(L_done);
8932 }
8933 
8934 #ifdef _LP64
8935 /**
8936  * Helper for multiply_to_len().
8937  */
8938 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
8939   addq(dest_lo, src1);
8940   adcq(dest_hi, 0);
8941   addq(dest_lo, src2);
8942   adcq(dest_hi, 0);
8943 }
8944 
8945 /**
8946  * Multiply 64 bit by 64 bit first loop.
8947  */
8948 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
8949                                            Register y, Register y_idx, Register z,
8950                                            Register carry, Register product,
8951                                            Register idx, Register kdx) {
8952   //
8953   //  jlong carry, x[], y[], z[];
8954   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8955   //    huge_128 product = y[idx] * x[xstart] + carry;
8956   //    z[kdx] = (jlong)product;
8957   //    carry  = (jlong)(product >>> 64);
8958   //  }
8959   //  z[xstart] = carry;
8960   //
8961 
8962   Label L_first_loop, L_first_loop_exit;
8963   Label L_one_x, L_one_y, L_multiply;
8964 
8965   decrementl(xstart);
8966   jcc(Assembler::negative, L_one_x);
8967 
8968   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8969   rorq(x_xstart, 32); // convert big-endian to little-endian
8970 
8971   bind(L_first_loop);
8972   decrementl(idx);
8973   jcc(Assembler::negative, L_first_loop_exit);
8974   decrementl(idx);
8975   jcc(Assembler::negative, L_one_y);
8976   movq(y_idx, Address(y, idx, Address::times_4,  0));
8977   rorq(y_idx, 32); // convert big-endian to little-endian
8978   bind(L_multiply);
8979   movq(product, x_xstart);
8980   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
8981   addq(product, carry);
8982   adcq(rdx, 0);
8983   subl(kdx, 2);
8984   movl(Address(z, kdx, Address::times_4,  4), product);
8985   shrq(product, 32);
8986   movl(Address(z, kdx, Address::times_4,  0), product);
8987   movq(carry, rdx);
8988   jmp(L_first_loop);
8989 
8990   bind(L_one_y);
8991   movl(y_idx, Address(y,  0));
8992   jmp(L_multiply);
8993 
8994   bind(L_one_x);
8995   movl(x_xstart, Address(x,  0));
8996   jmp(L_first_loop);
8997 
8998   bind(L_first_loop_exit);
8999 }
9000 
9001 /**
9002  * Multiply 64 bit by 64 bit and add 128 bit.
9003  */
9004 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
9005                                             Register yz_idx, Register idx,
9006                                             Register carry, Register product, int offset) {
9007   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
9008   //     z[kdx] = (jlong)product;
9009 
9010   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
9011   rorq(yz_idx, 32); // convert big-endian to little-endian
9012   movq(product, x_xstart);
9013   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
9014   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
9015   rorq(yz_idx, 32); // convert big-endian to little-endian
9016 
9017   add2_with_carry(rdx, product, carry, yz_idx);
9018 
9019   movl(Address(z, idx, Address::times_4,  offset+4), product);
9020   shrq(product, 32);
9021   movl(Address(z, idx, Address::times_4,  offset), product);
9022 
9023 }
9024 
9025 /**
9026  * Multiply 128 bit by 128 bit. Unrolled inner loop.
9027  */
9028 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
9029                                              Register yz_idx, Register idx, Register jdx,
9030                                              Register carry, Register product,
9031                                              Register carry2) {
9032   //   jlong carry, x[], y[], z[];
9033   //   int kdx = ystart+1;
9034   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9035   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
9036   //     z[kdx+idx+1] = (jlong)product;
9037   //     jlong carry2  = (jlong)(product >>> 64);
9038   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
9039   //     z[kdx+idx] = (jlong)product;
9040   //     carry  = (jlong)(product >>> 64);
9041   //   }
9042   //   idx += 2;
9043   //   if (idx > 0) {
9044   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
9045   //     z[kdx+idx] = (jlong)product;
9046   //     carry  = (jlong)(product >>> 64);
9047   //   }
9048   //
9049 
9050   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9051 
9052   movl(jdx, idx);
9053   andl(jdx, 0xFFFFFFFC);
9054   shrl(jdx, 2);
9055 
9056   bind(L_third_loop);
9057   subl(jdx, 1);
9058   jcc(Assembler::negative, L_third_loop_exit);
9059   subl(idx, 4);
9060 
9061   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
9062   movq(carry2, rdx);
9063 
9064   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
9065   movq(carry, rdx);
9066   jmp(L_third_loop);
9067 
9068   bind (L_third_loop_exit);
9069 
9070   andl (idx, 0x3);
9071   jcc(Assembler::zero, L_post_third_loop_done);
9072 
9073   Label L_check_1;
9074   subl(idx, 2);
9075   jcc(Assembler::negative, L_check_1);
9076 
9077   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
9078   movq(carry, rdx);
9079 
9080   bind (L_check_1);
9081   addl (idx, 0x2);
9082   andl (idx, 0x1);
9083   subl(idx, 1);
9084   jcc(Assembler::negative, L_post_third_loop_done);
9085 
9086   movl(yz_idx, Address(y, idx, Address::times_4,  0));
9087   movq(product, x_xstart);
9088   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
9089   movl(yz_idx, Address(z, idx, Address::times_4,  0));
9090 
9091   add2_with_carry(rdx, product, yz_idx, carry);
9092 
9093   movl(Address(z, idx, Address::times_4,  0), product);
9094   shrq(product, 32);
9095 
9096   shlq(rdx, 32);
9097   orq(product, rdx);
9098   movq(carry, product);
9099 
9100   bind(L_post_third_loop_done);
9101 }
9102 
9103 /**
9104  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
9105  *
9106  */
9107 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
9108                                                   Register carry, Register carry2,
9109                                                   Register idx, Register jdx,
9110                                                   Register yz_idx1, Register yz_idx2,
9111                                                   Register tmp, Register tmp3, Register tmp4) {
9112   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
9113 
9114   //   jlong carry, x[], y[], z[];
9115   //   int kdx = ystart+1;
9116   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9117   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
9118   //     jlong carry2  = (jlong)(tmp3 >>> 64);
9119   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
9120   //     carry  = (jlong)(tmp4 >>> 64);
9121   //     z[kdx+idx+1] = (jlong)tmp3;
9122   //     z[kdx+idx] = (jlong)tmp4;
9123   //   }
9124   //   idx += 2;
9125   //   if (idx > 0) {
9126   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
9127   //     z[kdx+idx] = (jlong)yz_idx1;
9128   //     carry  = (jlong)(yz_idx1 >>> 64);
9129   //   }
9130   //
9131 
9132   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9133 
9134   movl(jdx, idx);
9135   andl(jdx, 0xFFFFFFFC);
9136   shrl(jdx, 2);
9137 
9138   bind(L_third_loop);
9139   subl(jdx, 1);
9140   jcc(Assembler::negative, L_third_loop_exit);
9141   subl(idx, 4);
9142 
9143   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
9144   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
9145   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
9146   rorxq(yz_idx2, yz_idx2, 32);
9147 
9148   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
9149   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
9150 
9151   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
9152   rorxq(yz_idx1, yz_idx1, 32);
9153   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9154   rorxq(yz_idx2, yz_idx2, 32);
9155 
9156   if (VM_Version::supports_adx()) {
9157     adcxq(tmp3, carry);
9158     adoxq(tmp3, yz_idx1);
9159 
9160     adcxq(tmp4, tmp);
9161     adoxq(tmp4, yz_idx2);
9162 
9163     movl(carry, 0); // does not affect flags
9164     adcxq(carry2, carry);
9165     adoxq(carry2, carry);
9166   } else {
9167     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
9168     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
9169   }
9170   movq(carry, carry2);
9171 
9172   movl(Address(z, idx, Address::times_4, 12), tmp3);
9173   shrq(tmp3, 32);
9174   movl(Address(z, idx, Address::times_4,  8), tmp3);
9175 
9176   movl(Address(z, idx, Address::times_4,  4), tmp4);
9177   shrq(tmp4, 32);
9178   movl(Address(z, idx, Address::times_4,  0), tmp4);
9179 
9180   jmp(L_third_loop);
9181 
9182   bind (L_third_loop_exit);
9183 
9184   andl (idx, 0x3);
9185   jcc(Assembler::zero, L_post_third_loop_done);
9186 
9187   Label L_check_1;
9188   subl(idx, 2);
9189   jcc(Assembler::negative, L_check_1);
9190 
9191   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
9192   rorxq(yz_idx1, yz_idx1, 32);
9193   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
9194   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9195   rorxq(yz_idx2, yz_idx2, 32);
9196 
9197   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
9198 
9199   movl(Address(z, idx, Address::times_4,  4), tmp3);
9200   shrq(tmp3, 32);
9201   movl(Address(z, idx, Address::times_4,  0), tmp3);
9202   movq(carry, tmp4);
9203 
9204   bind (L_check_1);
9205   addl (idx, 0x2);
9206   andl (idx, 0x1);
9207   subl(idx, 1);
9208   jcc(Assembler::negative, L_post_third_loop_done);
9209   movl(tmp4, Address(y, idx, Address::times_4,  0));
9210   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
9211   movl(tmp4, Address(z, idx, Address::times_4,  0));
9212 
9213   add2_with_carry(carry2, tmp3, tmp4, carry);
9214 
9215   movl(Address(z, idx, Address::times_4,  0), tmp3);
9216   shrq(tmp3, 32);
9217 
9218   shlq(carry2, 32);
9219   orq(tmp3, carry2);
9220   movq(carry, tmp3);
9221 
9222   bind(L_post_third_loop_done);
9223 }
9224 
9225 /**
9226  * Code for BigInteger::multiplyToLen() instrinsic.
9227  *
9228  * rdi: x
9229  * rax: xlen
9230  * rsi: y
9231  * rcx: ylen
9232  * r8:  z
9233  * r11: zlen
9234  * r12: tmp1
9235  * r13: tmp2
9236  * r14: tmp3
9237  * r15: tmp4
9238  * rbx: tmp5
9239  *
9240  */
9241 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
9242                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
9243   ShortBranchVerifier sbv(this);
9244   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
9245 
9246   push(tmp1);
9247   push(tmp2);
9248   push(tmp3);
9249   push(tmp4);
9250   push(tmp5);
9251 
9252   push(xlen);
9253   push(zlen);
9254 
9255   const Register idx = tmp1;
9256   const Register kdx = tmp2;
9257   const Register xstart = tmp3;
9258 
9259   const Register y_idx = tmp4;
9260   const Register carry = tmp5;
9261   const Register product  = xlen;
9262   const Register x_xstart = zlen;  // reuse register
9263 
9264   // First Loop.
9265   //
9266   //  final static long LONG_MASK = 0xffffffffL;
9267   //  int xstart = xlen - 1;
9268   //  int ystart = ylen - 1;
9269   //  long carry = 0;
9270   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
9271   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
9272   //    z[kdx] = (int)product;
9273   //    carry = product >>> 32;
9274   //  }
9275   //  z[xstart] = (int)carry;
9276   //
9277 
9278   movl(idx, ylen);      // idx = ylen;
9279   movl(kdx, zlen);      // kdx = xlen+ylen;
9280   xorq(carry, carry);   // carry = 0;
9281 
9282   Label L_done;
9283 
9284   movl(xstart, xlen);
9285   decrementl(xstart);
9286   jcc(Assembler::negative, L_done);
9287 
9288   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
9289 
9290   Label L_second_loop;
9291   testl(kdx, kdx);
9292   jcc(Assembler::zero, L_second_loop);
9293 
9294   Label L_carry;
9295   subl(kdx, 1);
9296   jcc(Assembler::zero, L_carry);
9297 
9298   movl(Address(z, kdx, Address::times_4,  0), carry);
9299   shrq(carry, 32);
9300   subl(kdx, 1);
9301 
9302   bind(L_carry);
9303   movl(Address(z, kdx, Address::times_4,  0), carry);
9304 
9305   // Second and third (nested) loops.
9306   //
9307   // for (int i = xstart-1; i >= 0; i--) { // Second loop
9308   //   carry = 0;
9309   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
9310   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
9311   //                    (z[k] & LONG_MASK) + carry;
9312   //     z[k] = (int)product;
9313   //     carry = product >>> 32;
9314   //   }
9315   //   z[i] = (int)carry;
9316   // }
9317   //
9318   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
9319 
9320   const Register jdx = tmp1;
9321 
9322   bind(L_second_loop);
9323   xorl(carry, carry);    // carry = 0;
9324   movl(jdx, ylen);       // j = ystart+1
9325 
9326   subl(xstart, 1);       // i = xstart-1;
9327   jcc(Assembler::negative, L_done);
9328 
9329   push (z);
9330 
9331   Label L_last_x;
9332   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
9333   subl(xstart, 1);       // i = xstart-1;
9334   jcc(Assembler::negative, L_last_x);
9335 
9336   if (UseBMI2Instructions) {
9337     movq(rdx,  Address(x, xstart, Address::times_4,  0));
9338     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
9339   } else {
9340     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
9341     rorq(x_xstart, 32);  // convert big-endian to little-endian
9342   }
9343 
9344   Label L_third_loop_prologue;
9345   bind(L_third_loop_prologue);
9346 
9347   push (x);
9348   push (xstart);
9349   push (ylen);
9350 
9351 
9352   if (UseBMI2Instructions) {
9353     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
9354   } else { // !UseBMI2Instructions
9355     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
9356   }
9357 
9358   pop(ylen);
9359   pop(xlen);
9360   pop(x);
9361   pop(z);
9362 
9363   movl(tmp3, xlen);
9364   addl(tmp3, 1);
9365   movl(Address(z, tmp3, Address::times_4,  0), carry);
9366   subl(tmp3, 1);
9367   jccb(Assembler::negative, L_done);
9368 
9369   shrq(carry, 32);
9370   movl(Address(z, tmp3, Address::times_4,  0), carry);
9371   jmp(L_second_loop);
9372 
9373   // Next infrequent code is moved outside loops.
9374   bind(L_last_x);
9375   if (UseBMI2Instructions) {
9376     movl(rdx, Address(x,  0));
9377   } else {
9378     movl(x_xstart, Address(x,  0));
9379   }
9380   jmp(L_third_loop_prologue);
9381 
9382   bind(L_done);
9383 
9384   pop(zlen);
9385   pop(xlen);
9386 
9387   pop(tmp5);
9388   pop(tmp4);
9389   pop(tmp3);
9390   pop(tmp2);
9391   pop(tmp1);
9392 }
9393 
9394 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
9395   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
9396   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
9397   Label VECTOR32_LOOP, VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
9398   Label VECTOR16_TAIL, VECTOR8_TAIL, VECTOR4_TAIL;
9399   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
9400   Label SAME_TILL_END, DONE;
9401   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
9402 
9403   //scale is in rcx in both Win64 and Unix
9404   ShortBranchVerifier sbv(this);
9405 
9406   shlq(length);
9407   xorq(result, result);
9408 
9409   cmpq(length, 8);
9410   jcc(Assembler::equal, VECTOR8_LOOP);
9411   jcc(Assembler::less, VECTOR4_TAIL);
9412 
9413   if (UseAVX >= 2){
9414 
9415     cmpq(length, 16);
9416     jcc(Assembler::equal, VECTOR16_LOOP);
9417     jcc(Assembler::less, VECTOR8_LOOP);
9418 
9419     cmpq(length, 32);
9420     jccb(Assembler::less, VECTOR16_TAIL);
9421 
9422     subq(length, 32);
9423     bind(VECTOR32_LOOP);
9424     vmovdqu(rymm0, Address(obja, result));
9425     vmovdqu(rymm1, Address(objb, result));
9426     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
9427     vptest(rymm2, rymm2);
9428     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
9429     addq(result, 32);
9430     subq(length, 32);
9431     jccb(Assembler::greaterEqual, VECTOR32_LOOP);
9432     addq(length, 32);
9433     jcc(Assembler::equal, SAME_TILL_END);
9434     //falling through if less than 32 bytes left //close the branch here.
9435 
9436     bind(VECTOR16_TAIL);
9437     cmpq(length, 16);
9438     jccb(Assembler::less, VECTOR8_TAIL);
9439     bind(VECTOR16_LOOP);
9440     movdqu(rymm0, Address(obja, result));
9441     movdqu(rymm1, Address(objb, result));
9442     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
9443     ptest(rymm2, rymm2);
9444     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9445     addq(result, 16);
9446     subq(length, 16);
9447     jcc(Assembler::equal, SAME_TILL_END);
9448     //falling through if less than 16 bytes left
9449   } else {//regular intrinsics
9450 
9451     cmpq(length, 16);
9452     jccb(Assembler::less, VECTOR8_TAIL);
9453 
9454     subq(length, 16);
9455     bind(VECTOR16_LOOP);
9456     movdqu(rymm0, Address(obja, result));
9457     movdqu(rymm1, Address(objb, result));
9458     pxor(rymm0, rymm1);
9459     ptest(rymm0, rymm0);
9460     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9461     addq(result, 16);
9462     subq(length, 16);
9463     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
9464     addq(length, 16);
9465     jcc(Assembler::equal, SAME_TILL_END);
9466     //falling through if less than 16 bytes left
9467   }
9468 
9469   bind(VECTOR8_TAIL);
9470   cmpq(length, 8);
9471   jccb(Assembler::less, VECTOR4_TAIL);
9472   bind(VECTOR8_LOOP);
9473   movq(tmp1, Address(obja, result));
9474   movq(tmp2, Address(objb, result));
9475   xorq(tmp1, tmp2);
9476   testq(tmp1, tmp1);
9477   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
9478   addq(result, 8);
9479   subq(length, 8);
9480   jcc(Assembler::equal, SAME_TILL_END);
9481   //falling through if less than 8 bytes left
9482 
9483   bind(VECTOR4_TAIL);
9484   cmpq(length, 4);
9485   jccb(Assembler::less, BYTES_TAIL);
9486   bind(VECTOR4_LOOP);
9487   movl(tmp1, Address(obja, result));
9488   xorl(tmp1, Address(objb, result));
9489   testl(tmp1, tmp1);
9490   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
9491   addq(result, 4);
9492   subq(length, 4);
9493   jcc(Assembler::equal, SAME_TILL_END);
9494   //falling through if less than 4 bytes left
9495 
9496   bind(BYTES_TAIL);
9497   bind(BYTES_LOOP);
9498   load_unsigned_byte(tmp1, Address(obja, result));
9499   load_unsigned_byte(tmp2, Address(objb, result));
9500   xorl(tmp1, tmp2);
9501   testl(tmp1, tmp1);
9502   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9503   decq(length);
9504   jccb(Assembler::zero, SAME_TILL_END);
9505   incq(result);
9506   load_unsigned_byte(tmp1, Address(obja, result));
9507   load_unsigned_byte(tmp2, Address(objb, result));
9508   xorl(tmp1, tmp2);
9509   testl(tmp1, tmp1);
9510   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9511   decq(length);
9512   jccb(Assembler::zero, SAME_TILL_END);
9513   incq(result);
9514   load_unsigned_byte(tmp1, Address(obja, result));
9515   load_unsigned_byte(tmp2, Address(objb, result));
9516   xorl(tmp1, tmp2);
9517   testl(tmp1, tmp1);
9518   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9519   jmpb(SAME_TILL_END);
9520 
9521   if (UseAVX >= 2){
9522     bind(VECTOR32_NOT_EQUAL);
9523     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
9524     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
9525     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
9526     vpmovmskb(tmp1, rymm0);
9527     bsfq(tmp1, tmp1);
9528     addq(result, tmp1);
9529     shrq(result);
9530     jmpb(DONE);
9531   }
9532 
9533   bind(VECTOR16_NOT_EQUAL);
9534   if (UseAVX >= 2){
9535     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
9536     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
9537     pxor(rymm0, rymm2);
9538   } else {
9539     pcmpeqb(rymm2, rymm2);
9540     pxor(rymm0, rymm1);
9541     pcmpeqb(rymm0, rymm1);
9542     pxor(rymm0, rymm2);
9543   }
9544   pmovmskb(tmp1, rymm0);
9545   bsfq(tmp1, tmp1);
9546   addq(result, tmp1);
9547   shrq(result);
9548   jmpb(DONE);
9549 
9550   bind(VECTOR8_NOT_EQUAL);
9551   bind(VECTOR4_NOT_EQUAL);
9552   bsfq(tmp1, tmp1);
9553   shrq(tmp1, 3);
9554   addq(result, tmp1);
9555   bind(BYTES_NOT_EQUAL);
9556   shrq(result);
9557   jmpb(DONE);
9558 
9559   bind(SAME_TILL_END);
9560   mov64(result, -1);
9561 
9562   bind(DONE);
9563 }
9564 
9565 
9566 //Helper functions for square_to_len()
9567 
9568 /**
9569  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
9570  * Preserves x and z and modifies rest of the registers.
9571  */
9572 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9573   // Perform square and right shift by 1
9574   // Handle odd xlen case first, then for even xlen do the following
9575   // jlong carry = 0;
9576   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
9577   //     huge_128 product = x[j:j+1] * x[j:j+1];
9578   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
9579   //     z[i+2:i+3] = (jlong)(product >>> 1);
9580   //     carry = (jlong)product;
9581   // }
9582 
9583   xorq(tmp5, tmp5);     // carry
9584   xorq(rdxReg, rdxReg);
9585   xorl(tmp1, tmp1);     // index for x
9586   xorl(tmp4, tmp4);     // index for z
9587 
9588   Label L_first_loop, L_first_loop_exit;
9589 
9590   testl(xlen, 1);
9591   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
9592 
9593   // Square and right shift by 1 the odd element using 32 bit multiply
9594   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
9595   imulq(raxReg, raxReg);
9596   shrq(raxReg, 1);
9597   adcq(tmp5, 0);
9598   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
9599   incrementl(tmp1);
9600   addl(tmp4, 2);
9601 
9602   // Square and  right shift by 1 the rest using 64 bit multiply
9603   bind(L_first_loop);
9604   cmpptr(tmp1, xlen);
9605   jccb(Assembler::equal, L_first_loop_exit);
9606 
9607   // Square
9608   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
9609   rorq(raxReg, 32);    // convert big-endian to little-endian
9610   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
9611 
9612   // Right shift by 1 and save carry
9613   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
9614   rcrq(rdxReg, 1);
9615   rcrq(raxReg, 1);
9616   adcq(tmp5, 0);
9617 
9618   // Store result in z
9619   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
9620   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
9621 
9622   // Update indices for x and z
9623   addl(tmp1, 2);
9624   addl(tmp4, 4);
9625   jmp(L_first_loop);
9626 
9627   bind(L_first_loop_exit);
9628 }
9629 
9630 
9631 /**
9632  * Perform the following multiply add operation using BMI2 instructions
9633  * carry:sum = sum + op1*op2 + carry
9634  * op2 should be in rdx
9635  * op2 is preserved, all other registers are modified
9636  */
9637 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
9638   // assert op2 is rdx
9639   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
9640   addq(sum, carry);
9641   adcq(tmp2, 0);
9642   addq(sum, op1);
9643   adcq(tmp2, 0);
9644   movq(carry, tmp2);
9645 }
9646 
9647 /**
9648  * Perform the following multiply add operation:
9649  * carry:sum = sum + op1*op2 + carry
9650  * Preserves op1, op2 and modifies rest of registers
9651  */
9652 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
9653   // rdx:rax = op1 * op2
9654   movq(raxReg, op2);
9655   mulq(op1);
9656 
9657   //  rdx:rax = sum + carry + rdx:rax
9658   addq(sum, carry);
9659   adcq(rdxReg, 0);
9660   addq(sum, raxReg);
9661   adcq(rdxReg, 0);
9662 
9663   // carry:sum = rdx:sum
9664   movq(carry, rdxReg);
9665 }
9666 
9667 /**
9668  * Add 64 bit long carry into z[] with carry propogation.
9669  * Preserves z and carry register values and modifies rest of registers.
9670  *
9671  */
9672 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
9673   Label L_fourth_loop, L_fourth_loop_exit;
9674 
9675   movl(tmp1, 1);
9676   subl(zlen, 2);
9677   addq(Address(z, zlen, Address::times_4, 0), carry);
9678 
9679   bind(L_fourth_loop);
9680   jccb(Assembler::carryClear, L_fourth_loop_exit);
9681   subl(zlen, 2);
9682   jccb(Assembler::negative, L_fourth_loop_exit);
9683   addq(Address(z, zlen, Address::times_4, 0), tmp1);
9684   jmp(L_fourth_loop);
9685   bind(L_fourth_loop_exit);
9686 }
9687 
9688 /**
9689  * Shift z[] left by 1 bit.
9690  * Preserves x, len, z and zlen registers and modifies rest of the registers.
9691  *
9692  */
9693 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
9694 
9695   Label L_fifth_loop, L_fifth_loop_exit;
9696 
9697   // Fifth loop
9698   // Perform primitiveLeftShift(z, zlen, 1)
9699 
9700   const Register prev_carry = tmp1;
9701   const Register new_carry = tmp4;
9702   const Register value = tmp2;
9703   const Register zidx = tmp3;
9704 
9705   // int zidx, carry;
9706   // long value;
9707   // carry = 0;
9708   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
9709   //    (carry:value)  = (z[i] << 1) | carry ;
9710   //    z[i] = value;
9711   // }
9712 
9713   movl(zidx, zlen);
9714   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
9715 
9716   bind(L_fifth_loop);
9717   decl(zidx);  // Use decl to preserve carry flag
9718   decl(zidx);
9719   jccb(Assembler::negative, L_fifth_loop_exit);
9720 
9721   if (UseBMI2Instructions) {
9722      movq(value, Address(z, zidx, Address::times_4, 0));
9723      rclq(value, 1);
9724      rorxq(value, value, 32);
9725      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9726   }
9727   else {
9728     // clear new_carry
9729     xorl(new_carry, new_carry);
9730 
9731     // Shift z[i] by 1, or in previous carry and save new carry
9732     movq(value, Address(z, zidx, Address::times_4, 0));
9733     shlq(value, 1);
9734     adcl(new_carry, 0);
9735 
9736     orq(value, prev_carry);
9737     rorq(value, 0x20);
9738     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9739 
9740     // Set previous carry = new carry
9741     movl(prev_carry, new_carry);
9742   }
9743   jmp(L_fifth_loop);
9744 
9745   bind(L_fifth_loop_exit);
9746 }
9747 
9748 
9749 /**
9750  * Code for BigInteger::squareToLen() intrinsic
9751  *
9752  * rdi: x
9753  * rsi: len
9754  * r8:  z
9755  * rcx: zlen
9756  * r12: tmp1
9757  * r13: tmp2
9758  * r14: tmp3
9759  * r15: tmp4
9760  * rbx: tmp5
9761  *
9762  */
9763 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9764 
9765   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
9766   push(tmp1);
9767   push(tmp2);
9768   push(tmp3);
9769   push(tmp4);
9770   push(tmp5);
9771 
9772   // First loop
9773   // Store the squares, right shifted one bit (i.e., divided by 2).
9774   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
9775 
9776   // Add in off-diagonal sums.
9777   //
9778   // Second, third (nested) and fourth loops.
9779   // zlen +=2;
9780   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
9781   //    carry = 0;
9782   //    long op2 = x[xidx:xidx+1];
9783   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
9784   //       k -= 2;
9785   //       long op1 = x[j:j+1];
9786   //       long sum = z[k:k+1];
9787   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
9788   //       z[k:k+1] = sum;
9789   //    }
9790   //    add_one_64(z, k, carry, tmp_regs);
9791   // }
9792 
9793   const Register carry = tmp5;
9794   const Register sum = tmp3;
9795   const Register op1 = tmp4;
9796   Register op2 = tmp2;
9797 
9798   push(zlen);
9799   push(len);
9800   addl(zlen,2);
9801   bind(L_second_loop);
9802   xorq(carry, carry);
9803   subl(zlen, 4);
9804   subl(len, 2);
9805   push(zlen);
9806   push(len);
9807   cmpl(len, 0);
9808   jccb(Assembler::lessEqual, L_second_loop_exit);
9809 
9810   // Multiply an array by one 64 bit long.
9811   if (UseBMI2Instructions) {
9812     op2 = rdxReg;
9813     movq(op2, Address(x, len, Address::times_4,  0));
9814     rorxq(op2, op2, 32);
9815   }
9816   else {
9817     movq(op2, Address(x, len, Address::times_4,  0));
9818     rorq(op2, 32);
9819   }
9820 
9821   bind(L_third_loop);
9822   decrementl(len);
9823   jccb(Assembler::negative, L_third_loop_exit);
9824   decrementl(len);
9825   jccb(Assembler::negative, L_last_x);
9826 
9827   movq(op1, Address(x, len, Address::times_4,  0));
9828   rorq(op1, 32);
9829 
9830   bind(L_multiply);
9831   subl(zlen, 2);
9832   movq(sum, Address(z, zlen, Address::times_4,  0));
9833 
9834   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
9835   if (UseBMI2Instructions) {
9836     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
9837   }
9838   else {
9839     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9840   }
9841 
9842   movq(Address(z, zlen, Address::times_4, 0), sum);
9843 
9844   jmp(L_third_loop);
9845   bind(L_third_loop_exit);
9846 
9847   // Fourth loop
9848   // Add 64 bit long carry into z with carry propogation.
9849   // Uses offsetted zlen.
9850   add_one_64(z, zlen, carry, tmp1);
9851 
9852   pop(len);
9853   pop(zlen);
9854   jmp(L_second_loop);
9855 
9856   // Next infrequent code is moved outside loops.
9857   bind(L_last_x);
9858   movl(op1, Address(x, 0));
9859   jmp(L_multiply);
9860 
9861   bind(L_second_loop_exit);
9862   pop(len);
9863   pop(zlen);
9864   pop(len);
9865   pop(zlen);
9866 
9867   // Fifth loop
9868   // Shift z left 1 bit.
9869   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
9870 
9871   // z[zlen-1] |= x[len-1] & 1;
9872   movl(tmp3, Address(x, len, Address::times_4, -4));
9873   andl(tmp3, 1);
9874   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
9875 
9876   pop(tmp5);
9877   pop(tmp4);
9878   pop(tmp3);
9879   pop(tmp2);
9880   pop(tmp1);
9881 }
9882 
9883 /**
9884  * Helper function for mul_add()
9885  * Multiply the in[] by int k and add to out[] starting at offset offs using
9886  * 128 bit by 32 bit multiply and return the carry in tmp5.
9887  * Only quad int aligned length of in[] is operated on in this function.
9888  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
9889  * This function preserves out, in and k registers.
9890  * len and offset point to the appropriate index in "in" & "out" correspondingly
9891  * tmp5 has the carry.
9892  * other registers are temporary and are modified.
9893  *
9894  */
9895 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
9896   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
9897   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9898 
9899   Label L_first_loop, L_first_loop_exit;
9900 
9901   movl(tmp1, len);
9902   shrl(tmp1, 2);
9903 
9904   bind(L_first_loop);
9905   subl(tmp1, 1);
9906   jccb(Assembler::negative, L_first_loop_exit);
9907 
9908   subl(len, 4);
9909   subl(offset, 4);
9910 
9911   Register op2 = tmp2;
9912   const Register sum = tmp3;
9913   const Register op1 = tmp4;
9914   const Register carry = tmp5;
9915 
9916   if (UseBMI2Instructions) {
9917     op2 = rdxReg;
9918   }
9919 
9920   movq(op1, Address(in, len, Address::times_4,  8));
9921   rorq(op1, 32);
9922   movq(sum, Address(out, offset, Address::times_4,  8));
9923   rorq(sum, 32);
9924   if (UseBMI2Instructions) {
9925     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9926   }
9927   else {
9928     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9929   }
9930   // Store back in big endian from little endian
9931   rorq(sum, 0x20);
9932   movq(Address(out, offset, Address::times_4,  8), sum);
9933 
9934   movq(op1, Address(in, len, Address::times_4,  0));
9935   rorq(op1, 32);
9936   movq(sum, Address(out, offset, Address::times_4,  0));
9937   rorq(sum, 32);
9938   if (UseBMI2Instructions) {
9939     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9940   }
9941   else {
9942     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9943   }
9944   // Store back in big endian from little endian
9945   rorq(sum, 0x20);
9946   movq(Address(out, offset, Address::times_4,  0), sum);
9947 
9948   jmp(L_first_loop);
9949   bind(L_first_loop_exit);
9950 }
9951 
9952 /**
9953  * Code for BigInteger::mulAdd() intrinsic
9954  *
9955  * rdi: out
9956  * rsi: in
9957  * r11: offs (out.length - offset)
9958  * rcx: len
9959  * r8:  k
9960  * r12: tmp1
9961  * r13: tmp2
9962  * r14: tmp3
9963  * r15: tmp4
9964  * rbx: tmp5
9965  * Multiply the in[] by word k and add to out[], return the carry in rax
9966  */
9967 void MacroAssembler::mul_add(Register out, Register in, Register offs,
9968    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
9969    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9970 
9971   Label L_carry, L_last_in, L_done;
9972 
9973 // carry = 0;
9974 // for (int j=len-1; j >= 0; j--) {
9975 //    long product = (in[j] & LONG_MASK) * kLong +
9976 //                   (out[offs] & LONG_MASK) + carry;
9977 //    out[offs--] = (int)product;
9978 //    carry = product >>> 32;
9979 // }
9980 //
9981   push(tmp1);
9982   push(tmp2);
9983   push(tmp3);
9984   push(tmp4);
9985   push(tmp5);
9986 
9987   Register op2 = tmp2;
9988   const Register sum = tmp3;
9989   const Register op1 = tmp4;
9990   const Register carry =  tmp5;
9991 
9992   if (UseBMI2Instructions) {
9993     op2 = rdxReg;
9994     movl(op2, k);
9995   }
9996   else {
9997     movl(op2, k);
9998   }
9999 
10000   xorq(carry, carry);
10001 
10002   //First loop
10003 
10004   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
10005   //The carry is in tmp5
10006   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
10007 
10008   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
10009   decrementl(len);
10010   jccb(Assembler::negative, L_carry);
10011   decrementl(len);
10012   jccb(Assembler::negative, L_last_in);
10013 
10014   movq(op1, Address(in, len, Address::times_4,  0));
10015   rorq(op1, 32);
10016 
10017   subl(offs, 2);
10018   movq(sum, Address(out, offs, Address::times_4,  0));
10019   rorq(sum, 32);
10020 
10021   if (UseBMI2Instructions) {
10022     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
10023   }
10024   else {
10025     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
10026   }
10027 
10028   // Store back in big endian from little endian
10029   rorq(sum, 0x20);
10030   movq(Address(out, offs, Address::times_4,  0), sum);
10031 
10032   testl(len, len);
10033   jccb(Assembler::zero, L_carry);
10034 
10035   //Multiply the last in[] entry, if any
10036   bind(L_last_in);
10037   movl(op1, Address(in, 0));
10038   movl(sum, Address(out, offs, Address::times_4,  -4));
10039 
10040   movl(raxReg, k);
10041   mull(op1); //tmp4 * eax -> edx:eax
10042   addl(sum, carry);
10043   adcl(rdxReg, 0);
10044   addl(sum, raxReg);
10045   adcl(rdxReg, 0);
10046   movl(carry, rdxReg);
10047 
10048   movl(Address(out, offs, Address::times_4,  -4), sum);
10049 
10050   bind(L_carry);
10051   //return tmp5/carry as carry in rax
10052   movl(rax, carry);
10053 
10054   bind(L_done);
10055   pop(tmp5);
10056   pop(tmp4);
10057   pop(tmp3);
10058   pop(tmp2);
10059   pop(tmp1);
10060 }
10061 #endif
10062 
10063 /**
10064  * Emits code to update CRC-32 with a byte value according to constants in table
10065  *
10066  * @param [in,out]crc   Register containing the crc.
10067  * @param [in]val       Register containing the byte to fold into the CRC.
10068  * @param [in]table     Register containing the table of crc constants.
10069  *
10070  * uint32_t crc;
10071  * val = crc_table[(val ^ crc) & 0xFF];
10072  * crc = val ^ (crc >> 8);
10073  *
10074  */
10075 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
10076   xorl(val, crc);
10077   andl(val, 0xFF);
10078   shrl(crc, 8); // unsigned shift
10079   xorl(crc, Address(table, val, Address::times_4, 0));
10080 }
10081 
10082 /**
10083  * Fold 128-bit data chunk
10084  */
10085 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
10086   if (UseAVX > 0) {
10087     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
10088     vpclmulldq(xcrc, xK, xcrc); // [63:0]
10089     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
10090     pxor(xcrc, xtmp);
10091   } else {
10092     movdqa(xtmp, xcrc);
10093     pclmulhdq(xtmp, xK);   // [123:64]
10094     pclmulldq(xcrc, xK);   // [63:0]
10095     pxor(xcrc, xtmp);
10096     movdqu(xtmp, Address(buf, offset));
10097     pxor(xcrc, xtmp);
10098   }
10099 }
10100 
10101 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
10102   if (UseAVX > 0) {
10103     vpclmulhdq(xtmp, xK, xcrc);
10104     vpclmulldq(xcrc, xK, xcrc);
10105     pxor(xcrc, xbuf);
10106     pxor(xcrc, xtmp);
10107   } else {
10108     movdqa(xtmp, xcrc);
10109     pclmulhdq(xtmp, xK);
10110     pclmulldq(xcrc, xK);
10111     pxor(xcrc, xbuf);
10112     pxor(xcrc, xtmp);
10113   }
10114 }
10115 
10116 /**
10117  * 8-bit folds to compute 32-bit CRC
10118  *
10119  * uint64_t xcrc;
10120  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
10121  */
10122 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
10123   movdl(tmp, xcrc);
10124   andl(tmp, 0xFF);
10125   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
10126   psrldq(xcrc, 1); // unsigned shift one byte
10127   pxor(xcrc, xtmp);
10128 }
10129 
10130 /**
10131  * uint32_t crc;
10132  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
10133  */
10134 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
10135   movl(tmp, crc);
10136   andl(tmp, 0xFF);
10137   shrl(crc, 8);
10138   xorl(crc, Address(table, tmp, Address::times_4, 0));
10139 }
10140 
10141 /**
10142  * @param crc   register containing existing CRC (32-bit)
10143  * @param buf   register pointing to input byte buffer (byte*)
10144  * @param len   register containing number of bytes
10145  * @param table register that will contain address of CRC table
10146  * @param tmp   scratch register
10147  */
10148 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
10149   assert_different_registers(crc, buf, len, table, tmp, rax);
10150 
10151   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
10152   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
10153 
10154   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
10155   // context for the registers used, where all instructions below are using 128-bit mode
10156   // On EVEX without VL and BW, these instructions will all be AVX.
10157   if (VM_Version::supports_avx512vlbw()) {
10158     movl(tmp, 0xffff);
10159     kmovwl(k1, tmp);
10160   }
10161 
10162   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
10163   notl(crc); // ~crc
10164   cmpl(len, 16);
10165   jcc(Assembler::less, L_tail);
10166 
10167   // Align buffer to 16 bytes
10168   movl(tmp, buf);
10169   andl(tmp, 0xF);
10170   jccb(Assembler::zero, L_aligned);
10171   subl(tmp,  16);
10172   addl(len, tmp);
10173 
10174   align(4);
10175   BIND(L_align_loop);
10176   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10177   update_byte_crc32(crc, rax, table);
10178   increment(buf);
10179   incrementl(tmp);
10180   jccb(Assembler::less, L_align_loop);
10181 
10182   BIND(L_aligned);
10183   movl(tmp, len); // save
10184   shrl(len, 4);
10185   jcc(Assembler::zero, L_tail_restore);
10186 
10187   // Fold crc into first bytes of vector
10188   movdqa(xmm1, Address(buf, 0));
10189   movdl(rax, xmm1);
10190   xorl(crc, rax);
10191   pinsrd(xmm1, crc, 0);
10192   addptr(buf, 16);
10193   subl(len, 4); // len > 0
10194   jcc(Assembler::less, L_fold_tail);
10195 
10196   movdqa(xmm2, Address(buf,  0));
10197   movdqa(xmm3, Address(buf, 16));
10198   movdqa(xmm4, Address(buf, 32));
10199   addptr(buf, 48);
10200   subl(len, 3);
10201   jcc(Assembler::lessEqual, L_fold_512b);
10202 
10203   // Fold total 512 bits of polynomial on each iteration,
10204   // 128 bits per each of 4 parallel streams.
10205   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
10206 
10207   align(32);
10208   BIND(L_fold_512b_loop);
10209   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10210   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
10211   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
10212   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
10213   addptr(buf, 64);
10214   subl(len, 4);
10215   jcc(Assembler::greater, L_fold_512b_loop);
10216 
10217   // Fold 512 bits to 128 bits.
10218   BIND(L_fold_512b);
10219   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10220   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
10221   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
10222   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
10223 
10224   // Fold the rest of 128 bits data chunks
10225   BIND(L_fold_tail);
10226   addl(len, 3);
10227   jccb(Assembler::lessEqual, L_fold_128b);
10228   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10229 
10230   BIND(L_fold_tail_loop);
10231   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10232   addptr(buf, 16);
10233   decrementl(len);
10234   jccb(Assembler::greater, L_fold_tail_loop);
10235 
10236   // Fold 128 bits in xmm1 down into 32 bits in crc register.
10237   BIND(L_fold_128b);
10238   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
10239   if (UseAVX > 0) {
10240     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
10241     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
10242     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
10243   } else {
10244     movdqa(xmm2, xmm0);
10245     pclmulqdq(xmm2, xmm1, 0x1);
10246     movdqa(xmm3, xmm0);
10247     pand(xmm3, xmm2);
10248     pclmulqdq(xmm0, xmm3, 0x1);
10249   }
10250   psrldq(xmm1, 8);
10251   psrldq(xmm2, 4);
10252   pxor(xmm0, xmm1);
10253   pxor(xmm0, xmm2);
10254 
10255   // 8 8-bit folds to compute 32-bit CRC.
10256   for (int j = 0; j < 4; j++) {
10257     fold_8bit_crc32(xmm0, table, xmm1, rax);
10258   }
10259   movdl(crc, xmm0); // mov 32 bits to general register
10260   for (int j = 0; j < 4; j++) {
10261     fold_8bit_crc32(crc, table, rax);
10262   }
10263 
10264   BIND(L_tail_restore);
10265   movl(len, tmp); // restore
10266   BIND(L_tail);
10267   andl(len, 0xf);
10268   jccb(Assembler::zero, L_exit);
10269 
10270   // Fold the rest of bytes
10271   align(4);
10272   BIND(L_tail_loop);
10273   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10274   update_byte_crc32(crc, rax, table);
10275   increment(buf);
10276   decrementl(len);
10277   jccb(Assembler::greater, L_tail_loop);
10278 
10279   BIND(L_exit);
10280   notl(crc); // ~c
10281 }
10282 
10283 #ifdef _LP64
10284 // S. Gueron / Information Processing Letters 112 (2012) 184
10285 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
10286 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
10287 // Output: the 64-bit carry-less product of B * CONST
10288 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
10289                                      Register tmp1, Register tmp2, Register tmp3) {
10290   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10291   if (n > 0) {
10292     addq(tmp3, n * 256 * 8);
10293   }
10294   //    Q1 = TABLEExt[n][B & 0xFF];
10295   movl(tmp1, in);
10296   andl(tmp1, 0x000000FF);
10297   shll(tmp1, 3);
10298   addq(tmp1, tmp3);
10299   movq(tmp1, Address(tmp1, 0));
10300 
10301   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10302   movl(tmp2, in);
10303   shrl(tmp2, 8);
10304   andl(tmp2, 0x000000FF);
10305   shll(tmp2, 3);
10306   addq(tmp2, tmp3);
10307   movq(tmp2, Address(tmp2, 0));
10308 
10309   shlq(tmp2, 8);
10310   xorq(tmp1, tmp2);
10311 
10312   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10313   movl(tmp2, in);
10314   shrl(tmp2, 16);
10315   andl(tmp2, 0x000000FF);
10316   shll(tmp2, 3);
10317   addq(tmp2, tmp3);
10318   movq(tmp2, Address(tmp2, 0));
10319 
10320   shlq(tmp2, 16);
10321   xorq(tmp1, tmp2);
10322 
10323   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10324   shrl(in, 24);
10325   andl(in, 0x000000FF);
10326   shll(in, 3);
10327   addq(in, tmp3);
10328   movq(in, Address(in, 0));
10329 
10330   shlq(in, 24);
10331   xorq(in, tmp1);
10332   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10333 }
10334 
10335 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10336                                       Register in_out,
10337                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10338                                       XMMRegister w_xtmp2,
10339                                       Register tmp1,
10340                                       Register n_tmp2, Register n_tmp3) {
10341   if (is_pclmulqdq_supported) {
10342     movdl(w_xtmp1, in_out); // modified blindly
10343 
10344     movl(tmp1, const_or_pre_comp_const_index);
10345     movdl(w_xtmp2, tmp1);
10346     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10347 
10348     movdq(in_out, w_xtmp1);
10349   } else {
10350     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
10351   }
10352 }
10353 
10354 // Recombination Alternative 2: No bit-reflections
10355 // T1 = (CRC_A * U1) << 1
10356 // T2 = (CRC_B * U2) << 1
10357 // C1 = T1 >> 32
10358 // C2 = T2 >> 32
10359 // T1 = T1 & 0xFFFFFFFF
10360 // T2 = T2 & 0xFFFFFFFF
10361 // T1 = CRC32(0, T1)
10362 // T2 = CRC32(0, T2)
10363 // C1 = C1 ^ T1
10364 // C2 = C2 ^ T2
10365 // CRC = C1 ^ C2 ^ CRC_C
10366 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10367                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10368                                      Register tmp1, Register tmp2,
10369                                      Register n_tmp3) {
10370   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10371   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10372   shlq(in_out, 1);
10373   movl(tmp1, in_out);
10374   shrq(in_out, 32);
10375   xorl(tmp2, tmp2);
10376   crc32(tmp2, tmp1, 4);
10377   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
10378   shlq(in1, 1);
10379   movl(tmp1, in1);
10380   shrq(in1, 32);
10381   xorl(tmp2, tmp2);
10382   crc32(tmp2, tmp1, 4);
10383   xorl(in1, tmp2);
10384   xorl(in_out, in1);
10385   xorl(in_out, in2);
10386 }
10387 
10388 // Set N to predefined value
10389 // Subtract from a lenght of a buffer
10390 // execute in a loop:
10391 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
10392 // for i = 1 to N do
10393 //  CRC_A = CRC32(CRC_A, A[i])
10394 //  CRC_B = CRC32(CRC_B, B[i])
10395 //  CRC_C = CRC32(CRC_C, C[i])
10396 // end for
10397 // Recombine
10398 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10399                                        Register in_out1, Register in_out2, Register in_out3,
10400                                        Register tmp1, Register tmp2, Register tmp3,
10401                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10402                                        Register tmp4, Register tmp5,
10403                                        Register n_tmp6) {
10404   Label L_processPartitions;
10405   Label L_processPartition;
10406   Label L_exit;
10407 
10408   bind(L_processPartitions);
10409   cmpl(in_out1, 3 * size);
10410   jcc(Assembler::less, L_exit);
10411     xorl(tmp1, tmp1);
10412     xorl(tmp2, tmp2);
10413     movq(tmp3, in_out2);
10414     addq(tmp3, size);
10415 
10416     bind(L_processPartition);
10417       crc32(in_out3, Address(in_out2, 0), 8);
10418       crc32(tmp1, Address(in_out2, size), 8);
10419       crc32(tmp2, Address(in_out2, size * 2), 8);
10420       addq(in_out2, 8);
10421       cmpq(in_out2, tmp3);
10422       jcc(Assembler::less, L_processPartition);
10423     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10424             w_xtmp1, w_xtmp2, w_xtmp3,
10425             tmp4, tmp5,
10426             n_tmp6);
10427     addq(in_out2, 2 * size);
10428     subl(in_out1, 3 * size);
10429     jmp(L_processPartitions);
10430 
10431   bind(L_exit);
10432 }
10433 #else
10434 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
10435                                      Register tmp1, Register tmp2, Register tmp3,
10436                                      XMMRegister xtmp1, XMMRegister xtmp2) {
10437   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10438   if (n > 0) {
10439     addl(tmp3, n * 256 * 8);
10440   }
10441   //    Q1 = TABLEExt[n][B & 0xFF];
10442   movl(tmp1, in_out);
10443   andl(tmp1, 0x000000FF);
10444   shll(tmp1, 3);
10445   addl(tmp1, tmp3);
10446   movq(xtmp1, Address(tmp1, 0));
10447 
10448   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10449   movl(tmp2, in_out);
10450   shrl(tmp2, 8);
10451   andl(tmp2, 0x000000FF);
10452   shll(tmp2, 3);
10453   addl(tmp2, tmp3);
10454   movq(xtmp2, Address(tmp2, 0));
10455 
10456   psllq(xtmp2, 8);
10457   pxor(xtmp1, xtmp2);
10458 
10459   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10460   movl(tmp2, in_out);
10461   shrl(tmp2, 16);
10462   andl(tmp2, 0x000000FF);
10463   shll(tmp2, 3);
10464   addl(tmp2, tmp3);
10465   movq(xtmp2, Address(tmp2, 0));
10466 
10467   psllq(xtmp2, 16);
10468   pxor(xtmp1, xtmp2);
10469 
10470   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10471   shrl(in_out, 24);
10472   andl(in_out, 0x000000FF);
10473   shll(in_out, 3);
10474   addl(in_out, tmp3);
10475   movq(xtmp2, Address(in_out, 0));
10476 
10477   psllq(xtmp2, 24);
10478   pxor(xtmp1, xtmp2); // Result in CXMM
10479   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10480 }
10481 
10482 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10483                                       Register in_out,
10484                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10485                                       XMMRegister w_xtmp2,
10486                                       Register tmp1,
10487                                       Register n_tmp2, Register n_tmp3) {
10488   if (is_pclmulqdq_supported) {
10489     movdl(w_xtmp1, in_out);
10490 
10491     movl(tmp1, const_or_pre_comp_const_index);
10492     movdl(w_xtmp2, tmp1);
10493     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10494     // Keep result in XMM since GPR is 32 bit in length
10495   } else {
10496     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
10497   }
10498 }
10499 
10500 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10501                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10502                                      Register tmp1, Register tmp2,
10503                                      Register n_tmp3) {
10504   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10505   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10506 
10507   psllq(w_xtmp1, 1);
10508   movdl(tmp1, w_xtmp1);
10509   psrlq(w_xtmp1, 32);
10510   movdl(in_out, w_xtmp1);
10511 
10512   xorl(tmp2, tmp2);
10513   crc32(tmp2, tmp1, 4);
10514   xorl(in_out, tmp2);
10515 
10516   psllq(w_xtmp2, 1);
10517   movdl(tmp1, w_xtmp2);
10518   psrlq(w_xtmp2, 32);
10519   movdl(in1, w_xtmp2);
10520 
10521   xorl(tmp2, tmp2);
10522   crc32(tmp2, tmp1, 4);
10523   xorl(in1, tmp2);
10524   xorl(in_out, in1);
10525   xorl(in_out, in2);
10526 }
10527 
10528 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10529                                        Register in_out1, Register in_out2, Register in_out3,
10530                                        Register tmp1, Register tmp2, Register tmp3,
10531                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10532                                        Register tmp4, Register tmp5,
10533                                        Register n_tmp6) {
10534   Label L_processPartitions;
10535   Label L_processPartition;
10536   Label L_exit;
10537 
10538   bind(L_processPartitions);
10539   cmpl(in_out1, 3 * size);
10540   jcc(Assembler::less, L_exit);
10541     xorl(tmp1, tmp1);
10542     xorl(tmp2, tmp2);
10543     movl(tmp3, in_out2);
10544     addl(tmp3, size);
10545 
10546     bind(L_processPartition);
10547       crc32(in_out3, Address(in_out2, 0), 4);
10548       crc32(tmp1, Address(in_out2, size), 4);
10549       crc32(tmp2, Address(in_out2, size*2), 4);
10550       crc32(in_out3, Address(in_out2, 0+4), 4);
10551       crc32(tmp1, Address(in_out2, size+4), 4);
10552       crc32(tmp2, Address(in_out2, size*2+4), 4);
10553       addl(in_out2, 8);
10554       cmpl(in_out2, tmp3);
10555       jcc(Assembler::less, L_processPartition);
10556 
10557         push(tmp3);
10558         push(in_out1);
10559         push(in_out2);
10560         tmp4 = tmp3;
10561         tmp5 = in_out1;
10562         n_tmp6 = in_out2;
10563 
10564       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10565             w_xtmp1, w_xtmp2, w_xtmp3,
10566             tmp4, tmp5,
10567             n_tmp6);
10568 
10569         pop(in_out2);
10570         pop(in_out1);
10571         pop(tmp3);
10572 
10573     addl(in_out2, 2 * size);
10574     subl(in_out1, 3 * size);
10575     jmp(L_processPartitions);
10576 
10577   bind(L_exit);
10578 }
10579 #endif //LP64
10580 
10581 #ifdef _LP64
10582 // Algorithm 2: Pipelined usage of the CRC32 instruction.
10583 // Input: A buffer I of L bytes.
10584 // Output: the CRC32C value of the buffer.
10585 // Notations:
10586 // Write L = 24N + r, with N = floor (L/24).
10587 // r = L mod 24 (0 <= r < 24).
10588 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
10589 // N quadwords, and R consists of r bytes.
10590 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
10591 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
10592 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
10593 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
10594 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10595                                           Register tmp1, Register tmp2, Register tmp3,
10596                                           Register tmp4, Register tmp5, Register tmp6,
10597                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10598                                           bool is_pclmulqdq_supported) {
10599   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10600   Label L_wordByWord;
10601   Label L_byteByByteProlog;
10602   Label L_byteByByte;
10603   Label L_exit;
10604 
10605   if (is_pclmulqdq_supported ) {
10606     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10607     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
10608 
10609     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10610     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10611 
10612     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10613     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10614     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
10615   } else {
10616     const_or_pre_comp_const_index[0] = 1;
10617     const_or_pre_comp_const_index[1] = 0;
10618 
10619     const_or_pre_comp_const_index[2] = 3;
10620     const_or_pre_comp_const_index[3] = 2;
10621 
10622     const_or_pre_comp_const_index[4] = 5;
10623     const_or_pre_comp_const_index[5] = 4;
10624    }
10625   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10626                     in2, in1, in_out,
10627                     tmp1, tmp2, tmp3,
10628                     w_xtmp1, w_xtmp2, w_xtmp3,
10629                     tmp4, tmp5,
10630                     tmp6);
10631   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10632                     in2, in1, in_out,
10633                     tmp1, tmp2, tmp3,
10634                     w_xtmp1, w_xtmp2, w_xtmp3,
10635                     tmp4, tmp5,
10636                     tmp6);
10637   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10638                     in2, in1, in_out,
10639                     tmp1, tmp2, tmp3,
10640                     w_xtmp1, w_xtmp2, w_xtmp3,
10641                     tmp4, tmp5,
10642                     tmp6);
10643   movl(tmp1, in2);
10644   andl(tmp1, 0x00000007);
10645   negl(tmp1);
10646   addl(tmp1, in2);
10647   addq(tmp1, in1);
10648 
10649   BIND(L_wordByWord);
10650   cmpq(in1, tmp1);
10651   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10652     crc32(in_out, Address(in1, 0), 4);
10653     addq(in1, 4);
10654     jmp(L_wordByWord);
10655 
10656   BIND(L_byteByByteProlog);
10657   andl(in2, 0x00000007);
10658   movl(tmp2, 1);
10659 
10660   BIND(L_byteByByte);
10661   cmpl(tmp2, in2);
10662   jccb(Assembler::greater, L_exit);
10663     crc32(in_out, Address(in1, 0), 1);
10664     incq(in1);
10665     incl(tmp2);
10666     jmp(L_byteByByte);
10667 
10668   BIND(L_exit);
10669 }
10670 #else
10671 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10672                                           Register tmp1, Register  tmp2, Register tmp3,
10673                                           Register tmp4, Register  tmp5, Register tmp6,
10674                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10675                                           bool is_pclmulqdq_supported) {
10676   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10677   Label L_wordByWord;
10678   Label L_byteByByteProlog;
10679   Label L_byteByByte;
10680   Label L_exit;
10681 
10682   if (is_pclmulqdq_supported) {
10683     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10684     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
10685 
10686     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10687     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10688 
10689     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10690     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10691   } else {
10692     const_or_pre_comp_const_index[0] = 1;
10693     const_or_pre_comp_const_index[1] = 0;
10694 
10695     const_or_pre_comp_const_index[2] = 3;
10696     const_or_pre_comp_const_index[3] = 2;
10697 
10698     const_or_pre_comp_const_index[4] = 5;
10699     const_or_pre_comp_const_index[5] = 4;
10700   }
10701   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10702                     in2, in1, in_out,
10703                     tmp1, tmp2, tmp3,
10704                     w_xtmp1, w_xtmp2, w_xtmp3,
10705                     tmp4, tmp5,
10706                     tmp6);
10707   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10708                     in2, in1, in_out,
10709                     tmp1, tmp2, tmp3,
10710                     w_xtmp1, w_xtmp2, w_xtmp3,
10711                     tmp4, tmp5,
10712                     tmp6);
10713   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10714                     in2, in1, in_out,
10715                     tmp1, tmp2, tmp3,
10716                     w_xtmp1, w_xtmp2, w_xtmp3,
10717                     tmp4, tmp5,
10718                     tmp6);
10719   movl(tmp1, in2);
10720   andl(tmp1, 0x00000007);
10721   negl(tmp1);
10722   addl(tmp1, in2);
10723   addl(tmp1, in1);
10724 
10725   BIND(L_wordByWord);
10726   cmpl(in1, tmp1);
10727   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10728     crc32(in_out, Address(in1,0), 4);
10729     addl(in1, 4);
10730     jmp(L_wordByWord);
10731 
10732   BIND(L_byteByByteProlog);
10733   andl(in2, 0x00000007);
10734   movl(tmp2, 1);
10735 
10736   BIND(L_byteByByte);
10737   cmpl(tmp2, in2);
10738   jccb(Assembler::greater, L_exit);
10739     movb(tmp1, Address(in1, 0));
10740     crc32(in_out, tmp1, 1);
10741     incl(in1);
10742     incl(tmp2);
10743     jmp(L_byteByByte);
10744 
10745   BIND(L_exit);
10746 }
10747 #endif // LP64
10748 #undef BIND
10749 #undef BLOCK_COMMENT
10750 
10751 
10752 // Compress char[] array to byte[].
10753 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
10754                                          XMMRegister tmp1Reg, XMMRegister tmp2Reg,
10755                                          XMMRegister tmp3Reg, XMMRegister tmp4Reg,
10756                                          Register tmp5, Register result) {
10757   Label copy_chars_loop, return_length, return_zero, done;
10758 
10759   // rsi: src
10760   // rdi: dst
10761   // rdx: len
10762   // rcx: tmp5
10763   // rax: result
10764 
10765   // rsi holds start addr of source char[] to be compressed
10766   // rdi holds start addr of destination byte[]
10767   // rdx holds length
10768 
10769   assert(len != result, "");
10770 
10771   // save length for return
10772   push(len);
10773 
10774   if (UseSSE42Intrinsics) {
10775     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
10776     Label copy_32_loop, copy_16, copy_tail;
10777 
10778     movl(result, len);
10779     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
10780 
10781     // vectored compression
10782     andl(len, 0xfffffff0);    // vector count (in chars)
10783     andl(result, 0x0000000f);    // tail count (in chars)
10784     testl(len, len);
10785     jccb(Assembler::zero, copy_16);
10786 
10787     // compress 16 chars per iter
10788     movdl(tmp1Reg, tmp5);
10789     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10790     pxor(tmp4Reg, tmp4Reg);
10791 
10792     lea(src, Address(src, len, Address::times_2));
10793     lea(dst, Address(dst, len, Address::times_1));
10794     negptr(len);
10795 
10796     bind(copy_32_loop);
10797     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
10798     por(tmp4Reg, tmp2Reg);
10799     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
10800     por(tmp4Reg, tmp3Reg);
10801     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
10802     jcc(Assembler::notZero, return_zero);
10803     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
10804     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
10805     addptr(len, 16);
10806     jcc(Assembler::notZero, copy_32_loop);
10807 
10808     // compress next vector of 8 chars (if any)
10809     bind(copy_16);
10810     movl(len, result);
10811     andl(len, 0xfffffff8);    // vector count (in chars)
10812     andl(result, 0x00000007);    // tail count (in chars)
10813     testl(len, len);
10814     jccb(Assembler::zero, copy_tail);
10815 
10816     movdl(tmp1Reg, tmp5);
10817     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10818     pxor(tmp3Reg, tmp3Reg);
10819 
10820     movdqu(tmp2Reg, Address(src, 0));
10821     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
10822     jccb(Assembler::notZero, return_zero);
10823     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
10824     movq(Address(dst, 0), tmp2Reg);
10825     addptr(src, 16);
10826     addptr(dst, 8);
10827 
10828     bind(copy_tail);
10829     movl(len, result);
10830   }
10831   // compress 1 char per iter
10832   testl(len, len);
10833   jccb(Assembler::zero, return_length);
10834   lea(src, Address(src, len, Address::times_2));
10835   lea(dst, Address(dst, len, Address::times_1));
10836   negptr(len);
10837 
10838   bind(copy_chars_loop);
10839   load_unsigned_short(result, Address(src, len, Address::times_2));
10840   testl(result, 0xff00);      // check if Unicode char
10841   jccb(Assembler::notZero, return_zero);
10842   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
10843   increment(len);
10844   jcc(Assembler::notZero, copy_chars_loop);
10845 
10846   // if compression succeeded, return length
10847   bind(return_length);
10848   pop(result);
10849   jmpb(done);
10850 
10851   // if compression failed, return 0
10852   bind(return_zero);
10853   xorl(result, result);
10854   addptr(rsp, wordSize);
10855 
10856   bind(done);
10857 }
10858 
10859 // Inflate byte[] array to char[].
10860 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
10861                                         XMMRegister tmp1, Register tmp2) {
10862   Label copy_chars_loop, done;
10863 
10864   // rsi: src
10865   // rdi: dst
10866   // rdx: len
10867   // rcx: tmp2
10868 
10869   // rsi holds start addr of source byte[] to be inflated
10870   // rdi holds start addr of destination char[]
10871   // rdx holds length
10872   assert_different_registers(src, dst, len, tmp2);
10873 
10874   if (UseSSE42Intrinsics) {
10875     assert(UseSSE >= 4, "SSE4 must be enabled for SSE4.2 intrinsics to be available");
10876     Label copy_8_loop, copy_bytes, copy_tail;
10877 
10878     movl(tmp2, len);
10879     andl(tmp2, 0x00000007);   // tail count (in chars)
10880     andl(len, 0xfffffff8);    // vector count (in chars)
10881     jccb(Assembler::zero, copy_tail);
10882 
10883     // vectored inflation
10884     lea(src, Address(src, len, Address::times_1));
10885     lea(dst, Address(dst, len, Address::times_2));
10886     negptr(len);
10887 
10888     // inflate 8 chars per iter
10889     bind(copy_8_loop);
10890     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
10891     movdqu(Address(dst, len, Address::times_2), tmp1);
10892     addptr(len, 8);
10893     jcc(Assembler::notZero, copy_8_loop);
10894 
10895     bind(copy_tail);
10896     movl(len, tmp2);
10897 
10898     cmpl(len, 4);
10899     jccb(Assembler::less, copy_bytes);
10900 
10901     movdl(tmp1, Address(src, 0));  // load 4 byte chars
10902     pmovzxbw(tmp1, tmp1);
10903     movq(Address(dst, 0), tmp1);
10904     subptr(len, 4);
10905     addptr(src, 4);
10906     addptr(dst, 8);
10907 
10908     bind(copy_bytes);
10909   }
10910   testl(len, len);
10911   jccb(Assembler::zero, done);
10912   lea(src, Address(src, len, Address::times_1));
10913   lea(dst, Address(dst, len, Address::times_2));
10914   negptr(len);
10915 
10916   // inflate 1 char per iter
10917   bind(copy_chars_loop);
10918   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
10919   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
10920   increment(len);
10921   jcc(Assembler::notZero, copy_chars_loop);
10922 
10923   bind(done);
10924 }
10925 
10926 
10927 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
10928   switch (cond) {
10929     // Note some conditions are synonyms for others
10930     case Assembler::zero:         return Assembler::notZero;
10931     case Assembler::notZero:      return Assembler::zero;
10932     case Assembler::less:         return Assembler::greaterEqual;
10933     case Assembler::lessEqual:    return Assembler::greater;
10934     case Assembler::greater:      return Assembler::lessEqual;
10935     case Assembler::greaterEqual: return Assembler::less;
10936     case Assembler::below:        return Assembler::aboveEqual;
10937     case Assembler::belowEqual:   return Assembler::above;
10938     case Assembler::above:        return Assembler::belowEqual;
10939     case Assembler::aboveEqual:   return Assembler::below;
10940     case Assembler::overflow:     return Assembler::noOverflow;
10941     case Assembler::noOverflow:   return Assembler::overflow;
10942     case Assembler::negative:     return Assembler::positive;
10943     case Assembler::positive:     return Assembler::negative;
10944     case Assembler::parity:       return Assembler::noParity;
10945     case Assembler::noParity:     return Assembler::parity;
10946   }
10947   ShouldNotReachHere(); return Assembler::overflow;
10948 }
10949 
10950 SkipIfEqual::SkipIfEqual(
10951     MacroAssembler* masm, const bool* flag_addr, bool value) {
10952   _masm = masm;
10953   _masm->cmp8(ExternalAddress((address)flag_addr), value);
10954   _masm->jcc(Assembler::equal, _label);
10955 }
10956 
10957 SkipIfEqual::~SkipIfEqual() {
10958   _masm->bind(_label);
10959 }
10960 
10961 // 32-bit Windows has its own fast-path implementation
10962 // of get_thread
10963 #if !defined(WIN32) || defined(_LP64)
10964 
10965 // This is simply a call to Thread::current()
10966 void MacroAssembler::get_thread(Register thread) {
10967   if (thread != rax) {
10968     push(rax);
10969   }
10970   LP64_ONLY(push(rdi);)
10971   LP64_ONLY(push(rsi);)
10972   push(rdx);
10973   push(rcx);
10974 #ifdef _LP64
10975   push(r8);
10976   push(r9);
10977   push(r10);
10978   push(r11);
10979 #endif
10980 
10981   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
10982 
10983 #ifdef _LP64
10984   pop(r11);
10985   pop(r10);
10986   pop(r9);
10987   pop(r8);
10988 #endif
10989   pop(rcx);
10990   pop(rdx);
10991   LP64_ONLY(pop(rsi);)
10992   LP64_ONLY(pop(rdi);)
10993   if (thread != rax) {
10994     mov(thread, rax);
10995     pop(rax);
10996   }
10997 }
10998 
10999 #endif