1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/loopnode.hpp"
  31 #include "opto/machnode.hpp"
  32 #include "opto/matcher.hpp"
  33 #include "opto/node.hpp"
  34 #include "opto/opcodes.hpp"
  35 #include "opto/regmask.hpp"
  36 #include "opto/type.hpp"
  37 #include "utilities/copy.hpp"
  38 
  39 class RegMask;
  40 // #include "phase.hpp"
  41 class PhaseTransform;
  42 class PhaseGVN;
  43 
  44 // Arena we are currently building Nodes in
  45 const uint Node::NotAMachineReg = 0xffff0000;
  46 
  47 #ifndef PRODUCT
  48 extern int nodes_created;
  49 #endif
  50 
  51 #ifdef ASSERT
  52 
  53 //-------------------------- construct_node------------------------------------
  54 // Set a breakpoint here to identify where a particular node index is built.
  55 void Node::verify_construction() {
  56   _debug_orig = NULL;
  57   int old_debug_idx = Compile::debug_idx();
  58   int new_debug_idx = old_debug_idx+1;
  59   if (new_debug_idx > 0) {
  60     // Arrange that the lowest five decimal digits of _debug_idx
  61     // will repeat those of _idx. In case this is somehow pathological,
  62     // we continue to assign negative numbers (!) consecutively.
  63     const int mod = 100000;
  64     int bump = (int)(_idx - new_debug_idx) % mod;
  65     if (bump < 0)  bump += mod;
  66     assert(bump >= 0 && bump < mod, "");
  67     new_debug_idx += bump;
  68   }
  69   Compile::set_debug_idx(new_debug_idx);
  70   set_debug_idx( new_debug_idx );
  71   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  72   assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
  73   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  74     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  75     BREAKPOINT;
  76   }
  77 #if OPTO_DU_ITERATOR_ASSERT
  78   _last_del = NULL;
  79   _del_tick = 0;
  80 #endif
  81   _hash_lock = 0;
  82 }
  83 
  84 
  85 // #ifdef ASSERT ...
  86 
  87 #if OPTO_DU_ITERATOR_ASSERT
  88 void DUIterator_Common::sample(const Node* node) {
  89   _vdui     = VerifyDUIterators;
  90   _node     = node;
  91   _outcnt   = node->_outcnt;
  92   _del_tick = node->_del_tick;
  93   _last     = NULL;
  94 }
  95 
  96 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
  97   assert(_node     == node, "consistent iterator source");
  98   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
  99 }
 100 
 101 void DUIterator_Common::verify_resync() {
 102   // Ensure that the loop body has just deleted the last guy produced.
 103   const Node* node = _node;
 104   // Ensure that at least one copy of the last-seen edge was deleted.
 105   // Note:  It is OK to delete multiple copies of the last-seen edge.
 106   // Unfortunately, we have no way to verify that all the deletions delete
 107   // that same edge.  On this point we must use the Honor System.
 108   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 109   assert(node->_last_del == _last, "must have deleted the edge just produced");
 110   // We liked this deletion, so accept the resulting outcnt and tick.
 111   _outcnt   = node->_outcnt;
 112   _del_tick = node->_del_tick;
 113 }
 114 
 115 void DUIterator_Common::reset(const DUIterator_Common& that) {
 116   if (this == &that)  return;  // ignore assignment to self
 117   if (!_vdui) {
 118     // We need to initialize everything, overwriting garbage values.
 119     _last = that._last;
 120     _vdui = that._vdui;
 121   }
 122   // Note:  It is legal (though odd) for an iterator over some node x
 123   // to be reassigned to iterate over another node y.  Some doubly-nested
 124   // progress loops depend on being able to do this.
 125   const Node* node = that._node;
 126   // Re-initialize everything, except _last.
 127   _node     = node;
 128   _outcnt   = node->_outcnt;
 129   _del_tick = node->_del_tick;
 130 }
 131 
 132 void DUIterator::sample(const Node* node) {
 133   DUIterator_Common::sample(node);      // Initialize the assertion data.
 134   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 135 }
 136 
 137 void DUIterator::verify(const Node* node, bool at_end_ok) {
 138   DUIterator_Common::verify(node, at_end_ok);
 139   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 140 }
 141 
 142 void DUIterator::verify_increment() {
 143   if (_refresh_tick & 1) {
 144     // We have refreshed the index during this loop.
 145     // Fix up _idx to meet asserts.
 146     if (_idx > _outcnt)  _idx = _outcnt;
 147   }
 148   verify(_node, true);
 149 }
 150 
 151 void DUIterator::verify_resync() {
 152   // Note:  We do not assert on _outcnt, because insertions are OK here.
 153   DUIterator_Common::verify_resync();
 154   // Make sure we are still in sync, possibly with no more out-edges:
 155   verify(_node, true);
 156 }
 157 
 158 void DUIterator::reset(const DUIterator& that) {
 159   if (this == &that)  return;  // self assignment is always a no-op
 160   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 161   assert(that._idx          == 0, "assign only the result of Node::outs()");
 162   assert(_idx               == that._idx, "already assigned _idx");
 163   if (!_vdui) {
 164     // We need to initialize everything, overwriting garbage values.
 165     sample(that._node);
 166   } else {
 167     DUIterator_Common::reset(that);
 168     if (_refresh_tick & 1) {
 169       _refresh_tick++;                  // Clear the "was refreshed" flag.
 170     }
 171     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 172   }
 173 }
 174 
 175 void DUIterator::refresh() {
 176   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 177   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 178 }
 179 
 180 void DUIterator::verify_finish() {
 181   // If the loop has killed the node, do not require it to re-run.
 182   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 183   // If this assert triggers, it means that a loop used refresh_out_pos
 184   // to re-synch an iteration index, but the loop did not correctly
 185   // re-run itself, using a "while (progress)" construct.
 186   // This iterator enforces the rule that you must keep trying the loop
 187   // until it "runs clean" without any need for refreshing.
 188   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 189 }
 190 
 191 
 192 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 193   DUIterator_Common::verify(node, at_end_ok);
 194   Node** out    = node->_out;
 195   uint   cnt    = node->_outcnt;
 196   assert(cnt == _outcnt, "no insertions allowed");
 197   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 198   // This last check is carefully designed to work for NO_OUT_ARRAY.
 199 }
 200 
 201 void DUIterator_Fast::verify_limit() {
 202   const Node* node = _node;
 203   verify(node, true);
 204   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 205 }
 206 
 207 void DUIterator_Fast::verify_resync() {
 208   const Node* node = _node;
 209   if (_outp == node->_out + _outcnt) {
 210     // Note that the limit imax, not the pointer i, gets updated with the
 211     // exact count of deletions.  (For the pointer it's always "--i".)
 212     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 213     // This is a limit pointer, with a name like "imax".
 214     // Fudge the _last field so that the common assert will be happy.
 215     _last = (Node*) node->_last_del;
 216     DUIterator_Common::verify_resync();
 217   } else {
 218     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 219     // A normal internal pointer.
 220     DUIterator_Common::verify_resync();
 221     // Make sure we are still in sync, possibly with no more out-edges:
 222     verify(node, true);
 223   }
 224 }
 225 
 226 void DUIterator_Fast::verify_relimit(uint n) {
 227   const Node* node = _node;
 228   assert((int)n > 0, "use imax -= n only with a positive count");
 229   // This must be a limit pointer, with a name like "imax".
 230   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 231   // The reported number of deletions must match what the node saw.
 232   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 233   // Fudge the _last field so that the common assert will be happy.
 234   _last = (Node*) node->_last_del;
 235   DUIterator_Common::verify_resync();
 236 }
 237 
 238 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 239   assert(_outp              == that._outp, "already assigned _outp");
 240   DUIterator_Common::reset(that);
 241 }
 242 
 243 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 244   // at_end_ok means the _outp is allowed to underflow by 1
 245   _outp += at_end_ok;
 246   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 247   _outp -= at_end_ok;
 248   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 249 }
 250 
 251 void DUIterator_Last::verify_limit() {
 252   // Do not require the limit address to be resynched.
 253   //verify(node, true);
 254   assert(_outp == _node->_out, "limit still correct");
 255 }
 256 
 257 void DUIterator_Last::verify_step(uint num_edges) {
 258   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 259   _outcnt   -= num_edges;
 260   _del_tick += num_edges;
 261   // Make sure we are still in sync, possibly with no more out-edges:
 262   const Node* node = _node;
 263   verify(node, true);
 264   assert(node->_last_del == _last, "must have deleted the edge just produced");
 265 }
 266 
 267 #endif //OPTO_DU_ITERATOR_ASSERT
 268 
 269 
 270 #endif //ASSERT
 271 
 272 
 273 // This constant used to initialize _out may be any non-null value.
 274 // The value NULL is reserved for the top node only.
 275 #define NO_OUT_ARRAY ((Node**)-1)
 276 
 277 // This funny expression handshakes with Node::operator new
 278 // to pull Compile::current out of the new node's _out field,
 279 // and then calls a subroutine which manages most field
 280 // initializations.  The only one which is tricky is the
 281 // _idx field, which is const, and so must be initialized
 282 // by a return value, not an assignment.
 283 //
 284 // (Aren't you thankful that Java finals don't require so many tricks?)
 285 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
 286 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
 287 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 288 #endif
 289 
 290 // Out-of-line code from node constructors.
 291 // Executed only when extra debug info. is being passed around.
 292 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 293   C->set_node_notes_at(idx, nn);
 294 }
 295 
 296 // Shared initialization code.
 297 inline int Node::Init(int req, Compile* C) {
 298   assert(Compile::current() == C, "must use operator new(Compile*)");
 299   int idx = C->next_unique();
 300 
 301   // Allocate memory for the necessary number of edges.
 302   if (req > 0) {
 303     // Allocate space for _in array to have double alignment.
 304     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
 305 #ifdef ASSERT
 306     _in[req-1] = this; // magic cookie for assertion check
 307 #endif
 308   }
 309   // If there are default notes floating around, capture them:
 310   Node_Notes* nn = C->default_node_notes();
 311   if (nn != NULL)  init_node_notes(C, idx, nn);
 312 
 313   // Note:  At this point, C is dead,
 314   // and we begin to initialize the new Node.
 315 
 316   _cnt = _max = req;
 317   _outcnt = _outmax = 0;
 318   _class_id = Class_Node;
 319   _flags = 0;
 320   _out = NO_OUT_ARRAY;
 321   return idx;
 322 }
 323 
 324 //------------------------------Node-------------------------------------------
 325 // Create a Node, with a given number of required edges.
 326 Node::Node(uint req)
 327   : _idx(IDX_INIT(req))
 328 #ifdef ASSERT
 329   , _parse_idx(_idx)
 330 #endif
 331 {
 332   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
 333   debug_only( verify_construction() );
 334   NOT_PRODUCT(nodes_created++);
 335   if (req == 0) {
 336     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
 337     _in = NULL;
 338   } else {
 339     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
 340     Node** to = _in;
 341     for(uint i = 0; i < req; i++) {
 342       to[i] = NULL;
 343     }
 344   }
 345 }
 346 
 347 //------------------------------Node-------------------------------------------
 348 Node::Node(Node *n0)
 349   : _idx(IDX_INIT(1))
 350 #ifdef ASSERT
 351   , _parse_idx(_idx)
 352 #endif
 353 {
 354   debug_only( verify_construction() );
 355   NOT_PRODUCT(nodes_created++);
 356   // Assert we allocated space for input array already
 357   assert( _in[0] == this, "Must pass arg count to 'new'" );
 358   assert( is_not_dead(n0), "can not use dead node");
 359   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 360 }
 361 
 362 //------------------------------Node-------------------------------------------
 363 Node::Node(Node *n0, Node *n1)
 364   : _idx(IDX_INIT(2))
 365 #ifdef ASSERT
 366   , _parse_idx(_idx)
 367 #endif
 368 {
 369   debug_only( verify_construction() );
 370   NOT_PRODUCT(nodes_created++);
 371   // Assert we allocated space for input array already
 372   assert( _in[1] == this, "Must pass arg count to 'new'" );
 373   assert( is_not_dead(n0), "can not use dead node");
 374   assert( is_not_dead(n1), "can not use dead node");
 375   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 376   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 377 }
 378 
 379 //------------------------------Node-------------------------------------------
 380 Node::Node(Node *n0, Node *n1, Node *n2)
 381   : _idx(IDX_INIT(3))
 382 #ifdef ASSERT
 383   , _parse_idx(_idx)
 384 #endif
 385 {
 386   debug_only( verify_construction() );
 387   NOT_PRODUCT(nodes_created++);
 388   // Assert we allocated space for input array already
 389   assert( _in[2] == this, "Must pass arg count to 'new'" );
 390   assert( is_not_dead(n0), "can not use dead node");
 391   assert( is_not_dead(n1), "can not use dead node");
 392   assert( is_not_dead(n2), "can not use dead node");
 393   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 394   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 395   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 396 }
 397 
 398 //------------------------------Node-------------------------------------------
 399 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 400   : _idx(IDX_INIT(4))
 401 #ifdef ASSERT
 402   , _parse_idx(_idx)
 403 #endif
 404 {
 405   debug_only( verify_construction() );
 406   NOT_PRODUCT(nodes_created++);
 407   // Assert we allocated space for input array already
 408   assert( _in[3] == this, "Must pass arg count to 'new'" );
 409   assert( is_not_dead(n0), "can not use dead node");
 410   assert( is_not_dead(n1), "can not use dead node");
 411   assert( is_not_dead(n2), "can not use dead node");
 412   assert( is_not_dead(n3), "can not use dead node");
 413   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 414   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 415   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 416   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 417 }
 418 
 419 //------------------------------Node-------------------------------------------
 420 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 421   : _idx(IDX_INIT(5))
 422 #ifdef ASSERT
 423   , _parse_idx(_idx)
 424 #endif
 425 {
 426   debug_only( verify_construction() );
 427   NOT_PRODUCT(nodes_created++);
 428   // Assert we allocated space for input array already
 429   assert( _in[4] == this, "Must pass arg count to 'new'" );
 430   assert( is_not_dead(n0), "can not use dead node");
 431   assert( is_not_dead(n1), "can not use dead node");
 432   assert( is_not_dead(n2), "can not use dead node");
 433   assert( is_not_dead(n3), "can not use dead node");
 434   assert( is_not_dead(n4), "can not use dead node");
 435   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 436   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 437   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 438   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 439   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 440 }
 441 
 442 //------------------------------Node-------------------------------------------
 443 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 444                      Node *n4, Node *n5)
 445   : _idx(IDX_INIT(6))
 446 #ifdef ASSERT
 447   , _parse_idx(_idx)
 448 #endif
 449 {
 450   debug_only( verify_construction() );
 451   NOT_PRODUCT(nodes_created++);
 452   // Assert we allocated space for input array already
 453   assert( _in[5] == this, "Must pass arg count to 'new'" );
 454   assert( is_not_dead(n0), "can not use dead node");
 455   assert( is_not_dead(n1), "can not use dead node");
 456   assert( is_not_dead(n2), "can not use dead node");
 457   assert( is_not_dead(n3), "can not use dead node");
 458   assert( is_not_dead(n4), "can not use dead node");
 459   assert( is_not_dead(n5), "can not use dead node");
 460   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 461   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 462   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 463   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 464   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 465   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 466 }
 467 
 468 //------------------------------Node-------------------------------------------
 469 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 470                      Node *n4, Node *n5, Node *n6)
 471   : _idx(IDX_INIT(7))
 472 #ifdef ASSERT
 473   , _parse_idx(_idx)
 474 #endif
 475 {
 476   debug_only( verify_construction() );
 477   NOT_PRODUCT(nodes_created++);
 478   // Assert we allocated space for input array already
 479   assert( _in[6] == this, "Must pass arg count to 'new'" );
 480   assert( is_not_dead(n0), "can not use dead node");
 481   assert( is_not_dead(n1), "can not use dead node");
 482   assert( is_not_dead(n2), "can not use dead node");
 483   assert( is_not_dead(n3), "can not use dead node");
 484   assert( is_not_dead(n4), "can not use dead node");
 485   assert( is_not_dead(n5), "can not use dead node");
 486   assert( is_not_dead(n6), "can not use dead node");
 487   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 488   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 489   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 490   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 491   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 492   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 493   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 494 }
 495 
 496 
 497 //------------------------------clone------------------------------------------
 498 // Clone a Node.
 499 Node *Node::clone() const {
 500   Compile* C = Compile::current();
 501   uint s = size_of();           // Size of inherited Node
 502   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 503   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 504   // Set the new input pointer array
 505   n->_in = (Node**)(((char*)n)+s);
 506   // Cannot share the old output pointer array, so kill it
 507   n->_out = NO_OUT_ARRAY;
 508   // And reset the counters to 0
 509   n->_outcnt = 0;
 510   n->_outmax = 0;
 511   // Unlock this guy, since he is not in any hash table.
 512   debug_only(n->_hash_lock = 0);
 513   // Walk the old node's input list to duplicate its edges
 514   uint i;
 515   for( i = 0; i < len(); i++ ) {
 516     Node *x = in(i);
 517     n->_in[i] = x;
 518     if (x != NULL) x->add_out(n);
 519   }
 520   if (is_macro())
 521     C->add_macro_node(n);
 522   if (is_expensive())
 523     C->add_expensive_node(n);
 524 
 525   n->set_idx(C->next_unique()); // Get new unique index as well
 526   debug_only( n->verify_construction() );
 527   NOT_PRODUCT(nodes_created++);
 528   // Do not patch over the debug_idx of a clone, because it makes it
 529   // impossible to break on the clone's moment of creation.
 530   //debug_only( n->set_debug_idx( debug_idx() ) );
 531 
 532   C->copy_node_notes_to(n, (Node*) this);
 533 
 534   // MachNode clone
 535   uint nopnds;
 536   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 537     MachNode *mach  = n->as_Mach();
 538     MachNode *mthis = this->as_Mach();
 539     // Get address of _opnd_array.
 540     // It should be the same offset since it is the clone of this node.
 541     MachOper **from = mthis->_opnds;
 542     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 543                     pointer_delta((const void*)from,
 544                                   (const void*)(&mthis->_opnds), 1));
 545     mach->_opnds = to;
 546     for ( uint i = 0; i < nopnds; ++i ) {
 547       to[i] = from[i]->clone(C);
 548     }
 549   }
 550   // cloning CallNode may need to clone JVMState
 551   if (n->is_Call()) {
 552     n->as_Call()->clone_jvms(C);
 553   }
 554   if (n->is_SafePoint()) {
 555     n->as_SafePoint()->clone_replaced_nodes();
 556   }
 557   return n;                     // Return the clone
 558 }
 559 
 560 //---------------------------setup_is_top--------------------------------------
 561 // Call this when changing the top node, to reassert the invariants
 562 // required by Node::is_top.  See Compile::set_cached_top_node.
 563 void Node::setup_is_top() {
 564   if (this == (Node*)Compile::current()->top()) {
 565     // This node has just become top.  Kill its out array.
 566     _outcnt = _outmax = 0;
 567     _out = NULL;                           // marker value for top
 568     assert(is_top(), "must be top");
 569   } else {
 570     if (_out == NULL)  _out = NO_OUT_ARRAY;
 571     assert(!is_top(), "must not be top");
 572   }
 573 }
 574 
 575 
 576 //------------------------------~Node------------------------------------------
 577 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 578 extern int reclaim_idx ;
 579 extern int reclaim_in  ;
 580 extern int reclaim_node;
 581 void Node::destruct() {
 582   // Eagerly reclaim unique Node numberings
 583   Compile* compile = Compile::current();
 584   if ((uint)_idx+1 == compile->unique()) {
 585     compile->set_unique(compile->unique()-1);
 586 #ifdef ASSERT
 587     reclaim_idx++;
 588 #endif
 589   }
 590   // Clear debug info:
 591   Node_Notes* nn = compile->node_notes_at(_idx);
 592   if (nn != NULL)  nn->clear();
 593   // Walk the input array, freeing the corresponding output edges
 594   _cnt = _max;  // forget req/prec distinction
 595   uint i;
 596   for( i = 0; i < _max; i++ ) {
 597     set_req(i, NULL);
 598     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 599   }
 600   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 601   // See if the input array was allocated just prior to the object
 602   int edge_size = _max*sizeof(void*);
 603   int out_edge_size = _outmax*sizeof(void*);
 604   char *edge_end = ((char*)_in) + edge_size;
 605   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 606   char *out_edge_end = out_array + out_edge_size;
 607   int node_size = size_of();
 608 
 609   // Free the output edge array
 610   if (out_edge_size > 0) {
 611 #ifdef ASSERT
 612     if( out_edge_end == compile->node_arena()->hwm() )
 613       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
 614 #endif
 615     compile->node_arena()->Afree(out_array, out_edge_size);
 616   }
 617 
 618   // Free the input edge array and the node itself
 619   if( edge_end == (char*)this ) {
 620 #ifdef ASSERT
 621     if( edge_end+node_size == compile->node_arena()->hwm() ) {
 622       reclaim_in  += edge_size;
 623       reclaim_node+= node_size;
 624     }
 625 #else
 626     // It was; free the input array and object all in one hit
 627     compile->node_arena()->Afree(_in,edge_size+node_size);
 628 #endif
 629   } else {
 630 
 631     // Free just the input array
 632 #ifdef ASSERT
 633     if( edge_end == compile->node_arena()->hwm() )
 634       reclaim_in  += edge_size;
 635 #endif
 636     compile->node_arena()->Afree(_in,edge_size);
 637 
 638     // Free just the object
 639 #ifdef ASSERT
 640     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
 641       reclaim_node+= node_size;
 642 #else
 643     compile->node_arena()->Afree(this,node_size);
 644 #endif
 645   }
 646   if (is_macro()) {
 647     compile->remove_macro_node(this);
 648   }
 649   if (is_expensive()) {
 650     compile->remove_expensive_node(this);
 651   }
 652   if (is_SafePoint()) {
 653     as_SafePoint()->delete_replaced_nodes();
 654   }
 655 #ifdef ASSERT
 656   // We will not actually delete the storage, but we'll make the node unusable.
 657   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 658   _in = _out = (Node**) badAddress;
 659   _max = _cnt = _outmax = _outcnt = 0;
 660 #endif
 661 }
 662 
 663 //------------------------------grow-------------------------------------------
 664 // Grow the input array, making space for more edges
 665 void Node::grow( uint len ) {
 666   Arena* arena = Compile::current()->node_arena();
 667   uint new_max = _max;
 668   if( new_max == 0 ) {
 669     _max = 4;
 670     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 671     Node** to = _in;
 672     to[0] = NULL;
 673     to[1] = NULL;
 674     to[2] = NULL;
 675     to[3] = NULL;
 676     return;
 677   }
 678   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 679   // Trimming to limit allows a uint8 to handle up to 255 edges.
 680   // Previously I was using only powers-of-2 which peaked at 128 edges.
 681   //if( new_max >= limit ) new_max = limit-1;
 682   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 683   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 684   _max = new_max;               // Record new max length
 685   // This assertion makes sure that Node::_max is wide enough to
 686   // represent the numerical value of new_max.
 687   assert(_max == new_max && _max > len, "int width of _max is too small");
 688 }
 689 
 690 //-----------------------------out_grow----------------------------------------
 691 // Grow the input array, making space for more edges
 692 void Node::out_grow( uint len ) {
 693   assert(!is_top(), "cannot grow a top node's out array");
 694   Arena* arena = Compile::current()->node_arena();
 695   uint new_max = _outmax;
 696   if( new_max == 0 ) {
 697     _outmax = 4;
 698     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 699     return;
 700   }
 701   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 702   // Trimming to limit allows a uint8 to handle up to 255 edges.
 703   // Previously I was using only powers-of-2 which peaked at 128 edges.
 704   //if( new_max >= limit ) new_max = limit-1;
 705   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 706   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 707   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 708   _outmax = new_max;               // Record new max length
 709   // This assertion makes sure that Node::_max is wide enough to
 710   // represent the numerical value of new_max.
 711   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 712 }
 713 
 714 #ifdef ASSERT
 715 //------------------------------is_dead----------------------------------------
 716 bool Node::is_dead() const {
 717   // Mach and pinch point nodes may look like dead.
 718   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 719     return false;
 720   for( uint i = 0; i < _max; i++ )
 721     if( _in[i] != NULL )
 722       return false;
 723   dump();
 724   return true;
 725 }
 726 #endif
 727 
 728 
 729 //------------------------------is_unreachable---------------------------------
 730 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 731   assert(!is_Mach(), "doesn't work with MachNodes");
 732   return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
 733 }
 734 
 735 //------------------------------add_req----------------------------------------
 736 // Add a new required input at the end
 737 void Node::add_req( Node *n ) {
 738   assert( is_not_dead(n), "can not use dead node");
 739 
 740   // Look to see if I can move precedence down one without reallocating
 741   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 742     grow( _max+1 );
 743 
 744   // Find a precedence edge to move
 745   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 746     uint i;
 747     for( i=_cnt; i<_max; i++ )
 748       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 749         break;                  // There must be one, since we grew the array
 750     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 751   }
 752   _in[_cnt++] = n;            // Stuff over old prec edge
 753   if (n != NULL) n->add_out((Node *)this);
 754 }
 755 
 756 //---------------------------add_req_batch-------------------------------------
 757 // Add a new required input at the end
 758 void Node::add_req_batch( Node *n, uint m ) {
 759   assert( is_not_dead(n), "can not use dead node");
 760   // check various edge cases
 761   if ((int)m <= 1) {
 762     assert((int)m >= 0, "oob");
 763     if (m != 0)  add_req(n);
 764     return;
 765   }
 766 
 767   // Look to see if I can move precedence down one without reallocating
 768   if( (_cnt+m) > _max || _in[_max-m] )
 769     grow( _max+m );
 770 
 771   // Find a precedence edge to move
 772   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 773     uint i;
 774     for( i=_cnt; i<_max; i++ )
 775       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 776         break;                  // There must be one, since we grew the array
 777     // Slide all the precs over by m positions (assume #prec << m).
 778     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 779   }
 780 
 781   // Stuff over the old prec edges
 782   for(uint i=0; i<m; i++ ) {
 783     _in[_cnt++] = n;
 784   }
 785 
 786   // Insert multiple out edges on the node.
 787   if (n != NULL && !n->is_top()) {
 788     for(uint i=0; i<m; i++ ) {
 789       n->add_out((Node *)this);
 790     }
 791   }
 792 }
 793 
 794 //------------------------------del_req----------------------------------------
 795 // Delete the required edge and compact the edge array
 796 void Node::del_req( uint idx ) {
 797   assert( idx < _cnt, "oob");
 798   assert( !VerifyHashTableKeys || _hash_lock == 0,
 799           "remove node from hash table before modifying it");
 800   // First remove corresponding def-use edge
 801   Node *n = in(idx);
 802   if (n != NULL) n->del_out((Node *)this);
 803   _in[idx] = in(--_cnt);  // Compact the array
 804   _in[_cnt] = NULL;       // NULL out emptied slot
 805 }
 806 
 807 //------------------------------del_req_ordered--------------------------------
 808 // Delete the required edge and compact the edge array with preserved order
 809 void Node::del_req_ordered( uint idx ) {
 810   assert( idx < _cnt, "oob");
 811   assert( !VerifyHashTableKeys || _hash_lock == 0,
 812           "remove node from hash table before modifying it");
 813   // First remove corresponding def-use edge
 814   Node *n = in(idx);
 815   if (n != NULL) n->del_out((Node *)this);
 816   if (idx < _cnt - 1) { // Not last edge ?
 817     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx-1)*sizeof(Node*)));
 818   }
 819   _in[--_cnt] = NULL;   // NULL out emptied slot
 820 }
 821 
 822 //------------------------------ins_req----------------------------------------
 823 // Insert a new required input at the end
 824 void Node::ins_req( uint idx, Node *n ) {
 825   assert( is_not_dead(n), "can not use dead node");
 826   add_req(NULL);                // Make space
 827   assert( idx < _max, "Must have allocated enough space");
 828   // Slide over
 829   if(_cnt-idx-1 > 0) {
 830     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 831   }
 832   _in[idx] = n;                            // Stuff over old required edge
 833   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 834 }
 835 
 836 //-----------------------------find_edge---------------------------------------
 837 int Node::find_edge(Node* n) {
 838   for (uint i = 0; i < len(); i++) {
 839     if (_in[i] == n)  return i;
 840   }
 841   return -1;
 842 }
 843 
 844 //----------------------------replace_edge-------------------------------------
 845 int Node::replace_edge(Node* old, Node* neww) {
 846   if (old == neww)  return 0;  // nothing to do
 847   uint nrep = 0;
 848   for (uint i = 0; i < len(); i++) {
 849     if (in(i) == old) {
 850       if (i < req())
 851         set_req(i, neww);
 852       else
 853         set_prec(i, neww);
 854       nrep++;
 855     }
 856   }
 857   return nrep;
 858 }
 859 
 860 /**
 861  * Replace input edges in the range pointing to 'old' node.
 862  */
 863 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
 864   if (old == neww)  return 0;  // nothing to do
 865   uint nrep = 0;
 866   for (int i = start; i < end; i++) {
 867     if (in(i) == old) {
 868       set_req(i, neww);
 869       nrep++;
 870     }
 871   }
 872   return nrep;
 873 }
 874 
 875 //-------------------------disconnect_inputs-----------------------------------
 876 // NULL out all inputs to eliminate incoming Def-Use edges.
 877 // Return the number of edges between 'n' and 'this'
 878 int Node::disconnect_inputs(Node *n, Compile* C) {
 879   int edges_to_n = 0;
 880 
 881   uint cnt = req();
 882   for( uint i = 0; i < cnt; ++i ) {
 883     if( in(i) == 0 ) continue;
 884     if( in(i) == n ) ++edges_to_n;
 885     set_req(i, NULL);
 886   }
 887   // Remove precedence edges if any exist
 888   // Note: Safepoints may have precedence edges, even during parsing
 889   if( (req() != len()) && (in(req()) != NULL) ) {
 890     uint max = len();
 891     for( uint i = 0; i < max; ++i ) {
 892       if( in(i) == 0 ) continue;
 893       if( in(i) == n ) ++edges_to_n;
 894       set_prec(i, NULL);
 895     }
 896   }
 897 
 898   // Node::destruct requires all out edges be deleted first
 899   // debug_only(destruct();)   // no reuse benefit expected
 900   if (edges_to_n == 0) {
 901     C->record_dead_node(_idx);
 902   }
 903   return edges_to_n;
 904 }
 905 
 906 //-----------------------------uncast---------------------------------------
 907 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 908 // Strip away casting.  (It is depth-limited.)
 909 Node* Node::uncast() const {
 910   // Should be inline:
 911   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 912   if (is_ConstraintCast() || is_CheckCastPP())
 913     return uncast_helper(this);
 914   else
 915     return (Node*) this;
 916 }
 917 
 918 //---------------------------uncast_helper-------------------------------------
 919 Node* Node::uncast_helper(const Node* p) {
 920 #ifdef ASSERT
 921   uint depth_count = 0;
 922   const Node* orig_p = p;
 923 #endif
 924 
 925   while (true) {
 926 #ifdef ASSERT
 927     if (depth_count >= K) {
 928       orig_p->dump(4);
 929       if (p != orig_p)
 930         p->dump(1);
 931     }
 932     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
 933 #endif
 934     if (p == NULL || p->req() != 2) {
 935       break;
 936     } else if (p->is_ConstraintCast()) {
 937       p = p->in(1);
 938     } else if (p->is_CheckCastPP()) {
 939       p = p->in(1);
 940     } else {
 941       break;
 942     }
 943   }
 944   return (Node*) p;
 945 }
 946 
 947 //------------------------------add_prec---------------------------------------
 948 // Add a new precedence input.  Precedence inputs are unordered, with
 949 // duplicates removed and NULLs packed down at the end.
 950 void Node::add_prec( Node *n ) {
 951   assert( is_not_dead(n), "can not use dead node");
 952 
 953   // Check for NULL at end
 954   if( _cnt >= _max || in(_max-1) )
 955     grow( _max+1 );
 956 
 957   // Find a precedence edge to move
 958   uint i = _cnt;
 959   while( in(i) != NULL ) i++;
 960   _in[i] = n;                                // Stuff prec edge over NULL
 961   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
 962 }
 963 
 964 //------------------------------rm_prec----------------------------------------
 965 // Remove a precedence input.  Precedence inputs are unordered, with
 966 // duplicates removed and NULLs packed down at the end.
 967 void Node::rm_prec( uint j ) {
 968 
 969   // Find end of precedence list to pack NULLs
 970   uint i;
 971   for( i=j; i<_max; i++ )
 972     if( !_in[i] )               // Find the NULL at end of prec edge list
 973       break;
 974   if (_in[j] != NULL) _in[j]->del_out((Node *)this);
 975   _in[j] = _in[--i];            // Move last element over removed guy
 976   _in[i] = NULL;                // NULL out last element
 977 }
 978 
 979 //------------------------------size_of----------------------------------------
 980 uint Node::size_of() const { return sizeof(*this); }
 981 
 982 //------------------------------ideal_reg--------------------------------------
 983 uint Node::ideal_reg() const { return 0; }
 984 
 985 //------------------------------jvms-------------------------------------------
 986 JVMState* Node::jvms() const { return NULL; }
 987 
 988 #ifdef ASSERT
 989 //------------------------------jvms-------------------------------------------
 990 bool Node::verify_jvms(const JVMState* using_jvms) const {
 991   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 992     if (jvms == using_jvms)  return true;
 993   }
 994   return false;
 995 }
 996 
 997 //------------------------------init_NodeProperty------------------------------
 998 void Node::init_NodeProperty() {
 999   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
1000   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
1001 }
1002 #endif
1003 
1004 //------------------------------format-----------------------------------------
1005 // Print as assembly
1006 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1007 //------------------------------emit-------------------------------------------
1008 // Emit bytes starting at parameter 'ptr'.
1009 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
1010 //------------------------------size-------------------------------------------
1011 // Size of instruction in bytes
1012 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1013 
1014 //------------------------------CFG Construction-------------------------------
1015 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1016 // Goto and Return.
1017 const Node *Node::is_block_proj() const { return 0; }
1018 
1019 // Minimum guaranteed type
1020 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1021 
1022 
1023 //------------------------------raise_bottom_type------------------------------
1024 // Get the worst-case Type output for this Node.
1025 void Node::raise_bottom_type(const Type* new_type) {
1026   if (is_Type()) {
1027     TypeNode *n = this->as_Type();
1028     if (VerifyAliases) {
1029       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1030     }
1031     n->set_type(new_type);
1032   } else if (is_Load()) {
1033     LoadNode *n = this->as_Load();
1034     if (VerifyAliases) {
1035       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1036     }
1037     n->set_type(new_type);
1038   }
1039 }
1040 
1041 //------------------------------Identity---------------------------------------
1042 // Return a node that the given node is equivalent to.
1043 Node *Node::Identity( PhaseTransform * ) {
1044   return this;                  // Default to no identities
1045 }
1046 
1047 //------------------------------Value------------------------------------------
1048 // Compute a new Type for a node using the Type of the inputs.
1049 const Type *Node::Value( PhaseTransform * ) const {
1050   return bottom_type();         // Default to worst-case Type
1051 }
1052 
1053 //------------------------------Ideal------------------------------------------
1054 //
1055 // 'Idealize' the graph rooted at this Node.
1056 //
1057 // In order to be efficient and flexible there are some subtle invariants
1058 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1059 // these invariants, although its too slow to have on by default.  If you are
1060 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1061 //
1062 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1063 // pointer.  If ANY change is made, it must return the root of the reshaped
1064 // graph - even if the root is the same Node.  Example: swapping the inputs
1065 // to an AddINode gives the same answer and same root, but you still have to
1066 // return the 'this' pointer instead of NULL.
1067 //
1068 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1069 // Identity call to return an old Node; basically if Identity can find
1070 // another Node have the Ideal call make no change and return NULL.
1071 // Example: AddINode::Ideal must check for add of zero; in this case it
1072 // returns NULL instead of doing any graph reshaping.
1073 //
1074 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1075 // sharing there may be other users of the old Nodes relying on their current
1076 // semantics.  Modifying them will break the other users.
1077 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1078 // "X+3" unchanged in case it is shared.
1079 //
1080 // If you modify the 'this' pointer's inputs, you should use
1081 // 'set_req'.  If you are making a new Node (either as the new root or
1082 // some new internal piece) you may use 'init_req' to set the initial
1083 // value.  You can make a new Node with either 'new' or 'clone'.  In
1084 // either case, def-use info is correctly maintained.
1085 //
1086 // Example: reshape "(X+3)+4" into "X+7":
1087 //    set_req(1, in(1)->in(1));
1088 //    set_req(2, phase->intcon(7));
1089 //    return this;
1090 // Example: reshape "X*4" into "X<<2"
1091 //    return new (C) LShiftINode(in(1), phase->intcon(2));
1092 //
1093 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1094 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1095 //    Node *shift=phase->transform(new(C)LShiftINode(in(1),phase->intcon(5)));
1096 //    return new (C) AddINode(shift, in(1));
1097 //
1098 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1099 // These forms are faster than 'phase->transform(new (C) ConNode())' and Do
1100 // The Right Thing with def-use info.
1101 //
1102 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1103 // graph uses the 'this' Node it must be the root.  If you want a Node with
1104 // the same Opcode as the 'this' pointer use 'clone'.
1105 //
1106 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1107   return NULL;                  // Default to being Ideal already
1108 }
1109 
1110 // Some nodes have specific Ideal subgraph transformations only if they are
1111 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1112 // for the transformations to happen.
1113 bool Node::has_special_unique_user() const {
1114   assert(outcnt() == 1, "match only for unique out");
1115   Node* n = unique_out();
1116   int op  = Opcode();
1117   if( this->is_Store() ) {
1118     // Condition for back-to-back stores folding.
1119     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1120   } else if (this->is_Load()) {
1121     // Condition for removing an unused LoadNode from the MemBarAcquire precedence input
1122     return n->Opcode() == Op_MemBarAcquire;
1123   } else if( op == Op_AddL ) {
1124     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1125     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1126   } else if( op == Op_SubI || op == Op_SubL ) {
1127     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1128     return n->Opcode() == op && n->in(2) == this;
1129   }
1130   return false;
1131 };
1132 
1133 //--------------------------find_exact_control---------------------------------
1134 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1135 Node* Node::find_exact_control(Node* ctrl) {
1136   if (ctrl == NULL && this->is_Region())
1137     ctrl = this->as_Region()->is_copy();
1138 
1139   if (ctrl != NULL && ctrl->is_CatchProj()) {
1140     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1141       ctrl = ctrl->in(0);
1142     if (ctrl != NULL && !ctrl->is_top())
1143       ctrl = ctrl->in(0);
1144   }
1145 
1146   if (ctrl != NULL && ctrl->is_Proj())
1147     ctrl = ctrl->in(0);
1148 
1149   return ctrl;
1150 }
1151 
1152 //--------------------------dominates------------------------------------------
1153 // Helper function for MemNode::all_controls_dominate().
1154 // Check if 'this' control node dominates or equal to 'sub' control node.
1155 // We already know that if any path back to Root or Start reaches 'this',
1156 // then all paths so, so this is a simple search for one example,
1157 // not an exhaustive search for a counterexample.
1158 bool Node::dominates(Node* sub, Node_List &nlist) {
1159   assert(this->is_CFG(), "expecting control");
1160   assert(sub != NULL && sub->is_CFG(), "expecting control");
1161 
1162   // detect dead cycle without regions
1163   int iterations_without_region_limit = DominatorSearchLimit;
1164 
1165   Node* orig_sub = sub;
1166   Node* dom      = this;
1167   bool  met_dom  = false;
1168   nlist.clear();
1169 
1170   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1171   // After seeing 'dom', continue up to Root or Start.
1172   // If we hit a region (backward split point), it may be a loop head.
1173   // Keep going through one of the region's inputs.  If we reach the
1174   // same region again, go through a different input.  Eventually we
1175   // will either exit through the loop head, or give up.
1176   // (If we get confused, break out and return a conservative 'false'.)
1177   while (sub != NULL) {
1178     if (sub->is_top())  break; // Conservative answer for dead code.
1179     if (sub == dom) {
1180       if (nlist.size() == 0) {
1181         // No Region nodes except loops were visited before and the EntryControl
1182         // path was taken for loops: it did not walk in a cycle.
1183         return true;
1184       } else if (met_dom) {
1185         break;          // already met before: walk in a cycle
1186       } else {
1187         // Region nodes were visited. Continue walk up to Start or Root
1188         // to make sure that it did not walk in a cycle.
1189         met_dom = true; // first time meet
1190         iterations_without_region_limit = DominatorSearchLimit; // Reset
1191      }
1192     }
1193     if (sub->is_Start() || sub->is_Root()) {
1194       // Success if we met 'dom' along a path to Start or Root.
1195       // We assume there are no alternative paths that avoid 'dom'.
1196       // (This assumption is up to the caller to ensure!)
1197       return met_dom;
1198     }
1199     Node* up = sub->in(0);
1200     // Normalize simple pass-through regions and projections:
1201     up = sub->find_exact_control(up);
1202     // If sub == up, we found a self-loop.  Try to push past it.
1203     if (sub == up && sub->is_Loop()) {
1204       // Take loop entry path on the way up to 'dom'.
1205       up = sub->in(1); // in(LoopNode::EntryControl);
1206     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1207       // Always take in(1) path on the way up to 'dom' for clone regions
1208       // (with only one input) or regions which merge > 2 paths
1209       // (usually used to merge fast/slow paths).
1210       up = sub->in(1);
1211     } else if (sub == up && sub->is_Region()) {
1212       // Try both paths for Regions with 2 input paths (it may be a loop head).
1213       // It could give conservative 'false' answer without information
1214       // which region's input is the entry path.
1215       iterations_without_region_limit = DominatorSearchLimit; // Reset
1216 
1217       bool region_was_visited_before = false;
1218       // Was this Region node visited before?
1219       // If so, we have reached it because we accidentally took a
1220       // loop-back edge from 'sub' back into the body of the loop,
1221       // and worked our way up again to the loop header 'sub'.
1222       // So, take the first unexplored path on the way up to 'dom'.
1223       for (int j = nlist.size() - 1; j >= 0; j--) {
1224         intptr_t ni = (intptr_t)nlist.at(j);
1225         Node* visited = (Node*)(ni & ~1);
1226         bool  visited_twice_already = ((ni & 1) != 0);
1227         if (visited == sub) {
1228           if (visited_twice_already) {
1229             // Visited 2 paths, but still stuck in loop body.  Give up.
1230             return false;
1231           }
1232           // The Region node was visited before only once.
1233           // (We will repush with the low bit set, below.)
1234           nlist.remove(j);
1235           // We will find a new edge and re-insert.
1236           region_was_visited_before = true;
1237           break;
1238         }
1239       }
1240 
1241       // Find an incoming edge which has not been seen yet; walk through it.
1242       assert(up == sub, "");
1243       uint skip = region_was_visited_before ? 1 : 0;
1244       for (uint i = 1; i < sub->req(); i++) {
1245         Node* in = sub->in(i);
1246         if (in != NULL && !in->is_top() && in != sub) {
1247           if (skip == 0) {
1248             up = in;
1249             break;
1250           }
1251           --skip;               // skip this nontrivial input
1252         }
1253       }
1254 
1255       // Set 0 bit to indicate that both paths were taken.
1256       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1257     }
1258 
1259     if (up == sub) {
1260       break;    // some kind of tight cycle
1261     }
1262     if (up == orig_sub && met_dom) {
1263       // returned back after visiting 'dom'
1264       break;    // some kind of cycle
1265     }
1266     if (--iterations_without_region_limit < 0) {
1267       break;    // dead cycle
1268     }
1269     sub = up;
1270   }
1271 
1272   // Did not meet Root or Start node in pred. chain.
1273   // Conservative answer for dead code.
1274   return false;
1275 }
1276 
1277 //------------------------------remove_dead_region-----------------------------
1278 // This control node is dead.  Follow the subgraph below it making everything
1279 // using it dead as well.  This will happen normally via the usual IterGVN
1280 // worklist but this call is more efficient.  Do not update use-def info
1281 // inside the dead region, just at the borders.
1282 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1283   // Con's are a popular node to re-hit in the hash table again.
1284   if( dead->is_Con() ) return;
1285 
1286   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1287   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1288   Node_List  nstack(Thread::current()->resource_area());
1289 
1290   Node *top = igvn->C->top();
1291   nstack.push(dead);
1292   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1293 
1294   while (nstack.size() > 0) {
1295     dead = nstack.pop();
1296     if (dead->outcnt() > 0) {
1297       // Keep dead node on stack until all uses are processed.
1298       nstack.push(dead);
1299       // For all Users of the Dead...    ;-)
1300       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1301         Node* use = dead->last_out(k);
1302         igvn->hash_delete(use);       // Yank from hash table prior to mod
1303         if (use->in(0) == dead) {     // Found another dead node
1304           assert (!use->is_Con(), "Control for Con node should be Root node.");
1305           use->set_req(0, top);       // Cut dead edge to prevent processing
1306           nstack.push(use);           // the dead node again.
1307         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1308                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1309                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1310           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1311           use->set_req(0, top);       // Cut self edge
1312           nstack.push(use);
1313         } else {                      // Else found a not-dead user
1314           // Dead if all inputs are top or null
1315           bool dead_use = !use->is_Root(); // Keep empty graph alive
1316           for (uint j = 1; j < use->req(); j++) {
1317             Node* in = use->in(j);
1318             if (in == dead) {         // Turn all dead inputs into TOP
1319               use->set_req(j, top);
1320             } else if (in != NULL && !in->is_top()) {
1321               dead_use = false;
1322             }
1323           }
1324           if (dead_use) {
1325             if (use->is_Region()) {
1326               use->set_req(0, top);   // Cut self edge
1327             }
1328             nstack.push(use);
1329           } else {
1330             igvn->_worklist.push(use);
1331           }
1332         }
1333         // Refresh the iterator, since any number of kills might have happened.
1334         k = dead->last_outs(kmin);
1335       }
1336     } else { // (dead->outcnt() == 0)
1337       // Done with outputs.
1338       igvn->hash_delete(dead);
1339       igvn->_worklist.remove(dead);
1340       igvn->set_type(dead, Type::TOP);
1341       if (dead->is_macro()) {
1342         igvn->C->remove_macro_node(dead);
1343       }
1344       if (dead->is_expensive()) {
1345         igvn->C->remove_expensive_node(dead);
1346       }
1347       igvn->C->record_dead_node(dead->_idx);
1348       // Kill all inputs to the dead guy
1349       for (uint i=0; i < dead->req(); i++) {
1350         Node *n = dead->in(i);      // Get input to dead guy
1351         if (n != NULL && !n->is_top()) { // Input is valid?
1352           dead->set_req(i, top);    // Smash input away
1353           if (n->outcnt() == 0) {   // Input also goes dead?
1354             if (!n->is_Con())
1355               nstack.push(n);       // Clear it out as well
1356           } else if (n->outcnt() == 1 &&
1357                      n->has_special_unique_user()) {
1358             igvn->add_users_to_worklist( n );
1359           } else if (n->outcnt() <= 2 && n->is_Store()) {
1360             // Push store's uses on worklist to enable folding optimization for
1361             // store/store and store/load to the same address.
1362             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1363             // and remove_globally_dead_node().
1364             igvn->add_users_to_worklist( n );
1365           }
1366         }
1367       }
1368     } // (dead->outcnt() == 0)
1369   }   // while (nstack.size() > 0) for outputs
1370   return;
1371 }
1372 
1373 //------------------------------remove_dead_region-----------------------------
1374 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1375   Node *n = in(0);
1376   if( !n ) return false;
1377   // Lost control into this guy?  I.e., it became unreachable?
1378   // Aggressively kill all unreachable code.
1379   if (can_reshape && n->is_top()) {
1380     kill_dead_code(this, phase->is_IterGVN());
1381     return false; // Node is dead.
1382   }
1383 
1384   if( n->is_Region() && n->as_Region()->is_copy() ) {
1385     Node *m = n->nonnull_req();
1386     set_req(0, m);
1387     return true;
1388   }
1389   return false;
1390 }
1391 
1392 //------------------------------Ideal_DU_postCCP-------------------------------
1393 // Idealize graph, using DU info.  Must clone result into new-space
1394 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
1395   return NULL;                 // Default to no change
1396 }
1397 
1398 //------------------------------hash-------------------------------------------
1399 // Hash function over Nodes.
1400 uint Node::hash() const {
1401   uint sum = 0;
1402   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1403     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1404   return (sum>>2) + _cnt + Opcode();
1405 }
1406 
1407 //------------------------------cmp--------------------------------------------
1408 // Compare special parts of simple Nodes
1409 uint Node::cmp( const Node &n ) const {
1410   return 1;                     // Must be same
1411 }
1412 
1413 //------------------------------rematerialize-----------------------------------
1414 // Should we clone rather than spill this instruction?
1415 bool Node::rematerialize() const {
1416   if ( is_Mach() )
1417     return this->as_Mach()->rematerialize();
1418   else
1419     return (_flags & Flag_rematerialize) != 0;
1420 }
1421 
1422 //------------------------------needs_anti_dependence_check---------------------
1423 // Nodes which use memory without consuming it, hence need antidependences.
1424 bool Node::needs_anti_dependence_check() const {
1425   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1426     return false;
1427   else
1428     return in(1)->bottom_type()->has_memory();
1429 }
1430 
1431 
1432 // Get an integer constant from a ConNode (or CastIINode).
1433 // Return a default value if there is no apparent constant here.
1434 const TypeInt* Node::find_int_type() const {
1435   if (this->is_Type()) {
1436     return this->as_Type()->type()->isa_int();
1437   } else if (this->is_Con()) {
1438     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1439     return this->bottom_type()->isa_int();
1440   }
1441   return NULL;
1442 }
1443 
1444 // Get a pointer constant from a ConstNode.
1445 // Returns the constant if it is a pointer ConstNode
1446 intptr_t Node::get_ptr() const {
1447   assert( Opcode() == Op_ConP, "" );
1448   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1449 }
1450 
1451 // Get a narrow oop constant from a ConNNode.
1452 intptr_t Node::get_narrowcon() const {
1453   assert( Opcode() == Op_ConN, "" );
1454   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1455 }
1456 
1457 // Get a long constant from a ConNode.
1458 // Return a default value if there is no apparent constant here.
1459 const TypeLong* Node::find_long_type() const {
1460   if (this->is_Type()) {
1461     return this->as_Type()->type()->isa_long();
1462   } else if (this->is_Con()) {
1463     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1464     return this->bottom_type()->isa_long();
1465   }
1466   return NULL;
1467 }
1468 
1469 
1470 /**
1471  * Return a ptr type for nodes which should have it.
1472  */
1473 const TypePtr* Node::get_ptr_type() const {
1474   const TypePtr* tp = this->bottom_type()->make_ptr();
1475 #ifdef ASSERT
1476   if (tp == NULL) {
1477     this->dump(1);
1478     assert((tp != NULL), "unexpected node type");
1479   }
1480 #endif
1481   return tp;
1482 }
1483 
1484 // Get a double constant from a ConstNode.
1485 // Returns the constant if it is a double ConstNode
1486 jdouble Node::getd() const {
1487   assert( Opcode() == Op_ConD, "" );
1488   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1489 }
1490 
1491 // Get a float constant from a ConstNode.
1492 // Returns the constant if it is a float ConstNode
1493 jfloat Node::getf() const {
1494   assert( Opcode() == Op_ConF, "" );
1495   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1496 }
1497 
1498 #ifndef PRODUCT
1499 
1500 //----------------------------NotANode----------------------------------------
1501 // Used in debugging code to avoid walking across dead or uninitialized edges.
1502 static inline bool NotANode(const Node* n) {
1503   if (n == NULL)                   return true;
1504   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1505   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1506   return false;
1507 }
1508 
1509 
1510 //------------------------------find------------------------------------------
1511 // Find a neighbor of this Node with the given _idx
1512 // If idx is negative, find its absolute value, following both _in and _out.
1513 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1514                         VectorSet* old_space, VectorSet* new_space ) {
1515   int node_idx = (idx >= 0) ? idx : -idx;
1516   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1517   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1518   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1519   if( v->test(n->_idx) ) return;
1520   if( (int)n->_idx == node_idx
1521       debug_only(|| n->debug_idx() == node_idx) ) {
1522     if (result != NULL)
1523       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1524                  (uintptr_t)result, (uintptr_t)n, node_idx);
1525     result = n;
1526   }
1527   v->set(n->_idx);
1528   for( uint i=0; i<n->len(); i++ ) {
1529     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1530     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1531   }
1532   // Search along forward edges also:
1533   if (idx < 0 && !only_ctrl) {
1534     for( uint j=0; j<n->outcnt(); j++ ) {
1535       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1536     }
1537   }
1538 #ifdef ASSERT
1539   // Search along debug_orig edges last, checking for cycles
1540   Node* orig = n->debug_orig();
1541   if (orig != NULL) {
1542     do {
1543       if (NotANode(orig))  break;
1544       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1545       orig = orig->debug_orig();
1546     } while (orig != NULL && orig != n->debug_orig());
1547   }
1548 #endif //ASSERT
1549 }
1550 
1551 // call this from debugger:
1552 Node* find_node(Node* n, int idx) {
1553   return n->find(idx);
1554 }
1555 
1556 //------------------------------find-------------------------------------------
1557 Node* Node::find(int idx) const {
1558   ResourceArea *area = Thread::current()->resource_area();
1559   VectorSet old_space(area), new_space(area);
1560   Node* result = NULL;
1561   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1562   return result;
1563 }
1564 
1565 //------------------------------find_ctrl--------------------------------------
1566 // Find an ancestor to this node in the control history with given _idx
1567 Node* Node::find_ctrl(int idx) const {
1568   ResourceArea *area = Thread::current()->resource_area();
1569   VectorSet old_space(area), new_space(area);
1570   Node* result = NULL;
1571   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1572   return result;
1573 }
1574 #endif
1575 
1576 
1577 
1578 #ifndef PRODUCT
1579 
1580 // -----------------------------Name-------------------------------------------
1581 extern const char *NodeClassNames[];
1582 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1583 
1584 static bool is_disconnected(const Node* n) {
1585   for (uint i = 0; i < n->req(); i++) {
1586     if (n->in(i) != NULL)  return false;
1587   }
1588   return true;
1589 }
1590 
1591 #ifdef ASSERT
1592 static void dump_orig(Node* orig, outputStream *st) {
1593   Compile* C = Compile::current();
1594   if (NotANode(orig)) orig = NULL;
1595   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1596   if (orig == NULL) return;
1597   st->print(" !orig=");
1598   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1599   if (NotANode(fast)) fast = NULL;
1600   while (orig != NULL) {
1601     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1602     if (discon) st->print("[");
1603     if (!Compile::current()->node_arena()->contains(orig))
1604       st->print("o");
1605     st->print("%d", orig->_idx);
1606     if (discon) st->print("]");
1607     orig = orig->debug_orig();
1608     if (NotANode(orig)) orig = NULL;
1609     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1610     if (orig != NULL) st->print(",");
1611     if (fast != NULL) {
1612       // Step fast twice for each single step of orig:
1613       fast = fast->debug_orig();
1614       if (NotANode(fast)) fast = NULL;
1615       if (fast != NULL && fast != orig) {
1616         fast = fast->debug_orig();
1617         if (NotANode(fast)) fast = NULL;
1618       }
1619       if (fast == orig) {
1620         st->print("...");
1621         break;
1622       }
1623     }
1624   }
1625 }
1626 
1627 void Node::set_debug_orig(Node* orig) {
1628   _debug_orig = orig;
1629   if (BreakAtNode == 0)  return;
1630   if (NotANode(orig))  orig = NULL;
1631   int trip = 10;
1632   while (orig != NULL) {
1633     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1634       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1635                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1636       BREAKPOINT;
1637     }
1638     orig = orig->debug_orig();
1639     if (NotANode(orig))  orig = NULL;
1640     if (trip-- <= 0)  break;
1641   }
1642 }
1643 #endif //ASSERT
1644 
1645 //------------------------------dump------------------------------------------
1646 // Dump a Node
1647 void Node::dump(const char* suffix, outputStream *st) const {
1648   Compile* C = Compile::current();
1649   bool is_new = C->node_arena()->contains(this);
1650   C->_in_dump_cnt++;
1651   st->print("%c%d\t%s\t=== ", is_new ? ' ' : 'o', _idx, Name());
1652 
1653   // Dump the required and precedence inputs
1654   dump_req(st);
1655   dump_prec(st);
1656   // Dump the outputs
1657   dump_out(st);
1658 
1659   if (is_disconnected(this)) {
1660 #ifdef ASSERT
1661     st->print("  [%d]",debug_idx());
1662     dump_orig(debug_orig(), st);
1663 #endif
1664     st->cr();
1665     C->_in_dump_cnt--;
1666     return;                     // don't process dead nodes
1667   }
1668 
1669   // Dump node-specific info
1670   dump_spec(st);
1671 #ifdef ASSERT
1672   // Dump the non-reset _debug_idx
1673   if (Verbose && WizardMode) {
1674     st->print("  [%d]",debug_idx());
1675   }
1676 #endif
1677 
1678   const Type *t = bottom_type();
1679 
1680   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1681     const TypeInstPtr  *toop = t->isa_instptr();
1682     const TypeKlassPtr *tkls = t->isa_klassptr();
1683     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1684     if (klass && klass->is_loaded() && klass->is_interface()) {
1685       st->print("  Interface:");
1686     } else if (toop) {
1687       st->print("  Oop:");
1688     } else if (tkls) {
1689       st->print("  Klass:");
1690     }
1691     t->dump_on(st);
1692   } else if (t == Type::MEMORY) {
1693     st->print("  Memory:");
1694     MemNode::dump_adr_type(this, adr_type(), st);
1695   } else if (Verbose || WizardMode) {
1696     st->print("  Type:");
1697     if (t) {
1698       t->dump_on(st);
1699     } else {
1700       st->print("no type");
1701     }
1702   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1703     // Dump MachSpillcopy vector type.
1704     t->dump_on(st);
1705   }
1706   if (is_new) {
1707     debug_only(dump_orig(debug_orig(), st));
1708     Node_Notes* nn = C->node_notes_at(_idx);
1709     if (nn != NULL && !nn->is_clear()) {
1710       if (nn->jvms() != NULL) {
1711         st->print(" !jvms:");
1712         nn->jvms()->dump_spec(st);
1713       }
1714     }
1715   }
1716   if (suffix) st->print("%s", suffix);
1717   C->_in_dump_cnt--;
1718 }
1719 
1720 //------------------------------dump_req--------------------------------------
1721 void Node::dump_req(outputStream *st) const {
1722   // Dump the required input edges
1723   for (uint i = 0; i < req(); i++) {    // For all required inputs
1724     Node* d = in(i);
1725     if (d == NULL) {
1726       st->print("_ ");
1727     } else if (NotANode(d)) {
1728       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1729     } else {
1730       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1731     }
1732   }
1733 }
1734 
1735 
1736 //------------------------------dump_prec-------------------------------------
1737 void Node::dump_prec(outputStream *st) const {
1738   // Dump the precedence edges
1739   int any_prec = 0;
1740   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1741     Node* p = in(i);
1742     if (p != NULL) {
1743       if (!any_prec++) st->print(" |");
1744       if (NotANode(p)) { st->print("NotANode "); continue; }
1745       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1746     }
1747   }
1748 }
1749 
1750 //------------------------------dump_out--------------------------------------
1751 void Node::dump_out(outputStream *st) const {
1752   // Delimit the output edges
1753   st->print(" [[");
1754   // Dump the output edges
1755   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1756     Node* u = _out[i];
1757     if (u == NULL) {
1758       st->print("_ ");
1759     } else if (NotANode(u)) {
1760       st->print("NotANode ");
1761     } else {
1762       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1763     }
1764   }
1765   st->print("]] ");
1766 }
1767 
1768 //------------------------------dump_nodes-------------------------------------
1769 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1770   Node* s = (Node*)start; // remove const
1771   if (NotANode(s)) return;
1772 
1773   uint depth = (uint)ABS(d);
1774   int direction = d;
1775   Compile* C = Compile::current();
1776   GrowableArray <Node *> nstack(C->live_nodes());
1777 
1778   nstack.append(s);
1779   int begin = 0;
1780   int end = 0;
1781   for(uint i = 0; i < depth; i++) {
1782     end = nstack.length();
1783     for(int j = begin; j < end; j++) {
1784       Node* tp  = nstack.at(j);
1785       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1786       for(uint k = 0; k < limit; k++) {
1787         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1788 
1789         if (NotANode(n))  continue;
1790         // do not recurse through top or the root (would reach unrelated stuff)
1791         if (n->is_Root() || n->is_top())  continue;
1792         if (only_ctrl && !n->is_CFG()) continue;
1793 
1794         bool on_stack = nstack.contains(n);
1795         if (!on_stack) {
1796           nstack.append(n);
1797         }
1798       }
1799     }
1800     begin = end;
1801   }
1802   end = nstack.length();
1803   if (direction > 0) {
1804     for(int j = end-1; j >= 0; j--) {
1805       nstack.at(j)->dump();
1806     }
1807   } else {
1808     for(int j = 0; j < end; j++) {
1809       nstack.at(j)->dump();
1810     }
1811   }
1812 }
1813 
1814 //------------------------------dump-------------------------------------------
1815 void Node::dump(int d) const {
1816   dump_nodes(this, d, false);
1817 }
1818 
1819 //------------------------------dump_ctrl--------------------------------------
1820 // Dump a Node's control history to depth
1821 void Node::dump_ctrl(int d) const {
1822   dump_nodes(this, d, true);
1823 }
1824 
1825 // VERIFICATION CODE
1826 // For each input edge to a node (ie - for each Use-Def edge), verify that
1827 // there is a corresponding Def-Use edge.
1828 //------------------------------verify_edges-----------------------------------
1829 void Node::verify_edges(Unique_Node_List &visited) {
1830   uint i, j, idx;
1831   int  cnt;
1832   Node *n;
1833 
1834   // Recursive termination test
1835   if (visited.member(this))  return;
1836   visited.push(this);
1837 
1838   // Walk over all input edges, checking for correspondence
1839   for( i = 0; i < len(); i++ ) {
1840     n = in(i);
1841     if (n != NULL && !n->is_top()) {
1842       // Count instances of (Node *)this
1843       cnt = 0;
1844       for (idx = 0; idx < n->_outcnt; idx++ ) {
1845         if (n->_out[idx] == (Node *)this)  cnt++;
1846       }
1847       assert( cnt > 0,"Failed to find Def-Use edge." );
1848       // Check for duplicate edges
1849       // walk the input array downcounting the input edges to n
1850       for( j = 0; j < len(); j++ ) {
1851         if( in(j) == n ) cnt--;
1852       }
1853       assert( cnt == 0,"Mismatched edge count.");
1854     } else if (n == NULL) {
1855       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
1856     } else {
1857       assert(n->is_top(), "sanity");
1858       // Nothing to check.
1859     }
1860   }
1861   // Recursive walk over all input edges
1862   for( i = 0; i < len(); i++ ) {
1863     n = in(i);
1864     if( n != NULL )
1865       in(i)->verify_edges(visited);
1866   }
1867 }
1868 
1869 //------------------------------verify_recur-----------------------------------
1870 static const Node *unique_top = NULL;
1871 
1872 void Node::verify_recur(const Node *n, int verify_depth,
1873                         VectorSet &old_space, VectorSet &new_space) {
1874   if ( verify_depth == 0 )  return;
1875   if (verify_depth > 0)  --verify_depth;
1876 
1877   Compile* C = Compile::current();
1878 
1879   // Contained in new_space or old_space?
1880   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
1881   // Check for visited in the proper space.  Numberings are not unique
1882   // across spaces so we need a separate VectorSet for each space.
1883   if( v->test_set(n->_idx) ) return;
1884 
1885   if (n->is_Con() && n->bottom_type() == Type::TOP) {
1886     if (C->cached_top_node() == NULL)
1887       C->set_cached_top_node((Node*)n);
1888     assert(C->cached_top_node() == n, "TOP node must be unique");
1889   }
1890 
1891   for( uint i = 0; i < n->len(); i++ ) {
1892     Node *x = n->in(i);
1893     if (!x || x->is_top()) continue;
1894 
1895     // Verify my input has a def-use edge to me
1896     if (true /*VerifyDefUse*/) {
1897       // Count use-def edges from n to x
1898       int cnt = 0;
1899       for( uint j = 0; j < n->len(); j++ )
1900         if( n->in(j) == x )
1901           cnt++;
1902       // Count def-use edges from x to n
1903       uint max = x->_outcnt;
1904       for( uint k = 0; k < max; k++ )
1905         if (x->_out[k] == n)
1906           cnt--;
1907       assert( cnt == 0, "mismatched def-use edge counts" );
1908     }
1909 
1910     verify_recur(x, verify_depth, old_space, new_space);
1911   }
1912 
1913 }
1914 
1915 //------------------------------verify-----------------------------------------
1916 // Check Def-Use info for my subgraph
1917 void Node::verify() const {
1918   Compile* C = Compile::current();
1919   Node* old_top = C->cached_top_node();
1920   ResourceMark rm;
1921   ResourceArea *area = Thread::current()->resource_area();
1922   VectorSet old_space(area), new_space(area);
1923   verify_recur(this, -1, old_space, new_space);
1924   C->set_cached_top_node(old_top);
1925 }
1926 #endif
1927 
1928 
1929 //------------------------------walk-------------------------------------------
1930 // Graph walk, with both pre-order and post-order functions
1931 void Node::walk(NFunc pre, NFunc post, void *env) {
1932   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
1933   walk_(pre, post, env, visited);
1934 }
1935 
1936 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
1937   if( visited.test_set(_idx) ) return;
1938   pre(*this,env);               // Call the pre-order walk function
1939   for( uint i=0; i<_max; i++ )
1940     if( in(i) )                 // Input exists and is not walked?
1941       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
1942   post(*this,env);              // Call the post-order walk function
1943 }
1944 
1945 void Node::nop(Node &, void*) {}
1946 
1947 //------------------------------Registers--------------------------------------
1948 // Do we Match on this edge index or not?  Generally false for Control
1949 // and true for everything else.  Weird for calls & returns.
1950 uint Node::match_edge(uint idx) const {
1951   return idx;                   // True for other than index 0 (control)
1952 }
1953 
1954 static RegMask _not_used_at_all;
1955 // Register classes are defined for specific machines
1956 const RegMask &Node::out_RegMask() const {
1957   ShouldNotCallThis();
1958   return _not_used_at_all;
1959 }
1960 
1961 const RegMask &Node::in_RegMask(uint) const {
1962   ShouldNotCallThis();
1963   return _not_used_at_all;
1964 }
1965 
1966 //=============================================================================
1967 //-----------------------------------------------------------------------------
1968 void Node_Array::reset( Arena *new_arena ) {
1969   _a->Afree(_nodes,_max*sizeof(Node*));
1970   _max   = 0;
1971   _nodes = NULL;
1972   _a     = new_arena;
1973 }
1974 
1975 //------------------------------clear------------------------------------------
1976 // Clear all entries in _nodes to NULL but keep storage
1977 void Node_Array::clear() {
1978   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
1979 }
1980 
1981 //-----------------------------------------------------------------------------
1982 void Node_Array::grow( uint i ) {
1983   if( !_max ) {
1984     _max = 1;
1985     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
1986     _nodes[0] = NULL;
1987   }
1988   uint old = _max;
1989   while( i >= _max ) _max <<= 1;        // Double to fit
1990   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
1991   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
1992 }
1993 
1994 //-----------------------------------------------------------------------------
1995 void Node_Array::insert( uint i, Node *n ) {
1996   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
1997   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
1998   _nodes[i] = n;
1999 }
2000 
2001 //-----------------------------------------------------------------------------
2002 void Node_Array::remove( uint i ) {
2003   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
2004   _nodes[_max-1] = NULL;
2005 }
2006 
2007 //-----------------------------------------------------------------------------
2008 void Node_Array::sort( C_sort_func_t func) {
2009   qsort( _nodes, _max, sizeof( Node* ), func );
2010 }
2011 
2012 //-----------------------------------------------------------------------------
2013 void Node_Array::dump() const {
2014 #ifndef PRODUCT
2015   for( uint i = 0; i < _max; i++ ) {
2016     Node *nn = _nodes[i];
2017     if( nn != NULL ) {
2018       tty->print("%5d--> ",i); nn->dump();
2019     }
2020   }
2021 #endif
2022 }
2023 
2024 //--------------------------is_iteratively_computed------------------------------
2025 // Operation appears to be iteratively computed (such as an induction variable)
2026 // It is possible for this operation to return false for a loop-varying
2027 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2028 bool Node::is_iteratively_computed() {
2029   if (ideal_reg()) { // does operation have a result register?
2030     for (uint i = 1; i < req(); i++) {
2031       Node* n = in(i);
2032       if (n != NULL && n->is_Phi()) {
2033         for (uint j = 1; j < n->req(); j++) {
2034           if (n->in(j) == this) {
2035             return true;
2036           }
2037         }
2038       }
2039     }
2040   }
2041   return false;
2042 }
2043 
2044 //--------------------------find_similar------------------------------
2045 // Return a node with opcode "opc" and same inputs as "this" if one can
2046 // be found; Otherwise return NULL;
2047 Node* Node::find_similar(int opc) {
2048   if (req() >= 2) {
2049     Node* def = in(1);
2050     if (def && def->outcnt() >= 2) {
2051       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2052         Node* use = def->fast_out(i);
2053         if (use->Opcode() == opc &&
2054             use->req() == req()) {
2055           uint j;
2056           for (j = 0; j < use->req(); j++) {
2057             if (use->in(j) != in(j)) {
2058               break;
2059             }
2060           }
2061           if (j == use->req()) {
2062             return use;
2063           }
2064         }
2065       }
2066     }
2067   }
2068   return NULL;
2069 }
2070 
2071 
2072 //--------------------------unique_ctrl_out------------------------------
2073 // Return the unique control out if only one. Null if none or more than one.
2074 Node* Node::unique_ctrl_out() {
2075   Node* found = NULL;
2076   for (uint i = 0; i < outcnt(); i++) {
2077     Node* use = raw_out(i);
2078     if (use->is_CFG() && use != this) {
2079       if (found != NULL) return NULL;
2080       found = use;
2081     }
2082   }
2083   return found;
2084 }
2085 
2086 //=============================================================================
2087 //------------------------------yank-------------------------------------------
2088 // Find and remove
2089 void Node_List::yank( Node *n ) {
2090   uint i;
2091   for( i = 0; i < _cnt; i++ )
2092     if( _nodes[i] == n )
2093       break;
2094 
2095   if( i < _cnt )
2096     _nodes[i] = _nodes[--_cnt];
2097 }
2098 
2099 //------------------------------dump-------------------------------------------
2100 void Node_List::dump() const {
2101 #ifndef PRODUCT
2102   for( uint i = 0; i < _cnt; i++ )
2103     if( _nodes[i] ) {
2104       tty->print("%5d--> ",i);
2105       _nodes[i]->dump();
2106     }
2107 #endif
2108 }
2109 
2110 //=============================================================================
2111 //------------------------------remove-----------------------------------------
2112 void Unique_Node_List::remove( Node *n ) {
2113   if( _in_worklist[n->_idx] ) {
2114     for( uint i = 0; i < size(); i++ )
2115       if( _nodes[i] == n ) {
2116         map(i,Node_List::pop());
2117         _in_worklist >>= n->_idx;
2118         return;
2119       }
2120     ShouldNotReachHere();
2121   }
2122 }
2123 
2124 //-----------------------remove_useless_nodes----------------------------------
2125 // Remove useless nodes from worklist
2126 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2127 
2128   for( uint i = 0; i < size(); ++i ) {
2129     Node *n = at(i);
2130     assert( n != NULL, "Did not expect null entries in worklist");
2131     if( ! useful.test(n->_idx) ) {
2132       _in_worklist >>= n->_idx;
2133       map(i,Node_List::pop());
2134       // Node *replacement = Node_List::pop();
2135       // if( i != size() ) { // Check if removing last entry
2136       //   _nodes[i] = replacement;
2137       // }
2138       --i;  // Visit popped node
2139       // If it was last entry, loop terminates since size() was also reduced
2140     }
2141   }
2142 }
2143 
2144 //=============================================================================
2145 void Node_Stack::grow() {
2146   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2147   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2148   size_t max = old_max << 1;             // max * 2
2149   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2150   _inode_max = _inodes + max;
2151   _inode_top = _inodes + old_top;        // restore _top
2152 }
2153 
2154 // Node_Stack is used to map nodes.
2155 Node* Node_Stack::find(uint idx) const {
2156   uint sz = size();
2157   for (uint i=0; i < sz; i++) {
2158     if (idx == index_at(i) )
2159       return node_at(i);
2160   }
2161   return NULL;
2162 }
2163 
2164 //=============================================================================
2165 uint TypeNode::size_of() const { return sizeof(*this); }
2166 #ifndef PRODUCT
2167 void TypeNode::dump_spec(outputStream *st) const {
2168   if( !Verbose && !WizardMode ) {
2169     // standard dump does this in Verbose and WizardMode
2170     st->print(" #"); _type->dump_on(st);
2171   }
2172 }
2173 #endif
2174 uint TypeNode::hash() const {
2175   return Node::hash() + _type->hash();
2176 }
2177 uint TypeNode::cmp( const Node &n ) const
2178 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2179 const Type *TypeNode::bottom_type() const { return _type; }
2180 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
2181 
2182 //------------------------------ideal_reg--------------------------------------
2183 uint TypeNode::ideal_reg() const {
2184   return _type->ideal_reg();
2185 }