1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_NODE_HPP
  26 #define SHARE_VM_OPTO_NODE_HPP
  27 
  28 #include "libadt/port.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "opto/compile.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 class AbstractLockNode;
  39 class AddNode;
  40 class AddPNode;
  41 class AliasInfo;
  42 class AllocateArrayNode;
  43 class AllocateNode;
  44 class Block;
  45 class BoolNode;
  46 class BoxLockNode;
  47 class CMoveNode;
  48 class CallDynamicJavaNode;
  49 class CallJavaNode;
  50 class CallLeafNode;
  51 class CallNode;
  52 class CallRuntimeNode;
  53 class CallStaticJavaNode;
  54 class CatchNode;
  55 class CatchProjNode;
  56 class CheckCastPPNode;
  57 class ClearArrayNode;
  58 class CmpNode;
  59 class CodeBuffer;
  60 class ConstraintCastNode;
  61 class ConNode;
  62 class CountedLoopNode;
  63 class CountedLoopEndNode;
  64 class DecodeNarrowPtrNode;
  65 class DecodeNNode;
  66 class DecodeNKlassNode;
  67 class EncodeNarrowPtrNode;
  68 class EncodePNode;
  69 class EncodePKlassNode;
  70 class FastLockNode;
  71 class FastUnlockNode;
  72 class IfNode;
  73 class IfFalseNode;
  74 class IfTrueNode;
  75 class InitializeNode;
  76 class JVMState;
  77 class JumpNode;
  78 class JumpProjNode;
  79 class LoadNode;
  80 class LoadStoreNode;
  81 class LockNode;
  82 class LoopNode;
  83 class MachBranchNode;
  84 class MachCallDynamicJavaNode;
  85 class MachCallJavaNode;
  86 class MachCallLeafNode;
  87 class MachCallNode;
  88 class MachCallRuntimeNode;
  89 class MachCallStaticJavaNode;
  90 class MachConstantBaseNode;
  91 class MachConstantNode;
  92 class MachGotoNode;
  93 class MachIfNode;
  94 class MachNode;
  95 class MachNullCheckNode;
  96 class MachProjNode;
  97 class MachReturnNode;
  98 class MachSafePointNode;
  99 class MachSpillCopyNode;
 100 class MachTempNode;
 101 class MachMergeNode;
 102 class Matcher;
 103 class MemBarNode;
 104 class MemBarStoreStoreNode;
 105 class MemNode;
 106 class MergeMemNode;
 107 class MulNode;
 108 class MultiNode;
 109 class MultiBranchNode;
 110 class NeverBranchNode;
 111 class Node;
 112 class Node_Array;
 113 class Node_List;
 114 class Node_Stack;
 115 class NullCheckNode;
 116 class OopMap;
 117 class ParmNode;
 118 class PCTableNode;
 119 class PhaseCCP;
 120 class PhaseGVN;
 121 class PhaseIterGVN;
 122 class PhaseRegAlloc;
 123 class PhaseTransform;
 124 class PhaseValues;
 125 class PhiNode;
 126 class Pipeline;
 127 class ProjNode;
 128 class RegMask;
 129 class RegionNode;
 130 class RootNode;
 131 class SafePointNode;
 132 class SafePointScalarObjectNode;
 133 class StartNode;
 134 class State;
 135 class StoreNode;
 136 class SubNode;
 137 class Type;
 138 class TypeNode;
 139 class UnlockNode;
 140 class VectorNode;
 141 class LoadVectorNode;
 142 class StoreVectorNode;
 143 class VectorSet;
 144 typedef void (*NFunc)(Node&,void*);
 145 extern "C" {
 146   typedef int (*C_sort_func_t)(const void *, const void *);
 147 }
 148 
 149 // The type of all node counts and indexes.
 150 // It must hold at least 16 bits, but must also be fast to load and store.
 151 // This type, if less than 32 bits, could limit the number of possible nodes.
 152 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 153 typedef unsigned int node_idx_t;
 154 
 155 
 156 #ifndef OPTO_DU_ITERATOR_ASSERT
 157 #ifdef ASSERT
 158 #define OPTO_DU_ITERATOR_ASSERT 1
 159 #else
 160 #define OPTO_DU_ITERATOR_ASSERT 0
 161 #endif
 162 #endif //OPTO_DU_ITERATOR_ASSERT
 163 
 164 #if OPTO_DU_ITERATOR_ASSERT
 165 class DUIterator;
 166 class DUIterator_Fast;
 167 class DUIterator_Last;
 168 #else
 169 typedef uint   DUIterator;
 170 typedef Node** DUIterator_Fast;
 171 typedef Node** DUIterator_Last;
 172 #endif
 173 
 174 // Node Sentinel
 175 #define NodeSentinel (Node*)-1
 176 
 177 // Unknown count frequency
 178 #define COUNT_UNKNOWN (-1.0f)
 179 
 180 //------------------------------Node-------------------------------------------
 181 // Nodes define actions in the program.  They create values, which have types.
 182 // They are both vertices in a directed graph and program primitives.  Nodes
 183 // are labeled; the label is the "opcode", the primitive function in the lambda
 184 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 185 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 186 // the Node's function.  These inputs also define a Type equation for the Node.
 187 // Solving these Type equations amounts to doing dataflow analysis.
 188 // Control and data are uniformly represented in the graph.  Finally, Nodes
 189 // have a unique dense integer index which is used to index into side arrays
 190 // whenever I have phase-specific information.
 191 
 192 class Node {
 193   friend class VMStructs;
 194 
 195   // Lots of restrictions on cloning Nodes
 196   Node(const Node&);            // not defined; linker error to use these
 197   Node &operator=(const Node &rhs);
 198 
 199 public:
 200   friend class Compile;
 201   #if OPTO_DU_ITERATOR_ASSERT
 202   friend class DUIterator_Common;
 203   friend class DUIterator;
 204   friend class DUIterator_Fast;
 205   friend class DUIterator_Last;
 206   #endif
 207 
 208   // Because Nodes come and go, I define an Arena of Node structures to pull
 209   // from.  This should allow fast access to node creation & deletion.  This
 210   // field is a local cache of a value defined in some "program fragment" for
 211   // which these Nodes are just a part of.
 212 
 213   // New Operator that takes a Compile pointer, this will eventually
 214   // be the "new" New operator.
 215   inline void* operator new( size_t x, Compile* C) throw() {
 216     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
 217 #ifdef ASSERT
 218     n->_in = (Node**)n; // magic cookie for assertion check
 219 #endif
 220     n->_out = (Node**)C;
 221     return (void*)n;
 222   }
 223 
 224   // Delete is a NOP
 225   void operator delete( void *ptr ) {}
 226   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 227   void destruct();
 228 
 229   // Create a new Node.  Required is the number is of inputs required for
 230   // semantic correctness.
 231   Node( uint required );
 232 
 233   // Create a new Node with given input edges.
 234   // This version requires use of the "edge-count" new.
 235   // E.g.  new (C,3) FooNode( C, NULL, left, right );
 236   Node( Node *n0 );
 237   Node( Node *n0, Node *n1 );
 238   Node( Node *n0, Node *n1, Node *n2 );
 239   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 240   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 241   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 242   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 243             Node *n4, Node *n5, Node *n6 );
 244 
 245   // Clone an inherited Node given only the base Node type.
 246   Node* clone() const;
 247 
 248   // Clone a Node, immediately supplying one or two new edges.
 249   // The first and second arguments, if non-null, replace in(1) and in(2),
 250   // respectively.
 251   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
 252     Node* nn = clone();
 253     if (in1 != NULL)  nn->set_req(1, in1);
 254     if (in2 != NULL)  nn->set_req(2, in2);
 255     return nn;
 256   }
 257 
 258 private:
 259   // Shared setup for the above constructors.
 260   // Handles all interactions with Compile::current.
 261   // Puts initial values in all Node fields except _idx.
 262   // Returns the initial value for _idx, which cannot
 263   // be initialized by assignment.
 264   inline int Init(int req, Compile* C);
 265 
 266 //----------------- input edge handling
 267 protected:
 268   friend class PhaseCFG;        // Access to address of _in array elements
 269   Node **_in;                   // Array of use-def references to Nodes
 270   Node **_out;                  // Array of def-use references to Nodes
 271 
 272   // Input edges are split into two categories.  Required edges are required
 273   // for semantic correctness; order is important and NULLs are allowed.
 274   // Precedence edges are used to help determine execution order and are
 275   // added, e.g., for scheduling purposes.  They are unordered and not
 276   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
 277   // are required, from _cnt to _max-1 are precedence edges.
 278   node_idx_t _cnt;              // Total number of required Node inputs.
 279 
 280   node_idx_t _max;              // Actual length of input array.
 281 
 282   // Output edges are an unordered list of def-use edges which exactly
 283   // correspond to required input edges which point from other nodes
 284   // to this one.  Thus the count of the output edges is the number of
 285   // users of this node.
 286   node_idx_t _outcnt;           // Total number of Node outputs.
 287 
 288   node_idx_t _outmax;           // Actual length of output array.
 289 
 290   // Grow the actual input array to the next larger power-of-2 bigger than len.
 291   void grow( uint len );
 292   // Grow the output array to the next larger power-of-2 bigger than len.
 293   void out_grow( uint len );
 294 
 295  public:
 296   // Each Node is assigned a unique small/dense number.  This number is used
 297   // to index into auxiliary arrays of data and bit vectors.
 298   // The field _idx is declared constant to defend against inadvertent assignments,
 299   // since it is used by clients as a naked field. However, the field's value can be
 300   // changed using the set_idx() method.
 301   //
 302   // The PhaseRenumberLive phase renumbers nodes based on liveness information.
 303   // Therefore, it updates the value of the _idx field. The parse-time _idx is
 304   // preserved in _parse_idx.
 305   const node_idx_t _idx;
 306   DEBUG_ONLY(const node_idx_t _parse_idx;)
 307 
 308   // Get the (read-only) number of input edges
 309   uint req() const { return _cnt; }
 310   uint len() const { return _max; }
 311   // Get the (read-only) number of output edges
 312   uint outcnt() const { return _outcnt; }
 313 
 314 #if OPTO_DU_ITERATOR_ASSERT
 315   // Iterate over the out-edges of this node.  Deletions are illegal.
 316   inline DUIterator outs() const;
 317   // Use this when the out array might have changed to suppress asserts.
 318   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 319   // Does the node have an out at this position?  (Used for iteration.)
 320   inline bool has_out(DUIterator& i) const;
 321   inline Node*    out(DUIterator& i) const;
 322   // Iterate over the out-edges of this node.  All changes are illegal.
 323   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 324   inline Node*    fast_out(DUIterator_Fast& i) const;
 325   // Iterate over the out-edges of this node, deleting one at a time.
 326   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 327   inline Node*    last_out(DUIterator_Last& i) const;
 328   // The inline bodies of all these methods are after the iterator definitions.
 329 #else
 330   // Iterate over the out-edges of this node.  Deletions are illegal.
 331   // This iteration uses integral indexes, to decouple from array reallocations.
 332   DUIterator outs() const  { return 0; }
 333   // Use this when the out array might have changed to suppress asserts.
 334   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 335 
 336   // Reference to the i'th output Node.  Error if out of bounds.
 337   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 338   // Does the node have an out at this position?  (Used for iteration.)
 339   bool has_out(DUIterator i) const { return i < _outcnt; }
 340 
 341   // Iterate over the out-edges of this node.  All changes are illegal.
 342   // This iteration uses a pointer internal to the out array.
 343   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 344     Node** out = _out;
 345     // Assign a limit pointer to the reference argument:
 346     max = out + (ptrdiff_t)_outcnt;
 347     // Return the base pointer:
 348     return out;
 349   }
 350   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 351   // Iterate over the out-edges of this node, deleting one at a time.
 352   // This iteration uses a pointer internal to the out array.
 353   DUIterator_Last last_outs(DUIterator_Last& min) const {
 354     Node** out = _out;
 355     // Assign a limit pointer to the reference argument:
 356     min = out;
 357     // Return the pointer to the start of the iteration:
 358     return out + (ptrdiff_t)_outcnt - 1;
 359   }
 360   Node*    last_out(DUIterator_Last i) const  { return *i; }
 361 #endif
 362 
 363   // Reference to the i'th input Node.  Error if out of bounds.
 364   Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
 365   // Reference to the i'th input Node.  NULL if out of bounds.
 366   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
 367   // Reference to the i'th output Node.  Error if out of bounds.
 368   // Use this accessor sparingly.  We are going trying to use iterators instead.
 369   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 370   // Return the unique out edge.
 371   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 372   // Delete out edge at position 'i' by moving last out edge to position 'i'
 373   void  raw_del_out(uint i) {
 374     assert(i < _outcnt,"oob");
 375     assert(_outcnt > 0,"oob");
 376     #if OPTO_DU_ITERATOR_ASSERT
 377     // Record that a change happened here.
 378     debug_only(_last_del = _out[i]; ++_del_tick);
 379     #endif
 380     _out[i] = _out[--_outcnt];
 381     // Smash the old edge so it can't be used accidentally.
 382     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 383   }
 384 
 385 #ifdef ASSERT
 386   bool is_dead() const;
 387 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
 388 #endif
 389   // Check whether node has become unreachable
 390   bool is_unreachable(PhaseIterGVN &igvn) const;
 391 
 392   // Set a required input edge, also updates corresponding output edge
 393   void add_req( Node *n ); // Append a NEW required input
 394   void add_req( Node *n0, Node *n1 ) {
 395     add_req(n0); add_req(n1); }
 396   void add_req( Node *n0, Node *n1, Node *n2 ) {
 397     add_req(n0); add_req(n1); add_req(n2); }
 398   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 399   void del_req( uint idx ); // Delete required edge & compact
 400   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
 401   void ins_req( uint i, Node *n ); // Insert a NEW required input
 402   void set_req( uint i, Node *n ) {
 403     assert( is_not_dead(n), "can not use dead node");
 404     assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
 405     assert( !VerifyHashTableKeys || _hash_lock == 0,
 406             "remove node from hash table before modifying it");
 407     Node** p = &_in[i];    // cache this._in, across the del_out call
 408     if (*p != NULL)  (*p)->del_out((Node *)this);
 409     (*p) = n;
 410     if (n != NULL)      n->add_out((Node *)this);
 411   }
 412   // Light version of set_req() to init inputs after node creation.
 413   void init_req( uint i, Node *n ) {
 414     assert( i == 0 && this == n ||
 415             is_not_dead(n), "can not use dead node");
 416     assert( i < _cnt, "oob");
 417     assert( !VerifyHashTableKeys || _hash_lock == 0,
 418             "remove node from hash table before modifying it");
 419     assert( _in[i] == NULL, "sanity");
 420     _in[i] = n;
 421     if (n != NULL)      n->add_out((Node *)this);
 422   }
 423   // Find first occurrence of n among my edges:
 424   int find_edge(Node* n);
 425   int replace_edge(Node* old, Node* neww);
 426   int replace_edges_in_range(Node* old, Node* neww, int start, int end);
 427   // NULL out all inputs to eliminate incoming Def-Use edges.
 428   // Return the number of edges between 'n' and 'this'
 429   int  disconnect_inputs(Node *n, Compile *c);
 430 
 431   // Quickly, return true if and only if I am Compile::current()->top().
 432   bool is_top() const {
 433     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
 434     return (_out == NULL);
 435   }
 436   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 437   void setup_is_top();
 438 
 439   // Strip away casting.  (It is depth-limited.)
 440   Node* uncast() const;
 441   // Return whether two Nodes are equivalent, after stripping casting.
 442   bool eqv_uncast(const Node* n) const {
 443     return (this->uncast() == n->uncast());
 444   }
 445 
 446 private:
 447   static Node* uncast_helper(const Node* n);
 448 
 449   // Add an output edge to the end of the list
 450   void add_out( Node *n ) {
 451     if (is_top())  return;
 452     if( _outcnt == _outmax ) out_grow(_outcnt);
 453     _out[_outcnt++] = n;
 454   }
 455   // Delete an output edge
 456   void del_out( Node *n ) {
 457     if (is_top())  return;
 458     Node** outp = &_out[_outcnt];
 459     // Find and remove n
 460     do {
 461       assert(outp > _out, "Missing Def-Use edge");
 462     } while (*--outp != n);
 463     *outp = _out[--_outcnt];
 464     // Smash the old edge so it can't be used accidentally.
 465     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 466     // Record that a change happened here.
 467     #if OPTO_DU_ITERATOR_ASSERT
 468     debug_only(_last_del = n; ++_del_tick);
 469     #endif
 470   }
 471 
 472 public:
 473   // Globally replace this node by a given new node, updating all uses.
 474   void replace_by(Node* new_node);
 475   // Globally replace this node by a given new node, updating all uses
 476   // and cutting input edges of old node.
 477   void subsume_by(Node* new_node, Compile* c) {
 478     replace_by(new_node);
 479     disconnect_inputs(NULL, c);
 480   }
 481   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
 482   // Find the one non-null required input.  RegionNode only
 483   Node *nonnull_req() const;
 484   // Add or remove precedence edges
 485   void add_prec( Node *n );
 486   void rm_prec( uint i );
 487   void set_prec( uint i, Node *n ) {
 488     assert( is_not_dead(n), "can not use dead node");
 489     assert( i >= _cnt, "not a precedence edge");
 490     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
 491     _in[i] = n;
 492     if (n != NULL) n->add_out((Node *)this);
 493   }
 494   // Set this node's index, used by cisc_version to replace current node
 495   void set_idx(uint new_idx) {
 496     const node_idx_t* ref = &_idx;
 497     *(node_idx_t*)ref = new_idx;
 498   }
 499   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 500   void swap_edges(uint i1, uint i2) {
 501     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 502     // Def-Use info is unchanged
 503     Node* n1 = in(i1);
 504     Node* n2 = in(i2);
 505     _in[i1] = n2;
 506     _in[i2] = n1;
 507     // If this node is in the hash table, make sure it doesn't need a rehash.
 508     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 509   }
 510 
 511   // Iterators over input Nodes for a Node X are written as:
 512   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 513   // NOTE: Required edges can contain embedded NULL pointers.
 514 
 515 //----------------- Other Node Properties
 516 
 517   // Generate class id for some ideal nodes to avoid virtual query
 518   // methods is_<Node>().
 519   // Class id is the set of bits corresponded to the node class and all its
 520   // super classes so that queries for super classes are also valid.
 521   // Subclasses of the same super class have different assigned bit
 522   // (the third parameter in the macro DEFINE_CLASS_ID).
 523   // Classes with deeper hierarchy are declared first.
 524   // Classes with the same hierarchy depth are sorted by usage frequency.
 525   //
 526   // The query method masks the bits to cut off bits of subclasses
 527   // and then compare the result with the class id
 528   // (see the macro DEFINE_CLASS_QUERY below).
 529   //
 530   //  Class_MachCall=30, ClassMask_MachCall=31
 531   // 12               8               4               0
 532   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 533   //                                  |   |   |   |
 534   //                                  |   |   |   Bit_Mach=2
 535   //                                  |   |   Bit_MachReturn=4
 536   //                                  |   Bit_MachSafePoint=8
 537   //                                  Bit_MachCall=16
 538   //
 539   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 540   // 12               8               4               0
 541   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 542   //                              |   |   |
 543   //                              |   |   Bit_Region=8
 544   //                              |   Bit_Loop=16
 545   //                              Bit_CountedLoop=32
 546 
 547   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 548   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 549   Class_##cl = Class_##supcl + Bit_##cl , \
 550   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 551 
 552   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 553   // so that it's values fits into 16 bits.
 554   enum NodeClasses {
 555     Bit_Node   = 0x0000,
 556     Class_Node = 0x0000,
 557     ClassMask_Node = 0xFFFF,
 558 
 559     DEFINE_CLASS_ID(Multi, Node, 0)
 560       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 561         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 562           DEFINE_CLASS_ID(CallJava,         Call, 0)
 563             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 564             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 565           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 566             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 567           DEFINE_CLASS_ID(Allocate,         Call, 2)
 568             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 569           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 570             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 571             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 572       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 573         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 574           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 575           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 576         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 577           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
 578         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 579       DEFINE_CLASS_ID(Start,       Multi, 2)
 580       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 581         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 582         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 583 
 584     DEFINE_CLASS_ID(Mach,  Node, 1)
 585       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 586         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 587           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 588             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 589               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 590               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 591             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 592               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 593       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 594         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 595         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 596         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 597       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 598       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 599       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 600       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 601       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
 602 
 603     DEFINE_CLASS_ID(Type,  Node, 2)
 604       DEFINE_CLASS_ID(Phi,   Type, 0)
 605       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 606       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
 607       DEFINE_CLASS_ID(CMove, Type, 3)
 608       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 609       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
 610         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
 611         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
 612       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
 613         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
 614         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
 615 
 616     DEFINE_CLASS_ID(Proj,  Node, 3)
 617       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 618       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 619       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
 620       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
 621       DEFINE_CLASS_ID(Parm,      Proj, 4)
 622       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 623 
 624     DEFINE_CLASS_ID(Mem,   Node, 4)
 625       DEFINE_CLASS_ID(Load,  Mem, 0)
 626         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 627       DEFINE_CLASS_ID(Store, Mem, 1)
 628         DEFINE_CLASS_ID(StoreVector, Store, 0)
 629       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 630 
 631     DEFINE_CLASS_ID(Region, Node, 5)
 632       DEFINE_CLASS_ID(Loop, Region, 0)
 633         DEFINE_CLASS_ID(Root,        Loop, 0)
 634         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
 635 
 636     DEFINE_CLASS_ID(Sub,   Node, 6)
 637       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 638         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 639         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 640 
 641     DEFINE_CLASS_ID(MergeMem, Node, 7)
 642     DEFINE_CLASS_ID(Bool,     Node, 8)
 643     DEFINE_CLASS_ID(AddP,     Node, 9)
 644     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 645     DEFINE_CLASS_ID(Add,      Node, 11)
 646     DEFINE_CLASS_ID(Mul,      Node, 12)
 647     DEFINE_CLASS_ID(Vector,   Node, 13)
 648     DEFINE_CLASS_ID(ClearArray, Node, 14)
 649 
 650     _max_classes  = ClassMask_ClearArray
 651   };
 652   #undef DEFINE_CLASS_ID
 653 
 654   // Flags are sorted by usage frequency.
 655   enum NodeFlags {
 656     Flag_is_Copy                     = 0x01, // should be first bit to avoid shift
 657     Flag_rematerialize               = Flag_is_Copy << 1,
 658     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
 659     Flag_is_macro                    = Flag_needs_anti_dependence_check << 1,
 660     Flag_is_Con                      = Flag_is_macro << 1,
 661     Flag_is_cisc_alternate           = Flag_is_Con << 1,
 662     Flag_is_dead_loop_safe           = Flag_is_cisc_alternate << 1,
 663     Flag_may_be_short_branch         = Flag_is_dead_loop_safe << 1,
 664     Flag_avoid_back_to_back_before   = Flag_may_be_short_branch << 1,
 665     Flag_avoid_back_to_back_after    = Flag_avoid_back_to_back_before << 1,
 666     Flag_has_call                    = Flag_avoid_back_to_back_after << 1,
 667     Flag_is_expensive                = Flag_has_call << 1,
 668     _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
 669   };
 670 
 671 private:
 672   jushort _class_id;
 673   jushort _flags;
 674 
 675 protected:
 676   // These methods should be called from constructors only.
 677   void init_class_id(jushort c) {
 678     assert(c <= _max_classes, "invalid node class");
 679     _class_id = c; // cast out const
 680   }
 681   void init_flags(jushort fl) {
 682     assert(fl <= _max_flags, "invalid node flag");
 683     _flags |= fl;
 684   }
 685   void clear_flag(jushort fl) {
 686     assert(fl <= _max_flags, "invalid node flag");
 687     _flags &= ~fl;
 688   }
 689 
 690 public:
 691   const jushort class_id() const { return _class_id; }
 692 
 693   const jushort flags() const { return _flags; }
 694 
 695   // Return a dense integer opcode number
 696   virtual int Opcode() const;
 697 
 698   // Virtual inherited Node size
 699   virtual uint size_of() const;
 700 
 701   // Other interesting Node properties
 702   #define DEFINE_CLASS_QUERY(type)                           \
 703   bool is_##type() const {                                   \
 704     return ((_class_id & ClassMask_##type) == Class_##type); \
 705   }                                                          \
 706   type##Node *as_##type() const {                            \
 707     assert(is_##type(), "invalid node class");               \
 708     return (type##Node*)this;                                \
 709   }                                                          \
 710   type##Node* isa_##type() const {                           \
 711     return (is_##type()) ? as_##type() : NULL;               \
 712   }
 713 
 714   DEFINE_CLASS_QUERY(AbstractLock)
 715   DEFINE_CLASS_QUERY(Add)
 716   DEFINE_CLASS_QUERY(AddP)
 717   DEFINE_CLASS_QUERY(Allocate)
 718   DEFINE_CLASS_QUERY(AllocateArray)
 719   DEFINE_CLASS_QUERY(Bool)
 720   DEFINE_CLASS_QUERY(BoxLock)
 721   DEFINE_CLASS_QUERY(Call)
 722   DEFINE_CLASS_QUERY(CallDynamicJava)
 723   DEFINE_CLASS_QUERY(CallJava)
 724   DEFINE_CLASS_QUERY(CallLeaf)
 725   DEFINE_CLASS_QUERY(CallRuntime)
 726   DEFINE_CLASS_QUERY(CallStaticJava)
 727   DEFINE_CLASS_QUERY(Catch)
 728   DEFINE_CLASS_QUERY(CatchProj)
 729   DEFINE_CLASS_QUERY(CheckCastPP)
 730   DEFINE_CLASS_QUERY(ConstraintCast)
 731   DEFINE_CLASS_QUERY(ClearArray)
 732   DEFINE_CLASS_QUERY(CMove)
 733   DEFINE_CLASS_QUERY(Cmp)
 734   DEFINE_CLASS_QUERY(CountedLoop)
 735   DEFINE_CLASS_QUERY(CountedLoopEnd)
 736   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
 737   DEFINE_CLASS_QUERY(DecodeN)
 738   DEFINE_CLASS_QUERY(DecodeNKlass)
 739   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
 740   DEFINE_CLASS_QUERY(EncodeP)
 741   DEFINE_CLASS_QUERY(EncodePKlass)
 742   DEFINE_CLASS_QUERY(FastLock)
 743   DEFINE_CLASS_QUERY(FastUnlock)
 744   DEFINE_CLASS_QUERY(If)
 745   DEFINE_CLASS_QUERY(IfFalse)
 746   DEFINE_CLASS_QUERY(IfTrue)
 747   DEFINE_CLASS_QUERY(Initialize)
 748   DEFINE_CLASS_QUERY(Jump)
 749   DEFINE_CLASS_QUERY(JumpProj)
 750   DEFINE_CLASS_QUERY(Load)
 751   DEFINE_CLASS_QUERY(LoadStore)
 752   DEFINE_CLASS_QUERY(Lock)
 753   DEFINE_CLASS_QUERY(Loop)
 754   DEFINE_CLASS_QUERY(Mach)
 755   DEFINE_CLASS_QUERY(MachBranch)
 756   DEFINE_CLASS_QUERY(MachCall)
 757   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 758   DEFINE_CLASS_QUERY(MachCallJava)
 759   DEFINE_CLASS_QUERY(MachCallLeaf)
 760   DEFINE_CLASS_QUERY(MachCallRuntime)
 761   DEFINE_CLASS_QUERY(MachCallStaticJava)
 762   DEFINE_CLASS_QUERY(MachConstantBase)
 763   DEFINE_CLASS_QUERY(MachConstant)
 764   DEFINE_CLASS_QUERY(MachGoto)
 765   DEFINE_CLASS_QUERY(MachIf)
 766   DEFINE_CLASS_QUERY(MachNullCheck)
 767   DEFINE_CLASS_QUERY(MachProj)
 768   DEFINE_CLASS_QUERY(MachReturn)
 769   DEFINE_CLASS_QUERY(MachSafePoint)
 770   DEFINE_CLASS_QUERY(MachSpillCopy)
 771   DEFINE_CLASS_QUERY(MachTemp)
 772   DEFINE_CLASS_QUERY(MachMerge)
 773   DEFINE_CLASS_QUERY(Mem)
 774   DEFINE_CLASS_QUERY(MemBar)
 775   DEFINE_CLASS_QUERY(MemBarStoreStore)
 776   DEFINE_CLASS_QUERY(MergeMem)
 777   DEFINE_CLASS_QUERY(Mul)
 778   DEFINE_CLASS_QUERY(Multi)
 779   DEFINE_CLASS_QUERY(MultiBranch)
 780   DEFINE_CLASS_QUERY(Parm)
 781   DEFINE_CLASS_QUERY(PCTable)
 782   DEFINE_CLASS_QUERY(Phi)
 783   DEFINE_CLASS_QUERY(Proj)
 784   DEFINE_CLASS_QUERY(Region)
 785   DEFINE_CLASS_QUERY(Root)
 786   DEFINE_CLASS_QUERY(SafePoint)
 787   DEFINE_CLASS_QUERY(SafePointScalarObject)
 788   DEFINE_CLASS_QUERY(Start)
 789   DEFINE_CLASS_QUERY(Store)
 790   DEFINE_CLASS_QUERY(Sub)
 791   DEFINE_CLASS_QUERY(Type)
 792   DEFINE_CLASS_QUERY(Vector)
 793   DEFINE_CLASS_QUERY(LoadVector)
 794   DEFINE_CLASS_QUERY(StoreVector)
 795   DEFINE_CLASS_QUERY(Unlock)
 796 
 797   #undef DEFINE_CLASS_QUERY
 798 
 799   // duplicate of is_MachSpillCopy()
 800   bool is_SpillCopy () const {
 801     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
 802   }
 803 
 804   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
 805   // The data node which is safe to leave in dead loop during IGVN optimization.
 806   bool is_dead_loop_safe() const {
 807     return is_Phi() || (is_Proj() && in(0) == NULL) ||
 808            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
 809             (!is_Proj() || !in(0)->is_Allocate()));
 810   }
 811 
 812   // is_Copy() returns copied edge index (0 or 1)
 813   uint is_Copy() const { return (_flags & Flag_is_Copy); }
 814 
 815   virtual bool is_CFG() const { return false; }
 816 
 817   // If this node is control-dependent on a test, can it be
 818   // rerouted to a dominating equivalent test?  This is usually
 819   // true of non-CFG nodes, but can be false for operations which
 820   // depend for their correct sequencing on more than one test.
 821   // (In that case, hoisting to a dominating test may silently
 822   // skip some other important test.)
 823   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
 824 
 825   // When building basic blocks, I need to have a notion of block beginning
 826   // Nodes, next block selector Nodes (block enders), and next block
 827   // projections.  These calls need to work on their machine equivalents.  The
 828   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
 829   bool is_block_start() const {
 830     if ( is_Region() )
 831       return this == (const Node*)in(0);
 832     else
 833       return is_Start();
 834   }
 835 
 836   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
 837   // Goto and Return.  This call also returns the block ending Node.
 838   virtual const Node *is_block_proj() const;
 839 
 840   // The node is a "macro" node which needs to be expanded before matching
 841   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
 842   // The node is expensive: the best control is set during loop opts
 843   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
 844 
 845 //----------------- Optimization
 846 
 847   // Get the worst-case Type output for this Node.
 848   virtual const class Type *bottom_type() const;
 849 
 850   // If we find a better type for a node, try to record it permanently.
 851   // Return true if this node actually changed.
 852   // Be sure to do the hash_delete game in the "rehash" variant.
 853   void raise_bottom_type(const Type* new_type);
 854 
 855   // Get the address type with which this node uses and/or defs memory,
 856   // or NULL if none.  The address type is conservatively wide.
 857   // Returns non-null for calls, membars, loads, stores, etc.
 858   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
 859   virtual const class TypePtr *adr_type() const { return NULL; }
 860 
 861   // Return an existing node which computes the same function as this node.
 862   // The optimistic combined algorithm requires this to return a Node which
 863   // is a small number of steps away (e.g., one of my inputs).
 864   virtual Node *Identity( PhaseTransform *phase );
 865 
 866   // Return the set of values this Node can take on at runtime.
 867   virtual const Type *Value( PhaseTransform *phase ) const;
 868 
 869   // Return a node which is more "ideal" than the current node.
 870   // The invariants on this call are subtle.  If in doubt, read the
 871   // treatise in node.cpp above the default implemention AND TEST WITH
 872   // +VerifyIterativeGVN!
 873   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 874 
 875   // Some nodes have specific Ideal subgraph transformations only if they are
 876   // unique users of specific nodes. Such nodes should be put on IGVN worklist
 877   // for the transformations to happen.
 878   bool has_special_unique_user() const;
 879 
 880   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
 881   Node* find_exact_control(Node* ctrl);
 882 
 883   // Check if 'this' node dominates or equal to 'sub'.
 884   bool dominates(Node* sub, Node_List &nlist);
 885 
 886 protected:
 887   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
 888 public:
 889 
 890   // Idealize graph, using DU info.  Done after constant propagation
 891   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
 892 
 893   // See if there is valid pipeline info
 894   static  const Pipeline *pipeline_class();
 895   virtual const Pipeline *pipeline() const;
 896 
 897   // Compute the latency from the def to this instruction of the ith input node
 898   uint latency(uint i);
 899 
 900   // Hash & compare functions, for pessimistic value numbering
 901 
 902   // If the hash function returns the special sentinel value NO_HASH,
 903   // the node is guaranteed never to compare equal to any other node.
 904   // If we accidentally generate a hash with value NO_HASH the node
 905   // won't go into the table and we'll lose a little optimization.
 906   enum { NO_HASH = 0 };
 907   virtual uint hash() const;
 908   virtual uint cmp( const Node &n ) const;
 909 
 910   // Operation appears to be iteratively computed (such as an induction variable)
 911   // It is possible for this operation to return false for a loop-varying
 912   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
 913   bool is_iteratively_computed();
 914 
 915   // Determine if a node is Counted loop induction variable.
 916   // The method is defined in loopnode.cpp.
 917   const Node* is_loop_iv() const;
 918 
 919   // Return a node with opcode "opc" and same inputs as "this" if one can
 920   // be found; Otherwise return NULL;
 921   Node* find_similar(int opc);
 922 
 923   // Return the unique control out if only one. Null if none or more than one.
 924   Node* unique_ctrl_out();
 925 
 926 //----------------- Code Generation
 927 
 928   // Ideal register class for Matching.  Zero means unmatched instruction
 929   // (these are cloned instead of converted to machine nodes).
 930   virtual uint ideal_reg() const;
 931 
 932   static const uint NotAMachineReg;   // must be > max. machine register
 933 
 934   // Do we Match on this edge index or not?  Generally false for Control
 935   // and true for everything else.  Weird for calls & returns.
 936   virtual uint match_edge(uint idx) const;
 937 
 938   // Register class output is returned in
 939   virtual const RegMask &out_RegMask() const;
 940   // Register class input is expected in
 941   virtual const RegMask &in_RegMask(uint) const;
 942   // Should we clone rather than spill this instruction?
 943   bool rematerialize() const;
 944 
 945   // Return JVM State Object if this Node carries debug info, or NULL otherwise
 946   virtual JVMState* jvms() const;
 947 
 948   // Print as assembly
 949   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
 950   // Emit bytes starting at parameter 'ptr'
 951   // Bump 'ptr' by the number of output bytes
 952   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
 953   // Size of instruction in bytes
 954   virtual uint size(PhaseRegAlloc *ra_) const;
 955 
 956   // Convenience function to extract an integer constant from a node.
 957   // If it is not an integer constant (either Con, CastII, or Mach),
 958   // return value_if_unknown.
 959   jint find_int_con(jint value_if_unknown) const {
 960     const TypeInt* t = find_int_type();
 961     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 962   }
 963   // Return the constant, knowing it is an integer constant already
 964   jint get_int() const {
 965     const TypeInt* t = find_int_type();
 966     guarantee(t != NULL, "must be con");
 967     return t->get_con();
 968   }
 969   // Here's where the work is done.  Can produce non-constant int types too.
 970   const TypeInt* find_int_type() const;
 971 
 972   // Same thing for long (and intptr_t, via type.hpp):
 973   jlong get_long() const {
 974     const TypeLong* t = find_long_type();
 975     guarantee(t != NULL, "must be con");
 976     return t->get_con();
 977   }
 978   jlong find_long_con(jint value_if_unknown) const {
 979     const TypeLong* t = find_long_type();
 980     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 981   }
 982   const TypeLong* find_long_type() const;
 983 
 984   const TypePtr* get_ptr_type() const;
 985 
 986   // These guys are called by code generated by ADLC:
 987   intptr_t get_ptr() const;
 988   intptr_t get_narrowcon() const;
 989   jdouble getd() const;
 990   jfloat getf() const;
 991 
 992   // Nodes which are pinned into basic blocks
 993   virtual bool pinned() const { return false; }
 994 
 995   // Nodes which use memory without consuming it, hence need antidependences
 996   // More specifically, needs_anti_dependence_check returns true iff the node
 997   // (a) does a load, and (b) does not perform a store (except perhaps to a
 998   // stack slot or some other unaliased location).
 999   bool needs_anti_dependence_check() const;
1000 
1001   // Return which operand this instruction may cisc-spill. In other words,
1002   // return operand position that can convert from reg to memory access
1003   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1004   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1005 
1006 //----------------- Graph walking
1007 public:
1008   // Walk and apply member functions recursively.
1009   // Supplied (this) pointer is root.
1010   void walk(NFunc pre, NFunc post, void *env);
1011   static void nop(Node &, void*); // Dummy empty function
1012   static void packregion( Node &n, void* );
1013 private:
1014   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
1015 
1016 //----------------- Printing, etc
1017 public:
1018 #ifndef PRODUCT
1019   Node* find(int idx) const;         // Search the graph for the given idx.
1020   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
1021   void dump() const { dump("\n"); }  // Print this node.
1022   void dump(const char* suffix, outputStream *st = tty) const;// Print this node.
1023   void dump(int depth) const;        // Print this node, recursively to depth d
1024   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1025   virtual void dump_req(outputStream *st = tty) const;     // Print required-edge info
1026   virtual void dump_prec(outputStream *st = tty) const;    // Print precedence-edge info
1027   virtual void dump_out(outputStream *st = tty) const;     // Print the output edge info
1028   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
1029   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1030   void verify() const;               // Check Def-Use info for my subgraph
1031   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1032 
1033   // This call defines a class-unique string used to identify class instances
1034   virtual const char *Name() const;
1035 
1036   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1037   // RegMask Print Functions
1038   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1039   void dump_out_regmask() { out_RegMask().dump(); }
1040   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
1041   void fast_dump() const {
1042     tty->print("%4d: %-17s", _idx, Name());
1043     for (uint i = 0; i < len(); i++)
1044       if (in(i))
1045         tty->print(" %4d", in(i)->_idx);
1046       else
1047         tty->print(" NULL");
1048     tty->print("\n");
1049   }
1050 #endif
1051 #ifdef ASSERT
1052   void verify_construction();
1053   bool verify_jvms(const JVMState* jvms) const;
1054   int  _debug_idx;                     // Unique value assigned to every node.
1055   int   debug_idx() const              { return _debug_idx; }
1056   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1057 
1058   Node* _debug_orig;                   // Original version of this, if any.
1059   Node*  debug_orig() const            { return _debug_orig; }
1060   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1061 
1062   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1063   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1064   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1065 
1066   static void init_NodeProperty();
1067 
1068   #if OPTO_DU_ITERATOR_ASSERT
1069   const Node* _last_del;               // The last deleted node.
1070   uint        _del_tick;               // Bumped when a deletion happens..
1071   #endif
1072 #endif
1073 };
1074 
1075 //-----------------------------------------------------------------------------
1076 // Iterators over DU info, and associated Node functions.
1077 
1078 #if OPTO_DU_ITERATOR_ASSERT
1079 
1080 // Common code for assertion checking on DU iterators.
1081 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1082 #ifdef ASSERT
1083  protected:
1084   bool         _vdui;               // cached value of VerifyDUIterators
1085   const Node*  _node;               // the node containing the _out array
1086   uint         _outcnt;             // cached node->_outcnt
1087   uint         _del_tick;           // cached node->_del_tick
1088   Node*        _last;               // last value produced by the iterator
1089 
1090   void sample(const Node* node);    // used by c'tor to set up for verifies
1091   void verify(const Node* node, bool at_end_ok = false);
1092   void verify_resync();
1093   void reset(const DUIterator_Common& that);
1094 
1095 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1096   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1097 #else
1098   #define I_VDUI_ONLY(i,x) { }
1099 #endif //ASSERT
1100 };
1101 
1102 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1103 
1104 // Default DU iterator.  Allows appends onto the out array.
1105 // Allows deletion from the out array only at the current point.
1106 // Usage:
1107 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1108 //    Node* y = x->out(i);
1109 //    ...
1110 //  }
1111 // Compiles in product mode to a unsigned integer index, which indexes
1112 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1113 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1114 // before continuing the loop.  You must delete only the last-produced
1115 // edge.  You must delete only a single copy of the last-produced edge,
1116 // or else you must delete all copies at once (the first time the edge
1117 // is produced by the iterator).
1118 class DUIterator : public DUIterator_Common {
1119   friend class Node;
1120 
1121   // This is the index which provides the product-mode behavior.
1122   // Whatever the product-mode version of the system does to the
1123   // DUI index is done to this index.  All other fields in
1124   // this class are used only for assertion checking.
1125   uint         _idx;
1126 
1127   #ifdef ASSERT
1128   uint         _refresh_tick;    // Records the refresh activity.
1129 
1130   void sample(const Node* node); // Initialize _refresh_tick etc.
1131   void verify(const Node* node, bool at_end_ok = false);
1132   void verify_increment();       // Verify an increment operation.
1133   void verify_resync();          // Verify that we can back up over a deletion.
1134   void verify_finish();          // Verify that the loop terminated properly.
1135   void refresh();                // Resample verification info.
1136   void reset(const DUIterator& that);  // Resample after assignment.
1137   #endif
1138 
1139   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1140     { _idx = 0;                         debug_only(sample(node)); }
1141 
1142  public:
1143   // initialize to garbage; clear _vdui to disable asserts
1144   DUIterator()
1145     { /*initialize to garbage*/         debug_only(_vdui = false); }
1146 
1147   void operator++(int dummy_to_specify_postfix_op)
1148     { _idx++;                           VDUI_ONLY(verify_increment()); }
1149 
1150   void operator--()
1151     { VDUI_ONLY(verify_resync());       --_idx; }
1152 
1153   ~DUIterator()
1154     { VDUI_ONLY(verify_finish()); }
1155 
1156   void operator=(const DUIterator& that)
1157     { _idx = that._idx;                 debug_only(reset(that)); }
1158 };
1159 
1160 DUIterator Node::outs() const
1161   { return DUIterator(this, 0); }
1162 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1163   { I_VDUI_ONLY(i, i.refresh());        return i; }
1164 bool Node::has_out(DUIterator& i) const
1165   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1166 Node*    Node::out(DUIterator& i) const
1167   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1168 
1169 
1170 // Faster DU iterator.  Disallows insertions into the out array.
1171 // Allows deletion from the out array only at the current point.
1172 // Usage:
1173 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1174 //    Node* y = x->fast_out(i);
1175 //    ...
1176 //  }
1177 // Compiles in product mode to raw Node** pointer arithmetic, with
1178 // no reloading of pointers from the original node x.  If you delete,
1179 // you must perform "--i; --imax" just before continuing the loop.
1180 // If you delete multiple copies of the same edge, you must decrement
1181 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1182 class DUIterator_Fast : public DUIterator_Common {
1183   friend class Node;
1184   friend class DUIterator_Last;
1185 
1186   // This is the pointer which provides the product-mode behavior.
1187   // Whatever the product-mode version of the system does to the
1188   // DUI pointer is done to this pointer.  All other fields in
1189   // this class are used only for assertion checking.
1190   Node**       _outp;
1191 
1192   #ifdef ASSERT
1193   void verify(const Node* node, bool at_end_ok = false);
1194   void verify_limit();
1195   void verify_resync();
1196   void verify_relimit(uint n);
1197   void reset(const DUIterator_Fast& that);
1198   #endif
1199 
1200   // Note:  offset must be signed, since -1 is sometimes passed
1201   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1202     { _outp = node->_out + offset;      debug_only(sample(node)); }
1203 
1204  public:
1205   // initialize to garbage; clear _vdui to disable asserts
1206   DUIterator_Fast()
1207     { /*initialize to garbage*/         debug_only(_vdui = false); }
1208 
1209   void operator++(int dummy_to_specify_postfix_op)
1210     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1211 
1212   void operator--()
1213     { VDUI_ONLY(verify_resync());       --_outp; }
1214 
1215   void operator-=(uint n)   // applied to the limit only
1216     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1217 
1218   bool operator<(DUIterator_Fast& limit) {
1219     I_VDUI_ONLY(*this, this->verify(_node, true));
1220     I_VDUI_ONLY(limit, limit.verify_limit());
1221     return _outp < limit._outp;
1222   }
1223 
1224   void operator=(const DUIterator_Fast& that)
1225     { _outp = that._outp;               debug_only(reset(that)); }
1226 };
1227 
1228 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1229   // Assign a limit pointer to the reference argument:
1230   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1231   // Return the base pointer:
1232   return DUIterator_Fast(this, 0);
1233 }
1234 Node* Node::fast_out(DUIterator_Fast& i) const {
1235   I_VDUI_ONLY(i, i.verify(this));
1236   return debug_only(i._last=) *i._outp;
1237 }
1238 
1239 
1240 // Faster DU iterator.  Requires each successive edge to be removed.
1241 // Does not allow insertion of any edges.
1242 // Usage:
1243 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1244 //    Node* y = x->last_out(i);
1245 //    ...
1246 //  }
1247 // Compiles in product mode to raw Node** pointer arithmetic, with
1248 // no reloading of pointers from the original node x.
1249 class DUIterator_Last : private DUIterator_Fast {
1250   friend class Node;
1251 
1252   #ifdef ASSERT
1253   void verify(const Node* node, bool at_end_ok = false);
1254   void verify_limit();
1255   void verify_step(uint num_edges);
1256   #endif
1257 
1258   // Note:  offset must be signed, since -1 is sometimes passed
1259   DUIterator_Last(const Node* node, ptrdiff_t offset)
1260     : DUIterator_Fast(node, offset) { }
1261 
1262   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1263   void operator<(int)                              {} // do not use
1264 
1265  public:
1266   DUIterator_Last() { }
1267   // initialize to garbage
1268 
1269   void operator--()
1270     { _outp--;              VDUI_ONLY(verify_step(1));  }
1271 
1272   void operator-=(uint n)
1273     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1274 
1275   bool operator>=(DUIterator_Last& limit) {
1276     I_VDUI_ONLY(*this, this->verify(_node, true));
1277     I_VDUI_ONLY(limit, limit.verify_limit());
1278     return _outp >= limit._outp;
1279   }
1280 
1281   void operator=(const DUIterator_Last& that)
1282     { DUIterator_Fast::operator=(that); }
1283 };
1284 
1285 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1286   // Assign a limit pointer to the reference argument:
1287   imin = DUIterator_Last(this, 0);
1288   // Return the initial pointer:
1289   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1290 }
1291 Node* Node::last_out(DUIterator_Last& i) const {
1292   I_VDUI_ONLY(i, i.verify(this));
1293   return debug_only(i._last=) *i._outp;
1294 }
1295 
1296 #endif //OPTO_DU_ITERATOR_ASSERT
1297 
1298 #undef I_VDUI_ONLY
1299 #undef VDUI_ONLY
1300 
1301 // An Iterator that truly follows the iterator pattern.  Doesn't
1302 // support deletion but could be made to.
1303 //
1304 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1305 //     Node* m = i.get();
1306 //
1307 class SimpleDUIterator : public StackObj {
1308  private:
1309   Node* node;
1310   DUIterator_Fast i;
1311   DUIterator_Fast imax;
1312  public:
1313   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1314   bool has_next() { return i < imax; }
1315   void next() { i++; }
1316   Node* get() { return node->fast_out(i); }
1317 };
1318 
1319 
1320 //-----------------------------------------------------------------------------
1321 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1322 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1323 // Note that the constructor just zeros things, and since I use Arena
1324 // allocation I do not need a destructor to reclaim storage.
1325 class Node_Array : public ResourceObj {
1326   friend class VMStructs;
1327 protected:
1328   Arena *_a;                    // Arena to allocate in
1329   uint   _max;
1330   Node **_nodes;
1331   void   grow( uint i );        // Grow array node to fit
1332 public:
1333   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1334     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1335     for( int i = 0; i < OptoNodeListSize; i++ ) {
1336       _nodes[i] = NULL;
1337     }
1338   }
1339 
1340   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1341   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1342   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1343   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1344   Node **adr() { return _nodes; }
1345   // Extend the mapping: index i maps to Node *n.
1346   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1347   void insert( uint i, Node *n );
1348   void remove( uint i );        // Remove, preserving order
1349   void sort( C_sort_func_t func);
1350   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1351   void clear();                 // Set all entries to NULL, keep storage
1352   uint Size() const { return _max; }
1353   void dump() const;
1354 };
1355 
1356 class Node_List : public Node_Array {
1357   friend class VMStructs;
1358   uint _cnt;
1359 public:
1360   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1361   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1362   bool contains(const Node* n) const {
1363     for (uint e = 0; e < size(); e++) {
1364       if (at(e) == n) return true;
1365     }
1366     return false;
1367   }
1368   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1369   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1370   void push( Node *b ) { map(_cnt++,b); }
1371   void yank( Node *n );         // Find and remove
1372   Node *pop() { return _nodes[--_cnt]; }
1373   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1374   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1375   uint size() const { return _cnt; }
1376   void dump() const;
1377 };
1378 
1379 //------------------------------Unique_Node_List-------------------------------
1380 class Unique_Node_List : public Node_List {
1381   friend class VMStructs;
1382   VectorSet _in_worklist;
1383   uint _clock_index;            // Index in list where to pop from next
1384 public:
1385   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1386   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1387 
1388   void remove( Node *n );
1389   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1390   VectorSet &member_set(){ return _in_worklist; }
1391 
1392   void push( Node *b ) {
1393     if( !_in_worklist.test_set(b->_idx) )
1394       Node_List::push(b);
1395   }
1396   Node *pop() {
1397     if( _clock_index >= size() ) _clock_index = 0;
1398     Node *b = at(_clock_index);
1399     map( _clock_index, Node_List::pop());
1400     if (size() != 0) _clock_index++; // Always start from 0
1401     _in_worklist >>= b->_idx;
1402     return b;
1403   }
1404   Node *remove( uint i ) {
1405     Node *b = Node_List::at(i);
1406     _in_worklist >>= b->_idx;
1407     map(i,Node_List::pop());
1408     return b;
1409   }
1410   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1411   void  clear() {
1412     _in_worklist.Clear();        // Discards storage but grows automatically
1413     Node_List::clear();
1414     _clock_index = 0;
1415   }
1416 
1417   // Used after parsing to remove useless nodes before Iterative GVN
1418   void remove_useless_nodes(VectorSet &useful);
1419 
1420 #ifndef PRODUCT
1421   void print_set() const { _in_worklist.print(); }
1422 #endif
1423 };
1424 
1425 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1426 inline void Compile::record_for_igvn(Node* n) {
1427   _for_igvn->push(n);
1428 }
1429 
1430 //------------------------------Node_Stack-------------------------------------
1431 class Node_Stack {
1432   friend class VMStructs;
1433 protected:
1434   struct INode {
1435     Node *node; // Processed node
1436     uint  indx; // Index of next node's child
1437   };
1438   INode *_inode_top; // tos, stack grows up
1439   INode *_inode_max; // End of _inodes == _inodes + _max
1440   INode *_inodes;    // Array storage for the stack
1441   Arena *_a;         // Arena to allocate in
1442   void grow();
1443 public:
1444   Node_Stack(int size) {
1445     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1446     _a = Thread::current()->resource_area();
1447     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1448     _inode_max = _inodes + max;
1449     _inode_top = _inodes - 1; // stack is empty
1450   }
1451 
1452   Node_Stack(Arena *a, int size) : _a(a) {
1453     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1454     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1455     _inode_max = _inodes + max;
1456     _inode_top = _inodes - 1; // stack is empty
1457   }
1458 
1459   void pop() {
1460     assert(_inode_top >= _inodes, "node stack underflow");
1461     --_inode_top;
1462   }
1463   void push(Node *n, uint i) {
1464     ++_inode_top;
1465     if (_inode_top >= _inode_max) grow();
1466     INode *top = _inode_top; // optimization
1467     top->node = n;
1468     top->indx = i;
1469   }
1470   Node *node() const {
1471     return _inode_top->node;
1472   }
1473   Node* node_at(uint i) const {
1474     assert(_inodes + i <= _inode_top, "in range");
1475     return _inodes[i].node;
1476   }
1477   uint index() const {
1478     return _inode_top->indx;
1479   }
1480   uint index_at(uint i) const {
1481     assert(_inodes + i <= _inode_top, "in range");
1482     return _inodes[i].indx;
1483   }
1484   void set_node(Node *n) {
1485     _inode_top->node = n;
1486   }
1487   void set_index(uint i) {
1488     _inode_top->indx = i;
1489   }
1490   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1491   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1492   bool is_nonempty() const { return (_inode_top >= _inodes); }
1493   bool is_empty() const { return (_inode_top < _inodes); }
1494   void clear() { _inode_top = _inodes - 1; } // retain storage
1495 
1496   // Node_Stack is used to map nodes.
1497   Node* find(uint idx) const;
1498 };
1499 
1500 
1501 //-----------------------------Node_Notes--------------------------------------
1502 // Debugging or profiling annotations loosely and sparsely associated
1503 // with some nodes.  See Compile::node_notes_at for the accessor.
1504 class Node_Notes VALUE_OBJ_CLASS_SPEC {
1505   friend class VMStructs;
1506   JVMState* _jvms;
1507 
1508 public:
1509   Node_Notes(JVMState* jvms = NULL) {
1510     _jvms = jvms;
1511   }
1512 
1513   JVMState* jvms()            { return _jvms; }
1514   void  set_jvms(JVMState* x) {        _jvms = x; }
1515 
1516   // True if there is nothing here.
1517   bool is_clear() {
1518     return (_jvms == NULL);
1519   }
1520 
1521   // Make there be nothing here.
1522   void clear() {
1523     _jvms = NULL;
1524   }
1525 
1526   // Make a new, clean node notes.
1527   static Node_Notes* make(Compile* C) {
1528     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1529     nn->clear();
1530     return nn;
1531   }
1532 
1533   Node_Notes* clone(Compile* C) {
1534     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1535     (*nn) = (*this);
1536     return nn;
1537   }
1538 
1539   // Absorb any information from source.
1540   bool update_from(Node_Notes* source) {
1541     bool changed = false;
1542     if (source != NULL) {
1543       if (source->jvms() != NULL) {
1544         set_jvms(source->jvms());
1545         changed = true;
1546       }
1547     }
1548     return changed;
1549   }
1550 };
1551 
1552 // Inlined accessors for Compile::node_nodes that require the preceding class:
1553 inline Node_Notes*
1554 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1555                            int idx, bool can_grow) {
1556   assert(idx >= 0, "oob");
1557   int block_idx = (idx >> _log2_node_notes_block_size);
1558   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1559   if (grow_by >= 0) {
1560     if (!can_grow)  return NULL;
1561     grow_node_notes(arr, grow_by + 1);
1562   }
1563   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1564   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1565 }
1566 
1567 inline bool
1568 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1569   if (value == NULL || value->is_clear())
1570     return false;  // nothing to write => write nothing
1571   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1572   assert(loc != NULL, "");
1573   return loc->update_from(value);
1574 }
1575 
1576 
1577 //------------------------------TypeNode---------------------------------------
1578 // Node with a Type constant.
1579 class TypeNode : public Node {
1580 protected:
1581   virtual uint hash() const;    // Check the type
1582   virtual uint cmp( const Node &n ) const;
1583   virtual uint size_of() const; // Size is bigger
1584   const Type* const _type;
1585 public:
1586   void set_type(const Type* t) {
1587     assert(t != NULL, "sanity");
1588     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1589     *(const Type**)&_type = t;   // cast away const-ness
1590     // If this node is in the hash table, make sure it doesn't need a rehash.
1591     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1592   }
1593   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1594   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1595     init_class_id(Class_Type);
1596   }
1597   virtual const Type *Value( PhaseTransform *phase ) const;
1598   virtual const Type *bottom_type() const;
1599   virtual       uint  ideal_reg() const;
1600 #ifndef PRODUCT
1601   virtual void dump_spec(outputStream *st) const;
1602 #endif
1603 };
1604 
1605 #endif // SHARE_VM_OPTO_NODE_HPP