1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/block.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/callGenerator.hpp"
  40 #include "opto/callnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/chaitin.hpp"
  43 #include "opto/compile.hpp"
  44 #include "opto/connode.hpp"
  45 #include "opto/convertnode.hpp"
  46 #include "opto/divnode.hpp"
  47 #include "opto/escape.hpp"
  48 #include "opto/idealGraphPrinter.hpp"
  49 #include "opto/loopnode.hpp"
  50 #include "opto/machnode.hpp"
  51 #include "opto/macro.hpp"
  52 #include "opto/matcher.hpp"
  53 #include "opto/mathexactnode.hpp"
  54 #include "opto/memnode.hpp"
  55 #include "opto/mulnode.hpp"
  56 #include "opto/narrowptrnode.hpp"
  57 #include "opto/node.hpp"
  58 #include "opto/opcodes.hpp"
  59 #include "opto/output.hpp"
  60 #include "opto/parse.hpp"
  61 #include "opto/phaseX.hpp"
  62 #include "opto/rootnode.hpp"
  63 #include "opto/runtime.hpp"
  64 #include "opto/stringopts.hpp"
  65 #include "opto/type.hpp"
  66 #include "opto/vectornode.hpp"
  67 #include "runtime/arguments.hpp"
  68 #include "runtime/sharedRuntime.hpp"
  69 #include "runtime/signature.hpp"
  70 #include "runtime/stubRoutines.hpp"
  71 #include "runtime/timer.hpp"
  72 #include "utilities/copy.hpp"
  73 
  74 
  75 // -------------------- Compile::mach_constant_base_node -----------------------
  76 // Constant table base node singleton.
  77 MachConstantBaseNode* Compile::mach_constant_base_node() {
  78   if (_mach_constant_base_node == NULL) {
  79     _mach_constant_base_node = new MachConstantBaseNode();
  80     _mach_constant_base_node->add_req(C->root());
  81   }
  82   return _mach_constant_base_node;
  83 }
  84 
  85 
  86 /// Support for intrinsics.
  87 
  88 // Return the index at which m must be inserted (or already exists).
  89 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  90 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
  91 #ifdef ASSERT
  92   for (int i = 1; i < _intrinsics->length(); i++) {
  93     CallGenerator* cg1 = _intrinsics->at(i-1);
  94     CallGenerator* cg2 = _intrinsics->at(i);
  95     assert(cg1->method() != cg2->method()
  96            ? cg1->method()     < cg2->method()
  97            : cg1->is_virtual() < cg2->is_virtual(),
  98            "compiler intrinsics list must stay sorted");
  99   }
 100 #endif
 101   // Binary search sorted list, in decreasing intervals [lo, hi].
 102   int lo = 0, hi = _intrinsics->length()-1;
 103   while (lo <= hi) {
 104     int mid = (uint)(hi + lo) / 2;
 105     ciMethod* mid_m = _intrinsics->at(mid)->method();
 106     if (m < mid_m) {
 107       hi = mid-1;
 108     } else if (m > mid_m) {
 109       lo = mid+1;
 110     } else {
 111       // look at minor sort key
 112       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 113       if (is_virtual < mid_virt) {
 114         hi = mid-1;
 115       } else if (is_virtual > mid_virt) {
 116         lo = mid+1;
 117       } else {
 118         return mid;  // exact match
 119       }
 120     }
 121   }
 122   return lo;  // inexact match
 123 }
 124 
 125 void Compile::register_intrinsic(CallGenerator* cg) {
 126   if (_intrinsics == NULL) {
 127     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 128   }
 129   // This code is stolen from ciObjectFactory::insert.
 130   // Really, GrowableArray should have methods for
 131   // insert_at, remove_at, and binary_search.
 132   int len = _intrinsics->length();
 133   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 134   if (index == len) {
 135     _intrinsics->append(cg);
 136   } else {
 137 #ifdef ASSERT
 138     CallGenerator* oldcg = _intrinsics->at(index);
 139     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 140 #endif
 141     _intrinsics->append(_intrinsics->at(len-1));
 142     int pos;
 143     for (pos = len-2; pos >= index; pos--) {
 144       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 145     }
 146     _intrinsics->at_put(index, cg);
 147   }
 148   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 149 }
 150 
 151 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 152   assert(m->is_loaded(), "don't try this on unloaded methods");
 153   if (_intrinsics != NULL) {
 154     int index = intrinsic_insertion_index(m, is_virtual);
 155     if (index < _intrinsics->length()
 156         && _intrinsics->at(index)->method() == m
 157         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 158       return _intrinsics->at(index);
 159     }
 160   }
 161   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 162   if (m->intrinsic_id() != vmIntrinsics::_none &&
 163       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 164     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 165     if (cg != NULL) {
 166       // Save it for next time:
 167       register_intrinsic(cg);
 168       return cg;
 169     } else {
 170       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 171     }
 172   }
 173   return NULL;
 174 }
 175 
 176 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 177 // in library_call.cpp.
 178 
 179 
 180 #ifndef PRODUCT
 181 // statistics gathering...
 182 
 183 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 184 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 185 
 186 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 187   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 188   int oflags = _intrinsic_hist_flags[id];
 189   assert(flags != 0, "what happened?");
 190   if (is_virtual) {
 191     flags |= _intrinsic_virtual;
 192   }
 193   bool changed = (flags != oflags);
 194   if ((flags & _intrinsic_worked) != 0) {
 195     juint count = (_intrinsic_hist_count[id] += 1);
 196     if (count == 1) {
 197       changed = true;           // first time
 198     }
 199     // increment the overall count also:
 200     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 201   }
 202   if (changed) {
 203     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 204       // Something changed about the intrinsic's virtuality.
 205       if ((flags & _intrinsic_virtual) != 0) {
 206         // This is the first use of this intrinsic as a virtual call.
 207         if (oflags != 0) {
 208           // We already saw it as a non-virtual, so note both cases.
 209           flags |= _intrinsic_both;
 210         }
 211       } else if ((oflags & _intrinsic_both) == 0) {
 212         // This is the first use of this intrinsic as a non-virtual
 213         flags |= _intrinsic_both;
 214       }
 215     }
 216     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 217   }
 218   // update the overall flags also:
 219   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 220   return changed;
 221 }
 222 
 223 static char* format_flags(int flags, char* buf) {
 224   buf[0] = 0;
 225   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 226   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 227   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 228   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 229   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 230   if (buf[0] == 0)  strcat(buf, ",");
 231   assert(buf[0] == ',', "must be");
 232   return &buf[1];
 233 }
 234 
 235 void Compile::print_intrinsic_statistics() {
 236   char flagsbuf[100];
 237   ttyLocker ttyl;
 238   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 239   tty->print_cr("Compiler intrinsic usage:");
 240   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 241   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 242   #define PRINT_STAT_LINE(name, c, f) \
 243     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 244   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 245     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 246     int   flags = _intrinsic_hist_flags[id];
 247     juint count = _intrinsic_hist_count[id];
 248     if ((flags | count) != 0) {
 249       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 250     }
 251   }
 252   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 253   if (xtty != NULL)  xtty->tail("statistics");
 254 }
 255 
 256 void Compile::print_statistics() {
 257   { ttyLocker ttyl;
 258     if (xtty != NULL)  xtty->head("statistics type='opto'");
 259     Parse::print_statistics();
 260     PhaseCCP::print_statistics();
 261     PhaseRegAlloc::print_statistics();
 262     Scheduling::print_statistics();
 263     PhasePeephole::print_statistics();
 264     PhaseIdealLoop::print_statistics();
 265     if (xtty != NULL)  xtty->tail("statistics");
 266   }
 267   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 268     // put this under its own <statistics> element.
 269     print_intrinsic_statistics();
 270   }
 271 }
 272 #endif //PRODUCT
 273 
 274 // Support for bundling info
 275 Bundle* Compile::node_bundling(const Node *n) {
 276   assert(valid_bundle_info(n), "oob");
 277   return &_node_bundling_base[n->_idx];
 278 }
 279 
 280 bool Compile::valid_bundle_info(const Node *n) {
 281   return (_node_bundling_limit > n->_idx);
 282 }
 283 
 284 
 285 void Compile::gvn_replace_by(Node* n, Node* nn) {
 286   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 287     Node* use = n->last_out(i);
 288     bool is_in_table = initial_gvn()->hash_delete(use);
 289     uint uses_found = 0;
 290     for (uint j = 0; j < use->len(); j++) {
 291       if (use->in(j) == n) {
 292         if (j < use->req())
 293           use->set_req(j, nn);
 294         else
 295           use->set_prec(j, nn);
 296         uses_found++;
 297       }
 298     }
 299     if (is_in_table) {
 300       // reinsert into table
 301       initial_gvn()->hash_find_insert(use);
 302     }
 303     record_for_igvn(use);
 304     i -= uses_found;    // we deleted 1 or more copies of this edge
 305   }
 306 }
 307 
 308 
 309 static inline bool not_a_node(const Node* n) {
 310   if (n == NULL)                   return true;
 311   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 312   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 313   return false;
 314 }
 315 
 316 // Identify all nodes that are reachable from below, useful.
 317 // Use breadth-first pass that records state in a Unique_Node_List,
 318 // recursive traversal is slower.
 319 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 320   int estimated_worklist_size = live_nodes();
 321   useful.map( estimated_worklist_size, NULL );  // preallocate space
 322 
 323   // Initialize worklist
 324   if (root() != NULL)     { useful.push(root()); }
 325   // If 'top' is cached, declare it useful to preserve cached node
 326   if( cached_top_node() ) { useful.push(cached_top_node()); }
 327 
 328   // Push all useful nodes onto the list, breadthfirst
 329   for( uint next = 0; next < useful.size(); ++next ) {
 330     assert( next < unique(), "Unique useful nodes < total nodes");
 331     Node *n  = useful.at(next);
 332     uint max = n->len();
 333     for( uint i = 0; i < max; ++i ) {
 334       Node *m = n->in(i);
 335       if (not_a_node(m))  continue;
 336       useful.push(m);
 337     }
 338   }
 339 }
 340 
 341 // Update dead_node_list with any missing dead nodes using useful
 342 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 343 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 344   uint max_idx = unique();
 345   VectorSet& useful_node_set = useful.member_set();
 346 
 347   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 348     // If node with index node_idx is not in useful set,
 349     // mark it as dead in dead node list.
 350     if (! useful_node_set.test(node_idx) ) {
 351       record_dead_node(node_idx);
 352     }
 353   }
 354 }
 355 
 356 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 357   int shift = 0;
 358   for (int i = 0; i < inlines->length(); i++) {
 359     CallGenerator* cg = inlines->at(i);
 360     CallNode* call = cg->call_node();
 361     if (shift > 0) {
 362       inlines->at_put(i-shift, cg);
 363     }
 364     if (!useful.member(call)) {
 365       shift++;
 366     }
 367   }
 368   inlines->trunc_to(inlines->length()-shift);
 369 }
 370 
 371 // Disconnect all useless nodes by disconnecting those at the boundary.
 372 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 373   uint next = 0;
 374   while (next < useful.size()) {
 375     Node *n = useful.at(next++);
 376     if (n->is_SafePoint()) {
 377       // We're done with a parsing phase. Replaced nodes are not valid
 378       // beyond that point.
 379       n->as_SafePoint()->delete_replaced_nodes();
 380     }
 381     // Use raw traversal of out edges since this code removes out edges
 382     int max = n->outcnt();
 383     for (int j = 0; j < max; ++j) {
 384       Node* child = n->raw_out(j);
 385       if (! useful.member(child)) {
 386         assert(!child->is_top() || child != top(),
 387                "If top is cached in Compile object it is in useful list");
 388         // Only need to remove this out-edge to the useless node
 389         n->raw_del_out(j);
 390         --j;
 391         --max;
 392       }
 393     }
 394     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 395       record_for_igvn(n->unique_out());
 396     }
 397   }
 398   // Remove useless macro and predicate opaq nodes
 399   for (int i = C->macro_count()-1; i >= 0; i--) {
 400     Node* n = C->macro_node(i);
 401     if (!useful.member(n)) {
 402       remove_macro_node(n);
 403     }
 404   }
 405   // Remove useless expensive node
 406   for (int i = C->expensive_count()-1; i >= 0; i--) {
 407     Node* n = C->expensive_node(i);
 408     if (!useful.member(n)) {
 409       remove_expensive_node(n);
 410     }
 411   }
 412   // clean up the late inline lists
 413   remove_useless_late_inlines(&_string_late_inlines, useful);
 414   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 415   remove_useless_late_inlines(&_late_inlines, useful);
 416   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 417 }
 418 
 419 //------------------------------frame_size_in_words-----------------------------
 420 // frame_slots in units of words
 421 int Compile::frame_size_in_words() const {
 422   // shift is 0 in LP32 and 1 in LP64
 423   const int shift = (LogBytesPerWord - LogBytesPerInt);
 424   int words = _frame_slots >> shift;
 425   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 426   return words;
 427 }
 428 
 429 // To bang the stack of this compiled method we use the stack size
 430 // that the interpreter would need in case of a deoptimization. This
 431 // removes the need to bang the stack in the deoptimization blob which
 432 // in turn simplifies stack overflow handling.
 433 int Compile::bang_size_in_bytes() const {
 434   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 435 }
 436 
 437 // ============================================================================
 438 //------------------------------CompileWrapper---------------------------------
 439 class CompileWrapper : public StackObj {
 440   Compile *const _compile;
 441  public:
 442   CompileWrapper(Compile* compile);
 443 
 444   ~CompileWrapper();
 445 };
 446 
 447 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 448   // the Compile* pointer is stored in the current ciEnv:
 449   ciEnv* env = compile->env();
 450   assert(env == ciEnv::current(), "must already be a ciEnv active");
 451   assert(env->compiler_data() == NULL, "compile already active?");
 452   env->set_compiler_data(compile);
 453   assert(compile == Compile::current(), "sanity");
 454 
 455   compile->set_type_dict(NULL);
 456   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 457   compile->clone_map().set_clone_idx(0);
 458   compile->set_type_hwm(NULL);
 459   compile->set_type_last_size(0);
 460   compile->set_last_tf(NULL, NULL);
 461   compile->set_indexSet_arena(NULL);
 462   compile->set_indexSet_free_block_list(NULL);
 463   compile->init_type_arena();
 464   Type::Initialize(compile);
 465   _compile->set_scratch_buffer_blob(NULL);
 466   _compile->begin_method();
 467   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 468 }
 469 CompileWrapper::~CompileWrapper() {
 470   _compile->end_method();
 471   if (_compile->scratch_buffer_blob() != NULL)
 472     BufferBlob::free(_compile->scratch_buffer_blob());
 473   _compile->env()->set_compiler_data(NULL);
 474 }
 475 
 476 
 477 //----------------------------print_compile_messages---------------------------
 478 void Compile::print_compile_messages() {
 479 #ifndef PRODUCT
 480   // Check if recompiling
 481   if (_subsume_loads == false && PrintOpto) {
 482     // Recompiling without allowing machine instructions to subsume loads
 483     tty->print_cr("*********************************************************");
 484     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 485     tty->print_cr("*********************************************************");
 486   }
 487   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 488     // Recompiling without escape analysis
 489     tty->print_cr("*********************************************************");
 490     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 491     tty->print_cr("*********************************************************");
 492   }
 493   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 494     // Recompiling without boxing elimination
 495     tty->print_cr("*********************************************************");
 496     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 497     tty->print_cr("*********************************************************");
 498   }
 499   if (C->directive()->BreakAtCompileOption) {
 500     // Open the debugger when compiling this method.
 501     tty->print("### Breaking when compiling: ");
 502     method()->print_short_name();
 503     tty->cr();
 504     BREAKPOINT;
 505   }
 506 
 507   if( PrintOpto ) {
 508     if (is_osr_compilation()) {
 509       tty->print("[OSR]%3d", _compile_id);
 510     } else {
 511       tty->print("%3d", _compile_id);
 512     }
 513   }
 514 #endif
 515 }
 516 
 517 
 518 //-----------------------init_scratch_buffer_blob------------------------------
 519 // Construct a temporary BufferBlob and cache it for this compile.
 520 void Compile::init_scratch_buffer_blob(int const_size) {
 521   // If there is already a scratch buffer blob allocated and the
 522   // constant section is big enough, use it.  Otherwise free the
 523   // current and allocate a new one.
 524   BufferBlob* blob = scratch_buffer_blob();
 525   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 526     // Use the current blob.
 527   } else {
 528     if (blob != NULL) {
 529       BufferBlob::free(blob);
 530     }
 531 
 532     ResourceMark rm;
 533     _scratch_const_size = const_size;
 534     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 535     blob = BufferBlob::create("Compile::scratch_buffer", size);
 536     // Record the buffer blob for next time.
 537     set_scratch_buffer_blob(blob);
 538     // Have we run out of code space?
 539     if (scratch_buffer_blob() == NULL) {
 540       // Let CompilerBroker disable further compilations.
 541       record_failure("Not enough space for scratch buffer in CodeCache");
 542       return;
 543     }
 544   }
 545 
 546   // Initialize the relocation buffers
 547   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 548   set_scratch_locs_memory(locs_buf);
 549 }
 550 
 551 
 552 //-----------------------scratch_emit_size-------------------------------------
 553 // Helper function that computes size by emitting code
 554 uint Compile::scratch_emit_size(const Node* n) {
 555   // Start scratch_emit_size section.
 556   set_in_scratch_emit_size(true);
 557 
 558   // Emit into a trash buffer and count bytes emitted.
 559   // This is a pretty expensive way to compute a size,
 560   // but it works well enough if seldom used.
 561   // All common fixed-size instructions are given a size
 562   // method by the AD file.
 563   // Note that the scratch buffer blob and locs memory are
 564   // allocated at the beginning of the compile task, and
 565   // may be shared by several calls to scratch_emit_size.
 566   // The allocation of the scratch buffer blob is particularly
 567   // expensive, since it has to grab the code cache lock.
 568   BufferBlob* blob = this->scratch_buffer_blob();
 569   assert(blob != NULL, "Initialize BufferBlob at start");
 570   assert(blob->size() > MAX_inst_size, "sanity");
 571   relocInfo* locs_buf = scratch_locs_memory();
 572   address blob_begin = blob->content_begin();
 573   address blob_end   = (address)locs_buf;
 574   assert(blob->content_contains(blob_end), "sanity");
 575   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 576   buf.initialize_consts_size(_scratch_const_size);
 577   buf.initialize_stubs_size(MAX_stubs_size);
 578   assert(locs_buf != NULL, "sanity");
 579   int lsize = MAX_locs_size / 3;
 580   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 581   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 582   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 583 
 584   // Do the emission.
 585 
 586   Label fakeL; // Fake label for branch instructions.
 587   Label*   saveL = NULL;
 588   uint save_bnum = 0;
 589   bool is_branch = n->is_MachBranch();
 590   if (is_branch) {
 591     MacroAssembler masm(&buf);
 592     masm.bind(fakeL);
 593     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 594     n->as_MachBranch()->label_set(&fakeL, 0);
 595   }
 596   n->emit(buf, this->regalloc());
 597 
 598   // Emitting into the scratch buffer should not fail
 599   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 600 
 601   if (is_branch) // Restore label.
 602     n->as_MachBranch()->label_set(saveL, save_bnum);
 603 
 604   // End scratch_emit_size section.
 605   set_in_scratch_emit_size(false);
 606 
 607   return buf.insts_size();
 608 }
 609 
 610 
 611 // ============================================================================
 612 //------------------------------Compile standard-------------------------------
 613 debug_only( int Compile::_debug_idx = 100000; )
 614 
 615 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 616 // the continuation bci for on stack replacement.
 617 
 618 
 619 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 620                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 621                 : Phase(Compiler),
 622                   _env(ci_env),
 623                   _directive(directive),
 624                   _log(ci_env->log()),
 625                   _compile_id(ci_env->compile_id()),
 626                   _save_argument_registers(false),
 627                   _stub_name(NULL),
 628                   _stub_function(NULL),
 629                   _stub_entry_point(NULL),
 630                   _method(target),
 631                   _entry_bci(osr_bci),
 632                   _initial_gvn(NULL),
 633                   _for_igvn(NULL),
 634                   _warm_calls(NULL),
 635                   _subsume_loads(subsume_loads),
 636                   _do_escape_analysis(do_escape_analysis),
 637                   _eliminate_boxing(eliminate_boxing),
 638                   _failure_reason(NULL),
 639                   _code_buffer("Compile::Fill_buffer"),
 640                   _orig_pc_slot(0),
 641                   _orig_pc_slot_offset_in_bytes(0),
 642                   _has_method_handle_invokes(false),
 643                   _mach_constant_base_node(NULL),
 644                   _node_bundling_limit(0),
 645                   _node_bundling_base(NULL),
 646                   _java_calls(0),
 647                   _inner_loops(0),
 648                   _scratch_const_size(-1),
 649                   _in_scratch_emit_size(false),
 650                   _dead_node_list(comp_arena()),
 651                   _dead_node_count(0),
 652 #ifndef PRODUCT
 653                   _trace_opto_output(directive->TraceOptoOutputOption),
 654                   _in_dump_cnt(0),
 655                   _printer(IdealGraphPrinter::printer()),
 656 #endif
 657                   _congraph(NULL),
 658                   _comp_arena(mtCompiler),
 659                   _node_arena(mtCompiler),
 660                   _old_arena(mtCompiler),
 661                   _Compile_types(mtCompiler),
 662                   _replay_inline_data(NULL),
 663                   _late_inlines(comp_arena(), 2, 0, NULL),
 664                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 665                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 666                   _late_inlines_pos(0),
 667                   _number_of_mh_late_inlines(0),
 668                   _inlining_progress(false),
 669                   _inlining_incrementally(false),
 670                   _print_inlining_list(NULL),
 671                   _print_inlining_stream(NULL),
 672                   _print_inlining_idx(0),
 673                   _print_inlining_output(NULL),
 674                   _interpreter_frame_size(0),
 675                   _max_node_limit(MaxNodeLimit) {
 676   C = this;
 677 #ifndef PRODUCT
 678   if (_printer != NULL) {
 679     _printer->set_compile(this);
 680   }
 681 #endif
 682   CompileWrapper cw(this);
 683 
 684   if (CITimeVerbose) {
 685     tty->print(" ");
 686     target->holder()->name()->print();
 687     tty->print(".");
 688     target->print_short_name();
 689     tty->print("  ");
 690   }
 691   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 692   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 693 
 694 #ifndef PRODUCT
 695   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 696   if (!print_opto_assembly) {
 697     bool print_assembly = directive->PrintAssemblyOption;
 698     if (print_assembly && !Disassembler::can_decode()) {
 699       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 700       print_opto_assembly = true;
 701     }
 702   }
 703   set_print_assembly(print_opto_assembly);
 704   set_parsed_irreducible_loop(false);
 705 
 706   if (directive->ReplayInlineOption) {
 707     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 708   }
 709 #endif
 710   set_print_inlining(directive->PrintInliningOption NOT_PRODUCT( || PrintOptoInlining));
 711   set_print_intrinsics(directive->PrintIntrinsicsOption);
 712   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 713 
 714   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 715     // Make sure the method being compiled gets its own MDO,
 716     // so we can at least track the decompile_count().
 717     // Need MDO to record RTM code generation state.
 718     method()->ensure_method_data();
 719   }
 720 
 721   Init(::AliasLevel);
 722 
 723 
 724   print_compile_messages();
 725 
 726   _ilt = InlineTree::build_inline_tree_root();
 727 
 728   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 729   assert(num_alias_types() >= AliasIdxRaw, "");
 730 
 731 #define MINIMUM_NODE_HASH  1023
 732   // Node list that Iterative GVN will start with
 733   Unique_Node_List for_igvn(comp_arena());
 734   set_for_igvn(&for_igvn);
 735 
 736   // GVN that will be run immediately on new nodes
 737   uint estimated_size = method()->code_size()*4+64;
 738   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 739   PhaseGVN gvn(node_arena(), estimated_size);
 740   set_initial_gvn(&gvn);
 741 
 742   print_inlining_init();
 743   { // Scope for timing the parser
 744     TracePhase tp("parse", &timers[_t_parser]);
 745 
 746     // Put top into the hash table ASAP.
 747     initial_gvn()->transform_no_reclaim(top());
 748 
 749     // Set up tf(), start(), and find a CallGenerator.
 750     CallGenerator* cg = NULL;
 751     if (is_osr_compilation()) {
 752       const TypeTuple *domain = StartOSRNode::osr_domain();
 753       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 754       init_tf(TypeFunc::make(domain, range));
 755       StartNode* s = new StartOSRNode(root(), domain);
 756       initial_gvn()->set_type_bottom(s);
 757       init_start(s);
 758       cg = CallGenerator::for_osr(method(), entry_bci());
 759     } else {
 760       // Normal case.
 761       init_tf(TypeFunc::make(method()));
 762       StartNode* s = new StartNode(root(), tf()->domain());
 763       initial_gvn()->set_type_bottom(s);
 764       init_start(s);
 765       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 766         // With java.lang.ref.reference.get() we must go through the
 767         // intrinsic when G1 is enabled - even when get() is the root
 768         // method of the compile - so that, if necessary, the value in
 769         // the referent field of the reference object gets recorded by
 770         // the pre-barrier code.
 771         // Specifically, if G1 is enabled, the value in the referent
 772         // field is recorded by the G1 SATB pre barrier. This will
 773         // result in the referent being marked live and the reference
 774         // object removed from the list of discovered references during
 775         // reference processing.
 776         cg = find_intrinsic(method(), false);
 777       }
 778       if (cg == NULL) {
 779         float past_uses = method()->interpreter_invocation_count();
 780         float expected_uses = past_uses;
 781         cg = CallGenerator::for_inline(method(), expected_uses);
 782       }
 783     }
 784     if (failing())  return;
 785     if (cg == NULL) {
 786       record_method_not_compilable_all_tiers("cannot parse method");
 787       return;
 788     }
 789     JVMState* jvms = build_start_state(start(), tf());
 790     if ((jvms = cg->generate(jvms)) == NULL) {
 791       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 792         record_method_not_compilable("method parse failed");
 793       }
 794       return;
 795     }
 796     GraphKit kit(jvms);
 797 
 798     if (!kit.stopped()) {
 799       // Accept return values, and transfer control we know not where.
 800       // This is done by a special, unique ReturnNode bound to root.
 801       return_values(kit.jvms());
 802     }
 803 
 804     if (kit.has_exceptions()) {
 805       // Any exceptions that escape from this call must be rethrown
 806       // to whatever caller is dynamically above us on the stack.
 807       // This is done by a special, unique RethrowNode bound to root.
 808       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 809     }
 810 
 811     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 812 
 813     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 814       inline_string_calls(true);
 815     }
 816 
 817     if (failing())  return;
 818 
 819     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 820 
 821     // Remove clutter produced by parsing.
 822     if (!failing()) {
 823       ResourceMark rm;
 824       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 825     }
 826   }
 827 
 828   // Note:  Large methods are capped off in do_one_bytecode().
 829   if (failing())  return;
 830 
 831   // After parsing, node notes are no longer automagic.
 832   // They must be propagated by register_new_node_with_optimizer(),
 833   // clone(), or the like.
 834   set_default_node_notes(NULL);
 835 
 836   for (;;) {
 837     int successes = Inline_Warm();
 838     if (failing())  return;
 839     if (successes == 0)  break;
 840   }
 841 
 842   // Drain the list.
 843   Finish_Warm();
 844 #ifndef PRODUCT
 845   if (_printer && _printer->should_print(1)) {
 846     _printer->print_inlining();
 847   }
 848 #endif
 849 
 850   if (failing())  return;
 851   NOT_PRODUCT( verify_graph_edges(); )
 852 
 853   // Now optimize
 854   Optimize();
 855   if (failing())  return;
 856   NOT_PRODUCT( verify_graph_edges(); )
 857 
 858 #ifndef PRODUCT
 859   if (PrintIdeal) {
 860     ttyLocker ttyl;  // keep the following output all in one block
 861     // This output goes directly to the tty, not the compiler log.
 862     // To enable tools to match it up with the compilation activity,
 863     // be sure to tag this tty output with the compile ID.
 864     if (xtty != NULL) {
 865       xtty->head("ideal compile_id='%d'%s", compile_id(),
 866                  is_osr_compilation()    ? " compile_kind='osr'" :
 867                  "");
 868     }
 869     root()->dump(9999);
 870     if (xtty != NULL) {
 871       xtty->tail("ideal");
 872     }
 873   }
 874 #endif
 875 
 876   NOT_PRODUCT( verify_barriers(); )
 877 
 878   // Dump compilation data to replay it.
 879   if (directive->DumpReplayOption) {
 880     env()->dump_replay_data(_compile_id);
 881   }
 882   if (directive->DumpInlineOption && (ilt() != NULL)) {
 883     env()->dump_inline_data(_compile_id);
 884   }
 885 
 886   // Now that we know the size of all the monitors we can add a fixed slot
 887   // for the original deopt pc.
 888 
 889   _orig_pc_slot =  fixed_slots();
 890   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 891   set_fixed_slots(next_slot);
 892 
 893   // Compute when to use implicit null checks. Used by matching trap based
 894   // nodes and NullCheck optimization.
 895   set_allowed_deopt_reasons();
 896 
 897   // Now generate code
 898   Code_Gen();
 899   if (failing())  return;
 900 
 901   // Check if we want to skip execution of all compiled code.
 902   {
 903 #ifndef PRODUCT
 904     if (OptoNoExecute) {
 905       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 906       return;
 907     }
 908 #endif
 909     TracePhase tp("install_code", &timers[_t_registerMethod]);
 910 
 911     if (is_osr_compilation()) {
 912       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 913       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 914     } else {
 915       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 916       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 917     }
 918 
 919     env()->register_method(_method, _entry_bci,
 920                            &_code_offsets,
 921                            _orig_pc_slot_offset_in_bytes,
 922                            code_buffer(),
 923                            frame_size_in_words(), _oop_map_set,
 924                            &_handler_table, &_inc_table,
 925                            compiler,
 926                            has_unsafe_access(),
 927                            SharedRuntime::is_wide_vector(max_vector_size()),
 928                            _directive,
 929                            rtm_state()
 930                            );
 931 
 932     if (log() != NULL) // Print code cache state into compiler log
 933       log()->code_cache_state();
 934   }
 935 }
 936 
 937 //------------------------------Compile----------------------------------------
 938 // Compile a runtime stub
 939 Compile::Compile( ciEnv* ci_env,
 940                   TypeFunc_generator generator,
 941                   address stub_function,
 942                   const char *stub_name,
 943                   int is_fancy_jump,
 944                   bool pass_tls,
 945                   bool save_arg_registers,
 946                   bool return_pc,
 947                   DirectiveSet* directive)
 948   : Phase(Compiler),
 949     _env(ci_env),
 950     _directive(directive),
 951     _log(ci_env->log()),
 952     _compile_id(0),
 953     _save_argument_registers(save_arg_registers),
 954     _method(NULL),
 955     _stub_name(stub_name),
 956     _stub_function(stub_function),
 957     _stub_entry_point(NULL),
 958     _entry_bci(InvocationEntryBci),
 959     _initial_gvn(NULL),
 960     _for_igvn(NULL),
 961     _warm_calls(NULL),
 962     _orig_pc_slot(0),
 963     _orig_pc_slot_offset_in_bytes(0),
 964     _subsume_loads(true),
 965     _do_escape_analysis(false),
 966     _eliminate_boxing(false),
 967     _failure_reason(NULL),
 968     _code_buffer("Compile::Fill_buffer"),
 969     _has_method_handle_invokes(false),
 970     _mach_constant_base_node(NULL),
 971     _node_bundling_limit(0),
 972     _node_bundling_base(NULL),
 973     _java_calls(0),
 974     _inner_loops(0),
 975 #ifndef PRODUCT
 976     _trace_opto_output(TraceOptoOutput),
 977     _in_dump_cnt(0),
 978     _printer(NULL),
 979 #endif
 980     _comp_arena(mtCompiler),
 981     _node_arena(mtCompiler),
 982     _old_arena(mtCompiler),
 983     _Compile_types(mtCompiler),
 984     _dead_node_list(comp_arena()),
 985     _dead_node_count(0),
 986     _congraph(NULL),
 987     _replay_inline_data(NULL),
 988     _number_of_mh_late_inlines(0),
 989     _inlining_progress(false),
 990     _inlining_incrementally(false),
 991     _print_inlining_list(NULL),
 992     _print_inlining_stream(NULL),
 993     _print_inlining_idx(0),
 994     _print_inlining_output(NULL),
 995     _allowed_reasons(0),
 996     _interpreter_frame_size(0),
 997     _max_node_limit(MaxNodeLimit) {
 998   C = this;
 999 
1000   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1001   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1002 
1003 #ifndef PRODUCT
1004   set_print_assembly(PrintFrameConverterAssembly);
1005   set_parsed_irreducible_loop(false);
1006 #endif
1007   set_has_irreducible_loop(false); // no loops
1008 
1009   CompileWrapper cw(this);
1010   Init(/*AliasLevel=*/ 0);
1011   init_tf((*generator)());
1012 
1013   {
1014     // The following is a dummy for the sake of GraphKit::gen_stub
1015     Unique_Node_List for_igvn(comp_arena());
1016     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1017     PhaseGVN gvn(Thread::current()->resource_area(),255);
1018     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1019     gvn.transform_no_reclaim(top());
1020 
1021     GraphKit kit;
1022     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1023   }
1024 
1025   NOT_PRODUCT( verify_graph_edges(); )
1026   Code_Gen();
1027   if (failing())  return;
1028 
1029 
1030   // Entry point will be accessed using compile->stub_entry_point();
1031   if (code_buffer() == NULL) {
1032     Matcher::soft_match_failure();
1033   } else {
1034     if (PrintAssembly && (WizardMode || Verbose))
1035       tty->print_cr("### Stub::%s", stub_name);
1036 
1037     if (!failing()) {
1038       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1039 
1040       // Make the NMethod
1041       // For now we mark the frame as never safe for profile stackwalking
1042       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1043                                                       code_buffer(),
1044                                                       CodeOffsets::frame_never_safe,
1045                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1046                                                       frame_size_in_words(),
1047                                                       _oop_map_set,
1048                                                       save_arg_registers);
1049       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1050 
1051       _stub_entry_point = rs->entry_point();
1052     }
1053   }
1054 }
1055 
1056 //------------------------------Init-------------------------------------------
1057 // Prepare for a single compilation
1058 void Compile::Init(int aliaslevel) {
1059   _unique  = 0;
1060   _regalloc = NULL;
1061 
1062   _tf      = NULL;  // filled in later
1063   _top     = NULL;  // cached later
1064   _matcher = NULL;  // filled in later
1065   _cfg     = NULL;  // filled in later
1066 
1067   set_24_bit_selection_and_mode(Use24BitFP, false);
1068 
1069   _node_note_array = NULL;
1070   _default_node_notes = NULL;
1071   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1072 
1073   _immutable_memory = NULL; // filled in at first inquiry
1074 
1075   // Globally visible Nodes
1076   // First set TOP to NULL to give safe behavior during creation of RootNode
1077   set_cached_top_node(NULL);
1078   set_root(new RootNode());
1079   // Now that you have a Root to point to, create the real TOP
1080   set_cached_top_node( new ConNode(Type::TOP) );
1081   set_recent_alloc(NULL, NULL);
1082 
1083   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1084   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1085   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1086   env()->set_dependencies(new Dependencies(env()));
1087 
1088   _fixed_slots = 0;
1089   set_has_split_ifs(false);
1090   set_has_loops(has_method() && method()->has_loops()); // first approximation
1091   set_has_stringbuilder(false);
1092   set_has_boxed_value(false);
1093   _trap_can_recompile = false;  // no traps emitted yet
1094   _major_progress = true; // start out assuming good things will happen
1095   set_has_unsafe_access(false);
1096   set_max_vector_size(0);
1097   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1098   set_decompile_count(0);
1099 
1100   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1101   set_num_loop_opts(LoopOptsCount);
1102   set_do_inlining(Inline);
1103   set_max_inline_size(MaxInlineSize);
1104   set_freq_inline_size(FreqInlineSize);
1105   set_do_scheduling(OptoScheduling);
1106   set_do_count_invocations(false);
1107   set_do_method_data_update(false);
1108 
1109   set_do_vector_loop(false);
1110 
1111   if (AllowVectorizeOnDemand) {
1112     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1113       set_do_vector_loop(true);
1114       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1115     } else if (has_method() && method()->name() != 0 &&
1116                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1117       set_do_vector_loop(true);
1118     }
1119   }
1120   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1121   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1122 
1123   set_age_code(has_method() && method()->profile_aging());
1124   set_rtm_state(NoRTM); // No RTM lock eliding by default
1125   _max_node_limit = _directive->MaxNodeLimitOption;
1126 
1127 #if INCLUDE_RTM_OPT
1128   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1129     int rtm_state = method()->method_data()->rtm_state();
1130     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1131       // Don't generate RTM lock eliding code.
1132       set_rtm_state(NoRTM);
1133     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1134       // Generate RTM lock eliding code without abort ratio calculation code.
1135       set_rtm_state(UseRTM);
1136     } else if (UseRTMDeopt) {
1137       // Generate RTM lock eliding code and include abort ratio calculation
1138       // code if UseRTMDeopt is on.
1139       set_rtm_state(ProfileRTM);
1140     }
1141   }
1142 #endif
1143   if (debug_info()->recording_non_safepoints()) {
1144     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1145                         (comp_arena(), 8, 0, NULL));
1146     set_default_node_notes(Node_Notes::make(this));
1147   }
1148 
1149   // // -- Initialize types before each compile --
1150   // // Update cached type information
1151   // if( _method && _method->constants() )
1152   //   Type::update_loaded_types(_method, _method->constants());
1153 
1154   // Init alias_type map.
1155   if (!_do_escape_analysis && aliaslevel == 3)
1156     aliaslevel = 2;  // No unique types without escape analysis
1157   _AliasLevel = aliaslevel;
1158   const int grow_ats = 16;
1159   _max_alias_types = grow_ats;
1160   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1161   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1162   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1163   {
1164     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1165   }
1166   // Initialize the first few types.
1167   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1168   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1169   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1170   _num_alias_types = AliasIdxRaw+1;
1171   // Zero out the alias type cache.
1172   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1173   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1174   probe_alias_cache(NULL)->_index = AliasIdxTop;
1175 
1176   _intrinsics = NULL;
1177   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1178   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1179   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1180   register_library_intrinsics();
1181 }
1182 
1183 //---------------------------init_start----------------------------------------
1184 // Install the StartNode on this compile object.
1185 void Compile::init_start(StartNode* s) {
1186   if (failing())
1187     return; // already failing
1188   assert(s == start(), "");
1189 }
1190 
1191 /**
1192  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1193  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1194  * the ideal graph.
1195  */
1196 StartNode* Compile::start() const {
1197   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1198   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1199     Node* start = root()->fast_out(i);
1200     if (start->is_Start()) {
1201       return start->as_Start();
1202     }
1203   }
1204   fatal("Did not find Start node!");
1205   return NULL;
1206 }
1207 
1208 //-------------------------------immutable_memory-------------------------------------
1209 // Access immutable memory
1210 Node* Compile::immutable_memory() {
1211   if (_immutable_memory != NULL) {
1212     return _immutable_memory;
1213   }
1214   StartNode* s = start();
1215   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1216     Node *p = s->fast_out(i);
1217     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1218       _immutable_memory = p;
1219       return _immutable_memory;
1220     }
1221   }
1222   ShouldNotReachHere();
1223   return NULL;
1224 }
1225 
1226 //----------------------set_cached_top_node------------------------------------
1227 // Install the cached top node, and make sure Node::is_top works correctly.
1228 void Compile::set_cached_top_node(Node* tn) {
1229   if (tn != NULL)  verify_top(tn);
1230   Node* old_top = _top;
1231   _top = tn;
1232   // Calling Node::setup_is_top allows the nodes the chance to adjust
1233   // their _out arrays.
1234   if (_top != NULL)     _top->setup_is_top();
1235   if (old_top != NULL)  old_top->setup_is_top();
1236   assert(_top == NULL || top()->is_top(), "");
1237 }
1238 
1239 #ifdef ASSERT
1240 uint Compile::count_live_nodes_by_graph_walk() {
1241   Unique_Node_List useful(comp_arena());
1242   // Get useful node list by walking the graph.
1243   identify_useful_nodes(useful);
1244   return useful.size();
1245 }
1246 
1247 void Compile::print_missing_nodes() {
1248 
1249   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1250   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1251     return;
1252   }
1253 
1254   // This is an expensive function. It is executed only when the user
1255   // specifies VerifyIdealNodeCount option or otherwise knows the
1256   // additional work that needs to be done to identify reachable nodes
1257   // by walking the flow graph and find the missing ones using
1258   // _dead_node_list.
1259 
1260   Unique_Node_List useful(comp_arena());
1261   // Get useful node list by walking the graph.
1262   identify_useful_nodes(useful);
1263 
1264   uint l_nodes = C->live_nodes();
1265   uint l_nodes_by_walk = useful.size();
1266 
1267   if (l_nodes != l_nodes_by_walk) {
1268     if (_log != NULL) {
1269       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1270       _log->stamp();
1271       _log->end_head();
1272     }
1273     VectorSet& useful_member_set = useful.member_set();
1274     int last_idx = l_nodes_by_walk;
1275     for (int i = 0; i < last_idx; i++) {
1276       if (useful_member_set.test(i)) {
1277         if (_dead_node_list.test(i)) {
1278           if (_log != NULL) {
1279             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1280           }
1281           if (PrintIdealNodeCount) {
1282             // Print the log message to tty
1283               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1284               useful.at(i)->dump();
1285           }
1286         }
1287       }
1288       else if (! _dead_node_list.test(i)) {
1289         if (_log != NULL) {
1290           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1291         }
1292         if (PrintIdealNodeCount) {
1293           // Print the log message to tty
1294           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1295         }
1296       }
1297     }
1298     if (_log != NULL) {
1299       _log->tail("mismatched_nodes");
1300     }
1301   }
1302 }
1303 void Compile::record_modified_node(Node* n) {
1304   if (_modified_nodes != NULL && !_inlining_incrementally &&
1305       n->outcnt() != 0 && !n->is_Con()) {
1306     _modified_nodes->push(n);
1307   }
1308 }
1309 
1310 void Compile::remove_modified_node(Node* n) {
1311   if (_modified_nodes != NULL) {
1312     _modified_nodes->remove(n);
1313   }
1314 }
1315 #endif
1316 
1317 #ifndef PRODUCT
1318 void Compile::verify_top(Node* tn) const {
1319   if (tn != NULL) {
1320     assert(tn->is_Con(), "top node must be a constant");
1321     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1322     assert(tn->in(0) != NULL, "must have live top node");
1323   }
1324 }
1325 #endif
1326 
1327 
1328 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1329 
1330 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1331   guarantee(arr != NULL, "");
1332   int num_blocks = arr->length();
1333   if (grow_by < num_blocks)  grow_by = num_blocks;
1334   int num_notes = grow_by * _node_notes_block_size;
1335   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1336   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1337   while (num_notes > 0) {
1338     arr->append(notes);
1339     notes     += _node_notes_block_size;
1340     num_notes -= _node_notes_block_size;
1341   }
1342   assert(num_notes == 0, "exact multiple, please");
1343 }
1344 
1345 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1346   if (source == NULL || dest == NULL)  return false;
1347 
1348   if (dest->is_Con())
1349     return false;               // Do not push debug info onto constants.
1350 
1351 #ifdef ASSERT
1352   // Leave a bread crumb trail pointing to the original node:
1353   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1354     dest->set_debug_orig(source);
1355   }
1356 #endif
1357 
1358   if (node_note_array() == NULL)
1359     return false;               // Not collecting any notes now.
1360 
1361   // This is a copy onto a pre-existing node, which may already have notes.
1362   // If both nodes have notes, do not overwrite any pre-existing notes.
1363   Node_Notes* source_notes = node_notes_at(source->_idx);
1364   if (source_notes == NULL || source_notes->is_clear())  return false;
1365   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1366   if (dest_notes == NULL || dest_notes->is_clear()) {
1367     return set_node_notes_at(dest->_idx, source_notes);
1368   }
1369 
1370   Node_Notes merged_notes = (*source_notes);
1371   // The order of operations here ensures that dest notes will win...
1372   merged_notes.update_from(dest_notes);
1373   return set_node_notes_at(dest->_idx, &merged_notes);
1374 }
1375 
1376 
1377 //--------------------------allow_range_check_smearing-------------------------
1378 // Gating condition for coalescing similar range checks.
1379 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1380 // single covering check that is at least as strong as any of them.
1381 // If the optimization succeeds, the simplified (strengthened) range check
1382 // will always succeed.  If it fails, we will deopt, and then give up
1383 // on the optimization.
1384 bool Compile::allow_range_check_smearing() const {
1385   // If this method has already thrown a range-check,
1386   // assume it was because we already tried range smearing
1387   // and it failed.
1388   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1389   return !already_trapped;
1390 }
1391 
1392 
1393 //------------------------------flatten_alias_type-----------------------------
1394 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1395   int offset = tj->offset();
1396   TypePtr::PTR ptr = tj->ptr();
1397 
1398   // Known instance (scalarizable allocation) alias only with itself.
1399   bool is_known_inst = tj->isa_oopptr() != NULL &&
1400                        tj->is_oopptr()->is_known_instance();
1401 
1402   // Process weird unsafe references.
1403   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1404     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1405     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1406     tj = TypeOopPtr::BOTTOM;
1407     ptr = tj->ptr();
1408     offset = tj->offset();
1409   }
1410 
1411   // Array pointers need some flattening
1412   const TypeAryPtr *ta = tj->isa_aryptr();
1413   if (ta && ta->is_stable()) {
1414     // Erase stability property for alias analysis.
1415     tj = ta = ta->cast_to_stable(false);
1416   }
1417   if( ta && is_known_inst ) {
1418     if ( offset != Type::OffsetBot &&
1419          offset > arrayOopDesc::length_offset_in_bytes() ) {
1420       offset = Type::OffsetBot; // Flatten constant access into array body only
1421       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1422     }
1423   } else if( ta && _AliasLevel >= 2 ) {
1424     // For arrays indexed by constant indices, we flatten the alias
1425     // space to include all of the array body.  Only the header, klass
1426     // and array length can be accessed un-aliased.
1427     if( offset != Type::OffsetBot ) {
1428       if( ta->const_oop() ) { // MethodData* or Method*
1429         offset = Type::OffsetBot;   // Flatten constant access into array body
1430         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1431       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1432         // range is OK as-is.
1433         tj = ta = TypeAryPtr::RANGE;
1434       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1435         tj = TypeInstPtr::KLASS; // all klass loads look alike
1436         ta = TypeAryPtr::RANGE; // generic ignored junk
1437         ptr = TypePtr::BotPTR;
1438       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1439         tj = TypeInstPtr::MARK;
1440         ta = TypeAryPtr::RANGE; // generic ignored junk
1441         ptr = TypePtr::BotPTR;
1442       } else {                  // Random constant offset into array body
1443         offset = Type::OffsetBot;   // Flatten constant access into array body
1444         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1445       }
1446     }
1447     // Arrays of fixed size alias with arrays of unknown size.
1448     if (ta->size() != TypeInt::POS) {
1449       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1450       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1451     }
1452     // Arrays of known objects become arrays of unknown objects.
1453     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1454       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1455       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1456     }
1457     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1458       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1459       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1460     }
1461     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1462     // cannot be distinguished by bytecode alone.
1463     if (ta->elem() == TypeInt::BOOL) {
1464       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1465       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1466       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1467     }
1468     // During the 2nd round of IterGVN, NotNull castings are removed.
1469     // Make sure the Bottom and NotNull variants alias the same.
1470     // Also, make sure exact and non-exact variants alias the same.
1471     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1472       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1473     }
1474   }
1475 
1476   // Oop pointers need some flattening
1477   const TypeInstPtr *to = tj->isa_instptr();
1478   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1479     ciInstanceKlass *k = to->klass()->as_instance_klass();
1480     if( ptr == TypePtr::Constant ) {
1481       if (to->klass() != ciEnv::current()->Class_klass() ||
1482           offset < k->size_helper() * wordSize) {
1483         // No constant oop pointers (such as Strings); they alias with
1484         // unknown strings.
1485         assert(!is_known_inst, "not scalarizable allocation");
1486         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1487       }
1488     } else if( is_known_inst ) {
1489       tj = to; // Keep NotNull and klass_is_exact for instance type
1490     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1491       // During the 2nd round of IterGVN, NotNull castings are removed.
1492       // Make sure the Bottom and NotNull variants alias the same.
1493       // Also, make sure exact and non-exact variants alias the same.
1494       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1495     }
1496     if (to->speculative() != NULL) {
1497       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1498     }
1499     // Canonicalize the holder of this field
1500     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1501       // First handle header references such as a LoadKlassNode, even if the
1502       // object's klass is unloaded at compile time (4965979).
1503       if (!is_known_inst) { // Do it only for non-instance types
1504         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1505       }
1506     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1507       // Static fields are in the space above the normal instance
1508       // fields in the java.lang.Class instance.
1509       if (to->klass() != ciEnv::current()->Class_klass()) {
1510         to = NULL;
1511         tj = TypeOopPtr::BOTTOM;
1512         offset = tj->offset();
1513       }
1514     } else {
1515       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1516       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1517         if( is_known_inst ) {
1518           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1519         } else {
1520           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1521         }
1522       }
1523     }
1524   }
1525 
1526   // Klass pointers to object array klasses need some flattening
1527   const TypeKlassPtr *tk = tj->isa_klassptr();
1528   if( tk ) {
1529     // If we are referencing a field within a Klass, we need
1530     // to assume the worst case of an Object.  Both exact and
1531     // inexact types must flatten to the same alias class so
1532     // use NotNull as the PTR.
1533     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1534 
1535       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1536                                    TypeKlassPtr::OBJECT->klass(),
1537                                    offset);
1538     }
1539 
1540     ciKlass* klass = tk->klass();
1541     if( klass->is_obj_array_klass() ) {
1542       ciKlass* k = TypeAryPtr::OOPS->klass();
1543       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1544         k = TypeInstPtr::BOTTOM->klass();
1545       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1546     }
1547 
1548     // Check for precise loads from the primary supertype array and force them
1549     // to the supertype cache alias index.  Check for generic array loads from
1550     // the primary supertype array and also force them to the supertype cache
1551     // alias index.  Since the same load can reach both, we need to merge
1552     // these 2 disparate memories into the same alias class.  Since the
1553     // primary supertype array is read-only, there's no chance of confusion
1554     // where we bypass an array load and an array store.
1555     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1556     if (offset == Type::OffsetBot ||
1557         (offset >= primary_supers_offset &&
1558          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1559         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1560       offset = in_bytes(Klass::secondary_super_cache_offset());
1561       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1562     }
1563   }
1564 
1565   // Flatten all Raw pointers together.
1566   if (tj->base() == Type::RawPtr)
1567     tj = TypeRawPtr::BOTTOM;
1568 
1569   if (tj->base() == Type::AnyPtr)
1570     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1571 
1572   // Flatten all to bottom for now
1573   switch( _AliasLevel ) {
1574   case 0:
1575     tj = TypePtr::BOTTOM;
1576     break;
1577   case 1:                       // Flatten to: oop, static, field or array
1578     switch (tj->base()) {
1579     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1580     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1581     case Type::AryPtr:   // do not distinguish arrays at all
1582     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1583     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1584     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1585     default: ShouldNotReachHere();
1586     }
1587     break;
1588   case 2:                       // No collapsing at level 2; keep all splits
1589   case 3:                       // No collapsing at level 3; keep all splits
1590     break;
1591   default:
1592     Unimplemented();
1593   }
1594 
1595   offset = tj->offset();
1596   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1597 
1598   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1599           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1600           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1601           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1602           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1603           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1604           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1605           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1606   assert( tj->ptr() != TypePtr::TopPTR &&
1607           tj->ptr() != TypePtr::AnyNull &&
1608           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1609 //    assert( tj->ptr() != TypePtr::Constant ||
1610 //            tj->base() == Type::RawPtr ||
1611 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1612 
1613   return tj;
1614 }
1615 
1616 void Compile::AliasType::Init(int i, const TypePtr* at) {
1617   _index = i;
1618   _adr_type = at;
1619   _field = NULL;
1620   _element = NULL;
1621   _is_rewritable = true; // default
1622   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1623   if (atoop != NULL && atoop->is_known_instance()) {
1624     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1625     _general_index = Compile::current()->get_alias_index(gt);
1626   } else {
1627     _general_index = 0;
1628   }
1629 }
1630 
1631 //---------------------------------print_on------------------------------------
1632 #ifndef PRODUCT
1633 void Compile::AliasType::print_on(outputStream* st) {
1634   if (index() < 10)
1635         st->print("@ <%d> ", index());
1636   else  st->print("@ <%d>",  index());
1637   st->print(is_rewritable() ? "   " : " RO");
1638   int offset = adr_type()->offset();
1639   if (offset == Type::OffsetBot)
1640         st->print(" +any");
1641   else  st->print(" +%-3d", offset);
1642   st->print(" in ");
1643   adr_type()->dump_on(st);
1644   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1645   if (field() != NULL && tjp) {
1646     if (tjp->klass()  != field()->holder() ||
1647         tjp->offset() != field()->offset_in_bytes()) {
1648       st->print(" != ");
1649       field()->print();
1650       st->print(" ***");
1651     }
1652   }
1653 }
1654 
1655 void print_alias_types() {
1656   Compile* C = Compile::current();
1657   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1658   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1659     C->alias_type(idx)->print_on(tty);
1660     tty->cr();
1661   }
1662 }
1663 #endif
1664 
1665 
1666 //----------------------------probe_alias_cache--------------------------------
1667 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1668   intptr_t key = (intptr_t) adr_type;
1669   key ^= key >> logAliasCacheSize;
1670   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1671 }
1672 
1673 
1674 //-----------------------------grow_alias_types--------------------------------
1675 void Compile::grow_alias_types() {
1676   const int old_ats  = _max_alias_types; // how many before?
1677   const int new_ats  = old_ats;          // how many more?
1678   const int grow_ats = old_ats+new_ats;  // how many now?
1679   _max_alias_types = grow_ats;
1680   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1681   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1682   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1683   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1684 }
1685 
1686 
1687 //--------------------------------find_alias_type------------------------------
1688 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1689   if (_AliasLevel == 0)
1690     return alias_type(AliasIdxBot);
1691 
1692   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1693   if (ace->_adr_type == adr_type) {
1694     return alias_type(ace->_index);
1695   }
1696 
1697   // Handle special cases.
1698   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1699   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1700 
1701   // Do it the slow way.
1702   const TypePtr* flat = flatten_alias_type(adr_type);
1703 
1704 #ifdef ASSERT
1705   assert(flat == flatten_alias_type(flat), "idempotent");
1706   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1707   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1708     const TypeOopPtr* foop = flat->is_oopptr();
1709     // Scalarizable allocations have exact klass always.
1710     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1711     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1712     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1713   }
1714   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1715 #endif
1716 
1717   int idx = AliasIdxTop;
1718   for (int i = 0; i < num_alias_types(); i++) {
1719     if (alias_type(i)->adr_type() == flat) {
1720       idx = i;
1721       break;
1722     }
1723   }
1724 
1725   if (idx == AliasIdxTop) {
1726     if (no_create)  return NULL;
1727     // Grow the array if necessary.
1728     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1729     // Add a new alias type.
1730     idx = _num_alias_types++;
1731     _alias_types[idx]->Init(idx, flat);
1732     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1733     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1734     if (flat->isa_instptr()) {
1735       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1736           && flat->is_instptr()->klass() == env()->Class_klass())
1737         alias_type(idx)->set_rewritable(false);
1738     }
1739     if (flat->isa_aryptr()) {
1740 #ifdef ASSERT
1741       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1742       // (T_BYTE has the weakest alignment and size restrictions...)
1743       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1744 #endif
1745       if (flat->offset() == TypePtr::OffsetBot) {
1746         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1747       }
1748     }
1749     if (flat->isa_klassptr()) {
1750       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1751         alias_type(idx)->set_rewritable(false);
1752       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1753         alias_type(idx)->set_rewritable(false);
1754       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1755         alias_type(idx)->set_rewritable(false);
1756       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1757         alias_type(idx)->set_rewritable(false);
1758     }
1759     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1760     // but the base pointer type is not distinctive enough to identify
1761     // references into JavaThread.)
1762 
1763     // Check for final fields.
1764     const TypeInstPtr* tinst = flat->isa_instptr();
1765     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1766       ciField* field;
1767       if (tinst->const_oop() != NULL &&
1768           tinst->klass() == ciEnv::current()->Class_klass() &&
1769           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1770         // static field
1771         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1772         field = k->get_field_by_offset(tinst->offset(), true);
1773       } else {
1774         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1775         field = k->get_field_by_offset(tinst->offset(), false);
1776       }
1777       assert(field == NULL ||
1778              original_field == NULL ||
1779              (field->holder() == original_field->holder() &&
1780               field->offset() == original_field->offset() &&
1781               field->is_static() == original_field->is_static()), "wrong field?");
1782       // Set field() and is_rewritable() attributes.
1783       if (field != NULL)  alias_type(idx)->set_field(field);
1784     }
1785   }
1786 
1787   // Fill the cache for next time.
1788   ace->_adr_type = adr_type;
1789   ace->_index    = idx;
1790   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1791 
1792   // Might as well try to fill the cache for the flattened version, too.
1793   AliasCacheEntry* face = probe_alias_cache(flat);
1794   if (face->_adr_type == NULL) {
1795     face->_adr_type = flat;
1796     face->_index    = idx;
1797     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1798   }
1799 
1800   return alias_type(idx);
1801 }
1802 
1803 
1804 Compile::AliasType* Compile::alias_type(ciField* field) {
1805   const TypeOopPtr* t;
1806   if (field->is_static())
1807     t = TypeInstPtr::make(field->holder()->java_mirror());
1808   else
1809     t = TypeOopPtr::make_from_klass_raw(field->holder());
1810   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1811   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1812   return atp;
1813 }
1814 
1815 
1816 //------------------------------have_alias_type--------------------------------
1817 bool Compile::have_alias_type(const TypePtr* adr_type) {
1818   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1819   if (ace->_adr_type == adr_type) {
1820     return true;
1821   }
1822 
1823   // Handle special cases.
1824   if (adr_type == NULL)             return true;
1825   if (adr_type == TypePtr::BOTTOM)  return true;
1826 
1827   return find_alias_type(adr_type, true, NULL) != NULL;
1828 }
1829 
1830 //-----------------------------must_alias--------------------------------------
1831 // True if all values of the given address type are in the given alias category.
1832 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1833   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1834   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1835   if (alias_idx == AliasIdxTop)         return false; // the empty category
1836   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1837 
1838   // the only remaining possible overlap is identity
1839   int adr_idx = get_alias_index(adr_type);
1840   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1841   assert(adr_idx == alias_idx ||
1842          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1843           && adr_type                       != TypeOopPtr::BOTTOM),
1844          "should not be testing for overlap with an unsafe pointer");
1845   return adr_idx == alias_idx;
1846 }
1847 
1848 //------------------------------can_alias--------------------------------------
1849 // True if any values of the given address type are in the given alias category.
1850 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1851   if (alias_idx == AliasIdxTop)         return false; // the empty category
1852   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1853   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1854   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1855 
1856   // the only remaining possible overlap is identity
1857   int adr_idx = get_alias_index(adr_type);
1858   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1859   return adr_idx == alias_idx;
1860 }
1861 
1862 
1863 
1864 //---------------------------pop_warm_call-------------------------------------
1865 WarmCallInfo* Compile::pop_warm_call() {
1866   WarmCallInfo* wci = _warm_calls;
1867   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1868   return wci;
1869 }
1870 
1871 //----------------------------Inline_Warm--------------------------------------
1872 int Compile::Inline_Warm() {
1873   // If there is room, try to inline some more warm call sites.
1874   // %%% Do a graph index compaction pass when we think we're out of space?
1875   if (!InlineWarmCalls)  return 0;
1876 
1877   int calls_made_hot = 0;
1878   int room_to_grow   = NodeCountInliningCutoff - unique();
1879   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1880   int amount_grown   = 0;
1881   WarmCallInfo* call;
1882   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1883     int est_size = (int)call->size();
1884     if (est_size > (room_to_grow - amount_grown)) {
1885       // This one won't fit anyway.  Get rid of it.
1886       call->make_cold();
1887       continue;
1888     }
1889     call->make_hot();
1890     calls_made_hot++;
1891     amount_grown   += est_size;
1892     amount_to_grow -= est_size;
1893   }
1894 
1895   if (calls_made_hot > 0)  set_major_progress();
1896   return calls_made_hot;
1897 }
1898 
1899 
1900 //----------------------------Finish_Warm--------------------------------------
1901 void Compile::Finish_Warm() {
1902   if (!InlineWarmCalls)  return;
1903   if (failing())  return;
1904   if (warm_calls() == NULL)  return;
1905 
1906   // Clean up loose ends, if we are out of space for inlining.
1907   WarmCallInfo* call;
1908   while ((call = pop_warm_call()) != NULL) {
1909     call->make_cold();
1910   }
1911 }
1912 
1913 //---------------------cleanup_loop_predicates-----------------------
1914 // Remove the opaque nodes that protect the predicates so that all unused
1915 // checks and uncommon_traps will be eliminated from the ideal graph
1916 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1917   if (predicate_count()==0) return;
1918   for (int i = predicate_count(); i > 0; i--) {
1919     Node * n = predicate_opaque1_node(i-1);
1920     assert(n->Opcode() == Op_Opaque1, "must be");
1921     igvn.replace_node(n, n->in(1));
1922   }
1923   assert(predicate_count()==0, "should be clean!");
1924 }
1925 
1926 // StringOpts and late inlining of string methods
1927 void Compile::inline_string_calls(bool parse_time) {
1928   {
1929     // remove useless nodes to make the usage analysis simpler
1930     ResourceMark rm;
1931     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1932   }
1933 
1934   {
1935     ResourceMark rm;
1936     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1937     PhaseStringOpts pso(initial_gvn(), for_igvn());
1938     print_method(PHASE_AFTER_STRINGOPTS, 3);
1939   }
1940 
1941   // now inline anything that we skipped the first time around
1942   if (!parse_time) {
1943     _late_inlines_pos = _late_inlines.length();
1944   }
1945 
1946   while (_string_late_inlines.length() > 0) {
1947     CallGenerator* cg = _string_late_inlines.pop();
1948     cg->do_late_inline();
1949     if (failing())  return;
1950   }
1951   _string_late_inlines.trunc_to(0);
1952 }
1953 
1954 // Late inlining of boxing methods
1955 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1956   if (_boxing_late_inlines.length() > 0) {
1957     assert(has_boxed_value(), "inconsistent");
1958 
1959     PhaseGVN* gvn = initial_gvn();
1960     set_inlining_incrementally(true);
1961 
1962     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1963     for_igvn()->clear();
1964     gvn->replace_with(&igvn);
1965 
1966     _late_inlines_pos = _late_inlines.length();
1967 
1968     while (_boxing_late_inlines.length() > 0) {
1969       CallGenerator* cg = _boxing_late_inlines.pop();
1970       cg->do_late_inline();
1971       if (failing())  return;
1972     }
1973     _boxing_late_inlines.trunc_to(0);
1974 
1975     {
1976       ResourceMark rm;
1977       PhaseRemoveUseless pru(gvn, for_igvn());
1978     }
1979 
1980     igvn = PhaseIterGVN(gvn);
1981     igvn.optimize();
1982 
1983     set_inlining_progress(false);
1984     set_inlining_incrementally(false);
1985   }
1986 }
1987 
1988 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1989   assert(IncrementalInline, "incremental inlining should be on");
1990   PhaseGVN* gvn = initial_gvn();
1991 
1992   set_inlining_progress(false);
1993   for_igvn()->clear();
1994   gvn->replace_with(&igvn);
1995 
1996   {
1997     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
1998     int i = 0;
1999     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2000       CallGenerator* cg = _late_inlines.at(i);
2001       _late_inlines_pos = i+1;
2002       cg->do_late_inline();
2003       if (failing())  return;
2004     }
2005     int j = 0;
2006     for (; i < _late_inlines.length(); i++, j++) {
2007       _late_inlines.at_put(j, _late_inlines.at(i));
2008     }
2009     _late_inlines.trunc_to(j);
2010   }
2011 
2012   {
2013     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2014     ResourceMark rm;
2015     PhaseRemoveUseless pru(gvn, for_igvn());
2016   }
2017 
2018   {
2019     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2020     igvn = PhaseIterGVN(gvn);
2021   }
2022 }
2023 
2024 // Perform incremental inlining until bound on number of live nodes is reached
2025 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2026   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2027 
2028   PhaseGVN* gvn = initial_gvn();
2029 
2030   set_inlining_incrementally(true);
2031   set_inlining_progress(true);
2032   uint low_live_nodes = 0;
2033 
2034   while(inlining_progress() && _late_inlines.length() > 0) {
2035 
2036     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2037       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2038         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2039         // PhaseIdealLoop is expensive so we only try it once we are
2040         // out of live nodes and we only try it again if the previous
2041         // helped got the number of nodes down significantly
2042         PhaseIdealLoop ideal_loop( igvn, false, true );
2043         if (failing())  return;
2044         low_live_nodes = live_nodes();
2045         _major_progress = true;
2046       }
2047 
2048       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2049         break;
2050       }
2051     }
2052 
2053     inline_incrementally_one(igvn);
2054 
2055     if (failing())  return;
2056 
2057     {
2058       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2059       igvn.optimize();
2060     }
2061 
2062     if (failing())  return;
2063   }
2064 
2065   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2066 
2067   if (_string_late_inlines.length() > 0) {
2068     assert(has_stringbuilder(), "inconsistent");
2069     for_igvn()->clear();
2070     initial_gvn()->replace_with(&igvn);
2071 
2072     inline_string_calls(false);
2073 
2074     if (failing())  return;
2075 
2076     {
2077       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2078       ResourceMark rm;
2079       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2080     }
2081 
2082     {
2083       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2084       igvn = PhaseIterGVN(gvn);
2085       igvn.optimize();
2086     }
2087   }
2088 
2089   set_inlining_incrementally(false);
2090 }
2091 
2092 
2093 //------------------------------Optimize---------------------------------------
2094 // Given a graph, optimize it.
2095 void Compile::Optimize() {
2096   TracePhase tp("optimizer", &timers[_t_optimizer]);
2097 
2098 #ifndef PRODUCT
2099   if (_directive->BreakAtCompileOption) {
2100     BREAKPOINT;
2101   }
2102 
2103 #endif
2104 
2105   ResourceMark rm;
2106   int          loop_opts_cnt;
2107 
2108   print_inlining_reinit();
2109 
2110   NOT_PRODUCT( verify_graph_edges(); )
2111 
2112   print_method(PHASE_AFTER_PARSING);
2113 
2114  {
2115   // Iterative Global Value Numbering, including ideal transforms
2116   // Initialize IterGVN with types and values from parse-time GVN
2117   PhaseIterGVN igvn(initial_gvn());
2118 #ifdef ASSERT
2119   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2120 #endif
2121   {
2122     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2123     igvn.optimize();
2124   }
2125 
2126   print_method(PHASE_ITER_GVN1, 2);
2127 
2128   if (failing())  return;
2129 
2130   inline_incrementally(igvn);
2131 
2132   print_method(PHASE_INCREMENTAL_INLINE, 2);
2133 
2134   if (failing())  return;
2135 
2136   if (eliminate_boxing()) {
2137     // Inline valueOf() methods now.
2138     inline_boxing_calls(igvn);
2139 
2140     if (AlwaysIncrementalInline) {
2141       inline_incrementally(igvn);
2142     }
2143 
2144     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2145 
2146     if (failing())  return;
2147   }
2148 
2149   // Remove the speculative part of types and clean up the graph from
2150   // the extra CastPP nodes whose only purpose is to carry them. Do
2151   // that early so that optimizations are not disrupted by the extra
2152   // CastPP nodes.
2153   remove_speculative_types(igvn);
2154 
2155   // No more new expensive nodes will be added to the list from here
2156   // so keep only the actual candidates for optimizations.
2157   cleanup_expensive_nodes(igvn);
2158 
2159   // Perform escape analysis
2160   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2161     if (has_loops()) {
2162       // Cleanup graph (remove dead nodes).
2163       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2164       PhaseIdealLoop ideal_loop( igvn, false, true );
2165       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2166       if (failing())  return;
2167     }
2168     ConnectionGraph::do_analysis(this, &igvn);
2169 
2170     if (failing())  return;
2171 
2172     // Optimize out fields loads from scalar replaceable allocations.
2173     igvn.optimize();
2174     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2175 
2176     if (failing())  return;
2177 
2178     if (congraph() != NULL && macro_count() > 0) {
2179       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2180       PhaseMacroExpand mexp(igvn);
2181       mexp.eliminate_macro_nodes();
2182       igvn.set_delay_transform(false);
2183 
2184       igvn.optimize();
2185       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2186 
2187       if (failing())  return;
2188     }
2189   }
2190 
2191   // Loop transforms on the ideal graph.  Range Check Elimination,
2192   // peeling, unrolling, etc.
2193 
2194   // Set loop opts counter
2195   loop_opts_cnt = num_loop_opts();
2196   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2197     {
2198       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2199       PhaseIdealLoop ideal_loop( igvn, true );
2200       loop_opts_cnt--;
2201       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2202       if (failing())  return;
2203     }
2204     // Loop opts pass if partial peeling occurred in previous pass
2205     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2206       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2207       PhaseIdealLoop ideal_loop( igvn, false );
2208       loop_opts_cnt--;
2209       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2210       if (failing())  return;
2211     }
2212     // Loop opts pass for loop-unrolling before CCP
2213     if(major_progress() && (loop_opts_cnt > 0)) {
2214       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2215       PhaseIdealLoop ideal_loop( igvn, false );
2216       loop_opts_cnt--;
2217       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2218     }
2219     if (!failing()) {
2220       // Verify that last round of loop opts produced a valid graph
2221       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2222       PhaseIdealLoop::verify(igvn);
2223     }
2224   }
2225   if (failing())  return;
2226 
2227   // Conditional Constant Propagation;
2228   PhaseCCP ccp( &igvn );
2229   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2230   {
2231     TracePhase tp("ccp", &timers[_t_ccp]);
2232     ccp.do_transform();
2233   }
2234   print_method(PHASE_CPP1, 2);
2235 
2236   assert( true, "Break here to ccp.dump_old2new_map()");
2237 
2238   // Iterative Global Value Numbering, including ideal transforms
2239   {
2240     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2241     igvn = ccp;
2242     igvn.optimize();
2243   }
2244 
2245   print_method(PHASE_ITER_GVN2, 2);
2246 
2247   if (failing())  return;
2248 
2249   // Loop transforms on the ideal graph.  Range Check Elimination,
2250   // peeling, unrolling, etc.
2251   if(loop_opts_cnt > 0) {
2252     debug_only( int cnt = 0; );
2253     while(major_progress() && (loop_opts_cnt > 0)) {
2254       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2255       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2256       PhaseIdealLoop ideal_loop( igvn, true);
2257       loop_opts_cnt--;
2258       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2259       if (failing())  return;
2260     }
2261   }
2262   // Ensure that major progress is now clear
2263   C->clear_major_progress();
2264 
2265   {
2266     // Verify that all previous optimizations produced a valid graph
2267     // at least to this point, even if no loop optimizations were done.
2268     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2269     PhaseIdealLoop::verify(igvn);
2270   }
2271 
2272   {
2273     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2274     PhaseMacroExpand  mex(igvn);
2275     if (mex.expand_macro_nodes()) {
2276       assert(failing(), "must bail out w/ explicit message");
2277       return;
2278     }
2279   }
2280 
2281   DEBUG_ONLY( _modified_nodes = NULL; )
2282  } // (End scope of igvn; run destructor if necessary for asserts.)
2283 
2284   process_print_inlining();
2285   // A method with only infinite loops has no edges entering loops from root
2286   {
2287     TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2288     if (final_graph_reshaping()) {
2289       assert(failing(), "must bail out w/ explicit message");
2290       return;
2291     }
2292   }
2293 
2294   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2295 }
2296 
2297 
2298 //------------------------------Code_Gen---------------------------------------
2299 // Given a graph, generate code for it
2300 void Compile::Code_Gen() {
2301   if (failing()) {
2302     return;
2303   }
2304 
2305   // Perform instruction selection.  You might think we could reclaim Matcher
2306   // memory PDQ, but actually the Matcher is used in generating spill code.
2307   // Internals of the Matcher (including some VectorSets) must remain live
2308   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2309   // set a bit in reclaimed memory.
2310 
2311   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2312   // nodes.  Mapping is only valid at the root of each matched subtree.
2313   NOT_PRODUCT( verify_graph_edges(); )
2314 
2315   Matcher matcher;
2316   _matcher = &matcher;
2317   {
2318     TracePhase tp("matcher", &timers[_t_matcher]);
2319     matcher.match();
2320   }
2321   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2322   // nodes.  Mapping is only valid at the root of each matched subtree.
2323   NOT_PRODUCT( verify_graph_edges(); )
2324 
2325   // If you have too many nodes, or if matching has failed, bail out
2326   check_node_count(0, "out of nodes matching instructions");
2327   if (failing()) {
2328     return;
2329   }
2330 
2331   // Build a proper-looking CFG
2332   PhaseCFG cfg(node_arena(), root(), matcher);
2333   _cfg = &cfg;
2334   {
2335     TracePhase tp("scheduler", &timers[_t_scheduler]);
2336     bool success = cfg.do_global_code_motion();
2337     if (!success) {
2338       return;
2339     }
2340 
2341     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2342     NOT_PRODUCT( verify_graph_edges(); )
2343     debug_only( cfg.verify(); )
2344   }
2345 
2346   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2347   _regalloc = &regalloc;
2348   {
2349     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2350     // Perform register allocation.  After Chaitin, use-def chains are
2351     // no longer accurate (at spill code) and so must be ignored.
2352     // Node->LRG->reg mappings are still accurate.
2353     _regalloc->Register_Allocate();
2354 
2355     // Bail out if the allocator builds too many nodes
2356     if (failing()) {
2357       return;
2358     }
2359   }
2360 
2361   // Prior to register allocation we kept empty basic blocks in case the
2362   // the allocator needed a place to spill.  After register allocation we
2363   // are not adding any new instructions.  If any basic block is empty, we
2364   // can now safely remove it.
2365   {
2366     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2367     cfg.remove_empty_blocks();
2368     if (do_freq_based_layout()) {
2369       PhaseBlockLayout layout(cfg);
2370     } else {
2371       cfg.set_loop_alignment();
2372     }
2373     cfg.fixup_flow();
2374   }
2375 
2376   // Apply peephole optimizations
2377   if( OptoPeephole ) {
2378     TracePhase tp("peephole", &timers[_t_peephole]);
2379     PhasePeephole peep( _regalloc, cfg);
2380     peep.do_transform();
2381   }
2382 
2383   // Do late expand if CPU requires this.
2384   if (Matcher::require_postalloc_expand) {
2385     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2386     cfg.postalloc_expand(_regalloc);
2387   }
2388 
2389   // Convert Nodes to instruction bits in a buffer
2390   {
2391     TraceTime tp("output", &timers[_t_output], CITime);
2392     Output();
2393   }
2394 
2395   print_method(PHASE_FINAL_CODE);
2396 
2397   // He's dead, Jim.
2398   _cfg     = (PhaseCFG*)0xdeadbeef;
2399   _regalloc = (PhaseChaitin*)0xdeadbeef;
2400 }
2401 
2402 
2403 //------------------------------dump_asm---------------------------------------
2404 // Dump formatted assembly
2405 #ifndef PRODUCT
2406 void Compile::dump_asm(int *pcs, uint pc_limit) {
2407   bool cut_short = false;
2408   tty->print_cr("#");
2409   tty->print("#  ");  _tf->dump();  tty->cr();
2410   tty->print_cr("#");
2411 
2412   // For all blocks
2413   int pc = 0x0;                 // Program counter
2414   char starts_bundle = ' ';
2415   _regalloc->dump_frame();
2416 
2417   Node *n = NULL;
2418   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2419     if (VMThread::should_terminate()) {
2420       cut_short = true;
2421       break;
2422     }
2423     Block* block = _cfg->get_block(i);
2424     if (block->is_connector() && !Verbose) {
2425       continue;
2426     }
2427     n = block->head();
2428     if (pcs && n->_idx < pc_limit) {
2429       tty->print("%3.3x   ", pcs[n->_idx]);
2430     } else {
2431       tty->print("      ");
2432     }
2433     block->dump_head(_cfg);
2434     if (block->is_connector()) {
2435       tty->print_cr("        # Empty connector block");
2436     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2437       tty->print_cr("        # Block is sole successor of call");
2438     }
2439 
2440     // For all instructions
2441     Node *delay = NULL;
2442     for (uint j = 0; j < block->number_of_nodes(); j++) {
2443       if (VMThread::should_terminate()) {
2444         cut_short = true;
2445         break;
2446       }
2447       n = block->get_node(j);
2448       if (valid_bundle_info(n)) {
2449         Bundle* bundle = node_bundling(n);
2450         if (bundle->used_in_unconditional_delay()) {
2451           delay = n;
2452           continue;
2453         }
2454         if (bundle->starts_bundle()) {
2455           starts_bundle = '+';
2456         }
2457       }
2458 
2459       if (WizardMode) {
2460         n->dump();
2461       }
2462 
2463       if( !n->is_Region() &&    // Dont print in the Assembly
2464           !n->is_Phi() &&       // a few noisely useless nodes
2465           !n->is_Proj() &&
2466           !n->is_MachTemp() &&
2467           !n->is_SafePointScalarObject() &&
2468           !n->is_Catch() &&     // Would be nice to print exception table targets
2469           !n->is_MergeMem() &&  // Not very interesting
2470           !n->is_top() &&       // Debug info table constants
2471           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2472           ) {
2473         if (pcs && n->_idx < pc_limit)
2474           tty->print("%3.3x", pcs[n->_idx]);
2475         else
2476           tty->print("   ");
2477         tty->print(" %c ", starts_bundle);
2478         starts_bundle = ' ';
2479         tty->print("\t");
2480         n->format(_regalloc, tty);
2481         tty->cr();
2482       }
2483 
2484       // If we have an instruction with a delay slot, and have seen a delay,
2485       // then back up and print it
2486       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2487         assert(delay != NULL, "no unconditional delay instruction");
2488         if (WizardMode) delay->dump();
2489 
2490         if (node_bundling(delay)->starts_bundle())
2491           starts_bundle = '+';
2492         if (pcs && n->_idx < pc_limit)
2493           tty->print("%3.3x", pcs[n->_idx]);
2494         else
2495           tty->print("   ");
2496         tty->print(" %c ", starts_bundle);
2497         starts_bundle = ' ';
2498         tty->print("\t");
2499         delay->format(_regalloc, tty);
2500         tty->cr();
2501         delay = NULL;
2502       }
2503 
2504       // Dump the exception table as well
2505       if( n->is_Catch() && (Verbose || WizardMode) ) {
2506         // Print the exception table for this offset
2507         _handler_table.print_subtable_for(pc);
2508       }
2509     }
2510 
2511     if (pcs && n->_idx < pc_limit)
2512       tty->print_cr("%3.3x", pcs[n->_idx]);
2513     else
2514       tty->cr();
2515 
2516     assert(cut_short || delay == NULL, "no unconditional delay branch");
2517 
2518   } // End of per-block dump
2519   tty->cr();
2520 
2521   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2522 }
2523 #endif
2524 
2525 //------------------------------Final_Reshape_Counts---------------------------
2526 // This class defines counters to help identify when a method
2527 // may/must be executed using hardware with only 24-bit precision.
2528 struct Final_Reshape_Counts : public StackObj {
2529   int  _call_count;             // count non-inlined 'common' calls
2530   int  _float_count;            // count float ops requiring 24-bit precision
2531   int  _double_count;           // count double ops requiring more precision
2532   int  _java_call_count;        // count non-inlined 'java' calls
2533   int  _inner_loop_count;       // count loops which need alignment
2534   VectorSet _visited;           // Visitation flags
2535   Node_List _tests;             // Set of IfNodes & PCTableNodes
2536 
2537   Final_Reshape_Counts() :
2538     _call_count(0), _float_count(0), _double_count(0),
2539     _java_call_count(0), _inner_loop_count(0),
2540     _visited( Thread::current()->resource_area() ) { }
2541 
2542   void inc_call_count  () { _call_count  ++; }
2543   void inc_float_count () { _float_count ++; }
2544   void inc_double_count() { _double_count++; }
2545   void inc_java_call_count() { _java_call_count++; }
2546   void inc_inner_loop_count() { _inner_loop_count++; }
2547 
2548   int  get_call_count  () const { return _call_count  ; }
2549   int  get_float_count () const { return _float_count ; }
2550   int  get_double_count() const { return _double_count; }
2551   int  get_java_call_count() const { return _java_call_count; }
2552   int  get_inner_loop_count() const { return _inner_loop_count; }
2553 };
2554 
2555 #ifdef ASSERT
2556 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2557   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2558   // Make sure the offset goes inside the instance layout.
2559   return k->contains_field_offset(tp->offset());
2560   // Note that OffsetBot and OffsetTop are very negative.
2561 }
2562 #endif
2563 
2564 // Eliminate trivially redundant StoreCMs and accumulate their
2565 // precedence edges.
2566 void Compile::eliminate_redundant_card_marks(Node* n) {
2567   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2568   if (n->in(MemNode::Address)->outcnt() > 1) {
2569     // There are multiple users of the same address so it might be
2570     // possible to eliminate some of the StoreCMs
2571     Node* mem = n->in(MemNode::Memory);
2572     Node* adr = n->in(MemNode::Address);
2573     Node* val = n->in(MemNode::ValueIn);
2574     Node* prev = n;
2575     bool done = false;
2576     // Walk the chain of StoreCMs eliminating ones that match.  As
2577     // long as it's a chain of single users then the optimization is
2578     // safe.  Eliminating partially redundant StoreCMs would require
2579     // cloning copies down the other paths.
2580     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2581       if (adr == mem->in(MemNode::Address) &&
2582           val == mem->in(MemNode::ValueIn)) {
2583         // redundant StoreCM
2584         if (mem->req() > MemNode::OopStore) {
2585           // Hasn't been processed by this code yet.
2586           n->add_prec(mem->in(MemNode::OopStore));
2587         } else {
2588           // Already converted to precedence edge
2589           for (uint i = mem->req(); i < mem->len(); i++) {
2590             // Accumulate any precedence edges
2591             if (mem->in(i) != NULL) {
2592               n->add_prec(mem->in(i));
2593             }
2594           }
2595           // Everything above this point has been processed.
2596           done = true;
2597         }
2598         // Eliminate the previous StoreCM
2599         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2600         assert(mem->outcnt() == 0, "should be dead");
2601         mem->disconnect_inputs(NULL, this);
2602       } else {
2603         prev = mem;
2604       }
2605       mem = prev->in(MemNode::Memory);
2606     }
2607   }
2608 }
2609 
2610 //------------------------------final_graph_reshaping_impl----------------------
2611 // Implement items 1-5 from final_graph_reshaping below.
2612 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2613 
2614   if ( n->outcnt() == 0 ) return; // dead node
2615   uint nop = n->Opcode();
2616 
2617   // Check for 2-input instruction with "last use" on right input.
2618   // Swap to left input.  Implements item (2).
2619   if( n->req() == 3 &&          // two-input instruction
2620       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2621       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2622       n->in(2)->outcnt() == 1 &&// right use IS a last use
2623       !n->in(2)->is_Con() ) {   // right use is not a constant
2624     // Check for commutative opcode
2625     switch( nop ) {
2626     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2627     case Op_MaxI:  case Op_MinI:
2628     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2629     case Op_AndL:  case Op_XorL:  case Op_OrL:
2630     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2631       // Move "last use" input to left by swapping inputs
2632       n->swap_edges(1, 2);
2633       break;
2634     }
2635     default:
2636       break;
2637     }
2638   }
2639 
2640 #ifdef ASSERT
2641   if( n->is_Mem() ) {
2642     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2643     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2644             // oop will be recorded in oop map if load crosses safepoint
2645             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2646                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2647             "raw memory operations should have control edge");
2648   }
2649 #endif
2650   // Count FPU ops and common calls, implements item (3)
2651   switch( nop ) {
2652   // Count all float operations that may use FPU
2653   case Op_AddF:
2654   case Op_SubF:
2655   case Op_MulF:
2656   case Op_DivF:
2657   case Op_NegF:
2658   case Op_ModF:
2659   case Op_ConvI2F:
2660   case Op_ConF:
2661   case Op_CmpF:
2662   case Op_CmpF3:
2663   // case Op_ConvL2F: // longs are split into 32-bit halves
2664     frc.inc_float_count();
2665     break;
2666 
2667   case Op_ConvF2D:
2668   case Op_ConvD2F:
2669     frc.inc_float_count();
2670     frc.inc_double_count();
2671     break;
2672 
2673   // Count all double operations that may use FPU
2674   case Op_AddD:
2675   case Op_SubD:
2676   case Op_MulD:
2677   case Op_DivD:
2678   case Op_NegD:
2679   case Op_ModD:
2680   case Op_ConvI2D:
2681   case Op_ConvD2I:
2682   // case Op_ConvL2D: // handled by leaf call
2683   // case Op_ConvD2L: // handled by leaf call
2684   case Op_ConD:
2685   case Op_CmpD:
2686   case Op_CmpD3:
2687     frc.inc_double_count();
2688     break;
2689   case Op_Opaque1:              // Remove Opaque Nodes before matching
2690   case Op_Opaque2:              // Remove Opaque Nodes before matching
2691   case Op_Opaque3:
2692     n->subsume_by(n->in(1), this);
2693     break;
2694   case Op_CallStaticJava:
2695   case Op_CallJava:
2696   case Op_CallDynamicJava:
2697     frc.inc_java_call_count(); // Count java call site;
2698   case Op_CallRuntime:
2699   case Op_CallLeaf:
2700   case Op_CallLeafNoFP: {
2701     assert( n->is_Call(), "" );
2702     CallNode *call = n->as_Call();
2703     // Count call sites where the FP mode bit would have to be flipped.
2704     // Do not count uncommon runtime calls:
2705     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2706     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2707     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2708       frc.inc_call_count();   // Count the call site
2709     } else {                  // See if uncommon argument is shared
2710       Node *n = call->in(TypeFunc::Parms);
2711       int nop = n->Opcode();
2712       // Clone shared simple arguments to uncommon calls, item (1).
2713       if( n->outcnt() > 1 &&
2714           !n->is_Proj() &&
2715           nop != Op_CreateEx &&
2716           nop != Op_CheckCastPP &&
2717           nop != Op_DecodeN &&
2718           nop != Op_DecodeNKlass &&
2719           !n->is_Mem() ) {
2720         Node *x = n->clone();
2721         call->set_req( TypeFunc::Parms, x );
2722       }
2723     }
2724     break;
2725   }
2726 
2727   case Op_StoreD:
2728   case Op_LoadD:
2729   case Op_LoadD_unaligned:
2730     frc.inc_double_count();
2731     goto handle_mem;
2732   case Op_StoreF:
2733   case Op_LoadF:
2734     frc.inc_float_count();
2735     goto handle_mem;
2736 
2737   case Op_StoreCM:
2738     {
2739       // Convert OopStore dependence into precedence edge
2740       Node* prec = n->in(MemNode::OopStore);
2741       n->del_req(MemNode::OopStore);
2742       n->add_prec(prec);
2743       eliminate_redundant_card_marks(n);
2744     }
2745 
2746     // fall through
2747 
2748   case Op_StoreB:
2749   case Op_StoreC:
2750   case Op_StorePConditional:
2751   case Op_StoreI:
2752   case Op_StoreL:
2753   case Op_StoreIConditional:
2754   case Op_StoreLConditional:
2755   case Op_CompareAndSwapI:
2756   case Op_CompareAndSwapL:
2757   case Op_CompareAndSwapP:
2758   case Op_CompareAndSwapN:
2759   case Op_GetAndAddI:
2760   case Op_GetAndAddL:
2761   case Op_GetAndSetI:
2762   case Op_GetAndSetL:
2763   case Op_GetAndSetP:
2764   case Op_GetAndSetN:
2765   case Op_StoreP:
2766   case Op_StoreN:
2767   case Op_StoreNKlass:
2768   case Op_LoadB:
2769   case Op_LoadUB:
2770   case Op_LoadUS:
2771   case Op_LoadI:
2772   case Op_LoadKlass:
2773   case Op_LoadNKlass:
2774   case Op_LoadL:
2775   case Op_LoadL_unaligned:
2776   case Op_LoadPLocked:
2777   case Op_LoadP:
2778   case Op_LoadN:
2779   case Op_LoadRange:
2780   case Op_LoadS: {
2781   handle_mem:
2782 #ifdef ASSERT
2783     if( VerifyOptoOopOffsets ) {
2784       assert( n->is_Mem(), "" );
2785       MemNode *mem  = (MemNode*)n;
2786       // Check to see if address types have grounded out somehow.
2787       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2788       assert( !tp || oop_offset_is_sane(tp), "" );
2789     }
2790 #endif
2791     break;
2792   }
2793 
2794   case Op_AddP: {               // Assert sane base pointers
2795     Node *addp = n->in(AddPNode::Address);
2796     assert( !addp->is_AddP() ||
2797             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2798             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2799             "Base pointers must match" );
2800 #ifdef _LP64
2801     if ((UseCompressedOops || UseCompressedClassPointers) &&
2802         addp->Opcode() == Op_ConP &&
2803         addp == n->in(AddPNode::Base) &&
2804         n->in(AddPNode::Offset)->is_Con()) {
2805       // Use addressing with narrow klass to load with offset on x86.
2806       // On sparc loading 32-bits constant and decoding it have less
2807       // instructions (4) then load 64-bits constant (7).
2808       // Do this transformation here since IGVN will convert ConN back to ConP.
2809       const Type* t = addp->bottom_type();
2810       if (t->isa_oopptr() || t->isa_klassptr()) {
2811         Node* nn = NULL;
2812 
2813         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2814 
2815         // Look for existing ConN node of the same exact type.
2816         Node* r  = root();
2817         uint cnt = r->outcnt();
2818         for (uint i = 0; i < cnt; i++) {
2819           Node* m = r->raw_out(i);
2820           if (m!= NULL && m->Opcode() == op &&
2821               m->bottom_type()->make_ptr() == t) {
2822             nn = m;
2823             break;
2824           }
2825         }
2826         if (nn != NULL) {
2827           // Decode a narrow oop to match address
2828           // [R12 + narrow_oop_reg<<3 + offset]
2829           if (t->isa_oopptr()) {
2830             nn = new DecodeNNode(nn, t);
2831           } else {
2832             nn = new DecodeNKlassNode(nn, t);
2833           }
2834           n->set_req(AddPNode::Base, nn);
2835           n->set_req(AddPNode::Address, nn);
2836           if (addp->outcnt() == 0) {
2837             addp->disconnect_inputs(NULL, this);
2838           }
2839         }
2840       }
2841     }
2842 #endif
2843     break;
2844   }
2845 
2846   case Op_CastPP: {
2847     // Remove CastPP nodes to gain more freedom during scheduling but
2848     // keep the dependency they encode as control or precedence edges
2849     // (if control is set already) on memory operations. Some CastPP
2850     // nodes don't have a control (don't carry a dependency): skip
2851     // those.
2852     if (n->in(0) != NULL) {
2853       ResourceMark rm;
2854       Unique_Node_List wq;
2855       wq.push(n);
2856       for (uint next = 0; next < wq.size(); ++next) {
2857         Node *m = wq.at(next);
2858         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
2859           Node* use = m->fast_out(i);
2860           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
2861             use->ensure_control_or_add_prec(n->in(0));
2862           } else if (use->in(0) == NULL) {
2863             switch(use->Opcode()) {
2864             case Op_AddP:
2865             case Op_DecodeN:
2866             case Op_DecodeNKlass:
2867             case Op_CheckCastPP:
2868             case Op_CastPP:
2869               wq.push(use);
2870               break;
2871             }
2872           }
2873         }
2874       }
2875     }
2876     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
2877     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2878       Node* in1 = n->in(1);
2879       const Type* t = n->bottom_type();
2880       Node* new_in1 = in1->clone();
2881       new_in1->as_DecodeN()->set_type(t);
2882 
2883       if (!Matcher::narrow_oop_use_complex_address()) {
2884         //
2885         // x86, ARM and friends can handle 2 adds in addressing mode
2886         // and Matcher can fold a DecodeN node into address by using
2887         // a narrow oop directly and do implicit NULL check in address:
2888         //
2889         // [R12 + narrow_oop_reg<<3 + offset]
2890         // NullCheck narrow_oop_reg
2891         //
2892         // On other platforms (Sparc) we have to keep new DecodeN node and
2893         // use it to do implicit NULL check in address:
2894         //
2895         // decode_not_null narrow_oop_reg, base_reg
2896         // [base_reg + offset]
2897         // NullCheck base_reg
2898         //
2899         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2900         // to keep the information to which NULL check the new DecodeN node
2901         // corresponds to use it as value in implicit_null_check().
2902         //
2903         new_in1->set_req(0, n->in(0));
2904       }
2905 
2906       n->subsume_by(new_in1, this);
2907       if (in1->outcnt() == 0) {
2908         in1->disconnect_inputs(NULL, this);
2909       }
2910     } else {
2911       n->subsume_by(n->in(1), this);
2912       if (n->outcnt() == 0) {
2913         n->disconnect_inputs(NULL, this);
2914       }
2915     }
2916     break;
2917   }
2918 #ifdef _LP64
2919   case Op_CmpP:
2920     // Do this transformation here to preserve CmpPNode::sub() and
2921     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2922     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2923       Node* in1 = n->in(1);
2924       Node* in2 = n->in(2);
2925       if (!in1->is_DecodeNarrowPtr()) {
2926         in2 = in1;
2927         in1 = n->in(2);
2928       }
2929       assert(in1->is_DecodeNarrowPtr(), "sanity");
2930 
2931       Node* new_in2 = NULL;
2932       if (in2->is_DecodeNarrowPtr()) {
2933         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2934         new_in2 = in2->in(1);
2935       } else if (in2->Opcode() == Op_ConP) {
2936         const Type* t = in2->bottom_type();
2937         if (t == TypePtr::NULL_PTR) {
2938           assert(in1->is_DecodeN(), "compare klass to null?");
2939           // Don't convert CmpP null check into CmpN if compressed
2940           // oops implicit null check is not generated.
2941           // This will allow to generate normal oop implicit null check.
2942           if (Matcher::gen_narrow_oop_implicit_null_checks())
2943             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
2944           //
2945           // This transformation together with CastPP transformation above
2946           // will generated code for implicit NULL checks for compressed oops.
2947           //
2948           // The original code after Optimize()
2949           //
2950           //    LoadN memory, narrow_oop_reg
2951           //    decode narrow_oop_reg, base_reg
2952           //    CmpP base_reg, NULL
2953           //    CastPP base_reg // NotNull
2954           //    Load [base_reg + offset], val_reg
2955           //
2956           // after these transformations will be
2957           //
2958           //    LoadN memory, narrow_oop_reg
2959           //    CmpN narrow_oop_reg, NULL
2960           //    decode_not_null narrow_oop_reg, base_reg
2961           //    Load [base_reg + offset], val_reg
2962           //
2963           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2964           // since narrow oops can be used in debug info now (see the code in
2965           // final_graph_reshaping_walk()).
2966           //
2967           // At the end the code will be matched to
2968           // on x86:
2969           //
2970           //    Load_narrow_oop memory, narrow_oop_reg
2971           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2972           //    NullCheck narrow_oop_reg
2973           //
2974           // and on sparc:
2975           //
2976           //    Load_narrow_oop memory, narrow_oop_reg
2977           //    decode_not_null narrow_oop_reg, base_reg
2978           //    Load [base_reg + offset], val_reg
2979           //    NullCheck base_reg
2980           //
2981         } else if (t->isa_oopptr()) {
2982           new_in2 = ConNode::make(t->make_narrowoop());
2983         } else if (t->isa_klassptr()) {
2984           new_in2 = ConNode::make(t->make_narrowklass());
2985         }
2986       }
2987       if (new_in2 != NULL) {
2988         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
2989         n->subsume_by(cmpN, this);
2990         if (in1->outcnt() == 0) {
2991           in1->disconnect_inputs(NULL, this);
2992         }
2993         if (in2->outcnt() == 0) {
2994           in2->disconnect_inputs(NULL, this);
2995         }
2996       }
2997     }
2998     break;
2999 
3000   case Op_DecodeN:
3001   case Op_DecodeNKlass:
3002     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3003     // DecodeN could be pinned when it can't be fold into
3004     // an address expression, see the code for Op_CastPP above.
3005     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3006     break;
3007 
3008   case Op_EncodeP:
3009   case Op_EncodePKlass: {
3010     Node* in1 = n->in(1);
3011     if (in1->is_DecodeNarrowPtr()) {
3012       n->subsume_by(in1->in(1), this);
3013     } else if (in1->Opcode() == Op_ConP) {
3014       const Type* t = in1->bottom_type();
3015       if (t == TypePtr::NULL_PTR) {
3016         assert(t->isa_oopptr(), "null klass?");
3017         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3018       } else if (t->isa_oopptr()) {
3019         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3020       } else if (t->isa_klassptr()) {
3021         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3022       }
3023     }
3024     if (in1->outcnt() == 0) {
3025       in1->disconnect_inputs(NULL, this);
3026     }
3027     break;
3028   }
3029 
3030   case Op_Proj: {
3031     if (OptimizeStringConcat) {
3032       ProjNode* p = n->as_Proj();
3033       if (p->_is_io_use) {
3034         // Separate projections were used for the exception path which
3035         // are normally removed by a late inline.  If it wasn't inlined
3036         // then they will hang around and should just be replaced with
3037         // the original one.
3038         Node* proj = NULL;
3039         // Replace with just one
3040         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3041           Node *use = i.get();
3042           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3043             proj = use;
3044             break;
3045           }
3046         }
3047         assert(proj != NULL, "must be found");
3048         p->subsume_by(proj, this);
3049       }
3050     }
3051     break;
3052   }
3053 
3054   case Op_Phi:
3055     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3056       // The EncodeP optimization may create Phi with the same edges
3057       // for all paths. It is not handled well by Register Allocator.
3058       Node* unique_in = n->in(1);
3059       assert(unique_in != NULL, "");
3060       uint cnt = n->req();
3061       for (uint i = 2; i < cnt; i++) {
3062         Node* m = n->in(i);
3063         assert(m != NULL, "");
3064         if (unique_in != m)
3065           unique_in = NULL;
3066       }
3067       if (unique_in != NULL) {
3068         n->subsume_by(unique_in, this);
3069       }
3070     }
3071     break;
3072 
3073 #endif
3074 
3075   case Op_ModI:
3076     if (UseDivMod) {
3077       // Check if a%b and a/b both exist
3078       Node* d = n->find_similar(Op_DivI);
3079       if (d) {
3080         // Replace them with a fused divmod if supported
3081         if (Matcher::has_match_rule(Op_DivModI)) {
3082           DivModINode* divmod = DivModINode::make(n);
3083           d->subsume_by(divmod->div_proj(), this);
3084           n->subsume_by(divmod->mod_proj(), this);
3085         } else {
3086           // replace a%b with a-((a/b)*b)
3087           Node* mult = new MulINode(d, d->in(2));
3088           Node* sub  = new SubINode(d->in(1), mult);
3089           n->subsume_by(sub, this);
3090         }
3091       }
3092     }
3093     break;
3094 
3095   case Op_ModL:
3096     if (UseDivMod) {
3097       // Check if a%b and a/b both exist
3098       Node* d = n->find_similar(Op_DivL);
3099       if (d) {
3100         // Replace them with a fused divmod if supported
3101         if (Matcher::has_match_rule(Op_DivModL)) {
3102           DivModLNode* divmod = DivModLNode::make(n);
3103           d->subsume_by(divmod->div_proj(), this);
3104           n->subsume_by(divmod->mod_proj(), this);
3105         } else {
3106           // replace a%b with a-((a/b)*b)
3107           Node* mult = new MulLNode(d, d->in(2));
3108           Node* sub  = new SubLNode(d->in(1), mult);
3109           n->subsume_by(sub, this);
3110         }
3111       }
3112     }
3113     break;
3114 
3115   case Op_LoadVector:
3116   case Op_StoreVector:
3117     break;
3118 
3119   case Op_AddReductionVI:
3120   case Op_AddReductionVL:
3121   case Op_AddReductionVF:
3122   case Op_AddReductionVD:
3123   case Op_MulReductionVI:
3124   case Op_MulReductionVL:
3125   case Op_MulReductionVF:
3126   case Op_MulReductionVD:
3127     break;
3128 
3129   case Op_PackB:
3130   case Op_PackS:
3131   case Op_PackI:
3132   case Op_PackF:
3133   case Op_PackL:
3134   case Op_PackD:
3135     if (n->req()-1 > 2) {
3136       // Replace many operand PackNodes with a binary tree for matching
3137       PackNode* p = (PackNode*) n;
3138       Node* btp = p->binary_tree_pack(1, n->req());
3139       n->subsume_by(btp, this);
3140     }
3141     break;
3142   case Op_Loop:
3143   case Op_CountedLoop:
3144     if (n->as_Loop()->is_inner_loop()) {
3145       frc.inc_inner_loop_count();
3146     }
3147     break;
3148   case Op_LShiftI:
3149   case Op_RShiftI:
3150   case Op_URShiftI:
3151   case Op_LShiftL:
3152   case Op_RShiftL:
3153   case Op_URShiftL:
3154     if (Matcher::need_masked_shift_count) {
3155       // The cpu's shift instructions don't restrict the count to the
3156       // lower 5/6 bits. We need to do the masking ourselves.
3157       Node* in2 = n->in(2);
3158       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3159       const TypeInt* t = in2->find_int_type();
3160       if (t != NULL && t->is_con()) {
3161         juint shift = t->get_con();
3162         if (shift > mask) { // Unsigned cmp
3163           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3164         }
3165       } else {
3166         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3167           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3168           n->set_req(2, shift);
3169         }
3170       }
3171       if (in2->outcnt() == 0) { // Remove dead node
3172         in2->disconnect_inputs(NULL, this);
3173       }
3174     }
3175     break;
3176   case Op_MemBarStoreStore:
3177   case Op_MemBarRelease:
3178     // Break the link with AllocateNode: it is no longer useful and
3179     // confuses register allocation.
3180     if (n->req() > MemBarNode::Precedent) {
3181       n->set_req(MemBarNode::Precedent, top());
3182     }
3183     break;
3184   default:
3185     assert( !n->is_Call(), "" );
3186     assert( !n->is_Mem(), "" );
3187     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3188     break;
3189   }
3190 
3191   // Collect CFG split points
3192   if (n->is_MultiBranch())
3193     frc._tests.push(n);
3194 }
3195 
3196 //------------------------------final_graph_reshaping_walk---------------------
3197 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3198 // requires that the walk visits a node's inputs before visiting the node.
3199 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3200   ResourceArea *area = Thread::current()->resource_area();
3201   Unique_Node_List sfpt(area);
3202 
3203   frc._visited.set(root->_idx); // first, mark node as visited
3204   uint cnt = root->req();
3205   Node *n = root;
3206   uint  i = 0;
3207   while (true) {
3208     if (i < cnt) {
3209       // Place all non-visited non-null inputs onto stack
3210       Node* m = n->in(i);
3211       ++i;
3212       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3213         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3214           // compute worst case interpreter size in case of a deoptimization
3215           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3216 
3217           sfpt.push(m);
3218         }
3219         cnt = m->req();
3220         nstack.push(n, i); // put on stack parent and next input's index
3221         n = m;
3222         i = 0;
3223       }
3224     } else {
3225       // Now do post-visit work
3226       final_graph_reshaping_impl( n, frc );
3227       if (nstack.is_empty())
3228         break;             // finished
3229       n = nstack.node();   // Get node from stack
3230       cnt = n->req();
3231       i = nstack.index();
3232       nstack.pop();        // Shift to the next node on stack
3233     }
3234   }
3235 
3236   // Skip next transformation if compressed oops are not used.
3237   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3238       (!UseCompressedOops && !UseCompressedClassPointers))
3239     return;
3240 
3241   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3242   // It could be done for an uncommon traps or any safepoints/calls
3243   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3244   while (sfpt.size() > 0) {
3245     n = sfpt.pop();
3246     JVMState *jvms = n->as_SafePoint()->jvms();
3247     assert(jvms != NULL, "sanity");
3248     int start = jvms->debug_start();
3249     int end   = n->req();
3250     bool is_uncommon = (n->is_CallStaticJava() &&
3251                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3252     for (int j = start; j < end; j++) {
3253       Node* in = n->in(j);
3254       if (in->is_DecodeNarrowPtr()) {
3255         bool safe_to_skip = true;
3256         if (!is_uncommon ) {
3257           // Is it safe to skip?
3258           for (uint i = 0; i < in->outcnt(); i++) {
3259             Node* u = in->raw_out(i);
3260             if (!u->is_SafePoint() ||
3261                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3262               safe_to_skip = false;
3263             }
3264           }
3265         }
3266         if (safe_to_skip) {
3267           n->set_req(j, in->in(1));
3268         }
3269         if (in->outcnt() == 0) {
3270           in->disconnect_inputs(NULL, this);
3271         }
3272       }
3273     }
3274   }
3275 }
3276 
3277 //------------------------------final_graph_reshaping--------------------------
3278 // Final Graph Reshaping.
3279 //
3280 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3281 //     and not commoned up and forced early.  Must come after regular
3282 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3283 //     inputs to Loop Phis; these will be split by the allocator anyways.
3284 //     Remove Opaque nodes.
3285 // (2) Move last-uses by commutative operations to the left input to encourage
3286 //     Intel update-in-place two-address operations and better register usage
3287 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3288 //     calls canonicalizing them back.
3289 // (3) Count the number of double-precision FP ops, single-precision FP ops
3290 //     and call sites.  On Intel, we can get correct rounding either by
3291 //     forcing singles to memory (requires extra stores and loads after each
3292 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3293 //     clearing the mode bit around call sites).  The mode bit is only used
3294 //     if the relative frequency of single FP ops to calls is low enough.
3295 //     This is a key transform for SPEC mpeg_audio.
3296 // (4) Detect infinite loops; blobs of code reachable from above but not
3297 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3298 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3299 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3300 //     Detection is by looking for IfNodes where only 1 projection is
3301 //     reachable from below or CatchNodes missing some targets.
3302 // (5) Assert for insane oop offsets in debug mode.
3303 
3304 bool Compile::final_graph_reshaping() {
3305   // an infinite loop may have been eliminated by the optimizer,
3306   // in which case the graph will be empty.
3307   if (root()->req() == 1) {
3308     record_method_not_compilable("trivial infinite loop");
3309     return true;
3310   }
3311 
3312   // Expensive nodes have their control input set to prevent the GVN
3313   // from freely commoning them. There's no GVN beyond this point so
3314   // no need to keep the control input. We want the expensive nodes to
3315   // be freely moved to the least frequent code path by gcm.
3316   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3317   for (int i = 0; i < expensive_count(); i++) {
3318     _expensive_nodes->at(i)->set_req(0, NULL);
3319   }
3320 
3321   Final_Reshape_Counts frc;
3322 
3323   // Visit everybody reachable!
3324   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3325   Node_Stack nstack(live_nodes() >> 1);
3326   final_graph_reshaping_walk(nstack, root(), frc);
3327 
3328   // Check for unreachable (from below) code (i.e., infinite loops).
3329   for( uint i = 0; i < frc._tests.size(); i++ ) {
3330     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3331     // Get number of CFG targets.
3332     // Note that PCTables include exception targets after calls.
3333     uint required_outcnt = n->required_outcnt();
3334     if (n->outcnt() != required_outcnt) {
3335       // Check for a few special cases.  Rethrow Nodes never take the
3336       // 'fall-thru' path, so expected kids is 1 less.
3337       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3338         if (n->in(0)->in(0)->is_Call()) {
3339           CallNode *call = n->in(0)->in(0)->as_Call();
3340           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3341             required_outcnt--;      // Rethrow always has 1 less kid
3342           } else if (call->req() > TypeFunc::Parms &&
3343                      call->is_CallDynamicJava()) {
3344             // Check for null receiver. In such case, the optimizer has
3345             // detected that the virtual call will always result in a null
3346             // pointer exception. The fall-through projection of this CatchNode
3347             // will not be populated.
3348             Node *arg0 = call->in(TypeFunc::Parms);
3349             if (arg0->is_Type() &&
3350                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3351               required_outcnt--;
3352             }
3353           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3354                      call->req() > TypeFunc::Parms+1 &&
3355                      call->is_CallStaticJava()) {
3356             // Check for negative array length. In such case, the optimizer has
3357             // detected that the allocation attempt will always result in an
3358             // exception. There is no fall-through projection of this CatchNode .
3359             Node *arg1 = call->in(TypeFunc::Parms+1);
3360             if (arg1->is_Type() &&
3361                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3362               required_outcnt--;
3363             }
3364           }
3365         }
3366       }
3367       // Recheck with a better notion of 'required_outcnt'
3368       if (n->outcnt() != required_outcnt) {
3369         record_method_not_compilable("malformed control flow");
3370         return true;            // Not all targets reachable!
3371       }
3372     }
3373     // Check that I actually visited all kids.  Unreached kids
3374     // must be infinite loops.
3375     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3376       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3377         record_method_not_compilable("infinite loop");
3378         return true;            // Found unvisited kid; must be unreach
3379       }
3380   }
3381 
3382   // If original bytecodes contained a mixture of floats and doubles
3383   // check if the optimizer has made it homogenous, item (3).
3384   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3385       frc.get_float_count() > 32 &&
3386       frc.get_double_count() == 0 &&
3387       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3388     set_24_bit_selection_and_mode( false,  true );
3389   }
3390 
3391   set_java_calls(frc.get_java_call_count());
3392   set_inner_loops(frc.get_inner_loop_count());
3393 
3394   // No infinite loops, no reason to bail out.
3395   return false;
3396 }
3397 
3398 //-----------------------------too_many_traps----------------------------------
3399 // Report if there are too many traps at the current method and bci.
3400 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3401 bool Compile::too_many_traps(ciMethod* method,
3402                              int bci,
3403                              Deoptimization::DeoptReason reason) {
3404   ciMethodData* md = method->method_data();
3405   if (md->is_empty()) {
3406     // Assume the trap has not occurred, or that it occurred only
3407     // because of a transient condition during start-up in the interpreter.
3408     return false;
3409   }
3410   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3411   if (md->has_trap_at(bci, m, reason) != 0) {
3412     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3413     // Also, if there are multiple reasons, or if there is no per-BCI record,
3414     // assume the worst.
3415     if (log())
3416       log()->elem("observe trap='%s' count='%d'",
3417                   Deoptimization::trap_reason_name(reason),
3418                   md->trap_count(reason));
3419     return true;
3420   } else {
3421     // Ignore method/bci and see if there have been too many globally.
3422     return too_many_traps(reason, md);
3423   }
3424 }
3425 
3426 // Less-accurate variant which does not require a method and bci.
3427 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3428                              ciMethodData* logmd) {
3429   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3430     // Too many traps globally.
3431     // Note that we use cumulative trap_count, not just md->trap_count.
3432     if (log()) {
3433       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3434       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3435                   Deoptimization::trap_reason_name(reason),
3436                   mcount, trap_count(reason));
3437     }
3438     return true;
3439   } else {
3440     // The coast is clear.
3441     return false;
3442   }
3443 }
3444 
3445 //--------------------------too_many_recompiles--------------------------------
3446 // Report if there are too many recompiles at the current method and bci.
3447 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3448 // Is not eager to return true, since this will cause the compiler to use
3449 // Action_none for a trap point, to avoid too many recompilations.
3450 bool Compile::too_many_recompiles(ciMethod* method,
3451                                   int bci,
3452                                   Deoptimization::DeoptReason reason) {
3453   ciMethodData* md = method->method_data();
3454   if (md->is_empty()) {
3455     // Assume the trap has not occurred, or that it occurred only
3456     // because of a transient condition during start-up in the interpreter.
3457     return false;
3458   }
3459   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3460   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3461   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3462   Deoptimization::DeoptReason per_bc_reason
3463     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3464   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3465   if ((per_bc_reason == Deoptimization::Reason_none
3466        || md->has_trap_at(bci, m, reason) != 0)
3467       // The trap frequency measure we care about is the recompile count:
3468       && md->trap_recompiled_at(bci, m)
3469       && md->overflow_recompile_count() >= bc_cutoff) {
3470     // Do not emit a trap here if it has already caused recompilations.
3471     // Also, if there are multiple reasons, or if there is no per-BCI record,
3472     // assume the worst.
3473     if (log())
3474       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3475                   Deoptimization::trap_reason_name(reason),
3476                   md->trap_count(reason),
3477                   md->overflow_recompile_count());
3478     return true;
3479   } else if (trap_count(reason) != 0
3480              && decompile_count() >= m_cutoff) {
3481     // Too many recompiles globally, and we have seen this sort of trap.
3482     // Use cumulative decompile_count, not just md->decompile_count.
3483     if (log())
3484       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3485                   Deoptimization::trap_reason_name(reason),
3486                   md->trap_count(reason), trap_count(reason),
3487                   md->decompile_count(), decompile_count());
3488     return true;
3489   } else {
3490     // The coast is clear.
3491     return false;
3492   }
3493 }
3494 
3495 // Compute when not to trap. Used by matching trap based nodes and
3496 // NullCheck optimization.
3497 void Compile::set_allowed_deopt_reasons() {
3498   _allowed_reasons = 0;
3499   if (is_method_compilation()) {
3500     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3501       assert(rs < BitsPerInt, "recode bit map");
3502       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3503         _allowed_reasons |= nth_bit(rs);
3504       }
3505     }
3506   }
3507 }
3508 
3509 #ifndef PRODUCT
3510 //------------------------------verify_graph_edges---------------------------
3511 // Walk the Graph and verify that there is a one-to-one correspondence
3512 // between Use-Def edges and Def-Use edges in the graph.
3513 void Compile::verify_graph_edges(bool no_dead_code) {
3514   if (VerifyGraphEdges) {
3515     ResourceArea *area = Thread::current()->resource_area();
3516     Unique_Node_List visited(area);
3517     // Call recursive graph walk to check edges
3518     _root->verify_edges(visited);
3519     if (no_dead_code) {
3520       // Now make sure that no visited node is used by an unvisited node.
3521       bool dead_nodes = false;
3522       Unique_Node_List checked(area);
3523       while (visited.size() > 0) {
3524         Node* n = visited.pop();
3525         checked.push(n);
3526         for (uint i = 0; i < n->outcnt(); i++) {
3527           Node* use = n->raw_out(i);
3528           if (checked.member(use))  continue;  // already checked
3529           if (visited.member(use))  continue;  // already in the graph
3530           if (use->is_Con())        continue;  // a dead ConNode is OK
3531           // At this point, we have found a dead node which is DU-reachable.
3532           if (!dead_nodes) {
3533             tty->print_cr("*** Dead nodes reachable via DU edges:");
3534             dead_nodes = true;
3535           }
3536           use->dump(2);
3537           tty->print_cr("---");
3538           checked.push(use);  // No repeats; pretend it is now checked.
3539         }
3540       }
3541       assert(!dead_nodes, "using nodes must be reachable from root");
3542     }
3543   }
3544 }
3545 
3546 // Verify GC barriers consistency
3547 // Currently supported:
3548 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3549 void Compile::verify_barriers() {
3550   if (UseG1GC) {
3551     // Verify G1 pre-barriers
3552     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3553 
3554     ResourceArea *area = Thread::current()->resource_area();
3555     Unique_Node_List visited(area);
3556     Node_List worklist(area);
3557     // We're going to walk control flow backwards starting from the Root
3558     worklist.push(_root);
3559     while (worklist.size() > 0) {
3560       Node* x = worklist.pop();
3561       if (x == NULL || x == top()) continue;
3562       if (visited.member(x)) {
3563         continue;
3564       } else {
3565         visited.push(x);
3566       }
3567 
3568       if (x->is_Region()) {
3569         for (uint i = 1; i < x->req(); i++) {
3570           worklist.push(x->in(i));
3571         }
3572       } else {
3573         worklist.push(x->in(0));
3574         // We are looking for the pattern:
3575         //                            /->ThreadLocal
3576         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3577         //              \->ConI(0)
3578         // We want to verify that the If and the LoadB have the same control
3579         // See GraphKit::g1_write_barrier_pre()
3580         if (x->is_If()) {
3581           IfNode *iff = x->as_If();
3582           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3583             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3584             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3585                 && cmp->in(1)->is_Load()) {
3586               LoadNode* load = cmp->in(1)->as_Load();
3587               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3588                   && load->in(2)->in(3)->is_Con()
3589                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3590 
3591                 Node* if_ctrl = iff->in(0);
3592                 Node* load_ctrl = load->in(0);
3593 
3594                 if (if_ctrl != load_ctrl) {
3595                   // Skip possible CProj->NeverBranch in infinite loops
3596                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3597                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3598                     if_ctrl = if_ctrl->in(0)->in(0);
3599                   }
3600                 }
3601                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3602               }
3603             }
3604           }
3605         }
3606       }
3607     }
3608   }
3609 }
3610 
3611 #endif
3612 
3613 // The Compile object keeps track of failure reasons separately from the ciEnv.
3614 // This is required because there is not quite a 1-1 relation between the
3615 // ciEnv and its compilation task and the Compile object.  Note that one
3616 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3617 // to backtrack and retry without subsuming loads.  Other than this backtracking
3618 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3619 // by the logic in C2Compiler.
3620 void Compile::record_failure(const char* reason) {
3621   if (log() != NULL) {
3622     log()->elem("failure reason='%s' phase='compile'", reason);
3623   }
3624   if (_failure_reason == NULL) {
3625     // Record the first failure reason.
3626     _failure_reason = reason;
3627   }
3628 
3629   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3630     C->print_method(PHASE_FAILURE);
3631   }
3632   _root = NULL;  // flush the graph, too
3633 }
3634 
3635 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3636   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3637     _phase_name(name), _dolog(CITimeVerbose)
3638 {
3639   if (_dolog) {
3640     C = Compile::current();
3641     _log = C->log();
3642   } else {
3643     C = NULL;
3644     _log = NULL;
3645   }
3646   if (_log != NULL) {
3647     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3648     _log->stamp();
3649     _log->end_head();
3650   }
3651 }
3652 
3653 Compile::TracePhase::~TracePhase() {
3654 
3655   C = Compile::current();
3656   if (_dolog) {
3657     _log = C->log();
3658   } else {
3659     _log = NULL;
3660   }
3661 
3662 #ifdef ASSERT
3663   if (PrintIdealNodeCount) {
3664     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3665                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3666   }
3667 
3668   if (VerifyIdealNodeCount) {
3669     Compile::current()->print_missing_nodes();
3670   }
3671 #endif
3672 
3673   if (_log != NULL) {
3674     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3675   }
3676 }
3677 
3678 //=============================================================================
3679 // Two Constant's are equal when the type and the value are equal.
3680 bool Compile::Constant::operator==(const Constant& other) {
3681   if (type()          != other.type()         )  return false;
3682   if (can_be_reused() != other.can_be_reused())  return false;
3683   // For floating point values we compare the bit pattern.
3684   switch (type()) {
3685   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3686   case T_LONG:
3687   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3688   case T_OBJECT:
3689   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3690   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3691   case T_METADATA: return (_v._metadata == other._v._metadata);
3692   default: ShouldNotReachHere();
3693   }
3694   return false;
3695 }
3696 
3697 static int type_to_size_in_bytes(BasicType t) {
3698   switch (t) {
3699   case T_LONG:    return sizeof(jlong  );
3700   case T_FLOAT:   return sizeof(jfloat );
3701   case T_DOUBLE:  return sizeof(jdouble);
3702   case T_METADATA: return sizeof(Metadata*);
3703     // We use T_VOID as marker for jump-table entries (labels) which
3704     // need an internal word relocation.
3705   case T_VOID:
3706   case T_ADDRESS:
3707   case T_OBJECT:  return sizeof(jobject);
3708   }
3709 
3710   ShouldNotReachHere();
3711   return -1;
3712 }
3713 
3714 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3715   // sort descending
3716   if (a->freq() > b->freq())  return -1;
3717   if (a->freq() < b->freq())  return  1;
3718   return 0;
3719 }
3720 
3721 void Compile::ConstantTable::calculate_offsets_and_size() {
3722   // First, sort the array by frequencies.
3723   _constants.sort(qsort_comparator);
3724 
3725 #ifdef ASSERT
3726   // Make sure all jump-table entries were sorted to the end of the
3727   // array (they have a negative frequency).
3728   bool found_void = false;
3729   for (int i = 0; i < _constants.length(); i++) {
3730     Constant con = _constants.at(i);
3731     if (con.type() == T_VOID)
3732       found_void = true;  // jump-tables
3733     else
3734       assert(!found_void, "wrong sorting");
3735   }
3736 #endif
3737 
3738   int offset = 0;
3739   for (int i = 0; i < _constants.length(); i++) {
3740     Constant* con = _constants.adr_at(i);
3741 
3742     // Align offset for type.
3743     int typesize = type_to_size_in_bytes(con->type());
3744     offset = align_size_up(offset, typesize);
3745     con->set_offset(offset);   // set constant's offset
3746 
3747     if (con->type() == T_VOID) {
3748       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3749       offset = offset + typesize * n->outcnt();  // expand jump-table
3750     } else {
3751       offset = offset + typesize;
3752     }
3753   }
3754 
3755   // Align size up to the next section start (which is insts; see
3756   // CodeBuffer::align_at_start).
3757   assert(_size == -1, "already set?");
3758   _size = align_size_up(offset, CodeEntryAlignment);
3759 }
3760 
3761 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3762   MacroAssembler _masm(&cb);
3763   for (int i = 0; i < _constants.length(); i++) {
3764     Constant con = _constants.at(i);
3765     address constant_addr;
3766     switch (con.type()) {
3767     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3768     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3769     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3770     case T_OBJECT: {
3771       jobject obj = con.get_jobject();
3772       int oop_index = _masm.oop_recorder()->find_index(obj);
3773       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3774       break;
3775     }
3776     case T_ADDRESS: {
3777       address addr = (address) con.get_jobject();
3778       constant_addr = _masm.address_constant(addr);
3779       break;
3780     }
3781     // We use T_VOID as marker for jump-table entries (labels) which
3782     // need an internal word relocation.
3783     case T_VOID: {
3784       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3785       // Fill the jump-table with a dummy word.  The real value is
3786       // filled in later in fill_jump_table.
3787       address dummy = (address) n;
3788       constant_addr = _masm.address_constant(dummy);
3789       // Expand jump-table
3790       for (uint i = 1; i < n->outcnt(); i++) {
3791         address temp_addr = _masm.address_constant(dummy + i);
3792         assert(temp_addr, "consts section too small");
3793       }
3794       break;
3795     }
3796     case T_METADATA: {
3797       Metadata* obj = con.get_metadata();
3798       int metadata_index = _masm.oop_recorder()->find_index(obj);
3799       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3800       break;
3801     }
3802     default: ShouldNotReachHere();
3803     }
3804     assert(constant_addr, "consts section too small");
3805     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3806             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
3807   }
3808 }
3809 
3810 int Compile::ConstantTable::find_offset(Constant& con) const {
3811   int idx = _constants.find(con);
3812   assert(idx != -1, "constant must be in constant table");
3813   int offset = _constants.at(idx).offset();
3814   assert(offset != -1, "constant table not emitted yet?");
3815   return offset;
3816 }
3817 
3818 void Compile::ConstantTable::add(Constant& con) {
3819   if (con.can_be_reused()) {
3820     int idx = _constants.find(con);
3821     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3822       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3823       return;
3824     }
3825   }
3826   (void) _constants.append(con);
3827 }
3828 
3829 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3830   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3831   Constant con(type, value, b->_freq);
3832   add(con);
3833   return con;
3834 }
3835 
3836 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3837   Constant con(metadata);
3838   add(con);
3839   return con;
3840 }
3841 
3842 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3843   jvalue value;
3844   BasicType type = oper->type()->basic_type();
3845   switch (type) {
3846   case T_LONG:    value.j = oper->constantL(); break;
3847   case T_FLOAT:   value.f = oper->constantF(); break;
3848   case T_DOUBLE:  value.d = oper->constantD(); break;
3849   case T_OBJECT:
3850   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3851   case T_METADATA: return add((Metadata*)oper->constant()); break;
3852   default: guarantee(false, "unhandled type: %s", type2name(type));
3853   }
3854   return add(n, type, value);
3855 }
3856 
3857 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3858   jvalue value;
3859   // We can use the node pointer here to identify the right jump-table
3860   // as this method is called from Compile::Fill_buffer right before
3861   // the MachNodes are emitted and the jump-table is filled (means the
3862   // MachNode pointers do not change anymore).
3863   value.l = (jobject) n;
3864   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3865   add(con);
3866   return con;
3867 }
3868 
3869 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3870   // If called from Compile::scratch_emit_size do nothing.
3871   if (Compile::current()->in_scratch_emit_size())  return;
3872 
3873   assert(labels.is_nonempty(), "must be");
3874   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
3875 
3876   // Since MachConstantNode::constant_offset() also contains
3877   // table_base_offset() we need to subtract the table_base_offset()
3878   // to get the plain offset into the constant table.
3879   int offset = n->constant_offset() - table_base_offset();
3880 
3881   MacroAssembler _masm(&cb);
3882   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3883 
3884   for (uint i = 0; i < n->outcnt(); i++) {
3885     address* constant_addr = &jump_table_base[i];
3886     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
3887     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3888     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3889   }
3890 }
3891 
3892 //----------------------------static_subtype_check-----------------------------
3893 // Shortcut important common cases when superklass is exact:
3894 // (0) superklass is java.lang.Object (can occur in reflective code)
3895 // (1) subklass is already limited to a subtype of superklass => always ok
3896 // (2) subklass does not overlap with superklass => always fail
3897 // (3) superklass has NO subtypes and we can check with a simple compare.
3898 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
3899   if (StressReflectiveCode) {
3900     return SSC_full_test;       // Let caller generate the general case.
3901   }
3902 
3903   if (superk == env()->Object_klass()) {
3904     return SSC_always_true;     // (0) this test cannot fail
3905   }
3906 
3907   ciType* superelem = superk;
3908   if (superelem->is_array_klass())
3909     superelem = superelem->as_array_klass()->base_element_type();
3910 
3911   if (!subk->is_interface()) {  // cannot trust static interface types yet
3912     if (subk->is_subtype_of(superk)) {
3913       return SSC_always_true;   // (1) false path dead; no dynamic test needed
3914     }
3915     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
3916         !superk->is_subtype_of(subk)) {
3917       return SSC_always_false;
3918     }
3919   }
3920 
3921   // If casting to an instance klass, it must have no subtypes
3922   if (superk->is_interface()) {
3923     // Cannot trust interfaces yet.
3924     // %%% S.B. superk->nof_implementors() == 1
3925   } else if (superelem->is_instance_klass()) {
3926     ciInstanceKlass* ik = superelem->as_instance_klass();
3927     if (!ik->has_subklass() && !ik->is_interface()) {
3928       if (!ik->is_final()) {
3929         // Add a dependency if there is a chance of a later subclass.
3930         dependencies()->assert_leaf_type(ik);
3931       }
3932       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
3933     }
3934   } else {
3935     // A primitive array type has no subtypes.
3936     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
3937   }
3938 
3939   return SSC_full_test;
3940 }
3941 
3942 Node* Compile::conv_I2X_index(PhaseGVN *phase, Node* idx, const TypeInt* sizetype) {
3943 #ifdef _LP64
3944   // The scaled index operand to AddP must be a clean 64-bit value.
3945   // Java allows a 32-bit int to be incremented to a negative
3946   // value, which appears in a 64-bit register as a large
3947   // positive number.  Using that large positive number as an
3948   // operand in pointer arithmetic has bad consequences.
3949   // On the other hand, 32-bit overflow is rare, and the possibility
3950   // can often be excluded, if we annotate the ConvI2L node with
3951   // a type assertion that its value is known to be a small positive
3952   // number.  (The prior range check has ensured this.)
3953   // This assertion is used by ConvI2LNode::Ideal.
3954   int index_max = max_jint - 1;  // array size is max_jint, index is one less
3955   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
3956   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
3957   idx = phase->transform(new ConvI2LNode(idx, lidxtype));
3958 #endif
3959   return idx;
3960 }
3961 
3962 // The message about the current inlining is accumulated in
3963 // _print_inlining_stream and transfered into the _print_inlining_list
3964 // once we know whether inlining succeeds or not. For regular
3965 // inlining, messages are appended to the buffer pointed by
3966 // _print_inlining_idx in the _print_inlining_list. For late inlining,
3967 // a new buffer is added after _print_inlining_idx in the list. This
3968 // way we can update the inlining message for late inlining call site
3969 // when the inlining is attempted again.
3970 void Compile::print_inlining_init() {
3971   if (print_inlining() || print_intrinsics()) {
3972     _print_inlining_stream = new stringStream();
3973     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
3974   }
3975 }
3976 
3977 void Compile::print_inlining_reinit() {
3978   if (print_inlining() || print_intrinsics()) {
3979     // Re allocate buffer when we change ResourceMark
3980     _print_inlining_stream = new stringStream();
3981   }
3982 }
3983 
3984 void Compile::print_inlining_reset() {
3985   _print_inlining_stream->reset();
3986 }
3987 
3988 void Compile::print_inlining_commit() {
3989   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
3990   // Transfer the message from _print_inlining_stream to the current
3991   // _print_inlining_list buffer and clear _print_inlining_stream.
3992   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
3993   print_inlining_reset();
3994 }
3995 
3996 void Compile::print_inlining_push() {
3997   // Add new buffer to the _print_inlining_list at current position
3998   _print_inlining_idx++;
3999   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4000 }
4001 
4002 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4003   return _print_inlining_list->at(_print_inlining_idx);
4004 }
4005 
4006 void Compile::print_inlining_update(CallGenerator* cg) {
4007   if (print_inlining() || print_intrinsics()) {
4008     if (!cg->is_late_inline()) {
4009       if (print_inlining_current().cg() != NULL) {
4010         print_inlining_push();
4011       }
4012       print_inlining_commit();
4013     } else {
4014       if (print_inlining_current().cg() != cg &&
4015           (print_inlining_current().cg() != NULL ||
4016            print_inlining_current().ss()->size() != 0)) {
4017         print_inlining_push();
4018       }
4019       print_inlining_commit();
4020       print_inlining_current().set_cg(cg);
4021     }
4022   }
4023 }
4024 
4025 void Compile::print_inlining_move_to(CallGenerator* cg) {
4026   // We resume inlining at a late inlining call site. Locate the
4027   // corresponding inlining buffer so that we can update it.
4028   if (print_inlining()) {
4029     for (int i = 0; i < _print_inlining_list->length(); i++) {
4030       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4031         _print_inlining_idx = i;
4032         return;
4033       }
4034     }
4035     ShouldNotReachHere();
4036   }
4037 }
4038 
4039 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4040   if (print_inlining()) {
4041     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4042     assert(print_inlining_current().cg() == cg, "wrong entry");
4043     // replace message with new message
4044     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4045     print_inlining_commit();
4046     print_inlining_current().set_cg(cg);
4047   }
4048 }
4049 
4050 void Compile::print_inlining_assert_ready() {
4051   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4052 }
4053 
4054 void Compile::process_print_inlining() {
4055   bool do_print_inlining = print_inlining() || print_intrinsics();
4056   if (do_print_inlining || log() != NULL) {
4057     // Print inlining message for candidates that we couldn't inline
4058     // for lack of space
4059     for (int i = 0; i < _late_inlines.length(); i++) {
4060       CallGenerator* cg = _late_inlines.at(i);
4061       if (!cg->is_mh_late_inline()) {
4062         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4063         if (do_print_inlining) {
4064           cg->print_inlining_late(msg);
4065         }
4066         log_late_inline_failure(cg, msg);
4067       }
4068     }
4069   }
4070   if (do_print_inlining) {
4071     ResourceMark rm;
4072     stringStream ss;
4073     for (int i = 0; i < _print_inlining_list->length(); i++) {
4074       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4075     }
4076     size_t end = ss.size();
4077     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4078     strncpy(_print_inlining_output, ss.base(), end+1);
4079     _print_inlining_output[end] = 0;
4080   }
4081 }
4082 
4083 void Compile::dump_print_inlining() {
4084   if (_print_inlining_output != NULL) {
4085     tty->print_raw(_print_inlining_output);
4086   }
4087 }
4088 
4089 void Compile::log_late_inline(CallGenerator* cg) {
4090   if (log() != NULL) {
4091     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4092                 cg->unique_id());
4093     JVMState* p = cg->call_node()->jvms();
4094     while (p != NULL) {
4095       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4096       p = p->caller();
4097     }
4098     log()->tail("late_inline");
4099   }
4100 }
4101 
4102 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4103   log_late_inline(cg);
4104   if (log() != NULL) {
4105     log()->inline_fail(msg);
4106   }
4107 }
4108 
4109 void Compile::log_inline_id(CallGenerator* cg) {
4110   if (log() != NULL) {
4111     // The LogCompilation tool needs a unique way to identify late
4112     // inline call sites. This id must be unique for this call site in
4113     // this compilation. Try to have it unique across compilations as
4114     // well because it can be convenient when grepping through the log
4115     // file.
4116     // Distinguish OSR compilations from others in case CICountOSR is
4117     // on.
4118     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4119     cg->set_unique_id(id);
4120     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4121   }
4122 }
4123 
4124 void Compile::log_inline_failure(const char* msg) {
4125   if (C->log() != NULL) {
4126     C->log()->inline_fail(msg);
4127   }
4128 }
4129 
4130 
4131 // Dump inlining replay data to the stream.
4132 // Don't change thread state and acquire any locks.
4133 void Compile::dump_inline_data(outputStream* out) {
4134   InlineTree* inl_tree = ilt();
4135   if (inl_tree != NULL) {
4136     out->print(" inline %d", inl_tree->count());
4137     inl_tree->dump_replay_data(out);
4138   }
4139 }
4140 
4141 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4142   if (n1->Opcode() < n2->Opcode())      return -1;
4143   else if (n1->Opcode() > n2->Opcode()) return 1;
4144 
4145   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4146   for (uint i = 1; i < n1->req(); i++) {
4147     if (n1->in(i) < n2->in(i))      return -1;
4148     else if (n1->in(i) > n2->in(i)) return 1;
4149   }
4150 
4151   return 0;
4152 }
4153 
4154 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4155   Node* n1 = *n1p;
4156   Node* n2 = *n2p;
4157 
4158   return cmp_expensive_nodes(n1, n2);
4159 }
4160 
4161 void Compile::sort_expensive_nodes() {
4162   if (!expensive_nodes_sorted()) {
4163     _expensive_nodes->sort(cmp_expensive_nodes);
4164   }
4165 }
4166 
4167 bool Compile::expensive_nodes_sorted() const {
4168   for (int i = 1; i < _expensive_nodes->length(); i++) {
4169     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4170       return false;
4171     }
4172   }
4173   return true;
4174 }
4175 
4176 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4177   if (_expensive_nodes->length() == 0) {
4178     return false;
4179   }
4180 
4181   assert(OptimizeExpensiveOps, "optimization off?");
4182 
4183   // Take this opportunity to remove dead nodes from the list
4184   int j = 0;
4185   for (int i = 0; i < _expensive_nodes->length(); i++) {
4186     Node* n = _expensive_nodes->at(i);
4187     if (!n->is_unreachable(igvn)) {
4188       assert(n->is_expensive(), "should be expensive");
4189       _expensive_nodes->at_put(j, n);
4190       j++;
4191     }
4192   }
4193   _expensive_nodes->trunc_to(j);
4194 
4195   // Then sort the list so that similar nodes are next to each other
4196   // and check for at least two nodes of identical kind with same data
4197   // inputs.
4198   sort_expensive_nodes();
4199 
4200   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4201     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4202       return true;
4203     }
4204   }
4205 
4206   return false;
4207 }
4208 
4209 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4210   if (_expensive_nodes->length() == 0) {
4211     return;
4212   }
4213 
4214   assert(OptimizeExpensiveOps, "optimization off?");
4215 
4216   // Sort to bring similar nodes next to each other and clear the
4217   // control input of nodes for which there's only a single copy.
4218   sort_expensive_nodes();
4219 
4220   int j = 0;
4221   int identical = 0;
4222   int i = 0;
4223   bool modified = false;
4224   for (; i < _expensive_nodes->length()-1; i++) {
4225     assert(j <= i, "can't write beyond current index");
4226     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4227       identical++;
4228       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4229       continue;
4230     }
4231     if (identical > 0) {
4232       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4233       identical = 0;
4234     } else {
4235       Node* n = _expensive_nodes->at(i);
4236       igvn.replace_input_of(n, 0, NULL);
4237       igvn.hash_insert(n);
4238       modified = true;
4239     }
4240   }
4241   if (identical > 0) {
4242     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4243   } else if (_expensive_nodes->length() >= 1) {
4244     Node* n = _expensive_nodes->at(i);
4245     igvn.replace_input_of(n, 0, NULL);
4246     igvn.hash_insert(n);
4247     modified = true;
4248   }
4249   _expensive_nodes->trunc_to(j);
4250   if (modified) {
4251     igvn.optimize();
4252   }
4253 }
4254 
4255 void Compile::add_expensive_node(Node * n) {
4256   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4257   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4258   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4259   if (OptimizeExpensiveOps) {
4260     _expensive_nodes->append(n);
4261   } else {
4262     // Clear control input and let IGVN optimize expensive nodes if
4263     // OptimizeExpensiveOps is off.
4264     n->set_req(0, NULL);
4265   }
4266 }
4267 
4268 /**
4269  * Remove the speculative part of types and clean up the graph
4270  */
4271 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4272   if (UseTypeSpeculation) {
4273     Unique_Node_List worklist;
4274     worklist.push(root());
4275     int modified = 0;
4276     // Go over all type nodes that carry a speculative type, drop the
4277     // speculative part of the type and enqueue the node for an igvn
4278     // which may optimize it out.
4279     for (uint next = 0; next < worklist.size(); ++next) {
4280       Node *n  = worklist.at(next);
4281       if (n->is_Type()) {
4282         TypeNode* tn = n->as_Type();
4283         const Type* t = tn->type();
4284         const Type* t_no_spec = t->remove_speculative();
4285         if (t_no_spec != t) {
4286           bool in_hash = igvn.hash_delete(n);
4287           assert(in_hash, "node should be in igvn hash table");
4288           tn->set_type(t_no_spec);
4289           igvn.hash_insert(n);
4290           igvn._worklist.push(n); // give it a chance to go away
4291           modified++;
4292         }
4293       }
4294       uint max = n->len();
4295       for( uint i = 0; i < max; ++i ) {
4296         Node *m = n->in(i);
4297         if (not_a_node(m))  continue;
4298         worklist.push(m);
4299       }
4300     }
4301     // Drop the speculative part of all types in the igvn's type table
4302     igvn.remove_speculative_types();
4303     if (modified > 0) {
4304       igvn.optimize();
4305     }
4306 #ifdef ASSERT
4307     // Verify that after the IGVN is over no speculative type has resurfaced
4308     worklist.clear();
4309     worklist.push(root());
4310     for (uint next = 0; next < worklist.size(); ++next) {
4311       Node *n  = worklist.at(next);
4312       const Type* t = igvn.type_or_null(n);
4313       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4314       if (n->is_Type()) {
4315         t = n->as_Type()->type();
4316         assert(t == t->remove_speculative(), "no more speculative types");
4317       }
4318       uint max = n->len();
4319       for( uint i = 0; i < max; ++i ) {
4320         Node *m = n->in(i);
4321         if (not_a_node(m))  continue;
4322         worklist.push(m);
4323       }
4324     }
4325     igvn.check_no_speculative_types();
4326 #endif
4327   }
4328 }
4329 
4330 // Auxiliary method to support randomized stressing/fuzzing.
4331 //
4332 // This method can be called the arbitrary number of times, with current count
4333 // as the argument. The logic allows selecting a single candidate from the
4334 // running list of candidates as follows:
4335 //    int count = 0;
4336 //    Cand* selected = null;
4337 //    while(cand = cand->next()) {
4338 //      if (randomized_select(++count)) {
4339 //        selected = cand;
4340 //      }
4341 //    }
4342 //
4343 // Including count equalizes the chances any candidate is "selected".
4344 // This is useful when we don't have the complete list of candidates to choose
4345 // from uniformly. In this case, we need to adjust the randomicity of the
4346 // selection, or else we will end up biasing the selection towards the latter
4347 // candidates.
4348 //
4349 // Quick back-envelope calculation shows that for the list of n candidates
4350 // the equal probability for the candidate to persist as "best" can be
4351 // achieved by replacing it with "next" k-th candidate with the probability
4352 // of 1/k. It can be easily shown that by the end of the run, the
4353 // probability for any candidate is converged to 1/n, thus giving the
4354 // uniform distribution among all the candidates.
4355 //
4356 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4357 #define RANDOMIZED_DOMAIN_POW 29
4358 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4359 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4360 bool Compile::randomized_select(int count) {
4361   assert(count > 0, "only positive");
4362   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4363 }
4364 
4365 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4366 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4367 
4368 void NodeCloneInfo::dump() const {
4369   tty->print(" {%d:%d} ", idx(), gen());
4370 }
4371 
4372 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4373   uint64_t val = value(old->_idx);
4374   NodeCloneInfo cio(val);
4375   assert(val != 0, "old node should be in the map");
4376   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4377   insert(nnn->_idx, cin.get());
4378 #ifndef PRODUCT
4379   if (is_debug()) {
4380     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4381   }
4382 #endif
4383 }
4384 
4385 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4386   NodeCloneInfo cio(value(old->_idx));
4387   if (cio.get() == 0) {
4388     cio.set(old->_idx, 0);
4389     insert(old->_idx, cio.get());
4390 #ifndef PRODUCT
4391     if (is_debug()) {
4392       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4393     }
4394 #endif
4395   }
4396   clone(old, nnn, gen);
4397 }
4398 
4399 int CloneMap::max_gen() const {
4400   int g = 0;
4401   DictI di(_dict);
4402   for(; di.test(); ++di) {
4403     int t = gen(di._key);
4404     if (g < t) {
4405       g = t;
4406 #ifndef PRODUCT
4407       if (is_debug()) {
4408         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4409       }
4410 #endif
4411     }
4412   }
4413   return g;
4414 }
4415 
4416 void CloneMap::dump(node_idx_t key) const {
4417   uint64_t val = value(key);
4418   if (val != 0) {
4419     NodeCloneInfo ni(val);
4420     ni.dump();
4421   }
4422 }