1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/loopnode.hpp"
  31 #include "opto/machnode.hpp"
  32 #include "opto/matcher.hpp"
  33 #include "opto/node.hpp"
  34 #include "opto/opcodes.hpp"
  35 #include "opto/regmask.hpp"
  36 #include "opto/type.hpp"
  37 #include "utilities/copy.hpp"
  38 
  39 class RegMask;
  40 // #include "phase.hpp"
  41 class PhaseTransform;
  42 class PhaseGVN;
  43 
  44 // Arena we are currently building Nodes in
  45 const uint Node::NotAMachineReg = 0xffff0000;
  46 
  47 #ifndef PRODUCT
  48 extern int nodes_created;
  49 #endif
  50 #ifdef __clang__
  51 #pragma clang diagnostic push
  52 #pragma GCC diagnostic ignored "-Wuninitialized"
  53 #endif
  54 
  55 #ifdef ASSERT
  56 
  57 //-------------------------- construct_node------------------------------------
  58 // Set a breakpoint here to identify where a particular node index is built.
  59 void Node::verify_construction() {
  60   _debug_orig = NULL;
  61   int old_debug_idx = Compile::debug_idx();
  62   int new_debug_idx = old_debug_idx+1;
  63   if (new_debug_idx > 0) {
  64     // Arrange that the lowest five decimal digits of _debug_idx
  65     // will repeat those of _idx. In case this is somehow pathological,
  66     // we continue to assign negative numbers (!) consecutively.
  67     const int mod = 100000;
  68     int bump = (int)(_idx - new_debug_idx) % mod;
  69     if (bump < 0)  bump += mod;
  70     assert(bump >= 0 && bump < mod, "");
  71     new_debug_idx += bump;
  72   }
  73   Compile::set_debug_idx(new_debug_idx);
  74   set_debug_idx( new_debug_idx );
  75   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  76   assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
  77   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  78     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  79     BREAKPOINT;
  80   }
  81 #if OPTO_DU_ITERATOR_ASSERT
  82   _last_del = NULL;
  83   _del_tick = 0;
  84 #endif
  85   _hash_lock = 0;
  86 }
  87 
  88 
  89 // #ifdef ASSERT ...
  90 
  91 #if OPTO_DU_ITERATOR_ASSERT
  92 void DUIterator_Common::sample(const Node* node) {
  93   _vdui     = VerifyDUIterators;
  94   _node     = node;
  95   _outcnt   = node->_outcnt;
  96   _del_tick = node->_del_tick;
  97   _last     = NULL;
  98 }
  99 
 100 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
 101   assert(_node     == node, "consistent iterator source");
 102   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
 103 }
 104 
 105 void DUIterator_Common::verify_resync() {
 106   // Ensure that the loop body has just deleted the last guy produced.
 107   const Node* node = _node;
 108   // Ensure that at least one copy of the last-seen edge was deleted.
 109   // Note:  It is OK to delete multiple copies of the last-seen edge.
 110   // Unfortunately, we have no way to verify that all the deletions delete
 111   // that same edge.  On this point we must use the Honor System.
 112   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 113   assert(node->_last_del == _last, "must have deleted the edge just produced");
 114   // We liked this deletion, so accept the resulting outcnt and tick.
 115   _outcnt   = node->_outcnt;
 116   _del_tick = node->_del_tick;
 117 }
 118 
 119 void DUIterator_Common::reset(const DUIterator_Common& that) {
 120   if (this == &that)  return;  // ignore assignment to self
 121   if (!_vdui) {
 122     // We need to initialize everything, overwriting garbage values.
 123     _last = that._last;
 124     _vdui = that._vdui;
 125   }
 126   // Note:  It is legal (though odd) for an iterator over some node x
 127   // to be reassigned to iterate over another node y.  Some doubly-nested
 128   // progress loops depend on being able to do this.
 129   const Node* node = that._node;
 130   // Re-initialize everything, except _last.
 131   _node     = node;
 132   _outcnt   = node->_outcnt;
 133   _del_tick = node->_del_tick;
 134 }
 135 
 136 void DUIterator::sample(const Node* node) {
 137   DUIterator_Common::sample(node);      // Initialize the assertion data.
 138   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 139 }
 140 
 141 void DUIterator::verify(const Node* node, bool at_end_ok) {
 142   DUIterator_Common::verify(node, at_end_ok);
 143   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 144 }
 145 
 146 void DUIterator::verify_increment() {
 147   if (_refresh_tick & 1) {
 148     // We have refreshed the index during this loop.
 149     // Fix up _idx to meet asserts.
 150     if (_idx > _outcnt)  _idx = _outcnt;
 151   }
 152   verify(_node, true);
 153 }
 154 
 155 void DUIterator::verify_resync() {
 156   // Note:  We do not assert on _outcnt, because insertions are OK here.
 157   DUIterator_Common::verify_resync();
 158   // Make sure we are still in sync, possibly with no more out-edges:
 159   verify(_node, true);
 160 }
 161 
 162 void DUIterator::reset(const DUIterator& that) {
 163   if (this == &that)  return;  // self assignment is always a no-op
 164   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 165   assert(that._idx          == 0, "assign only the result of Node::outs()");
 166   assert(_idx               == that._idx, "already assigned _idx");
 167   if (!_vdui) {
 168     // We need to initialize everything, overwriting garbage values.
 169     sample(that._node);
 170   } else {
 171     DUIterator_Common::reset(that);
 172     if (_refresh_tick & 1) {
 173       _refresh_tick++;                  // Clear the "was refreshed" flag.
 174     }
 175     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 176   }
 177 }
 178 
 179 void DUIterator::refresh() {
 180   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 181   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 182 }
 183 
 184 void DUIterator::verify_finish() {
 185   // If the loop has killed the node, do not require it to re-run.
 186   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 187   // If this assert triggers, it means that a loop used refresh_out_pos
 188   // to re-synch an iteration index, but the loop did not correctly
 189   // re-run itself, using a "while (progress)" construct.
 190   // This iterator enforces the rule that you must keep trying the loop
 191   // until it "runs clean" without any need for refreshing.
 192   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 193 }
 194 
 195 
 196 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 197   DUIterator_Common::verify(node, at_end_ok);
 198   Node** out    = node->_out;
 199   uint   cnt    = node->_outcnt;
 200   assert(cnt == _outcnt, "no insertions allowed");
 201   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 202   // This last check is carefully designed to work for NO_OUT_ARRAY.
 203 }
 204 
 205 void DUIterator_Fast::verify_limit() {
 206   const Node* node = _node;
 207   verify(node, true);
 208   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 209 }
 210 
 211 void DUIterator_Fast::verify_resync() {
 212   const Node* node = _node;
 213   if (_outp == node->_out + _outcnt) {
 214     // Note that the limit imax, not the pointer i, gets updated with the
 215     // exact count of deletions.  (For the pointer it's always "--i".)
 216     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 217     // This is a limit pointer, with a name like "imax".
 218     // Fudge the _last field so that the common assert will be happy.
 219     _last = (Node*) node->_last_del;
 220     DUIterator_Common::verify_resync();
 221   } else {
 222     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 223     // A normal internal pointer.
 224     DUIterator_Common::verify_resync();
 225     // Make sure we are still in sync, possibly with no more out-edges:
 226     verify(node, true);
 227   }
 228 }
 229 
 230 void DUIterator_Fast::verify_relimit(uint n) {
 231   const Node* node = _node;
 232   assert((int)n > 0, "use imax -= n only with a positive count");
 233   // This must be a limit pointer, with a name like "imax".
 234   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 235   // The reported number of deletions must match what the node saw.
 236   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 237   // Fudge the _last field so that the common assert will be happy.
 238   _last = (Node*) node->_last_del;
 239   DUIterator_Common::verify_resync();
 240 }
 241 
 242 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 243   assert(_outp              == that._outp, "already assigned _outp");
 244   DUIterator_Common::reset(that);
 245 }
 246 
 247 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 248   // at_end_ok means the _outp is allowed to underflow by 1
 249   _outp += at_end_ok;
 250   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 251   _outp -= at_end_ok;
 252   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 253 }
 254 
 255 void DUIterator_Last::verify_limit() {
 256   // Do not require the limit address to be resynched.
 257   //verify(node, true);
 258   assert(_outp == _node->_out, "limit still correct");
 259 }
 260 
 261 void DUIterator_Last::verify_step(uint num_edges) {
 262   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 263   _outcnt   -= num_edges;
 264   _del_tick += num_edges;
 265   // Make sure we are still in sync, possibly with no more out-edges:
 266   const Node* node = _node;
 267   verify(node, true);
 268   assert(node->_last_del == _last, "must have deleted the edge just produced");
 269 }
 270 
 271 #endif //OPTO_DU_ITERATOR_ASSERT
 272 
 273 
 274 #endif //ASSERT
 275 
 276 
 277 // This constant used to initialize _out may be any non-null value.
 278 // The value NULL is reserved for the top node only.
 279 #define NO_OUT_ARRAY ((Node**)-1)
 280 
 281 // Out-of-line code from node constructors.
 282 // Executed only when extra debug info. is being passed around.
 283 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 284   C->set_node_notes_at(idx, nn);
 285 }
 286 
 287 // Shared initialization code.
 288 inline int Node::Init(int req) {
 289   Compile* C = Compile::current();
 290   int idx = C->next_unique();
 291 
 292   // Allocate memory for the necessary number of edges.
 293   if (req > 0) {
 294     // Allocate space for _in array to have double alignment.
 295     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
 296 #ifdef ASSERT
 297     _in[req-1] = this; // magic cookie for assertion check
 298 #endif
 299   }
 300   // If there are default notes floating around, capture them:
 301   Node_Notes* nn = C->default_node_notes();
 302   if (nn != NULL)  init_node_notes(C, idx, nn);
 303 
 304   // Note:  At this point, C is dead,
 305   // and we begin to initialize the new Node.
 306 
 307   _cnt = _max = req;
 308   _outcnt = _outmax = 0;
 309   _class_id = Class_Node;
 310   _flags = 0;
 311   _out = NO_OUT_ARRAY;
 312   return idx;
 313 }
 314 
 315 //------------------------------Node-------------------------------------------
 316 // Create a Node, with a given number of required edges.
 317 Node::Node(uint req)
 318   : _idx(Init(req))
 319 {
 320   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
 321   debug_only( verify_construction() );
 322   NOT_PRODUCT(nodes_created++);
 323   if (req == 0) {
 324     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
 325     _in = NULL;
 326   } else {
 327     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
 328     Node** to = _in;
 329     for(uint i = 0; i < req; i++) {
 330       to[i] = NULL;
 331     }
 332   }
 333 }
 334 
 335 //------------------------------Node-------------------------------------------
 336 Node::Node(Node *n0)
 337   : _idx(Init(1))
 338 {
 339   debug_only( verify_construction() );
 340   NOT_PRODUCT(nodes_created++);
 341   // Assert we allocated space for input array already
 342   assert( _in[0] == this, "Must pass arg count to 'new'" );
 343   assert( is_not_dead(n0), "can not use dead node");
 344   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 345 }
 346 
 347 //------------------------------Node-------------------------------------------
 348 Node::Node(Node *n0, Node *n1)
 349   : _idx(Init(2))
 350 {
 351   debug_only( verify_construction() );
 352   NOT_PRODUCT(nodes_created++);
 353   // Assert we allocated space for input array already
 354   assert( _in[1] == this, "Must pass arg count to 'new'" );
 355   assert( is_not_dead(n0), "can not use dead node");
 356   assert( is_not_dead(n1), "can not use dead node");
 357   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 358   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 359 }
 360 
 361 //------------------------------Node-------------------------------------------
 362 Node::Node(Node *n0, Node *n1, Node *n2)
 363   : _idx(Init(3))
 364 {
 365   debug_only( verify_construction() );
 366   NOT_PRODUCT(nodes_created++);
 367   // Assert we allocated space for input array already
 368   assert( _in[2] == this, "Must pass arg count to 'new'" );
 369   assert( is_not_dead(n0), "can not use dead node");
 370   assert( is_not_dead(n1), "can not use dead node");
 371   assert( is_not_dead(n2), "can not use dead node");
 372   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 373   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 374   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 375 }
 376 
 377 //------------------------------Node-------------------------------------------
 378 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 379   : _idx(Init(4))
 380 {
 381   debug_only( verify_construction() );
 382   NOT_PRODUCT(nodes_created++);
 383   // Assert we allocated space for input array already
 384   assert( _in[3] == this, "Must pass arg count to 'new'" );
 385   assert( is_not_dead(n0), "can not use dead node");
 386   assert( is_not_dead(n1), "can not use dead node");
 387   assert( is_not_dead(n2), "can not use dead node");
 388   assert( is_not_dead(n3), "can not use dead node");
 389   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 390   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 391   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 392   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 393 }
 394 
 395 //------------------------------Node-------------------------------------------
 396 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 397   : _idx(Init(5))
 398 {
 399   debug_only( verify_construction() );
 400   NOT_PRODUCT(nodes_created++);
 401   // Assert we allocated space for input array already
 402   assert( _in[4] == this, "Must pass arg count to 'new'" );
 403   assert( is_not_dead(n0), "can not use dead node");
 404   assert( is_not_dead(n1), "can not use dead node");
 405   assert( is_not_dead(n2), "can not use dead node");
 406   assert( is_not_dead(n3), "can not use dead node");
 407   assert( is_not_dead(n4), "can not use dead node");
 408   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 409   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 410   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 411   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 412   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 413 }
 414 
 415 //------------------------------Node-------------------------------------------
 416 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 417                      Node *n4, Node *n5)
 418   : _idx(Init(6))
 419 {
 420   debug_only( verify_construction() );
 421   NOT_PRODUCT(nodes_created++);
 422   // Assert we allocated space for input array already
 423   assert( _in[5] == this, "Must pass arg count to 'new'" );
 424   assert( is_not_dead(n0), "can not use dead node");
 425   assert( is_not_dead(n1), "can not use dead node");
 426   assert( is_not_dead(n2), "can not use dead node");
 427   assert( is_not_dead(n3), "can not use dead node");
 428   assert( is_not_dead(n4), "can not use dead node");
 429   assert( is_not_dead(n5), "can not use dead node");
 430   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 431   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 432   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 433   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 434   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 435   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 436 }
 437 
 438 //------------------------------Node-------------------------------------------
 439 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 440                      Node *n4, Node *n5, Node *n6)
 441   : _idx(Init(7))
 442 {
 443   debug_only( verify_construction() );
 444   NOT_PRODUCT(nodes_created++);
 445   // Assert we allocated space for input array already
 446   assert( _in[6] == this, "Must pass arg count to 'new'" );
 447   assert( is_not_dead(n0), "can not use dead node");
 448   assert( is_not_dead(n1), "can not use dead node");
 449   assert( is_not_dead(n2), "can not use dead node");
 450   assert( is_not_dead(n3), "can not use dead node");
 451   assert( is_not_dead(n4), "can not use dead node");
 452   assert( is_not_dead(n5), "can not use dead node");
 453   assert( is_not_dead(n6), "can not use dead node");
 454   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 455   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 456   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 457   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 458   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 459   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 460   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 461 }
 462 
 463 #ifdef __clang__
 464 #pragma clang diagnostic pop
 465 #endif
 466 
 467 
 468 //------------------------------clone------------------------------------------
 469 // Clone a Node.
 470 Node *Node::clone() const {
 471   Compile* C = Compile::current();
 472   uint s = size_of();           // Size of inherited Node
 473   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 474   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 475   // Set the new input pointer array
 476   n->_in = (Node**)(((char*)n)+s);
 477   // Cannot share the old output pointer array, so kill it
 478   n->_out = NO_OUT_ARRAY;
 479   // And reset the counters to 0
 480   n->_outcnt = 0;
 481   n->_outmax = 0;
 482   // Unlock this guy, since he is not in any hash table.
 483   debug_only(n->_hash_lock = 0);
 484   // Walk the old node's input list to duplicate its edges
 485   uint i;
 486   for( i = 0; i < len(); i++ ) {
 487     Node *x = in(i);
 488     n->_in[i] = x;
 489     if (x != NULL) x->add_out(n);
 490   }
 491   if (is_macro())
 492     C->add_macro_node(n);
 493   if (is_expensive())
 494     C->add_expensive_node(n);
 495 
 496   n->set_idx(C->next_unique()); // Get new unique index as well
 497   debug_only( n->verify_construction() );
 498   NOT_PRODUCT(nodes_created++);
 499   // Do not patch over the debug_idx of a clone, because it makes it
 500   // impossible to break on the clone's moment of creation.
 501   //debug_only( n->set_debug_idx( debug_idx() ) );
 502 
 503   C->copy_node_notes_to(n, (Node*) this);
 504 
 505   // MachNode clone
 506   uint nopnds;
 507   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 508     MachNode *mach  = n->as_Mach();
 509     MachNode *mthis = this->as_Mach();
 510     // Get address of _opnd_array.
 511     // It should be the same offset since it is the clone of this node.
 512     MachOper **from = mthis->_opnds;
 513     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 514                     pointer_delta((const void*)from,
 515                                   (const void*)(&mthis->_opnds), 1));
 516     mach->_opnds = to;
 517     for ( uint i = 0; i < nopnds; ++i ) {
 518       to[i] = from[i]->clone();
 519     }
 520   }
 521   // cloning CallNode may need to clone JVMState
 522   if (n->is_Call()) {
 523     n->as_Call()->clone_jvms(C);
 524   }
 525   if (n->is_SafePoint()) {
 526     n->as_SafePoint()->clone_replaced_nodes();
 527   }
 528   return n;                     // Return the clone
 529 }
 530 
 531 //---------------------------setup_is_top--------------------------------------
 532 // Call this when changing the top node, to reassert the invariants
 533 // required by Node::is_top.  See Compile::set_cached_top_node.
 534 void Node::setup_is_top() {
 535   if (this == (Node*)Compile::current()->top()) {
 536     // This node has just become top.  Kill its out array.
 537     _outcnt = _outmax = 0;
 538     _out = NULL;                           // marker value for top
 539     assert(is_top(), "must be top");
 540   } else {
 541     if (_out == NULL)  _out = NO_OUT_ARRAY;
 542     assert(!is_top(), "must not be top");
 543   }
 544 }
 545 
 546 
 547 //------------------------------~Node------------------------------------------
 548 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 549 extern int reclaim_idx ;
 550 extern int reclaim_in  ;
 551 extern int reclaim_node;
 552 void Node::destruct() {
 553   // Eagerly reclaim unique Node numberings
 554   Compile* compile = Compile::current();
 555   if ((uint)_idx+1 == compile->unique()) {
 556     compile->set_unique(compile->unique()-1);
 557 #ifdef ASSERT
 558     reclaim_idx++;
 559 #endif
 560   }
 561   // Clear debug info:
 562   Node_Notes* nn = compile->node_notes_at(_idx);
 563   if (nn != NULL)  nn->clear();
 564   // Walk the input array, freeing the corresponding output edges
 565   _cnt = _max;  // forget req/prec distinction
 566   uint i;
 567   for( i = 0; i < _max; i++ ) {
 568     set_req(i, NULL);
 569     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 570   }
 571   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 572   // See if the input array was allocated just prior to the object
 573   int edge_size = _max*sizeof(void*);
 574   int out_edge_size = _outmax*sizeof(void*);
 575   char *edge_end = ((char*)_in) + edge_size;
 576   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 577   char *out_edge_end = out_array + out_edge_size;
 578   int node_size = size_of();
 579 
 580   // Free the output edge array
 581   if (out_edge_size > 0) {
 582 #ifdef ASSERT
 583     if( out_edge_end == compile->node_arena()->hwm() )
 584       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
 585 #endif
 586     compile->node_arena()->Afree(out_array, out_edge_size);
 587   }
 588 
 589   // Free the input edge array and the node itself
 590   if( edge_end == (char*)this ) {
 591 #ifdef ASSERT
 592     if( edge_end+node_size == compile->node_arena()->hwm() ) {
 593       reclaim_in  += edge_size;
 594       reclaim_node+= node_size;
 595     }
 596 #else
 597     // It was; free the input array and object all in one hit
 598     compile->node_arena()->Afree(_in,edge_size+node_size);
 599 #endif
 600   } else {
 601 
 602     // Free just the input array
 603 #ifdef ASSERT
 604     if( edge_end == compile->node_arena()->hwm() )
 605       reclaim_in  += edge_size;
 606 #endif
 607     compile->node_arena()->Afree(_in,edge_size);
 608 
 609     // Free just the object
 610 #ifdef ASSERT
 611     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
 612       reclaim_node+= node_size;
 613 #else
 614     compile->node_arena()->Afree(this,node_size);
 615 #endif
 616   }
 617   if (is_macro()) {
 618     compile->remove_macro_node(this);
 619   }
 620   if (is_expensive()) {
 621     compile->remove_expensive_node(this);
 622   }
 623   if (is_SafePoint()) {
 624     as_SafePoint()->delete_replaced_nodes();
 625   }
 626 #ifdef ASSERT
 627   // We will not actually delete the storage, but we'll make the node unusable.
 628   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 629   _in = _out = (Node**) badAddress;
 630   _max = _cnt = _outmax = _outcnt = 0;
 631   compile->remove_modified_node(this);
 632 #endif
 633 }
 634 
 635 //------------------------------grow-------------------------------------------
 636 // Grow the input array, making space for more edges
 637 void Node::grow( uint len ) {
 638   Arena* arena = Compile::current()->node_arena();
 639   uint new_max = _max;
 640   if( new_max == 0 ) {
 641     _max = 4;
 642     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 643     Node** to = _in;
 644     to[0] = NULL;
 645     to[1] = NULL;
 646     to[2] = NULL;
 647     to[3] = NULL;
 648     return;
 649   }
 650   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 651   // Trimming to limit allows a uint8 to handle up to 255 edges.
 652   // Previously I was using only powers-of-2 which peaked at 128 edges.
 653   //if( new_max >= limit ) new_max = limit-1;
 654   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 655   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 656   _max = new_max;               // Record new max length
 657   // This assertion makes sure that Node::_max is wide enough to
 658   // represent the numerical value of new_max.
 659   assert(_max == new_max && _max > len, "int width of _max is too small");
 660 }
 661 
 662 //-----------------------------out_grow----------------------------------------
 663 // Grow the input array, making space for more edges
 664 void Node::out_grow( uint len ) {
 665   assert(!is_top(), "cannot grow a top node's out array");
 666   Arena* arena = Compile::current()->node_arena();
 667   uint new_max = _outmax;
 668   if( new_max == 0 ) {
 669     _outmax = 4;
 670     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 671     return;
 672   }
 673   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 674   // Trimming to limit allows a uint8 to handle up to 255 edges.
 675   // Previously I was using only powers-of-2 which peaked at 128 edges.
 676   //if( new_max >= limit ) new_max = limit-1;
 677   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 678   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 679   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 680   _outmax = new_max;               // Record new max length
 681   // This assertion makes sure that Node::_max is wide enough to
 682   // represent the numerical value of new_max.
 683   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 684 }
 685 
 686 #ifdef ASSERT
 687 //------------------------------is_dead----------------------------------------
 688 bool Node::is_dead() const {
 689   // Mach and pinch point nodes may look like dead.
 690   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 691     return false;
 692   for( uint i = 0; i < _max; i++ )
 693     if( _in[i] != NULL )
 694       return false;
 695   dump();
 696   return true;
 697 }
 698 #endif
 699 
 700 
 701 //------------------------------is_unreachable---------------------------------
 702 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 703   assert(!is_Mach(), "doesn't work with MachNodes");
 704   return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
 705 }
 706 
 707 //------------------------------add_req----------------------------------------
 708 // Add a new required input at the end
 709 void Node::add_req( Node *n ) {
 710   assert( is_not_dead(n), "can not use dead node");
 711 
 712   // Look to see if I can move precedence down one without reallocating
 713   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 714     grow( _max+1 );
 715 
 716   // Find a precedence edge to move
 717   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 718     uint i;
 719     for( i=_cnt; i<_max; i++ )
 720       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 721         break;                  // There must be one, since we grew the array
 722     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 723   }
 724   _in[_cnt++] = n;            // Stuff over old prec edge
 725   if (n != NULL) n->add_out((Node *)this);
 726 }
 727 
 728 //---------------------------add_req_batch-------------------------------------
 729 // Add a new required input at the end
 730 void Node::add_req_batch( Node *n, uint m ) {
 731   assert( is_not_dead(n), "can not use dead node");
 732   // check various edge cases
 733   if ((int)m <= 1) {
 734     assert((int)m >= 0, "oob");
 735     if (m != 0)  add_req(n);
 736     return;
 737   }
 738 
 739   // Look to see if I can move precedence down one without reallocating
 740   if( (_cnt+m) > _max || _in[_max-m] )
 741     grow( _max+m );
 742 
 743   // Find a precedence edge to move
 744   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 745     uint i;
 746     for( i=_cnt; i<_max; i++ )
 747       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 748         break;                  // There must be one, since we grew the array
 749     // Slide all the precs over by m positions (assume #prec << m).
 750     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 751   }
 752 
 753   // Stuff over the old prec edges
 754   for(uint i=0; i<m; i++ ) {
 755     _in[_cnt++] = n;
 756   }
 757 
 758   // Insert multiple out edges on the node.
 759   if (n != NULL && !n->is_top()) {
 760     for(uint i=0; i<m; i++ ) {
 761       n->add_out((Node *)this);
 762     }
 763   }
 764 }
 765 
 766 //------------------------------del_req----------------------------------------
 767 // Delete the required edge and compact the edge array
 768 void Node::del_req( uint idx ) {
 769   assert( idx < _cnt, "oob");
 770   assert( !VerifyHashTableKeys || _hash_lock == 0,
 771           "remove node from hash table before modifying it");
 772   // First remove corresponding def-use edge
 773   Node *n = in(idx);
 774   if (n != NULL) n->del_out((Node *)this);
 775   _in[idx] = in(--_cnt);  // Compact the array
 776   _in[_cnt] = NULL;       // NULL out emptied slot
 777   Compile::current()->record_modified_node(this);
 778 }
 779 
 780 //------------------------------del_req_ordered--------------------------------
 781 // Delete the required edge and compact the edge array with preserved order
 782 void Node::del_req_ordered( uint idx ) {
 783   assert( idx < _cnt, "oob");
 784   assert( !VerifyHashTableKeys || _hash_lock == 0,
 785           "remove node from hash table before modifying it");
 786   // First remove corresponding def-use edge
 787   Node *n = in(idx);
 788   if (n != NULL) n->del_out((Node *)this);
 789   if (idx < _cnt - 1) { // Not last edge ?
 790     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx-1)*sizeof(Node*)));
 791   }
 792   _in[--_cnt] = NULL;   // NULL out emptied slot
 793   Compile::current()->record_modified_node(this);
 794 }
 795 
 796 //------------------------------ins_req----------------------------------------
 797 // Insert a new required input at the end
 798 void Node::ins_req( uint idx, Node *n ) {
 799   assert( is_not_dead(n), "can not use dead node");
 800   add_req(NULL);                // Make space
 801   assert( idx < _max, "Must have allocated enough space");
 802   // Slide over
 803   if(_cnt-idx-1 > 0) {
 804     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 805   }
 806   _in[idx] = n;                            // Stuff over old required edge
 807   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 808 }
 809 
 810 //-----------------------------find_edge---------------------------------------
 811 int Node::find_edge(Node* n) {
 812   for (uint i = 0; i < len(); i++) {
 813     if (_in[i] == n)  return i;
 814   }
 815   return -1;
 816 }
 817 
 818 //----------------------------replace_edge-------------------------------------
 819 int Node::replace_edge(Node* old, Node* neww) {
 820   if (old == neww)  return 0;  // nothing to do
 821   uint nrep = 0;
 822   for (uint i = 0; i < len(); i++) {
 823     if (in(i) == old) {
 824       if (i < req())
 825         set_req(i, neww);
 826       else
 827         set_prec(i, neww);
 828       nrep++;
 829     }
 830   }
 831   return nrep;
 832 }
 833 
 834 /**
 835  * Replace input edges in the range pointing to 'old' node.
 836  */
 837 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
 838   if (old == neww)  return 0;  // nothing to do
 839   uint nrep = 0;
 840   for (int i = start; i < end; i++) {
 841     if (in(i) == old) {
 842       set_req(i, neww);
 843       nrep++;
 844     }
 845   }
 846   return nrep;
 847 }
 848 
 849 //-------------------------disconnect_inputs-----------------------------------
 850 // NULL out all inputs to eliminate incoming Def-Use edges.
 851 // Return the number of edges between 'n' and 'this'
 852 int Node::disconnect_inputs(Node *n, Compile* C) {
 853   int edges_to_n = 0;
 854 
 855   uint cnt = req();
 856   for( uint i = 0; i < cnt; ++i ) {
 857     if( in(i) == 0 ) continue;
 858     if( in(i) == n ) ++edges_to_n;
 859     set_req(i, NULL);
 860   }
 861   // Remove precedence edges if any exist
 862   // Note: Safepoints may have precedence edges, even during parsing
 863   if( (req() != len()) && (in(req()) != NULL) ) {
 864     uint max = len();
 865     for( uint i = 0; i < max; ++i ) {
 866       if( in(i) == 0 ) continue;
 867       if( in(i) == n ) ++edges_to_n;
 868       set_prec(i, NULL);
 869     }
 870   }
 871 
 872   // Node::destruct requires all out edges be deleted first
 873   // debug_only(destruct();)   // no reuse benefit expected
 874   if (edges_to_n == 0) {
 875     C->record_dead_node(_idx);
 876   }
 877   return edges_to_n;
 878 }
 879 
 880 //-----------------------------uncast---------------------------------------
 881 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 882 // Strip away casting.  (It is depth-limited.)
 883 Node* Node::uncast() const {
 884   // Should be inline:
 885   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 886   if (is_ConstraintCast() || is_CheckCastPP())
 887     return uncast_helper(this);
 888   else
 889     return (Node*) this;
 890 }
 891 
 892 // Find out of current node that matches opcode.
 893 Node* Node::find_out_with(int opcode) {
 894   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 895     Node* use = fast_out(i);
 896     if (use->Opcode() == opcode) {
 897       return use;
 898     }
 899   }
 900   return NULL;
 901 }
 902 
 903 // Return true if the current node has an out that matches opcode.
 904 bool Node::has_out_with(int opcode) {
 905   return (find_out_with(opcode) != NULL);
 906 }
 907 
 908 // Return true if the current node has an out that matches any of the opcodes.
 909 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) {
 910   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 911       int opcode = fast_out(i)->Opcode();
 912       if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) {
 913         return true;
 914       }
 915   }
 916   return false;
 917 }
 918 
 919 
 920 //---------------------------uncast_helper-------------------------------------
 921 Node* Node::uncast_helper(const Node* p) {
 922 #ifdef ASSERT
 923   uint depth_count = 0;
 924   const Node* orig_p = p;
 925 #endif
 926 
 927   while (true) {
 928 #ifdef ASSERT
 929     if (depth_count >= K) {
 930       orig_p->dump(4);
 931       if (p != orig_p)
 932         p->dump(1);
 933     }
 934     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
 935 #endif
 936     if (p == NULL || p->req() != 2) {
 937       break;
 938     } else if (p->is_ConstraintCast()) {
 939       p = p->in(1);
 940     } else if (p->is_CheckCastPP()) {
 941       p = p->in(1);
 942     } else {
 943       break;
 944     }
 945   }
 946   return (Node*) p;
 947 }
 948 
 949 //------------------------------add_prec---------------------------------------
 950 // Add a new precedence input.  Precedence inputs are unordered, with
 951 // duplicates removed and NULLs packed down at the end.
 952 void Node::add_prec( Node *n ) {
 953   assert( is_not_dead(n), "can not use dead node");
 954 
 955   // Check for NULL at end
 956   if( _cnt >= _max || in(_max-1) )
 957     grow( _max+1 );
 958 
 959   // Find a precedence edge to move
 960   uint i = _cnt;
 961   while( in(i) != NULL ) i++;
 962   _in[i] = n;                                // Stuff prec edge over NULL
 963   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
 964 }
 965 
 966 //------------------------------rm_prec----------------------------------------
 967 // Remove a precedence input.  Precedence inputs are unordered, with
 968 // duplicates removed and NULLs packed down at the end.
 969 void Node::rm_prec( uint j ) {
 970 
 971   // Find end of precedence list to pack NULLs
 972   uint i;
 973   for( i=j; i<_max; i++ )
 974     if( !_in[i] )               // Find the NULL at end of prec edge list
 975       break;
 976   if (_in[j] != NULL) _in[j]->del_out((Node *)this);
 977   _in[j] = _in[--i];            // Move last element over removed guy
 978   _in[i] = NULL;                // NULL out last element
 979 }
 980 
 981 //------------------------------size_of----------------------------------------
 982 uint Node::size_of() const { return sizeof(*this); }
 983 
 984 //------------------------------ideal_reg--------------------------------------
 985 uint Node::ideal_reg() const { return 0; }
 986 
 987 //------------------------------jvms-------------------------------------------
 988 JVMState* Node::jvms() const { return NULL; }
 989 
 990 #ifdef ASSERT
 991 //------------------------------jvms-------------------------------------------
 992 bool Node::verify_jvms(const JVMState* using_jvms) const {
 993   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 994     if (jvms == using_jvms)  return true;
 995   }
 996   return false;
 997 }
 998 
 999 //------------------------------init_NodeProperty------------------------------
1000 void Node::init_NodeProperty() {
1001   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
1002   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
1003 }
1004 #endif
1005 
1006 //------------------------------format-----------------------------------------
1007 // Print as assembly
1008 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1009 //------------------------------emit-------------------------------------------
1010 // Emit bytes starting at parameter 'ptr'.
1011 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
1012 //------------------------------size-------------------------------------------
1013 // Size of instruction in bytes
1014 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1015 
1016 //------------------------------CFG Construction-------------------------------
1017 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1018 // Goto and Return.
1019 const Node *Node::is_block_proj() const { return 0; }
1020 
1021 // Minimum guaranteed type
1022 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1023 
1024 
1025 //------------------------------raise_bottom_type------------------------------
1026 // Get the worst-case Type output for this Node.
1027 void Node::raise_bottom_type(const Type* new_type) {
1028   if (is_Type()) {
1029     TypeNode *n = this->as_Type();
1030     if (VerifyAliases) {
1031       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1032     }
1033     n->set_type(new_type);
1034   } else if (is_Load()) {
1035     LoadNode *n = this->as_Load();
1036     if (VerifyAliases) {
1037       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1038     }
1039     n->set_type(new_type);
1040   }
1041 }
1042 
1043 //------------------------------Identity---------------------------------------
1044 // Return a node that the given node is equivalent to.
1045 Node *Node::Identity( PhaseTransform * ) {
1046   return this;                  // Default to no identities
1047 }
1048 
1049 //------------------------------Value------------------------------------------
1050 // Compute a new Type for a node using the Type of the inputs.
1051 const Type *Node::Value( PhaseTransform * ) const {
1052   return bottom_type();         // Default to worst-case Type
1053 }
1054 
1055 //------------------------------Ideal------------------------------------------
1056 //
1057 // 'Idealize' the graph rooted at this Node.
1058 //
1059 // In order to be efficient and flexible there are some subtle invariants
1060 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1061 // these invariants, although its too slow to have on by default.  If you are
1062 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1063 //
1064 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1065 // pointer.  If ANY change is made, it must return the root of the reshaped
1066 // graph - even if the root is the same Node.  Example: swapping the inputs
1067 // to an AddINode gives the same answer and same root, but you still have to
1068 // return the 'this' pointer instead of NULL.
1069 //
1070 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1071 // Identity call to return an old Node; basically if Identity can find
1072 // another Node have the Ideal call make no change and return NULL.
1073 // Example: AddINode::Ideal must check for add of zero; in this case it
1074 // returns NULL instead of doing any graph reshaping.
1075 //
1076 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1077 // sharing there may be other users of the old Nodes relying on their current
1078 // semantics.  Modifying them will break the other users.
1079 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1080 // "X+3" unchanged in case it is shared.
1081 //
1082 // If you modify the 'this' pointer's inputs, you should use
1083 // 'set_req'.  If you are making a new Node (either as the new root or
1084 // some new internal piece) you may use 'init_req' to set the initial
1085 // value.  You can make a new Node with either 'new' or 'clone'.  In
1086 // either case, def-use info is correctly maintained.
1087 //
1088 // Example: reshape "(X+3)+4" into "X+7":
1089 //    set_req(1, in(1)->in(1));
1090 //    set_req(2, phase->intcon(7));
1091 //    return this;
1092 // Example: reshape "X*4" into "X<<2"
1093 //    return new LShiftINode(in(1), phase->intcon(2));
1094 //
1095 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1096 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1097 //    Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5)));
1098 //    return new AddINode(shift, in(1));
1099 //
1100 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1101 // These forms are faster than 'phase->transform(new ConNode())' and Do
1102 // The Right Thing with def-use info.
1103 //
1104 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1105 // graph uses the 'this' Node it must be the root.  If you want a Node with
1106 // the same Opcode as the 'this' pointer use 'clone'.
1107 //
1108 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1109   return NULL;                  // Default to being Ideal already
1110 }
1111 
1112 // Some nodes have specific Ideal subgraph transformations only if they are
1113 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1114 // for the transformations to happen.
1115 bool Node::has_special_unique_user() const {
1116   assert(outcnt() == 1, "match only for unique out");
1117   Node* n = unique_out();
1118   int op  = Opcode();
1119   if (this->is_Store()) {
1120     // Condition for back-to-back stores folding.
1121     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1122   } else if (this->is_Load()) {
1123     // Condition for removing an unused LoadNode from the MemBarAcquire precedence input
1124     return n->Opcode() == Op_MemBarAcquire;
1125   } else if (op == Op_AddL) {
1126     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1127     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1128   } else if (op == Op_SubI || op == Op_SubL) {
1129     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1130     return n->Opcode() == op && n->in(2) == this;
1131   } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) {
1132     // See IfProjNode::Identity()
1133     return true;
1134   }
1135   return false;
1136 };
1137 
1138 //--------------------------find_exact_control---------------------------------
1139 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1140 Node* Node::find_exact_control(Node* ctrl) {
1141   if (ctrl == NULL && this->is_Region())
1142     ctrl = this->as_Region()->is_copy();
1143 
1144   if (ctrl != NULL && ctrl->is_CatchProj()) {
1145     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1146       ctrl = ctrl->in(0);
1147     if (ctrl != NULL && !ctrl->is_top())
1148       ctrl = ctrl->in(0);
1149   }
1150 
1151   if (ctrl != NULL && ctrl->is_Proj())
1152     ctrl = ctrl->in(0);
1153 
1154   return ctrl;
1155 }
1156 
1157 //--------------------------dominates------------------------------------------
1158 // Helper function for MemNode::all_controls_dominate().
1159 // Check if 'this' control node dominates or equal to 'sub' control node.
1160 // We already know that if any path back to Root or Start reaches 'this',
1161 // then all paths so, so this is a simple search for one example,
1162 // not an exhaustive search for a counterexample.
1163 bool Node::dominates(Node* sub, Node_List &nlist) {
1164   assert(this->is_CFG(), "expecting control");
1165   assert(sub != NULL && sub->is_CFG(), "expecting control");
1166 
1167   // detect dead cycle without regions
1168   int iterations_without_region_limit = DominatorSearchLimit;
1169 
1170   Node* orig_sub = sub;
1171   Node* dom      = this;
1172   bool  met_dom  = false;
1173   nlist.clear();
1174 
1175   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1176   // After seeing 'dom', continue up to Root or Start.
1177   // If we hit a region (backward split point), it may be a loop head.
1178   // Keep going through one of the region's inputs.  If we reach the
1179   // same region again, go through a different input.  Eventually we
1180   // will either exit through the loop head, or give up.
1181   // (If we get confused, break out and return a conservative 'false'.)
1182   while (sub != NULL) {
1183     if (sub->is_top())  break; // Conservative answer for dead code.
1184     if (sub == dom) {
1185       if (nlist.size() == 0) {
1186         // No Region nodes except loops were visited before and the EntryControl
1187         // path was taken for loops: it did not walk in a cycle.
1188         return true;
1189       } else if (met_dom) {
1190         break;          // already met before: walk in a cycle
1191       } else {
1192         // Region nodes were visited. Continue walk up to Start or Root
1193         // to make sure that it did not walk in a cycle.
1194         met_dom = true; // first time meet
1195         iterations_without_region_limit = DominatorSearchLimit; // Reset
1196      }
1197     }
1198     if (sub->is_Start() || sub->is_Root()) {
1199       // Success if we met 'dom' along a path to Start or Root.
1200       // We assume there are no alternative paths that avoid 'dom'.
1201       // (This assumption is up to the caller to ensure!)
1202       return met_dom;
1203     }
1204     Node* up = sub->in(0);
1205     // Normalize simple pass-through regions and projections:
1206     up = sub->find_exact_control(up);
1207     // If sub == up, we found a self-loop.  Try to push past it.
1208     if (sub == up && sub->is_Loop()) {
1209       // Take loop entry path on the way up to 'dom'.
1210       up = sub->in(1); // in(LoopNode::EntryControl);
1211     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1212       // Always take in(1) path on the way up to 'dom' for clone regions
1213       // (with only one input) or regions which merge > 2 paths
1214       // (usually used to merge fast/slow paths).
1215       up = sub->in(1);
1216     } else if (sub == up && sub->is_Region()) {
1217       // Try both paths for Regions with 2 input paths (it may be a loop head).
1218       // It could give conservative 'false' answer without information
1219       // which region's input is the entry path.
1220       iterations_without_region_limit = DominatorSearchLimit; // Reset
1221 
1222       bool region_was_visited_before = false;
1223       // Was this Region node visited before?
1224       // If so, we have reached it because we accidentally took a
1225       // loop-back edge from 'sub' back into the body of the loop,
1226       // and worked our way up again to the loop header 'sub'.
1227       // So, take the first unexplored path on the way up to 'dom'.
1228       for (int j = nlist.size() - 1; j >= 0; j--) {
1229         intptr_t ni = (intptr_t)nlist.at(j);
1230         Node* visited = (Node*)(ni & ~1);
1231         bool  visited_twice_already = ((ni & 1) != 0);
1232         if (visited == sub) {
1233           if (visited_twice_already) {
1234             // Visited 2 paths, but still stuck in loop body.  Give up.
1235             return false;
1236           }
1237           // The Region node was visited before only once.
1238           // (We will repush with the low bit set, below.)
1239           nlist.remove(j);
1240           // We will find a new edge and re-insert.
1241           region_was_visited_before = true;
1242           break;
1243         }
1244       }
1245 
1246       // Find an incoming edge which has not been seen yet; walk through it.
1247       assert(up == sub, "");
1248       uint skip = region_was_visited_before ? 1 : 0;
1249       for (uint i = 1; i < sub->req(); i++) {
1250         Node* in = sub->in(i);
1251         if (in != NULL && !in->is_top() && in != sub) {
1252           if (skip == 0) {
1253             up = in;
1254             break;
1255           }
1256           --skip;               // skip this nontrivial input
1257         }
1258       }
1259 
1260       // Set 0 bit to indicate that both paths were taken.
1261       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1262     }
1263 
1264     if (up == sub) {
1265       break;    // some kind of tight cycle
1266     }
1267     if (up == orig_sub && met_dom) {
1268       // returned back after visiting 'dom'
1269       break;    // some kind of cycle
1270     }
1271     if (--iterations_without_region_limit < 0) {
1272       break;    // dead cycle
1273     }
1274     sub = up;
1275   }
1276 
1277   // Did not meet Root or Start node in pred. chain.
1278   // Conservative answer for dead code.
1279   return false;
1280 }
1281 
1282 //------------------------------remove_dead_region-----------------------------
1283 // This control node is dead.  Follow the subgraph below it making everything
1284 // using it dead as well.  This will happen normally via the usual IterGVN
1285 // worklist but this call is more efficient.  Do not update use-def info
1286 // inside the dead region, just at the borders.
1287 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1288   // Con's are a popular node to re-hit in the hash table again.
1289   if( dead->is_Con() ) return;
1290 
1291   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1292   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1293   Node_List  nstack(Thread::current()->resource_area());
1294 
1295   Node *top = igvn->C->top();
1296   nstack.push(dead);
1297   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1298 
1299   while (nstack.size() > 0) {
1300     dead = nstack.pop();
1301     if (dead->outcnt() > 0) {
1302       // Keep dead node on stack until all uses are processed.
1303       nstack.push(dead);
1304       // For all Users of the Dead...    ;-)
1305       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1306         Node* use = dead->last_out(k);
1307         igvn->hash_delete(use);       // Yank from hash table prior to mod
1308         if (use->in(0) == dead) {     // Found another dead node
1309           assert (!use->is_Con(), "Control for Con node should be Root node.");
1310           use->set_req(0, top);       // Cut dead edge to prevent processing
1311           nstack.push(use);           // the dead node again.
1312         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1313                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1314                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1315           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1316           use->set_req(0, top);       // Cut self edge
1317           nstack.push(use);
1318         } else {                      // Else found a not-dead user
1319           // Dead if all inputs are top or null
1320           bool dead_use = !use->is_Root(); // Keep empty graph alive
1321           for (uint j = 1; j < use->req(); j++) {
1322             Node* in = use->in(j);
1323             if (in == dead) {         // Turn all dead inputs into TOP
1324               use->set_req(j, top);
1325             } else if (in != NULL && !in->is_top()) {
1326               dead_use = false;
1327             }
1328           }
1329           if (dead_use) {
1330             if (use->is_Region()) {
1331               use->set_req(0, top);   // Cut self edge
1332             }
1333             nstack.push(use);
1334           } else {
1335             igvn->_worklist.push(use);
1336           }
1337         }
1338         // Refresh the iterator, since any number of kills might have happened.
1339         k = dead->last_outs(kmin);
1340       }
1341     } else { // (dead->outcnt() == 0)
1342       // Done with outputs.
1343       igvn->hash_delete(dead);
1344       igvn->_worklist.remove(dead);
1345       igvn->C->remove_modified_node(dead);
1346       igvn->set_type(dead, Type::TOP);
1347       if (dead->is_macro()) {
1348         igvn->C->remove_macro_node(dead);
1349       }
1350       if (dead->is_expensive()) {
1351         igvn->C->remove_expensive_node(dead);
1352       }
1353       igvn->C->record_dead_node(dead->_idx);
1354       // Kill all inputs to the dead guy
1355       for (uint i=0; i < dead->req(); i++) {
1356         Node *n = dead->in(i);      // Get input to dead guy
1357         if (n != NULL && !n->is_top()) { // Input is valid?
1358           dead->set_req(i, top);    // Smash input away
1359           if (n->outcnt() == 0) {   // Input also goes dead?
1360             if (!n->is_Con())
1361               nstack.push(n);       // Clear it out as well
1362           } else if (n->outcnt() == 1 &&
1363                      n->has_special_unique_user()) {
1364             igvn->add_users_to_worklist( n );
1365           } else if (n->outcnt() <= 2 && n->is_Store()) {
1366             // Push store's uses on worklist to enable folding optimization for
1367             // store/store and store/load to the same address.
1368             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1369             // and remove_globally_dead_node().
1370             igvn->add_users_to_worklist( n );
1371           }
1372         }
1373       }
1374     } // (dead->outcnt() == 0)
1375   }   // while (nstack.size() > 0) for outputs
1376   return;
1377 }
1378 
1379 //------------------------------remove_dead_region-----------------------------
1380 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1381   Node *n = in(0);
1382   if( !n ) return false;
1383   // Lost control into this guy?  I.e., it became unreachable?
1384   // Aggressively kill all unreachable code.
1385   if (can_reshape && n->is_top()) {
1386     kill_dead_code(this, phase->is_IterGVN());
1387     return false; // Node is dead.
1388   }
1389 
1390   if( n->is_Region() && n->as_Region()->is_copy() ) {
1391     Node *m = n->nonnull_req();
1392     set_req(0, m);
1393     return true;
1394   }
1395   return false;
1396 }
1397 
1398 //------------------------------hash-------------------------------------------
1399 // Hash function over Nodes.
1400 uint Node::hash() const {
1401   uint sum = 0;
1402   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1403     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1404   return (sum>>2) + _cnt + Opcode();
1405 }
1406 
1407 //------------------------------cmp--------------------------------------------
1408 // Compare special parts of simple Nodes
1409 uint Node::cmp( const Node &n ) const {
1410   return 1;                     // Must be same
1411 }
1412 
1413 //------------------------------rematerialize-----------------------------------
1414 // Should we clone rather than spill this instruction?
1415 bool Node::rematerialize() const {
1416   if ( is_Mach() )
1417     return this->as_Mach()->rematerialize();
1418   else
1419     return (_flags & Flag_rematerialize) != 0;
1420 }
1421 
1422 //------------------------------needs_anti_dependence_check---------------------
1423 // Nodes which use memory without consuming it, hence need antidependences.
1424 bool Node::needs_anti_dependence_check() const {
1425   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1426     return false;
1427   else
1428     return in(1)->bottom_type()->has_memory();
1429 }
1430 
1431 
1432 // Get an integer constant from a ConNode (or CastIINode).
1433 // Return a default value if there is no apparent constant here.
1434 const TypeInt* Node::find_int_type() const {
1435   if (this->is_Type()) {
1436     return this->as_Type()->type()->isa_int();
1437   } else if (this->is_Con()) {
1438     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1439     return this->bottom_type()->isa_int();
1440   }
1441   return NULL;
1442 }
1443 
1444 // Get a pointer constant from a ConstNode.
1445 // Returns the constant if it is a pointer ConstNode
1446 intptr_t Node::get_ptr() const {
1447   assert( Opcode() == Op_ConP, "" );
1448   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1449 }
1450 
1451 // Get a narrow oop constant from a ConNNode.
1452 intptr_t Node::get_narrowcon() const {
1453   assert( Opcode() == Op_ConN, "" );
1454   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1455 }
1456 
1457 // Get a long constant from a ConNode.
1458 // Return a default value if there is no apparent constant here.
1459 const TypeLong* Node::find_long_type() const {
1460   if (this->is_Type()) {
1461     return this->as_Type()->type()->isa_long();
1462   } else if (this->is_Con()) {
1463     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1464     return this->bottom_type()->isa_long();
1465   }
1466   return NULL;
1467 }
1468 
1469 
1470 /**
1471  * Return a ptr type for nodes which should have it.
1472  */
1473 const TypePtr* Node::get_ptr_type() const {
1474   const TypePtr* tp = this->bottom_type()->make_ptr();
1475 #ifdef ASSERT
1476   if (tp == NULL) {
1477     this->dump(1);
1478     assert((tp != NULL), "unexpected node type");
1479   }
1480 #endif
1481   return tp;
1482 }
1483 
1484 // Get a double constant from a ConstNode.
1485 // Returns the constant if it is a double ConstNode
1486 jdouble Node::getd() const {
1487   assert( Opcode() == Op_ConD, "" );
1488   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1489 }
1490 
1491 // Get a float constant from a ConstNode.
1492 // Returns the constant if it is a float ConstNode
1493 jfloat Node::getf() const {
1494   assert( Opcode() == Op_ConF, "" );
1495   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1496 }
1497 
1498 #ifndef PRODUCT
1499 
1500 //------------------------------find------------------------------------------
1501 // Find a neighbor of this Node with the given _idx
1502 // If idx is negative, find its absolute value, following both _in and _out.
1503 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1504                         VectorSet* old_space, VectorSet* new_space ) {
1505   int node_idx = (idx >= 0) ? idx : -idx;
1506   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1507   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1508   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1509   if( v->test(n->_idx) ) return;
1510   if( (int)n->_idx == node_idx
1511       debug_only(|| n->debug_idx() == node_idx) ) {
1512     if (result != NULL)
1513       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1514                  (uintptr_t)result, (uintptr_t)n, node_idx);
1515     result = n;
1516   }
1517   v->set(n->_idx);
1518   for( uint i=0; i<n->len(); i++ ) {
1519     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1520     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1521   }
1522   // Search along forward edges also:
1523   if (idx < 0 && !only_ctrl) {
1524     for( uint j=0; j<n->outcnt(); j++ ) {
1525       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1526     }
1527   }
1528 #ifdef ASSERT
1529   // Search along debug_orig edges last, checking for cycles
1530   Node* orig = n->debug_orig();
1531   if (orig != NULL) {
1532     do {
1533       if (NotANode(orig))  break;
1534       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1535       orig = orig->debug_orig();
1536     } while (orig != NULL && orig != n->debug_orig());
1537   }
1538 #endif //ASSERT
1539 }
1540 
1541 // call this from debugger:
1542 Node* find_node(Node* n, int idx) {
1543   return n->find(idx);
1544 }
1545 
1546 //------------------------------find-------------------------------------------
1547 Node* Node::find(int idx) const {
1548   ResourceArea *area = Thread::current()->resource_area();
1549   VectorSet old_space(area), new_space(area);
1550   Node* result = NULL;
1551   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1552   return result;
1553 }
1554 
1555 //------------------------------find_ctrl--------------------------------------
1556 // Find an ancestor to this node in the control history with given _idx
1557 Node* Node::find_ctrl(int idx) const {
1558   ResourceArea *area = Thread::current()->resource_area();
1559   VectorSet old_space(area), new_space(area);
1560   Node* result = NULL;
1561   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1562   return result;
1563 }
1564 #endif
1565 
1566 
1567 
1568 #ifndef PRODUCT
1569 
1570 // -----------------------------Name-------------------------------------------
1571 extern const char *NodeClassNames[];
1572 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1573 
1574 static bool is_disconnected(const Node* n) {
1575   for (uint i = 0; i < n->req(); i++) {
1576     if (n->in(i) != NULL)  return false;
1577   }
1578   return true;
1579 }
1580 
1581 #ifdef ASSERT
1582 static void dump_orig(Node* orig, outputStream *st) {
1583   Compile* C = Compile::current();
1584   if (NotANode(orig)) orig = NULL;
1585   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1586   if (orig == NULL) return;
1587   st->print(" !orig=");
1588   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1589   if (NotANode(fast)) fast = NULL;
1590   while (orig != NULL) {
1591     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1592     if (discon) st->print("[");
1593     if (!Compile::current()->node_arena()->contains(orig))
1594       st->print("o");
1595     st->print("%d", orig->_idx);
1596     if (discon) st->print("]");
1597     orig = orig->debug_orig();
1598     if (NotANode(orig)) orig = NULL;
1599     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1600     if (orig != NULL) st->print(",");
1601     if (fast != NULL) {
1602       // Step fast twice for each single step of orig:
1603       fast = fast->debug_orig();
1604       if (NotANode(fast)) fast = NULL;
1605       if (fast != NULL && fast != orig) {
1606         fast = fast->debug_orig();
1607         if (NotANode(fast)) fast = NULL;
1608       }
1609       if (fast == orig) {
1610         st->print("...");
1611         break;
1612       }
1613     }
1614   }
1615 }
1616 
1617 void Node::set_debug_orig(Node* orig) {
1618   _debug_orig = orig;
1619   if (BreakAtNode == 0)  return;
1620   if (NotANode(orig))  orig = NULL;
1621   int trip = 10;
1622   while (orig != NULL) {
1623     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1624       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1625                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1626       BREAKPOINT;
1627     }
1628     orig = orig->debug_orig();
1629     if (NotANode(orig))  orig = NULL;
1630     if (trip-- <= 0)  break;
1631   }
1632 }
1633 #endif //ASSERT
1634 
1635 //------------------------------dump------------------------------------------
1636 // Dump a Node
1637 void Node::dump(const char* suffix, bool mark, outputStream *st) const {
1638   Compile* C = Compile::current();
1639   bool is_new = C->node_arena()->contains(this);
1640   C->_in_dump_cnt++;
1641   st->print("%c%d%s\t%s\t=== ", is_new ? ' ' : 'o', _idx, mark ? " >" : "", Name());
1642 
1643   // Dump the required and precedence inputs
1644   dump_req(st);
1645   dump_prec(st);
1646   // Dump the outputs
1647   dump_out(st);
1648 
1649   if (is_disconnected(this)) {
1650 #ifdef ASSERT
1651     st->print("  [%d]",debug_idx());
1652     dump_orig(debug_orig(), st);
1653 #endif
1654     st->cr();
1655     C->_in_dump_cnt--;
1656     return;                     // don't process dead nodes
1657   }
1658 
1659   if (C->clone_map().value(_idx) != 0) {
1660     C->clone_map().dump(_idx);
1661   }
1662   // Dump node-specific info
1663   dump_spec(st);
1664 #ifdef ASSERT
1665   // Dump the non-reset _debug_idx
1666   if (Verbose && WizardMode) {
1667     st->print("  [%d]",debug_idx());
1668   }
1669 #endif
1670 
1671   const Type *t = bottom_type();
1672 
1673   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1674     const TypeInstPtr  *toop = t->isa_instptr();
1675     const TypeKlassPtr *tkls = t->isa_klassptr();
1676     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1677     if (klass && klass->is_loaded() && klass->is_interface()) {
1678       st->print("  Interface:");
1679     } else if (toop) {
1680       st->print("  Oop:");
1681     } else if (tkls) {
1682       st->print("  Klass:");
1683     }
1684     t->dump_on(st);
1685   } else if (t == Type::MEMORY) {
1686     st->print("  Memory:");
1687     MemNode::dump_adr_type(this, adr_type(), st);
1688   } else if (Verbose || WizardMode) {
1689     st->print("  Type:");
1690     if (t) {
1691       t->dump_on(st);
1692     } else {
1693       st->print("no type");
1694     }
1695   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1696     // Dump MachSpillcopy vector type.
1697     t->dump_on(st);
1698   }
1699   if (is_new) {
1700     debug_only(dump_orig(debug_orig(), st));
1701     Node_Notes* nn = C->node_notes_at(_idx);
1702     if (nn != NULL && !nn->is_clear()) {
1703       if (nn->jvms() != NULL) {
1704         st->print(" !jvms:");
1705         nn->jvms()->dump_spec(st);
1706       }
1707     }
1708   }
1709   if (suffix) st->print("%s", suffix);
1710   C->_in_dump_cnt--;
1711 }
1712 
1713 //------------------------------dump_req--------------------------------------
1714 void Node::dump_req(outputStream *st) const {
1715   // Dump the required input edges
1716   for (uint i = 0; i < req(); i++) {    // For all required inputs
1717     Node* d = in(i);
1718     if (d == NULL) {
1719       st->print("_ ");
1720     } else if (NotANode(d)) {
1721       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1722     } else {
1723       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1724     }
1725   }
1726 }
1727 
1728 
1729 //------------------------------dump_prec-------------------------------------
1730 void Node::dump_prec(outputStream *st) const {
1731   // Dump the precedence edges
1732   int any_prec = 0;
1733   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1734     Node* p = in(i);
1735     if (p != NULL) {
1736       if (!any_prec++) st->print(" |");
1737       if (NotANode(p)) { st->print("NotANode "); continue; }
1738       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1739     }
1740   }
1741 }
1742 
1743 //------------------------------dump_out--------------------------------------
1744 void Node::dump_out(outputStream *st) const {
1745   // Delimit the output edges
1746   st->print(" [[");
1747   // Dump the output edges
1748   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1749     Node* u = _out[i];
1750     if (u == NULL) {
1751       st->print("_ ");
1752     } else if (NotANode(u)) {
1753       st->print("NotANode ");
1754     } else {
1755       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1756     }
1757   }
1758   st->print("]] ");
1759 }
1760 
1761 //----------------------------collect_nodes_i----------------------------------
1762 // Collects nodes from an Ideal graph, starting from a given start node and
1763 // moving in a given direction until a certain depth (distance from the start
1764 // node) is reached. Duplicates are ignored.
1765 // Arguments:
1766 //   nstack:        the nodes are collected into this array.
1767 //   start:         the node at which to start collecting.
1768 //   direction:     if this is a positive number, collect input nodes; if it is
1769 //                  a negative number, collect output nodes.
1770 //   depth:         collect nodes up to this distance from the start node.
1771 //   include_start: whether to include the start node in the result collection.
1772 //   only_ctrl:     whether to regard control edges only during traversal.
1773 //   only_data:     whether to regard data edges only during traversal.
1774 static void collect_nodes_i(GrowableArray<Node*> *nstack, const Node* start, int direction, uint depth, bool include_start, bool only_ctrl, bool only_data) {
1775   Node* s = (Node*) start; // remove const
1776   nstack->append(s);
1777   int begin = 0;
1778   int end = 0;
1779   for(uint i = 0; i < depth; i++) {
1780     end = nstack->length();
1781     for(int j = begin; j < end; j++) {
1782       Node* tp  = nstack->at(j);
1783       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1784       for(uint k = 0; k < limit; k++) {
1785         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1786 
1787         if (NotANode(n))  continue;
1788         // do not recurse through top or the root (would reach unrelated stuff)
1789         if (n->is_Root() || n->is_top()) continue;
1790         if (only_ctrl && !n->is_CFG()) continue;
1791         if (only_data && n->is_CFG()) continue;
1792 
1793         bool on_stack = nstack->contains(n);
1794         if (!on_stack) {
1795           nstack->append(n);
1796         }
1797       }
1798     }
1799     begin = end;
1800   }
1801   if (!include_start) {
1802     nstack->remove(s);
1803   }
1804 }
1805 
1806 //------------------------------dump_nodes-------------------------------------
1807 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1808   if (NotANode(start)) return;
1809 
1810   GrowableArray <Node *> nstack(Compile::current()->live_nodes());
1811   collect_nodes_i(&nstack, start, d, (uint) ABS(d), true, only_ctrl, false);
1812 
1813   int end = nstack.length();
1814   if (d > 0) {
1815     for(int j = end-1; j >= 0; j--) {
1816       nstack.at(j)->dump();
1817     }
1818   } else {
1819     for(int j = 0; j < end; j++) {
1820       nstack.at(j)->dump();
1821     }
1822   }
1823 }
1824 
1825 //------------------------------dump-------------------------------------------
1826 void Node::dump(int d) const {
1827   dump_nodes(this, d, false);
1828 }
1829 
1830 //------------------------------dump_ctrl--------------------------------------
1831 // Dump a Node's control history to depth
1832 void Node::dump_ctrl(int d) const {
1833   dump_nodes(this, d, true);
1834 }
1835 
1836 //-----------------------------dump_compact------------------------------------
1837 void Node::dump_comp() const {
1838   this->dump_comp("\n");
1839 }
1840 
1841 //-----------------------------dump_compact------------------------------------
1842 // Dump a Node in compact representation, i.e., just print its name and index.
1843 // Nodes can specify additional specifics to print in compact representation by
1844 // implementing dump_compact_spec.
1845 void Node::dump_comp(const char* suffix, outputStream *st) const {
1846   Compile* C = Compile::current();
1847   C->_in_dump_cnt++;
1848   st->print("%s(%d)", Name(), _idx);
1849   this->dump_compact_spec(st);
1850   if (suffix) {
1851     st->print("%s", suffix);
1852   }
1853   C->_in_dump_cnt--;
1854 }
1855 
1856 //----------------------------dump_related-------------------------------------
1857 // Dump a Node's related nodes - the notion of "related" depends on the Node at
1858 // hand and is determined by the implementation of the virtual method rel.
1859 void Node::dump_related() const {
1860   Compile* C = Compile::current();
1861   GrowableArray <Node *> in_rel(C->unique());
1862   GrowableArray <Node *> out_rel(C->unique());
1863   this->related(&in_rel, &out_rel, false);
1864   for (int i = in_rel.length() - 1; i >= 0; i--) {
1865     in_rel.at(i)->dump();
1866   }
1867   this->dump("\n", true);
1868   for (int i = 0; i < out_rel.length(); i++) {
1869     out_rel.at(i)->dump();
1870   }
1871 }
1872 
1873 //----------------------------dump_related-------------------------------------
1874 // Dump a Node's related nodes up to a given depth (distance from the start
1875 // node).
1876 // Arguments:
1877 //   d_in:  depth for input nodes.
1878 //   d_out: depth for output nodes (note: this also is a positive number).
1879 void Node::dump_related(uint d_in, uint d_out) const {
1880   Compile* C = Compile::current();
1881   GrowableArray <Node *> in_rel(C->unique());
1882   GrowableArray <Node *> out_rel(C->unique());
1883 
1884   // call collect_nodes_i directly
1885   collect_nodes_i(&in_rel, this, 1, d_in, false, false, false);
1886   collect_nodes_i(&out_rel, this, -1, d_out, false, false, false);
1887 
1888   for (int i = in_rel.length() - 1; i >= 0; i--) {
1889     in_rel.at(i)->dump();
1890   }
1891   this->dump("\n", true);
1892   for (int i = 0; i < out_rel.length(); i++) {
1893     out_rel.at(i)->dump();
1894   }
1895 }
1896 
1897 //------------------------dump_related_compact---------------------------------
1898 // Dump a Node's related nodes in compact representation. The notion of
1899 // "related" depends on the Node at hand and is determined by the implementation
1900 // of the virtual method rel.
1901 void Node::dump_related_compact() const {
1902   Compile* C = Compile::current();
1903   GrowableArray <Node *> in_rel(C->unique());
1904   GrowableArray <Node *> out_rel(C->unique());
1905   this->related(&in_rel, &out_rel, true);
1906   int n_in = in_rel.length();
1907   int n_out = out_rel.length();
1908 
1909   this->dump_comp(n_in == 0 ? "\n" : "  ");
1910   for (int i = 0; i < n_in; i++) {
1911     in_rel.at(i)->dump_comp(i == n_in - 1 ? "\n" : "  ");
1912   }
1913   for (int i = 0; i < n_out; i++) {
1914     out_rel.at(i)->dump_comp(i == n_out - 1 ? "\n" : "  ");
1915   }
1916 }
1917 
1918 //------------------------------related----------------------------------------
1919 // Collect a Node's related nodes. The default behaviour just collects the
1920 // inputs and outputs at depth 1, including both control and data flow edges,
1921 // regardless of whether the presentation is compact or not. For data nodes,
1922 // the default is to collect all data inputs (till level 1 if compact), and
1923 // outputs till level 1.
1924 void Node::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1925   if (this->is_CFG()) {
1926     collect_nodes_i(in_rel, this, 1, 1, false, false, false);
1927     collect_nodes_i(out_rel, this, -1, 1, false, false, false);
1928   } else {
1929     if (compact) {
1930       this->collect_nodes(in_rel, 1, false, true);
1931     } else {
1932       this->collect_nodes_in_all_data(in_rel, false);
1933     }
1934     this->collect_nodes(out_rel, -1, false, false);
1935   }
1936 }
1937 
1938 //---------------------------collect_nodes-------------------------------------
1939 // An entry point to the low-level node collection facility, to start from a
1940 // given node in the graph. The start node is by default not included in the
1941 // result.
1942 // Arguments:
1943 //   ns:   collect the nodes into this data structure.
1944 //   d:    the depth (distance from start node) to which nodes should be
1945 //         collected. A value >0 indicates input nodes, a value <0, output
1946 //         nodes.
1947 //   ctrl: include only control nodes.
1948 //   data: include only data nodes.
1949 void Node::collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const {
1950   if (ctrl && data) {
1951     // ignore nonsensical combination
1952     return;
1953   }
1954   collect_nodes_i(ns, this, d, (uint) ABS(d), false, ctrl, data);
1955 }
1956 
1957 //--------------------------collect_nodes_in-----------------------------------
1958 static void collect_nodes_in(Node* start, GrowableArray<Node*> *ns, bool primary_is_data, bool collect_secondary) {
1959   // The maximum depth is determined using a BFS that visits all primary (data
1960   // or control) inputs and increments the depth at each level.
1961   uint d_in = 0;
1962   GrowableArray<Node*> nodes(Compile::current()->unique());
1963   nodes.push(start);
1964   int nodes_at_current_level = 1;
1965   int n_idx = 0;
1966   while (nodes_at_current_level > 0) {
1967     // Add all primary inputs reachable from the current level to the list, and
1968     // increase the depth if there were any.
1969     int nodes_at_next_level = 0;
1970     bool nodes_added = false;
1971     while (nodes_at_current_level > 0) {
1972       nodes_at_current_level--;
1973       Node* current = nodes.at(n_idx++);
1974       for (uint i = 0; i < current->len(); i++) {
1975         Node* n = current->in(i);
1976         if (NotANode(n)) {
1977           continue;
1978         }
1979         if ((primary_is_data && n->is_CFG()) || (!primary_is_data && !n->is_CFG())) {
1980           continue;
1981         }
1982         if (!nodes.contains(n)) {
1983           nodes.push(n);
1984           nodes_added = true;
1985           nodes_at_next_level++;
1986         }
1987       }
1988     }
1989     if (nodes_added) {
1990       d_in++;
1991     }
1992     nodes_at_current_level = nodes_at_next_level;
1993   }
1994   start->collect_nodes(ns, d_in, !primary_is_data, primary_is_data);
1995   if (collect_secondary) {
1996     // Now, iterate over the secondary nodes in ns and add the respective
1997     // boundary reachable from them.
1998     GrowableArray<Node*> sns(Compile::current()->unique());
1999     for (GrowableArrayIterator<Node*> it = ns->begin(); it != ns->end(); ++it) {
2000       Node* n = *it;
2001       n->collect_nodes(&sns, 1, primary_is_data, !primary_is_data);
2002       for (GrowableArrayIterator<Node*> d = sns.begin(); d != sns.end(); ++d) {
2003         ns->append_if_missing(*d);
2004       }
2005       sns.clear();
2006     }
2007   }
2008 }
2009 
2010 //---------------------collect_nodes_in_all_data-------------------------------
2011 // Collect the entire data input graph. Include the control boundary if
2012 // requested.
2013 // Arguments:
2014 //   ns:   collect the nodes into this data structure.
2015 //   ctrl: if true, include the control boundary.
2016 void Node::collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const {
2017   collect_nodes_in((Node*) this, ns, true, ctrl);
2018 }
2019 
2020 //--------------------------collect_nodes_in_all_ctrl--------------------------
2021 // Collect the entire control input graph. Include the data boundary if
2022 // requested.
2023 //   ns:   collect the nodes into this data structure.
2024 //   data: if true, include the control boundary.
2025 void Node::collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const {
2026   collect_nodes_in((Node*) this, ns, false, data);
2027 }
2028 
2029 //------------------collect_nodes_out_all_ctrl_boundary------------------------
2030 // Collect the entire output graph until hitting control node boundaries, and
2031 // include those.
2032 void Node::collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const {
2033   // Perform a BFS and stop at control nodes.
2034   GrowableArray<Node*> nodes(Compile::current()->unique());
2035   nodes.push((Node*) this);
2036   while (nodes.length() > 0) {
2037     Node* current = nodes.pop();
2038     if (NotANode(current)) {
2039       continue;
2040     }
2041     ns->append_if_missing(current);
2042     if (!current->is_CFG()) {
2043       for (DUIterator i = current->outs(); current->has_out(i); i++) {
2044         nodes.push(current->out(i));
2045       }
2046     }
2047   }
2048   ns->remove((Node*) this);
2049 }
2050 
2051 // VERIFICATION CODE
2052 // For each input edge to a node (ie - for each Use-Def edge), verify that
2053 // there is a corresponding Def-Use edge.
2054 //------------------------------verify_edges-----------------------------------
2055 void Node::verify_edges(Unique_Node_List &visited) {
2056   uint i, j, idx;
2057   int  cnt;
2058   Node *n;
2059 
2060   // Recursive termination test
2061   if (visited.member(this))  return;
2062   visited.push(this);
2063 
2064   // Walk over all input edges, checking for correspondence
2065   for( i = 0; i < len(); i++ ) {
2066     n = in(i);
2067     if (n != NULL && !n->is_top()) {
2068       // Count instances of (Node *)this
2069       cnt = 0;
2070       for (idx = 0; idx < n->_outcnt; idx++ ) {
2071         if (n->_out[idx] == (Node *)this)  cnt++;
2072       }
2073       assert( cnt > 0,"Failed to find Def-Use edge." );
2074       // Check for duplicate edges
2075       // walk the input array downcounting the input edges to n
2076       for( j = 0; j < len(); j++ ) {
2077         if( in(j) == n ) cnt--;
2078       }
2079       assert( cnt == 0,"Mismatched edge count.");
2080     } else if (n == NULL) {
2081       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
2082     } else {
2083       assert(n->is_top(), "sanity");
2084       // Nothing to check.
2085     }
2086   }
2087   // Recursive walk over all input edges
2088   for( i = 0; i < len(); i++ ) {
2089     n = in(i);
2090     if( n != NULL )
2091       in(i)->verify_edges(visited);
2092   }
2093 }
2094 
2095 //------------------------------verify_recur-----------------------------------
2096 static const Node *unique_top = NULL;
2097 
2098 void Node::verify_recur(const Node *n, int verify_depth,
2099                         VectorSet &old_space, VectorSet &new_space) {
2100   if ( verify_depth == 0 )  return;
2101   if (verify_depth > 0)  --verify_depth;
2102 
2103   Compile* C = Compile::current();
2104 
2105   // Contained in new_space or old_space?
2106   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
2107   // Check for visited in the proper space.  Numberings are not unique
2108   // across spaces so we need a separate VectorSet for each space.
2109   if( v->test_set(n->_idx) ) return;
2110 
2111   if (n->is_Con() && n->bottom_type() == Type::TOP) {
2112     if (C->cached_top_node() == NULL)
2113       C->set_cached_top_node((Node*)n);
2114     assert(C->cached_top_node() == n, "TOP node must be unique");
2115   }
2116 
2117   for( uint i = 0; i < n->len(); i++ ) {
2118     Node *x = n->in(i);
2119     if (!x || x->is_top()) continue;
2120 
2121     // Verify my input has a def-use edge to me
2122     if (true /*VerifyDefUse*/) {
2123       // Count use-def edges from n to x
2124       int cnt = 0;
2125       for( uint j = 0; j < n->len(); j++ )
2126         if( n->in(j) == x )
2127           cnt++;
2128       // Count def-use edges from x to n
2129       uint max = x->_outcnt;
2130       for( uint k = 0; k < max; k++ )
2131         if (x->_out[k] == n)
2132           cnt--;
2133       assert( cnt == 0, "mismatched def-use edge counts" );
2134     }
2135 
2136     verify_recur(x, verify_depth, old_space, new_space);
2137   }
2138 
2139 }
2140 
2141 //------------------------------verify-----------------------------------------
2142 // Check Def-Use info for my subgraph
2143 void Node::verify() const {
2144   Compile* C = Compile::current();
2145   Node* old_top = C->cached_top_node();
2146   ResourceMark rm;
2147   ResourceArea *area = Thread::current()->resource_area();
2148   VectorSet old_space(area), new_space(area);
2149   verify_recur(this, -1, old_space, new_space);
2150   C->set_cached_top_node(old_top);
2151 }
2152 #endif
2153 
2154 
2155 //------------------------------walk-------------------------------------------
2156 // Graph walk, with both pre-order and post-order functions
2157 void Node::walk(NFunc pre, NFunc post, void *env) {
2158   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
2159   walk_(pre, post, env, visited);
2160 }
2161 
2162 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
2163   if( visited.test_set(_idx) ) return;
2164   pre(*this,env);               // Call the pre-order walk function
2165   for( uint i=0; i<_max; i++ )
2166     if( in(i) )                 // Input exists and is not walked?
2167       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
2168   post(*this,env);              // Call the post-order walk function
2169 }
2170 
2171 void Node::nop(Node &, void*) {}
2172 
2173 //------------------------------Registers--------------------------------------
2174 // Do we Match on this edge index or not?  Generally false for Control
2175 // and true for everything else.  Weird for calls & returns.
2176 uint Node::match_edge(uint idx) const {
2177   return idx;                   // True for other than index 0 (control)
2178 }
2179 
2180 static RegMask _not_used_at_all;
2181 // Register classes are defined for specific machines
2182 const RegMask &Node::out_RegMask() const {
2183   ShouldNotCallThis();
2184   return _not_used_at_all;
2185 }
2186 
2187 const RegMask &Node::in_RegMask(uint) const {
2188   ShouldNotCallThis();
2189   return _not_used_at_all;
2190 }
2191 
2192 //=============================================================================
2193 //-----------------------------------------------------------------------------
2194 void Node_Array::reset( Arena *new_arena ) {
2195   _a->Afree(_nodes,_max*sizeof(Node*));
2196   _max   = 0;
2197   _nodes = NULL;
2198   _a     = new_arena;
2199 }
2200 
2201 //------------------------------clear------------------------------------------
2202 // Clear all entries in _nodes to NULL but keep storage
2203 void Node_Array::clear() {
2204   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
2205 }
2206 
2207 //-----------------------------------------------------------------------------
2208 void Node_Array::grow( uint i ) {
2209   if( !_max ) {
2210     _max = 1;
2211     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
2212     _nodes[0] = NULL;
2213   }
2214   uint old = _max;
2215   while( i >= _max ) _max <<= 1;        // Double to fit
2216   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2217   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2218 }
2219 
2220 //-----------------------------------------------------------------------------
2221 void Node_Array::insert( uint i, Node *n ) {
2222   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
2223   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
2224   _nodes[i] = n;
2225 }
2226 
2227 //-----------------------------------------------------------------------------
2228 void Node_Array::remove( uint i ) {
2229   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
2230   _nodes[_max-1] = NULL;
2231 }
2232 
2233 //-----------------------------------------------------------------------------
2234 void Node_Array::sort( C_sort_func_t func) {
2235   qsort( _nodes, _max, sizeof( Node* ), func );
2236 }
2237 
2238 //-----------------------------------------------------------------------------
2239 void Node_Array::dump() const {
2240 #ifndef PRODUCT
2241   for( uint i = 0; i < _max; i++ ) {
2242     Node *nn = _nodes[i];
2243     if( nn != NULL ) {
2244       tty->print("%5d--> ",i); nn->dump();
2245     }
2246   }
2247 #endif
2248 }
2249 
2250 //--------------------------is_iteratively_computed------------------------------
2251 // Operation appears to be iteratively computed (such as an induction variable)
2252 // It is possible for this operation to return false for a loop-varying
2253 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2254 bool Node::is_iteratively_computed() {
2255   if (ideal_reg()) { // does operation have a result register?
2256     for (uint i = 1; i < req(); i++) {
2257       Node* n = in(i);
2258       if (n != NULL && n->is_Phi()) {
2259         for (uint j = 1; j < n->req(); j++) {
2260           if (n->in(j) == this) {
2261             return true;
2262           }
2263         }
2264       }
2265     }
2266   }
2267   return false;
2268 }
2269 
2270 //--------------------------find_similar------------------------------
2271 // Return a node with opcode "opc" and same inputs as "this" if one can
2272 // be found; Otherwise return NULL;
2273 Node* Node::find_similar(int opc) {
2274   if (req() >= 2) {
2275     Node* def = in(1);
2276     if (def && def->outcnt() >= 2) {
2277       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2278         Node* use = def->fast_out(i);
2279         if (use->Opcode() == opc &&
2280             use->req() == req()) {
2281           uint j;
2282           for (j = 0; j < use->req(); j++) {
2283             if (use->in(j) != in(j)) {
2284               break;
2285             }
2286           }
2287           if (j == use->req()) {
2288             return use;
2289           }
2290         }
2291       }
2292     }
2293   }
2294   return NULL;
2295 }
2296 
2297 
2298 //--------------------------unique_ctrl_out------------------------------
2299 // Return the unique control out if only one. Null if none or more than one.
2300 Node* Node::unique_ctrl_out() const {
2301   Node* found = NULL;
2302   for (uint i = 0; i < outcnt(); i++) {
2303     Node* use = raw_out(i);
2304     if (use->is_CFG() && use != this) {
2305       if (found != NULL) return NULL;
2306       found = use;
2307     }
2308   }
2309   return found;
2310 }
2311 
2312 void Node::ensure_control_or_add_prec(Node* c) {
2313   if (in(0) == NULL) {
2314     set_req(0, c);
2315   } else if (in(0) != c) {
2316     add_prec(c);
2317   }
2318 }
2319 
2320 //=============================================================================
2321 //------------------------------yank-------------------------------------------
2322 // Find and remove
2323 void Node_List::yank( Node *n ) {
2324   uint i;
2325   for( i = 0; i < _cnt; i++ )
2326     if( _nodes[i] == n )
2327       break;
2328 
2329   if( i < _cnt )
2330     _nodes[i] = _nodes[--_cnt];
2331 }
2332 
2333 //------------------------------dump-------------------------------------------
2334 void Node_List::dump() const {
2335 #ifndef PRODUCT
2336   for( uint i = 0; i < _cnt; i++ )
2337     if( _nodes[i] ) {
2338       tty->print("%5d--> ",i);
2339       _nodes[i]->dump();
2340     }
2341 #endif
2342 }
2343 
2344 //=============================================================================
2345 //------------------------------remove-----------------------------------------
2346 void Unique_Node_List::remove( Node *n ) {
2347   if( _in_worklist[n->_idx] ) {
2348     for( uint i = 0; i < size(); i++ )
2349       if( _nodes[i] == n ) {
2350         map(i,Node_List::pop());
2351         _in_worklist >>= n->_idx;
2352         return;
2353       }
2354     ShouldNotReachHere();
2355   }
2356 }
2357 
2358 //-----------------------remove_useless_nodes----------------------------------
2359 // Remove useless nodes from worklist
2360 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2361 
2362   for( uint i = 0; i < size(); ++i ) {
2363     Node *n = at(i);
2364     assert( n != NULL, "Did not expect null entries in worklist");
2365     if( ! useful.test(n->_idx) ) {
2366       _in_worklist >>= n->_idx;
2367       map(i,Node_List::pop());
2368       // Node *replacement = Node_List::pop();
2369       // if( i != size() ) { // Check if removing last entry
2370       //   _nodes[i] = replacement;
2371       // }
2372       --i;  // Visit popped node
2373       // If it was last entry, loop terminates since size() was also reduced
2374     }
2375   }
2376 }
2377 
2378 //=============================================================================
2379 void Node_Stack::grow() {
2380   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2381   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2382   size_t max = old_max << 1;             // max * 2
2383   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2384   _inode_max = _inodes + max;
2385   _inode_top = _inodes + old_top;        // restore _top
2386 }
2387 
2388 // Node_Stack is used to map nodes.
2389 Node* Node_Stack::find(uint idx) const {
2390   uint sz = size();
2391   for (uint i=0; i < sz; i++) {
2392     if (idx == index_at(i) )
2393       return node_at(i);
2394   }
2395   return NULL;
2396 }
2397 
2398 //=============================================================================
2399 uint TypeNode::size_of() const { return sizeof(*this); }
2400 #ifndef PRODUCT
2401 void TypeNode::dump_spec(outputStream *st) const {
2402   if( !Verbose && !WizardMode ) {
2403     // standard dump does this in Verbose and WizardMode
2404     st->print(" #"); _type->dump_on(st);
2405   }
2406 }
2407 
2408 void TypeNode::dump_compact_spec(outputStream *st) const {
2409   st->print("#");
2410   _type->dump_on(st);
2411 }
2412 #endif
2413 uint TypeNode::hash() const {
2414   return Node::hash() + _type->hash();
2415 }
2416 uint TypeNode::cmp( const Node &n ) const
2417 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2418 const Type *TypeNode::bottom_type() const { return _type; }
2419 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
2420 
2421 //------------------------------ideal_reg--------------------------------------
2422 uint TypeNode::ideal_reg() const {
2423   return _type->ideal_reg();
2424 }