1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_NODE_HPP
  26 #define SHARE_VM_OPTO_NODE_HPP
  27 
  28 #include "libadt/vectset.hpp"
  29 #include "opto/compile.hpp"
  30 #include "opto/type.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 class AbstractLockNode;
  38 class AddNode;
  39 class AddPNode;
  40 class AliasInfo;
  41 class AllocateArrayNode;
  42 class AllocateNode;
  43 class ArrayCopyNode;
  44 class Block;
  45 class BoolNode;
  46 class BoxLockNode;
  47 class CMoveNode;
  48 class CallDynamicJavaNode;
  49 class CallJavaNode;
  50 class CallLeafNode;
  51 class CallNode;
  52 class CallRuntimeNode;
  53 class CallStaticJavaNode;
  54 class CatchNode;
  55 class CatchProjNode;
  56 class CheckCastPPNode;
  57 class ClearArrayNode;
  58 class CmpNode;
  59 class CodeBuffer;
  60 class ConstraintCastNode;
  61 class ConNode;
  62 class CountedLoopNode;
  63 class CountedLoopEndNode;
  64 class DecodeNarrowPtrNode;
  65 class DecodeNNode;
  66 class DecodeNKlassNode;
  67 class EncodeNarrowPtrNode;
  68 class EncodePNode;
  69 class EncodePKlassNode;
  70 class FastLockNode;
  71 class FastUnlockNode;
  72 class IfNode;
  73 class IfFalseNode;
  74 class IfTrueNode;
  75 class InitializeNode;
  76 class JVMState;
  77 class JumpNode;
  78 class JumpProjNode;
  79 class LoadNode;
  80 class LoadStoreNode;
  81 class LockNode;
  82 class LoopNode;
  83 class MachBranchNode;
  84 class MachCallDynamicJavaNode;
  85 class MachCallJavaNode;
  86 class MachCallLeafNode;
  87 class MachCallNode;
  88 class MachCallRuntimeNode;
  89 class MachCallStaticJavaNode;
  90 class MachConstantBaseNode;
  91 class MachConstantNode;
  92 class MachGotoNode;
  93 class MachIfNode;
  94 class MachNode;
  95 class MachNullCheckNode;
  96 class MachProjNode;
  97 class MachReturnNode;
  98 class MachSafePointNode;
  99 class MachSpillCopyNode;
 100 class MachTempNode;
 101 class MachMergeNode;
 102 class Matcher;
 103 class MemBarNode;
 104 class MemBarStoreStoreNode;
 105 class MemNode;
 106 class MergeMemNode;
 107 class MulNode;
 108 class MultiNode;
 109 class MultiBranchNode;
 110 class NeverBranchNode;
 111 class Node;
 112 class Node_Array;
 113 class Node_List;
 114 class Node_Stack;
 115 class NullCheckNode;
 116 class OopMap;
 117 class ParmNode;
 118 class PCTableNode;
 119 class PhaseCCP;
 120 class PhaseGVN;
 121 class PhaseIterGVN;
 122 class PhaseRegAlloc;
 123 class PhaseTransform;
 124 class PhaseValues;
 125 class PhiNode;
 126 class Pipeline;
 127 class ProjNode;
 128 class RegMask;
 129 class RegionNode;
 130 class RootNode;
 131 class SafePointNode;
 132 class SafePointScalarObjectNode;
 133 class StartNode;
 134 class State;
 135 class StoreNode;
 136 class SubNode;
 137 class Type;
 138 class TypeNode;
 139 class UnlockNode;
 140 class VectorNode;
 141 class LoadVectorNode;
 142 class StoreVectorNode;
 143 class VectorSet;
 144 typedef void (*NFunc)(Node&,void*);
 145 extern "C" {
 146   typedef int (*C_sort_func_t)(const void *, const void *);
 147 }
 148 
 149 // The type of all node counts and indexes.
 150 // It must hold at least 16 bits, but must also be fast to load and store.
 151 // This type, if less than 32 bits, could limit the number of possible nodes.
 152 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 153 typedef unsigned int node_idx_t;
 154 
 155 
 156 #ifndef OPTO_DU_ITERATOR_ASSERT
 157 #ifdef ASSERT
 158 #define OPTO_DU_ITERATOR_ASSERT 1
 159 #else
 160 #define OPTO_DU_ITERATOR_ASSERT 0
 161 #endif
 162 #endif //OPTO_DU_ITERATOR_ASSERT
 163 
 164 #if OPTO_DU_ITERATOR_ASSERT
 165 class DUIterator;
 166 class DUIterator_Fast;
 167 class DUIterator_Last;
 168 #else
 169 typedef uint   DUIterator;
 170 typedef Node** DUIterator_Fast;
 171 typedef Node** DUIterator_Last;
 172 #endif
 173 
 174 // Node Sentinel
 175 #define NodeSentinel (Node*)-1
 176 
 177 // Unknown count frequency
 178 #define COUNT_UNKNOWN (-1.0f)
 179 
 180 //------------------------------Node-------------------------------------------
 181 // Nodes define actions in the program.  They create values, which have types.
 182 // They are both vertices in a directed graph and program primitives.  Nodes
 183 // are labeled; the label is the "opcode", the primitive function in the lambda
 184 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 185 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 186 // the Node's function.  These inputs also define a Type equation for the Node.
 187 // Solving these Type equations amounts to doing dataflow analysis.
 188 // Control and data are uniformly represented in the graph.  Finally, Nodes
 189 // have a unique dense integer index which is used to index into side arrays
 190 // whenever I have phase-specific information.
 191 
 192 class Node {
 193   friend class VMStructs;
 194 
 195   // Lots of restrictions on cloning Nodes
 196   Node(const Node&);            // not defined; linker error to use these
 197   Node &operator=(const Node &rhs);
 198 
 199 public:
 200   friend class Compile;
 201   #if OPTO_DU_ITERATOR_ASSERT
 202   friend class DUIterator_Common;
 203   friend class DUIterator;
 204   friend class DUIterator_Fast;
 205   friend class DUIterator_Last;
 206   #endif
 207 
 208   // Because Nodes come and go, I define an Arena of Node structures to pull
 209   // from.  This should allow fast access to node creation & deletion.  This
 210   // field is a local cache of a value defined in some "program fragment" for
 211   // which these Nodes are just a part of.
 212 
 213   inline void* operator new(size_t x) throw() {
 214     Compile* C = Compile::current();
 215     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
 216 #ifdef ASSERT
 217     n->_in = (Node**)n; // magic cookie for assertion check
 218 #endif
 219     return (void*)n;
 220   }
 221 
 222   // Delete is a NOP
 223   void operator delete( void *ptr ) {}
 224   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 225   void destruct();
 226 
 227   // Create a new Node.  Required is the number is of inputs required for
 228   // semantic correctness.
 229   Node( uint required );
 230 
 231   // Create a new Node with given input edges.
 232   // This version requires use of the "edge-count" new.
 233   // E.g.  new (C,3) FooNode( C, NULL, left, right );
 234   Node( Node *n0 );
 235   Node( Node *n0, Node *n1 );
 236   Node( Node *n0, Node *n1, Node *n2 );
 237   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 238   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 239   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 240   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 241             Node *n4, Node *n5, Node *n6 );
 242 
 243   // Clone an inherited Node given only the base Node type.
 244   Node* clone() const;
 245 
 246   // Clone a Node, immediately supplying one or two new edges.
 247   // The first and second arguments, if non-null, replace in(1) and in(2),
 248   // respectively.
 249   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
 250     Node* nn = clone();
 251     if (in1 != NULL)  nn->set_req(1, in1);
 252     if (in2 != NULL)  nn->set_req(2, in2);
 253     return nn;
 254   }
 255 
 256 private:
 257   // Shared setup for the above constructors.
 258   // Handles all interactions with Compile::current.
 259   // Puts initial values in all Node fields except _idx.
 260   // Returns the initial value for _idx, which cannot
 261   // be initialized by assignment.
 262   inline int Init(int req);
 263 
 264 //----------------- input edge handling
 265 protected:
 266   friend class PhaseCFG;        // Access to address of _in array elements
 267   Node **_in;                   // Array of use-def references to Nodes
 268   Node **_out;                  // Array of def-use references to Nodes
 269 
 270   // Input edges are split into two categories.  Required edges are required
 271   // for semantic correctness; order is important and NULLs are allowed.
 272   // Precedence edges are used to help determine execution order and are
 273   // added, e.g., for scheduling purposes.  They are unordered and not
 274   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
 275   // are required, from _cnt to _max-1 are precedence edges.
 276   node_idx_t _cnt;              // Total number of required Node inputs.
 277 
 278   node_idx_t _max;              // Actual length of input array.
 279 
 280   // Output edges are an unordered list of def-use edges which exactly
 281   // correspond to required input edges which point from other nodes
 282   // to this one.  Thus the count of the output edges is the number of
 283   // users of this node.
 284   node_idx_t _outcnt;           // Total number of Node outputs.
 285 
 286   node_idx_t _outmax;           // Actual length of output array.
 287 
 288   // Grow the actual input array to the next larger power-of-2 bigger than len.
 289   void grow( uint len );
 290   // Grow the output array to the next larger power-of-2 bigger than len.
 291   void out_grow( uint len );
 292 
 293  public:
 294   // Each Node is assigned a unique small/dense number.  This number is used
 295   // to index into auxiliary arrays of data and bit vectors.
 296   // The field _idx is declared constant to defend against inadvertent assignments,
 297   // since it is used by clients as a naked field. However, the field's value can be
 298   // changed using the set_idx() method.
 299   //
 300   // The PhaseRenumberLive phase renumbers nodes based on liveness information.
 301   // Therefore, it updates the value of the _idx field. The parse-time _idx is
 302   // preserved in _parse_idx.
 303   const node_idx_t _idx;
 304   DEBUG_ONLY(const node_idx_t _parse_idx;)
 305 
 306   // Get the (read-only) number of input edges
 307   uint req() const { return _cnt; }
 308   uint len() const { return _max; }
 309   // Get the (read-only) number of output edges
 310   uint outcnt() const { return _outcnt; }
 311 
 312 #if OPTO_DU_ITERATOR_ASSERT
 313   // Iterate over the out-edges of this node.  Deletions are illegal.
 314   inline DUIterator outs() const;
 315   // Use this when the out array might have changed to suppress asserts.
 316   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 317   // Does the node have an out at this position?  (Used for iteration.)
 318   inline bool has_out(DUIterator& i) const;
 319   inline Node*    out(DUIterator& i) const;
 320   // Iterate over the out-edges of this node.  All changes are illegal.
 321   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 322   inline Node*    fast_out(DUIterator_Fast& i) const;
 323   // Iterate over the out-edges of this node, deleting one at a time.
 324   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 325   inline Node*    last_out(DUIterator_Last& i) const;
 326   // The inline bodies of all these methods are after the iterator definitions.
 327 #else
 328   // Iterate over the out-edges of this node.  Deletions are illegal.
 329   // This iteration uses integral indexes, to decouple from array reallocations.
 330   DUIterator outs() const  { return 0; }
 331   // Use this when the out array might have changed to suppress asserts.
 332   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 333 
 334   // Reference to the i'th output Node.  Error if out of bounds.
 335   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 336   // Does the node have an out at this position?  (Used for iteration.)
 337   bool has_out(DUIterator i) const { return i < _outcnt; }
 338 
 339   // Iterate over the out-edges of this node.  All changes are illegal.
 340   // This iteration uses a pointer internal to the out array.
 341   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 342     Node** out = _out;
 343     // Assign a limit pointer to the reference argument:
 344     max = out + (ptrdiff_t)_outcnt;
 345     // Return the base pointer:
 346     return out;
 347   }
 348   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 349   // Iterate over the out-edges of this node, deleting one at a time.
 350   // This iteration uses a pointer internal to the out array.
 351   DUIterator_Last last_outs(DUIterator_Last& min) const {
 352     Node** out = _out;
 353     // Assign a limit pointer to the reference argument:
 354     min = out;
 355     // Return the pointer to the start of the iteration:
 356     return out + (ptrdiff_t)_outcnt - 1;
 357   }
 358   Node*    last_out(DUIterator_Last i) const  { return *i; }
 359 #endif
 360 
 361   // Reference to the i'th input Node.  Error if out of bounds.
 362   Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
 363   // Reference to the i'th input Node.  NULL if out of bounds.
 364   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
 365   // Reference to the i'th output Node.  Error if out of bounds.
 366   // Use this accessor sparingly.  We are going trying to use iterators instead.
 367   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 368   // Return the unique out edge.
 369   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 370   // Delete out edge at position 'i' by moving last out edge to position 'i'
 371   void  raw_del_out(uint i) {
 372     assert(i < _outcnt,"oob");
 373     assert(_outcnt > 0,"oob");
 374     #if OPTO_DU_ITERATOR_ASSERT
 375     // Record that a change happened here.
 376     debug_only(_last_del = _out[i]; ++_del_tick);
 377     #endif
 378     _out[i] = _out[--_outcnt];
 379     // Smash the old edge so it can't be used accidentally.
 380     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 381   }
 382 
 383 #ifdef ASSERT
 384   bool is_dead() const;
 385 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
 386 #endif
 387   // Check whether node has become unreachable
 388   bool is_unreachable(PhaseIterGVN &igvn) const;
 389 
 390   // Set a required input edge, also updates corresponding output edge
 391   void add_req( Node *n ); // Append a NEW required input
 392   void add_req( Node *n0, Node *n1 ) {
 393     add_req(n0); add_req(n1); }
 394   void add_req( Node *n0, Node *n1, Node *n2 ) {
 395     add_req(n0); add_req(n1); add_req(n2); }
 396   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 397   void del_req( uint idx ); // Delete required edge & compact
 398   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
 399   void ins_req( uint i, Node *n ); // Insert a NEW required input
 400   void set_req( uint i, Node *n ) {
 401     assert( is_not_dead(n), "can not use dead node");
 402     assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
 403     assert( !VerifyHashTableKeys || _hash_lock == 0,
 404             "remove node from hash table before modifying it");
 405     Node** p = &_in[i];    // cache this._in, across the del_out call
 406     if (*p != NULL)  (*p)->del_out((Node *)this);
 407     (*p) = n;
 408     if (n != NULL)      n->add_out((Node *)this);
 409     Compile::current()->record_modified_node(this);
 410   }
 411   // Light version of set_req() to init inputs after node creation.
 412   void init_req( uint i, Node *n ) {
 413     assert( i == 0 && this == n ||
 414             is_not_dead(n), "can not use dead node");
 415     assert( i < _cnt, "oob");
 416     assert( !VerifyHashTableKeys || _hash_lock == 0,
 417             "remove node from hash table before modifying it");
 418     assert( _in[i] == NULL, "sanity");
 419     _in[i] = n;
 420     if (n != NULL)      n->add_out((Node *)this);
 421     Compile::current()->record_modified_node(this);
 422   }
 423   // Find first occurrence of n among my edges:
 424   int find_edge(Node* n);
 425   int replace_edge(Node* old, Node* neww);
 426   int replace_edges_in_range(Node* old, Node* neww, int start, int end);
 427   // NULL out all inputs to eliminate incoming Def-Use edges.
 428   // Return the number of edges between 'n' and 'this'
 429   int  disconnect_inputs(Node *n, Compile *c);
 430 
 431   // Quickly, return true if and only if I am Compile::current()->top().
 432   bool is_top() const {
 433     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
 434     return (_out == NULL);
 435   }
 436   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 437   void setup_is_top();
 438 
 439   // Strip away casting.  (It is depth-limited.)
 440   Node* uncast() const;
 441   // Return whether two Nodes are equivalent, after stripping casting.
 442   bool eqv_uncast(const Node* n) const {
 443     return (this->uncast() == n->uncast());
 444   }
 445 
 446   // Find out of current node that matches opcode.
 447   Node* find_out_with(int opcode);
 448   // Return true if the current node has an out that matches opcode.
 449   bool has_out_with(int opcode);
 450   // Return true if the current node has an out that matches any of the opcodes.
 451   bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
 452 
 453 private:
 454   static Node* uncast_helper(const Node* n);
 455 
 456   // Add an output edge to the end of the list
 457   void add_out( Node *n ) {
 458     if (is_top())  return;
 459     if( _outcnt == _outmax ) out_grow(_outcnt);
 460     _out[_outcnt++] = n;
 461   }
 462   // Delete an output edge
 463   void del_out( Node *n ) {
 464     if (is_top())  return;
 465     Node** outp = &_out[_outcnt];
 466     // Find and remove n
 467     do {
 468       assert(outp > _out, "Missing Def-Use edge");
 469     } while (*--outp != n);
 470     *outp = _out[--_outcnt];
 471     // Smash the old edge so it can't be used accidentally.
 472     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 473     // Record that a change happened here.
 474     #if OPTO_DU_ITERATOR_ASSERT
 475     debug_only(_last_del = n; ++_del_tick);
 476     #endif
 477   }
 478 
 479 public:
 480   // Globally replace this node by a given new node, updating all uses.
 481   void replace_by(Node* new_node);
 482   // Globally replace this node by a given new node, updating all uses
 483   // and cutting input edges of old node.
 484   void subsume_by(Node* new_node, Compile* c) {
 485     replace_by(new_node);
 486     disconnect_inputs(NULL, c);
 487   }
 488   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
 489   // Find the one non-null required input.  RegionNode only
 490   Node *nonnull_req() const;
 491   // Add or remove precedence edges
 492   void add_prec( Node *n );
 493   void rm_prec( uint i );
 494   void set_prec( uint i, Node *n ) {
 495     assert( is_not_dead(n), "can not use dead node");
 496     assert( i >= _cnt, "not a precedence edge");
 497     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
 498     _in[i] = n;
 499     if (n != NULL) n->add_out((Node *)this);
 500   }
 501   // Set this node's index, used by cisc_version to replace current node
 502   void set_idx(uint new_idx) {
 503     const node_idx_t* ref = &_idx;
 504     *(node_idx_t*)ref = new_idx;
 505   }
 506   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 507   void swap_edges(uint i1, uint i2) {
 508     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 509     // Def-Use info is unchanged
 510     Node* n1 = in(i1);
 511     Node* n2 = in(i2);
 512     _in[i1] = n2;
 513     _in[i2] = n1;
 514     // If this node is in the hash table, make sure it doesn't need a rehash.
 515     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 516   }
 517 
 518   // Iterators over input Nodes for a Node X are written as:
 519   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 520   // NOTE: Required edges can contain embedded NULL pointers.
 521 
 522 //----------------- Other Node Properties
 523 
 524   // Generate class IDs for (some) ideal nodes so that it is possible to determine
 525   // the type of a node using a non-virtual method call (the method is_<Node>() below).
 526   //
 527   // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
 528   // the type of the node the ID represents; another subset of an ID's bits are reserved
 529   // for the superclasses of the node represented by the ID.
 530   //
 531   // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
 532   // returns false. A.is_A() returns true.
 533   //
 534   // If two classes, A and B, have the same superclass, a different bit of A's class id
 535   // is reserved for A's type than for B's type. That bit is specified by the third
 536   // parameter in the macro DEFINE_CLASS_ID.
 537   //
 538   // By convention, classes with deeper hierarchy are declared first. Moreover,
 539   // classes with the same hierarchy depth are sorted by usage frequency.
 540   //
 541   // The query method masks the bits to cut off bits of subclasses and then compares
 542   // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
 543   //
 544   //  Class_MachCall=30, ClassMask_MachCall=31
 545   // 12               8               4               0
 546   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 547   //                                  |   |   |   |
 548   //                                  |   |   |   Bit_Mach=2
 549   //                                  |   |   Bit_MachReturn=4
 550   //                                  |   Bit_MachSafePoint=8
 551   //                                  Bit_MachCall=16
 552   //
 553   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 554   // 12               8               4               0
 555   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 556   //                              |   |   |
 557   //                              |   |   Bit_Region=8
 558   //                              |   Bit_Loop=16
 559   //                              Bit_CountedLoop=32
 560 
 561   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 562   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 563   Class_##cl = Class_##supcl + Bit_##cl , \
 564   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 565 
 566   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 567   // so that it's values fits into 16 bits.
 568   enum NodeClasses {
 569     Bit_Node   = 0x0000,
 570     Class_Node = 0x0000,
 571     ClassMask_Node = 0xFFFF,
 572 
 573     DEFINE_CLASS_ID(Multi, Node, 0)
 574       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 575         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 576           DEFINE_CLASS_ID(CallJava,         Call, 0)
 577             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 578             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 579           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 580             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 581           DEFINE_CLASS_ID(Allocate,         Call, 2)
 582             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 583           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 584             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 585             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 586           DEFINE_CLASS_ID(ArrayCopy,        Call, 4)
 587       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 588         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 589           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 590           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 591         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 592           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
 593         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 594       DEFINE_CLASS_ID(Start,       Multi, 2)
 595       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 596         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 597         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 598 
 599     DEFINE_CLASS_ID(Mach,  Node, 1)
 600       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 601         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 602           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 603             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 604               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 605               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 606             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 607               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 608       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 609         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 610         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 611         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 612       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 613       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 614       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 615       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 616       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
 617 
 618     DEFINE_CLASS_ID(Type,  Node, 2)
 619       DEFINE_CLASS_ID(Phi,   Type, 0)
 620       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 621       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
 622       DEFINE_CLASS_ID(CMove, Type, 3)
 623       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 624       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
 625         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
 626         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
 627       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
 628         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
 629         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
 630 
 631     DEFINE_CLASS_ID(Proj,  Node, 3)
 632       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 633       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 634       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
 635       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
 636       DEFINE_CLASS_ID(Parm,      Proj, 4)
 637       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 638 
 639     DEFINE_CLASS_ID(Mem,   Node, 4)
 640       DEFINE_CLASS_ID(Load,  Mem, 0)
 641         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 642       DEFINE_CLASS_ID(Store, Mem, 1)
 643         DEFINE_CLASS_ID(StoreVector, Store, 0)
 644       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 645 
 646     DEFINE_CLASS_ID(Region, Node, 5)
 647       DEFINE_CLASS_ID(Loop, Region, 0)
 648         DEFINE_CLASS_ID(Root,        Loop, 0)
 649         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
 650 
 651     DEFINE_CLASS_ID(Sub,   Node, 6)
 652       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 653         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 654         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 655 
 656     DEFINE_CLASS_ID(MergeMem, Node, 7)
 657     DEFINE_CLASS_ID(Bool,     Node, 8)
 658     DEFINE_CLASS_ID(AddP,     Node, 9)
 659     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 660     DEFINE_CLASS_ID(Add,      Node, 11)
 661     DEFINE_CLASS_ID(Mul,      Node, 12)
 662     DEFINE_CLASS_ID(Vector,   Node, 13)
 663     DEFINE_CLASS_ID(ClearArray, Node, 14)
 664 
 665     _max_classes  = ClassMask_ClearArray
 666   };
 667   #undef DEFINE_CLASS_ID
 668 
 669   // Flags are sorted by usage frequency.
 670   enum NodeFlags {
 671     Flag_is_Copy                     = 0x01, // should be first bit to avoid shift
 672     Flag_rematerialize               = Flag_is_Copy << 1,
 673     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
 674     Flag_is_macro                    = Flag_needs_anti_dependence_check << 1,
 675     Flag_is_Con                      = Flag_is_macro << 1,
 676     Flag_is_cisc_alternate           = Flag_is_Con << 1,
 677     Flag_is_dead_loop_safe           = Flag_is_cisc_alternate << 1,
 678     Flag_may_be_short_branch         = Flag_is_dead_loop_safe << 1,
 679     Flag_avoid_back_to_back_before   = Flag_may_be_short_branch << 1,
 680     Flag_avoid_back_to_back_after    = Flag_avoid_back_to_back_before << 1,
 681     Flag_has_call                    = Flag_avoid_back_to_back_after << 1,
 682     Flag_is_reduction                = Flag_has_call << 1,
 683     Flag_is_scheduled                = Flag_is_reduction,
 684     Flag_is_expensive                = Flag_is_scheduled << 1,
 685     _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
 686   };
 687 
 688 private:
 689   jushort _class_id;
 690   jushort _flags;
 691 
 692 protected:
 693   // These methods should be called from constructors only.
 694   void init_class_id(jushort c) {
 695     assert(c <= _max_classes, "invalid node class");
 696     _class_id = c; // cast out const
 697   }
 698   void init_flags(jushort fl) {
 699     assert(fl <= _max_flags, "invalid node flag");
 700     _flags |= fl;
 701   }
 702   void clear_flag(jushort fl) {
 703     assert(fl <= _max_flags, "invalid node flag");
 704     _flags &= ~fl;
 705   }
 706 
 707 public:
 708   const jushort class_id() const { return _class_id; }
 709 
 710   const jushort flags() const { return _flags; }
 711 
 712   void add_flag(jushort fl) { init_flags(fl); }
 713 
 714   void remove_flag(jushort fl) { clear_flag(fl); }
 715 
 716   // Return a dense integer opcode number
 717   virtual int Opcode() const;
 718 
 719   // Virtual inherited Node size
 720   virtual uint size_of() const;
 721 
 722   // Other interesting Node properties
 723   #define DEFINE_CLASS_QUERY(type)                           \
 724   bool is_##type() const {                                   \
 725     return ((_class_id & ClassMask_##type) == Class_##type); \
 726   }                                                          \
 727   type##Node *as_##type() const {                            \
 728     assert(is_##type(), "invalid node class");               \
 729     return (type##Node*)this;                                \
 730   }                                                          \
 731   type##Node* isa_##type() const {                           \
 732     return (is_##type()) ? as_##type() : NULL;               \
 733   }
 734 
 735   DEFINE_CLASS_QUERY(AbstractLock)
 736   DEFINE_CLASS_QUERY(Add)
 737   DEFINE_CLASS_QUERY(AddP)
 738   DEFINE_CLASS_QUERY(Allocate)
 739   DEFINE_CLASS_QUERY(AllocateArray)
 740   DEFINE_CLASS_QUERY(ArrayCopy)
 741   DEFINE_CLASS_QUERY(Bool)
 742   DEFINE_CLASS_QUERY(BoxLock)
 743   DEFINE_CLASS_QUERY(Call)
 744   DEFINE_CLASS_QUERY(CallDynamicJava)
 745   DEFINE_CLASS_QUERY(CallJava)
 746   DEFINE_CLASS_QUERY(CallLeaf)
 747   DEFINE_CLASS_QUERY(CallRuntime)
 748   DEFINE_CLASS_QUERY(CallStaticJava)
 749   DEFINE_CLASS_QUERY(Catch)
 750   DEFINE_CLASS_QUERY(CatchProj)
 751   DEFINE_CLASS_QUERY(CheckCastPP)
 752   DEFINE_CLASS_QUERY(ConstraintCast)
 753   DEFINE_CLASS_QUERY(ClearArray)
 754   DEFINE_CLASS_QUERY(CMove)
 755   DEFINE_CLASS_QUERY(Cmp)
 756   DEFINE_CLASS_QUERY(CountedLoop)
 757   DEFINE_CLASS_QUERY(CountedLoopEnd)
 758   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
 759   DEFINE_CLASS_QUERY(DecodeN)
 760   DEFINE_CLASS_QUERY(DecodeNKlass)
 761   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
 762   DEFINE_CLASS_QUERY(EncodeP)
 763   DEFINE_CLASS_QUERY(EncodePKlass)
 764   DEFINE_CLASS_QUERY(FastLock)
 765   DEFINE_CLASS_QUERY(FastUnlock)
 766   DEFINE_CLASS_QUERY(If)
 767   DEFINE_CLASS_QUERY(IfFalse)
 768   DEFINE_CLASS_QUERY(IfTrue)
 769   DEFINE_CLASS_QUERY(Initialize)
 770   DEFINE_CLASS_QUERY(Jump)
 771   DEFINE_CLASS_QUERY(JumpProj)
 772   DEFINE_CLASS_QUERY(Load)
 773   DEFINE_CLASS_QUERY(LoadStore)
 774   DEFINE_CLASS_QUERY(Lock)
 775   DEFINE_CLASS_QUERY(Loop)
 776   DEFINE_CLASS_QUERY(Mach)
 777   DEFINE_CLASS_QUERY(MachBranch)
 778   DEFINE_CLASS_QUERY(MachCall)
 779   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 780   DEFINE_CLASS_QUERY(MachCallJava)
 781   DEFINE_CLASS_QUERY(MachCallLeaf)
 782   DEFINE_CLASS_QUERY(MachCallRuntime)
 783   DEFINE_CLASS_QUERY(MachCallStaticJava)
 784   DEFINE_CLASS_QUERY(MachConstantBase)
 785   DEFINE_CLASS_QUERY(MachConstant)
 786   DEFINE_CLASS_QUERY(MachGoto)
 787   DEFINE_CLASS_QUERY(MachIf)
 788   DEFINE_CLASS_QUERY(MachNullCheck)
 789   DEFINE_CLASS_QUERY(MachProj)
 790   DEFINE_CLASS_QUERY(MachReturn)
 791   DEFINE_CLASS_QUERY(MachSafePoint)
 792   DEFINE_CLASS_QUERY(MachSpillCopy)
 793   DEFINE_CLASS_QUERY(MachTemp)
 794   DEFINE_CLASS_QUERY(MachMerge)
 795   DEFINE_CLASS_QUERY(Mem)
 796   DEFINE_CLASS_QUERY(MemBar)
 797   DEFINE_CLASS_QUERY(MemBarStoreStore)
 798   DEFINE_CLASS_QUERY(MergeMem)
 799   DEFINE_CLASS_QUERY(Mul)
 800   DEFINE_CLASS_QUERY(Multi)
 801   DEFINE_CLASS_QUERY(MultiBranch)
 802   DEFINE_CLASS_QUERY(Parm)
 803   DEFINE_CLASS_QUERY(PCTable)
 804   DEFINE_CLASS_QUERY(Phi)
 805   DEFINE_CLASS_QUERY(Proj)
 806   DEFINE_CLASS_QUERY(Region)
 807   DEFINE_CLASS_QUERY(Root)
 808   DEFINE_CLASS_QUERY(SafePoint)
 809   DEFINE_CLASS_QUERY(SafePointScalarObject)
 810   DEFINE_CLASS_QUERY(Start)
 811   DEFINE_CLASS_QUERY(Store)
 812   DEFINE_CLASS_QUERY(Sub)
 813   DEFINE_CLASS_QUERY(Type)
 814   DEFINE_CLASS_QUERY(Vector)
 815   DEFINE_CLASS_QUERY(LoadVector)
 816   DEFINE_CLASS_QUERY(StoreVector)
 817   DEFINE_CLASS_QUERY(Unlock)
 818 
 819   #undef DEFINE_CLASS_QUERY
 820 
 821   // duplicate of is_MachSpillCopy()
 822   bool is_SpillCopy () const {
 823     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
 824   }
 825 
 826   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
 827   // The data node which is safe to leave in dead loop during IGVN optimization.
 828   bool is_dead_loop_safe() const {
 829     return is_Phi() || (is_Proj() && in(0) == NULL) ||
 830            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
 831             (!is_Proj() || !in(0)->is_Allocate()));
 832   }
 833 
 834   // is_Copy() returns copied edge index (0 or 1)
 835   uint is_Copy() const { return (_flags & Flag_is_Copy); }
 836 
 837   virtual bool is_CFG() const { return false; }
 838 
 839   // If this node is control-dependent on a test, can it be
 840   // rerouted to a dominating equivalent test?  This is usually
 841   // true of non-CFG nodes, but can be false for operations which
 842   // depend for their correct sequencing on more than one test.
 843   // (In that case, hoisting to a dominating test may silently
 844   // skip some other important test.)
 845   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
 846 
 847   // When building basic blocks, I need to have a notion of block beginning
 848   // Nodes, next block selector Nodes (block enders), and next block
 849   // projections.  These calls need to work on their machine equivalents.  The
 850   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
 851   bool is_block_start() const {
 852     if ( is_Region() )
 853       return this == (const Node*)in(0);
 854     else
 855       return is_Start();
 856   }
 857 
 858   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
 859   // Goto and Return.  This call also returns the block ending Node.
 860   virtual const Node *is_block_proj() const;
 861 
 862   // The node is a "macro" node which needs to be expanded before matching
 863   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
 864   // The node is expensive: the best control is set during loop opts
 865   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
 866 
 867   // An arithmetic node which accumulates a data in a loop.
 868   // It must have the loop's phi as input and provide a def to the phi.
 869   bool is_reduction() const { return (_flags & Flag_is_reduction) != 0; }
 870 
 871   // Used in lcm to mark nodes that have scheduled
 872   bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
 873 
 874 //----------------- Optimization
 875 
 876   // Get the worst-case Type output for this Node.
 877   virtual const class Type *bottom_type() const;
 878 
 879   // If we find a better type for a node, try to record it permanently.
 880   // Return true if this node actually changed.
 881   // Be sure to do the hash_delete game in the "rehash" variant.
 882   void raise_bottom_type(const Type* new_type);
 883 
 884   // Get the address type with which this node uses and/or defs memory,
 885   // or NULL if none.  The address type is conservatively wide.
 886   // Returns non-null for calls, membars, loads, stores, etc.
 887   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
 888   virtual const class TypePtr *adr_type() const { return NULL; }
 889 
 890   // Return an existing node which computes the same function as this node.
 891   // The optimistic combined algorithm requires this to return a Node which
 892   // is a small number of steps away (e.g., one of my inputs).
 893   virtual Node *Identity( PhaseTransform *phase );
 894 
 895   // Return the set of values this Node can take on at runtime.
 896   virtual const Type *Value( PhaseTransform *phase ) const;
 897 
 898   // Return a node which is more "ideal" than the current node.
 899   // The invariants on this call are subtle.  If in doubt, read the
 900   // treatise in node.cpp above the default implemention AND TEST WITH
 901   // +VerifyIterativeGVN!
 902   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 903 
 904   // Some nodes have specific Ideal subgraph transformations only if they are
 905   // unique users of specific nodes. Such nodes should be put on IGVN worklist
 906   // for the transformations to happen.
 907   bool has_special_unique_user() const;
 908 
 909   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
 910   Node* find_exact_control(Node* ctrl);
 911 
 912   // Check if 'this' node dominates or equal to 'sub'.
 913   bool dominates(Node* sub, Node_List &nlist);
 914 
 915 protected:
 916   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
 917 public:
 918 
 919   // See if there is valid pipeline info
 920   static  const Pipeline *pipeline_class();
 921   virtual const Pipeline *pipeline() const;
 922 
 923   // Compute the latency from the def to this instruction of the ith input node
 924   uint latency(uint i);
 925 
 926   // Hash & compare functions, for pessimistic value numbering
 927 
 928   // If the hash function returns the special sentinel value NO_HASH,
 929   // the node is guaranteed never to compare equal to any other node.
 930   // If we accidentally generate a hash with value NO_HASH the node
 931   // won't go into the table and we'll lose a little optimization.
 932   enum { NO_HASH = 0 };
 933   virtual uint hash() const;
 934   virtual uint cmp( const Node &n ) const;
 935 
 936   // Operation appears to be iteratively computed (such as an induction variable)
 937   // It is possible for this operation to return false for a loop-varying
 938   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
 939   bool is_iteratively_computed();
 940 
 941   // Determine if a node is Counted loop induction variable.
 942   // The method is defined in loopnode.cpp.
 943   const Node* is_loop_iv() const;
 944 
 945   // Return a node with opcode "opc" and same inputs as "this" if one can
 946   // be found; Otherwise return NULL;
 947   Node* find_similar(int opc);
 948 
 949   // Return the unique control out if only one. Null if none or more than one.
 950   Node* unique_ctrl_out() const;
 951 
 952   // Set control or add control as precedence edge
 953   void ensure_control_or_add_prec(Node* c);
 954 
 955 //----------------- Code Generation
 956 
 957   // Ideal register class for Matching.  Zero means unmatched instruction
 958   // (these are cloned instead of converted to machine nodes).
 959   virtual uint ideal_reg() const;
 960 
 961   static const uint NotAMachineReg;   // must be > max. machine register
 962 
 963   // Do we Match on this edge index or not?  Generally false for Control
 964   // and true for everything else.  Weird for calls & returns.
 965   virtual uint match_edge(uint idx) const;
 966 
 967   // Register class output is returned in
 968   virtual const RegMask &out_RegMask() const;
 969   // Register class input is expected in
 970   virtual const RegMask &in_RegMask(uint) const;
 971   // Should we clone rather than spill this instruction?
 972   bool rematerialize() const;
 973 
 974   // Return JVM State Object if this Node carries debug info, or NULL otherwise
 975   virtual JVMState* jvms() const;
 976 
 977   // Print as assembly
 978   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
 979   // Emit bytes starting at parameter 'ptr'
 980   // Bump 'ptr' by the number of output bytes
 981   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
 982   // Size of instruction in bytes
 983   virtual uint size(PhaseRegAlloc *ra_) const;
 984 
 985   // Convenience function to extract an integer constant from a node.
 986   // If it is not an integer constant (either Con, CastII, or Mach),
 987   // return value_if_unknown.
 988   jint find_int_con(jint value_if_unknown) const {
 989     const TypeInt* t = find_int_type();
 990     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 991   }
 992   // Return the constant, knowing it is an integer constant already
 993   jint get_int() const {
 994     const TypeInt* t = find_int_type();
 995     guarantee(t != NULL, "must be con");
 996     return t->get_con();
 997   }
 998   // Here's where the work is done.  Can produce non-constant int types too.
 999   const TypeInt* find_int_type() const;
1000 
1001   // Same thing for long (and intptr_t, via type.hpp):
1002   jlong get_long() const {
1003     const TypeLong* t = find_long_type();
1004     guarantee(t != NULL, "must be con");
1005     return t->get_con();
1006   }
1007   jlong find_long_con(jint value_if_unknown) const {
1008     const TypeLong* t = find_long_type();
1009     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1010   }
1011   const TypeLong* find_long_type() const;
1012 
1013   const TypePtr* get_ptr_type() const;
1014 
1015   // These guys are called by code generated by ADLC:
1016   intptr_t get_ptr() const;
1017   intptr_t get_narrowcon() const;
1018   jdouble getd() const;
1019   jfloat getf() const;
1020 
1021   // Nodes which are pinned into basic blocks
1022   virtual bool pinned() const { return false; }
1023 
1024   // Nodes which use memory without consuming it, hence need antidependences
1025   // More specifically, needs_anti_dependence_check returns true iff the node
1026   // (a) does a load, and (b) does not perform a store (except perhaps to a
1027   // stack slot or some other unaliased location).
1028   bool needs_anti_dependence_check() const;
1029 
1030   // Return which operand this instruction may cisc-spill. In other words,
1031   // return operand position that can convert from reg to memory access
1032   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1033   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1034 
1035 //----------------- Graph walking
1036 public:
1037   // Walk and apply member functions recursively.
1038   // Supplied (this) pointer is root.
1039   void walk(NFunc pre, NFunc post, void *env);
1040   static void nop(Node &, void*); // Dummy empty function
1041   static void packregion( Node &n, void* );
1042 private:
1043   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
1044 
1045 //----------------- Printing, etc
1046 public:
1047 #ifndef PRODUCT
1048   Node* find(int idx) const;         // Search the graph for the given idx.
1049   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
1050   void dump() const { dump("\n"); }  // Print this node.
1051   void dump(const char* suffix, bool mark = false, outputStream *st = tty) const; // Print this node.
1052   void dump(int depth) const;        // Print this node, recursively to depth d
1053   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1054   void dump_comp() const;            // Print this node in compact representation.
1055   // Print this node in compact representation.
1056   void dump_comp(const char* suffix, outputStream *st = tty) const;
1057   virtual void dump_req(outputStream *st = tty) const;    // Print required-edge info
1058   virtual void dump_prec(outputStream *st = tty) const;   // Print precedence-edge info
1059   virtual void dump_out(outputStream *st = tty) const;    // Print the output edge info
1060   virtual void dump_spec(outputStream *st) const {};      // Print per-node info
1061   // Print compact per-node info
1062   virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1063   void dump_related() const;             // Print related nodes (depends on node at hand).
1064   // Print related nodes up to given depths for input and output nodes.
1065   void dump_related(uint d_in, uint d_out) const;
1066   void dump_related_compact() const;     // Print related nodes in compact representation.
1067   // Collect related nodes.
1068   virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
1069   // Collect nodes starting from this node, explicitly including/excluding control and data links.
1070   void collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const;
1071 
1072   // Node collectors, to be used in implementations of Node::rel().
1073   // Collect the entire data input graph. Include control inputs if requested.
1074   void collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const;
1075   // Collect the entire control input graph. Include data inputs if requested.
1076   void collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const;
1077   // Collect the entire output graph until hitting and including control nodes.
1078   void collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const;
1079 
1080   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1081   void verify() const;               // Check Def-Use info for my subgraph
1082   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1083 
1084   // This call defines a class-unique string used to identify class instances
1085   virtual const char *Name() const;
1086 
1087   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1088   // RegMask Print Functions
1089   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1090   void dump_out_regmask() { out_RegMask().dump(); }
1091   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
1092   void fast_dump() const {
1093     tty->print("%4d: %-17s", _idx, Name());
1094     for (uint i = 0; i < len(); i++)
1095       if (in(i))
1096         tty->print(" %4d", in(i)->_idx);
1097       else
1098         tty->print(" NULL");
1099     tty->print("\n");
1100   }
1101 #endif
1102 #ifdef ASSERT
1103   void verify_construction();
1104   bool verify_jvms(const JVMState* jvms) const;
1105   int  _debug_idx;                     // Unique value assigned to every node.
1106   int   debug_idx() const              { return _debug_idx; }
1107   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1108 
1109   Node* _debug_orig;                   // Original version of this, if any.
1110   Node*  debug_orig() const            { return _debug_orig; }
1111   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1112 
1113   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1114   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1115   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1116 
1117   static void init_NodeProperty();
1118 
1119   #if OPTO_DU_ITERATOR_ASSERT
1120   const Node* _last_del;               // The last deleted node.
1121   uint        _del_tick;               // Bumped when a deletion happens..
1122   #endif
1123 #endif
1124 };
1125 
1126 
1127 #ifndef PRODUCT
1128 
1129 // Used in debugging code to avoid walking across dead or uninitialized edges.
1130 inline bool NotANode(const Node* n) {
1131   if (n == NULL)                   return true;
1132   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1133   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1134   return false;
1135 }
1136 
1137 #endif
1138 
1139 
1140 //-----------------------------------------------------------------------------
1141 // Iterators over DU info, and associated Node functions.
1142 
1143 #if OPTO_DU_ITERATOR_ASSERT
1144 
1145 // Common code for assertion checking on DU iterators.
1146 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1147 #ifdef ASSERT
1148  protected:
1149   bool         _vdui;               // cached value of VerifyDUIterators
1150   const Node*  _node;               // the node containing the _out array
1151   uint         _outcnt;             // cached node->_outcnt
1152   uint         _del_tick;           // cached node->_del_tick
1153   Node*        _last;               // last value produced by the iterator
1154 
1155   void sample(const Node* node);    // used by c'tor to set up for verifies
1156   void verify(const Node* node, bool at_end_ok = false);
1157   void verify_resync();
1158   void reset(const DUIterator_Common& that);
1159 
1160 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1161   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1162 #else
1163   #define I_VDUI_ONLY(i,x) { }
1164 #endif //ASSERT
1165 };
1166 
1167 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1168 
1169 // Default DU iterator.  Allows appends onto the out array.
1170 // Allows deletion from the out array only at the current point.
1171 // Usage:
1172 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1173 //    Node* y = x->out(i);
1174 //    ...
1175 //  }
1176 // Compiles in product mode to a unsigned integer index, which indexes
1177 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1178 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1179 // before continuing the loop.  You must delete only the last-produced
1180 // edge.  You must delete only a single copy of the last-produced edge,
1181 // or else you must delete all copies at once (the first time the edge
1182 // is produced by the iterator).
1183 class DUIterator : public DUIterator_Common {
1184   friend class Node;
1185 
1186   // This is the index which provides the product-mode behavior.
1187   // Whatever the product-mode version of the system does to the
1188   // DUI index is done to this index.  All other fields in
1189   // this class are used only for assertion checking.
1190   uint         _idx;
1191 
1192   #ifdef ASSERT
1193   uint         _refresh_tick;    // Records the refresh activity.
1194 
1195   void sample(const Node* node); // Initialize _refresh_tick etc.
1196   void verify(const Node* node, bool at_end_ok = false);
1197   void verify_increment();       // Verify an increment operation.
1198   void verify_resync();          // Verify that we can back up over a deletion.
1199   void verify_finish();          // Verify that the loop terminated properly.
1200   void refresh();                // Resample verification info.
1201   void reset(const DUIterator& that);  // Resample after assignment.
1202   #endif
1203 
1204   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1205     { _idx = 0;                         debug_only(sample(node)); }
1206 
1207  public:
1208   // initialize to garbage; clear _vdui to disable asserts
1209   DUIterator()
1210     { /*initialize to garbage*/         debug_only(_vdui = false); }
1211 
1212   void operator++(int dummy_to_specify_postfix_op)
1213     { _idx++;                           VDUI_ONLY(verify_increment()); }
1214 
1215   void operator--()
1216     { VDUI_ONLY(verify_resync());       --_idx; }
1217 
1218   ~DUIterator()
1219     { VDUI_ONLY(verify_finish()); }
1220 
1221   void operator=(const DUIterator& that)
1222     { _idx = that._idx;                 debug_only(reset(that)); }
1223 };
1224 
1225 DUIterator Node::outs() const
1226   { return DUIterator(this, 0); }
1227 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1228   { I_VDUI_ONLY(i, i.refresh());        return i; }
1229 bool Node::has_out(DUIterator& i) const
1230   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1231 Node*    Node::out(DUIterator& i) const
1232   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1233 
1234 
1235 // Faster DU iterator.  Disallows insertions into the out array.
1236 // Allows deletion from the out array only at the current point.
1237 // Usage:
1238 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1239 //    Node* y = x->fast_out(i);
1240 //    ...
1241 //  }
1242 // Compiles in product mode to raw Node** pointer arithmetic, with
1243 // no reloading of pointers from the original node x.  If you delete,
1244 // you must perform "--i; --imax" just before continuing the loop.
1245 // If you delete multiple copies of the same edge, you must decrement
1246 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1247 class DUIterator_Fast : public DUIterator_Common {
1248   friend class Node;
1249   friend class DUIterator_Last;
1250 
1251   // This is the pointer which provides the product-mode behavior.
1252   // Whatever the product-mode version of the system does to the
1253   // DUI pointer is done to this pointer.  All other fields in
1254   // this class are used only for assertion checking.
1255   Node**       _outp;
1256 
1257   #ifdef ASSERT
1258   void verify(const Node* node, bool at_end_ok = false);
1259   void verify_limit();
1260   void verify_resync();
1261   void verify_relimit(uint n);
1262   void reset(const DUIterator_Fast& that);
1263   #endif
1264 
1265   // Note:  offset must be signed, since -1 is sometimes passed
1266   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1267     { _outp = node->_out + offset;      debug_only(sample(node)); }
1268 
1269  public:
1270   // initialize to garbage; clear _vdui to disable asserts
1271   DUIterator_Fast()
1272     { /*initialize to garbage*/         debug_only(_vdui = false); }
1273 
1274   void operator++(int dummy_to_specify_postfix_op)
1275     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1276 
1277   void operator--()
1278     { VDUI_ONLY(verify_resync());       --_outp; }
1279 
1280   void operator-=(uint n)   // applied to the limit only
1281     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1282 
1283   bool operator<(DUIterator_Fast& limit) {
1284     I_VDUI_ONLY(*this, this->verify(_node, true));
1285     I_VDUI_ONLY(limit, limit.verify_limit());
1286     return _outp < limit._outp;
1287   }
1288 
1289   void operator=(const DUIterator_Fast& that)
1290     { _outp = that._outp;               debug_only(reset(that)); }
1291 };
1292 
1293 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1294   // Assign a limit pointer to the reference argument:
1295   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1296   // Return the base pointer:
1297   return DUIterator_Fast(this, 0);
1298 }
1299 Node* Node::fast_out(DUIterator_Fast& i) const {
1300   I_VDUI_ONLY(i, i.verify(this));
1301   return debug_only(i._last=) *i._outp;
1302 }
1303 
1304 
1305 // Faster DU iterator.  Requires each successive edge to be removed.
1306 // Does not allow insertion of any edges.
1307 // Usage:
1308 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1309 //    Node* y = x->last_out(i);
1310 //    ...
1311 //  }
1312 // Compiles in product mode to raw Node** pointer arithmetic, with
1313 // no reloading of pointers from the original node x.
1314 class DUIterator_Last : private DUIterator_Fast {
1315   friend class Node;
1316 
1317   #ifdef ASSERT
1318   void verify(const Node* node, bool at_end_ok = false);
1319   void verify_limit();
1320   void verify_step(uint num_edges);
1321   #endif
1322 
1323   // Note:  offset must be signed, since -1 is sometimes passed
1324   DUIterator_Last(const Node* node, ptrdiff_t offset)
1325     : DUIterator_Fast(node, offset) { }
1326 
1327   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1328   void operator<(int)                              {} // do not use
1329 
1330  public:
1331   DUIterator_Last() { }
1332   // initialize to garbage
1333 
1334   void operator--()
1335     { _outp--;              VDUI_ONLY(verify_step(1));  }
1336 
1337   void operator-=(uint n)
1338     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1339 
1340   bool operator>=(DUIterator_Last& limit) {
1341     I_VDUI_ONLY(*this, this->verify(_node, true));
1342     I_VDUI_ONLY(limit, limit.verify_limit());
1343     return _outp >= limit._outp;
1344   }
1345 
1346   void operator=(const DUIterator_Last& that)
1347     { DUIterator_Fast::operator=(that); }
1348 };
1349 
1350 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1351   // Assign a limit pointer to the reference argument:
1352   imin = DUIterator_Last(this, 0);
1353   // Return the initial pointer:
1354   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1355 }
1356 Node* Node::last_out(DUIterator_Last& i) const {
1357   I_VDUI_ONLY(i, i.verify(this));
1358   return debug_only(i._last=) *i._outp;
1359 }
1360 
1361 #endif //OPTO_DU_ITERATOR_ASSERT
1362 
1363 #undef I_VDUI_ONLY
1364 #undef VDUI_ONLY
1365 
1366 // An Iterator that truly follows the iterator pattern.  Doesn't
1367 // support deletion but could be made to.
1368 //
1369 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1370 //     Node* m = i.get();
1371 //
1372 class SimpleDUIterator : public StackObj {
1373  private:
1374   Node* node;
1375   DUIterator_Fast i;
1376   DUIterator_Fast imax;
1377  public:
1378   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1379   bool has_next() { return i < imax; }
1380   void next() { i++; }
1381   Node* get() { return node->fast_out(i); }
1382 };
1383 
1384 
1385 //-----------------------------------------------------------------------------
1386 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1387 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1388 // Note that the constructor just zeros things, and since I use Arena
1389 // allocation I do not need a destructor to reclaim storage.
1390 class Node_Array : public ResourceObj {
1391   friend class VMStructs;
1392 protected:
1393   Arena *_a;                    // Arena to allocate in
1394   uint   _max;
1395   Node **_nodes;
1396   void   grow( uint i );        // Grow array node to fit
1397 public:
1398   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1399     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1400     for( int i = 0; i < OptoNodeListSize; i++ ) {
1401       _nodes[i] = NULL;
1402     }
1403   }
1404 
1405   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1406   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1407   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1408   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1409   Node **adr() { return _nodes; }
1410   // Extend the mapping: index i maps to Node *n.
1411   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1412   void insert( uint i, Node *n );
1413   void remove( uint i );        // Remove, preserving order
1414   void sort( C_sort_func_t func);
1415   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1416   void clear();                 // Set all entries to NULL, keep storage
1417   uint Size() const { return _max; }
1418   void dump() const;
1419 };
1420 
1421 class Node_List : public Node_Array {
1422   friend class VMStructs;
1423   uint _cnt;
1424 public:
1425   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1426   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1427   bool contains(const Node* n) const {
1428     for (uint e = 0; e < size(); e++) {
1429       if (at(e) == n) return true;
1430     }
1431     return false;
1432   }
1433   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1434   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1435   void push( Node *b ) { map(_cnt++,b); }
1436   void yank( Node *n );         // Find and remove
1437   Node *pop() { return _nodes[--_cnt]; }
1438   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1439   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1440   uint size() const { return _cnt; }
1441   void dump() const;
1442 };
1443 
1444 //------------------------------Unique_Node_List-------------------------------
1445 class Unique_Node_List : public Node_List {
1446   friend class VMStructs;
1447   VectorSet _in_worklist;
1448   uint _clock_index;            // Index in list where to pop from next
1449 public:
1450   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1451   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1452 
1453   void remove( Node *n );
1454   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1455   VectorSet &member_set(){ return _in_worklist; }
1456 
1457   void push( Node *b ) {
1458     if( !_in_worklist.test_set(b->_idx) )
1459       Node_List::push(b);
1460   }
1461   Node *pop() {
1462     if( _clock_index >= size() ) _clock_index = 0;
1463     Node *b = at(_clock_index);
1464     map( _clock_index, Node_List::pop());
1465     if (size() != 0) _clock_index++; // Always start from 0
1466     _in_worklist >>= b->_idx;
1467     return b;
1468   }
1469   Node *remove( uint i ) {
1470     Node *b = Node_List::at(i);
1471     _in_worklist >>= b->_idx;
1472     map(i,Node_List::pop());
1473     return b;
1474   }
1475   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1476   void  clear() {
1477     _in_worklist.Clear();        // Discards storage but grows automatically
1478     Node_List::clear();
1479     _clock_index = 0;
1480   }
1481 
1482   // Used after parsing to remove useless nodes before Iterative GVN
1483   void remove_useless_nodes(VectorSet &useful);
1484 
1485 #ifndef PRODUCT
1486   void print_set() const { _in_worklist.print(); }
1487 #endif
1488 };
1489 
1490 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1491 inline void Compile::record_for_igvn(Node* n) {
1492   _for_igvn->push(n);
1493 }
1494 
1495 //------------------------------Node_Stack-------------------------------------
1496 class Node_Stack {
1497   friend class VMStructs;
1498 protected:
1499   struct INode {
1500     Node *node; // Processed node
1501     uint  indx; // Index of next node's child
1502   };
1503   INode *_inode_top; // tos, stack grows up
1504   INode *_inode_max; // End of _inodes == _inodes + _max
1505   INode *_inodes;    // Array storage for the stack
1506   Arena *_a;         // Arena to allocate in
1507   void grow();
1508 public:
1509   Node_Stack(int size) {
1510     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1511     _a = Thread::current()->resource_area();
1512     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1513     _inode_max = _inodes + max;
1514     _inode_top = _inodes - 1; // stack is empty
1515   }
1516 
1517   Node_Stack(Arena *a, int size) : _a(a) {
1518     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1519     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1520     _inode_max = _inodes + max;
1521     _inode_top = _inodes - 1; // stack is empty
1522   }
1523 
1524   void pop() {
1525     assert(_inode_top >= _inodes, "node stack underflow");
1526     --_inode_top;
1527   }
1528   void push(Node *n, uint i) {
1529     ++_inode_top;
1530     if (_inode_top >= _inode_max) grow();
1531     INode *top = _inode_top; // optimization
1532     top->node = n;
1533     top->indx = i;
1534   }
1535   Node *node() const {
1536     return _inode_top->node;
1537   }
1538   Node* node_at(uint i) const {
1539     assert(_inodes + i <= _inode_top, "in range");
1540     return _inodes[i].node;
1541   }
1542   uint index() const {
1543     return _inode_top->indx;
1544   }
1545   uint index_at(uint i) const {
1546     assert(_inodes + i <= _inode_top, "in range");
1547     return _inodes[i].indx;
1548   }
1549   void set_node(Node *n) {
1550     _inode_top->node = n;
1551   }
1552   void set_index(uint i) {
1553     _inode_top->indx = i;
1554   }
1555   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1556   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1557   bool is_nonempty() const { return (_inode_top >= _inodes); }
1558   bool is_empty() const { return (_inode_top < _inodes); }
1559   void clear() { _inode_top = _inodes - 1; } // retain storage
1560 
1561   // Node_Stack is used to map nodes.
1562   Node* find(uint idx) const;
1563 };
1564 
1565 
1566 //-----------------------------Node_Notes--------------------------------------
1567 // Debugging or profiling annotations loosely and sparsely associated
1568 // with some nodes.  See Compile::node_notes_at for the accessor.
1569 class Node_Notes VALUE_OBJ_CLASS_SPEC {
1570   friend class VMStructs;
1571   JVMState* _jvms;
1572 
1573 public:
1574   Node_Notes(JVMState* jvms = NULL) {
1575     _jvms = jvms;
1576   }
1577 
1578   JVMState* jvms()            { return _jvms; }
1579   void  set_jvms(JVMState* x) {        _jvms = x; }
1580 
1581   // True if there is nothing here.
1582   bool is_clear() {
1583     return (_jvms == NULL);
1584   }
1585 
1586   // Make there be nothing here.
1587   void clear() {
1588     _jvms = NULL;
1589   }
1590 
1591   // Make a new, clean node notes.
1592   static Node_Notes* make(Compile* C) {
1593     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1594     nn->clear();
1595     return nn;
1596   }
1597 
1598   Node_Notes* clone(Compile* C) {
1599     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1600     (*nn) = (*this);
1601     return nn;
1602   }
1603 
1604   // Absorb any information from source.
1605   bool update_from(Node_Notes* source) {
1606     bool changed = false;
1607     if (source != NULL) {
1608       if (source->jvms() != NULL) {
1609         set_jvms(source->jvms());
1610         changed = true;
1611       }
1612     }
1613     return changed;
1614   }
1615 };
1616 
1617 // Inlined accessors for Compile::node_nodes that require the preceding class:
1618 inline Node_Notes*
1619 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1620                            int idx, bool can_grow) {
1621   assert(idx >= 0, "oob");
1622   int block_idx = (idx >> _log2_node_notes_block_size);
1623   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1624   if (grow_by >= 0) {
1625     if (!can_grow)  return NULL;
1626     grow_node_notes(arr, grow_by + 1);
1627   }
1628   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1629   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1630 }
1631 
1632 inline bool
1633 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1634   if (value == NULL || value->is_clear())
1635     return false;  // nothing to write => write nothing
1636   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1637   assert(loc != NULL, "");
1638   return loc->update_from(value);
1639 }
1640 
1641 
1642 //------------------------------TypeNode---------------------------------------
1643 // Node with a Type constant.
1644 class TypeNode : public Node {
1645 protected:
1646   virtual uint hash() const;    // Check the type
1647   virtual uint cmp( const Node &n ) const;
1648   virtual uint size_of() const; // Size is bigger
1649   const Type* const _type;
1650 public:
1651   void set_type(const Type* t) {
1652     assert(t != NULL, "sanity");
1653     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1654     *(const Type**)&_type = t;   // cast away const-ness
1655     // If this node is in the hash table, make sure it doesn't need a rehash.
1656     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1657   }
1658   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1659   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1660     init_class_id(Class_Type);
1661   }
1662   virtual const Type *Value( PhaseTransform *phase ) const;
1663   virtual const Type *bottom_type() const;
1664   virtual       uint  ideal_reg() const;
1665 #ifndef PRODUCT
1666   virtual void dump_spec(outputStream *st) const;
1667   virtual void dump_compact_spec(outputStream *st) const;
1668 #endif
1669 };
1670 
1671 #endif // SHARE_VM_OPTO_NODE_HPP