1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/block.hpp"
  28 #include "opto/callnode.hpp"
  29 #include "opto/cfgnode.hpp"
  30 #include "opto/idealGraphPrinter.hpp"
  31 #include "opto/loopnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/phaseX.hpp"
  35 #include "opto/regalloc.hpp"
  36 #include "opto/rootnode.hpp"
  37 
  38 //=============================================================================
  39 #define NODE_HASH_MINIMUM_SIZE    255
  40 //------------------------------NodeHash---------------------------------------
  41 NodeHash::NodeHash(uint est_max_size) :
  42   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  43   _a(Thread::current()->resource_area()),
  44   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ), // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
  45   _inserts(0), _insert_limit( insert_limit() )
  46 #ifndef PRODUCT
  47   ,_look_probes(0), _lookup_hits(0), _lookup_misses(0),
  48   _delete_probes(0), _delete_hits(0), _delete_misses(0),
  49   _total_insert_probes(0), _total_inserts(0),
  50   _insert_probes(0), _grows(0)
  51 #endif
  52 {
  53   // _sentinel must be in the current node space
  54   _sentinel = new ProjNode(NULL, TypeFunc::Control);
  55   memset(_table,0,sizeof(Node*)*_max);
  56 }
  57 
  58 //------------------------------NodeHash---------------------------------------
  59 NodeHash::NodeHash(Arena *arena, uint est_max_size) :
  60   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  61   _a(arena),
  62   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ),
  63   _inserts(0), _insert_limit( insert_limit() )
  64 #ifndef PRODUCT
  65   ,_look_probes(0), _lookup_hits(0), _lookup_misses(0),
  66   _delete_probes(0), _delete_hits(0), _delete_misses(0),
  67   _total_insert_probes(0), _total_inserts(0),
  68   _insert_probes(0), _grows(0)
  69 #endif
  70 {
  71   // _sentinel must be in the current node space
  72   _sentinel = new ProjNode(NULL, TypeFunc::Control);
  73   memset(_table,0,sizeof(Node*)*_max);
  74 }
  75 
  76 //------------------------------NodeHash---------------------------------------
  77 NodeHash::NodeHash(NodeHash *nh) {
  78   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
  79   // just copy in all the fields
  80   *this = *nh;
  81   // nh->_sentinel must be in the current node space
  82 }
  83 
  84 void NodeHash::replace_with(NodeHash *nh) {
  85   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
  86   // just copy in all the fields
  87   *this = *nh;
  88   // nh->_sentinel must be in the current node space
  89 }
  90 
  91 //------------------------------hash_find--------------------------------------
  92 // Find in hash table
  93 Node *NodeHash::hash_find( const Node *n ) {
  94   // ((Node*)n)->set_hash( n->hash() );
  95   uint hash = n->hash();
  96   if (hash == Node::NO_HASH) {
  97     NOT_PRODUCT( _lookup_misses++ );
  98     return NULL;
  99   }
 100   uint key = hash & (_max-1);
 101   uint stride = key | 0x01;
 102   NOT_PRODUCT( _look_probes++ );
 103   Node *k = _table[key];        // Get hashed value
 104   if( !k ) {                    // ?Miss?
 105     NOT_PRODUCT( _lookup_misses++ );
 106     return NULL;                // Miss!
 107   }
 108 
 109   int op = n->Opcode();
 110   uint req = n->req();
 111   while( 1 ) {                  // While probing hash table
 112     if( k->req() == req &&      // Same count of inputs
 113         k->Opcode() == op ) {   // Same Opcode
 114       for( uint i=0; i<req; i++ )
 115         if( n->in(i)!=k->in(i)) // Different inputs?
 116           goto collision;       // "goto" is a speed hack...
 117       if( n->cmp(*k) ) {        // Check for any special bits
 118         NOT_PRODUCT( _lookup_hits++ );
 119         return k;               // Hit!
 120       }
 121     }
 122   collision:
 123     NOT_PRODUCT( _look_probes++ );
 124     key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
 125     k = _table[key];            // Get hashed value
 126     if( !k ) {                  // ?Miss?
 127       NOT_PRODUCT( _lookup_misses++ );
 128       return NULL;              // Miss!
 129     }
 130   }
 131   ShouldNotReachHere();
 132   return NULL;
 133 }
 134 
 135 //------------------------------hash_find_insert-------------------------------
 136 // Find in hash table, insert if not already present
 137 // Used to preserve unique entries in hash table
 138 Node *NodeHash::hash_find_insert( Node *n ) {
 139   // n->set_hash( );
 140   uint hash = n->hash();
 141   if (hash == Node::NO_HASH) {
 142     NOT_PRODUCT( _lookup_misses++ );
 143     return NULL;
 144   }
 145   uint key = hash & (_max-1);
 146   uint stride = key | 0x01;     // stride must be relatively prime to table siz
 147   uint first_sentinel = 0;      // replace a sentinel if seen.
 148   NOT_PRODUCT( _look_probes++ );
 149   Node *k = _table[key];        // Get hashed value
 150   if( !k ) {                    // ?Miss?
 151     NOT_PRODUCT( _lookup_misses++ );
 152     _table[key] = n;            // Insert into table!
 153     debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 154     check_grow();               // Grow table if insert hit limit
 155     return NULL;                // Miss!
 156   }
 157   else if( k == _sentinel ) {
 158     first_sentinel = key;      // Can insert here
 159   }
 160 
 161   int op = n->Opcode();
 162   uint req = n->req();
 163   while( 1 ) {                  // While probing hash table
 164     if( k->req() == req &&      // Same count of inputs
 165         k->Opcode() == op ) {   // Same Opcode
 166       for( uint i=0; i<req; i++ )
 167         if( n->in(i)!=k->in(i)) // Different inputs?
 168           goto collision;       // "goto" is a speed hack...
 169       if( n->cmp(*k) ) {        // Check for any special bits
 170         NOT_PRODUCT( _lookup_hits++ );
 171         return k;               // Hit!
 172       }
 173     }
 174   collision:
 175     NOT_PRODUCT( _look_probes++ );
 176     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 177     k = _table[key];            // Get hashed value
 178     if( !k ) {                  // ?Miss?
 179       NOT_PRODUCT( _lookup_misses++ );
 180       key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
 181       _table[key] = n;          // Insert into table!
 182       debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 183       check_grow();             // Grow table if insert hit limit
 184       return NULL;              // Miss!
 185     }
 186     else if( first_sentinel == 0 && k == _sentinel ) {
 187       first_sentinel = key;    // Can insert here
 188     }
 189 
 190   }
 191   ShouldNotReachHere();
 192   return NULL;
 193 }
 194 
 195 //------------------------------hash_insert------------------------------------
 196 // Insert into hash table
 197 void NodeHash::hash_insert( Node *n ) {
 198   // // "conflict" comments -- print nodes that conflict
 199   // bool conflict = false;
 200   // n->set_hash();
 201   uint hash = n->hash();
 202   if (hash == Node::NO_HASH) {
 203     return;
 204   }
 205   check_grow();
 206   uint key = hash & (_max-1);
 207   uint stride = key | 0x01;
 208 
 209   while( 1 ) {                  // While probing hash table
 210     NOT_PRODUCT( _insert_probes++ );
 211     Node *k = _table[key];      // Get hashed value
 212     if( !k || (k == _sentinel) ) break;       // Found a slot
 213     assert( k != n, "already inserted" );
 214     // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
 215     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 216   }
 217   _table[key] = n;              // Insert into table!
 218   debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 219   // if( conflict ) { n->dump(); }
 220 }
 221 
 222 //------------------------------hash_delete------------------------------------
 223 // Replace in hash table with sentinel
 224 bool NodeHash::hash_delete( const Node *n ) {
 225   Node *k;
 226   uint hash = n->hash();
 227   if (hash == Node::NO_HASH) {
 228     NOT_PRODUCT( _delete_misses++ );
 229     return false;
 230   }
 231   uint key = hash & (_max-1);
 232   uint stride = key | 0x01;
 233   debug_only( uint counter = 0; );
 234   for( ; /* (k != NULL) && (k != _sentinel) */; ) {
 235     debug_only( counter++ );
 236     NOT_PRODUCT( _delete_probes++ );
 237     k = _table[key];            // Get hashed value
 238     if( !k ) {                  // Miss?
 239       NOT_PRODUCT( _delete_misses++ );
 240 #ifdef ASSERT
 241       if( VerifyOpto ) {
 242         for( uint i=0; i < _max; i++ )
 243           assert( _table[i] != n, "changed edges with rehashing" );
 244       }
 245 #endif
 246       return false;             // Miss! Not in chain
 247     }
 248     else if( n == k ) {
 249       NOT_PRODUCT( _delete_hits++ );
 250       _table[key] = _sentinel;  // Hit! Label as deleted entry
 251       debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
 252       return true;
 253     }
 254     else {
 255       // collision: move through table with prime offset
 256       key = (key + stride/*7*/) & (_max-1);
 257       assert( counter <= _insert_limit, "Cycle in hash-table");
 258     }
 259   }
 260   ShouldNotReachHere();
 261   return false;
 262 }
 263 
 264 //------------------------------round_up---------------------------------------
 265 // Round up to nearest power of 2
 266 uint NodeHash::round_up( uint x ) {
 267   x += (x>>2);                  // Add 25% slop
 268   if( x <16 ) return 16;        // Small stuff
 269   uint i=16;
 270   while( i < x ) i <<= 1;       // Double to fit
 271   return i;                     // Return hash table size
 272 }
 273 
 274 //------------------------------grow-------------------------------------------
 275 // Grow _table to next power of 2 and insert old entries
 276 void  NodeHash::grow() {
 277   // Record old state
 278   uint   old_max   = _max;
 279   Node **old_table = _table;
 280   // Construct new table with twice the space
 281 #ifndef PRODUCT
 282   _grows++;
 283   _total_inserts       += _inserts;
 284   _total_insert_probes += _insert_probes;
 285   _insert_probes   = 0;
 286 #endif
 287   _inserts         = 0;
 288   _max     = _max << 1;
 289   _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
 290   memset(_table,0,sizeof(Node*)*_max);
 291   _insert_limit = insert_limit();
 292   // Insert old entries into the new table
 293   for( uint i = 0; i < old_max; i++ ) {
 294     Node *m = *old_table++;
 295     if( !m || m == _sentinel ) continue;
 296     debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
 297     hash_insert(m);
 298   }
 299 }
 300 
 301 //------------------------------clear------------------------------------------
 302 // Clear all entries in _table to NULL but keep storage
 303 void  NodeHash::clear() {
 304 #ifdef ASSERT
 305   // Unlock all nodes upon removal from table.
 306   for (uint i = 0; i < _max; i++) {
 307     Node* n = _table[i];
 308     if (!n || n == _sentinel)  continue;
 309     n->exit_hash_lock();
 310   }
 311 #endif
 312 
 313   memset( _table, 0, _max * sizeof(Node*) );
 314 }
 315 
 316 //-----------------------remove_useless_nodes----------------------------------
 317 // Remove useless nodes from value table,
 318 // implementation does not depend on hash function
 319 void NodeHash::remove_useless_nodes(VectorSet &useful) {
 320 
 321   // Dead nodes in the hash table inherited from GVN should not replace
 322   // existing nodes, remove dead nodes.
 323   uint max = size();
 324   Node *sentinel_node = sentinel();
 325   for( uint i = 0; i < max; ++i ) {
 326     Node *n = at(i);
 327     if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
 328       debug_only(n->exit_hash_lock()); // Unlock the node when removed
 329       _table[i] = sentinel_node;       // Replace with placeholder
 330     }
 331   }
 332 }
 333 
 334 
 335 void NodeHash::check_no_speculative_types() {
 336 #ifdef ASSERT
 337   uint max = size();
 338   Node *sentinel_node = sentinel();
 339   for (uint i = 0; i < max; ++i) {
 340     Node *n = at(i);
 341     if(n != NULL && n != sentinel_node && n->is_Type() && n->outcnt() > 0) {
 342       TypeNode* tn = n->as_Type();
 343       const Type* t = tn->type();
 344       const Type* t_no_spec = t->remove_speculative();
 345       assert(t == t_no_spec, "dead node in hash table or missed node during speculative cleanup");
 346     }
 347   }
 348 #endif
 349 }
 350 
 351 #ifndef PRODUCT
 352 //------------------------------dump-------------------------------------------
 353 // Dump statistics for the hash table
 354 void NodeHash::dump() {
 355   _total_inserts       += _inserts;
 356   _total_insert_probes += _insert_probes;
 357   if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) {
 358     if (WizardMode) {
 359       for (uint i=0; i<_max; i++) {
 360         if (_table[i])
 361           tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
 362       }
 363     }
 364     tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
 365     tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
 366     tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
 367     tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
 368     // sentinels increase lookup cost, but not insert cost
 369     assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
 370     assert( _inserts+(_inserts>>3) < _max, "table too full" );
 371     assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
 372   }
 373 }
 374 
 375 Node *NodeHash::find_index(uint idx) { // For debugging
 376   // Find an entry by its index value
 377   for( uint i = 0; i < _max; i++ ) {
 378     Node *m = _table[i];
 379     if( !m || m == _sentinel ) continue;
 380     if( m->_idx == (uint)idx ) return m;
 381   }
 382   return NULL;
 383 }
 384 #endif
 385 
 386 #ifdef ASSERT
 387 NodeHash::~NodeHash() {
 388   // Unlock all nodes upon destruction of table.
 389   if (_table != (Node**)badAddress)  clear();
 390 }
 391 
 392 void NodeHash::operator=(const NodeHash& nh) {
 393   // Unlock all nodes upon replacement of table.
 394   if (&nh == this)  return;
 395   if (_table != (Node**)badAddress)  clear();
 396   memcpy(this, &nh, sizeof(*this));
 397   // Do not increment hash_lock counts again.
 398   // Instead, be sure we never again use the source table.
 399   ((NodeHash*)&nh)->_table = (Node**)badAddress;
 400 }
 401 
 402 
 403 #endif
 404 
 405 
 406 //=============================================================================
 407 //------------------------------PhaseRemoveUseless-----------------------------
 408 // 1) Use a breadthfirst walk to collect useful nodes reachable from root.
 409 PhaseRemoveUseless::PhaseRemoveUseless(PhaseGVN *gvn, Unique_Node_List *worklist, PhaseNumber phase_num) : Phase(phase_num),
 410   _useful(Thread::current()->resource_area()) {
 411 
 412   // Implementation requires 'UseLoopSafepoints == true' and an edge from root
 413   // to each SafePointNode at a backward branch.  Inserted in add_safepoint().
 414   if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
 415 
 416   // Identify nodes that are reachable from below, useful.
 417   C->identify_useful_nodes(_useful);
 418   // Update dead node list
 419   C->update_dead_node_list(_useful);
 420 
 421   // Remove all useless nodes from PhaseValues' recorded types
 422   // Must be done before disconnecting nodes to preserve hash-table-invariant
 423   gvn->remove_useless_nodes(_useful.member_set());
 424 
 425   // Remove all useless nodes from future worklist
 426   worklist->remove_useless_nodes(_useful.member_set());
 427 
 428   // Disconnect 'useless' nodes that are adjacent to useful nodes
 429   C->remove_useless_nodes(_useful);
 430 
 431   // Remove edges from "root" to each SafePoint at a backward branch.
 432   // They were inserted during parsing (see add_safepoint()) to make infinite
 433   // loops without calls or exceptions visible to root, i.e., useful.
 434   Node *root = C->root();
 435   if( root != NULL ) {
 436     for( uint i = root->req(); i < root->len(); ++i ) {
 437       Node *n = root->in(i);
 438       if( n != NULL && n->is_SafePoint() ) {
 439         root->rm_prec(i);
 440         --i;
 441       }
 442     }
 443   }
 444 }
 445 
 446 //=============================================================================
 447 //------------------------------PhaseRenumberLive------------------------------
 448 // First, remove useless nodes (equivalent to identifying live nodes).
 449 // Then, renumber live nodes.
 450 //
 451 // The set of live nodes is returned by PhaseRemoveUseless in the _useful structure.
 452 // If the number of live nodes is 'x' (where 'x' == _useful.size()), then the
 453 // PhaseRenumberLive updates the node ID of each node (the _idx field) with a unique
 454 // value in the range [0, x).
 455 //
 456 // At the end of the PhaseRenumberLive phase, the compiler's count of unique nodes is
 457 // updated to 'x' and the list of dead nodes is reset (as there are no dead nodes).
 458 //
 459 // The PhaseRenumberLive phase updates two data structures with the new node IDs.
 460 // (1) The worklist is used by the PhaseIterGVN phase to identify nodes that must be
 461 // processed. A new worklist (with the updated node IDs) is returned in 'new_worklist'.
 462 // (2) Type information (the field PhaseGVN::_types) maps type information to each
 463 // node ID. The mapping is updated to use the new node IDs as well. Updated type
 464 // information is returned in PhaseGVN::_types.
 465 //
 466 // The PhaseRenumberLive phase does not preserve the order of elements in the worklist.
 467 //
 468 // Other data structures used by the compiler are not updated. The hash table for value
 469 // numbering (the field PhaseGVN::_table) is not updated because computing the hash
 470 // values is not based on node IDs. The field PhaseGVN::_nodes is not updated either
 471 // because it is empty wherever PhaseRenumberLive is used.
 472 PhaseRenumberLive::PhaseRenumberLive(PhaseGVN* gvn,
 473                                      Unique_Node_List* worklist, Unique_Node_List* new_worklist,
 474                                      PhaseNumber phase_num) :
 475   PhaseRemoveUseless(gvn, worklist, Remove_Useless_And_Renumber_Live) {
 476 
 477   assert(RenumberLiveNodes, "RenumberLiveNodes must be set to true for node renumbering to take place");
 478   assert(C->live_nodes() == _useful.size(), "the number of live nodes must match the number of useful nodes");
 479   assert(gvn->nodes_size() == 0, "GVN must not contain any nodes at this point");
 480 
 481   uint old_unique_count = C->unique();
 482   uint live_node_count = C->live_nodes();
 483   uint worklist_size = worklist->size();
 484 
 485   // Storage for the updated type information.
 486   Type_Array new_type_array(C->comp_arena());
 487 
 488   // Iterate over the set of live nodes.
 489   uint current_idx = 0; // The current new node ID. Incremented after every assignment.
 490   for (uint i = 0; i < _useful.size(); i++) {
 491     Node* n = _useful.at(i);
 492     const Type* type = gvn->type_or_null(n);
 493     new_type_array.map(current_idx, type);
 494 
 495     bool in_worklist = false;
 496     if (worklist->member(n)) {
 497       in_worklist = true;
 498     }
 499 
 500     n->set_idx(current_idx); // Update node ID.
 501 
 502     if (in_worklist) {
 503       new_worklist->push(n);
 504     }
 505 
 506     current_idx++;
 507   }
 508 
 509   assert(worklist_size == new_worklist->size(), "the new worklist must have the same size as the original worklist");
 510   assert(live_node_count == current_idx, "all live nodes must be processed");
 511 
 512   // Replace the compiler's type information with the updated type information.
 513   gvn->replace_types(new_type_array);
 514 
 515   // Update the unique node count of the compilation to the number of currently live nodes.
 516   C->set_unique(live_node_count);
 517 
 518   // Set the dead node count to 0 and reset dead node list.
 519   C->reset_dead_node_list();
 520 }
 521 
 522 
 523 //=============================================================================
 524 //------------------------------PhaseTransform---------------------------------
 525 PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
 526   _arena(Thread::current()->resource_area()),
 527   _nodes(_arena),
 528   _types(_arena)
 529 {
 530   init_con_caches();
 531 #ifndef PRODUCT
 532   clear_progress();
 533   clear_transforms();
 534   set_allow_progress(true);
 535 #endif
 536   // Force allocation for currently existing nodes
 537   _types.map(C->unique(), NULL);
 538 }
 539 
 540 //------------------------------PhaseTransform---------------------------------
 541 PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
 542   _arena(arena),
 543   _nodes(arena),
 544   _types(arena)
 545 {
 546   init_con_caches();
 547 #ifndef PRODUCT
 548   clear_progress();
 549   clear_transforms();
 550   set_allow_progress(true);
 551 #endif
 552   // Force allocation for currently existing nodes
 553   _types.map(C->unique(), NULL);
 554 }
 555 
 556 //------------------------------PhaseTransform---------------------------------
 557 // Initialize with previously generated type information
 558 PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
 559   _arena(pt->_arena),
 560   _nodes(pt->_nodes),
 561   _types(pt->_types)
 562 {
 563   init_con_caches();
 564 #ifndef PRODUCT
 565   clear_progress();
 566   clear_transforms();
 567   set_allow_progress(true);
 568 #endif
 569 }
 570 
 571 void PhaseTransform::init_con_caches() {
 572   memset(_icons,0,sizeof(_icons));
 573   memset(_lcons,0,sizeof(_lcons));
 574   memset(_zcons,0,sizeof(_zcons));
 575 }
 576 
 577 
 578 //--------------------------------find_int_type--------------------------------
 579 const TypeInt* PhaseTransform::find_int_type(Node* n) {
 580   if (n == NULL)  return NULL;
 581   // Call type_or_null(n) to determine node's type since we might be in
 582   // parse phase and call n->Value() may return wrong type.
 583   // (For example, a phi node at the beginning of loop parsing is not ready.)
 584   const Type* t = type_or_null(n);
 585   if (t == NULL)  return NULL;
 586   return t->isa_int();
 587 }
 588 
 589 
 590 //-------------------------------find_long_type--------------------------------
 591 const TypeLong* PhaseTransform::find_long_type(Node* n) {
 592   if (n == NULL)  return NULL;
 593   // (See comment above on type_or_null.)
 594   const Type* t = type_or_null(n);
 595   if (t == NULL)  return NULL;
 596   return t->isa_long();
 597 }
 598 
 599 
 600 #ifndef PRODUCT
 601 void PhaseTransform::dump_old2new_map() const {
 602   _nodes.dump();
 603 }
 604 
 605 void PhaseTransform::dump_new( uint nidx ) const {
 606   for( uint i=0; i<_nodes.Size(); i++ )
 607     if( _nodes[i] && _nodes[i]->_idx == nidx ) {
 608       _nodes[i]->dump();
 609       tty->cr();
 610       tty->print_cr("Old index= %d",i);
 611       return;
 612     }
 613   tty->print_cr("Node %d not found in the new indices", nidx);
 614 }
 615 
 616 //------------------------------dump_types-------------------------------------
 617 void PhaseTransform::dump_types( ) const {
 618   _types.dump();
 619 }
 620 
 621 //------------------------------dump_nodes_and_types---------------------------
 622 void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) {
 623   VectorSet visited(Thread::current()->resource_area());
 624   dump_nodes_and_types_recur( root, depth, only_ctrl, visited );
 625 }
 626 
 627 //------------------------------dump_nodes_and_types_recur---------------------
 628 void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
 629   if( !n ) return;
 630   if( depth == 0 ) return;
 631   if( visited.test_set(n->_idx) ) return;
 632   for( uint i=0; i<n->len(); i++ ) {
 633     if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
 634     dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
 635   }
 636   n->dump();
 637   if (type_or_null(n) != NULL) {
 638     tty->print("      "); type(n)->dump(); tty->cr();
 639   }
 640 }
 641 
 642 #endif
 643 
 644 
 645 //=============================================================================
 646 //------------------------------PhaseValues------------------------------------
 647 // Set minimum table size to "255"
 648 PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) {
 649   NOT_PRODUCT( clear_new_values(); )
 650 }
 651 
 652 //------------------------------PhaseValues------------------------------------
 653 // Set minimum table size to "255"
 654 PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ),
 655   _table(&ptv->_table) {
 656   NOT_PRODUCT( clear_new_values(); )
 657 }
 658 
 659 //------------------------------PhaseValues------------------------------------
 660 // Used by +VerifyOpto.  Clear out hash table but copy _types array.
 661 PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ),
 662   _table(ptv->arena(),ptv->_table.size()) {
 663   NOT_PRODUCT( clear_new_values(); )
 664 }
 665 
 666 //------------------------------~PhaseValues-----------------------------------
 667 #ifndef PRODUCT
 668 PhaseValues::~PhaseValues() {
 669   _table.dump();
 670 
 671   // Statistics for value progress and efficiency
 672   if( PrintCompilation && Verbose && WizardMode ) {
 673     tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
 674       is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
 675     if( made_transforms() != 0 ) {
 676       tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
 677     } else {
 678       tty->cr();
 679     }
 680   }
 681 }
 682 #endif
 683 
 684 //------------------------------makecon----------------------------------------
 685 ConNode* PhaseTransform::makecon(const Type *t) {
 686   assert(t->singleton(), "must be a constant");
 687   assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
 688   switch (t->base()) {  // fast paths
 689   case Type::Half:
 690   case Type::Top:  return (ConNode*) C->top();
 691   case Type::Int:  return intcon( t->is_int()->get_con() );
 692   case Type::Long: return longcon( t->is_long()->get_con() );
 693   }
 694   if (t->is_zero_type())
 695     return zerocon(t->basic_type());
 696   return uncached_makecon(t);
 697 }
 698 
 699 //--------------------------uncached_makecon-----------------------------------
 700 // Make an idealized constant - one of ConINode, ConPNode, etc.
 701 ConNode* PhaseValues::uncached_makecon(const Type *t) {
 702   assert(t->singleton(), "must be a constant");
 703   ConNode* x = ConNode::make(t);
 704   ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
 705   if (k == NULL) {
 706     set_type(x, t);             // Missed, provide type mapping
 707     GrowableArray<Node_Notes*>* nna = C->node_note_array();
 708     if (nna != NULL) {
 709       Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
 710       loc->clear(); // do not put debug info on constants
 711     }
 712   } else {
 713     x->destruct();              // Hit, destroy duplicate constant
 714     x = k;                      // use existing constant
 715   }
 716   return x;
 717 }
 718 
 719 //------------------------------intcon-----------------------------------------
 720 // Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
 721 ConINode* PhaseTransform::intcon(int i) {
 722   // Small integer?  Check cache! Check that cached node is not dead
 723   if (i >= _icon_min && i <= _icon_max) {
 724     ConINode* icon = _icons[i-_icon_min];
 725     if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
 726       return icon;
 727   }
 728   ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
 729   assert(icon->is_Con(), "");
 730   if (i >= _icon_min && i <= _icon_max)
 731     _icons[i-_icon_min] = icon;   // Cache small integers
 732   return icon;
 733 }
 734 
 735 //------------------------------longcon----------------------------------------
 736 // Fast long constant.
 737 ConLNode* PhaseTransform::longcon(jlong l) {
 738   // Small integer?  Check cache! Check that cached node is not dead
 739   if (l >= _lcon_min && l <= _lcon_max) {
 740     ConLNode* lcon = _lcons[l-_lcon_min];
 741     if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
 742       return lcon;
 743   }
 744   ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
 745   assert(lcon->is_Con(), "");
 746   if (l >= _lcon_min && l <= _lcon_max)
 747     _lcons[l-_lcon_min] = lcon;      // Cache small integers
 748   return lcon;
 749 }
 750 
 751 //------------------------------zerocon-----------------------------------------
 752 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
 753 ConNode* PhaseTransform::zerocon(BasicType bt) {
 754   assert((uint)bt <= _zcon_max, "domain check");
 755   ConNode* zcon = _zcons[bt];
 756   if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
 757     return zcon;
 758   zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
 759   _zcons[bt] = zcon;
 760   return zcon;
 761 }
 762 
 763 
 764 
 765 //=============================================================================
 766 //------------------------------transform--------------------------------------
 767 // Return a node which computes the same function as this node, but in a
 768 // faster or cheaper fashion.
 769 Node *PhaseGVN::transform( Node *n ) {
 770   return transform_no_reclaim(n);
 771 }
 772 
 773 //------------------------------transform--------------------------------------
 774 // Return a node which computes the same function as this node, but
 775 // in a faster or cheaper fashion.
 776 Node *PhaseGVN::transform_no_reclaim( Node *n ) {
 777   NOT_PRODUCT( set_transforms(); )
 778 
 779   // Apply the Ideal call in a loop until it no longer applies
 780   Node *k = n;
 781   NOT_PRODUCT( uint loop_count = 0; )
 782   while( 1 ) {
 783     Node *i = k->Ideal(this, /*can_reshape=*/false);
 784     if( !i ) break;
 785     assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
 786     k = i;
 787     assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
 788   }
 789   NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
 790 
 791 
 792   // If brand new node, make space in type array.
 793   ensure_type_or_null(k);
 794 
 795   // Since I just called 'Value' to compute the set of run-time values
 796   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
 797   // cache Value.  Later requests for the local phase->type of this Node can
 798   // use the cached Value instead of suffering with 'bottom_type'.
 799   const Type *t = k->Value(this); // Get runtime Value set
 800   assert(t != NULL, "value sanity");
 801   if (type_or_null(k) != t) {
 802 #ifndef PRODUCT
 803     // Do not count initial visit to node as a transformation
 804     if (type_or_null(k) == NULL) {
 805       inc_new_values();
 806       set_progress();
 807     }
 808 #endif
 809     set_type(k, t);
 810     // If k is a TypeNode, capture any more-precise type permanently into Node
 811     k->raise_bottom_type(t);
 812   }
 813 
 814   if( t->singleton() && !k->is_Con() ) {
 815     NOT_PRODUCT( set_progress(); )
 816     return makecon(t);          // Turn into a constant
 817   }
 818 
 819   // Now check for Identities
 820   Node *i = k->Identity(this);  // Look for a nearby replacement
 821   if( i != k ) {                // Found? Return replacement!
 822     NOT_PRODUCT( set_progress(); )
 823     return i;
 824   }
 825 
 826   // Global Value Numbering
 827   i = hash_find_insert(k);      // Insert if new
 828   if( i && (i != k) ) {
 829     // Return the pre-existing node
 830     NOT_PRODUCT( set_progress(); )
 831     return i;
 832   }
 833 
 834   // Return Idealized original
 835   return k;
 836 }
 837 
 838 #ifdef ASSERT
 839 //------------------------------dead_loop_check--------------------------------
 840 // Check for a simple dead loop when a data node references itself directly
 841 // or through an other data node excluding cons and phis.
 842 void PhaseGVN::dead_loop_check( Node *n ) {
 843   // Phi may reference itself in a loop
 844   if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
 845     // Do 2 levels check and only data inputs.
 846     bool no_dead_loop = true;
 847     uint cnt = n->req();
 848     for (uint i = 1; i < cnt && no_dead_loop; i++) {
 849       Node *in = n->in(i);
 850       if (in == n) {
 851         no_dead_loop = false;
 852       } else if (in != NULL && !in->is_dead_loop_safe()) {
 853         uint icnt = in->req();
 854         for (uint j = 1; j < icnt && no_dead_loop; j++) {
 855           if (in->in(j) == n || in->in(j) == in)
 856             no_dead_loop = false;
 857         }
 858       }
 859     }
 860     if (!no_dead_loop) n->dump(3);
 861     assert(no_dead_loop, "dead loop detected");
 862   }
 863 }
 864 #endif
 865 
 866 //=============================================================================
 867 //------------------------------PhaseIterGVN-----------------------------------
 868 // Initialize hash table to fresh and clean for +VerifyOpto
 869 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy), _worklist( ),
 870                                                                       _stack(C->live_nodes() >> 1),
 871                                                                       _delay_transform(false) {
 872 }
 873 
 874 //------------------------------PhaseIterGVN-----------------------------------
 875 // Initialize with previous PhaseIterGVN info; used by PhaseCCP
 876 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn),
 877                                                    _worklist( igvn->_worklist ),
 878                                                    _stack( igvn->_stack ),
 879                                                    _delay_transform(igvn->_delay_transform)
 880 {
 881 }
 882 
 883 //------------------------------PhaseIterGVN-----------------------------------
 884 // Initialize with previous PhaseGVN info from Parser
 885 PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn),
 886                                               _worklist(*C->for_igvn()),
 887 // TODO: Before incremental inlining it was allocated only once and it was fine. Now that
 888 //       the constructor is used in incremental inlining, this consumes too much memory:
 889 //                                            _stack(C->live_nodes() >> 1),
 890 //       So, as a band-aid, we replace this by:
 891                                               _stack(C->comp_arena(), 32),
 892                                               _delay_transform(false)
 893 {
 894   uint max;
 895 
 896   // Dead nodes in the hash table inherited from GVN were not treated as
 897   // roots during def-use info creation; hence they represent an invisible
 898   // use.  Clear them out.
 899   max = _table.size();
 900   for( uint i = 0; i < max; ++i ) {
 901     Node *n = _table.at(i);
 902     if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
 903       if( n->is_top() ) continue;
 904       assert( false, "Parse::remove_useless_nodes missed this node");
 905       hash_delete(n);
 906     }
 907   }
 908 
 909   // Any Phis or Regions on the worklist probably had uses that could not
 910   // make more progress because the uses were made while the Phis and Regions
 911   // were in half-built states.  Put all uses of Phis and Regions on worklist.
 912   max = _worklist.size();
 913   for( uint j = 0; j < max; j++ ) {
 914     Node *n = _worklist.at(j);
 915     uint uop = n->Opcode();
 916     if( uop == Op_Phi || uop == Op_Region ||
 917         n->is_Type() ||
 918         n->is_Mem() )
 919       add_users_to_worklist(n);
 920   }
 921 }
 922 
 923 /**
 924  * Initialize worklist for each node.
 925  */
 926 void PhaseIterGVN::init_worklist(Node* first) {
 927   Unique_Node_List to_process;
 928   to_process.push(first);
 929 
 930   while (to_process.size() > 0) {
 931     Node* n = to_process.pop();
 932     if (!_worklist.member(n)) {
 933       _worklist.push(n);
 934 
 935       uint cnt = n->req();
 936       for(uint i = 0; i < cnt; i++) {
 937         Node* m = n->in(i);
 938         if (m != NULL) {
 939           to_process.push(m);
 940         }
 941       }
 942     }
 943   }
 944 }
 945 
 946 #ifndef PRODUCT
 947 void PhaseIterGVN::verify_step(Node* n) {
 948   if (VerifyIterativeGVN) {
 949     _verify_window[_verify_counter % _verify_window_size] = n;
 950     ++_verify_counter;
 951     ResourceMark rm;
 952     ResourceArea* area = Thread::current()->resource_area();
 953     VectorSet old_space(area), new_space(area);
 954     if (C->unique() < 1000 ||
 955         0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
 956       ++_verify_full_passes;
 957       Node::verify_recur(C->root(), -1, old_space, new_space);
 958     }
 959     const int verify_depth = 4;
 960     for ( int i = 0; i < _verify_window_size; i++ ) {
 961       Node* n = _verify_window[i];
 962       if ( n == NULL )  continue;
 963       if( n->in(0) == NodeSentinel ) {  // xform_idom
 964         _verify_window[i] = n->in(1);
 965         --i; continue;
 966       }
 967       // Typical fanout is 1-2, so this call visits about 6 nodes.
 968       Node::verify_recur(n, verify_depth, old_space, new_space);
 969     }
 970   }
 971 }
 972 
 973 void PhaseIterGVN::trace_PhaseIterGVN(Node* n, Node* nn, const Type* oldtype) {
 974   if (TraceIterativeGVN) {
 975     uint wlsize = _worklist.size();
 976     const Type* newtype = type_or_null(n);
 977     if (nn != n) {
 978       // print old node
 979       tty->print("< ");
 980       if (oldtype != newtype && oldtype != NULL) {
 981         oldtype->dump();
 982       }
 983       do { tty->print("\t"); } while (tty->position() < 16);
 984       tty->print("<");
 985       n->dump();
 986     }
 987     if (oldtype != newtype || nn != n) {
 988       // print new node and/or new type
 989       if (oldtype == NULL) {
 990         tty->print("* ");
 991       } else if (nn != n) {
 992         tty->print("> ");
 993       } else {
 994         tty->print("= ");
 995       }
 996       if (newtype == NULL) {
 997         tty->print("null");
 998       } else {
 999         newtype->dump();
1000       }
1001       do { tty->print("\t"); } while (tty->position() < 16);
1002       nn->dump();
1003     }
1004     if (Verbose && wlsize < _worklist.size()) {
1005       tty->print("  Push {");
1006       while (wlsize != _worklist.size()) {
1007         Node* pushed = _worklist.at(wlsize++);
1008         tty->print(" %d", pushed->_idx);
1009       }
1010       tty->print_cr(" }");
1011     }
1012     if (nn != n) {
1013       // ignore n, it might be subsumed
1014       verify_step((Node*) NULL);
1015     }
1016   }
1017 }
1018 
1019 void PhaseIterGVN::init_verifyPhaseIterGVN() {
1020   _verify_counter = 0;
1021   _verify_full_passes = 0;
1022   for (int i = 0; i < _verify_window_size; i++) {
1023     _verify_window[i] = NULL;
1024   }
1025 #ifdef ASSERT
1026   // Verify that all modified nodes are on _worklist
1027   Unique_Node_List* modified_list = C->modified_nodes();
1028   while (modified_list != NULL && modified_list->size()) {
1029     Node* n = modified_list->pop();
1030     if (n->outcnt() != 0 && !n->is_Con() && !_worklist.member(n)) {
1031       n->dump();
1032       assert(false, "modified node is not on IGVN._worklist");
1033     }
1034   }
1035 #endif
1036 }
1037 
1038 void PhaseIterGVN::verify_PhaseIterGVN() {
1039 #ifdef ASSERT
1040   // Verify nodes with changed inputs.
1041   Unique_Node_List* modified_list = C->modified_nodes();
1042   while (modified_list != NULL && modified_list->size()) {
1043     Node* n = modified_list->pop();
1044     if (n->outcnt() != 0 && !n->is_Con()) { // skip dead and Con nodes
1045       n->dump();
1046       assert(false, "modified node was not processed by IGVN.transform_old()");
1047     }
1048   }
1049 #endif
1050 
1051   C->verify_graph_edges();
1052   if( VerifyOpto && allow_progress() ) {
1053     // Must turn off allow_progress to enable assert and break recursion
1054     C->root()->verify();
1055     { // Check if any progress was missed using IterGVN
1056       // Def-Use info enables transformations not attempted in wash-pass
1057       // e.g. Region/Phi cleanup, ...
1058       // Null-check elision -- may not have reached fixpoint
1059       //                       do not propagate to dominated nodes
1060       ResourceMark rm;
1061       PhaseIterGVN igvn2(this,"Verify"); // Fresh and clean!
1062       // Fill worklist completely
1063       igvn2.init_worklist(C->root());
1064 
1065       igvn2.set_allow_progress(false);
1066       igvn2.optimize();
1067       igvn2.set_allow_progress(true);
1068     }
1069   }
1070   if (VerifyIterativeGVN && PrintOpto) {
1071     if (_verify_counter == _verify_full_passes) {
1072       tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
1073                     (int) _verify_full_passes);
1074     } else {
1075       tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
1076                   (int) _verify_counter, (int) _verify_full_passes);
1077     }
1078   }
1079 
1080 #ifdef ASSERT
1081   while (modified_list->size()) {
1082     Node* n = modified_list->pop();
1083     n->dump();
1084     assert(false, "VerifyIterativeGVN: new modified node was added");
1085   }
1086 #endif
1087 }
1088 #endif /* PRODUCT */
1089 
1090 #ifdef ASSERT
1091 /**
1092  * Dumps information that can help to debug the problem. A debug
1093  * build fails with an assert.
1094  */
1095 void PhaseIterGVN::dump_infinite_loop_info(Node* n) {
1096   n->dump(4);
1097   _worklist.dump();
1098   assert(false, "infinite loop in PhaseIterGVN::optimize");
1099 }
1100 
1101 /**
1102  * Prints out information about IGVN if the 'verbose' option is used.
1103  */
1104 void PhaseIterGVN::trace_PhaseIterGVN_verbose(Node* n, int num_processed) {
1105   if (TraceIterativeGVN && Verbose) {
1106     tty->print("  Pop ");
1107     n->dump();
1108     if ((num_processed % 100) == 0) {
1109       _worklist.print_set();
1110     }
1111   }
1112 }
1113 #endif /* ASSERT */
1114 
1115 void PhaseIterGVN::optimize() {
1116   DEBUG_ONLY(uint num_processed  = 0;)
1117   NOT_PRODUCT(init_verifyPhaseIterGVN();)
1118 
1119   uint loop_count = 0;
1120   // Pull from worklist and transform the node. If the node has changed,
1121   // update edge info and put uses on worklist.
1122   while(_worklist.size()) {
1123     if (C->check_node_count(NodeLimitFudgeFactor * 2, "Out of nodes")) {
1124       return;
1125     }
1126     Node* n  = _worklist.pop();
1127     if (++loop_count >= K * C->live_nodes()) {
1128       DEBUG_ONLY(dump_infinite_loop_info(n);)
1129       C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");
1130       return;
1131     }
1132     DEBUG_ONLY(trace_PhaseIterGVN_verbose(n, num_processed++);)
1133     if (n->outcnt() != 0) {
1134       NOT_PRODUCT(const Type* oldtype = type_or_null(n));
1135       // Do the transformation
1136       Node* nn = transform_old(n);
1137       NOT_PRODUCT(trace_PhaseIterGVN(n, nn, oldtype);)
1138     } else if (!n->is_top()) {
1139       remove_dead_node(n);
1140     }
1141   }
1142   NOT_PRODUCT(verify_PhaseIterGVN();)
1143 }
1144 
1145 
1146 /**
1147  * Register a new node with the optimizer.  Update the types array, the def-use
1148  * info.  Put on worklist.
1149  */
1150 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
1151   set_type_bottom(n);
1152   _worklist.push(n);
1153   if (orig != NULL)  C->copy_node_notes_to(n, orig);
1154   return n;
1155 }
1156 
1157 //------------------------------transform--------------------------------------
1158 // Non-recursive: idealize Node 'n' with respect to its inputs and its value
1159 Node *PhaseIterGVN::transform( Node *n ) {
1160   if (_delay_transform) {
1161     // Register the node but don't optimize for now
1162     register_new_node_with_optimizer(n);
1163     return n;
1164   }
1165 
1166   // If brand new node, make space in type array, and give it a type.
1167   ensure_type_or_null(n);
1168   if (type_or_null(n) == NULL) {
1169     set_type_bottom(n);
1170   }
1171 
1172   return transform_old(n);
1173 }
1174 
1175 Node *PhaseIterGVN::transform_old(Node* n) {
1176   DEBUG_ONLY(uint loop_count = 0;);
1177   NOT_PRODUCT(set_transforms());
1178 
1179   // Remove 'n' from hash table in case it gets modified
1180   _table.hash_delete(n);
1181   if (VerifyIterativeGVN) {
1182    assert(!_table.find_index(n->_idx), "found duplicate entry in table");
1183   }
1184 
1185   // Apply the Ideal call in a loop until it no longer applies
1186   Node* k = n;
1187   DEBUG_ONLY(dead_loop_check(k);)
1188   DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
1189   C->remove_modified_node(k);
1190   Node* i = k->Ideal(this, /*can_reshape=*/true);
1191   assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
1192 #ifndef PRODUCT
1193   verify_step(k);
1194   if (i && VerifyOpto ) {
1195     if (!allow_progress()) {
1196       if (i->is_Add() && (i->outcnt() == 1)) {
1197         // Switched input to left side because this is the only use
1198       } else if (i->is_If() && (i->in(0) == NULL)) {
1199         // This IF is dead because it is dominated by an equivalent IF When
1200         // dominating if changed, info is not propagated sparsely to 'this'
1201         // Propagating this info further will spuriously identify other
1202         // progress.
1203         return i;
1204       } else
1205         set_progress();
1206     } else {
1207       set_progress();
1208     }
1209   }
1210 #endif
1211 
1212   while (i != NULL) {
1213 #ifdef ASSERT
1214     if (loop_count >= K) {
1215       dump_infinite_loop_info(i);
1216     }
1217     loop_count++;
1218 #endif
1219     assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
1220     // Made a change; put users of original Node on worklist
1221     add_users_to_worklist(k);
1222     // Replacing root of transform tree?
1223     if (k != i) {
1224       // Make users of old Node now use new.
1225       subsume_node(k, i);
1226       k = i;
1227     }
1228     DEBUG_ONLY(dead_loop_check(k);)
1229     // Try idealizing again
1230     DEBUG_ONLY(is_new = (k->outcnt() == 0);)
1231     C->remove_modified_node(k);
1232     i = k->Ideal(this, /*can_reshape=*/true);
1233     assert(i != k || is_new || (i->outcnt() > 0), "don't return dead nodes");
1234 #ifndef PRODUCT
1235     verify_step(k);
1236     if (i && VerifyOpto) {
1237       set_progress();
1238     }
1239 #endif
1240   }
1241 
1242   // If brand new node, make space in type array.
1243   ensure_type_or_null(k);
1244 
1245   // See what kind of values 'k' takes on at runtime
1246   const Type* t = k->Value(this);
1247   assert(t != NULL, "value sanity");
1248 
1249   // Since I just called 'Value' to compute the set of run-time values
1250   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
1251   // cache Value.  Later requests for the local phase->type of this Node can
1252   // use the cached Value instead of suffering with 'bottom_type'.
1253   if (type_or_null(k) != t) {
1254 #ifndef PRODUCT
1255     inc_new_values();
1256     set_progress();
1257 #endif
1258     set_type(k, t);
1259     // If k is a TypeNode, capture any more-precise type permanently into Node
1260     k->raise_bottom_type(t);
1261     // Move users of node to worklist
1262     add_users_to_worklist(k);
1263   }
1264   // If 'k' computes a constant, replace it with a constant
1265   if (t->singleton() && !k->is_Con()) {
1266     NOT_PRODUCT(set_progress();)
1267     Node* con = makecon(t);     // Make a constant
1268     add_users_to_worklist(k);
1269     subsume_node(k, con);       // Everybody using k now uses con
1270     return con;
1271   }
1272 
1273   // Now check for Identities
1274   i = k->Identity(this);      // Look for a nearby replacement
1275   if (i != k) {                // Found? Return replacement!
1276     NOT_PRODUCT(set_progress();)
1277     add_users_to_worklist(k);
1278     subsume_node(k, i);       // Everybody using k now uses i
1279     return i;
1280   }
1281 
1282   // Global Value Numbering
1283   i = hash_find_insert(k);      // Check for pre-existing node
1284   if (i && (i != k)) {
1285     // Return the pre-existing node if it isn't dead
1286     NOT_PRODUCT(set_progress();)
1287     add_users_to_worklist(k);
1288     subsume_node(k, i);       // Everybody using k now uses i
1289     return i;
1290   }
1291 
1292   // Return Idealized original
1293   return k;
1294 }
1295 
1296 //---------------------------------saturate------------------------------------
1297 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
1298                                    const Type* limit_type) const {
1299   return new_type->narrow(old_type);
1300 }
1301 
1302 //------------------------------remove_globally_dead_node----------------------
1303 // Kill a globally dead Node.  All uses are also globally dead and are
1304 // aggressively trimmed.
1305 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
1306   enum DeleteProgress {
1307     PROCESS_INPUTS,
1308     PROCESS_OUTPUTS
1309   };
1310   assert(_stack.is_empty(), "not empty");
1311   _stack.push(dead, PROCESS_INPUTS);
1312 
1313   while (_stack.is_nonempty()) {
1314     dead = _stack.node();
1315     uint progress_state = _stack.index();
1316     assert(dead != C->root(), "killing root, eh?");
1317     assert(!dead->is_top(), "add check for top when pushing");
1318     NOT_PRODUCT( set_progress(); )
1319     if (progress_state == PROCESS_INPUTS) {
1320       // After following inputs, continue to outputs
1321       _stack.set_index(PROCESS_OUTPUTS);
1322       if (!dead->is_Con()) { // Don't kill cons but uses
1323         bool recurse = false;
1324         // Remove from hash table
1325         _table.hash_delete( dead );
1326         // Smash all inputs to 'dead', isolating him completely
1327         for (uint i = 0; i < dead->req(); i++) {
1328           Node *in = dead->in(i);
1329           if (in != NULL && in != C->top()) {  // Points to something?
1330             int nrep = dead->replace_edge(in, NULL);  // Kill edges
1331             assert((nrep > 0), "sanity");
1332             if (in->outcnt() == 0) { // Made input go dead?
1333               _stack.push(in, PROCESS_INPUTS); // Recursively remove
1334               recurse = true;
1335             } else if (in->outcnt() == 1 &&
1336                        in->has_special_unique_user()) {
1337               _worklist.push(in->unique_out());
1338             } else if (in->outcnt() <= 2 && dead->is_Phi()) {
1339               if (in->Opcode() == Op_Region) {
1340                 _worklist.push(in);
1341               } else if (in->is_Store()) {
1342                 DUIterator_Fast imax, i = in->fast_outs(imax);
1343                 _worklist.push(in->fast_out(i));
1344                 i++;
1345                 if (in->outcnt() == 2) {
1346                   _worklist.push(in->fast_out(i));
1347                   i++;
1348                 }
1349                 assert(!(i < imax), "sanity");
1350               }
1351             }
1352             if (ReduceFieldZeroing && dead->is_Load() && i == MemNode::Memory &&
1353                 in->is_Proj() && in->in(0) != NULL && in->in(0)->is_Initialize()) {
1354               // A Load that directly follows an InitializeNode is
1355               // going away. The Stores that follow are candidates
1356               // again to be captured by the InitializeNode.
1357               for (DUIterator_Fast jmax, j = in->fast_outs(jmax); j < jmax; j++) {
1358                 Node *n = in->fast_out(j);
1359                 if (n->is_Store()) {
1360                   _worklist.push(n);
1361                 }
1362               }
1363             }
1364           } // if (in != NULL && in != C->top())
1365         } // for (uint i = 0; i < dead->req(); i++)
1366         if (recurse) {
1367           continue;
1368         }
1369       } // if (!dead->is_Con())
1370     } // if (progress_state == PROCESS_INPUTS)
1371 
1372     // Aggressively kill globally dead uses
1373     // (Rather than pushing all the outs at once, we push one at a time,
1374     // plus the parent to resume later, because of the indefinite number
1375     // of edge deletions per loop trip.)
1376     if (dead->outcnt() > 0) {
1377       // Recursively remove output edges
1378       _stack.push(dead->raw_out(0), PROCESS_INPUTS);
1379     } else {
1380       // Finished disconnecting all input and output edges.
1381       _stack.pop();
1382       // Remove dead node from iterative worklist
1383       _worklist.remove(dead);
1384       C->remove_modified_node(dead);
1385       // Constant node that has no out-edges and has only one in-edge from
1386       // root is usually dead. However, sometimes reshaping walk makes
1387       // it reachable by adding use edges. So, we will NOT count Con nodes
1388       // as dead to be conservative about the dead node count at any
1389       // given time.
1390       if (!dead->is_Con()) {
1391         C->record_dead_node(dead->_idx);
1392       }
1393       if (dead->is_macro()) {
1394         C->remove_macro_node(dead);
1395       }
1396       if (dead->is_expensive()) {
1397         C->remove_expensive_node(dead);
1398       }
1399     }
1400   } // while (_stack.is_nonempty())
1401 }
1402 
1403 //------------------------------subsume_node-----------------------------------
1404 // Remove users from node 'old' and add them to node 'nn'.
1405 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
1406   assert( old != hash_find(old), "should already been removed" );
1407   assert( old != C->top(), "cannot subsume top node");
1408   // Copy debug or profile information to the new version:
1409   C->copy_node_notes_to(nn, old);
1410   // Move users of node 'old' to node 'nn'
1411   for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
1412     Node* use = old->last_out(i);  // for each use...
1413     // use might need re-hashing (but it won't if it's a new node)
1414     rehash_node_delayed(use);
1415     // Update use-def info as well
1416     // We remove all occurrences of old within use->in,
1417     // so as to avoid rehashing any node more than once.
1418     // The hash table probe swamps any outer loop overhead.
1419     uint num_edges = 0;
1420     for (uint jmax = use->len(), j = 0; j < jmax; j++) {
1421       if (use->in(j) == old) {
1422         use->set_req(j, nn);
1423         ++num_edges;
1424       }
1425     }
1426     i -= num_edges;    // we deleted 1 or more copies of this edge
1427   }
1428 
1429   // Smash all inputs to 'old', isolating him completely
1430   Node *temp = new Node(1);
1431   temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
1432   remove_dead_node( old );
1433   temp->del_req(0);         // Yank bogus edge
1434 #ifndef PRODUCT
1435   if( VerifyIterativeGVN ) {
1436     for ( int i = 0; i < _verify_window_size; i++ ) {
1437       if ( _verify_window[i] == old )
1438         _verify_window[i] = nn;
1439     }
1440   }
1441 #endif
1442   _worklist.remove(temp);   // this can be necessary
1443   temp->destruct();         // reuse the _idx of this little guy
1444 }
1445 
1446 //------------------------------add_users_to_worklist--------------------------
1447 void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
1448   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1449     _worklist.push(n->fast_out(i));  // Push on worklist
1450   }
1451 }
1452 
1453 void PhaseIterGVN::add_users_to_worklist( Node *n ) {
1454   add_users_to_worklist0(n);
1455 
1456   // Move users of node to worklist
1457   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1458     Node* use = n->fast_out(i); // Get use
1459 
1460     if( use->is_Multi() ||      // Multi-definer?  Push projs on worklist
1461         use->is_Store() )       // Enable store/load same address
1462       add_users_to_worklist0(use);
1463 
1464     // If we changed the receiver type to a call, we need to revisit
1465     // the Catch following the call.  It's looking for a non-NULL
1466     // receiver to know when to enable the regular fall-through path
1467     // in addition to the NullPtrException path.
1468     if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
1469       Node* p = use->as_CallDynamicJava()->proj_out(TypeFunc::Control);
1470       if (p != NULL) {
1471         add_users_to_worklist0(p);
1472       }
1473     }
1474 
1475     uint use_op = use->Opcode();
1476     if(use->is_Cmp()) {       // Enable CMP/BOOL optimization
1477       add_users_to_worklist(use); // Put Bool on worklist
1478       if (use->outcnt() > 0) {
1479         Node* bol = use->raw_out(0);
1480         if (bol->outcnt() > 0) {
1481           Node* iff = bol->raw_out(0);
1482           if (use_op == Op_CmpI &&
1483               iff->is_CountedLoopEnd()) {
1484             CountedLoopEndNode* cle = iff->as_CountedLoopEnd();
1485             if (cle->limit() == n && cle->phi() != NULL) {
1486               // If an opaque node feeds into the limit condition of a
1487               // CountedLoop, we need to process the Phi node for the
1488               // induction variable when the opaque node is removed:
1489               // the range of values taken by the Phi is now known and
1490               // so its type is also known.
1491               _worklist.push(cle->phi());
1492             }
1493           } else if (iff->outcnt() == 2) {
1494             // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
1495             // phi merging either 0 or 1 onto the worklist
1496             Node* ifproj0 = iff->raw_out(0);
1497             Node* ifproj1 = iff->raw_out(1);
1498             if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
1499               Node* region0 = ifproj0->raw_out(0);
1500               Node* region1 = ifproj1->raw_out(0);
1501               if( region0 == region1 )
1502                 add_users_to_worklist0(region0);
1503             }
1504           }
1505         }
1506       }
1507       if (use_op == Op_CmpI) {
1508         Node* in1 = use->in(1);
1509         for (uint i = 0; i < in1->outcnt(); i++) {
1510           if (in1->raw_out(i)->Opcode() == Op_CastII) {
1511             Node* castii = in1->raw_out(i);
1512             if (castii->in(0) != NULL && castii->in(0)->in(0) != NULL && castii->in(0)->in(0)->is_If()) {
1513               Node* ifnode = castii->in(0)->in(0);
1514               if (ifnode->in(1) != NULL && ifnode->in(1)->is_Bool() && ifnode->in(1)->in(1) == use) {
1515                 // Reprocess a CastII node that may depend on an
1516                 // opaque node value when the opaque node is
1517                 // removed. In case it carries a dependency we can do
1518                 // a better job of computing its type.
1519                 _worklist.push(castii);
1520               }
1521             }
1522           }
1523         }
1524       }
1525     }
1526 
1527     // If changed Cast input, check Phi users for simple cycles
1528     if( use->is_ConstraintCast() || use->is_CheckCastPP() ) {
1529       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1530         Node* u = use->fast_out(i2);
1531         if (u->is_Phi())
1532           _worklist.push(u);
1533       }
1534     }
1535     // If changed LShift inputs, check RShift users for useless sign-ext
1536     if( use_op == Op_LShiftI ) {
1537       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1538         Node* u = use->fast_out(i2);
1539         if (u->Opcode() == Op_RShiftI)
1540           _worklist.push(u);
1541       }
1542     }
1543     // If changed AddI/SubI inputs, check CmpU for range check optimization.
1544     if (use_op == Op_AddI || use_op == Op_SubI) {
1545       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1546         Node* u = use->fast_out(i2);
1547         if (u->is_Cmp() && (u->Opcode() == Op_CmpU)) {
1548           _worklist.push(u);
1549         }
1550       }
1551     }
1552     // If changed AddP inputs, check Stores for loop invariant
1553     if( use_op == Op_AddP ) {
1554       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1555         Node* u = use->fast_out(i2);
1556         if (u->is_Mem())
1557           _worklist.push(u);
1558       }
1559     }
1560     // If changed initialization activity, check dependent Stores
1561     if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
1562       InitializeNode* init = use->as_Allocate()->initialization();
1563       if (init != NULL) {
1564         Node* imem = init->proj_out(TypeFunc::Memory);
1565         if (imem != NULL)  add_users_to_worklist0(imem);
1566       }
1567     }
1568     if (use_op == Op_Initialize) {
1569       Node* imem = use->as_Initialize()->proj_out(TypeFunc::Memory);
1570       if (imem != NULL)  add_users_to_worklist0(imem);
1571     }
1572   }
1573 }
1574 
1575 /**
1576  * Remove the speculative part of all types that we know of
1577  */
1578 void PhaseIterGVN::remove_speculative_types()  {
1579   assert(UseTypeSpeculation, "speculation is off");
1580   for (uint i = 0; i < _types.Size(); i++)  {
1581     const Type* t = _types.fast_lookup(i);
1582     if (t != NULL) {
1583       _types.map(i, t->remove_speculative());
1584     }
1585   }
1586   _table.check_no_speculative_types();
1587 }
1588 
1589 //=============================================================================
1590 #ifndef PRODUCT
1591 uint PhaseCCP::_total_invokes   = 0;
1592 uint PhaseCCP::_total_constants = 0;
1593 #endif
1594 //------------------------------PhaseCCP---------------------------------------
1595 // Conditional Constant Propagation, ala Wegman & Zadeck
1596 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
1597   NOT_PRODUCT( clear_constants(); )
1598   assert( _worklist.size() == 0, "" );
1599   // Clear out _nodes from IterGVN.  Must be clear to transform call.
1600   _nodes.clear();               // Clear out from IterGVN
1601   analyze();
1602 }
1603 
1604 #ifndef PRODUCT
1605 //------------------------------~PhaseCCP--------------------------------------
1606 PhaseCCP::~PhaseCCP() {
1607   inc_invokes();
1608   _total_constants += count_constants();
1609 }
1610 #endif
1611 
1612 
1613 #ifdef ASSERT
1614 static bool ccp_type_widens(const Type* t, const Type* t0) {
1615   assert(t->meet(t0) == t, "Not monotonic");
1616   switch (t->base() == t0->base() ? t->base() : Type::Top) {
1617   case Type::Int:
1618     assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
1619     break;
1620   case Type::Long:
1621     assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
1622     break;
1623   }
1624   return true;
1625 }
1626 #endif //ASSERT
1627 
1628 //------------------------------analyze----------------------------------------
1629 void PhaseCCP::analyze() {
1630   // Initialize all types to TOP, optimistic analysis
1631   for (int i = C->unique() - 1; i >= 0; i--)  {
1632     _types.map(i,Type::TOP);
1633   }
1634 
1635   // Push root onto worklist
1636   Unique_Node_List worklist;
1637   worklist.push(C->root());
1638 
1639   // Pull from worklist; compute new value; push changes out.
1640   // This loop is the meat of CCP.
1641   while( worklist.size() ) {
1642     Node *n = worklist.pop();
1643     const Type *t = n->Value(this);
1644     if (t != type(n)) {
1645       assert(ccp_type_widens(t, type(n)), "ccp type must widen");
1646 #ifndef PRODUCT
1647       if( TracePhaseCCP ) {
1648         t->dump();
1649         do { tty->print("\t"); } while (tty->position() < 16);
1650         n->dump();
1651       }
1652 #endif
1653       set_type(n, t);
1654       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1655         Node* m = n->fast_out(i);   // Get user
1656         if (m->is_Region()) {  // New path to Region?  Must recheck Phis too
1657           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1658             Node* p = m->fast_out(i2); // Propagate changes to uses
1659             if (p->bottom_type() != type(p)) { // If not already bottomed out
1660               worklist.push(p); // Propagate change to user
1661             }
1662           }
1663         }
1664         // If we changed the receiver type to a call, we need to revisit
1665         // the Catch following the call.  It's looking for a non-NULL
1666         // receiver to know when to enable the regular fall-through path
1667         // in addition to the NullPtrException path
1668         if (m->is_Call()) {
1669           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1670             Node* p = m->fast_out(i2);  // Propagate changes to uses
1671             if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control && p->outcnt() == 1) {
1672               worklist.push(p->unique_out());
1673             }
1674           }
1675         }
1676         if (m->bottom_type() != type(m)) { // If not already bottomed out
1677           worklist.push(m);     // Propagate change to user
1678         }
1679 
1680         // CmpU nodes can get their type information from two nodes up in the
1681         // graph (instead of from the nodes immediately above). Make sure they
1682         // are added to the worklist if nodes they depend on are updated, since
1683         // they could be missed and get wrong types otherwise.
1684         uint m_op = m->Opcode();
1685         if (m_op == Op_AddI || m_op == Op_SubI) {
1686           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1687             Node* p = m->fast_out(i2); // Propagate changes to uses
1688             if (p->Opcode() == Op_CmpU) {
1689               // Got a CmpU which might need the new type information from node n.
1690               if(p->bottom_type() != type(p)) { // If not already bottomed out
1691                 worklist.push(p); // Propagate change to user
1692               }
1693             }
1694           }
1695         }
1696       }
1697     }
1698   }
1699 }
1700 
1701 //------------------------------do_transform-----------------------------------
1702 // Top level driver for the recursive transformer
1703 void PhaseCCP::do_transform() {
1704   // Correct leaves of new-space Nodes; they point to old-space.
1705   C->set_root( transform(C->root())->as_Root() );
1706   assert( C->top(),  "missing TOP node" );
1707   assert( C->root(), "missing root" );
1708 }
1709 
1710 //------------------------------transform--------------------------------------
1711 // Given a Node in old-space, clone him into new-space.
1712 // Convert any of his old-space children into new-space children.
1713 Node *PhaseCCP::transform( Node *n ) {
1714   Node *new_node = _nodes[n->_idx]; // Check for transformed node
1715   if( new_node != NULL )
1716     return new_node;                // Been there, done that, return old answer
1717   new_node = transform_once(n);     // Check for constant
1718   _nodes.map( n->_idx, new_node );  // Flag as having been cloned
1719 
1720   // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
1721   GrowableArray <Node *> trstack(C->live_nodes() >> 1);
1722 
1723   trstack.push(new_node);           // Process children of cloned node
1724   while ( trstack.is_nonempty() ) {
1725     Node *clone = trstack.pop();
1726     uint cnt = clone->req();
1727     for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
1728       Node *input = clone->in(i);
1729       if( input != NULL ) {                    // Ignore NULLs
1730         Node *new_input = _nodes[input->_idx]; // Check for cloned input node
1731         if( new_input == NULL ) {
1732           new_input = transform_once(input);   // Check for constant
1733           _nodes.map( input->_idx, new_input );// Flag as having been cloned
1734           trstack.push(new_input);
1735         }
1736         assert( new_input == clone->in(i), "insanity check");
1737       }
1738     }
1739   }
1740   return new_node;
1741 }
1742 
1743 
1744 //------------------------------transform_once---------------------------------
1745 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
1746 Node *PhaseCCP::transform_once( Node *n ) {
1747   const Type *t = type(n);
1748   // Constant?  Use constant Node instead
1749   if( t->singleton() ) {
1750     Node *nn = n;               // Default is to return the original constant
1751     if( t == Type::TOP ) {
1752       // cache my top node on the Compile instance
1753       if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
1754         C->set_cached_top_node(ConNode::make(Type::TOP));
1755         set_type(C->top(), Type::TOP);
1756       }
1757       nn = C->top();
1758     }
1759     if( !n->is_Con() ) {
1760       if( t != Type::TOP ) {
1761         nn = makecon(t);        // ConNode::make(t);
1762         NOT_PRODUCT( inc_constants(); )
1763       } else if( n->is_Region() ) { // Unreachable region
1764         // Note: nn == C->top()
1765         n->set_req(0, NULL);        // Cut selfreference
1766         // Eagerly remove dead phis to avoid phis copies creation.
1767         for (DUIterator i = n->outs(); n->has_out(i); i++) {
1768           Node* m = n->out(i);
1769           if( m->is_Phi() ) {
1770             assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
1771             replace_node(m, nn);
1772             --i; // deleted this phi; rescan starting with next position
1773           }
1774         }
1775       }
1776       replace_node(n,nn);       // Update DefUse edges for new constant
1777     }
1778     return nn;
1779   }
1780 
1781   // If x is a TypeNode, capture any more-precise type permanently into Node
1782   if (t != n->bottom_type()) {
1783     hash_delete(n);             // changing bottom type may force a rehash
1784     n->raise_bottom_type(t);
1785     _worklist.push(n);          // n re-enters the hash table via the worklist
1786   }
1787 
1788   // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
1789   switch( n->Opcode() ) {
1790   case Op_FastLock:      // Revisit FastLocks for lock coarsening
1791   case Op_If:
1792   case Op_CountedLoopEnd:
1793   case Op_Region:
1794   case Op_Loop:
1795   case Op_CountedLoop:
1796   case Op_Conv2B:
1797   case Op_Opaque1:
1798   case Op_Opaque2:
1799     _worklist.push(n);
1800     break;
1801   default:
1802     break;
1803   }
1804 
1805   return  n;
1806 }
1807 
1808 //---------------------------------saturate------------------------------------
1809 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
1810                                const Type* limit_type) const {
1811   const Type* wide_type = new_type->widen(old_type, limit_type);
1812   if (wide_type != new_type) {          // did we widen?
1813     // If so, we may have widened beyond the limit type.  Clip it back down.
1814     new_type = wide_type->filter(limit_type);
1815   }
1816   return new_type;
1817 }
1818 
1819 //------------------------------print_statistics-------------------------------
1820 #ifndef PRODUCT
1821 void PhaseCCP::print_statistics() {
1822   tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
1823 }
1824 #endif
1825 
1826 
1827 //=============================================================================
1828 #ifndef PRODUCT
1829 uint PhasePeephole::_total_peepholes = 0;
1830 #endif
1831 //------------------------------PhasePeephole----------------------------------
1832 // Conditional Constant Propagation, ala Wegman & Zadeck
1833 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
1834   : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
1835   NOT_PRODUCT( clear_peepholes(); )
1836 }
1837 
1838 #ifndef PRODUCT
1839 //------------------------------~PhasePeephole---------------------------------
1840 PhasePeephole::~PhasePeephole() {
1841   _total_peepholes += count_peepholes();
1842 }
1843 #endif
1844 
1845 //------------------------------transform--------------------------------------
1846 Node *PhasePeephole::transform( Node *n ) {
1847   ShouldNotCallThis();
1848   return NULL;
1849 }
1850 
1851 //------------------------------do_transform-----------------------------------
1852 void PhasePeephole::do_transform() {
1853   bool method_name_not_printed = true;
1854 
1855   // Examine each basic block
1856   for (uint block_number = 1; block_number < _cfg.number_of_blocks(); ++block_number) {
1857     Block* block = _cfg.get_block(block_number);
1858     bool block_not_printed = true;
1859 
1860     // and each instruction within a block
1861     uint end_index = block->number_of_nodes();
1862     // block->end_idx() not valid after PhaseRegAlloc
1863     for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
1864       Node     *n = block->get_node(instruction_index);
1865       if( n->is_Mach() ) {
1866         MachNode *m = n->as_Mach();
1867         int deleted_count = 0;
1868         // check for peephole opportunities
1869         MachNode *m2 = m->peephole(block, instruction_index, _regalloc, deleted_count);
1870         if( m2 != NULL ) {
1871 #ifndef PRODUCT
1872           if( PrintOptoPeephole ) {
1873             // Print method, first time only
1874             if( C->method() && method_name_not_printed ) {
1875               C->method()->print_short_name(); tty->cr();
1876               method_name_not_printed = false;
1877             }
1878             // Print this block
1879             if( Verbose && block_not_printed) {
1880               tty->print_cr("in block");
1881               block->dump();
1882               block_not_printed = false;
1883             }
1884             // Print instructions being deleted
1885             for( int i = (deleted_count - 1); i >= 0; --i ) {
1886               block->get_node(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
1887             }
1888             tty->print_cr("replaced with");
1889             // Print new instruction
1890             m2->format(_regalloc);
1891             tty->print("\n\n");
1892           }
1893 #endif
1894           // Remove old nodes from basic block and update instruction_index
1895           // (old nodes still exist and may have edges pointing to them
1896           //  as register allocation info is stored in the allocator using
1897           //  the node index to live range mappings.)
1898           uint safe_instruction_index = (instruction_index - deleted_count);
1899           for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
1900             block->remove_node( instruction_index );
1901           }
1902           // install new node after safe_instruction_index
1903           block->insert_node(m2, safe_instruction_index + 1);
1904           end_index = block->number_of_nodes() - 1; // Recompute new block size
1905           NOT_PRODUCT( inc_peepholes(); )
1906         }
1907       }
1908     }
1909   }
1910 }
1911 
1912 //------------------------------print_statistics-------------------------------
1913 #ifndef PRODUCT
1914 void PhasePeephole::print_statistics() {
1915   tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
1916 }
1917 #endif
1918 
1919 
1920 //=============================================================================
1921 //------------------------------set_req_X--------------------------------------
1922 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
1923   assert( is_not_dead(n), "can not use dead node");
1924   assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
1925   Node *old = in(i);
1926   set_req(i, n);
1927 
1928   // old goes dead?
1929   if( old ) {
1930     switch (old->outcnt()) {
1931     case 0:
1932       // Put into the worklist to kill later. We do not kill it now because the
1933       // recursive kill will delete the current node (this) if dead-loop exists
1934       if (!old->is_top())
1935         igvn->_worklist.push( old );
1936       break;
1937     case 1:
1938       if( old->is_Store() || old->has_special_unique_user() )
1939         igvn->add_users_to_worklist( old );
1940       break;
1941     case 2:
1942       if( old->is_Store() )
1943         igvn->add_users_to_worklist( old );
1944       if( old->Opcode() == Op_Region )
1945         igvn->_worklist.push(old);
1946       break;
1947     case 3:
1948       if( old->Opcode() == Op_Region ) {
1949         igvn->_worklist.push(old);
1950         igvn->add_users_to_worklist( old );
1951       }
1952       break;
1953     default:
1954       break;
1955     }
1956   }
1957 
1958 }
1959 
1960 //-------------------------------replace_by-----------------------------------
1961 // Using def-use info, replace one node for another.  Follow the def-use info
1962 // to all users of the OLD node.  Then make all uses point to the NEW node.
1963 void Node::replace_by(Node *new_node) {
1964   assert(!is_top(), "top node has no DU info");
1965   for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
1966     Node* use = last_out(i);
1967     uint uses_found = 0;
1968     for (uint j = 0; j < use->len(); j++) {
1969       if (use->in(j) == this) {
1970         if (j < use->req())
1971               use->set_req(j, new_node);
1972         else  use->set_prec(j, new_node);
1973         uses_found++;
1974       }
1975     }
1976     i -= uses_found;    // we deleted 1 or more copies of this edge
1977   }
1978 }
1979 
1980 //=============================================================================
1981 //-----------------------------------------------------------------------------
1982 void Type_Array::grow( uint i ) {
1983   if( !_max ) {
1984     _max = 1;
1985     _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
1986     _types[0] = NULL;
1987   }
1988   uint old = _max;
1989   while( i >= _max ) _max <<= 1;        // Double to fit
1990   _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
1991   memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
1992 }
1993 
1994 //------------------------------dump-------------------------------------------
1995 #ifndef PRODUCT
1996 void Type_Array::dump() const {
1997   uint max = Size();
1998   for( uint i = 0; i < max; i++ ) {
1999     if( _types[i] != NULL ) {
2000       tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
2001     }
2002   }
2003 }
2004 #endif