1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/callGenerator.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/countbitsnode.hpp"
  39 #include "opto/intrinsicnode.hpp"
  40 #include "opto/idealKit.hpp"
  41 #include "opto/mathexactnode.hpp"
  42 #include "opto/movenode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/opaquenode.hpp"
  46 #include "opto/parse.hpp"
  47 #include "opto/runtime.hpp"
  48 #include "opto/subnode.hpp"
  49 #include "prims/nativeLookup.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "trace/traceMacros.hpp"
  52 
  53 class LibraryIntrinsic : public InlineCallGenerator {
  54   // Extend the set of intrinsics known to the runtime:
  55  public:
  56  private:
  57   bool             _is_virtual;
  58   bool             _does_virtual_dispatch;
  59   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  60   int8_t           _last_predicate; // Last generated predicate
  61   vmIntrinsics::ID _intrinsic_id;
  62 
  63  public:
  64   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  65     : InlineCallGenerator(m),
  66       _is_virtual(is_virtual),
  67       _does_virtual_dispatch(does_virtual_dispatch),
  68       _predicates_count((int8_t)predicates_count),
  69       _last_predicate((int8_t)-1),
  70       _intrinsic_id(id)
  71   {
  72   }
  73   virtual bool is_intrinsic() const { return true; }
  74   virtual bool is_virtual()   const { return _is_virtual; }
  75   virtual bool is_predicated() const { return _predicates_count > 0; }
  76   virtual int  predicates_count() const { return _predicates_count; }
  77   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  78   virtual JVMState* generate(JVMState* jvms);
  79   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  80   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  81 };
  82 
  83 
  84 // Local helper class for LibraryIntrinsic:
  85 class LibraryCallKit : public GraphKit {
  86  private:
  87   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  88   Node*             _result;        // the result node, if any
  89   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  90 
  91   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  92 
  93  public:
  94   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  95     : GraphKit(jvms),
  96       _intrinsic(intrinsic),
  97       _result(NULL)
  98   {
  99     // Check if this is a root compile.  In that case we don't have a caller.
 100     if (!jvms->has_method()) {
 101       _reexecute_sp = sp();
 102     } else {
 103       // Find out how many arguments the interpreter needs when deoptimizing
 104       // and save the stack pointer value so it can used by uncommon_trap.
 105       // We find the argument count by looking at the declared signature.
 106       bool ignored_will_link;
 107       ciSignature* declared_signature = NULL;
 108       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 109       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 110       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 111     }
 112   }
 113 
 114   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 115 
 116   ciMethod*         caller()    const    { return jvms()->method(); }
 117   int               bci()       const    { return jvms()->bci(); }
 118   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 119   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 120   ciMethod*         callee()    const    { return _intrinsic->method(); }
 121 
 122   bool  try_to_inline(int predicate);
 123   Node* try_to_predicate(int predicate);
 124 
 125   void push_result() {
 126     // Push the result onto the stack.
 127     if (!stopped() && result() != NULL) {
 128       BasicType bt = result()->bottom_type()->basic_type();
 129       push_node(bt, result());
 130     }
 131   }
 132 
 133  private:
 134   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 135     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 136   }
 137 
 138   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 139   void  set_result(RegionNode* region, PhiNode* value);
 140   Node*     result() { return _result; }
 141 
 142   virtual int reexecute_sp() { return _reexecute_sp; }
 143 
 144   // Helper functions to inline natives
 145   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 146   Node* generate_slow_guard(Node* test, RegionNode* region);
 147   Node* generate_fair_guard(Node* test, RegionNode* region);
 148   Node* generate_negative_guard(Node* index, RegionNode* region,
 149                                 // resulting CastII of index:
 150                                 Node* *pos_index = NULL);
 151   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 152                              Node* array_length,
 153                              RegionNode* region);
 154   Node* generate_current_thread(Node* &tls_output);
 155   Node* load_mirror_from_klass(Node* klass);
 156   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 157                                       RegionNode* region, int null_path,
 158                                       int offset);
 159   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 160                                RegionNode* region, int null_path) {
 161     int offset = java_lang_Class::klass_offset_in_bytes();
 162     return load_klass_from_mirror_common(mirror, never_see_null,
 163                                          region, null_path,
 164                                          offset);
 165   }
 166   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 167                                      RegionNode* region, int null_path) {
 168     int offset = java_lang_Class::array_klass_offset_in_bytes();
 169     return load_klass_from_mirror_common(mirror, never_see_null,
 170                                          region, null_path,
 171                                          offset);
 172   }
 173   Node* generate_access_flags_guard(Node* kls,
 174                                     int modifier_mask, int modifier_bits,
 175                                     RegionNode* region);
 176   Node* generate_interface_guard(Node* kls, RegionNode* region);
 177   Node* generate_array_guard(Node* kls, RegionNode* region) {
 178     return generate_array_guard_common(kls, region, false, false);
 179   }
 180   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 181     return generate_array_guard_common(kls, region, false, true);
 182   }
 183   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 184     return generate_array_guard_common(kls, region, true, false);
 185   }
 186   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 187     return generate_array_guard_common(kls, region, true, true);
 188   }
 189   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 190                                     bool obj_array, bool not_array);
 191   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 192   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 193                                      bool is_virtual = false, bool is_static = false);
 194   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 195     return generate_method_call(method_id, false, true);
 196   }
 197   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 198     return generate_method_call(method_id, true, false);
 199   }
 200   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 201 
 202   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 203   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 204   bool inline_string_compareTo();
 205   bool inline_string_indexOf();
 206   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 207   bool inline_string_equals();
 208   Node* round_double_node(Node* n);
 209   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 210   bool inline_math_native(vmIntrinsics::ID id);
 211   bool inline_trig(vmIntrinsics::ID id);
 212   bool inline_math(vmIntrinsics::ID id);
 213   template <typename OverflowOp>
 214   bool inline_math_overflow(Node* arg1, Node* arg2);
 215   void inline_math_mathExact(Node* math, Node* test);
 216   bool inline_math_addExactI(bool is_increment);
 217   bool inline_math_addExactL(bool is_increment);
 218   bool inline_math_multiplyExactI();
 219   bool inline_math_multiplyExactL();
 220   bool inline_math_negateExactI();
 221   bool inline_math_negateExactL();
 222   bool inline_math_subtractExactI(bool is_decrement);
 223   bool inline_math_subtractExactL(bool is_decrement);
 224   bool inline_exp();
 225   bool inline_pow();
 226   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 227   bool inline_min_max(vmIntrinsics::ID id);
 228   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 229   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 230   int classify_unsafe_addr(Node* &base, Node* &offset);
 231   Node* make_unsafe_address(Node* base, Node* offset);
 232   // Helper for inline_unsafe_access.
 233   // Generates the guards that check whether the result of
 234   // Unsafe.getObject should be recorded in an SATB log buffer.
 235   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 236   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 237   static bool klass_needs_init_guard(Node* kls);
 238   bool inline_unsafe_allocate();
 239   bool inline_unsafe_copyMemory();
 240   bool inline_native_currentThread();
 241 #ifdef TRACE_HAVE_INTRINSICS
 242   bool inline_native_classID();
 243   bool inline_native_threadID();
 244 #endif
 245   bool inline_native_time_funcs(address method, const char* funcName);
 246   bool inline_native_isInterrupted();
 247   bool inline_native_Class_query(vmIntrinsics::ID id);
 248   bool inline_native_subtype_check();
 249 
 250   bool inline_native_newArray();
 251   bool inline_native_getLength();
 252   bool inline_array_copyOf(bool is_copyOfRange);
 253   bool inline_array_equals();
 254   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 255   bool inline_native_clone(bool is_virtual);
 256   bool inline_native_Reflection_getCallerClass();
 257   // Helper function for inlining native object hash method
 258   bool inline_native_hashcode(bool is_virtual, bool is_static);
 259   bool inline_native_getClass();
 260 
 261   // Helper functions for inlining arraycopy
 262   bool inline_arraycopy();
 263   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 264                                                 RegionNode* slow_region);
 265   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 266   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
 267 
 268   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 269   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 270   bool inline_unsafe_ordered_store(BasicType type);
 271   bool inline_unsafe_fence(vmIntrinsics::ID id);
 272   bool inline_fp_conversions(vmIntrinsics::ID id);
 273   bool inline_number_methods(vmIntrinsics::ID id);
 274   bool inline_reference_get();
 275   bool inline_Class_cast();
 276   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 277   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 278   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 279   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 280   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 281   bool inline_ghash_processBlocks();
 282   bool inline_sha_implCompress(vmIntrinsics::ID id);
 283   bool inline_digestBase_implCompressMB(int predicate);
 284   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 285                                  bool long_state, address stubAddr, const char *stubName,
 286                                  Node* src_start, Node* ofs, Node* limit);
 287   Node* get_state_from_sha_object(Node *sha_object);
 288   Node* get_state_from_sha5_object(Node *sha_object);
 289   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 290   bool inline_encodeISOArray();
 291   bool inline_updateCRC32();
 292   bool inline_updateBytesCRC32();
 293   bool inline_updateByteBufferCRC32();
 294   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 295   bool inline_updateBytesCRC32C();
 296   bool inline_updateDirectByteBufferCRC32C();
 297   bool inline_multiplyToLen();
 298   bool inline_squareToLen();
 299   bool inline_mulAdd();
 300   bool inline_montgomeryMultiply();
 301   bool inline_montgomerySquare();
 302 
 303   bool inline_profileBoolean();
 304   bool inline_isCompileConstant();
 305 };
 306 
 307 
 308 //---------------------------make_vm_intrinsic----------------------------
 309 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 310   vmIntrinsics::ID id = m->intrinsic_id();
 311   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 312 
 313   ccstr disable_intr = NULL;
 314 
 315   if ((DisableIntrinsic[0] != '\0'
 316        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
 317       (method_has_option_value("DisableIntrinsic", disable_intr)
 318        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
 319     // disabled by a user request on the command line:
 320     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 321     return NULL;
 322   }
 323 
 324   if (!m->is_loaded()) {
 325     // do not attempt to inline unloaded methods
 326     return NULL;
 327   }
 328 
 329   // Only a few intrinsics implement a virtual dispatch.
 330   // They are expensive calls which are also frequently overridden.
 331   if (is_virtual) {
 332     switch (id) {
 333     case vmIntrinsics::_hashCode:
 334     case vmIntrinsics::_clone:
 335       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 336       break;
 337     default:
 338       return NULL;
 339     }
 340   }
 341 
 342   // -XX:-InlineNatives disables nearly all intrinsics:
 343   if (!InlineNatives) {
 344     switch (id) {
 345     case vmIntrinsics::_indexOf:
 346     case vmIntrinsics::_compareTo:
 347     case vmIntrinsics::_equals:
 348     case vmIntrinsics::_equalsC:
 349     case vmIntrinsics::_getAndAddInt:
 350     case vmIntrinsics::_getAndAddLong:
 351     case vmIntrinsics::_getAndSetInt:
 352     case vmIntrinsics::_getAndSetLong:
 353     case vmIntrinsics::_getAndSetObject:
 354     case vmIntrinsics::_loadFence:
 355     case vmIntrinsics::_storeFence:
 356     case vmIntrinsics::_fullFence:
 357       break;  // InlineNatives does not control String.compareTo
 358     case vmIntrinsics::_Reference_get:
 359       break;  // InlineNatives does not control Reference.get
 360     default:
 361       return NULL;
 362     }
 363   }
 364 
 365   int predicates = 0;
 366   bool does_virtual_dispatch = false;
 367 
 368   switch (id) {
 369   case vmIntrinsics::_compareTo:
 370     if (!SpecialStringCompareTo)  return NULL;
 371     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 372     break;
 373   case vmIntrinsics::_indexOf:
 374     if (!SpecialStringIndexOf)  return NULL;
 375     break;
 376   case vmIntrinsics::_equals:
 377     if (!SpecialStringEquals)  return NULL;
 378     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 379     break;
 380   case vmIntrinsics::_equalsC:
 381     if (!SpecialArraysEquals)  return NULL;
 382     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 383     break;
 384   case vmIntrinsics::_arraycopy:
 385     if (!InlineArrayCopy)  return NULL;
 386     break;
 387   case vmIntrinsics::_copyMemory:
 388     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 389     if (!InlineArrayCopy)  return NULL;
 390     break;
 391   case vmIntrinsics::_hashCode:
 392     if (!InlineObjectHash)  return NULL;
 393     does_virtual_dispatch = true;
 394     break;
 395   case vmIntrinsics::_clone:
 396     does_virtual_dispatch = true;
 397   case vmIntrinsics::_copyOf:
 398   case vmIntrinsics::_copyOfRange:
 399     if (!InlineObjectCopy)  return NULL;
 400     // These also use the arraycopy intrinsic mechanism:
 401     if (!InlineArrayCopy)  return NULL;
 402     break;
 403   case vmIntrinsics::_encodeISOArray:
 404     if (!SpecialEncodeISOArray)  return NULL;
 405     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 406     break;
 407   case vmIntrinsics::_checkIndex:
 408     // We do not intrinsify this.  The optimizer does fine with it.
 409     return NULL;
 410 
 411   case vmIntrinsics::_getCallerClass:
 412     if (!InlineReflectionGetCallerClass)  return NULL;
 413     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 414     break;
 415 
 416   case vmIntrinsics::_bitCount_i:
 417     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 418     break;
 419 
 420   case vmIntrinsics::_bitCount_l:
 421     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 422     break;
 423 
 424   case vmIntrinsics::_numberOfLeadingZeros_i:
 425     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 426     break;
 427 
 428   case vmIntrinsics::_numberOfLeadingZeros_l:
 429     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 430     break;
 431 
 432   case vmIntrinsics::_numberOfTrailingZeros_i:
 433     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 434     break;
 435 
 436   case vmIntrinsics::_numberOfTrailingZeros_l:
 437     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 438     break;
 439 
 440   case vmIntrinsics::_reverseBytes_c:
 441     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 442     break;
 443   case vmIntrinsics::_reverseBytes_s:
 444     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 445     break;
 446   case vmIntrinsics::_reverseBytes_i:
 447     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 448     break;
 449   case vmIntrinsics::_reverseBytes_l:
 450     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 451     break;
 452 
 453   case vmIntrinsics::_Reference_get:
 454     // Use the intrinsic version of Reference.get() so that the value in
 455     // the referent field can be registered by the G1 pre-barrier code.
 456     // Also add memory barrier to prevent commoning reads from this field
 457     // across safepoint since GC can change it value.
 458     break;
 459 
 460   case vmIntrinsics::_compareAndSwapObject:
 461 #ifdef _LP64
 462     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 463 #endif
 464     break;
 465 
 466   case vmIntrinsics::_compareAndSwapLong:
 467     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 468     break;
 469 
 470   case vmIntrinsics::_getAndAddInt:
 471     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 472     break;
 473 
 474   case vmIntrinsics::_getAndAddLong:
 475     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 476     break;
 477 
 478   case vmIntrinsics::_getAndSetInt:
 479     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 480     break;
 481 
 482   case vmIntrinsics::_getAndSetLong:
 483     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 484     break;
 485 
 486   case vmIntrinsics::_getAndSetObject:
 487 #ifdef _LP64
 488     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 489     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 490     break;
 491 #else
 492     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 493     break;
 494 #endif
 495 
 496   case vmIntrinsics::_aescrypt_encryptBlock:
 497   case vmIntrinsics::_aescrypt_decryptBlock:
 498     if (!UseAESIntrinsics) return NULL;
 499     break;
 500 
 501   case vmIntrinsics::_multiplyToLen:
 502     if (!UseMultiplyToLenIntrinsic) return NULL;
 503     break;
 504 
 505   case vmIntrinsics::_squareToLen:
 506     if (!UseSquareToLenIntrinsic) return NULL;
 507     break;
 508 
 509   case vmIntrinsics::_mulAdd:
 510     if (!UseMulAddIntrinsic) return NULL;
 511     break;
 512 
 513   case vmIntrinsics::_montgomeryMultiply:
 514      if (!UseMontgomeryMultiplyIntrinsic) return NULL;
 515     break;
 516   case vmIntrinsics::_montgomerySquare:
 517      if (!UseMontgomerySquareIntrinsic) return NULL;
 518     break;
 519 
 520   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 521   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 522     if (!UseAESIntrinsics) return NULL;
 523     // these two require the predicated logic
 524     predicates = 1;
 525     break;
 526 
 527   case vmIntrinsics::_sha_implCompress:
 528     if (!UseSHA1Intrinsics) return NULL;
 529     break;
 530 
 531   case vmIntrinsics::_sha2_implCompress:
 532     if (!UseSHA256Intrinsics) return NULL;
 533     break;
 534 
 535   case vmIntrinsics::_sha5_implCompress:
 536     if (!UseSHA512Intrinsics) return NULL;
 537     break;
 538 
 539   case vmIntrinsics::_digestBase_implCompressMB:
 540     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 541     predicates = 3;
 542     break;
 543 
 544   case vmIntrinsics::_ghash_processBlocks:
 545     if (!UseGHASHIntrinsics) return NULL;
 546     break;
 547 
 548   case vmIntrinsics::_updateCRC32:
 549   case vmIntrinsics::_updateBytesCRC32:
 550   case vmIntrinsics::_updateByteBufferCRC32:
 551     if (!UseCRC32Intrinsics) return NULL;
 552     break;
 553 
 554   case vmIntrinsics::_updateBytesCRC32C:
 555   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 556     if (!UseCRC32CIntrinsics) return NULL;
 557     break;
 558 
 559   case vmIntrinsics::_incrementExactI:
 560   case vmIntrinsics::_addExactI:
 561     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 562     break;
 563   case vmIntrinsics::_incrementExactL:
 564   case vmIntrinsics::_addExactL:
 565     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 566     break;
 567   case vmIntrinsics::_decrementExactI:
 568   case vmIntrinsics::_subtractExactI:
 569     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 570     break;
 571   case vmIntrinsics::_decrementExactL:
 572   case vmIntrinsics::_subtractExactL:
 573     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 574     break;
 575   case vmIntrinsics::_negateExactI:
 576     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 577     break;
 578   case vmIntrinsics::_negateExactL:
 579     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 580     break;
 581   case vmIntrinsics::_multiplyExactI:
 582     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 583     break;
 584   case vmIntrinsics::_multiplyExactL:
 585     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 586     break;
 587 
 588   case vmIntrinsics::_getShortUnaligned:
 589   case vmIntrinsics::_getCharUnaligned:
 590   case vmIntrinsics::_getIntUnaligned:
 591   case vmIntrinsics::_getLongUnaligned:
 592   case vmIntrinsics::_putShortUnaligned:
 593   case vmIntrinsics::_putCharUnaligned:
 594   case vmIntrinsics::_putIntUnaligned:
 595   case vmIntrinsics::_putLongUnaligned:
 596     if (!UseUnalignedAccesses) return NULL;
 597     break;
 598 
 599  default:
 600     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 601     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 602     break;
 603   }
 604 
 605   // -XX:-InlineClassNatives disables natives from the Class class.
 606   // The flag applies to all reflective calls, notably Array.newArray
 607   // (visible to Java programmers as Array.newInstance).
 608   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 609       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 610     if (!InlineClassNatives)  return NULL;
 611   }
 612 
 613   // -XX:-InlineThreadNatives disables natives from the Thread class.
 614   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 615     if (!InlineThreadNatives)  return NULL;
 616   }
 617 
 618   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 619   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 620       m->holder()->name() == ciSymbol::java_lang_Float() ||
 621       m->holder()->name() == ciSymbol::java_lang_Double()) {
 622     if (!InlineMathNatives)  return NULL;
 623   }
 624 
 625   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 626   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 627     if (!InlineUnsafeOps)  return NULL;
 628   }
 629 
 630   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 631 }
 632 
 633 //----------------------register_library_intrinsics-----------------------
 634 // Initialize this file's data structures, for each Compile instance.
 635 void Compile::register_library_intrinsics() {
 636   // Nothing to do here.
 637 }
 638 
 639 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 640   LibraryCallKit kit(jvms, this);
 641   Compile* C = kit.C;
 642   int nodes = C->unique();
 643 #ifndef PRODUCT
 644   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 645     char buf[1000];
 646     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 647     tty->print_cr("Intrinsic %s", str);
 648   }
 649 #endif
 650   ciMethod* callee = kit.callee();
 651   const int bci    = kit.bci();
 652 
 653   // Try to inline the intrinsic.
 654   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 655       kit.try_to_inline(_last_predicate)) {
 656     if (C->print_intrinsics() || C->print_inlining()) {
 657       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 658     }
 659     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 660     if (C->log()) {
 661       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 662                      vmIntrinsics::name_at(intrinsic_id()),
 663                      (is_virtual() ? " virtual='1'" : ""),
 664                      C->unique() - nodes);
 665     }
 666     // Push the result from the inlined method onto the stack.
 667     kit.push_result();
 668     C->print_inlining_update(this);
 669     return kit.transfer_exceptions_into_jvms();
 670   }
 671 
 672   // The intrinsic bailed out
 673   if (C->print_intrinsics() || C->print_inlining()) {
 674     if (jvms->has_method()) {
 675       // Not a root compile.
 676       const char* msg;
 677       if (callee->intrinsic_candidate()) {
 678         msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 679       } else {
 680         msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 681                            : "failed to inline (intrinsic), method not annotated";
 682       }
 683       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 684     } else {
 685       // Root compile
 686       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 687                vmIntrinsics::name_at(intrinsic_id()),
 688                (is_virtual() ? " (virtual)" : ""), bci);
 689     }
 690   }
 691   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 692   C->print_inlining_update(this);
 693   return NULL;
 694 }
 695 
 696 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 697   LibraryCallKit kit(jvms, this);
 698   Compile* C = kit.C;
 699   int nodes = C->unique();
 700   _last_predicate = predicate;
 701 #ifndef PRODUCT
 702   assert(is_predicated() && predicate < predicates_count(), "sanity");
 703   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 704     char buf[1000];
 705     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 706     tty->print_cr("Predicate for intrinsic %s", str);
 707   }
 708 #endif
 709   ciMethod* callee = kit.callee();
 710   const int bci    = kit.bci();
 711 
 712   Node* slow_ctl = kit.try_to_predicate(predicate);
 713   if (!kit.failing()) {
 714     if (C->print_intrinsics() || C->print_inlining()) {
 715       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 716     }
 717     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 718     if (C->log()) {
 719       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 720                      vmIntrinsics::name_at(intrinsic_id()),
 721                      (is_virtual() ? " virtual='1'" : ""),
 722                      C->unique() - nodes);
 723     }
 724     return slow_ctl; // Could be NULL if the check folds.
 725   }
 726 
 727   // The intrinsic bailed out
 728   if (C->print_intrinsics() || C->print_inlining()) {
 729     if (jvms->has_method()) {
 730       // Not a root compile.
 731       const char* msg = "failed to generate predicate for intrinsic";
 732       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 733     } else {
 734       // Root compile
 735       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 736                                         vmIntrinsics::name_at(intrinsic_id()),
 737                                         (is_virtual() ? " (virtual)" : ""), bci);
 738     }
 739   }
 740   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 741   return NULL;
 742 }
 743 
 744 bool LibraryCallKit::try_to_inline(int predicate) {
 745   // Handle symbolic names for otherwise undistinguished boolean switches:
 746   const bool is_store       = true;
 747   const bool is_native_ptr  = true;
 748   const bool is_static      = true;
 749   const bool is_volatile    = true;
 750 
 751   if (!jvms()->has_method()) {
 752     // Root JVMState has a null method.
 753     assert(map()->memory()->Opcode() == Op_Parm, "");
 754     // Insert the memory aliasing node
 755     set_all_memory(reset_memory());
 756   }
 757   assert(merged_memory(), "");
 758 
 759 
 760   switch (intrinsic_id()) {
 761   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 762   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 763   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 764 
 765   case vmIntrinsics::_dsin:
 766   case vmIntrinsics::_dcos:
 767   case vmIntrinsics::_dtan:
 768   case vmIntrinsics::_dabs:
 769   case vmIntrinsics::_datan2:
 770   case vmIntrinsics::_dsqrt:
 771   case vmIntrinsics::_dexp:
 772   case vmIntrinsics::_dlog:
 773   case vmIntrinsics::_dlog10:
 774   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 775 
 776   case vmIntrinsics::_min:
 777   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 778 
 779   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 780   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 781   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 782   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 783   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 784   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 785   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 786   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 787   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 788   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 789   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 790   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 791 
 792   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 793 
 794   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 795   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 796   case vmIntrinsics::_equals:                   return inline_string_equals();
 797 
 798   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 799   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 800   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 801   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 802   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 803   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 804   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 805   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 806   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 807 
 808   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 809   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 810   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 811   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 812   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 813   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 814   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 815   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 816   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 817 
 818   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 819   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 820   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 821   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 822   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 823   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 824   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 825   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 826 
 827   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 828   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 829   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 830   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 831   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 832   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 833   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 834   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 835 
 836   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 837   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 838   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 839   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 840   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 841   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 842   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 843   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 844   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 845 
 846   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 847   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 848   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 849   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 850   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 851   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 852   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 853   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 854   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 855 
 856   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 857   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 858   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 859   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 860 
 861   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 862   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 863   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 864   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 865 
 866   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 867   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 868   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 869 
 870   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 871   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 872   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 873 
 874   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 875   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 876   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 877   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 878   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 879 
 880   case vmIntrinsics::_loadFence:
 881   case vmIntrinsics::_storeFence:
 882   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 883 
 884   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 885   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 886 
 887 #ifdef TRACE_HAVE_INTRINSICS
 888   case vmIntrinsics::_classID:                  return inline_native_classID();
 889   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 890   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 891 #endif
 892   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 893   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 894   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 895   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 896   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 897   case vmIntrinsics::_getLength:                return inline_native_getLength();
 898   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 899   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 900   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 901   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 902 
 903   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 904 
 905   case vmIntrinsics::_isInstance:
 906   case vmIntrinsics::_getModifiers:
 907   case vmIntrinsics::_isInterface:
 908   case vmIntrinsics::_isArray:
 909   case vmIntrinsics::_isPrimitive:
 910   case vmIntrinsics::_getSuperclass:
 911   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 912 
 913   case vmIntrinsics::_floatToRawIntBits:
 914   case vmIntrinsics::_floatToIntBits:
 915   case vmIntrinsics::_intBitsToFloat:
 916   case vmIntrinsics::_doubleToRawLongBits:
 917   case vmIntrinsics::_doubleToLongBits:
 918   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 919 
 920   case vmIntrinsics::_numberOfLeadingZeros_i:
 921   case vmIntrinsics::_numberOfLeadingZeros_l:
 922   case vmIntrinsics::_numberOfTrailingZeros_i:
 923   case vmIntrinsics::_numberOfTrailingZeros_l:
 924   case vmIntrinsics::_bitCount_i:
 925   case vmIntrinsics::_bitCount_l:
 926   case vmIntrinsics::_reverseBytes_i:
 927   case vmIntrinsics::_reverseBytes_l:
 928   case vmIntrinsics::_reverseBytes_s:
 929   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 930 
 931   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 932 
 933   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 934 
 935   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 936 
 937   case vmIntrinsics::_aescrypt_encryptBlock:
 938   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 939 
 940   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 941   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 942     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 943 
 944   case vmIntrinsics::_sha_implCompress:
 945   case vmIntrinsics::_sha2_implCompress:
 946   case vmIntrinsics::_sha5_implCompress:
 947     return inline_sha_implCompress(intrinsic_id());
 948 
 949   case vmIntrinsics::_digestBase_implCompressMB:
 950     return inline_digestBase_implCompressMB(predicate);
 951 
 952   case vmIntrinsics::_multiplyToLen:
 953     return inline_multiplyToLen();
 954 
 955   case vmIntrinsics::_squareToLen:
 956     return inline_squareToLen();
 957 
 958   case vmIntrinsics::_mulAdd:
 959     return inline_mulAdd();
 960 
 961   case vmIntrinsics::_montgomeryMultiply:
 962     return inline_montgomeryMultiply();
 963   case vmIntrinsics::_montgomerySquare:
 964     return inline_montgomerySquare();
 965 
 966   case vmIntrinsics::_ghash_processBlocks:
 967     return inline_ghash_processBlocks();
 968 
 969   case vmIntrinsics::_encodeISOArray:
 970     return inline_encodeISOArray();
 971 
 972   case vmIntrinsics::_updateCRC32:
 973     return inline_updateCRC32();
 974   case vmIntrinsics::_updateBytesCRC32:
 975     return inline_updateBytesCRC32();
 976   case vmIntrinsics::_updateByteBufferCRC32:
 977     return inline_updateByteBufferCRC32();
 978 
 979   case vmIntrinsics::_updateBytesCRC32C:
 980     return inline_updateBytesCRC32C();
 981   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 982     return inline_updateDirectByteBufferCRC32C();
 983 
 984   case vmIntrinsics::_profileBoolean:
 985     return inline_profileBoolean();
 986   case vmIntrinsics::_isCompileConstant:
 987     return inline_isCompileConstant();
 988 
 989   default:
 990     // If you get here, it may be that someone has added a new intrinsic
 991     // to the list in vmSymbols.hpp without implementing it here.
 992 #ifndef PRODUCT
 993     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 994       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 995                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 996     }
 997 #endif
 998     return false;
 999   }
1000 }
1001 
1002 Node* LibraryCallKit::try_to_predicate(int predicate) {
1003   if (!jvms()->has_method()) {
1004     // Root JVMState has a null method.
1005     assert(map()->memory()->Opcode() == Op_Parm, "");
1006     // Insert the memory aliasing node
1007     set_all_memory(reset_memory());
1008   }
1009   assert(merged_memory(), "");
1010 
1011   switch (intrinsic_id()) {
1012   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
1013     return inline_cipherBlockChaining_AESCrypt_predicate(false);
1014   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
1015     return inline_cipherBlockChaining_AESCrypt_predicate(true);
1016   case vmIntrinsics::_digestBase_implCompressMB:
1017     return inline_digestBase_implCompressMB_predicate(predicate);
1018 
1019   default:
1020     // If you get here, it may be that someone has added a new intrinsic
1021     // to the list in vmSymbols.hpp without implementing it here.
1022 #ifndef PRODUCT
1023     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
1024       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
1025                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
1026     }
1027 #endif
1028     Node* slow_ctl = control();
1029     set_control(top()); // No fast path instrinsic
1030     return slow_ctl;
1031   }
1032 }
1033 
1034 //------------------------------set_result-------------------------------
1035 // Helper function for finishing intrinsics.
1036 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
1037   record_for_igvn(region);
1038   set_control(_gvn.transform(region));
1039   set_result( _gvn.transform(value));
1040   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
1041 }
1042 
1043 //------------------------------generate_guard---------------------------
1044 // Helper function for generating guarded fast-slow graph structures.
1045 // The given 'test', if true, guards a slow path.  If the test fails
1046 // then a fast path can be taken.  (We generally hope it fails.)
1047 // In all cases, GraphKit::control() is updated to the fast path.
1048 // The returned value represents the control for the slow path.
1049 // The return value is never 'top'; it is either a valid control
1050 // or NULL if it is obvious that the slow path can never be taken.
1051 // Also, if region and the slow control are not NULL, the slow edge
1052 // is appended to the region.
1053 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
1054   if (stopped()) {
1055     // Already short circuited.
1056     return NULL;
1057   }
1058 
1059   // Build an if node and its projections.
1060   // If test is true we take the slow path, which we assume is uncommon.
1061   if (_gvn.type(test) == TypeInt::ZERO) {
1062     // The slow branch is never taken.  No need to build this guard.
1063     return NULL;
1064   }
1065 
1066   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
1067 
1068   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
1069   if (if_slow == top()) {
1070     // The slow branch is never taken.  No need to build this guard.
1071     return NULL;
1072   }
1073 
1074   if (region != NULL)
1075     region->add_req(if_slow);
1076 
1077   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
1078   set_control(if_fast);
1079 
1080   return if_slow;
1081 }
1082 
1083 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1084   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1085 }
1086 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1087   return generate_guard(test, region, PROB_FAIR);
1088 }
1089 
1090 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1091                                                      Node* *pos_index) {
1092   if (stopped())
1093     return NULL;                // already stopped
1094   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1095     return NULL;                // index is already adequately typed
1096   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1097   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1098   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1099   if (is_neg != NULL && pos_index != NULL) {
1100     // Emulate effect of Parse::adjust_map_after_if.
1101     Node* ccast = new CastIINode(index, TypeInt::POS);
1102     ccast->set_req(0, control());
1103     (*pos_index) = _gvn.transform(ccast);
1104   }
1105   return is_neg;
1106 }
1107 
1108 // Make sure that 'position' is a valid limit index, in [0..length].
1109 // There are two equivalent plans for checking this:
1110 //   A. (offset + copyLength)  unsigned<=  arrayLength
1111 //   B. offset  <=  (arrayLength - copyLength)
1112 // We require that all of the values above, except for the sum and
1113 // difference, are already known to be non-negative.
1114 // Plan A is robust in the face of overflow, if offset and copyLength
1115 // are both hugely positive.
1116 //
1117 // Plan B is less direct and intuitive, but it does not overflow at
1118 // all, since the difference of two non-negatives is always
1119 // representable.  Whenever Java methods must perform the equivalent
1120 // check they generally use Plan B instead of Plan A.
1121 // For the moment we use Plan A.
1122 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1123                                                   Node* subseq_length,
1124                                                   Node* array_length,
1125                                                   RegionNode* region) {
1126   if (stopped())
1127     return NULL;                // already stopped
1128   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1129   if (zero_offset && subseq_length->eqv_uncast(array_length))
1130     return NULL;                // common case of whole-array copy
1131   Node* last = subseq_length;
1132   if (!zero_offset)             // last += offset
1133     last = _gvn.transform(new AddINode(last, offset));
1134   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1135   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1136   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1137   return is_over;
1138 }
1139 
1140 
1141 //--------------------------generate_current_thread--------------------
1142 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1143   ciKlass*    thread_klass = env()->Thread_klass();
1144   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1145   Node* thread = _gvn.transform(new ThreadLocalNode());
1146   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1147   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1148   tls_output = thread;
1149   return threadObj;
1150 }
1151 
1152 
1153 //------------------------------make_string_method_node------------------------
1154 // Helper method for String intrinsic functions. This version is called
1155 // with str1 and str2 pointing to String object nodes.
1156 //
1157 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1158   Node* no_ctrl = NULL;
1159 
1160   // Get start addr of string
1161   Node* str1_value   = load_String_value(no_ctrl, str1);
1162   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1163   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1164 
1165   // Get length of string 1
1166   Node* str1_len  = load_String_length(no_ctrl, str1);
1167 
1168   Node* str2_value   = load_String_value(no_ctrl, str2);
1169   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1170   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1171 
1172   Node* str2_len = NULL;
1173   Node* result = NULL;
1174 
1175   switch (opcode) {
1176   case Op_StrIndexOf:
1177     // Get length of string 2
1178     str2_len = load_String_length(no_ctrl, str2);
1179 
1180     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1181                                 str1_start, str1_len, str2_start, str2_len);
1182     break;
1183   case Op_StrComp:
1184     // Get length of string 2
1185     str2_len = load_String_length(no_ctrl, str2);
1186 
1187     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1188                              str1_start, str1_len, str2_start, str2_len);
1189     break;
1190   case Op_StrEquals:
1191     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1192                                str1_start, str2_start, str1_len);
1193     break;
1194   default:
1195     ShouldNotReachHere();
1196     return NULL;
1197   }
1198 
1199   // All these intrinsics have checks.
1200   C->set_has_split_ifs(true); // Has chance for split-if optimization
1201 
1202   return _gvn.transform(result);
1203 }
1204 
1205 // Helper method for String intrinsic functions. This version is called
1206 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1207 // to Int nodes containing the lenghts of str1 and str2.
1208 //
1209 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1210   Node* result = NULL;
1211   switch (opcode) {
1212   case Op_StrIndexOf:
1213     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1214                                 str1_start, cnt1, str2_start, cnt2);
1215     break;
1216   case Op_StrComp:
1217     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1218                              str1_start, cnt1, str2_start, cnt2);
1219     break;
1220   case Op_StrEquals:
1221     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1222                                str1_start, str2_start, cnt1);
1223     break;
1224   default:
1225     ShouldNotReachHere();
1226     return NULL;
1227   }
1228 
1229   // All these intrinsics have checks.
1230   C->set_has_split_ifs(true); // Has chance for split-if optimization
1231 
1232   return _gvn.transform(result);
1233 }
1234 
1235 //------------------------------inline_string_compareTo------------------------
1236 // public int java.lang.String.compareTo(String anotherString);
1237 bool LibraryCallKit::inline_string_compareTo() {
1238   Node* receiver = null_check(argument(0));
1239   Node* arg      = null_check(argument(1));
1240   if (stopped()) {
1241     return true;
1242   }
1243   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1244   return true;
1245 }
1246 
1247 //------------------------------inline_string_equals------------------------
1248 bool LibraryCallKit::inline_string_equals() {
1249   Node* receiver = null_check_receiver();
1250   // NOTE: Do not null check argument for String.equals() because spec
1251   // allows to specify NULL as argument.
1252   Node* argument = this->argument(1);
1253   if (stopped()) {
1254     return true;
1255   }
1256 
1257   // paths (plus control) merge
1258   RegionNode* region = new RegionNode(5);
1259   Node* phi = new PhiNode(region, TypeInt::BOOL);
1260 
1261   // does source == target string?
1262   Node* cmp = _gvn.transform(new CmpPNode(receiver, argument));
1263   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1264 
1265   Node* if_eq = generate_slow_guard(bol, NULL);
1266   if (if_eq != NULL) {
1267     // receiver == argument
1268     phi->init_req(2, intcon(1));
1269     region->init_req(2, if_eq);
1270   }
1271 
1272   // get String klass for instanceOf
1273   ciInstanceKlass* klass = env()->String_klass();
1274 
1275   if (!stopped()) {
1276     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1277     Node* cmp  = _gvn.transform(new CmpINode(inst, intcon(1)));
1278     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1279 
1280     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1281     //instanceOf == true, fallthrough
1282 
1283     if (inst_false != NULL) {
1284       phi->init_req(3, intcon(0));
1285       region->init_req(3, inst_false);
1286     }
1287   }
1288 
1289   if (!stopped()) {
1290     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1291 
1292     // Properly cast the argument to String
1293     argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type));
1294     // This path is taken only when argument's type is String:NotNull.
1295     argument = cast_not_null(argument, false);
1296 
1297     Node* no_ctrl = NULL;
1298 
1299     // Get start addr of receiver
1300     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1301     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1302     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1303 
1304     // Get length of receiver
1305     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1306 
1307     // Get start addr of argument
1308     Node* argument_val    = load_String_value(no_ctrl, argument);
1309     Node* argument_offset = load_String_offset(no_ctrl, argument);
1310     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1311 
1312     // Get length of argument
1313     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1314 
1315     // Check for receiver count != argument count
1316     Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt));
1317     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1318     Node* if_ne = generate_slow_guard(bol, NULL);
1319     if (if_ne != NULL) {
1320       phi->init_req(4, intcon(0));
1321       region->init_req(4, if_ne);
1322     }
1323 
1324     // Check for count == 0 is done by assembler code for StrEquals.
1325 
1326     if (!stopped()) {
1327       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1328       phi->init_req(1, equals);
1329       region->init_req(1, control());
1330     }
1331   }
1332 
1333   // post merge
1334   set_control(_gvn.transform(region));
1335   record_for_igvn(region);
1336 
1337   set_result(_gvn.transform(phi));
1338   return true;
1339 }
1340 
1341 //------------------------------inline_array_equals----------------------------
1342 bool LibraryCallKit::inline_array_equals() {
1343   Node* arg1 = argument(0);
1344   Node* arg2 = argument(1);
1345   set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1346   return true;
1347 }
1348 
1349 // Java version of String.indexOf(constant string)
1350 // class StringDecl {
1351 //   StringDecl(char[] ca) {
1352 //     offset = 0;
1353 //     count = ca.length;
1354 //     value = ca;
1355 //   }
1356 //   int offset;
1357 //   int count;
1358 //   char[] value;
1359 // }
1360 //
1361 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1362 //                             int targetOffset, int cache_i, int md2) {
1363 //   int cache = cache_i;
1364 //   int sourceOffset = string_object.offset;
1365 //   int sourceCount = string_object.count;
1366 //   int targetCount = target_object.length;
1367 //
1368 //   int targetCountLess1 = targetCount - 1;
1369 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1370 //
1371 //   char[] source = string_object.value;
1372 //   char[] target = target_object;
1373 //   int lastChar = target[targetCountLess1];
1374 //
1375 //  outer_loop:
1376 //   for (int i = sourceOffset; i < sourceEnd; ) {
1377 //     int src = source[i + targetCountLess1];
1378 //     if (src == lastChar) {
1379 //       // With random strings and a 4-character alphabet,
1380 //       // reverse matching at this point sets up 0.8% fewer
1381 //       // frames, but (paradoxically) makes 0.3% more probes.
1382 //       // Since those probes are nearer the lastChar probe,
1383 //       // there is may be a net D$ win with reverse matching.
1384 //       // But, reversing loop inhibits unroll of inner loop
1385 //       // for unknown reason.  So, does running outer loop from
1386 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1387 //       for (int j = 0; j < targetCountLess1; j++) {
1388 //         if (target[targetOffset + j] != source[i+j]) {
1389 //           if ((cache & (1 << source[i+j])) == 0) {
1390 //             if (md2 < j+1) {
1391 //               i += j+1;
1392 //               continue outer_loop;
1393 //             }
1394 //           }
1395 //           i += md2;
1396 //           continue outer_loop;
1397 //         }
1398 //       }
1399 //       return i - sourceOffset;
1400 //     }
1401 //     if ((cache & (1 << src)) == 0) {
1402 //       i += targetCountLess1;
1403 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1404 //     i++;
1405 //   }
1406 //   return -1;
1407 // }
1408 
1409 //------------------------------string_indexOf------------------------
1410 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1411                                      jint cache_i, jint md2_i) {
1412 
1413   Node* no_ctrl  = NULL;
1414   float likely   = PROB_LIKELY(0.9);
1415   float unlikely = PROB_UNLIKELY(0.9);
1416 
1417   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1418 
1419   Node* source        = load_String_value(no_ctrl, string_object);
1420   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1421   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1422 
1423   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1424   jint target_length = target_array->length();
1425   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1426   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1427 
1428   // String.value field is known to be @Stable.
1429   if (UseImplicitStableValues) {
1430     target = cast_array_to_stable(target, target_type);
1431   }
1432 
1433   IdealKit kit(this, false, true);
1434 #define __ kit.
1435   Node* zero             = __ ConI(0);
1436   Node* one              = __ ConI(1);
1437   Node* cache            = __ ConI(cache_i);
1438   Node* md2              = __ ConI(md2_i);
1439   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1440   Node* targetCountLess1 = __ ConI(target_length - 1);
1441   Node* targetOffset     = __ ConI(targetOffset_i);
1442   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1443 
1444   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1445   Node* outer_loop = __ make_label(2 /* goto */);
1446   Node* return_    = __ make_label(1);
1447 
1448   __ set(rtn,__ ConI(-1));
1449   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1450        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1451        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1452        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1453        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1454          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1455               Node* tpj = __ AddI(targetOffset, __ value(j));
1456               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1457               Node* ipj  = __ AddI(__ value(i), __ value(j));
1458               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1459               __ if_then(targ, BoolTest::ne, src2); {
1460                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1461                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1462                     __ increment(i, __ AddI(__ value(j), one));
1463                     __ goto_(outer_loop);
1464                   } __ end_if(); __ dead(j);
1465                 }__ end_if(); __ dead(j);
1466                 __ increment(i, md2);
1467                 __ goto_(outer_loop);
1468               }__ end_if();
1469               __ increment(j, one);
1470          }__ end_loop(); __ dead(j);
1471          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1472          __ goto_(return_);
1473        }__ end_if();
1474        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1475          __ increment(i, targetCountLess1);
1476        }__ end_if();
1477        __ increment(i, one);
1478        __ bind(outer_loop);
1479   }__ end_loop(); __ dead(i);
1480   __ bind(return_);
1481 
1482   // Final sync IdealKit and GraphKit.
1483   final_sync(kit);
1484   Node* result = __ value(rtn);
1485 #undef __
1486   C->set_has_loops(true);
1487   return result;
1488 }
1489 
1490 //------------------------------inline_string_indexOf------------------------
1491 bool LibraryCallKit::inline_string_indexOf() {
1492   Node* receiver = argument(0);
1493   Node* arg      = argument(1);
1494 
1495   Node* result;
1496   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1497       UseSSE42Intrinsics) {
1498     // Generate SSE4.2 version of indexOf
1499     // We currently only have match rules that use SSE4.2
1500 
1501     receiver = null_check(receiver);
1502     arg      = null_check(arg);
1503     if (stopped()) {
1504       return true;
1505     }
1506 
1507     // Make the merge point
1508     RegionNode* result_rgn = new RegionNode(4);
1509     Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1510     Node* no_ctrl  = NULL;
1511 
1512     // Get start addr of source string
1513     Node* source = load_String_value(no_ctrl, receiver);
1514     Node* source_offset = load_String_offset(no_ctrl, receiver);
1515     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1516 
1517     // Get length of source string
1518     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1519 
1520     // Get start addr of substring
1521     Node* substr = load_String_value(no_ctrl, arg);
1522     Node* substr_offset = load_String_offset(no_ctrl, arg);
1523     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1524 
1525     // Get length of source string
1526     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1527 
1528     // Check for substr count > string count
1529     Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt));
1530     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1531     Node* if_gt = generate_slow_guard(bol, NULL);
1532     if (if_gt != NULL) {
1533       result_phi->init_req(2, intcon(-1));
1534       result_rgn->init_req(2, if_gt);
1535     }
1536 
1537     if (!stopped()) {
1538       // Check for substr count == 0
1539       cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0)));
1540       bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1541       Node* if_zero = generate_slow_guard(bol, NULL);
1542       if (if_zero != NULL) {
1543         result_phi->init_req(3, intcon(0));
1544         result_rgn->init_req(3, if_zero);
1545       }
1546     }
1547 
1548     if (!stopped()) {
1549       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1550       result_phi->init_req(1, result);
1551       result_rgn->init_req(1, control());
1552     }
1553     set_control(_gvn.transform(result_rgn));
1554     record_for_igvn(result_rgn);
1555     result = _gvn.transform(result_phi);
1556 
1557   } else { // Use LibraryCallKit::string_indexOf
1558     // don't intrinsify if argument isn't a constant string.
1559     if (!arg->is_Con()) {
1560      return false;
1561     }
1562     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1563     if (str_type == NULL) {
1564       return false;
1565     }
1566     ciInstanceKlass* klass = env()->String_klass();
1567     ciObject* str_const = str_type->const_oop();
1568     if (str_const == NULL || str_const->klass() != klass) {
1569       return false;
1570     }
1571     ciInstance* str = str_const->as_instance();
1572     assert(str != NULL, "must be instance");
1573 
1574     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1575     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1576 
1577     int o;
1578     int c;
1579     if (java_lang_String::has_offset_field()) {
1580       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1581       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1582     } else {
1583       o = 0;
1584       c = pat->length();
1585     }
1586 
1587     // constant strings have no offset and count == length which
1588     // simplifies the resulting code somewhat so lets optimize for that.
1589     if (o != 0 || c != pat->length()) {
1590      return false;
1591     }
1592 
1593     receiver = null_check(receiver, T_OBJECT);
1594     // NOTE: No null check on the argument is needed since it's a constant String oop.
1595     if (stopped()) {
1596       return true;
1597     }
1598 
1599     // The null string as a pattern always returns 0 (match at beginning of string)
1600     if (c == 0) {
1601       set_result(intcon(0));
1602       return true;
1603     }
1604 
1605     // Generate default indexOf
1606     jchar lastChar = pat->char_at(o + (c - 1));
1607     int cache = 0;
1608     int i;
1609     for (i = 0; i < c - 1; i++) {
1610       assert(i < pat->length(), "out of range");
1611       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1612     }
1613 
1614     int md2 = c;
1615     for (i = 0; i < c - 1; i++) {
1616       assert(i < pat->length(), "out of range");
1617       if (pat->char_at(o + i) == lastChar) {
1618         md2 = (c - 1) - i;
1619       }
1620     }
1621 
1622     result = string_indexOf(receiver, pat, o, cache, md2);
1623   }
1624   set_result(result);
1625   return true;
1626 }
1627 
1628 //--------------------------round_double_node--------------------------------
1629 // Round a double node if necessary.
1630 Node* LibraryCallKit::round_double_node(Node* n) {
1631   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1632     n = _gvn.transform(new RoundDoubleNode(0, n));
1633   return n;
1634 }
1635 
1636 //------------------------------inline_math-----------------------------------
1637 // public static double Math.abs(double)
1638 // public static double Math.sqrt(double)
1639 // public static double Math.log(double)
1640 // public static double Math.log10(double)
1641 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1642   Node* arg = round_double_node(argument(0));
1643   Node* n;
1644   switch (id) {
1645   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1646   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1647   case vmIntrinsics::_dlog:   n = new LogDNode(C, control(),   arg);  break;
1648   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1649   default:  fatal_unexpected_iid(id);  break;
1650   }
1651   set_result(_gvn.transform(n));
1652   return true;
1653 }
1654 
1655 //------------------------------inline_trig----------------------------------
1656 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1657 // argument reduction which will turn into a fast/slow diamond.
1658 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1659   Node* arg = round_double_node(argument(0));
1660   Node* n = NULL;
1661 
1662   switch (id) {
1663   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1664   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1665   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1666   default:  fatal_unexpected_iid(id);  break;
1667   }
1668   n = _gvn.transform(n);
1669 
1670   // Rounding required?  Check for argument reduction!
1671   if (Matcher::strict_fp_requires_explicit_rounding) {
1672     static const double     pi_4 =  0.7853981633974483;
1673     static const double neg_pi_4 = -0.7853981633974483;
1674     // pi/2 in 80-bit extended precision
1675     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1676     // -pi/2 in 80-bit extended precision
1677     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1678     // Cutoff value for using this argument reduction technique
1679     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1680     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1681 
1682     // Pseudocode for sin:
1683     // if (x <= Math.PI / 4.0) {
1684     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1685     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1686     // } else {
1687     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1688     // }
1689     // return StrictMath.sin(x);
1690 
1691     // Pseudocode for cos:
1692     // if (x <= Math.PI / 4.0) {
1693     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1694     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1695     // } else {
1696     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1697     // }
1698     // return StrictMath.cos(x);
1699 
1700     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1701     // requires a special machine instruction to load it.  Instead we'll try
1702     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1703     // probably do the math inside the SIN encoding.
1704 
1705     // Make the merge point
1706     RegionNode* r = new RegionNode(3);
1707     Node* phi = new PhiNode(r, Type::DOUBLE);
1708 
1709     // Flatten arg so we need only 1 test
1710     Node *abs = _gvn.transform(new AbsDNode(arg));
1711     // Node for PI/4 constant
1712     Node *pi4 = makecon(TypeD::make(pi_4));
1713     // Check PI/4 : abs(arg)
1714     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1715     // Check: If PI/4 < abs(arg) then go slow
1716     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1717     // Branch either way
1718     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1719     set_control(opt_iff(r,iff));
1720 
1721     // Set fast path result
1722     phi->init_req(2, n);
1723 
1724     // Slow path - non-blocking leaf call
1725     Node* call = NULL;
1726     switch (id) {
1727     case vmIntrinsics::_dsin:
1728       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1729                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1730                                "Sin", NULL, arg, top());
1731       break;
1732     case vmIntrinsics::_dcos:
1733       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1734                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1735                                "Cos", NULL, arg, top());
1736       break;
1737     case vmIntrinsics::_dtan:
1738       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1739                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1740                                "Tan", NULL, arg, top());
1741       break;
1742     }
1743     assert(control()->in(0) == call, "");
1744     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1745     r->init_req(1, control());
1746     phi->init_req(1, slow_result);
1747 
1748     // Post-merge
1749     set_control(_gvn.transform(r));
1750     record_for_igvn(r);
1751     n = _gvn.transform(phi);
1752 
1753     C->set_has_split_ifs(true); // Has chance for split-if optimization
1754   }
1755   set_result(n);
1756   return true;
1757 }
1758 
1759 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1760   //-------------------
1761   //result=(result.isNaN())? funcAddr():result;
1762   // Check: If isNaN() by checking result!=result? then either trap
1763   // or go to runtime
1764   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1765   // Build the boolean node
1766   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1767 
1768   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1769     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1770       // The pow or exp intrinsic returned a NaN, which requires a call
1771       // to the runtime.  Recompile with the runtime call.
1772       uncommon_trap(Deoptimization::Reason_intrinsic,
1773                     Deoptimization::Action_make_not_entrant);
1774     }
1775     return result;
1776   } else {
1777     // If this inlining ever returned NaN in the past, we compile a call
1778     // to the runtime to properly handle corner cases
1779 
1780     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1781     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1782     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1783 
1784     if (!if_slow->is_top()) {
1785       RegionNode* result_region = new RegionNode(3);
1786       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1787 
1788       result_region->init_req(1, if_fast);
1789       result_val->init_req(1, result);
1790 
1791       set_control(if_slow);
1792 
1793       const TypePtr* no_memory_effects = NULL;
1794       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1795                                    no_memory_effects,
1796                                    x, top(), y, y ? top() : NULL);
1797       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1798 #ifdef ASSERT
1799       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1800       assert(value_top == top(), "second value must be top");
1801 #endif
1802 
1803       result_region->init_req(2, control());
1804       result_val->init_req(2, value);
1805       set_control(_gvn.transform(result_region));
1806       return _gvn.transform(result_val);
1807     } else {
1808       return result;
1809     }
1810   }
1811 }
1812 
1813 //------------------------------inline_exp-------------------------------------
1814 // Inline exp instructions, if possible.  The Intel hardware only misses
1815 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1816 bool LibraryCallKit::inline_exp() {
1817   Node* arg = round_double_node(argument(0));
1818   Node* n   = _gvn.transform(new ExpDNode(C, control(), arg));
1819 
1820   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1821   set_result(n);
1822 
1823   C->set_has_split_ifs(true); // Has chance for split-if optimization
1824   return true;
1825 }
1826 
1827 //------------------------------inline_pow-------------------------------------
1828 // Inline power instructions, if possible.
1829 bool LibraryCallKit::inline_pow() {
1830   // Pseudocode for pow
1831   // if (y == 2) {
1832   //   return x * x;
1833   // } else {
1834   //   if (x <= 0.0) {
1835   //     long longy = (long)y;
1836   //     if ((double)longy == y) { // if y is long
1837   //       if (y + 1 == y) longy = 0; // huge number: even
1838   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1839   //     } else {
1840   //       result = NaN;
1841   //     }
1842   //   } else {
1843   //     result = DPow(x,y);
1844   //   }
1845   //   if (result != result)?  {
1846   //     result = uncommon_trap() or runtime_call();
1847   //   }
1848   //   return result;
1849   // }
1850 
1851   Node* x = round_double_node(argument(0));
1852   Node* y = round_double_node(argument(2));
1853 
1854   Node* result = NULL;
1855 
1856   Node*   const_two_node = makecon(TypeD::make(2.0));
1857   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1858   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1859   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1860   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1861   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1862 
1863   RegionNode* region_node = new RegionNode(3);
1864   region_node->init_req(1, if_true);
1865 
1866   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1867   // special case for x^y where y == 2, we can convert it to x * x
1868   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1869 
1870   // set control to if_false since we will now process the false branch
1871   set_control(if_false);
1872 
1873   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1874     // Short form: skip the fancy tests and just check for NaN result.
1875     result = _gvn.transform(new PowDNode(C, control(), x, y));
1876   } else {
1877     // If this inlining ever returned NaN in the past, include all
1878     // checks + call to the runtime.
1879 
1880     // Set the merge point for If node with condition of (x <= 0.0)
1881     // There are four possible paths to region node and phi node
1882     RegionNode *r = new RegionNode(4);
1883     Node *phi = new PhiNode(r, Type::DOUBLE);
1884 
1885     // Build the first if node: if (x <= 0.0)
1886     // Node for 0 constant
1887     Node *zeronode = makecon(TypeD::ZERO);
1888     // Check x:0
1889     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1890     // Check: If (x<=0) then go complex path
1891     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1892     // Branch either way
1893     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1894     // Fast path taken; set region slot 3
1895     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1896     r->init_req(3,fast_taken); // Capture fast-control
1897 
1898     // Fast path not-taken, i.e. slow path
1899     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1900 
1901     // Set fast path result
1902     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1903     phi->init_req(3, fast_result);
1904 
1905     // Complex path
1906     // Build the second if node (if y is long)
1907     // Node for (long)y
1908     Node *longy = _gvn.transform(new ConvD2LNode(y));
1909     // Node for (double)((long) y)
1910     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1911     // Check (double)((long) y) : y
1912     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1913     // Check if (y isn't long) then go to slow path
1914 
1915     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1916     // Branch either way
1917     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1918     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1919 
1920     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1921 
1922     // Calculate DPow(abs(x), y)*(1 & (long)y)
1923     // Node for constant 1
1924     Node *conone = longcon(1);
1925     // 1& (long)y
1926     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1927 
1928     // A huge number is always even. Detect a huge number by checking
1929     // if y + 1 == y and set integer to be tested for parity to 0.
1930     // Required for corner case:
1931     // (long)9.223372036854776E18 = max_jlong
1932     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1933     // max_jlong is odd but 9.223372036854776E18 is even
1934     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1935     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1936     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1937     Node* correctedsign = NULL;
1938     if (ConditionalMoveLimit != 0) {
1939       correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1940     } else {
1941       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1942       RegionNode *r = new RegionNode(3);
1943       Node *phi = new PhiNode(r, TypeLong::LONG);
1944       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1945       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1946       phi->init_req(1, signnode);
1947       phi->init_req(2, longcon(0));
1948       correctedsign = _gvn.transform(phi);
1949       ylong_path = _gvn.transform(r);
1950       record_for_igvn(r);
1951     }
1952 
1953     // zero node
1954     Node *conzero = longcon(0);
1955     // Check (1&(long)y)==0?
1956     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1957     // Check if (1&(long)y)!=0?, if so the result is negative
1958     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1959     // abs(x)
1960     Node *absx=_gvn.transform(new AbsDNode(x));
1961     // abs(x)^y
1962     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1963     // -abs(x)^y
1964     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1965     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1966     Node *signresult = NULL;
1967     if (ConditionalMoveLimit != 0) {
1968       signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1969     } else {
1970       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1971       RegionNode *r = new RegionNode(3);
1972       Node *phi = new PhiNode(r, Type::DOUBLE);
1973       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1974       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1975       phi->init_req(1, absxpowy);
1976       phi->init_req(2, negabsxpowy);
1977       signresult = _gvn.transform(phi);
1978       ylong_path = _gvn.transform(r);
1979       record_for_igvn(r);
1980     }
1981     // Set complex path fast result
1982     r->init_req(2, ylong_path);
1983     phi->init_req(2, signresult);
1984 
1985     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1986     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1987     r->init_req(1,slow_path);
1988     phi->init_req(1,slow_result);
1989 
1990     // Post merge
1991     set_control(_gvn.transform(r));
1992     record_for_igvn(r);
1993     result = _gvn.transform(phi);
1994   }
1995 
1996   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1997 
1998   // control from finish_pow_exp is now input to the region node
1999   region_node->set_req(2, control());
2000   // the result from finish_pow_exp is now input to the phi node
2001   phi_node->init_req(2, result);
2002   set_control(_gvn.transform(region_node));
2003   record_for_igvn(region_node);
2004   set_result(_gvn.transform(phi_node));
2005 
2006   C->set_has_split_ifs(true); // Has chance for split-if optimization
2007   return true;
2008 }
2009 
2010 //------------------------------runtime_math-----------------------------
2011 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
2012   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
2013          "must be (DD)D or (D)D type");
2014 
2015   // Inputs
2016   Node* a = round_double_node(argument(0));
2017   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
2018 
2019   const TypePtr* no_memory_effects = NULL;
2020   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
2021                                  no_memory_effects,
2022                                  a, top(), b, b ? top() : NULL);
2023   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
2024 #ifdef ASSERT
2025   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
2026   assert(value_top == top(), "second value must be top");
2027 #endif
2028 
2029   set_result(value);
2030   return true;
2031 }
2032 
2033 //------------------------------inline_math_native-----------------------------
2034 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
2035 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
2036   switch (id) {
2037     // These intrinsics are not properly supported on all hardware
2038   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
2039     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
2040   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
2041     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
2042   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
2043     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
2044 
2045   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
2046     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
2047   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
2048     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
2049 
2050     // These intrinsics are supported on all hardware
2051   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
2052   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
2053 
2054   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
2055     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
2056   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
2057     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
2058 #undef FN_PTR
2059 
2060    // These intrinsics are not yet correctly implemented
2061   case vmIntrinsics::_datan2:
2062     return false;
2063 
2064   default:
2065     fatal_unexpected_iid(id);
2066     return false;
2067   }
2068 }
2069 
2070 static bool is_simple_name(Node* n) {
2071   return (n->req() == 1         // constant
2072           || (n->is_Type() && n->as_Type()->type()->singleton())
2073           || n->is_Proj()       // parameter or return value
2074           || n->is_Phi()        // local of some sort
2075           );
2076 }
2077 
2078 //----------------------------inline_min_max-----------------------------------
2079 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2080   set_result(generate_min_max(id, argument(0), argument(1)));
2081   return true;
2082 }
2083 
2084 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2085   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2086   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2087   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2088   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2089 
2090   {
2091     PreserveJVMState pjvms(this);
2092     PreserveReexecuteState preexecs(this);
2093     jvms()->set_should_reexecute(true);
2094 
2095     set_control(slow_path);
2096     set_i_o(i_o());
2097 
2098     uncommon_trap(Deoptimization::Reason_intrinsic,
2099                   Deoptimization::Action_none);
2100   }
2101 
2102   set_control(fast_path);
2103   set_result(math);
2104 }
2105 
2106 template <typename OverflowOp>
2107 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2108   typedef typename OverflowOp::MathOp MathOp;
2109 
2110   MathOp* mathOp = new MathOp(arg1, arg2);
2111   Node* operation = _gvn.transform( mathOp );
2112   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2113   inline_math_mathExact(operation, ofcheck);
2114   return true;
2115 }
2116 
2117 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2118   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2119 }
2120 
2121 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2122   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2123 }
2124 
2125 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2126   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2127 }
2128 
2129 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2130   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2131 }
2132 
2133 bool LibraryCallKit::inline_math_negateExactI() {
2134   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2135 }
2136 
2137 bool LibraryCallKit::inline_math_negateExactL() {
2138   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2139 }
2140 
2141 bool LibraryCallKit::inline_math_multiplyExactI() {
2142   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2143 }
2144 
2145 bool LibraryCallKit::inline_math_multiplyExactL() {
2146   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2147 }
2148 
2149 Node*
2150 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2151   // These are the candidate return value:
2152   Node* xvalue = x0;
2153   Node* yvalue = y0;
2154 
2155   if (xvalue == yvalue) {
2156     return xvalue;
2157   }
2158 
2159   bool want_max = (id == vmIntrinsics::_max);
2160 
2161   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2162   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2163   if (txvalue == NULL || tyvalue == NULL)  return top();
2164   // This is not really necessary, but it is consistent with a
2165   // hypothetical MaxINode::Value method:
2166   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2167 
2168   // %%% This folding logic should (ideally) be in a different place.
2169   // Some should be inside IfNode, and there to be a more reliable
2170   // transformation of ?: style patterns into cmoves.  We also want
2171   // more powerful optimizations around cmove and min/max.
2172 
2173   // Try to find a dominating comparison of these guys.
2174   // It can simplify the index computation for Arrays.copyOf
2175   // and similar uses of System.arraycopy.
2176   // First, compute the normalized version of CmpI(x, y).
2177   int   cmp_op = Op_CmpI;
2178   Node* xkey = xvalue;
2179   Node* ykey = yvalue;
2180   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2181   if (ideal_cmpxy->is_Cmp()) {
2182     // E.g., if we have CmpI(length - offset, count),
2183     // it might idealize to CmpI(length, count + offset)
2184     cmp_op = ideal_cmpxy->Opcode();
2185     xkey = ideal_cmpxy->in(1);
2186     ykey = ideal_cmpxy->in(2);
2187   }
2188 
2189   // Start by locating any relevant comparisons.
2190   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2191   Node* cmpxy = NULL;
2192   Node* cmpyx = NULL;
2193   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2194     Node* cmp = start_from->fast_out(k);
2195     if (cmp->outcnt() > 0 &&            // must have prior uses
2196         cmp->in(0) == NULL &&           // must be context-independent
2197         cmp->Opcode() == cmp_op) {      // right kind of compare
2198       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2199       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2200     }
2201   }
2202 
2203   const int NCMPS = 2;
2204   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2205   int cmpn;
2206   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2207     if (cmps[cmpn] != NULL)  break;     // find a result
2208   }
2209   if (cmpn < NCMPS) {
2210     // Look for a dominating test that tells us the min and max.
2211     int depth = 0;                // Limit search depth for speed
2212     Node* dom = control();
2213     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2214       if (++depth >= 100)  break;
2215       Node* ifproj = dom;
2216       if (!ifproj->is_Proj())  continue;
2217       Node* iff = ifproj->in(0);
2218       if (!iff->is_If())  continue;
2219       Node* bol = iff->in(1);
2220       if (!bol->is_Bool())  continue;
2221       Node* cmp = bol->in(1);
2222       if (cmp == NULL)  continue;
2223       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2224         if (cmps[cmpn] == cmp)  break;
2225       if (cmpn == NCMPS)  continue;
2226       BoolTest::mask btest = bol->as_Bool()->_test._test;
2227       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2228       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2229       // At this point, we know that 'x btest y' is true.
2230       switch (btest) {
2231       case BoolTest::eq:
2232         // They are proven equal, so we can collapse the min/max.
2233         // Either value is the answer.  Choose the simpler.
2234         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2235           return yvalue;
2236         return xvalue;
2237       case BoolTest::lt:          // x < y
2238       case BoolTest::le:          // x <= y
2239         return (want_max ? yvalue : xvalue);
2240       case BoolTest::gt:          // x > y
2241       case BoolTest::ge:          // x >= y
2242         return (want_max ? xvalue : yvalue);
2243       }
2244     }
2245   }
2246 
2247   // We failed to find a dominating test.
2248   // Let's pick a test that might GVN with prior tests.
2249   Node*          best_bol   = NULL;
2250   BoolTest::mask best_btest = BoolTest::illegal;
2251   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2252     Node* cmp = cmps[cmpn];
2253     if (cmp == NULL)  continue;
2254     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2255       Node* bol = cmp->fast_out(j);
2256       if (!bol->is_Bool())  continue;
2257       BoolTest::mask btest = bol->as_Bool()->_test._test;
2258       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2259       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2260       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2261         best_bol   = bol->as_Bool();
2262         best_btest = btest;
2263       }
2264     }
2265   }
2266 
2267   Node* answer_if_true  = NULL;
2268   Node* answer_if_false = NULL;
2269   switch (best_btest) {
2270   default:
2271     if (cmpxy == NULL)
2272       cmpxy = ideal_cmpxy;
2273     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2274     // and fall through:
2275   case BoolTest::lt:          // x < y
2276   case BoolTest::le:          // x <= y
2277     answer_if_true  = (want_max ? yvalue : xvalue);
2278     answer_if_false = (want_max ? xvalue : yvalue);
2279     break;
2280   case BoolTest::gt:          // x > y
2281   case BoolTest::ge:          // x >= y
2282     answer_if_true  = (want_max ? xvalue : yvalue);
2283     answer_if_false = (want_max ? yvalue : xvalue);
2284     break;
2285   }
2286 
2287   jint hi, lo;
2288   if (want_max) {
2289     // We can sharpen the minimum.
2290     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2291     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2292   } else {
2293     // We can sharpen the maximum.
2294     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2295     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2296   }
2297 
2298   // Use a flow-free graph structure, to avoid creating excess control edges
2299   // which could hinder other optimizations.
2300   // Since Math.min/max is often used with arraycopy, we want
2301   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2302   Node* cmov = CMoveNode::make(NULL, best_bol,
2303                                answer_if_false, answer_if_true,
2304                                TypeInt::make(lo, hi, widen));
2305 
2306   return _gvn.transform(cmov);
2307 
2308   /*
2309   // This is not as desirable as it may seem, since Min and Max
2310   // nodes do not have a full set of optimizations.
2311   // And they would interfere, anyway, with 'if' optimizations
2312   // and with CMoveI canonical forms.
2313   switch (id) {
2314   case vmIntrinsics::_min:
2315     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2316   case vmIntrinsics::_max:
2317     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2318   default:
2319     ShouldNotReachHere();
2320   }
2321   */
2322 }
2323 
2324 inline int
2325 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2326   const TypePtr* base_type = TypePtr::NULL_PTR;
2327   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2328   if (base_type == NULL) {
2329     // Unknown type.
2330     return Type::AnyPtr;
2331   } else if (base_type == TypePtr::NULL_PTR) {
2332     // Since this is a NULL+long form, we have to switch to a rawptr.
2333     base   = _gvn.transform(new CastX2PNode(offset));
2334     offset = MakeConX(0);
2335     return Type::RawPtr;
2336   } else if (base_type->base() == Type::RawPtr) {
2337     return Type::RawPtr;
2338   } else if (base_type->isa_oopptr()) {
2339     // Base is never null => always a heap address.
2340     if (base_type->ptr() == TypePtr::NotNull) {
2341       return Type::OopPtr;
2342     }
2343     // Offset is small => always a heap address.
2344     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2345     if (offset_type != NULL &&
2346         base_type->offset() == 0 &&     // (should always be?)
2347         offset_type->_lo >= 0 &&
2348         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2349       return Type::OopPtr;
2350     }
2351     // Otherwise, it might either be oop+off or NULL+addr.
2352     return Type::AnyPtr;
2353   } else {
2354     // No information:
2355     return Type::AnyPtr;
2356   }
2357 }
2358 
2359 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2360   int kind = classify_unsafe_addr(base, offset);
2361   if (kind == Type::RawPtr) {
2362     return basic_plus_adr(top(), base, offset);
2363   } else {
2364     return basic_plus_adr(base, offset);
2365   }
2366 }
2367 
2368 //--------------------------inline_number_methods-----------------------------
2369 // inline int     Integer.numberOfLeadingZeros(int)
2370 // inline int        Long.numberOfLeadingZeros(long)
2371 //
2372 // inline int     Integer.numberOfTrailingZeros(int)
2373 // inline int        Long.numberOfTrailingZeros(long)
2374 //
2375 // inline int     Integer.bitCount(int)
2376 // inline int        Long.bitCount(long)
2377 //
2378 // inline char  Character.reverseBytes(char)
2379 // inline short     Short.reverseBytes(short)
2380 // inline int     Integer.reverseBytes(int)
2381 // inline long       Long.reverseBytes(long)
2382 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2383   Node* arg = argument(0);
2384   Node* n;
2385   switch (id) {
2386   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2387   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2388   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2389   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2390   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2391   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2392   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2393   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2394   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2395   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2396   default:  fatal_unexpected_iid(id);  break;
2397   }
2398   set_result(_gvn.transform(n));
2399   return true;
2400 }
2401 
2402 //----------------------------inline_unsafe_access----------------------------
2403 
2404 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2405 
2406 // Helper that guards and inserts a pre-barrier.
2407 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2408                                         Node* pre_val, bool need_mem_bar) {
2409   // We could be accessing the referent field of a reference object. If so, when G1
2410   // is enabled, we need to log the value in the referent field in an SATB buffer.
2411   // This routine performs some compile time filters and generates suitable
2412   // runtime filters that guard the pre-barrier code.
2413   // Also add memory barrier for non volatile load from the referent field
2414   // to prevent commoning of loads across safepoint.
2415   if (!UseG1GC && !need_mem_bar)
2416     return;
2417 
2418   // Some compile time checks.
2419 
2420   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2421   const TypeX* otype = offset->find_intptr_t_type();
2422   if (otype != NULL && otype->is_con() &&
2423       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2424     // Constant offset but not the reference_offset so just return
2425     return;
2426   }
2427 
2428   // We only need to generate the runtime guards for instances.
2429   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2430   if (btype != NULL) {
2431     if (btype->isa_aryptr()) {
2432       // Array type so nothing to do
2433       return;
2434     }
2435 
2436     const TypeInstPtr* itype = btype->isa_instptr();
2437     if (itype != NULL) {
2438       // Can the klass of base_oop be statically determined to be
2439       // _not_ a sub-class of Reference and _not_ Object?
2440       ciKlass* klass = itype->klass();
2441       if ( klass->is_loaded() &&
2442           !klass->is_subtype_of(env()->Reference_klass()) &&
2443           !env()->Object_klass()->is_subtype_of(klass)) {
2444         return;
2445       }
2446     }
2447   }
2448 
2449   // The compile time filters did not reject base_oop/offset so
2450   // we need to generate the following runtime filters
2451   //
2452   // if (offset == java_lang_ref_Reference::_reference_offset) {
2453   //   if (instance_of(base, java.lang.ref.Reference)) {
2454   //     pre_barrier(_, pre_val, ...);
2455   //   }
2456   // }
2457 
2458   float likely   = PROB_LIKELY(  0.999);
2459   float unlikely = PROB_UNLIKELY(0.999);
2460 
2461   IdealKit ideal(this);
2462 #define __ ideal.
2463 
2464   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2465 
2466   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2467       // Update graphKit memory and control from IdealKit.
2468       sync_kit(ideal);
2469 
2470       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2471       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2472 
2473       // Update IdealKit memory and control from graphKit.
2474       __ sync_kit(this);
2475 
2476       Node* one = __ ConI(1);
2477       // is_instof == 0 if base_oop == NULL
2478       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2479 
2480         // Update graphKit from IdeakKit.
2481         sync_kit(ideal);
2482 
2483         // Use the pre-barrier to record the value in the referent field
2484         pre_barrier(false /* do_load */,
2485                     __ ctrl(),
2486                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2487                     pre_val /* pre_val */,
2488                     T_OBJECT);
2489         if (need_mem_bar) {
2490           // Add memory barrier to prevent commoning reads from this field
2491           // across safepoint since GC can change its value.
2492           insert_mem_bar(Op_MemBarCPUOrder);
2493         }
2494         // Update IdealKit from graphKit.
2495         __ sync_kit(this);
2496 
2497       } __ end_if(); // _ref_type != ref_none
2498   } __ end_if(); // offset == referent_offset
2499 
2500   // Final sync IdealKit and GraphKit.
2501   final_sync(ideal);
2502 #undef __
2503 }
2504 
2505 
2506 // Interpret Unsafe.fieldOffset cookies correctly:
2507 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2508 
2509 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2510   // Attempt to infer a sharper value type from the offset and base type.
2511   ciKlass* sharpened_klass = NULL;
2512 
2513   // See if it is an instance field, with an object type.
2514   if (alias_type->field() != NULL) {
2515     assert(!is_native_ptr, "native pointer op cannot use a java address");
2516     if (alias_type->field()->type()->is_klass()) {
2517       sharpened_klass = alias_type->field()->type()->as_klass();
2518     }
2519   }
2520 
2521   // See if it is a narrow oop array.
2522   if (adr_type->isa_aryptr()) {
2523     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2524       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2525       if (elem_type != NULL) {
2526         sharpened_klass = elem_type->klass();
2527       }
2528     }
2529   }
2530 
2531   // The sharpened class might be unloaded if there is no class loader
2532   // contraint in place.
2533   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2534     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2535 
2536 #ifndef PRODUCT
2537     if (C->print_intrinsics() || C->print_inlining()) {
2538       tty->print("  from base type: ");  adr_type->dump();
2539       tty->print("  sharpened value: ");  tjp->dump();
2540     }
2541 #endif
2542     // Sharpen the value type.
2543     return tjp;
2544   }
2545   return NULL;
2546 }
2547 
2548 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2549   if (callee()->is_static())  return false;  // caller must have the capability!
2550 
2551 #ifndef PRODUCT
2552   {
2553     ResourceMark rm;
2554     // Check the signatures.
2555     ciSignature* sig = callee()->signature();
2556 #ifdef ASSERT
2557     if (!is_store) {
2558       // Object getObject(Object base, int/long offset), etc.
2559       BasicType rtype = sig->return_type()->basic_type();
2560       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2561           rtype = T_ADDRESS;  // it is really a C void*
2562       assert(rtype == type, "getter must return the expected value");
2563       if (!is_native_ptr) {
2564         assert(sig->count() == 2, "oop getter has 2 arguments");
2565         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2566         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2567       } else {
2568         assert(sig->count() == 1, "native getter has 1 argument");
2569         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2570       }
2571     } else {
2572       // void putObject(Object base, int/long offset, Object x), etc.
2573       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2574       if (!is_native_ptr) {
2575         assert(sig->count() == 3, "oop putter has 3 arguments");
2576         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2577         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2578       } else {
2579         assert(sig->count() == 2, "native putter has 2 arguments");
2580         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2581       }
2582       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2583       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2584         vtype = T_ADDRESS;  // it is really a C void*
2585       assert(vtype == type, "putter must accept the expected value");
2586     }
2587 #endif // ASSERT
2588  }
2589 #endif //PRODUCT
2590 
2591   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2592 
2593   Node* receiver = argument(0);  // type: oop
2594 
2595   // Build address expression.
2596   Node* adr;
2597   Node* heap_base_oop = top();
2598   Node* offset = top();
2599   Node* val;
2600 
2601   if (!is_native_ptr) {
2602     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2603     Node* base = argument(1);  // type: oop
2604     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2605     offset = argument(2);  // type: long
2606     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2607     // to be plain byte offsets, which are also the same as those accepted
2608     // by oopDesc::field_base.
2609     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2610            "fieldOffset must be byte-scaled");
2611     // 32-bit machines ignore the high half!
2612     offset = ConvL2X(offset);
2613     adr = make_unsafe_address(base, offset);
2614     heap_base_oop = base;
2615     val = is_store ? argument(4) : NULL;
2616   } else {
2617     Node* ptr = argument(1);  // type: long
2618     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2619     adr = make_unsafe_address(NULL, ptr);
2620     val = is_store ? argument(3) : NULL;
2621   }
2622 
2623   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2624 
2625   // First guess at the value type.
2626   const Type *value_type = Type::get_const_basic_type(type);
2627 
2628   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2629   // there was not enough information to nail it down.
2630   Compile::AliasType* alias_type = C->alias_type(adr_type);
2631   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2632 
2633   // We will need memory barriers unless we can determine a unique
2634   // alias category for this reference.  (Note:  If for some reason
2635   // the barriers get omitted and the unsafe reference begins to "pollute"
2636   // the alias analysis of the rest of the graph, either Compile::can_alias
2637   // or Compile::must_alias will throw a diagnostic assert.)
2638   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2639 
2640   // If we are reading the value of the referent field of a Reference
2641   // object (either by using Unsafe directly or through reflection)
2642   // then, if G1 is enabled, we need to record the referent in an
2643   // SATB log buffer using the pre-barrier mechanism.
2644   // Also we need to add memory barrier to prevent commoning reads
2645   // from this field across safepoint since GC can change its value.
2646   bool need_read_barrier = !is_native_ptr && !is_store &&
2647                            offset != top() && heap_base_oop != top();
2648 
2649   if (!is_store && type == T_OBJECT) {
2650     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2651     if (tjp != NULL) {
2652       value_type = tjp;
2653     }
2654   }
2655 
2656   receiver = null_check(receiver);
2657   if (stopped()) {
2658     return true;
2659   }
2660   // Heap pointers get a null-check from the interpreter,
2661   // as a courtesy.  However, this is not guaranteed by Unsafe,
2662   // and it is not possible to fully distinguish unintended nulls
2663   // from intended ones in this API.
2664 
2665   if (is_volatile) {
2666     // We need to emit leading and trailing CPU membars (see below) in
2667     // addition to memory membars when is_volatile. This is a little
2668     // too strong, but avoids the need to insert per-alias-type
2669     // volatile membars (for stores; compare Parse::do_put_xxx), which
2670     // we cannot do effectively here because we probably only have a
2671     // rough approximation of type.
2672     need_mem_bar = true;
2673     // For Stores, place a memory ordering barrier now.
2674     if (is_store) {
2675       insert_mem_bar(Op_MemBarRelease);
2676     } else {
2677       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2678         insert_mem_bar(Op_MemBarVolatile);
2679       }
2680     }
2681   }
2682 
2683   // Memory barrier to prevent normal and 'unsafe' accesses from
2684   // bypassing each other.  Happens after null checks, so the
2685   // exception paths do not take memory state from the memory barrier,
2686   // so there's no problems making a strong assert about mixing users
2687   // of safe & unsafe memory.
2688   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2689 
2690    if (!is_store) {
2691     Node* p = NULL;
2692     // Try to constant fold a load from a constant field
2693     ciField* field = alias_type->field();
2694     if (heap_base_oop != top() &&
2695         field != NULL && field->is_constant() && field->layout_type() == type) {
2696       // final or stable field
2697       const Type* con_type = Type::make_constant(alias_type->field(), heap_base_oop);
2698       if (con_type != NULL) {
2699         p = makecon(con_type);
2700       }
2701     }
2702     if (p == NULL) {
2703       MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2704       // To be valid, unsafe loads may depend on other conditions than
2705       // the one that guards them: pin the Load node
2706       p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile);
2707       // load value
2708       switch (type) {
2709       case T_BOOLEAN:
2710       case T_CHAR:
2711       case T_BYTE:
2712       case T_SHORT:
2713       case T_INT:
2714       case T_LONG:
2715       case T_FLOAT:
2716       case T_DOUBLE:
2717         break;
2718       case T_OBJECT:
2719         if (need_read_barrier) {
2720           insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2721         }
2722         break;
2723       case T_ADDRESS:
2724         // Cast to an int type.
2725         p = _gvn.transform(new CastP2XNode(NULL, p));
2726         p = ConvX2UL(p);
2727         break;
2728       default:
2729         fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2730         break;
2731       }
2732     }
2733     // The load node has the control of the preceding MemBarCPUOrder.  All
2734     // following nodes will have the control of the MemBarCPUOrder inserted at
2735     // the end of this method.  So, pushing the load onto the stack at a later
2736     // point is fine.
2737     set_result(p);
2738   } else {
2739     // place effect of store into memory
2740     switch (type) {
2741     case T_DOUBLE:
2742       val = dstore_rounding(val);
2743       break;
2744     case T_ADDRESS:
2745       // Repackage the long as a pointer.
2746       val = ConvL2X(val);
2747       val = _gvn.transform(new CastX2PNode(val));
2748       break;
2749     }
2750 
2751     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2752     if (type != T_OBJECT ) {
2753       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2754     } else {
2755       // Possibly an oop being stored to Java heap or native memory
2756       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2757         // oop to Java heap.
2758         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2759       } else {
2760         // We can't tell at compile time if we are storing in the Java heap or outside
2761         // of it. So we need to emit code to conditionally do the proper type of
2762         // store.
2763 
2764         IdealKit ideal(this);
2765 #define __ ideal.
2766         // QQQ who knows what probability is here??
2767         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2768           // Sync IdealKit and graphKit.
2769           sync_kit(ideal);
2770           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2771           // Update IdealKit memory.
2772           __ sync_kit(this);
2773         } __ else_(); {
2774           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2775         } __ end_if();
2776         // Final sync IdealKit and GraphKit.
2777         final_sync(ideal);
2778 #undef __
2779       }
2780     }
2781   }
2782 
2783   if (is_volatile) {
2784     if (!is_store) {
2785       insert_mem_bar(Op_MemBarAcquire);
2786     } else {
2787       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2788         insert_mem_bar(Op_MemBarVolatile);
2789       }
2790     }
2791   }
2792 
2793   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2794 
2795   return true;
2796 }
2797 
2798 //----------------------------inline_unsafe_load_store----------------------------
2799 // This method serves a couple of different customers (depending on LoadStoreKind):
2800 //
2801 // LS_cmpxchg:
2802 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2803 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2804 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2805 //
2806 // LS_xadd:
2807 //   public int  getAndAddInt( Object o, long offset, int  delta)
2808 //   public long getAndAddLong(Object o, long offset, long delta)
2809 //
2810 // LS_xchg:
2811 //   int    getAndSet(Object o, long offset, int    newValue)
2812 //   long   getAndSet(Object o, long offset, long   newValue)
2813 //   Object getAndSet(Object o, long offset, Object newValue)
2814 //
2815 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2816   // This basic scheme here is the same as inline_unsafe_access, but
2817   // differs in enough details that combining them would make the code
2818   // overly confusing.  (This is a true fact! I originally combined
2819   // them, but even I was confused by it!) As much code/comments as
2820   // possible are retained from inline_unsafe_access though to make
2821   // the correspondences clearer. - dl
2822 
2823   if (callee()->is_static())  return false;  // caller must have the capability!
2824 
2825 #ifndef PRODUCT
2826   BasicType rtype;
2827   {
2828     ResourceMark rm;
2829     // Check the signatures.
2830     ciSignature* sig = callee()->signature();
2831     rtype = sig->return_type()->basic_type();
2832     if (kind == LS_xadd || kind == LS_xchg) {
2833       // Check the signatures.
2834 #ifdef ASSERT
2835       assert(rtype == type, "get and set must return the expected type");
2836       assert(sig->count() == 3, "get and set has 3 arguments");
2837       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2838       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2839       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2840 #endif // ASSERT
2841     } else if (kind == LS_cmpxchg) {
2842       // Check the signatures.
2843 #ifdef ASSERT
2844       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2845       assert(sig->count() == 4, "CAS has 4 arguments");
2846       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2847       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2848 #endif // ASSERT
2849     } else {
2850       ShouldNotReachHere();
2851     }
2852   }
2853 #endif //PRODUCT
2854 
2855   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2856 
2857   // Get arguments:
2858   Node* receiver = NULL;
2859   Node* base     = NULL;
2860   Node* offset   = NULL;
2861   Node* oldval   = NULL;
2862   Node* newval   = NULL;
2863   if (kind == LS_cmpxchg) {
2864     const bool two_slot_type = type2size[type] == 2;
2865     receiver = argument(0);  // type: oop
2866     base     = argument(1);  // type: oop
2867     offset   = argument(2);  // type: long
2868     oldval   = argument(4);  // type: oop, int, or long
2869     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2870   } else if (kind == LS_xadd || kind == LS_xchg){
2871     receiver = argument(0);  // type: oop
2872     base     = argument(1);  // type: oop
2873     offset   = argument(2);  // type: long
2874     oldval   = NULL;
2875     newval   = argument(4);  // type: oop, int, or long
2876   }
2877 
2878   // Null check receiver.
2879   receiver = null_check(receiver);
2880   if (stopped()) {
2881     return true;
2882   }
2883 
2884   // Build field offset expression.
2885   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2886   // to be plain byte offsets, which are also the same as those accepted
2887   // by oopDesc::field_base.
2888   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2889   // 32-bit machines ignore the high half of long offsets
2890   offset = ConvL2X(offset);
2891   Node* adr = make_unsafe_address(base, offset);
2892   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2893 
2894   // For CAS, unlike inline_unsafe_access, there seems no point in
2895   // trying to refine types. Just use the coarse types here.
2896   const Type *value_type = Type::get_const_basic_type(type);
2897   Compile::AliasType* alias_type = C->alias_type(adr_type);
2898   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2899 
2900   if (kind == LS_xchg && type == T_OBJECT) {
2901     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2902     if (tjp != NULL) {
2903       value_type = tjp;
2904     }
2905   }
2906 
2907   int alias_idx = C->get_alias_index(adr_type);
2908 
2909   // Memory-model-wise, a LoadStore acts like a little synchronized
2910   // block, so needs barriers on each side.  These don't translate
2911   // into actual barriers on most machines, but we still need rest of
2912   // compiler to respect ordering.
2913 
2914   insert_mem_bar(Op_MemBarRelease);
2915   insert_mem_bar(Op_MemBarCPUOrder);
2916 
2917   // 4984716: MemBars must be inserted before this
2918   //          memory node in order to avoid a false
2919   //          dependency which will confuse the scheduler.
2920   Node *mem = memory(alias_idx);
2921 
2922   // For now, we handle only those cases that actually exist: ints,
2923   // longs, and Object. Adding others should be straightforward.
2924   Node* load_store;
2925   switch(type) {
2926   case T_INT:
2927     if (kind == LS_xadd) {
2928       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2929     } else if (kind == LS_xchg) {
2930       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2931     } else if (kind == LS_cmpxchg) {
2932       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2933     } else {
2934       ShouldNotReachHere();
2935     }
2936     break;
2937   case T_LONG:
2938     if (kind == LS_xadd) {
2939       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2940     } else if (kind == LS_xchg) {
2941       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2942     } else if (kind == LS_cmpxchg) {
2943       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2944     } else {
2945       ShouldNotReachHere();
2946     }
2947     break;
2948   case T_OBJECT:
2949     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2950     // could be delayed during Parse (for example, in adjust_map_after_if()).
2951     // Execute transformation here to avoid barrier generation in such case.
2952     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2953       newval = _gvn.makecon(TypePtr::NULL_PTR);
2954 
2955     // Reference stores need a store barrier.
2956     if (kind == LS_xchg) {
2957       // If pre-barrier must execute before the oop store, old value will require do_load here.
2958       if (!can_move_pre_barrier()) {
2959         pre_barrier(true /* do_load*/,
2960                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2961                     NULL /* pre_val*/,
2962                     T_OBJECT);
2963       } // Else move pre_barrier to use load_store value, see below.
2964     } else if (kind == LS_cmpxchg) {
2965       // Same as for newval above:
2966       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2967         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2968       }
2969       // The only known value which might get overwritten is oldval.
2970       pre_barrier(false /* do_load */,
2971                   control(), NULL, NULL, max_juint, NULL, NULL,
2972                   oldval /* pre_val */,
2973                   T_OBJECT);
2974     } else {
2975       ShouldNotReachHere();
2976     }
2977 
2978 #ifdef _LP64
2979     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2980       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2981       if (kind == LS_xchg) {
2982         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2983                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2984       } else {
2985         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2986         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2987         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2988                                                                 newval_enc, oldval_enc));
2989       }
2990     } else
2991 #endif
2992     {
2993       if (kind == LS_xchg) {
2994         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2995       } else {
2996         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2997         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2998       }
2999     }
3000     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3001     break;
3002   default:
3003     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
3004     break;
3005   }
3006 
3007   // SCMemProjNodes represent the memory state of a LoadStore. Their
3008   // main role is to prevent LoadStore nodes from being optimized away
3009   // when their results aren't used.
3010   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
3011   set_memory(proj, alias_idx);
3012 
3013   if (type == T_OBJECT && kind == LS_xchg) {
3014 #ifdef _LP64
3015     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3016       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
3017     }
3018 #endif
3019     if (can_move_pre_barrier()) {
3020       // Don't need to load pre_val. The old value is returned by load_store.
3021       // The pre_barrier can execute after the xchg as long as no safepoint
3022       // gets inserted between them.
3023       pre_barrier(false /* do_load */,
3024                   control(), NULL, NULL, max_juint, NULL, NULL,
3025                   load_store /* pre_val */,
3026                   T_OBJECT);
3027     }
3028   }
3029 
3030   // Add the trailing membar surrounding the access
3031   insert_mem_bar(Op_MemBarCPUOrder);
3032   insert_mem_bar(Op_MemBarAcquire);
3033 
3034   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3035   set_result(load_store);
3036   return true;
3037 }
3038 
3039 //----------------------------inline_unsafe_ordered_store----------------------
3040 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3041 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3042 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3043 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3044   // This is another variant of inline_unsafe_access, differing in
3045   // that it always issues store-store ("release") barrier and ensures
3046   // store-atomicity (which only matters for "long").
3047 
3048   if (callee()->is_static())  return false;  // caller must have the capability!
3049 
3050 #ifndef PRODUCT
3051   {
3052     ResourceMark rm;
3053     // Check the signatures.
3054     ciSignature* sig = callee()->signature();
3055 #ifdef ASSERT
3056     BasicType rtype = sig->return_type()->basic_type();
3057     assert(rtype == T_VOID, "must return void");
3058     assert(sig->count() == 3, "has 3 arguments");
3059     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3060     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3061 #endif // ASSERT
3062   }
3063 #endif //PRODUCT
3064 
3065   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3066 
3067   // Get arguments:
3068   Node* receiver = argument(0);  // type: oop
3069   Node* base     = argument(1);  // type: oop
3070   Node* offset   = argument(2);  // type: long
3071   Node* val      = argument(4);  // type: oop, int, or long
3072 
3073   // Null check receiver.
3074   receiver = null_check(receiver);
3075   if (stopped()) {
3076     return true;
3077   }
3078 
3079   // Build field offset expression.
3080   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3081   // 32-bit machines ignore the high half of long offsets
3082   offset = ConvL2X(offset);
3083   Node* adr = make_unsafe_address(base, offset);
3084   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3085   const Type *value_type = Type::get_const_basic_type(type);
3086   Compile::AliasType* alias_type = C->alias_type(adr_type);
3087 
3088   insert_mem_bar(Op_MemBarRelease);
3089   insert_mem_bar(Op_MemBarCPUOrder);
3090   // Ensure that the store is atomic for longs:
3091   const bool require_atomic_access = true;
3092   Node* store;
3093   if (type == T_OBJECT) // reference stores need a store barrier.
3094     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3095   else {
3096     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3097   }
3098   insert_mem_bar(Op_MemBarCPUOrder);
3099   return true;
3100 }
3101 
3102 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3103   // Regardless of form, don't allow previous ld/st to move down,
3104   // then issue acquire, release, or volatile mem_bar.
3105   insert_mem_bar(Op_MemBarCPUOrder);
3106   switch(id) {
3107     case vmIntrinsics::_loadFence:
3108       insert_mem_bar(Op_LoadFence);
3109       return true;
3110     case vmIntrinsics::_storeFence:
3111       insert_mem_bar(Op_StoreFence);
3112       return true;
3113     case vmIntrinsics::_fullFence:
3114       insert_mem_bar(Op_MemBarVolatile);
3115       return true;
3116     default:
3117       fatal_unexpected_iid(id);
3118       return false;
3119   }
3120 }
3121 
3122 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3123   if (!kls->is_Con()) {
3124     return true;
3125   }
3126   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3127   if (klsptr == NULL) {
3128     return true;
3129   }
3130   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3131   // don't need a guard for a klass that is already initialized
3132   return !ik->is_initialized();
3133 }
3134 
3135 //----------------------------inline_unsafe_allocate---------------------------
3136 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3137 bool LibraryCallKit::inline_unsafe_allocate() {
3138   if (callee()->is_static())  return false;  // caller must have the capability!
3139 
3140   null_check_receiver();  // null-check, then ignore
3141   Node* cls = null_check(argument(1));
3142   if (stopped())  return true;
3143 
3144   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3145   kls = null_check(kls);
3146   if (stopped())  return true;  // argument was like int.class
3147 
3148   Node* test = NULL;
3149   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3150     // Note:  The argument might still be an illegal value like
3151     // Serializable.class or Object[].class.   The runtime will handle it.
3152     // But we must make an explicit check for initialization.
3153     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3154     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3155     // can generate code to load it as unsigned byte.
3156     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3157     Node* bits = intcon(InstanceKlass::fully_initialized);
3158     test = _gvn.transform(new SubINode(inst, bits));
3159     // The 'test' is non-zero if we need to take a slow path.
3160   }
3161 
3162   Node* obj = new_instance(kls, test);
3163   set_result(obj);
3164   return true;
3165 }
3166 
3167 #ifdef TRACE_HAVE_INTRINSICS
3168 /*
3169  * oop -> myklass
3170  * myklass->trace_id |= USED
3171  * return myklass->trace_id & ~0x3
3172  */
3173 bool LibraryCallKit::inline_native_classID() {
3174   null_check_receiver();  // null-check, then ignore
3175   Node* cls = null_check(argument(1), T_OBJECT);
3176   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3177   kls = null_check(kls, T_OBJECT);
3178   ByteSize offset = TRACE_ID_OFFSET;
3179   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3180   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3181   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3182   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3183   Node* clsused = longcon(0x01l); // set the class bit
3184   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3185 
3186   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3187   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3188   set_result(andl);
3189   return true;
3190 }
3191 
3192 bool LibraryCallKit::inline_native_threadID() {
3193   Node* tls_ptr = NULL;
3194   Node* cur_thr = generate_current_thread(tls_ptr);
3195   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3196   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3197   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3198 
3199   Node* threadid = NULL;
3200   size_t thread_id_size = OSThread::thread_id_size();
3201   if (thread_id_size == (size_t) BytesPerLong) {
3202     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3203   } else if (thread_id_size == (size_t) BytesPerInt) {
3204     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3205   } else {
3206     ShouldNotReachHere();
3207   }
3208   set_result(threadid);
3209   return true;
3210 }
3211 #endif
3212 
3213 //------------------------inline_native_time_funcs--------------
3214 // inline code for System.currentTimeMillis() and System.nanoTime()
3215 // these have the same type and signature
3216 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3217   const TypeFunc* tf = OptoRuntime::void_long_Type();
3218   const TypePtr* no_memory_effects = NULL;
3219   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3220   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3221 #ifdef ASSERT
3222   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3223   assert(value_top == top(), "second value must be top");
3224 #endif
3225   set_result(value);
3226   return true;
3227 }
3228 
3229 //------------------------inline_native_currentThread------------------
3230 bool LibraryCallKit::inline_native_currentThread() {
3231   Node* junk = NULL;
3232   set_result(generate_current_thread(junk));
3233   return true;
3234 }
3235 
3236 //------------------------inline_native_isInterrupted------------------
3237 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3238 bool LibraryCallKit::inline_native_isInterrupted() {
3239   // Add a fast path to t.isInterrupted(clear_int):
3240   //   (t == Thread.current() &&
3241   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3242   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3243   // So, in the common case that the interrupt bit is false,
3244   // we avoid making a call into the VM.  Even if the interrupt bit
3245   // is true, if the clear_int argument is false, we avoid the VM call.
3246   // However, if the receiver is not currentThread, we must call the VM,
3247   // because there must be some locking done around the operation.
3248 
3249   // We only go to the fast case code if we pass two guards.
3250   // Paths which do not pass are accumulated in the slow_region.
3251 
3252   enum {
3253     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3254     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3255     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3256     PATH_LIMIT
3257   };
3258 
3259   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3260   // out of the function.
3261   insert_mem_bar(Op_MemBarCPUOrder);
3262 
3263   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3264   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3265 
3266   RegionNode* slow_region = new RegionNode(1);
3267   record_for_igvn(slow_region);
3268 
3269   // (a) Receiving thread must be the current thread.
3270   Node* rec_thr = argument(0);
3271   Node* tls_ptr = NULL;
3272   Node* cur_thr = generate_current_thread(tls_ptr);
3273   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3274   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3275 
3276   generate_slow_guard(bol_thr, slow_region);
3277 
3278   // (b) Interrupt bit on TLS must be false.
3279   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3280   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3281   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3282 
3283   // Set the control input on the field _interrupted read to prevent it floating up.
3284   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3285   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3286   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3287 
3288   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3289 
3290   // First fast path:  if (!TLS._interrupted) return false;
3291   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3292   result_rgn->init_req(no_int_result_path, false_bit);
3293   result_val->init_req(no_int_result_path, intcon(0));
3294 
3295   // drop through to next case
3296   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3297 
3298 #ifndef TARGET_OS_FAMILY_windows
3299   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3300   Node* clr_arg = argument(1);
3301   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3302   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3303   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3304 
3305   // Second fast path:  ... else if (!clear_int) return true;
3306   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3307   result_rgn->init_req(no_clear_result_path, false_arg);
3308   result_val->init_req(no_clear_result_path, intcon(1));
3309 
3310   // drop through to next case
3311   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3312 #else
3313   // To return true on Windows you must read the _interrupted field
3314   // and check the the event state i.e. take the slow path.
3315 #endif // TARGET_OS_FAMILY_windows
3316 
3317   // (d) Otherwise, go to the slow path.
3318   slow_region->add_req(control());
3319   set_control( _gvn.transform(slow_region));
3320 
3321   if (stopped()) {
3322     // There is no slow path.
3323     result_rgn->init_req(slow_result_path, top());
3324     result_val->init_req(slow_result_path, top());
3325   } else {
3326     // non-virtual because it is a private non-static
3327     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3328 
3329     Node* slow_val = set_results_for_java_call(slow_call);
3330     // this->control() comes from set_results_for_java_call
3331 
3332     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3333     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3334 
3335     // These two phis are pre-filled with copies of of the fast IO and Memory
3336     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3337     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3338 
3339     result_rgn->init_req(slow_result_path, control());
3340     result_io ->init_req(slow_result_path, i_o());
3341     result_mem->init_req(slow_result_path, reset_memory());
3342     result_val->init_req(slow_result_path, slow_val);
3343 
3344     set_all_memory(_gvn.transform(result_mem));
3345     set_i_o(       _gvn.transform(result_io));
3346   }
3347 
3348   C->set_has_split_ifs(true); // Has chance for split-if optimization
3349   set_result(result_rgn, result_val);
3350   return true;
3351 }
3352 
3353 //---------------------------load_mirror_from_klass----------------------------
3354 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3355 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3356   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3357   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3358 }
3359 
3360 //-----------------------load_klass_from_mirror_common-------------------------
3361 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3362 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3363 // and branch to the given path on the region.
3364 // If never_see_null, take an uncommon trap on null, so we can optimistically
3365 // compile for the non-null case.
3366 // If the region is NULL, force never_see_null = true.
3367 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3368                                                     bool never_see_null,
3369                                                     RegionNode* region,
3370                                                     int null_path,
3371                                                     int offset) {
3372   if (region == NULL)  never_see_null = true;
3373   Node* p = basic_plus_adr(mirror, offset);
3374   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3375   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3376   Node* null_ctl = top();
3377   kls = null_check_oop(kls, &null_ctl, never_see_null);
3378   if (region != NULL) {
3379     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3380     region->init_req(null_path, null_ctl);
3381   } else {
3382     assert(null_ctl == top(), "no loose ends");
3383   }
3384   return kls;
3385 }
3386 
3387 //--------------------(inline_native_Class_query helpers)---------------------
3388 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3389 // Fall through if (mods & mask) == bits, take the guard otherwise.
3390 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3391   // Branch around if the given klass has the given modifier bit set.
3392   // Like generate_guard, adds a new path onto the region.
3393   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3394   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3395   Node* mask = intcon(modifier_mask);
3396   Node* bits = intcon(modifier_bits);
3397   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3398   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3399   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3400   return generate_fair_guard(bol, region);
3401 }
3402 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3403   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3404 }
3405 
3406 //-------------------------inline_native_Class_query-------------------
3407 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3408   const Type* return_type = TypeInt::BOOL;
3409   Node* prim_return_value = top();  // what happens if it's a primitive class?
3410   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3411   bool expect_prim = false;     // most of these guys expect to work on refs
3412 
3413   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3414 
3415   Node* mirror = argument(0);
3416   Node* obj    = top();
3417 
3418   switch (id) {
3419   case vmIntrinsics::_isInstance:
3420     // nothing is an instance of a primitive type
3421     prim_return_value = intcon(0);
3422     obj = argument(1);
3423     break;
3424   case vmIntrinsics::_getModifiers:
3425     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3426     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3427     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3428     break;
3429   case vmIntrinsics::_isInterface:
3430     prim_return_value = intcon(0);
3431     break;
3432   case vmIntrinsics::_isArray:
3433     prim_return_value = intcon(0);
3434     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3435     break;
3436   case vmIntrinsics::_isPrimitive:
3437     prim_return_value = intcon(1);
3438     expect_prim = true;  // obviously
3439     break;
3440   case vmIntrinsics::_getSuperclass:
3441     prim_return_value = null();
3442     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3443     break;
3444   case vmIntrinsics::_getClassAccessFlags:
3445     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3446     return_type = TypeInt::INT;  // not bool!  6297094
3447     break;
3448   default:
3449     fatal_unexpected_iid(id);
3450     break;
3451   }
3452 
3453   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3454   if (mirror_con == NULL)  return false;  // cannot happen?
3455 
3456 #ifndef PRODUCT
3457   if (C->print_intrinsics() || C->print_inlining()) {
3458     ciType* k = mirror_con->java_mirror_type();
3459     if (k) {
3460       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3461       k->print_name();
3462       tty->cr();
3463     }
3464   }
3465 #endif
3466 
3467   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3468   RegionNode* region = new RegionNode(PATH_LIMIT);
3469   record_for_igvn(region);
3470   PhiNode* phi = new PhiNode(region, return_type);
3471 
3472   // The mirror will never be null of Reflection.getClassAccessFlags, however
3473   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3474   // if it is. See bug 4774291.
3475 
3476   // For Reflection.getClassAccessFlags(), the null check occurs in
3477   // the wrong place; see inline_unsafe_access(), above, for a similar
3478   // situation.
3479   mirror = null_check(mirror);
3480   // If mirror or obj is dead, only null-path is taken.
3481   if (stopped())  return true;
3482 
3483   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3484 
3485   // Now load the mirror's klass metaobject, and null-check it.
3486   // Side-effects region with the control path if the klass is null.
3487   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3488   // If kls is null, we have a primitive mirror.
3489   phi->init_req(_prim_path, prim_return_value);
3490   if (stopped()) { set_result(region, phi); return true; }
3491   bool safe_for_replace = (region->in(_prim_path) == top());
3492 
3493   Node* p;  // handy temp
3494   Node* null_ctl;
3495 
3496   // Now that we have the non-null klass, we can perform the real query.
3497   // For constant classes, the query will constant-fold in LoadNode::Value.
3498   Node* query_value = top();
3499   switch (id) {
3500   case vmIntrinsics::_isInstance:
3501     // nothing is an instance of a primitive type
3502     query_value = gen_instanceof(obj, kls, safe_for_replace);
3503     break;
3504 
3505   case vmIntrinsics::_getModifiers:
3506     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3507     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3508     break;
3509 
3510   case vmIntrinsics::_isInterface:
3511     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3512     if (generate_interface_guard(kls, region) != NULL)
3513       // A guard was added.  If the guard is taken, it was an interface.
3514       phi->add_req(intcon(1));
3515     // If we fall through, it's a plain class.
3516     query_value = intcon(0);
3517     break;
3518 
3519   case vmIntrinsics::_isArray:
3520     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3521     if (generate_array_guard(kls, region) != NULL)
3522       // A guard was added.  If the guard is taken, it was an array.
3523       phi->add_req(intcon(1));
3524     // If we fall through, it's a plain class.
3525     query_value = intcon(0);
3526     break;
3527 
3528   case vmIntrinsics::_isPrimitive:
3529     query_value = intcon(0); // "normal" path produces false
3530     break;
3531 
3532   case vmIntrinsics::_getSuperclass:
3533     // The rules here are somewhat unfortunate, but we can still do better
3534     // with random logic than with a JNI call.
3535     // Interfaces store null or Object as _super, but must report null.
3536     // Arrays store an intermediate super as _super, but must report Object.
3537     // Other types can report the actual _super.
3538     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3539     if (generate_interface_guard(kls, region) != NULL)
3540       // A guard was added.  If the guard is taken, it was an interface.
3541       phi->add_req(null());
3542     if (generate_array_guard(kls, region) != NULL)
3543       // A guard was added.  If the guard is taken, it was an array.
3544       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3545     // If we fall through, it's a plain class.  Get its _super.
3546     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3547     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3548     null_ctl = top();
3549     kls = null_check_oop(kls, &null_ctl);
3550     if (null_ctl != top()) {
3551       // If the guard is taken, Object.superClass is null (both klass and mirror).
3552       region->add_req(null_ctl);
3553       phi   ->add_req(null());
3554     }
3555     if (!stopped()) {
3556       query_value = load_mirror_from_klass(kls);
3557     }
3558     break;
3559 
3560   case vmIntrinsics::_getClassAccessFlags:
3561     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3562     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3563     break;
3564 
3565   default:
3566     fatal_unexpected_iid(id);
3567     break;
3568   }
3569 
3570   // Fall-through is the normal case of a query to a real class.
3571   phi->init_req(1, query_value);
3572   region->init_req(1, control());
3573 
3574   C->set_has_split_ifs(true); // Has chance for split-if optimization
3575   set_result(region, phi);
3576   return true;
3577 }
3578 
3579 //-------------------------inline_Class_cast-------------------
3580 bool LibraryCallKit::inline_Class_cast() {
3581   Node* mirror = argument(0); // Class
3582   Node* obj    = argument(1);
3583   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3584   if (mirror_con == NULL) {
3585     return false;  // dead path (mirror->is_top()).
3586   }
3587   if (obj == NULL || obj->is_top()) {
3588     return false;  // dead path
3589   }
3590   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3591 
3592   // First, see if Class.cast() can be folded statically.
3593   // java_mirror_type() returns non-null for compile-time Class constants.
3594   ciType* tm = mirror_con->java_mirror_type();
3595   if (tm != NULL && tm->is_klass() &&
3596       tp != NULL && tp->klass() != NULL) {
3597     if (!tp->klass()->is_loaded()) {
3598       // Don't use intrinsic when class is not loaded.
3599       return false;
3600     } else {
3601       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3602       if (static_res == Compile::SSC_always_true) {
3603         // isInstance() is true - fold the code.
3604         set_result(obj);
3605         return true;
3606       } else if (static_res == Compile::SSC_always_false) {
3607         // Don't use intrinsic, have to throw ClassCastException.
3608         // If the reference is null, the non-intrinsic bytecode will
3609         // be optimized appropriately.
3610         return false;
3611       }
3612     }
3613   }
3614 
3615   // Bailout intrinsic and do normal inlining if exception path is frequent.
3616   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3617     return false;
3618   }
3619 
3620   // Generate dynamic checks.
3621   // Class.cast() is java implementation of _checkcast bytecode.
3622   // Do checkcast (Parse::do_checkcast()) optimizations here.
3623 
3624   mirror = null_check(mirror);
3625   // If mirror is dead, only null-path is taken.
3626   if (stopped()) {
3627     return true;
3628   }
3629 
3630   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3631   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3632   RegionNode* region = new RegionNode(PATH_LIMIT);
3633   record_for_igvn(region);
3634 
3635   // Now load the mirror's klass metaobject, and null-check it.
3636   // If kls is null, we have a primitive mirror and
3637   // nothing is an instance of a primitive type.
3638   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3639 
3640   Node* res = top();
3641   if (!stopped()) {
3642     Node* bad_type_ctrl = top();
3643     // Do checkcast optimizations.
3644     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3645     region->init_req(_bad_type_path, bad_type_ctrl);
3646   }
3647   if (region->in(_prim_path) != top() ||
3648       region->in(_bad_type_path) != top()) {
3649     // Let Interpreter throw ClassCastException.
3650     PreserveJVMState pjvms(this);
3651     set_control(_gvn.transform(region));
3652     uncommon_trap(Deoptimization::Reason_intrinsic,
3653                   Deoptimization::Action_maybe_recompile);
3654   }
3655   if (!stopped()) {
3656     set_result(res);
3657   }
3658   return true;
3659 }
3660 
3661 
3662 //--------------------------inline_native_subtype_check------------------------
3663 // This intrinsic takes the JNI calls out of the heart of
3664 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3665 bool LibraryCallKit::inline_native_subtype_check() {
3666   // Pull both arguments off the stack.
3667   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3668   args[0] = argument(0);
3669   args[1] = argument(1);
3670   Node* klasses[2];             // corresponding Klasses: superk, subk
3671   klasses[0] = klasses[1] = top();
3672 
3673   enum {
3674     // A full decision tree on {superc is prim, subc is prim}:
3675     _prim_0_path = 1,           // {P,N} => false
3676                                 // {P,P} & superc!=subc => false
3677     _prim_same_path,            // {P,P} & superc==subc => true
3678     _prim_1_path,               // {N,P} => false
3679     _ref_subtype_path,          // {N,N} & subtype check wins => true
3680     _both_ref_path,             // {N,N} & subtype check loses => false
3681     PATH_LIMIT
3682   };
3683 
3684   RegionNode* region = new RegionNode(PATH_LIMIT);
3685   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3686   record_for_igvn(region);
3687 
3688   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3689   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3690   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3691 
3692   // First null-check both mirrors and load each mirror's klass metaobject.
3693   int which_arg;
3694   for (which_arg = 0; which_arg <= 1; which_arg++) {
3695     Node* arg = args[which_arg];
3696     arg = null_check(arg);
3697     if (stopped())  break;
3698     args[which_arg] = arg;
3699 
3700     Node* p = basic_plus_adr(arg, class_klass_offset);
3701     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3702     klasses[which_arg] = _gvn.transform(kls);
3703   }
3704 
3705   // Having loaded both klasses, test each for null.
3706   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3707   for (which_arg = 0; which_arg <= 1; which_arg++) {
3708     Node* kls = klasses[which_arg];
3709     Node* null_ctl = top();
3710     kls = null_check_oop(kls, &null_ctl, never_see_null);
3711     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3712     region->init_req(prim_path, null_ctl);
3713     if (stopped())  break;
3714     klasses[which_arg] = kls;
3715   }
3716 
3717   if (!stopped()) {
3718     // now we have two reference types, in klasses[0..1]
3719     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3720     Node* superk = klasses[0];  // the receiver
3721     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3722     // now we have a successful reference subtype check
3723     region->set_req(_ref_subtype_path, control());
3724   }
3725 
3726   // If both operands are primitive (both klasses null), then
3727   // we must return true when they are identical primitives.
3728   // It is convenient to test this after the first null klass check.
3729   set_control(region->in(_prim_0_path)); // go back to first null check
3730   if (!stopped()) {
3731     // Since superc is primitive, make a guard for the superc==subc case.
3732     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3733     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3734     generate_guard(bol_eq, region, PROB_FAIR);
3735     if (region->req() == PATH_LIMIT+1) {
3736       // A guard was added.  If the added guard is taken, superc==subc.
3737       region->swap_edges(PATH_LIMIT, _prim_same_path);
3738       region->del_req(PATH_LIMIT);
3739     }
3740     region->set_req(_prim_0_path, control()); // Not equal after all.
3741   }
3742 
3743   // these are the only paths that produce 'true':
3744   phi->set_req(_prim_same_path,   intcon(1));
3745   phi->set_req(_ref_subtype_path, intcon(1));
3746 
3747   // pull together the cases:
3748   assert(region->req() == PATH_LIMIT, "sane region");
3749   for (uint i = 1; i < region->req(); i++) {
3750     Node* ctl = region->in(i);
3751     if (ctl == NULL || ctl == top()) {
3752       region->set_req(i, top());
3753       phi   ->set_req(i, top());
3754     } else if (phi->in(i) == NULL) {
3755       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3756     }
3757   }
3758 
3759   set_control(_gvn.transform(region));
3760   set_result(_gvn.transform(phi));
3761   return true;
3762 }
3763 
3764 //---------------------generate_array_guard_common------------------------
3765 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3766                                                   bool obj_array, bool not_array) {
3767 
3768   if (stopped()) {
3769     return NULL;
3770   }
3771 
3772   // If obj_array/non_array==false/false:
3773   // Branch around if the given klass is in fact an array (either obj or prim).
3774   // If obj_array/non_array==false/true:
3775   // Branch around if the given klass is not an array klass of any kind.
3776   // If obj_array/non_array==true/true:
3777   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3778   // If obj_array/non_array==true/false:
3779   // Branch around if the kls is an oop array (Object[] or subtype)
3780   //
3781   // Like generate_guard, adds a new path onto the region.
3782   jint  layout_con = 0;
3783   Node* layout_val = get_layout_helper(kls, layout_con);
3784   if (layout_val == NULL) {
3785     bool query = (obj_array
3786                   ? Klass::layout_helper_is_objArray(layout_con)
3787                   : Klass::layout_helper_is_array(layout_con));
3788     if (query == not_array) {
3789       return NULL;                       // never a branch
3790     } else {                             // always a branch
3791       Node* always_branch = control();
3792       if (region != NULL)
3793         region->add_req(always_branch);
3794       set_control(top());
3795       return always_branch;
3796     }
3797   }
3798   // Now test the correct condition.
3799   jint  nval = (obj_array
3800                 ? ((jint)Klass::_lh_array_tag_type_value
3801                    <<    Klass::_lh_array_tag_shift)
3802                 : Klass::_lh_neutral_value);
3803   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3804   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3805   // invert the test if we are looking for a non-array
3806   if (not_array)  btest = BoolTest(btest).negate();
3807   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3808   return generate_fair_guard(bol, region);
3809 }
3810 
3811 
3812 //-----------------------inline_native_newArray--------------------------
3813 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3814 bool LibraryCallKit::inline_native_newArray() {
3815   Node* mirror    = argument(0);
3816   Node* count_val = argument(1);
3817 
3818   mirror = null_check(mirror);
3819   // If mirror or obj is dead, only null-path is taken.
3820   if (stopped())  return true;
3821 
3822   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3823   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3824   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3825   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3826   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3827 
3828   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3829   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3830                                                   result_reg, _slow_path);
3831   Node* normal_ctl   = control();
3832   Node* no_array_ctl = result_reg->in(_slow_path);
3833 
3834   // Generate code for the slow case.  We make a call to newArray().
3835   set_control(no_array_ctl);
3836   if (!stopped()) {
3837     // Either the input type is void.class, or else the
3838     // array klass has not yet been cached.  Either the
3839     // ensuing call will throw an exception, or else it
3840     // will cache the array klass for next time.
3841     PreserveJVMState pjvms(this);
3842     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3843     Node* slow_result = set_results_for_java_call(slow_call);
3844     // this->control() comes from set_results_for_java_call
3845     result_reg->set_req(_slow_path, control());
3846     result_val->set_req(_slow_path, slow_result);
3847     result_io ->set_req(_slow_path, i_o());
3848     result_mem->set_req(_slow_path, reset_memory());
3849   }
3850 
3851   set_control(normal_ctl);
3852   if (!stopped()) {
3853     // Normal case:  The array type has been cached in the java.lang.Class.
3854     // The following call works fine even if the array type is polymorphic.
3855     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3856     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3857     result_reg->init_req(_normal_path, control());
3858     result_val->init_req(_normal_path, obj);
3859     result_io ->init_req(_normal_path, i_o());
3860     result_mem->init_req(_normal_path, reset_memory());
3861   }
3862 
3863   // Return the combined state.
3864   set_i_o(        _gvn.transform(result_io)  );
3865   set_all_memory( _gvn.transform(result_mem));
3866 
3867   C->set_has_split_ifs(true); // Has chance for split-if optimization
3868   set_result(result_reg, result_val);
3869   return true;
3870 }
3871 
3872 //----------------------inline_native_getLength--------------------------
3873 // public static native int java.lang.reflect.Array.getLength(Object array);
3874 bool LibraryCallKit::inline_native_getLength() {
3875   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3876 
3877   Node* array = null_check(argument(0));
3878   // If array is dead, only null-path is taken.
3879   if (stopped())  return true;
3880 
3881   // Deoptimize if it is a non-array.
3882   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3883 
3884   if (non_array != NULL) {
3885     PreserveJVMState pjvms(this);
3886     set_control(non_array);
3887     uncommon_trap(Deoptimization::Reason_intrinsic,
3888                   Deoptimization::Action_maybe_recompile);
3889   }
3890 
3891   // If control is dead, only non-array-path is taken.
3892   if (stopped())  return true;
3893 
3894   // The works fine even if the array type is polymorphic.
3895   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3896   Node* result = load_array_length(array);
3897 
3898   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3899   set_result(result);
3900   return true;
3901 }
3902 
3903 //------------------------inline_array_copyOf----------------------------
3904 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3905 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3906 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3907   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3908 
3909   // Get the arguments.
3910   Node* original          = argument(0);
3911   Node* start             = is_copyOfRange? argument(1): intcon(0);
3912   Node* end               = is_copyOfRange? argument(2): argument(1);
3913   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3914 
3915   Node* newcopy;
3916 
3917   // Set the original stack and the reexecute bit for the interpreter to reexecute
3918   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3919   { PreserveReexecuteState preexecs(this);
3920     jvms()->set_should_reexecute(true);
3921 
3922     array_type_mirror = null_check(array_type_mirror);
3923     original          = null_check(original);
3924 
3925     // Check if a null path was taken unconditionally.
3926     if (stopped())  return true;
3927 
3928     Node* orig_length = load_array_length(original);
3929 
3930     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3931     klass_node = null_check(klass_node);
3932 
3933     RegionNode* bailout = new RegionNode(1);
3934     record_for_igvn(bailout);
3935 
3936     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3937     // Bail out if that is so.
3938     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3939     if (not_objArray != NULL) {
3940       // Improve the klass node's type from the new optimistic assumption:
3941       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3942       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3943       Node* cast = new CastPPNode(klass_node, akls);
3944       cast->init_req(0, control());
3945       klass_node = _gvn.transform(cast);
3946     }
3947 
3948     // Bail out if either start or end is negative.
3949     generate_negative_guard(start, bailout, &start);
3950     generate_negative_guard(end,   bailout, &end);
3951 
3952     Node* length = end;
3953     if (_gvn.type(start) != TypeInt::ZERO) {
3954       length = _gvn.transform(new SubINode(end, start));
3955     }
3956 
3957     // Bail out if length is negative.
3958     // Without this the new_array would throw
3959     // NegativeArraySizeException but IllegalArgumentException is what
3960     // should be thrown
3961     generate_negative_guard(length, bailout, &length);
3962 
3963     if (bailout->req() > 1) {
3964       PreserveJVMState pjvms(this);
3965       set_control(_gvn.transform(bailout));
3966       uncommon_trap(Deoptimization::Reason_intrinsic,
3967                     Deoptimization::Action_maybe_recompile);
3968     }
3969 
3970     if (!stopped()) {
3971       // How many elements will we copy from the original?
3972       // The answer is MinI(orig_length - start, length).
3973       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3974       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3975 
3976       // Generate a direct call to the right arraycopy function(s).
3977       // We know the copy is disjoint but we might not know if the
3978       // oop stores need checking.
3979       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3980       // This will fail a store-check if x contains any non-nulls.
3981 
3982       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3983       // loads/stores but it is legal only if we're sure the
3984       // Arrays.copyOf would succeed. So we need all input arguments
3985       // to the copyOf to be validated, including that the copy to the
3986       // new array won't trigger an ArrayStoreException. That subtype
3987       // check can be optimized if we know something on the type of
3988       // the input array from type speculation.
3989       if (_gvn.type(klass_node)->singleton()) {
3990         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3991         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3992 
3993         int test = C->static_subtype_check(superk, subk);
3994         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3995           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3996           if (t_original->speculative_type() != NULL) {
3997             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3998           }
3999         }
4000       }
4001 
4002       bool validated = false;
4003       // Reason_class_check rather than Reason_intrinsic because we
4004       // want to intrinsify even if this traps.
4005       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4006         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
4007                                                    klass_node);
4008 
4009         if (not_subtype_ctrl != top()) {
4010           PreserveJVMState pjvms(this);
4011           set_control(not_subtype_ctrl);
4012           uncommon_trap(Deoptimization::Reason_class_check,
4013                         Deoptimization::Action_make_not_entrant);
4014           assert(stopped(), "Should be stopped");
4015         }
4016         validated = true;
4017       }
4018 
4019       if (!stopped()) {
4020         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4021 
4022         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
4023                                                 load_object_klass(original), klass_node);
4024         if (!is_copyOfRange) {
4025           ac->set_copyof(validated);
4026         } else {
4027           ac->set_copyofrange(validated);
4028         }
4029         Node* n = _gvn.transform(ac);
4030         if (n == ac) {
4031           ac->connect_outputs(this);
4032         } else {
4033           assert(validated, "shouldn't transform if all arguments not validated");
4034           set_all_memory(n);
4035         }
4036       }
4037     }
4038   } // original reexecute is set back here
4039 
4040   C->set_has_split_ifs(true); // Has chance for split-if optimization
4041   if (!stopped()) {
4042     set_result(newcopy);
4043   }
4044   return true;
4045 }
4046 
4047 
4048 //----------------------generate_virtual_guard---------------------------
4049 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4050 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4051                                              RegionNode* slow_region) {
4052   ciMethod* method = callee();
4053   int vtable_index = method->vtable_index();
4054   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4055          err_msg_res("bad index %d", vtable_index));
4056   // Get the Method* out of the appropriate vtable entry.
4057   int entry_offset  = (InstanceKlass::vtable_start_offset() +
4058                      vtable_index*vtableEntry::size()) * wordSize +
4059                      vtableEntry::method_offset_in_bytes();
4060   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4061   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4062 
4063   // Compare the target method with the expected method (e.g., Object.hashCode).
4064   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4065 
4066   Node* native_call = makecon(native_call_addr);
4067   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4068   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4069 
4070   return generate_slow_guard(test_native, slow_region);
4071 }
4072 
4073 //-----------------------generate_method_call----------------------------
4074 // Use generate_method_call to make a slow-call to the real
4075 // method if the fast path fails.  An alternative would be to
4076 // use a stub like OptoRuntime::slow_arraycopy_Java.
4077 // This only works for expanding the current library call,
4078 // not another intrinsic.  (E.g., don't use this for making an
4079 // arraycopy call inside of the copyOf intrinsic.)
4080 CallJavaNode*
4081 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4082   // When compiling the intrinsic method itself, do not use this technique.
4083   guarantee(callee() != C->method(), "cannot make slow-call to self");
4084 
4085   ciMethod* method = callee();
4086   // ensure the JVMS we have will be correct for this call
4087   guarantee(method_id == method->intrinsic_id(), "must match");
4088 
4089   const TypeFunc* tf = TypeFunc::make(method);
4090   CallJavaNode* slow_call;
4091   if (is_static) {
4092     assert(!is_virtual, "");
4093     slow_call = new CallStaticJavaNode(C, tf,
4094                            SharedRuntime::get_resolve_static_call_stub(),
4095                            method, bci());
4096   } else if (is_virtual) {
4097     null_check_receiver();
4098     int vtable_index = Method::invalid_vtable_index;
4099     if (UseInlineCaches) {
4100       // Suppress the vtable call
4101     } else {
4102       // hashCode and clone are not a miranda methods,
4103       // so the vtable index is fixed.
4104       // No need to use the linkResolver to get it.
4105        vtable_index = method->vtable_index();
4106        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4107               err_msg_res("bad index %d", vtable_index));
4108     }
4109     slow_call = new CallDynamicJavaNode(tf,
4110                           SharedRuntime::get_resolve_virtual_call_stub(),
4111                           method, vtable_index, bci());
4112   } else {  // neither virtual nor static:  opt_virtual
4113     null_check_receiver();
4114     slow_call = new CallStaticJavaNode(C, tf,
4115                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4116                                 method, bci());
4117     slow_call->set_optimized_virtual(true);
4118   }
4119   set_arguments_for_java_call(slow_call);
4120   set_edges_for_java_call(slow_call);
4121   return slow_call;
4122 }
4123 
4124 
4125 /**
4126  * Build special case code for calls to hashCode on an object. This call may
4127  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4128  * slightly different code.
4129  */
4130 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4131   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4132   assert(!(is_virtual && is_static), "either virtual, special, or static");
4133 
4134   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4135 
4136   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4137   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4138   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4139   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4140   Node* obj = NULL;
4141   if (!is_static) {
4142     // Check for hashing null object
4143     obj = null_check_receiver();
4144     if (stopped())  return true;        // unconditionally null
4145     result_reg->init_req(_null_path, top());
4146     result_val->init_req(_null_path, top());
4147   } else {
4148     // Do a null check, and return zero if null.
4149     // System.identityHashCode(null) == 0
4150     obj = argument(0);
4151     Node* null_ctl = top();
4152     obj = null_check_oop(obj, &null_ctl);
4153     result_reg->init_req(_null_path, null_ctl);
4154     result_val->init_req(_null_path, _gvn.intcon(0));
4155   }
4156 
4157   // Unconditionally null?  Then return right away.
4158   if (stopped()) {
4159     set_control( result_reg->in(_null_path));
4160     if (!stopped())
4161       set_result(result_val->in(_null_path));
4162     return true;
4163   }
4164 
4165   // We only go to the fast case code if we pass a number of guards.  The
4166   // paths which do not pass are accumulated in the slow_region.
4167   RegionNode* slow_region = new RegionNode(1);
4168   record_for_igvn(slow_region);
4169 
4170   // If this is a virtual call, we generate a funny guard.  We pull out
4171   // the vtable entry corresponding to hashCode() from the target object.
4172   // If the target method which we are calling happens to be the native
4173   // Object hashCode() method, we pass the guard.  We do not need this
4174   // guard for non-virtual calls -- the caller is known to be the native
4175   // Object hashCode().
4176   if (is_virtual) {
4177     // After null check, get the object's klass.
4178     Node* obj_klass = load_object_klass(obj);
4179     generate_virtual_guard(obj_klass, slow_region);
4180   }
4181 
4182   // Get the header out of the object, use LoadMarkNode when available
4183   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4184   // The control of the load must be NULL. Otherwise, the load can move before
4185   // the null check after castPP removal.
4186   Node* no_ctrl = NULL;
4187   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4188 
4189   // Test the header to see if it is unlocked.
4190   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4191   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4192   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4193   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4194   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4195 
4196   generate_slow_guard(test_unlocked, slow_region);
4197 
4198   // Get the hash value and check to see that it has been properly assigned.
4199   // We depend on hash_mask being at most 32 bits and avoid the use of
4200   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4201   // vm: see markOop.hpp.
4202   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4203   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4204   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4205   // This hack lets the hash bits live anywhere in the mark object now, as long
4206   // as the shift drops the relevant bits into the low 32 bits.  Note that
4207   // Java spec says that HashCode is an int so there's no point in capturing
4208   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4209   hshifted_header      = ConvX2I(hshifted_header);
4210   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4211 
4212   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4213   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4214   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4215 
4216   generate_slow_guard(test_assigned, slow_region);
4217 
4218   Node* init_mem = reset_memory();
4219   // fill in the rest of the null path:
4220   result_io ->init_req(_null_path, i_o());
4221   result_mem->init_req(_null_path, init_mem);
4222 
4223   result_val->init_req(_fast_path, hash_val);
4224   result_reg->init_req(_fast_path, control());
4225   result_io ->init_req(_fast_path, i_o());
4226   result_mem->init_req(_fast_path, init_mem);
4227 
4228   // Generate code for the slow case.  We make a call to hashCode().
4229   set_control(_gvn.transform(slow_region));
4230   if (!stopped()) {
4231     // No need for PreserveJVMState, because we're using up the present state.
4232     set_all_memory(init_mem);
4233     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4234     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4235     Node* slow_result = set_results_for_java_call(slow_call);
4236     // this->control() comes from set_results_for_java_call
4237     result_reg->init_req(_slow_path, control());
4238     result_val->init_req(_slow_path, slow_result);
4239     result_io  ->set_req(_slow_path, i_o());
4240     result_mem ->set_req(_slow_path, reset_memory());
4241   }
4242 
4243   // Return the combined state.
4244   set_i_o(        _gvn.transform(result_io)  );
4245   set_all_memory( _gvn.transform(result_mem));
4246 
4247   set_result(result_reg, result_val);
4248   return true;
4249 }
4250 
4251 //---------------------------inline_native_getClass----------------------------
4252 // public final native Class<?> java.lang.Object.getClass();
4253 //
4254 // Build special case code for calls to getClass on an object.
4255 bool LibraryCallKit::inline_native_getClass() {
4256   Node* obj = null_check_receiver();
4257   if (stopped())  return true;
4258   set_result(load_mirror_from_klass(load_object_klass(obj)));
4259   return true;
4260 }
4261 
4262 //-----------------inline_native_Reflection_getCallerClass---------------------
4263 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4264 //
4265 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4266 //
4267 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4268 // in that it must skip particular security frames and checks for
4269 // caller sensitive methods.
4270 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4271 #ifndef PRODUCT
4272   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4273     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4274   }
4275 #endif
4276 
4277   if (!jvms()->has_method()) {
4278 #ifndef PRODUCT
4279     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4280       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4281     }
4282 #endif
4283     return false;
4284   }
4285 
4286   // Walk back up the JVM state to find the caller at the required
4287   // depth.
4288   JVMState* caller_jvms = jvms();
4289 
4290   // Cf. JVM_GetCallerClass
4291   // NOTE: Start the loop at depth 1 because the current JVM state does
4292   // not include the Reflection.getCallerClass() frame.
4293   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4294     ciMethod* m = caller_jvms->method();
4295     switch (n) {
4296     case 0:
4297       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4298       break;
4299     case 1:
4300       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4301       if (!m->caller_sensitive()) {
4302 #ifndef PRODUCT
4303         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4304           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4305         }
4306 #endif
4307         return false;  // bail-out; let JVM_GetCallerClass do the work
4308       }
4309       break;
4310     default:
4311       if (!m->is_ignored_by_security_stack_walk()) {
4312         // We have reached the desired frame; return the holder class.
4313         // Acquire method holder as java.lang.Class and push as constant.
4314         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4315         ciInstance* caller_mirror = caller_klass->java_mirror();
4316         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4317 
4318 #ifndef PRODUCT
4319         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4320           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4321           tty->print_cr("  JVM state at this point:");
4322           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4323             ciMethod* m = jvms()->of_depth(i)->method();
4324             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4325           }
4326         }
4327 #endif
4328         return true;
4329       }
4330       break;
4331     }
4332   }
4333 
4334 #ifndef PRODUCT
4335   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4336     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4337     tty->print_cr("  JVM state at this point:");
4338     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4339       ciMethod* m = jvms()->of_depth(i)->method();
4340       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4341     }
4342   }
4343 #endif
4344 
4345   return false;  // bail-out; let JVM_GetCallerClass do the work
4346 }
4347 
4348 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4349   Node* arg = argument(0);
4350   Node* result;
4351 
4352   switch (id) {
4353   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4354   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4355   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4356   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4357 
4358   case vmIntrinsics::_doubleToLongBits: {
4359     // two paths (plus control) merge in a wood
4360     RegionNode *r = new RegionNode(3);
4361     Node *phi = new PhiNode(r, TypeLong::LONG);
4362 
4363     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4364     // Build the boolean node
4365     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4366 
4367     // Branch either way.
4368     // NaN case is less traveled, which makes all the difference.
4369     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4370     Node *opt_isnan = _gvn.transform(ifisnan);
4371     assert( opt_isnan->is_If(), "Expect an IfNode");
4372     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4373     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4374 
4375     set_control(iftrue);
4376 
4377     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4378     Node *slow_result = longcon(nan_bits); // return NaN
4379     phi->init_req(1, _gvn.transform( slow_result ));
4380     r->init_req(1, iftrue);
4381 
4382     // Else fall through
4383     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4384     set_control(iffalse);
4385 
4386     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4387     r->init_req(2, iffalse);
4388 
4389     // Post merge
4390     set_control(_gvn.transform(r));
4391     record_for_igvn(r);
4392 
4393     C->set_has_split_ifs(true); // Has chance for split-if optimization
4394     result = phi;
4395     assert(result->bottom_type()->isa_long(), "must be");
4396     break;
4397   }
4398 
4399   case vmIntrinsics::_floatToIntBits: {
4400     // two paths (plus control) merge in a wood
4401     RegionNode *r = new RegionNode(3);
4402     Node *phi = new PhiNode(r, TypeInt::INT);
4403 
4404     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4405     // Build the boolean node
4406     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4407 
4408     // Branch either way.
4409     // NaN case is less traveled, which makes all the difference.
4410     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4411     Node *opt_isnan = _gvn.transform(ifisnan);
4412     assert( opt_isnan->is_If(), "Expect an IfNode");
4413     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4414     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4415 
4416     set_control(iftrue);
4417 
4418     static const jint nan_bits = 0x7fc00000;
4419     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4420     phi->init_req(1, _gvn.transform( slow_result ));
4421     r->init_req(1, iftrue);
4422 
4423     // Else fall through
4424     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4425     set_control(iffalse);
4426 
4427     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4428     r->init_req(2, iffalse);
4429 
4430     // Post merge
4431     set_control(_gvn.transform(r));
4432     record_for_igvn(r);
4433 
4434     C->set_has_split_ifs(true); // Has chance for split-if optimization
4435     result = phi;
4436     assert(result->bottom_type()->isa_int(), "must be");
4437     break;
4438   }
4439 
4440   default:
4441     fatal_unexpected_iid(id);
4442     break;
4443   }
4444   set_result(_gvn.transform(result));
4445   return true;
4446 }
4447 
4448 #ifdef _LP64
4449 #define XTOP ,top() /*additional argument*/
4450 #else  //_LP64
4451 #define XTOP        /*no additional argument*/
4452 #endif //_LP64
4453 
4454 //----------------------inline_unsafe_copyMemory-------------------------
4455 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4456 bool LibraryCallKit::inline_unsafe_copyMemory() {
4457   if (callee()->is_static())  return false;  // caller must have the capability!
4458   null_check_receiver();  // null-check receiver
4459   if (stopped())  return true;
4460 
4461   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4462 
4463   Node* src_ptr =         argument(1);   // type: oop
4464   Node* src_off = ConvL2X(argument(2));  // type: long
4465   Node* dst_ptr =         argument(4);   // type: oop
4466   Node* dst_off = ConvL2X(argument(5));  // type: long
4467   Node* size    = ConvL2X(argument(7));  // type: long
4468 
4469   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4470          "fieldOffset must be byte-scaled");
4471 
4472   Node* src = make_unsafe_address(src_ptr, src_off);
4473   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4474 
4475   // Conservatively insert a memory barrier on all memory slices.
4476   // Do not let writes of the copy source or destination float below the copy.
4477   insert_mem_bar(Op_MemBarCPUOrder);
4478 
4479   // Call it.  Note that the length argument is not scaled.
4480   make_runtime_call(RC_LEAF|RC_NO_FP,
4481                     OptoRuntime::fast_arraycopy_Type(),
4482                     StubRoutines::unsafe_arraycopy(),
4483                     "unsafe_arraycopy",
4484                     TypeRawPtr::BOTTOM,
4485                     src, dst, size XTOP);
4486 
4487   // Do not let reads of the copy destination float above the copy.
4488   insert_mem_bar(Op_MemBarCPUOrder);
4489 
4490   return true;
4491 }
4492 
4493 //------------------------clone_coping-----------------------------------
4494 // Helper function for inline_native_clone.
4495 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4496   assert(obj_size != NULL, "");
4497   Node* raw_obj = alloc_obj->in(1);
4498   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4499 
4500   AllocateNode* alloc = NULL;
4501   if (ReduceBulkZeroing) {
4502     // We will be completely responsible for initializing this object -
4503     // mark Initialize node as complete.
4504     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4505     // The object was just allocated - there should be no any stores!
4506     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4507     // Mark as complete_with_arraycopy so that on AllocateNode
4508     // expansion, we know this AllocateNode is initialized by an array
4509     // copy and a StoreStore barrier exists after the array copy.
4510     alloc->initialization()->set_complete_with_arraycopy();
4511   }
4512 
4513   // Copy the fastest available way.
4514   // TODO: generate fields copies for small objects instead.
4515   Node* src  = obj;
4516   Node* dest = alloc_obj;
4517   Node* size = _gvn.transform(obj_size);
4518 
4519   // Exclude the header but include array length to copy by 8 bytes words.
4520   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4521   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4522                             instanceOopDesc::base_offset_in_bytes();
4523   // base_off:
4524   // 8  - 32-bit VM
4525   // 12 - 64-bit VM, compressed klass
4526   // 16 - 64-bit VM, normal klass
4527   if (base_off % BytesPerLong != 0) {
4528     assert(UseCompressedClassPointers, "");
4529     if (is_array) {
4530       // Exclude length to copy by 8 bytes words.
4531       base_off += sizeof(int);
4532     } else {
4533       // Include klass to copy by 8 bytes words.
4534       base_off = instanceOopDesc::klass_offset_in_bytes();
4535     }
4536     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4537   }
4538   src  = basic_plus_adr(src,  base_off);
4539   dest = basic_plus_adr(dest, base_off);
4540 
4541   // Compute the length also, if needed:
4542   Node* countx = size;
4543   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4544   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4545 
4546   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4547 
4548   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4549   ac->set_clonebasic();
4550   Node* n = _gvn.transform(ac);
4551   if (n == ac) {
4552     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4553   } else {
4554     set_all_memory(n);
4555   }
4556 
4557   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4558   if (card_mark) {
4559     assert(!is_array, "");
4560     // Put in store barrier for any and all oops we are sticking
4561     // into this object.  (We could avoid this if we could prove
4562     // that the object type contains no oop fields at all.)
4563     Node* no_particular_value = NULL;
4564     Node* no_particular_field = NULL;
4565     int raw_adr_idx = Compile::AliasIdxRaw;
4566     post_barrier(control(),
4567                  memory(raw_adr_type),
4568                  alloc_obj,
4569                  no_particular_field,
4570                  raw_adr_idx,
4571                  no_particular_value,
4572                  T_OBJECT,
4573                  false);
4574   }
4575 
4576   // Do not let reads from the cloned object float above the arraycopy.
4577   if (alloc != NULL) {
4578     // Do not let stores that initialize this object be reordered with
4579     // a subsequent store that would make this object accessible by
4580     // other threads.
4581     // Record what AllocateNode this StoreStore protects so that
4582     // escape analysis can go from the MemBarStoreStoreNode to the
4583     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4584     // based on the escape status of the AllocateNode.
4585     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4586   } else {
4587     insert_mem_bar(Op_MemBarCPUOrder);
4588   }
4589 }
4590 
4591 //------------------------inline_native_clone----------------------------
4592 // protected native Object java.lang.Object.clone();
4593 //
4594 // Here are the simple edge cases:
4595 //  null receiver => normal trap
4596 //  virtual and clone was overridden => slow path to out-of-line clone
4597 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4598 //
4599 // The general case has two steps, allocation and copying.
4600 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4601 //
4602 // Copying also has two cases, oop arrays and everything else.
4603 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4604 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4605 //
4606 // These steps fold up nicely if and when the cloned object's klass
4607 // can be sharply typed as an object array, a type array, or an instance.
4608 //
4609 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4610   PhiNode* result_val;
4611 
4612   // Set the reexecute bit for the interpreter to reexecute
4613   // the bytecode that invokes Object.clone if deoptimization happens.
4614   { PreserveReexecuteState preexecs(this);
4615     jvms()->set_should_reexecute(true);
4616 
4617     Node* obj = null_check_receiver();
4618     if (stopped())  return true;
4619 
4620     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4621 
4622     // If we are going to clone an instance, we need its exact type to
4623     // know the number and types of fields to convert the clone to
4624     // loads/stores. Maybe a speculative type can help us.
4625     if (!obj_type->klass_is_exact() &&
4626         obj_type->speculative_type() != NULL &&
4627         obj_type->speculative_type()->is_instance_klass()) {
4628       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4629       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4630           !spec_ik->has_injected_fields()) {
4631         ciKlass* k = obj_type->klass();
4632         if (!k->is_instance_klass() ||
4633             k->as_instance_klass()->is_interface() ||
4634             k->as_instance_klass()->has_subklass()) {
4635           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4636         }
4637       }
4638     }
4639 
4640     Node* obj_klass = load_object_klass(obj);
4641     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4642     const TypeOopPtr*   toop   = ((tklass != NULL)
4643                                 ? tklass->as_instance_type()
4644                                 : TypeInstPtr::NOTNULL);
4645 
4646     // Conservatively insert a memory barrier on all memory slices.
4647     // Do not let writes into the original float below the clone.
4648     insert_mem_bar(Op_MemBarCPUOrder);
4649 
4650     // paths into result_reg:
4651     enum {
4652       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4653       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4654       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4655       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4656       PATH_LIMIT
4657     };
4658     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4659     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4660     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4661     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4662     record_for_igvn(result_reg);
4663 
4664     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4665     int raw_adr_idx = Compile::AliasIdxRaw;
4666 
4667     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4668     if (array_ctl != NULL) {
4669       // It's an array.
4670       PreserveJVMState pjvms(this);
4671       set_control(array_ctl);
4672       Node* obj_length = load_array_length(obj);
4673       Node* obj_size  = NULL;
4674       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4675 
4676       if (!use_ReduceInitialCardMarks()) {
4677         // If it is an oop array, it requires very special treatment,
4678         // because card marking is required on each card of the array.
4679         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4680         if (is_obja != NULL) {
4681           PreserveJVMState pjvms2(this);
4682           set_control(is_obja);
4683           // Generate a direct call to the right arraycopy function(s).
4684           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4685           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4686           ac->set_cloneoop();
4687           Node* n = _gvn.transform(ac);
4688           assert(n == ac, "cannot disappear");
4689           ac->connect_outputs(this);
4690 
4691           result_reg->init_req(_objArray_path, control());
4692           result_val->init_req(_objArray_path, alloc_obj);
4693           result_i_o ->set_req(_objArray_path, i_o());
4694           result_mem ->set_req(_objArray_path, reset_memory());
4695         }
4696       }
4697       // Otherwise, there are no card marks to worry about.
4698       // (We can dispense with card marks if we know the allocation
4699       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4700       //  causes the non-eden paths to take compensating steps to
4701       //  simulate a fresh allocation, so that no further
4702       //  card marks are required in compiled code to initialize
4703       //  the object.)
4704 
4705       if (!stopped()) {
4706         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4707 
4708         // Present the results of the copy.
4709         result_reg->init_req(_array_path, control());
4710         result_val->init_req(_array_path, alloc_obj);
4711         result_i_o ->set_req(_array_path, i_o());
4712         result_mem ->set_req(_array_path, reset_memory());
4713       }
4714     }
4715 
4716     // We only go to the instance fast case code if we pass a number of guards.
4717     // The paths which do not pass are accumulated in the slow_region.
4718     RegionNode* slow_region = new RegionNode(1);
4719     record_for_igvn(slow_region);
4720     if (!stopped()) {
4721       // It's an instance (we did array above).  Make the slow-path tests.
4722       // If this is a virtual call, we generate a funny guard.  We grab
4723       // the vtable entry corresponding to clone() from the target object.
4724       // If the target method which we are calling happens to be the
4725       // Object clone() method, we pass the guard.  We do not need this
4726       // guard for non-virtual calls; the caller is known to be the native
4727       // Object clone().
4728       if (is_virtual) {
4729         generate_virtual_guard(obj_klass, slow_region);
4730       }
4731 
4732       // The object must be cloneable and must not have a finalizer.
4733       // Both of these conditions may be checked in a single test.
4734       // We could optimize the cloneable test further, but we don't care.
4735       generate_access_flags_guard(obj_klass,
4736                                   // Test both conditions:
4737                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4738                                   // Must be cloneable but not finalizer:
4739                                   JVM_ACC_IS_CLONEABLE,
4740                                   slow_region);
4741     }
4742 
4743     if (!stopped()) {
4744       // It's an instance, and it passed the slow-path tests.
4745       PreserveJVMState pjvms(this);
4746       Node* obj_size  = NULL;
4747       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4748       // is reexecuted if deoptimization occurs and there could be problems when merging
4749       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4750       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4751 
4752       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4753 
4754       // Present the results of the slow call.
4755       result_reg->init_req(_instance_path, control());
4756       result_val->init_req(_instance_path, alloc_obj);
4757       result_i_o ->set_req(_instance_path, i_o());
4758       result_mem ->set_req(_instance_path, reset_memory());
4759     }
4760 
4761     // Generate code for the slow case.  We make a call to clone().
4762     set_control(_gvn.transform(slow_region));
4763     if (!stopped()) {
4764       PreserveJVMState pjvms(this);
4765       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4766       Node* slow_result = set_results_for_java_call(slow_call);
4767       // this->control() comes from set_results_for_java_call
4768       result_reg->init_req(_slow_path, control());
4769       result_val->init_req(_slow_path, slow_result);
4770       result_i_o ->set_req(_slow_path, i_o());
4771       result_mem ->set_req(_slow_path, reset_memory());
4772     }
4773 
4774     // Return the combined state.
4775     set_control(    _gvn.transform(result_reg));
4776     set_i_o(        _gvn.transform(result_i_o));
4777     set_all_memory( _gvn.transform(result_mem));
4778   } // original reexecute is set back here
4779 
4780   set_result(_gvn.transform(result_val));
4781   return true;
4782 }
4783 
4784 // If we have a tighly coupled allocation, the arraycopy may take care
4785 // of the array initialization. If one of the guards we insert between
4786 // the allocation and the arraycopy causes a deoptimization, an
4787 // unitialized array will escape the compiled method. To prevent that
4788 // we set the JVM state for uncommon traps between the allocation and
4789 // the arraycopy to the state before the allocation so, in case of
4790 // deoptimization, we'll reexecute the allocation and the
4791 // initialization.
4792 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4793   if (alloc != NULL) {
4794     ciMethod* trap_method = alloc->jvms()->method();
4795     int trap_bci = alloc->jvms()->bci();
4796 
4797     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4798           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4799       // Make sure there's no store between the allocation and the
4800       // arraycopy otherwise visible side effects could be rexecuted
4801       // in case of deoptimization and cause incorrect execution.
4802       bool no_interfering_store = true;
4803       Node* mem = alloc->in(TypeFunc::Memory);
4804       if (mem->is_MergeMem()) {
4805         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4806           Node* n = mms.memory();
4807           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4808             assert(n->is_Store(), "what else?");
4809             no_interfering_store = false;
4810             break;
4811           }
4812         }
4813       } else {
4814         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4815           Node* n = mms.memory();
4816           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4817             assert(n->is_Store(), "what else?");
4818             no_interfering_store = false;
4819             break;
4820           }
4821         }
4822       }
4823 
4824       if (no_interfering_store) {
4825         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4826         uint size = alloc->req();
4827         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4828         old_jvms->set_map(sfpt);
4829         for (uint i = 0; i < size; i++) {
4830           sfpt->init_req(i, alloc->in(i));
4831         }
4832         // re-push array length for deoptimization
4833         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4834         old_jvms->set_sp(old_jvms->sp()+1);
4835         old_jvms->set_monoff(old_jvms->monoff()+1);
4836         old_jvms->set_scloff(old_jvms->scloff()+1);
4837         old_jvms->set_endoff(old_jvms->endoff()+1);
4838         old_jvms->set_should_reexecute(true);
4839 
4840         sfpt->set_i_o(map()->i_o());
4841         sfpt->set_memory(map()->memory());
4842         sfpt->set_control(map()->control());
4843 
4844         JVMState* saved_jvms = jvms();
4845         saved_reexecute_sp = _reexecute_sp;
4846 
4847         set_jvms(sfpt->jvms());
4848         _reexecute_sp = jvms()->sp();
4849 
4850         return saved_jvms;
4851       }
4852     }
4853   }
4854   return NULL;
4855 }
4856 
4857 // In case of a deoptimization, we restart execution at the
4858 // allocation, allocating a new array. We would leave an uninitialized
4859 // array in the heap that GCs wouldn't expect. Move the allocation
4860 // after the traps so we don't allocate the array if we
4861 // deoptimize. This is possible because tightly_coupled_allocation()
4862 // guarantees there's no observer of the allocated array at this point
4863 // and the control flow is simple enough.
4864 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4865   if (saved_jvms != NULL && !stopped()) {
4866     assert(alloc != NULL, "only with a tightly coupled allocation");
4867     // restore JVM state to the state at the arraycopy
4868     saved_jvms->map()->set_control(map()->control());
4869     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4870     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4871     // If we've improved the types of some nodes (null check) while
4872     // emitting the guards, propagate them to the current state
4873     map()->replaced_nodes().apply(saved_jvms->map());
4874     set_jvms(saved_jvms);
4875     _reexecute_sp = saved_reexecute_sp;
4876 
4877     // Remove the allocation from above the guards
4878     CallProjections callprojs;
4879     alloc->extract_projections(&callprojs, true);
4880     InitializeNode* init = alloc->initialization();
4881     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4882     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4883     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4884     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4885 
4886     // move the allocation here (after the guards)
4887     _gvn.hash_delete(alloc);
4888     alloc->set_req(TypeFunc::Control, control());
4889     alloc->set_req(TypeFunc::I_O, i_o());
4890     Node *mem = reset_memory();
4891     set_all_memory(mem);
4892     alloc->set_req(TypeFunc::Memory, mem);
4893     set_control(init->proj_out(TypeFunc::Control));
4894     set_i_o(callprojs.fallthrough_ioproj);
4895 
4896     // Update memory as done in GraphKit::set_output_for_allocation()
4897     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4898     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4899     if (ary_type->isa_aryptr() && length_type != NULL) {
4900       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4901     }
4902     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4903     int            elemidx  = C->get_alias_index(telemref);
4904     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4905     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4906 
4907     Node* allocx = _gvn.transform(alloc);
4908     assert(allocx == alloc, "where has the allocation gone?");
4909     assert(dest->is_CheckCastPP(), "not an allocation result?");
4910 
4911     _gvn.hash_delete(dest);
4912     dest->set_req(0, control());
4913     Node* destx = _gvn.transform(dest);
4914     assert(destx == dest, "where has the allocation result gone?");
4915   }
4916 }
4917 
4918 
4919 //------------------------------inline_arraycopy-----------------------
4920 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4921 //                                                      Object dest, int destPos,
4922 //                                                      int length);
4923 bool LibraryCallKit::inline_arraycopy() {
4924   // Get the arguments.
4925   Node* src         = argument(0);  // type: oop
4926   Node* src_offset  = argument(1);  // type: int
4927   Node* dest        = argument(2);  // type: oop
4928   Node* dest_offset = argument(3);  // type: int
4929   Node* length      = argument(4);  // type: int
4930 
4931 
4932   // Check for allocation before we add nodes that would confuse
4933   // tightly_coupled_allocation()
4934   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4935 
4936   int saved_reexecute_sp = -1;
4937   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4938   // See arraycopy_restore_alloc_state() comment
4939   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4940   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4941   // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards
4942   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4943 
4944   // The following tests must be performed
4945   // (1) src and dest are arrays.
4946   // (2) src and dest arrays must have elements of the same BasicType
4947   // (3) src and dest must not be null.
4948   // (4) src_offset must not be negative.
4949   // (5) dest_offset must not be negative.
4950   // (6) length must not be negative.
4951   // (7) src_offset + length must not exceed length of src.
4952   // (8) dest_offset + length must not exceed length of dest.
4953   // (9) each element of an oop array must be assignable
4954 
4955   // (3) src and dest must not be null.
4956   // always do this here because we need the JVM state for uncommon traps
4957   Node* null_ctl = top();
4958   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4959   assert(null_ctl->is_top(), "no null control here");
4960   dest = null_check(dest, T_ARRAY);
4961 
4962   if (!can_emit_guards) {
4963     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4964     // guards but the arraycopy node could still take advantage of a
4965     // tightly allocated allocation. tightly_coupled_allocation() is
4966     // called again to make sure it takes the null check above into
4967     // account: the null check is mandatory and if it caused an
4968     // uncommon trap to be emitted then the allocation can't be
4969     // considered tightly coupled in this context.
4970     alloc = tightly_coupled_allocation(dest, NULL);
4971   }
4972 
4973   bool validated = false;
4974 
4975   const Type* src_type  = _gvn.type(src);
4976   const Type* dest_type = _gvn.type(dest);
4977   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4978   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4979 
4980   // Do we have the type of src?
4981   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4982   // Do we have the type of dest?
4983   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4984   // Is the type for src from speculation?
4985   bool src_spec = false;
4986   // Is the type for dest from speculation?
4987   bool dest_spec = false;
4988 
4989   if ((!has_src || !has_dest) && can_emit_guards) {
4990     // We don't have sufficient type information, let's see if
4991     // speculative types can help. We need to have types for both src
4992     // and dest so that it pays off.
4993 
4994     // Do we already have or could we have type information for src
4995     bool could_have_src = has_src;
4996     // Do we already have or could we have type information for dest
4997     bool could_have_dest = has_dest;
4998 
4999     ciKlass* src_k = NULL;
5000     if (!has_src) {
5001       src_k = src_type->speculative_type_not_null();
5002       if (src_k != NULL && src_k->is_array_klass()) {
5003         could_have_src = true;
5004       }
5005     }
5006 
5007     ciKlass* dest_k = NULL;
5008     if (!has_dest) {
5009       dest_k = dest_type->speculative_type_not_null();
5010       if (dest_k != NULL && dest_k->is_array_klass()) {
5011         could_have_dest = true;
5012       }
5013     }
5014 
5015     if (could_have_src && could_have_dest) {
5016       // This is going to pay off so emit the required guards
5017       if (!has_src) {
5018         src = maybe_cast_profiled_obj(src, src_k, true);
5019         src_type  = _gvn.type(src);
5020         top_src  = src_type->isa_aryptr();
5021         has_src = (top_src != NULL && top_src->klass() != NULL);
5022         src_spec = true;
5023       }
5024       if (!has_dest) {
5025         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5026         dest_type  = _gvn.type(dest);
5027         top_dest  = dest_type->isa_aryptr();
5028         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5029         dest_spec = true;
5030       }
5031     }
5032   }
5033 
5034   if (has_src && has_dest && can_emit_guards) {
5035     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
5036     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
5037     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
5038     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
5039 
5040     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5041       // If both arrays are object arrays then having the exact types
5042       // for both will remove the need for a subtype check at runtime
5043       // before the call and may make it possible to pick a faster copy
5044       // routine (without a subtype check on every element)
5045       // Do we have the exact type of src?
5046       bool could_have_src = src_spec;
5047       // Do we have the exact type of dest?
5048       bool could_have_dest = dest_spec;
5049       ciKlass* src_k = top_src->klass();
5050       ciKlass* dest_k = top_dest->klass();
5051       if (!src_spec) {
5052         src_k = src_type->speculative_type_not_null();
5053         if (src_k != NULL && src_k->is_array_klass()) {
5054           could_have_src = true;
5055         }
5056       }
5057       if (!dest_spec) {
5058         dest_k = dest_type->speculative_type_not_null();
5059         if (dest_k != NULL && dest_k->is_array_klass()) {
5060           could_have_dest = true;
5061         }
5062       }
5063       if (could_have_src && could_have_dest) {
5064         // If we can have both exact types, emit the missing guards
5065         if (could_have_src && !src_spec) {
5066           src = maybe_cast_profiled_obj(src, src_k, true);
5067         }
5068         if (could_have_dest && !dest_spec) {
5069           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5070         }
5071       }
5072     }
5073   }
5074 
5075   ciMethod* trap_method = method();
5076   int trap_bci = bci();
5077   if (saved_jvms != NULL) {
5078     trap_method = alloc->jvms()->method();
5079     trap_bci = alloc->jvms()->bci();
5080   }
5081 
5082   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5083       can_emit_guards &&
5084       !src->is_top() && !dest->is_top()) {
5085     // validate arguments: enables transformation the ArrayCopyNode
5086     validated = true;
5087 
5088     RegionNode* slow_region = new RegionNode(1);
5089     record_for_igvn(slow_region);
5090 
5091     // (1) src and dest are arrays.
5092     generate_non_array_guard(load_object_klass(src), slow_region);
5093     generate_non_array_guard(load_object_klass(dest), slow_region);
5094 
5095     // (2) src and dest arrays must have elements of the same BasicType
5096     // done at macro expansion or at Ideal transformation time
5097 
5098     // (4) src_offset must not be negative.
5099     generate_negative_guard(src_offset, slow_region);
5100 
5101     // (5) dest_offset must not be negative.
5102     generate_negative_guard(dest_offset, slow_region);
5103 
5104     // (7) src_offset + length must not exceed length of src.
5105     generate_limit_guard(src_offset, length,
5106                          load_array_length(src),
5107                          slow_region);
5108 
5109     // (8) dest_offset + length must not exceed length of dest.
5110     generate_limit_guard(dest_offset, length,
5111                          load_array_length(dest),
5112                          slow_region);
5113 
5114     // (9) each element of an oop array must be assignable
5115     Node* src_klass  = load_object_klass(src);
5116     Node* dest_klass = load_object_klass(dest);
5117     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5118 
5119     if (not_subtype_ctrl != top()) {
5120       PreserveJVMState pjvms(this);
5121       set_control(not_subtype_ctrl);
5122       uncommon_trap(Deoptimization::Reason_intrinsic,
5123                     Deoptimization::Action_make_not_entrant);
5124       assert(stopped(), "Should be stopped");
5125     }
5126     {
5127       PreserveJVMState pjvms(this);
5128       set_control(_gvn.transform(slow_region));
5129       uncommon_trap(Deoptimization::Reason_intrinsic,
5130                     Deoptimization::Action_make_not_entrant);
5131       assert(stopped(), "Should be stopped");
5132     }
5133   }
5134 
5135   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
5136 
5137   if (stopped()) {
5138     return true;
5139   }
5140 
5141   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
5142                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5143                                           // so the compiler has a chance to eliminate them: during macro expansion,
5144                                           // we have to set their control (CastPP nodes are eliminated).
5145                                           load_object_klass(src), load_object_klass(dest),
5146                                           load_array_length(src), load_array_length(dest));
5147 
5148   ac->set_arraycopy(validated);
5149 
5150   Node* n = _gvn.transform(ac);
5151   if (n == ac) {
5152     ac->connect_outputs(this);
5153   } else {
5154     assert(validated, "shouldn't transform if all arguments not validated");
5155     set_all_memory(n);
5156   }
5157 
5158   return true;
5159 }
5160 
5161 
5162 // Helper function which determines if an arraycopy immediately follows
5163 // an allocation, with no intervening tests or other escapes for the object.
5164 AllocateArrayNode*
5165 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5166                                            RegionNode* slow_region) {
5167   if (stopped())             return NULL;  // no fast path
5168   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5169 
5170   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5171   if (alloc == NULL)  return NULL;
5172 
5173   Node* rawmem = memory(Compile::AliasIdxRaw);
5174   // Is the allocation's memory state untouched?
5175   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5176     // Bail out if there have been raw-memory effects since the allocation.
5177     // (Example:  There might have been a call or safepoint.)
5178     return NULL;
5179   }
5180   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5181   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5182     return NULL;
5183   }
5184 
5185   // There must be no unexpected observers of this allocation.
5186   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5187     Node* obs = ptr->fast_out(i);
5188     if (obs != this->map()) {
5189       return NULL;
5190     }
5191   }
5192 
5193   // This arraycopy must unconditionally follow the allocation of the ptr.
5194   Node* alloc_ctl = ptr->in(0);
5195   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5196 
5197   Node* ctl = control();
5198   while (ctl != alloc_ctl) {
5199     // There may be guards which feed into the slow_region.
5200     // Any other control flow means that we might not get a chance
5201     // to finish initializing the allocated object.
5202     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5203       IfNode* iff = ctl->in(0)->as_If();
5204       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5205       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5206       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5207         ctl = iff->in(0);       // This test feeds the known slow_region.
5208         continue;
5209       }
5210       // One more try:  Various low-level checks bottom out in
5211       // uncommon traps.  If the debug-info of the trap omits
5212       // any reference to the allocation, as we've already
5213       // observed, then there can be no objection to the trap.
5214       bool found_trap = false;
5215       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5216         Node* obs = not_ctl->fast_out(j);
5217         if (obs->in(0) == not_ctl && obs->is_Call() &&
5218             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5219           found_trap = true; break;
5220         }
5221       }
5222       if (found_trap) {
5223         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5224         continue;
5225       }
5226     }
5227     return NULL;
5228   }
5229 
5230   // If we get this far, we have an allocation which immediately
5231   // precedes the arraycopy, and we can take over zeroing the new object.
5232   // The arraycopy will finish the initialization, and provide
5233   // a new control state to which we will anchor the destination pointer.
5234 
5235   return alloc;
5236 }
5237 
5238 //-------------inline_encodeISOArray-----------------------------------
5239 // encode char[] to byte[] in ISO_8859_1
5240 bool LibraryCallKit::inline_encodeISOArray() {
5241   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5242   // no receiver since it is static method
5243   Node *src         = argument(0);
5244   Node *src_offset  = argument(1);
5245   Node *dst         = argument(2);
5246   Node *dst_offset  = argument(3);
5247   Node *length      = argument(4);
5248 
5249   const Type* src_type = src->Value(&_gvn);
5250   const Type* dst_type = dst->Value(&_gvn);
5251   const TypeAryPtr* top_src = src_type->isa_aryptr();
5252   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5253   if (top_src  == NULL || top_src->klass()  == NULL ||
5254       top_dest == NULL || top_dest->klass() == NULL) {
5255     // failed array check
5256     return false;
5257   }
5258 
5259   // Figure out the size and type of the elements we will be copying.
5260   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5261   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5262   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5263     return false;
5264   }
5265   Node* src_start = array_element_address(src, src_offset, src_elem);
5266   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5267   // 'src_start' points to src array + scaled offset
5268   // 'dst_start' points to dst array + scaled offset
5269 
5270   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5271   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5272   enc = _gvn.transform(enc);
5273   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5274   set_memory(res_mem, mtype);
5275   set_result(enc);
5276   return true;
5277 }
5278 
5279 //-------------inline_multiplyToLen-----------------------------------
5280 bool LibraryCallKit::inline_multiplyToLen() {
5281   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5282 
5283   address stubAddr = StubRoutines::multiplyToLen();
5284   if (stubAddr == NULL) {
5285     return false; // Intrinsic's stub is not implemented on this platform
5286   }
5287   const char* stubName = "multiplyToLen";
5288 
5289   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5290 
5291   // no receiver because it is a static method
5292   Node* x    = argument(0);
5293   Node* xlen = argument(1);
5294   Node* y    = argument(2);
5295   Node* ylen = argument(3);
5296   Node* z    = argument(4);
5297 
5298   const Type* x_type = x->Value(&_gvn);
5299   const Type* y_type = y->Value(&_gvn);
5300   const TypeAryPtr* top_x = x_type->isa_aryptr();
5301   const TypeAryPtr* top_y = y_type->isa_aryptr();
5302   if (top_x  == NULL || top_x->klass()  == NULL ||
5303       top_y == NULL || top_y->klass() == NULL) {
5304     // failed array check
5305     return false;
5306   }
5307 
5308   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5309   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5310   if (x_elem != T_INT || y_elem != T_INT) {
5311     return false;
5312   }
5313 
5314   // Set the original stack and the reexecute bit for the interpreter to reexecute
5315   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5316   // on the return from z array allocation in runtime.
5317   { PreserveReexecuteState preexecs(this);
5318     jvms()->set_should_reexecute(true);
5319 
5320     Node* x_start = array_element_address(x, intcon(0), x_elem);
5321     Node* y_start = array_element_address(y, intcon(0), y_elem);
5322     // 'x_start' points to x array + scaled xlen
5323     // 'y_start' points to y array + scaled ylen
5324 
5325     // Allocate the result array
5326     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5327     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5328     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5329 
5330     IdealKit ideal(this);
5331 
5332 #define __ ideal.
5333      Node* one = __ ConI(1);
5334      Node* zero = __ ConI(0);
5335      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5336      __ set(need_alloc, zero);
5337      __ set(z_alloc, z);
5338      __ if_then(z, BoolTest::eq, null()); {
5339        __ increment (need_alloc, one);
5340      } __ else_(); {
5341        // Update graphKit memory and control from IdealKit.
5342        sync_kit(ideal);
5343        Node* zlen_arg = load_array_length(z);
5344        // Update IdealKit memory and control from graphKit.
5345        __ sync_kit(this);
5346        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5347          __ increment (need_alloc, one);
5348        } __ end_if();
5349      } __ end_if();
5350 
5351      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5352        // Update graphKit memory and control from IdealKit.
5353        sync_kit(ideal);
5354        Node * narr = new_array(klass_node, zlen, 1);
5355        // Update IdealKit memory and control from graphKit.
5356        __ sync_kit(this);
5357        __ set(z_alloc, narr);
5358      } __ end_if();
5359 
5360      sync_kit(ideal);
5361      z = __ value(z_alloc);
5362      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5363      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5364      // Final sync IdealKit and GraphKit.
5365      final_sync(ideal);
5366 #undef __
5367 
5368     Node* z_start = array_element_address(z, intcon(0), T_INT);
5369 
5370     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5371                                    OptoRuntime::multiplyToLen_Type(),
5372                                    stubAddr, stubName, TypePtr::BOTTOM,
5373                                    x_start, xlen, y_start, ylen, z_start, zlen);
5374   } // original reexecute is set back here
5375 
5376   C->set_has_split_ifs(true); // Has chance for split-if optimization
5377   set_result(z);
5378   return true;
5379 }
5380 
5381 //-------------inline_squareToLen------------------------------------
5382 bool LibraryCallKit::inline_squareToLen() {
5383   assert(UseSquareToLenIntrinsic, "not implementated on this platform");
5384 
5385   address stubAddr = StubRoutines::squareToLen();
5386   if (stubAddr == NULL) {
5387     return false; // Intrinsic's stub is not implemented on this platform
5388   }
5389   const char* stubName = "squareToLen";
5390 
5391   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5392 
5393   Node* x    = argument(0);
5394   Node* len  = argument(1);
5395   Node* z    = argument(2);
5396   Node* zlen = argument(3);
5397 
5398   const Type* x_type = x->Value(&_gvn);
5399   const Type* z_type = z->Value(&_gvn);
5400   const TypeAryPtr* top_x = x_type->isa_aryptr();
5401   const TypeAryPtr* top_z = z_type->isa_aryptr();
5402   if (top_x  == NULL || top_x->klass()  == NULL ||
5403       top_z  == NULL || top_z->klass()  == NULL) {
5404     // failed array check
5405     return false;
5406   }
5407 
5408   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5409   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5410   if (x_elem != T_INT || z_elem != T_INT) {
5411     return false;
5412   }
5413 
5414 
5415   Node* x_start = array_element_address(x, intcon(0), x_elem);
5416   Node* z_start = array_element_address(z, intcon(0), z_elem);
5417 
5418   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5419                                   OptoRuntime::squareToLen_Type(),
5420                                   stubAddr, stubName, TypePtr::BOTTOM,
5421                                   x_start, len, z_start, zlen);
5422 
5423   set_result(z);
5424   return true;
5425 }
5426 
5427 //-------------inline_mulAdd------------------------------------------
5428 bool LibraryCallKit::inline_mulAdd() {
5429   assert(UseMulAddIntrinsic, "not implementated on this platform");
5430 
5431   address stubAddr = StubRoutines::mulAdd();
5432   if (stubAddr == NULL) {
5433     return false; // Intrinsic's stub is not implemented on this platform
5434   }
5435   const char* stubName = "mulAdd";
5436 
5437   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5438 
5439   Node* out      = argument(0);
5440   Node* in       = argument(1);
5441   Node* offset   = argument(2);
5442   Node* len      = argument(3);
5443   Node* k        = argument(4);
5444 
5445   const Type* out_type = out->Value(&_gvn);
5446   const Type* in_type = in->Value(&_gvn);
5447   const TypeAryPtr* top_out = out_type->isa_aryptr();
5448   const TypeAryPtr* top_in = in_type->isa_aryptr();
5449   if (top_out  == NULL || top_out->klass()  == NULL ||
5450       top_in == NULL || top_in->klass() == NULL) {
5451     // failed array check
5452     return false;
5453   }
5454 
5455   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5456   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5457   if (out_elem != T_INT || in_elem != T_INT) {
5458     return false;
5459   }
5460 
5461   Node* outlen = load_array_length(out);
5462   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5463   Node* out_start = array_element_address(out, intcon(0), out_elem);
5464   Node* in_start = array_element_address(in, intcon(0), in_elem);
5465 
5466   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5467                                   OptoRuntime::mulAdd_Type(),
5468                                   stubAddr, stubName, TypePtr::BOTTOM,
5469                                   out_start,in_start, new_offset, len, k);
5470   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5471   set_result(result);
5472   return true;
5473 }
5474 
5475 //-------------inline_montgomeryMultiply-----------------------------------
5476 bool LibraryCallKit::inline_montgomeryMultiply() {
5477   address stubAddr = StubRoutines::montgomeryMultiply();
5478   if (stubAddr == NULL) {
5479     return false; // Intrinsic's stub is not implemented on this platform
5480   }
5481 
5482   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5483   const char* stubName = "montgomery_square";
5484 
5485   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5486 
5487   Node* a    = argument(0);
5488   Node* b    = argument(1);
5489   Node* n    = argument(2);
5490   Node* len  = argument(3);
5491   Node* inv  = argument(4);
5492   Node* m    = argument(6);
5493 
5494   const Type* a_type = a->Value(&_gvn);
5495   const TypeAryPtr* top_a = a_type->isa_aryptr();
5496   const Type* b_type = b->Value(&_gvn);
5497   const TypeAryPtr* top_b = b_type->isa_aryptr();
5498   const Type* n_type = a->Value(&_gvn);
5499   const TypeAryPtr* top_n = n_type->isa_aryptr();
5500   const Type* m_type = a->Value(&_gvn);
5501   const TypeAryPtr* top_m = m_type->isa_aryptr();
5502   if (top_a  == NULL || top_a->klass()  == NULL ||
5503       top_b == NULL || top_b->klass()  == NULL ||
5504       top_n == NULL || top_n->klass()  == NULL ||
5505       top_m == NULL || top_m->klass()  == NULL) {
5506     // failed array check
5507     return false;
5508   }
5509 
5510   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5511   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5512   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5513   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5514   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5515     return false;
5516   }
5517 
5518   // Make the call
5519   {
5520     Node* a_start = array_element_address(a, intcon(0), a_elem);
5521     Node* b_start = array_element_address(b, intcon(0), b_elem);
5522     Node* n_start = array_element_address(n, intcon(0), n_elem);
5523     Node* m_start = array_element_address(m, intcon(0), m_elem);
5524 
5525     Node* call = make_runtime_call(RC_LEAF,
5526                                    OptoRuntime::montgomeryMultiply_Type(),
5527                                    stubAddr, stubName, TypePtr::BOTTOM,
5528                                    a_start, b_start, n_start, len, inv, top(),
5529                                    m_start);
5530     set_result(m);
5531   }
5532 
5533   return true;
5534 }
5535 
5536 bool LibraryCallKit::inline_montgomerySquare() {
5537   address stubAddr = StubRoutines::montgomerySquare();
5538   if (stubAddr == NULL) {
5539     return false; // Intrinsic's stub is not implemented on this platform
5540   }
5541 
5542   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5543   const char* stubName = "montgomery_square";
5544 
5545   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5546 
5547   Node* a    = argument(0);
5548   Node* n    = argument(1);
5549   Node* len  = argument(2);
5550   Node* inv  = argument(3);
5551   Node* m    = argument(5);
5552 
5553   const Type* a_type = a->Value(&_gvn);
5554   const TypeAryPtr* top_a = a_type->isa_aryptr();
5555   const Type* n_type = a->Value(&_gvn);
5556   const TypeAryPtr* top_n = n_type->isa_aryptr();
5557   const Type* m_type = a->Value(&_gvn);
5558   const TypeAryPtr* top_m = m_type->isa_aryptr();
5559   if (top_a  == NULL || top_a->klass()  == NULL ||
5560       top_n == NULL || top_n->klass()  == NULL ||
5561       top_m == NULL || top_m->klass()  == NULL) {
5562     // failed array check
5563     return false;
5564   }
5565 
5566   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5567   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5568   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5569   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5570     return false;
5571   }
5572 
5573   // Make the call
5574   {
5575     Node* a_start = array_element_address(a, intcon(0), a_elem);
5576     Node* n_start = array_element_address(n, intcon(0), n_elem);
5577     Node* m_start = array_element_address(m, intcon(0), m_elem);
5578 
5579     Node* call = make_runtime_call(RC_LEAF,
5580                                    OptoRuntime::montgomerySquare_Type(),
5581                                    stubAddr, stubName, TypePtr::BOTTOM,
5582                                    a_start, n_start, len, inv, top(),
5583                                    m_start);
5584     set_result(m);
5585   }
5586 
5587   return true;
5588 }
5589 
5590 
5591 /**
5592  * Calculate CRC32 for byte.
5593  * int java.util.zip.CRC32.update(int crc, int b)
5594  */
5595 bool LibraryCallKit::inline_updateCRC32() {
5596   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5597   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5598   // no receiver since it is static method
5599   Node* crc  = argument(0); // type: int
5600   Node* b    = argument(1); // type: int
5601 
5602   /*
5603    *    int c = ~ crc;
5604    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5605    *    b = b ^ (c >>> 8);
5606    *    crc = ~b;
5607    */
5608 
5609   Node* M1 = intcon(-1);
5610   crc = _gvn.transform(new XorINode(crc, M1));
5611   Node* result = _gvn.transform(new XorINode(crc, b));
5612   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5613 
5614   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5615   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5616   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5617   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5618 
5619   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5620   result = _gvn.transform(new XorINode(crc, result));
5621   result = _gvn.transform(new XorINode(result, M1));
5622   set_result(result);
5623   return true;
5624 }
5625 
5626 /**
5627  * Calculate CRC32 for byte[] array.
5628  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5629  */
5630 bool LibraryCallKit::inline_updateBytesCRC32() {
5631   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5632   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5633   // no receiver since it is static method
5634   Node* crc     = argument(0); // type: int
5635   Node* src     = argument(1); // type: oop
5636   Node* offset  = argument(2); // type: int
5637   Node* length  = argument(3); // type: int
5638 
5639   const Type* src_type = src->Value(&_gvn);
5640   const TypeAryPtr* top_src = src_type->isa_aryptr();
5641   if (top_src  == NULL || top_src->klass()  == NULL) {
5642     // failed array check
5643     return false;
5644   }
5645 
5646   // Figure out the size and type of the elements we will be copying.
5647   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5648   if (src_elem != T_BYTE) {
5649     return false;
5650   }
5651 
5652   // 'src_start' points to src array + scaled offset
5653   Node* src_start = array_element_address(src, offset, src_elem);
5654 
5655   // We assume that range check is done by caller.
5656   // TODO: generate range check (offset+length < src.length) in debug VM.
5657 
5658   // Call the stub.
5659   address stubAddr = StubRoutines::updateBytesCRC32();
5660   const char *stubName = "updateBytesCRC32";
5661 
5662   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5663                                  stubAddr, stubName, TypePtr::BOTTOM,
5664                                  crc, src_start, length);
5665   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5666   set_result(result);
5667   return true;
5668 }
5669 
5670 /**
5671  * Calculate CRC32 for ByteBuffer.
5672  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5673  */
5674 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5675   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5676   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5677   // no receiver since it is static method
5678   Node* crc     = argument(0); // type: int
5679   Node* src     = argument(1); // type: long
5680   Node* offset  = argument(3); // type: int
5681   Node* length  = argument(4); // type: int
5682 
5683   src = ConvL2X(src);  // adjust Java long to machine word
5684   Node* base = _gvn.transform(new CastX2PNode(src));
5685   offset = ConvI2X(offset);
5686 
5687   // 'src_start' points to src array + scaled offset
5688   Node* src_start = basic_plus_adr(top(), base, offset);
5689 
5690   // Call the stub.
5691   address stubAddr = StubRoutines::updateBytesCRC32();
5692   const char *stubName = "updateBytesCRC32";
5693 
5694   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5695                                  stubAddr, stubName, TypePtr::BOTTOM,
5696                                  crc, src_start, length);
5697   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5698   set_result(result);
5699   return true;
5700 }
5701 
5702 //------------------------------get_table_from_crc32c_class-----------------------
5703 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5704   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5705   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5706 
5707   return table;
5708 }
5709 
5710 //------------------------------inline_updateBytesCRC32C-----------------------
5711 //
5712 // Calculate CRC32C for byte[] array.
5713 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5714 //
5715 bool LibraryCallKit::inline_updateBytesCRC32C() {
5716   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5717   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5718   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5719   // no receiver since it is a static method
5720   Node* crc     = argument(0); // type: int
5721   Node* src     = argument(1); // type: oop
5722   Node* offset  = argument(2); // type: int
5723   Node* end     = argument(3); // type: int
5724 
5725   Node* length = _gvn.transform(new SubINode(end, offset));
5726 
5727   const Type* src_type = src->Value(&_gvn);
5728   const TypeAryPtr* top_src = src_type->isa_aryptr();
5729   if (top_src  == NULL || top_src->klass()  == NULL) {
5730     // failed array check
5731     return false;
5732   }
5733 
5734   // Figure out the size and type of the elements we will be copying.
5735   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5736   if (src_elem != T_BYTE) {
5737     return false;
5738   }
5739 
5740   // 'src_start' points to src array + scaled offset
5741   Node* src_start = array_element_address(src, offset, src_elem);
5742 
5743   // static final int[] byteTable in class CRC32C
5744   Node* table = get_table_from_crc32c_class(callee()->holder());
5745   Node* table_start = array_element_address(table, intcon(0), T_INT);
5746 
5747   // We assume that range check is done by caller.
5748   // TODO: generate range check (offset+length < src.length) in debug VM.
5749 
5750   // Call the stub.
5751   address stubAddr = StubRoutines::updateBytesCRC32C();
5752   const char *stubName = "updateBytesCRC32C";
5753 
5754   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5755                                  stubAddr, stubName, TypePtr::BOTTOM,
5756                                  crc, src_start, length, table_start);
5757   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5758   set_result(result);
5759   return true;
5760 }
5761 
5762 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5763 //
5764 // Calculate CRC32C for DirectByteBuffer.
5765 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5766 //
5767 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5768   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5769   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5770   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5771   // no receiver since it is a static method
5772   Node* crc     = argument(0); // type: int
5773   Node* src     = argument(1); // type: long
5774   Node* offset  = argument(3); // type: int
5775   Node* end     = argument(4); // type: int
5776 
5777   Node* length = _gvn.transform(new SubINode(end, offset));
5778 
5779   src = ConvL2X(src);  // adjust Java long to machine word
5780   Node* base = _gvn.transform(new CastX2PNode(src));
5781   offset = ConvI2X(offset);
5782 
5783   // 'src_start' points to src array + scaled offset
5784   Node* src_start = basic_plus_adr(top(), base, offset);
5785 
5786   // static final int[] byteTable in class CRC32C
5787   Node* table = get_table_from_crc32c_class(callee()->holder());
5788   Node* table_start = array_element_address(table, intcon(0), T_INT);
5789 
5790   // Call the stub.
5791   address stubAddr = StubRoutines::updateBytesCRC32C();
5792   const char *stubName = "updateBytesCRC32C";
5793 
5794   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5795                                  stubAddr, stubName, TypePtr::BOTTOM,
5796                                  crc, src_start, length, table_start);
5797   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5798   set_result(result);
5799   return true;
5800 }
5801 
5802 //----------------------------inline_reference_get----------------------------
5803 // public T java.lang.ref.Reference.get();
5804 bool LibraryCallKit::inline_reference_get() {
5805   const int referent_offset = java_lang_ref_Reference::referent_offset;
5806   guarantee(referent_offset > 0, "should have already been set");
5807 
5808   // Get the argument:
5809   Node* reference_obj = null_check_receiver();
5810   if (stopped()) return true;
5811 
5812   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5813 
5814   ciInstanceKlass* klass = env()->Object_klass();
5815   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5816 
5817   Node* no_ctrl = NULL;
5818   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5819 
5820   // Use the pre-barrier to record the value in the referent field
5821   pre_barrier(false /* do_load */,
5822               control(),
5823               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5824               result /* pre_val */,
5825               T_OBJECT);
5826 
5827   // Add memory barrier to prevent commoning reads from this field
5828   // across safepoint since GC can change its value.
5829   insert_mem_bar(Op_MemBarCPUOrder);
5830 
5831   set_result(result);
5832   return true;
5833 }
5834 
5835 
5836 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5837                                               bool is_exact=true, bool is_static=false,
5838                                               ciInstanceKlass * fromKls=NULL) {
5839   if (fromKls == NULL) {
5840     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5841     assert(tinst != NULL, "obj is null");
5842     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5843     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5844     fromKls = tinst->klass()->as_instance_klass();
5845   } else {
5846     assert(is_static, "only for static field access");
5847   }
5848   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5849                                               ciSymbol::make(fieldTypeString),
5850                                               is_static);
5851 
5852   assert (field != NULL, "undefined field");
5853   if (field == NULL) return (Node *) NULL;
5854 
5855   if (is_static) {
5856     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5857     fromObj = makecon(tip);
5858   }
5859 
5860   // Next code  copied from Parse::do_get_xxx():
5861 
5862   // Compute address and memory type.
5863   int offset  = field->offset_in_bytes();
5864   bool is_vol = field->is_volatile();
5865   ciType* field_klass = field->type();
5866   assert(field_klass->is_loaded(), "should be loaded");
5867   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5868   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5869   BasicType bt = field->layout_type();
5870 
5871   // Build the resultant type of the load
5872   const Type *type;
5873   if (bt == T_OBJECT) {
5874     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5875   } else {
5876     type = Type::get_const_basic_type(bt);
5877   }
5878 
5879   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5880     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5881   }
5882   // Build the load.
5883   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5884   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
5885   // If reference is volatile, prevent following memory ops from
5886   // floating up past the volatile read.  Also prevents commoning
5887   // another volatile read.
5888   if (is_vol) {
5889     // Memory barrier includes bogus read of value to force load BEFORE membar
5890     insert_mem_bar(Op_MemBarAcquire, loadedField);
5891   }
5892   return loadedField;
5893 }
5894 
5895 
5896 //------------------------------inline_aescrypt_Block-----------------------
5897 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5898   address stubAddr;
5899   const char *stubName;
5900   assert(UseAES, "need AES instruction support");
5901 
5902   switch(id) {
5903   case vmIntrinsics::_aescrypt_encryptBlock:
5904     stubAddr = StubRoutines::aescrypt_encryptBlock();
5905     stubName = "aescrypt_encryptBlock";
5906     break;
5907   case vmIntrinsics::_aescrypt_decryptBlock:
5908     stubAddr = StubRoutines::aescrypt_decryptBlock();
5909     stubName = "aescrypt_decryptBlock";
5910     break;
5911   }
5912   if (stubAddr == NULL) return false;
5913 
5914   Node* aescrypt_object = argument(0);
5915   Node* src             = argument(1);
5916   Node* src_offset      = argument(2);
5917   Node* dest            = argument(3);
5918   Node* dest_offset     = argument(4);
5919 
5920   // (1) src and dest are arrays.
5921   const Type* src_type = src->Value(&_gvn);
5922   const Type* dest_type = dest->Value(&_gvn);
5923   const TypeAryPtr* top_src = src_type->isa_aryptr();
5924   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5925   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5926 
5927   // for the quick and dirty code we will skip all the checks.
5928   // we are just trying to get the call to be generated.
5929   Node* src_start  = src;
5930   Node* dest_start = dest;
5931   if (src_offset != NULL || dest_offset != NULL) {
5932     assert(src_offset != NULL && dest_offset != NULL, "");
5933     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5934     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5935   }
5936 
5937   // now need to get the start of its expanded key array
5938   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5939   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5940   if (k_start == NULL) return false;
5941 
5942   if (Matcher::pass_original_key_for_aes()) {
5943     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5944     // compatibility issues between Java key expansion and SPARC crypto instructions
5945     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5946     if (original_k_start == NULL) return false;
5947 
5948     // Call the stub.
5949     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5950                       stubAddr, stubName, TypePtr::BOTTOM,
5951                       src_start, dest_start, k_start, original_k_start);
5952   } else {
5953     // Call the stub.
5954     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5955                       stubAddr, stubName, TypePtr::BOTTOM,
5956                       src_start, dest_start, k_start);
5957   }
5958 
5959   return true;
5960 }
5961 
5962 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5963 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5964   address stubAddr;
5965   const char *stubName;
5966 
5967   assert(UseAES, "need AES instruction support");
5968 
5969   switch(id) {
5970   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5971     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5972     stubName = "cipherBlockChaining_encryptAESCrypt";
5973     break;
5974   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5975     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5976     stubName = "cipherBlockChaining_decryptAESCrypt";
5977     break;
5978   }
5979   if (stubAddr == NULL) return false;
5980 
5981   Node* cipherBlockChaining_object = argument(0);
5982   Node* src                        = argument(1);
5983   Node* src_offset                 = argument(2);
5984   Node* len                        = argument(3);
5985   Node* dest                       = argument(4);
5986   Node* dest_offset                = argument(5);
5987 
5988   // (1) src and dest are arrays.
5989   const Type* src_type = src->Value(&_gvn);
5990   const Type* dest_type = dest->Value(&_gvn);
5991   const TypeAryPtr* top_src = src_type->isa_aryptr();
5992   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5993   assert (top_src  != NULL && top_src->klass()  != NULL
5994           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5995 
5996   // checks are the responsibility of the caller
5997   Node* src_start  = src;
5998   Node* dest_start = dest;
5999   if (src_offset != NULL || dest_offset != NULL) {
6000     assert(src_offset != NULL && dest_offset != NULL, "");
6001     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6002     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6003   }
6004 
6005   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6006   // (because of the predicated logic executed earlier).
6007   // so we cast it here safely.
6008   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6009 
6010   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6011   if (embeddedCipherObj == NULL) return false;
6012 
6013   // cast it to what we know it will be at runtime
6014   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6015   assert(tinst != NULL, "CBC obj is null");
6016   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6017   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6018   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6019 
6020   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6021   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6022   const TypeOopPtr* xtype = aklass->as_instance_type();
6023   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6024   aescrypt_object = _gvn.transform(aescrypt_object);
6025 
6026   // we need to get the start of the aescrypt_object's expanded key array
6027   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6028   if (k_start == NULL) return false;
6029 
6030   // similarly, get the start address of the r vector
6031   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6032   if (objRvec == NULL) return false;
6033   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6034 
6035   Node* cbcCrypt;
6036   if (Matcher::pass_original_key_for_aes()) {
6037     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6038     // compatibility issues between Java key expansion and SPARC crypto instructions
6039     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6040     if (original_k_start == NULL) return false;
6041 
6042     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6043     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6044                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6045                                  stubAddr, stubName, TypePtr::BOTTOM,
6046                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6047   } else {
6048     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6049     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6050                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6051                                  stubAddr, stubName, TypePtr::BOTTOM,
6052                                  src_start, dest_start, k_start, r_start, len);
6053   }
6054 
6055   // return cipher length (int)
6056   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6057   set_result(retvalue);
6058   return true;
6059 }
6060 
6061 //------------------------------get_key_start_from_aescrypt_object-----------------------
6062 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6063   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6064   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6065   if (objAESCryptKey == NULL) return (Node *) NULL;
6066 
6067   // now have the array, need to get the start address of the K array
6068   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6069   return k_start;
6070 }
6071 
6072 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6073 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6074   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6075   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6076   if (objAESCryptKey == NULL) return (Node *) NULL;
6077 
6078   // now have the array, need to get the start address of the lastKey array
6079   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6080   return original_k_start;
6081 }
6082 
6083 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6084 // Return node representing slow path of predicate check.
6085 // the pseudo code we want to emulate with this predicate is:
6086 // for encryption:
6087 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6088 // for decryption:
6089 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6090 //    note cipher==plain is more conservative than the original java code but that's OK
6091 //
6092 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6093   // The receiver was checked for NULL already.
6094   Node* objCBC = argument(0);
6095 
6096   // Load embeddedCipher field of CipherBlockChaining object.
6097   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6098 
6099   // get AESCrypt klass for instanceOf check
6100   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6101   // will have same classloader as CipherBlockChaining object
6102   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6103   assert(tinst != NULL, "CBCobj is null");
6104   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6105 
6106   // we want to do an instanceof comparison against the AESCrypt class
6107   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6108   if (!klass_AESCrypt->is_loaded()) {
6109     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6110     Node* ctrl = control();
6111     set_control(top()); // no regular fast path
6112     return ctrl;
6113   }
6114   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6115 
6116   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6117   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6118   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6119 
6120   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6121 
6122   // for encryption, we are done
6123   if (!decrypting)
6124     return instof_false;  // even if it is NULL
6125 
6126   // for decryption, we need to add a further check to avoid
6127   // taking the intrinsic path when cipher and plain are the same
6128   // see the original java code for why.
6129   RegionNode* region = new RegionNode(3);
6130   region->init_req(1, instof_false);
6131   Node* src = argument(1);
6132   Node* dest = argument(4);
6133   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6134   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6135   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6136   region->init_req(2, src_dest_conjoint);
6137 
6138   record_for_igvn(region);
6139   return _gvn.transform(region);
6140 }
6141 
6142 //------------------------------inline_ghash_processBlocks
6143 bool LibraryCallKit::inline_ghash_processBlocks() {
6144   address stubAddr;
6145   const char *stubName;
6146   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6147 
6148   stubAddr = StubRoutines::ghash_processBlocks();
6149   stubName = "ghash_processBlocks";
6150 
6151   Node* data           = argument(0);
6152   Node* offset         = argument(1);
6153   Node* len            = argument(2);
6154   Node* state          = argument(3);
6155   Node* subkeyH        = argument(4);
6156 
6157   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6158   assert(state_start, "state is NULL");
6159   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6160   assert(subkeyH_start, "subkeyH is NULL");
6161   Node* data_start  = array_element_address(data, offset, T_BYTE);
6162   assert(data_start, "data is NULL");
6163 
6164   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6165                                   OptoRuntime::ghash_processBlocks_Type(),
6166                                   stubAddr, stubName, TypePtr::BOTTOM,
6167                                   state_start, subkeyH_start, data_start, len);
6168   return true;
6169 }
6170 
6171 //------------------------------inline_sha_implCompress-----------------------
6172 //
6173 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6174 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6175 //
6176 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6177 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6178 //
6179 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6180 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6181 //
6182 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6183   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6184 
6185   Node* sha_obj = argument(0);
6186   Node* src     = argument(1); // type oop
6187   Node* ofs     = argument(2); // type int
6188 
6189   const Type* src_type = src->Value(&_gvn);
6190   const TypeAryPtr* top_src = src_type->isa_aryptr();
6191   if (top_src  == NULL || top_src->klass()  == NULL) {
6192     // failed array check
6193     return false;
6194   }
6195   // Figure out the size and type of the elements we will be copying.
6196   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6197   if (src_elem != T_BYTE) {
6198     return false;
6199   }
6200   // 'src_start' points to src array + offset
6201   Node* src_start = array_element_address(src, ofs, src_elem);
6202   Node* state = NULL;
6203   address stubAddr;
6204   const char *stubName;
6205 
6206   switch(id) {
6207   case vmIntrinsics::_sha_implCompress:
6208     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6209     state = get_state_from_sha_object(sha_obj);
6210     stubAddr = StubRoutines::sha1_implCompress();
6211     stubName = "sha1_implCompress";
6212     break;
6213   case vmIntrinsics::_sha2_implCompress:
6214     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6215     state = get_state_from_sha_object(sha_obj);
6216     stubAddr = StubRoutines::sha256_implCompress();
6217     stubName = "sha256_implCompress";
6218     break;
6219   case vmIntrinsics::_sha5_implCompress:
6220     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6221     state = get_state_from_sha5_object(sha_obj);
6222     stubAddr = StubRoutines::sha512_implCompress();
6223     stubName = "sha512_implCompress";
6224     break;
6225   default:
6226     fatal_unexpected_iid(id);
6227     return false;
6228   }
6229   if (state == NULL) return false;
6230 
6231   // Call the stub.
6232   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6233                                  stubAddr, stubName, TypePtr::BOTTOM,
6234                                  src_start, state);
6235 
6236   return true;
6237 }
6238 
6239 //------------------------------inline_digestBase_implCompressMB-----------------------
6240 //
6241 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6242 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6243 //
6244 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6245   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6246          "need SHA1/SHA256/SHA512 instruction support");
6247   assert((uint)predicate < 3, "sanity");
6248   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6249 
6250   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6251   Node* src            = argument(1); // byte[] array
6252   Node* ofs            = argument(2); // type int
6253   Node* limit          = argument(3); // type int
6254 
6255   const Type* src_type = src->Value(&_gvn);
6256   const TypeAryPtr* top_src = src_type->isa_aryptr();
6257   if (top_src  == NULL || top_src->klass()  == NULL) {
6258     // failed array check
6259     return false;
6260   }
6261   // Figure out the size and type of the elements we will be copying.
6262   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6263   if (src_elem != T_BYTE) {
6264     return false;
6265   }
6266   // 'src_start' points to src array + offset
6267   Node* src_start = array_element_address(src, ofs, src_elem);
6268 
6269   const char* klass_SHA_name = NULL;
6270   const char* stub_name = NULL;
6271   address     stub_addr = NULL;
6272   bool        long_state = false;
6273 
6274   switch (predicate) {
6275   case 0:
6276     if (UseSHA1Intrinsics) {
6277       klass_SHA_name = "sun/security/provider/SHA";
6278       stub_name = "sha1_implCompressMB";
6279       stub_addr = StubRoutines::sha1_implCompressMB();
6280     }
6281     break;
6282   case 1:
6283     if (UseSHA256Intrinsics) {
6284       klass_SHA_name = "sun/security/provider/SHA2";
6285       stub_name = "sha256_implCompressMB";
6286       stub_addr = StubRoutines::sha256_implCompressMB();
6287     }
6288     break;
6289   case 2:
6290     if (UseSHA512Intrinsics) {
6291       klass_SHA_name = "sun/security/provider/SHA5";
6292       stub_name = "sha512_implCompressMB";
6293       stub_addr = StubRoutines::sha512_implCompressMB();
6294       long_state = true;
6295     }
6296     break;
6297   default:
6298     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6299   }
6300   if (klass_SHA_name != NULL) {
6301     // get DigestBase klass to lookup for SHA klass
6302     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6303     assert(tinst != NULL, "digestBase_obj is not instance???");
6304     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6305 
6306     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6307     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6308     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6309     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6310   }
6311   return false;
6312 }
6313 //------------------------------inline_sha_implCompressMB-----------------------
6314 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6315                                                bool long_state, address stubAddr, const char *stubName,
6316                                                Node* src_start, Node* ofs, Node* limit) {
6317   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6318   const TypeOopPtr* xtype = aklass->as_instance_type();
6319   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6320   sha_obj = _gvn.transform(sha_obj);
6321 
6322   Node* state;
6323   if (long_state) {
6324     state = get_state_from_sha5_object(sha_obj);
6325   } else {
6326     state = get_state_from_sha_object(sha_obj);
6327   }
6328   if (state == NULL) return false;
6329 
6330   // Call the stub.
6331   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6332                                  OptoRuntime::digestBase_implCompressMB_Type(),
6333                                  stubAddr, stubName, TypePtr::BOTTOM,
6334                                  src_start, state, ofs, limit);
6335   // return ofs (int)
6336   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6337   set_result(result);
6338 
6339   return true;
6340 }
6341 
6342 //------------------------------get_state_from_sha_object-----------------------
6343 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6344   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6345   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6346   if (sha_state == NULL) return (Node *) NULL;
6347 
6348   // now have the array, need to get the start address of the state array
6349   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6350   return state;
6351 }
6352 
6353 //------------------------------get_state_from_sha5_object-----------------------
6354 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6355   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6356   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6357   if (sha_state == NULL) return (Node *) NULL;
6358 
6359   // now have the array, need to get the start address of the state array
6360   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6361   return state;
6362 }
6363 
6364 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6365 // Return node representing slow path of predicate check.
6366 // the pseudo code we want to emulate with this predicate is:
6367 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6368 //
6369 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6370   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6371          "need SHA1/SHA256/SHA512 instruction support");
6372   assert((uint)predicate < 3, "sanity");
6373 
6374   // The receiver was checked for NULL already.
6375   Node* digestBaseObj = argument(0);
6376 
6377   // get DigestBase klass for instanceOf check
6378   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6379   assert(tinst != NULL, "digestBaseObj is null");
6380   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6381 
6382   const char* klass_SHA_name = NULL;
6383   switch (predicate) {
6384   case 0:
6385     if (UseSHA1Intrinsics) {
6386       // we want to do an instanceof comparison against the SHA class
6387       klass_SHA_name = "sun/security/provider/SHA";
6388     }
6389     break;
6390   case 1:
6391     if (UseSHA256Intrinsics) {
6392       // we want to do an instanceof comparison against the SHA2 class
6393       klass_SHA_name = "sun/security/provider/SHA2";
6394     }
6395     break;
6396   case 2:
6397     if (UseSHA512Intrinsics) {
6398       // we want to do an instanceof comparison against the SHA5 class
6399       klass_SHA_name = "sun/security/provider/SHA5";
6400     }
6401     break;
6402   default:
6403     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6404   }
6405 
6406   ciKlass* klass_SHA = NULL;
6407   if (klass_SHA_name != NULL) {
6408     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6409   }
6410   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6411     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6412     Node* ctrl = control();
6413     set_control(top()); // no intrinsic path
6414     return ctrl;
6415   }
6416   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6417 
6418   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6419   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6420   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6421   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6422 
6423   return instof_false;  // even if it is NULL
6424 }
6425 
6426 bool LibraryCallKit::inline_profileBoolean() {
6427   Node* counts = argument(1);
6428   const TypeAryPtr* ary = NULL;
6429   ciArray* aobj = NULL;
6430   if (counts->is_Con()
6431       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6432       && (aobj = ary->const_oop()->as_array()) != NULL
6433       && (aobj->length() == 2)) {
6434     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6435     jint false_cnt = aobj->element_value(0).as_int();
6436     jint  true_cnt = aobj->element_value(1).as_int();
6437 
6438     if (C->log() != NULL) {
6439       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6440                      false_cnt, true_cnt);
6441     }
6442 
6443     if (false_cnt + true_cnt == 0) {
6444       // According to profile, never executed.
6445       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6446                           Deoptimization::Action_reinterpret);
6447       return true;
6448     }
6449 
6450     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6451     // is a number of each value occurrences.
6452     Node* result = argument(0);
6453     if (false_cnt == 0 || true_cnt == 0) {
6454       // According to profile, one value has been never seen.
6455       int expected_val = (false_cnt == 0) ? 1 : 0;
6456 
6457       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6458       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6459 
6460       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6461       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6462       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6463 
6464       { // Slow path: uncommon trap for never seen value and then reexecute
6465         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6466         // the value has been seen at least once.
6467         PreserveJVMState pjvms(this);
6468         PreserveReexecuteState preexecs(this);
6469         jvms()->set_should_reexecute(true);
6470 
6471         set_control(slow_path);
6472         set_i_o(i_o());
6473 
6474         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6475                             Deoptimization::Action_reinterpret);
6476       }
6477       // The guard for never seen value enables sharpening of the result and
6478       // returning a constant. It allows to eliminate branches on the same value
6479       // later on.
6480       set_control(fast_path);
6481       result = intcon(expected_val);
6482     }
6483     // Stop profiling.
6484     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6485     // By replacing method body with profile data (represented as ProfileBooleanNode
6486     // on IR level) we effectively disable profiling.
6487     // It enables full speed execution once optimized code is generated.
6488     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6489     C->record_for_igvn(profile);
6490     set_result(profile);
6491     return true;
6492   } else {
6493     // Continue profiling.
6494     // Profile data isn't available at the moment. So, execute method's bytecode version.
6495     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6496     // is compiled and counters aren't available since corresponding MethodHandle
6497     // isn't a compile-time constant.
6498     return false;
6499   }
6500 }
6501 
6502 bool LibraryCallKit::inline_isCompileConstant() {
6503   Node* n = argument(0);
6504   set_result(n->is_Con() ? intcon(1) : intcon(0));
6505   return true;
6506 }