1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/codeCacheExtensions.hpp"
  37 #include "code/compiledIC.hpp"
  38 #include "code/pcDesc.hpp"
  39 #include "code/scopeDesc.hpp"
  40 #include "code/vtableStubs.hpp"
  41 #include "compiler/disassembler.hpp"
  42 #include "gc/shared/barrierSet.hpp"
  43 #include "gc/shared/collectedHeap.hpp"
  44 #include "interpreter/bytecode.hpp"
  45 #include "interpreter/interpreter.hpp"
  46 #include "logging/log.hpp"
  47 #include "memory/allocation.inline.hpp"
  48 #include "memory/oopFactory.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "oops/objArrayKlass.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "runtime/atomic.inline.hpp"
  53 #include "runtime/biasedLocking.hpp"
  54 #include "runtime/compilationPolicy.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/threadCritical.hpp"
  59 #include "runtime/vframe.hpp"
  60 #include "runtime/vframeArray.hpp"
  61 #include "runtime/vm_version.hpp"
  62 #include "utilities/copy.hpp"
  63 #include "utilities/events.hpp"
  64 
  65 
  66 // Implementation of StubAssembler
  67 
  68 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  69   _name = name;
  70   _must_gc_arguments = false;
  71   _frame_size = no_frame_size;
  72   _num_rt_args = 0;
  73   _stub_id = stub_id;
  74 }
  75 
  76 
  77 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  78   _name = name;
  79   _must_gc_arguments = must_gc_arguments;
  80 }
  81 
  82 
  83 void StubAssembler::set_frame_size(int size) {
  84   if (_frame_size == no_frame_size) {
  85     _frame_size = size;
  86   }
  87   assert(_frame_size == size, "can't change the frame size");
  88 }
  89 
  90 
  91 void StubAssembler::set_num_rt_args(int args) {
  92   if (_num_rt_args == 0) {
  93     _num_rt_args = args;
  94   }
  95   assert(_num_rt_args == args, "can't change the number of args");
  96 }
  97 
  98 // Implementation of Runtime1
  99 
 100 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 101 const char *Runtime1::_blob_names[] = {
 102   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 103 };
 104 
 105 #ifndef PRODUCT
 106 // statistics
 107 int Runtime1::_generic_arraycopy_cnt = 0;
 108 int Runtime1::_primitive_arraycopy_cnt = 0;
 109 int Runtime1::_oop_arraycopy_cnt = 0;
 110 int Runtime1::_generic_arraycopystub_cnt = 0;
 111 int Runtime1::_arraycopy_slowcase_cnt = 0;
 112 int Runtime1::_arraycopy_checkcast_cnt = 0;
 113 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 114 int Runtime1::_new_type_array_slowcase_cnt = 0;
 115 int Runtime1::_new_object_array_slowcase_cnt = 0;
 116 int Runtime1::_new_instance_slowcase_cnt = 0;
 117 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 118 int Runtime1::_monitorenter_slowcase_cnt = 0;
 119 int Runtime1::_monitorexit_slowcase_cnt = 0;
 120 int Runtime1::_patch_code_slowcase_cnt = 0;
 121 int Runtime1::_throw_range_check_exception_count = 0;
 122 int Runtime1::_throw_index_exception_count = 0;
 123 int Runtime1::_throw_div0_exception_count = 0;
 124 int Runtime1::_throw_null_pointer_exception_count = 0;
 125 int Runtime1::_throw_class_cast_exception_count = 0;
 126 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 127 int Runtime1::_throw_array_store_exception_count = 0;
 128 int Runtime1::_throw_count = 0;
 129 
 130 static int _byte_arraycopy_stub_cnt = 0;
 131 static int _short_arraycopy_stub_cnt = 0;
 132 static int _int_arraycopy_stub_cnt = 0;
 133 static int _long_arraycopy_stub_cnt = 0;
 134 static int _oop_arraycopy_stub_cnt = 0;
 135 
 136 address Runtime1::arraycopy_count_address(BasicType type) {
 137   switch (type) {
 138   case T_BOOLEAN:
 139   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 140   case T_CHAR:
 141   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 142   case T_FLOAT:
 143   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 144   case T_DOUBLE:
 145   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 146   case T_ARRAY:
 147   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 148   default:
 149     ShouldNotReachHere();
 150     return NULL;
 151   }
 152 }
 153 
 154 
 155 #endif
 156 
 157 // Simple helper to see if the caller of a runtime stub which
 158 // entered the VM has been deoptimized
 159 
 160 static bool caller_is_deopted() {
 161   JavaThread* thread = JavaThread::current();
 162   RegisterMap reg_map(thread, false);
 163   frame runtime_frame = thread->last_frame();
 164   frame caller_frame = runtime_frame.sender(&reg_map);
 165   assert(caller_frame.is_compiled_frame(), "must be compiled");
 166   return caller_frame.is_deoptimized_frame();
 167 }
 168 
 169 // Stress deoptimization
 170 static void deopt_caller() {
 171   if ( !caller_is_deopted()) {
 172     JavaThread* thread = JavaThread::current();
 173     RegisterMap reg_map(thread, false);
 174     frame runtime_frame = thread->last_frame();
 175     frame caller_frame = runtime_frame.sender(&reg_map);
 176     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 177     assert(caller_is_deopted(), "Must be deoptimized");
 178   }
 179 }
 180 
 181 
 182 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 183   assert(0 <= id && id < number_of_ids, "illegal stub id");
 184   ResourceMark rm;
 185   // create code buffer for code storage
 186   CodeBuffer code(buffer_blob);
 187 
 188   OopMapSet* oop_maps;
 189   int frame_size;
 190   bool must_gc_arguments;
 191 
 192   if (!CodeCacheExtensions::skip_compiler_support()) {
 193     // bypass useless code generation
 194     Compilation::setup_code_buffer(&code, 0);
 195 
 196     // create assembler for code generation
 197     StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
 198     // generate code for runtime stub
 199     oop_maps = generate_code_for(id, sasm);
 200     assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 201            "if stub has an oop map it must have a valid frame size");
 202 
 203 #ifdef ASSERT
 204     // Make sure that stubs that need oopmaps have them
 205     switch (id) {
 206       // These stubs don't need to have an oopmap
 207     case dtrace_object_alloc_id:
 208     case g1_pre_barrier_slow_id:
 209     case g1_post_barrier_slow_id:
 210     case slow_subtype_check_id:
 211     case fpu2long_stub_id:
 212     case unwind_exception_id:
 213     case counter_overflow_id:
 214 #if defined(SPARC) || defined(PPC32)
 215     case handle_exception_nofpu_id:  // Unused on sparc
 216 #endif
 217       break;
 218 
 219       // All other stubs should have oopmaps
 220     default:
 221       assert(oop_maps != NULL, "must have an oopmap");
 222     }
 223 #endif
 224 
 225     // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 226     sasm->align(BytesPerWord);
 227     // make sure all code is in code buffer
 228     sasm->flush();
 229 
 230     frame_size = sasm->frame_size();
 231     must_gc_arguments = sasm->must_gc_arguments();
 232   } else {
 233     /* ignored values */
 234     oop_maps = NULL;
 235     frame_size = 0;
 236     must_gc_arguments = false;
 237   }
 238   // create blob - distinguish a few special cases
 239   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
 240                                                  &code,
 241                                                  CodeOffsets::frame_never_safe,
 242                                                  frame_size,
 243                                                  oop_maps,
 244                                                  must_gc_arguments);
 245   // install blob
 246   assert(blob != NULL, "blob must exist");
 247   _blobs[id] = blob;
 248 }
 249 
 250 
 251 void Runtime1::initialize(BufferBlob* blob) {
 252   // platform-dependent initialization
 253   initialize_pd();
 254   // generate stubs
 255   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 256   // printing
 257 #ifndef PRODUCT
 258   if (PrintSimpleStubs) {
 259     ResourceMark rm;
 260     for (int id = 0; id < number_of_ids; id++) {
 261       _blobs[id]->print();
 262       if (_blobs[id]->oop_maps() != NULL) {
 263         _blobs[id]->oop_maps()->print();
 264       }
 265     }
 266   }
 267 #endif
 268 }
 269 
 270 
 271 CodeBlob* Runtime1::blob_for(StubID id) {
 272   assert(0 <= id && id < number_of_ids, "illegal stub id");
 273   return _blobs[id];
 274 }
 275 
 276 
 277 const char* Runtime1::name_for(StubID id) {
 278   assert(0 <= id && id < number_of_ids, "illegal stub id");
 279   return _blob_names[id];
 280 }
 281 
 282 const char* Runtime1::name_for_address(address entry) {
 283   for (int id = 0; id < number_of_ids; id++) {
 284     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 285   }
 286 
 287 #define FUNCTION_CASE(a, f) \
 288   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 289 
 290   FUNCTION_CASE(entry, os::javaTimeMillis);
 291   FUNCTION_CASE(entry, os::javaTimeNanos);
 292   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 293   FUNCTION_CASE(entry, SharedRuntime::d2f);
 294   FUNCTION_CASE(entry, SharedRuntime::d2i);
 295   FUNCTION_CASE(entry, SharedRuntime::d2l);
 296   FUNCTION_CASE(entry, SharedRuntime::dcos);
 297   FUNCTION_CASE(entry, SharedRuntime::dexp);
 298   FUNCTION_CASE(entry, SharedRuntime::dlog);
 299   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 300   FUNCTION_CASE(entry, SharedRuntime::dpow);
 301   FUNCTION_CASE(entry, SharedRuntime::drem);
 302   FUNCTION_CASE(entry, SharedRuntime::dsin);
 303   FUNCTION_CASE(entry, SharedRuntime::dtan);
 304   FUNCTION_CASE(entry, SharedRuntime::f2i);
 305   FUNCTION_CASE(entry, SharedRuntime::f2l);
 306   FUNCTION_CASE(entry, SharedRuntime::frem);
 307   FUNCTION_CASE(entry, SharedRuntime::l2d);
 308   FUNCTION_CASE(entry, SharedRuntime::l2f);
 309   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 310   FUNCTION_CASE(entry, SharedRuntime::lmul);
 311   FUNCTION_CASE(entry, SharedRuntime::lrem);
 312   FUNCTION_CASE(entry, SharedRuntime::lrem);
 313   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 314   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 315   FUNCTION_CASE(entry, is_instance_of);
 316   FUNCTION_CASE(entry, trace_block_entry);
 317 #ifdef TRACE_HAVE_INTRINSICS
 318   FUNCTION_CASE(entry, TRACE_TIME_METHOD);
 319 #endif
 320   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 321   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 322   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 323   FUNCTION_CASE(entry, StubRoutines::dexp());
 324   FUNCTION_CASE(entry, StubRoutines::dlog());
 325   FUNCTION_CASE(entry, StubRoutines::dlog10());
 326   FUNCTION_CASE(entry, StubRoutines::dpow());
 327   FUNCTION_CASE(entry, StubRoutines::dsin());
 328   FUNCTION_CASE(entry, StubRoutines::dcos());
 329   FUNCTION_CASE(entry, StubRoutines::dtan());
 330 
 331 #undef FUNCTION_CASE
 332 
 333   // Soft float adds more runtime names.
 334   return pd_name_for_address(entry);
 335 }
 336 
 337 
 338 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 339   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 340 
 341   assert(klass->is_klass(), "not a class");
 342   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 343   instanceKlassHandle h(thread, klass);
 344   h->check_valid_for_instantiation(true, CHECK);
 345   // make sure klass is initialized
 346   h->initialize(CHECK);
 347   // allocate instance and return via TLS
 348   oop obj = h->allocate_instance(CHECK);
 349   thread->set_vm_result(obj);
 350 JRT_END
 351 
 352 
 353 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 354   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 355   // Note: no handle for klass needed since they are not used
 356   //       anymore after new_typeArray() and no GC can happen before.
 357   //       (This may have to change if this code changes!)
 358   assert(klass->is_klass(), "not a class");
 359   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 360   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 361   thread->set_vm_result(obj);
 362   // This is pretty rare but this runtime patch is stressful to deoptimization
 363   // if we deoptimize here so force a deopt to stress the path.
 364   if (DeoptimizeALot) {
 365     deopt_caller();
 366   }
 367 
 368 JRT_END
 369 
 370 
 371 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 372   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 373 
 374   // Note: no handle for klass needed since they are not used
 375   //       anymore after new_objArray() and no GC can happen before.
 376   //       (This may have to change if this code changes!)
 377   assert(array_klass->is_klass(), "not a class");
 378   Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
 379   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 380   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 381   thread->set_vm_result(obj);
 382   // This is pretty rare but this runtime patch is stressful to deoptimization
 383   // if we deoptimize here so force a deopt to stress the path.
 384   if (DeoptimizeALot) {
 385     deopt_caller();
 386   }
 387 JRT_END
 388 
 389 
 390 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 391   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 392 
 393   assert(klass->is_klass(), "not a class");
 394   assert(rank >= 1, "rank must be nonzero");
 395   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 396   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 397   thread->set_vm_result(obj);
 398 JRT_END
 399 
 400 
 401 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 402   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 403 JRT_END
 404 
 405 
 406 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 407   ResourceMark rm(thread);
 408   const char* klass_name = obj->klass()->external_name();
 409   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 410 JRT_END
 411 
 412 
 413 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 414 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 415 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 416 // a constant.
 417 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 418   nmethod* osr_nm = NULL;
 419   methodHandle method(THREAD, m);
 420 
 421   RegisterMap map(THREAD, false);
 422   frame fr =  THREAD->last_frame().sender(&map);
 423   nmethod* nm = (nmethod*) fr.cb();
 424   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 425   methodHandle enclosing_method(THREAD, nm->method());
 426 
 427   CompLevel level = (CompLevel)nm->comp_level();
 428   int bci = InvocationEntryBci;
 429   if (branch_bci != InvocationEntryBci) {
 430     // Compute destination bci
 431     address pc = method()->code_base() + branch_bci;
 432     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 433     int offset = 0;
 434     switch (branch) {
 435       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 436       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 437       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 438       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 439       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 440       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 441       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 442         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 443         break;
 444       case Bytecodes::_goto_w:
 445         offset = Bytes::get_Java_u4(pc + 1);
 446         break;
 447       default: ;
 448     }
 449     bci = branch_bci + offset;
 450   }
 451   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 452   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 453   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 454   return osr_nm;
 455 }
 456 
 457 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 458   nmethod* osr_nm;
 459   JRT_BLOCK
 460     osr_nm = counter_overflow_helper(thread, bci, method);
 461     if (osr_nm != NULL) {
 462       RegisterMap map(thread, false);
 463       frame fr =  thread->last_frame().sender(&map);
 464       Deoptimization::deoptimize_frame(thread, fr.id());
 465     }
 466   JRT_BLOCK_END
 467   return NULL;
 468 JRT_END
 469 
 470 extern void vm_exit(int code);
 471 
 472 // Enter this method from compiled code handler below. This is where we transition
 473 // to VM mode. This is done as a helper routine so that the method called directly
 474 // from compiled code does not have to transition to VM. This allows the entry
 475 // method to see if the nmethod that we have just looked up a handler for has
 476 // been deoptimized while we were in the vm. This simplifies the assembly code
 477 // cpu directories.
 478 //
 479 // We are entering here from exception stub (via the entry method below)
 480 // If there is a compiled exception handler in this method, we will continue there;
 481 // otherwise we will unwind the stack and continue at the caller of top frame method
 482 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 483 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 484 // check to see if the handler we are going to return is now in a nmethod that has
 485 // been deoptimized. If that is the case we return the deopt blob
 486 // unpack_with_exception entry instead. This makes life for the exception blob easier
 487 // because making that same check and diverting is painful from assembly language.
 488 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 489   // Reset method handle flag.
 490   thread->set_is_method_handle_return(false);
 491 
 492   Handle exception(thread, ex);
 493   nm = CodeCache::find_nmethod(pc);
 494   assert(nm != NULL, "this is not an nmethod");
 495   // Adjust the pc as needed/
 496   if (nm->is_deopt_pc(pc)) {
 497     RegisterMap map(thread, false);
 498     frame exception_frame = thread->last_frame().sender(&map);
 499     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 500     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 501     pc = exception_frame.pc();
 502   }
 503 #ifdef ASSERT
 504   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 505   assert(exception->is_oop(), "just checking");
 506   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 507   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 508     if (ExitVMOnVerifyError) vm_exit(-1);
 509     ShouldNotReachHere();
 510   }
 511 #endif
 512 
 513   // Check the stack guard pages and reenable them if necessary and there is
 514   // enough space on the stack to do so.  Use fast exceptions only if the guard
 515   // pages are enabled.
 516   bool guard_pages_enabled = thread->stack_guards_enabled();
 517   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 518 
 519   if (JvmtiExport::can_post_on_exceptions()) {
 520     // To ensure correct notification of exception catches and throws
 521     // we have to deoptimize here.  If we attempted to notify the
 522     // catches and throws during this exception lookup it's possible
 523     // we could deoptimize on the way out of the VM and end back in
 524     // the interpreter at the throw site.  This would result in double
 525     // notifications since the interpreter would also notify about
 526     // these same catches and throws as it unwound the frame.
 527 
 528     RegisterMap reg_map(thread);
 529     frame stub_frame = thread->last_frame();
 530     frame caller_frame = stub_frame.sender(&reg_map);
 531 
 532     // We don't really want to deoptimize the nmethod itself since we
 533     // can actually continue in the exception handler ourselves but I
 534     // don't see an easy way to have the desired effect.
 535     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 536     assert(caller_is_deopted(), "Must be deoptimized");
 537 
 538     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 539   }
 540 
 541   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 542   if (guard_pages_enabled) {
 543     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 544     if (fast_continuation != NULL) {
 545       // Set flag if return address is a method handle call site.
 546       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 547       return fast_continuation;
 548     }
 549   }
 550 
 551   // If the stack guard pages are enabled, check whether there is a handler in
 552   // the current method.  Otherwise (guard pages disabled), force an unwind and
 553   // skip the exception cache update (i.e., just leave continuation==NULL).
 554   address continuation = NULL;
 555   if (guard_pages_enabled) {
 556 
 557     // New exception handling mechanism can support inlined methods
 558     // with exception handlers since the mappings are from PC to PC
 559 
 560     // debugging support
 561     // tracing
 562     if (log_is_enabled(Info, exceptions)) {
 563       ResourceMark rm;
 564       stringStream tempst;
 565       tempst.print("compiled method <%s>\n"
 566                    " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 567                    nm->method()->print_value_string(), p2i(pc), p2i(thread));
 568       Exceptions::log_exception(exception, tempst);
 569     }
 570     // for AbortVMOnException flag
 571     Exceptions::debug_check_abort(exception);
 572 
 573     // Clear out the exception oop and pc since looking up an
 574     // exception handler can cause class loading, which might throw an
 575     // exception and those fields are expected to be clear during
 576     // normal bytecode execution.
 577     thread->clear_exception_oop_and_pc();
 578 
 579     Handle original_exception(thread, exception());
 580 
 581     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
 582     // If an exception was thrown during exception dispatch, the exception oop may have changed
 583     thread->set_exception_oop(exception());
 584     thread->set_exception_pc(pc);
 585 
 586     // the exception cache is used only by non-implicit exceptions
 587     // Update the exception cache only when there didn't happen
 588     // another exception during the computation of the compiled
 589     // exception handler.
 590     if (continuation != NULL && original_exception() == exception()) {
 591       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 592     }
 593   }
 594 
 595   thread->set_vm_result(exception());
 596   // Set flag if return address is a method handle call site.
 597   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 598 
 599   if (log_is_enabled(Info, exceptions)) {
 600     ResourceMark rm;
 601     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 602                          " for exception thrown at PC " PTR_FORMAT,
 603                          p2i(thread), p2i(continuation), p2i(pc));
 604   }
 605 
 606   return continuation;
 607 JRT_END
 608 
 609 // Enter this method from compiled code only if there is a Java exception handler
 610 // in the method handling the exception.
 611 // We are entering here from exception stub. We don't do a normal VM transition here.
 612 // We do it in a helper. This is so we can check to see if the nmethod we have just
 613 // searched for an exception handler has been deoptimized in the meantime.
 614 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 615   oop exception = thread->exception_oop();
 616   address pc = thread->exception_pc();
 617   // Still in Java mode
 618   DEBUG_ONLY(ResetNoHandleMark rnhm);
 619   nmethod* nm = NULL;
 620   address continuation = NULL;
 621   {
 622     // Enter VM mode by calling the helper
 623     ResetNoHandleMark rnhm;
 624     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 625   }
 626   // Back in JAVA, use no oops DON'T safepoint
 627 
 628   // Now check to see if the nmethod we were called from is now deoptimized.
 629   // If so we must return to the deopt blob and deoptimize the nmethod
 630   if (nm != NULL && caller_is_deopted()) {
 631     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 632   }
 633 
 634   assert(continuation != NULL, "no handler found");
 635   return continuation;
 636 }
 637 
 638 
 639 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
 640   NOT_PRODUCT(_throw_range_check_exception_count++;)
 641   char message[jintAsStringSize];
 642   sprintf(message, "%d", index);
 643   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 644 JRT_END
 645 
 646 
 647 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 648   NOT_PRODUCT(_throw_index_exception_count++;)
 649   char message[16];
 650   sprintf(message, "%d", index);
 651   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 652 JRT_END
 653 
 654 
 655 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 656   NOT_PRODUCT(_throw_div0_exception_count++;)
 657   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 658 JRT_END
 659 
 660 
 661 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 662   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 663   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 664 JRT_END
 665 
 666 
 667 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 668   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 669   ResourceMark rm(thread);
 670   char* message = SharedRuntime::generate_class_cast_message(
 671     thread, object->klass());
 672   SharedRuntime::throw_and_post_jvmti_exception(
 673     thread, vmSymbols::java_lang_ClassCastException(), message);
 674 JRT_END
 675 
 676 
 677 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 678   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 679   ResourceMark rm(thread);
 680   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 681 JRT_END
 682 
 683 
 684 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 685   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 686   if (PrintBiasedLockingStatistics) {
 687     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 688   }
 689   Handle h_obj(thread, obj);
 690   assert(h_obj()->is_oop(), "must be NULL or an object");
 691   if (UseBiasedLocking) {
 692     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 693     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 694   } else {
 695     if (UseFastLocking) {
 696       // When using fast locking, the compiled code has already tried the fast case
 697       assert(obj == lock->obj(), "must match");
 698       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 699     } else {
 700       lock->set_obj(obj);
 701       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 702     }
 703   }
 704 JRT_END
 705 
 706 
 707 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 708   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 709   assert(thread == JavaThread::current(), "threads must correspond");
 710   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 711   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 712   EXCEPTION_MARK;
 713 
 714   oop obj = lock->obj();
 715   assert(obj->is_oop(), "must be NULL or an object");
 716   if (UseFastLocking) {
 717     // When using fast locking, the compiled code has already tried the fast case
 718     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 719   } else {
 720     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 721   }
 722 JRT_END
 723 
 724 // Cf. OptoRuntime::deoptimize_caller_frame
 725 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
 726   // Called from within the owner thread, so no need for safepoint
 727   RegisterMap reg_map(thread, false);
 728   frame stub_frame = thread->last_frame();
 729   assert(stub_frame.is_runtime_frame(), "Sanity check");
 730   frame caller_frame = stub_frame.sender(&reg_map);
 731   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 732   assert(nm != NULL, "Sanity check");
 733   methodHandle method(thread, nm->method());
 734   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 735   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 736   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 737 
 738   if (action == Deoptimization::Action_make_not_entrant) {
 739     if (nm->make_not_entrant()) {
 740       if (reason == Deoptimization::Reason_tenured) {
 741         MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
 742         if (trap_mdo != NULL) {
 743           trap_mdo->inc_tenure_traps();
 744         }
 745       }
 746     }
 747   }
 748 
 749   // Deoptimize the caller frame.
 750   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 751   // Return to the now deoptimized frame.
 752 JRT_END
 753 
 754 
 755 #ifndef DEOPTIMIZE_WHEN_PATCHING
 756 
 757 static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
 758   Bytecode_field field_access(caller, bci);
 759   // This can be static or non-static field access
 760   Bytecodes::Code code       = field_access.code();
 761 
 762   // We must load class, initialize class and resolvethe field
 763   fieldDescriptor result; // initialize class if needed
 764   constantPoolHandle constants(THREAD, caller->constants());
 765   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
 766   return result.field_holder();
 767 }
 768 
 769 
 770 //
 771 // This routine patches sites where a class wasn't loaded or
 772 // initialized at the time the code was generated.  It handles
 773 // references to classes, fields and forcing of initialization.  Most
 774 // of the cases are straightforward and involving simply forcing
 775 // resolution of a class, rewriting the instruction stream with the
 776 // needed constant and replacing the call in this function with the
 777 // patched code.  The case for static field is more complicated since
 778 // the thread which is in the process of initializing a class can
 779 // access it's static fields but other threads can't so the code
 780 // either has to deoptimize when this case is detected or execute a
 781 // check that the current thread is the initializing thread.  The
 782 // current
 783 //
 784 // Patches basically look like this:
 785 //
 786 //
 787 // patch_site: jmp patch stub     ;; will be patched
 788 // continue:   ...
 789 //             ...
 790 //             ...
 791 //             ...
 792 //
 793 // They have a stub which looks like this:
 794 //
 795 //             ;; patch body
 796 //             movl <const>, reg           (for class constants)
 797 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 798 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 799 //             <being_init offset> <bytes to copy> <bytes to skip>
 800 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 801 //             jmp patch_site
 802 //
 803 //
 804 // A normal patch is done by rewriting the patch body, usually a move,
 805 // and then copying it into place over top of the jmp instruction
 806 // being careful to flush caches and doing it in an MP-safe way.  The
 807 // constants following the patch body are used to find various pieces
 808 // of the patch relative to the call site for Runtime1::patch_code.
 809 // The case for getstatic and putstatic is more complicated because
 810 // getstatic and putstatic have special semantics when executing while
 811 // the class is being initialized.  getstatic/putstatic on a class
 812 // which is being_initialized may be executed by the initializing
 813 // thread but other threads have to block when they execute it.  This
 814 // is accomplished in compiled code by executing a test of the current
 815 // thread against the initializing thread of the class.  It's emitted
 816 // as boilerplate in their stub which allows the patched code to be
 817 // executed before it's copied back into the main body of the nmethod.
 818 //
 819 // being_init: get_thread(<tmp reg>
 820 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 821 //             jne patch_stub
 822 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 823 //             movl reg, [reg1 + <const>]  (for field offsets)
 824 //             jmp continue
 825 //             <being_init offset> <bytes to copy> <bytes to skip>
 826 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 827 //             jmp patch_site
 828 //
 829 // If the class is being initialized the patch body is rewritten and
 830 // the patch site is rewritten to jump to being_init, instead of
 831 // patch_stub.  Whenever this code is executed it checks the current
 832 // thread against the intializing thread so other threads will enter
 833 // the runtime and end up blocked waiting the class to finish
 834 // initializing inside the calls to resolve_field below.  The
 835 // initializing class will continue on it's way.  Once the class is
 836 // fully_initialized, the intializing_thread of the class becomes
 837 // NULL, so the next thread to execute this code will fail the test,
 838 // call into patch_code and complete the patching process by copying
 839 // the patch body back into the main part of the nmethod and resume
 840 // executing.
 841 //
 842 //
 843 
 844 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 845   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 846 
 847   ResourceMark rm(thread);
 848   RegisterMap reg_map(thread, false);
 849   frame runtime_frame = thread->last_frame();
 850   frame caller_frame = runtime_frame.sender(&reg_map);
 851 
 852   // last java frame on stack
 853   vframeStream vfst(thread, true);
 854   assert(!vfst.at_end(), "Java frame must exist");
 855 
 856   methodHandle caller_method(THREAD, vfst.method());
 857   // Note that caller_method->code() may not be same as caller_code because of OSR's
 858   // Note also that in the presence of inlining it is not guaranteed
 859   // that caller_method() == caller_code->method()
 860 
 861   int bci = vfst.bci();
 862   Bytecodes::Code code = caller_method()->java_code_at(bci);
 863 
 864   // this is used by assertions in the access_field_patching_id
 865   BasicType patch_field_type = T_ILLEGAL;
 866   bool deoptimize_for_volatile = false;
 867   bool deoptimize_for_atomic = false;
 868   int patch_field_offset = -1;
 869   KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code
 870   KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code
 871   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 872   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 873   bool load_klass_or_mirror_patch_id =
 874     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 875 
 876   if (stub_id == Runtime1::access_field_patching_id) {
 877 
 878     Bytecode_field field_access(caller_method, bci);
 879     fieldDescriptor result; // initialize class if needed
 880     Bytecodes::Code code = field_access.code();
 881     constantPoolHandle constants(THREAD, caller_method->constants());
 882     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
 883     patch_field_offset = result.offset();
 884 
 885     // If we're patching a field which is volatile then at compile it
 886     // must not have been know to be volatile, so the generated code
 887     // isn't correct for a volatile reference.  The nmethod has to be
 888     // deoptimized so that the code can be regenerated correctly.
 889     // This check is only needed for access_field_patching since this
 890     // is the path for patching field offsets.  load_klass is only
 891     // used for patching references to oops which don't need special
 892     // handling in the volatile case.
 893 
 894     deoptimize_for_volatile = result.access_flags().is_volatile();
 895 
 896     // If we are patching a field which should be atomic, then
 897     // the generated code is not correct either, force deoptimizing.
 898     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 899     // break access atomicity only for them.
 900 
 901     // Strictly speaking, the deoptimizaation on 64-bit platforms
 902     // is unnecessary, and T_LONG stores on 32-bit platforms need
 903     // to be handled by special patching code when AlwaysAtomicAccesses
 904     // becomes product feature. At this point, we are still going
 905     // for the deoptimization for consistency against volatile
 906     // accesses.
 907 
 908     patch_field_type = result.field_type();
 909     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
 910 
 911   } else if (load_klass_or_mirror_patch_id) {
 912     Klass* k = NULL;
 913     switch (code) {
 914       case Bytecodes::_putstatic:
 915       case Bytecodes::_getstatic:
 916         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
 917           init_klass = KlassHandle(THREAD, klass);
 918           mirror = Handle(THREAD, klass->java_mirror());
 919         }
 920         break;
 921       case Bytecodes::_new:
 922         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
 923           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
 924         }
 925         break;
 926       case Bytecodes::_multianewarray:
 927         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
 928           k = caller_method->constants()->klass_at(mna.index(), CHECK);
 929         }
 930         break;
 931       case Bytecodes::_instanceof:
 932         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
 933           k = caller_method->constants()->klass_at(io.index(), CHECK);
 934         }
 935         break;
 936       case Bytecodes::_checkcast:
 937         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
 938           k = caller_method->constants()->klass_at(cc.index(), CHECK);
 939         }
 940         break;
 941       case Bytecodes::_anewarray:
 942         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
 943           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
 944           k = ek->array_klass(CHECK);
 945         }
 946         break;
 947       case Bytecodes::_ldc:
 948       case Bytecodes::_ldc_w:
 949         {
 950           Bytecode_loadconstant cc(caller_method, bci);
 951           oop m = cc.resolve_constant(CHECK);
 952           mirror = Handle(THREAD, m);
 953         }
 954         break;
 955       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
 956     }
 957     // convert to handle
 958     load_klass = KlassHandle(THREAD, k);
 959   } else if (stub_id == load_appendix_patching_id) {
 960     Bytecode_invoke bytecode(caller_method, bci);
 961     Bytecodes::Code bc = bytecode.invoke_code();
 962 
 963     CallInfo info;
 964     constantPoolHandle pool(thread, caller_method->constants());
 965     int index = bytecode.index();
 966     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
 967     switch (bc) {
 968       case Bytecodes::_invokehandle: {
 969         int cache_index = ConstantPool::decode_cpcache_index(index, true);
 970         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
 971         ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
 972         cpce->set_method_handle(pool, info);
 973         appendix = cpce->appendix_if_resolved(pool); // just in case somebody already resolved the entry
 974         break;
 975       }
 976       case Bytecodes::_invokedynamic: {
 977         ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
 978         cpce->set_dynamic_call(pool, info);
 979         appendix = cpce->appendix_if_resolved(pool); // just in case somebody already resolved the entry
 980         break;
 981       }
 982       default: fatal("unexpected bytecode for load_appendix_patching_id");
 983     }
 984   } else {
 985     ShouldNotReachHere();
 986   }
 987 
 988   if (deoptimize_for_volatile || deoptimize_for_atomic) {
 989     // At compile time we assumed the field wasn't volatile/atomic but after
 990     // loading it turns out it was volatile/atomic so we have to throw the
 991     // compiled code out and let it be regenerated.
 992     if (TracePatching) {
 993       if (deoptimize_for_volatile) {
 994         tty->print_cr("Deoptimizing for patching volatile field reference");
 995       }
 996       if (deoptimize_for_atomic) {
 997         tty->print_cr("Deoptimizing for patching atomic field reference");
 998       }
 999     }
1000 
1001     // It's possible the nmethod was invalidated in the last
1002     // safepoint, but if it's still alive then make it not_entrant.
1003     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1004     if (nm != NULL) {
1005       nm->make_not_entrant();
1006     }
1007 
1008     Deoptimization::deoptimize_frame(thread, caller_frame.id());
1009 
1010     // Return to the now deoptimized frame.
1011   }
1012 
1013   // Now copy code back
1014 
1015   {
1016     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
1017     //
1018     // Deoptimization may have happened while we waited for the lock.
1019     // In that case we don't bother to do any patching we just return
1020     // and let the deopt happen
1021     if (!caller_is_deopted()) {
1022       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1023       address instr_pc = jump->jump_destination();
1024       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1025       if (ni->is_jump() ) {
1026         // the jump has not been patched yet
1027         // The jump destination is slow case and therefore not part of the stubs
1028         // (stubs are only for StaticCalls)
1029 
1030         // format of buffer
1031         //    ....
1032         //    instr byte 0     <-- copy_buff
1033         //    instr byte 1
1034         //    ..
1035         //    instr byte n-1
1036         //      n
1037         //    ....             <-- call destination
1038 
1039         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1040         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1041         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1042         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1043         address copy_buff = stub_location - *byte_skip - *byte_count;
1044         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1045         if (TracePatching) {
1046           ttyLocker ttyl;
1047           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1048                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1049           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1050           assert(caller_code != NULL, "nmethod not found");
1051 
1052           // NOTE we use pc() not original_pc() because we already know they are
1053           // identical otherwise we'd have never entered this block of code
1054 
1055           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1056           assert(map != NULL, "null check");
1057           map->print();
1058           tty->cr();
1059 
1060           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1061         }
1062         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1063         bool do_patch = true;
1064         if (stub_id == Runtime1::access_field_patching_id) {
1065           // The offset may not be correct if the class was not loaded at code generation time.
1066           // Set it now.
1067           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1068           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1069           assert(patch_field_offset >= 0, "illegal offset");
1070           n_move->add_offset_in_bytes(patch_field_offset);
1071         } else if (load_klass_or_mirror_patch_id) {
1072           // If a getstatic or putstatic is referencing a klass which
1073           // isn't fully initialized, the patch body isn't copied into
1074           // place until initialization is complete.  In this case the
1075           // patch site is setup so that any threads besides the
1076           // initializing thread are forced to come into the VM and
1077           // block.
1078           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1079                      InstanceKlass::cast(init_klass())->is_initialized();
1080           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1081           if (jump->jump_destination() == being_initialized_entry) {
1082             assert(do_patch == true, "initialization must be complete at this point");
1083           } else {
1084             // patch the instruction <move reg, klass>
1085             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1086 
1087             assert(n_copy->data() == 0 ||
1088                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1089                    "illegal init value");
1090             if (stub_id == Runtime1::load_klass_patching_id) {
1091               assert(load_klass() != NULL, "klass not set");
1092               n_copy->set_data((intx) (load_klass()));
1093             } else {
1094               assert(mirror() != NULL, "klass not set");
1095               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1096               n_copy->set_data(cast_from_oop<intx>(mirror()));
1097             }
1098 
1099             if (TracePatching) {
1100               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1101             }
1102           }
1103         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1104           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1105           assert(n_copy->data() == 0 ||
1106                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1107                  "illegal init value");
1108           n_copy->set_data(cast_from_oop<intx>(appendix()));
1109 
1110           if (TracePatching) {
1111             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1112           }
1113         } else {
1114           ShouldNotReachHere();
1115         }
1116 
1117 #if defined(SPARC) || defined(PPC32)
1118         if (load_klass_or_mirror_patch_id ||
1119             stub_id == Runtime1::load_appendix_patching_id) {
1120           // Update the location in the nmethod with the proper
1121           // metadata.  When the code was generated, a NULL was stuffed
1122           // in the metadata table and that table needs to be update to
1123           // have the right value.  On intel the value is kept
1124           // directly in the instruction instead of in the metadata
1125           // table, so set_data above effectively updated the value.
1126           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1127           assert(nm != NULL, "invalid nmethod_pc");
1128           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1129           bool found = false;
1130           while (mds.next() && !found) {
1131             if (mds.type() == relocInfo::oop_type) {
1132               assert(stub_id == Runtime1::load_mirror_patching_id ||
1133                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1134               oop_Relocation* r = mds.oop_reloc();
1135               oop* oop_adr = r->oop_addr();
1136               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1137               r->fix_oop_relocation();
1138               found = true;
1139             } else if (mds.type() == relocInfo::metadata_type) {
1140               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1141               metadata_Relocation* r = mds.metadata_reloc();
1142               Metadata** metadata_adr = r->metadata_addr();
1143               *metadata_adr = load_klass();
1144               r->fix_metadata_relocation();
1145               found = true;
1146             }
1147           }
1148           assert(found, "the metadata must exist!");
1149         }
1150 #endif
1151         if (do_patch) {
1152           // replace instructions
1153           // first replace the tail, then the call
1154 #ifdef ARM
1155           if((load_klass_or_mirror_patch_id ||
1156               stub_id == Runtime1::load_appendix_patching_id) &&
1157               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1158             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1159             address addr = NULL;
1160             assert(nm != NULL, "invalid nmethod_pc");
1161             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1162             while (mds.next()) {
1163               if (mds.type() == relocInfo::oop_type) {
1164                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1165                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1166                 oop_Relocation* r = mds.oop_reloc();
1167                 addr = (address)r->oop_addr();
1168                 break;
1169               } else if (mds.type() == relocInfo::metadata_type) {
1170                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1171                 metadata_Relocation* r = mds.metadata_reloc();
1172                 addr = (address)r->metadata_addr();
1173                 break;
1174               }
1175             }
1176             assert(addr != NULL, "metadata relocation must exist");
1177             copy_buff -= *byte_count;
1178             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1179             n_copy2->set_pc_relative_offset(addr, instr_pc);
1180           }
1181 #endif
1182 
1183           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1184             address ptr = copy_buff + i;
1185             int a_byte = (*ptr) & 0xFF;
1186             address dst = instr_pc + i;
1187             *(unsigned char*)dst = (unsigned char) a_byte;
1188           }
1189           ICache::invalidate_range(instr_pc, *byte_count);
1190           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1191 
1192           if (load_klass_or_mirror_patch_id ||
1193               stub_id == Runtime1::load_appendix_patching_id) {
1194             relocInfo::relocType rtype =
1195               (stub_id == Runtime1::load_klass_patching_id) ?
1196                                    relocInfo::metadata_type :
1197                                    relocInfo::oop_type;
1198             // update relocInfo to metadata
1199             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1200             assert(nm != NULL, "invalid nmethod_pc");
1201 
1202             // The old patch site is now a move instruction so update
1203             // the reloc info so that it will get updated during
1204             // future GCs.
1205             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1206             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1207                                                      relocInfo::none, rtype);
1208 #ifdef SPARC
1209             // Sparc takes two relocations for an metadata so update the second one.
1210             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1211             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1212             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1213                                                      relocInfo::none, rtype);
1214 #endif
1215 #ifdef PPC32
1216           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1217             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1218             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1219                                                      relocInfo::none, rtype);
1220           }
1221 #endif
1222           }
1223 
1224         } else {
1225           ICache::invalidate_range(copy_buff, *byte_count);
1226           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1227         }
1228       }
1229     }
1230   }
1231 
1232   // If we are patching in a non-perm oop, make sure the nmethod
1233   // is on the right list.
1234   if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) ||
1235                               (appendix.not_null() && appendix->is_scavengable()))) {
1236     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1237     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1238     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1239     if (!nm->on_scavenge_root_list()) {
1240       CodeCache::add_scavenge_root_nmethod(nm);
1241     }
1242 
1243     // Since we've patched some oops in the nmethod,
1244     // (re)register it with the heap.
1245     Universe::heap()->register_nmethod(nm);
1246   }
1247 JRT_END
1248 
1249 #else // DEOPTIMIZE_WHEN_PATCHING
1250 
1251 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
1252   RegisterMap reg_map(thread, false);
1253 
1254   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
1255   if (TracePatching) {
1256     tty->print_cr("Deoptimizing because patch is needed");
1257   }
1258 
1259   frame runtime_frame = thread->last_frame();
1260   frame caller_frame = runtime_frame.sender(&reg_map);
1261 
1262   // It's possible the nmethod was invalidated in the last
1263   // safepoint, but if it's still alive then make it not_entrant.
1264   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1265   if (nm != NULL) {
1266     nm->make_not_entrant();
1267   }
1268 
1269   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1270 
1271   // Return to the now deoptimized frame.
1272 JRT_END
1273 
1274 #endif // DEOPTIMIZE_WHEN_PATCHING
1275 
1276 //
1277 // Entry point for compiled code. We want to patch a nmethod.
1278 // We don't do a normal VM transition here because we want to
1279 // know after the patching is complete and any safepoint(s) are taken
1280 // if the calling nmethod was deoptimized. We do this by calling a
1281 // helper method which does the normal VM transition and when it
1282 // completes we can check for deoptimization. This simplifies the
1283 // assembly code in the cpu directories.
1284 //
1285 int Runtime1::move_klass_patching(JavaThread* thread) {
1286 //
1287 // NOTE: we are still in Java
1288 //
1289   Thread* THREAD = thread;
1290   debug_only(NoHandleMark nhm;)
1291   {
1292     // Enter VM mode
1293 
1294     ResetNoHandleMark rnhm;
1295     patch_code(thread, load_klass_patching_id);
1296   }
1297   // Back in JAVA, use no oops DON'T safepoint
1298 
1299   // Return true if calling code is deoptimized
1300 
1301   return caller_is_deopted();
1302 }
1303 
1304 int Runtime1::move_mirror_patching(JavaThread* thread) {
1305 //
1306 // NOTE: we are still in Java
1307 //
1308   Thread* THREAD = thread;
1309   debug_only(NoHandleMark nhm;)
1310   {
1311     // Enter VM mode
1312 
1313     ResetNoHandleMark rnhm;
1314     patch_code(thread, load_mirror_patching_id);
1315   }
1316   // Back in JAVA, use no oops DON'T safepoint
1317 
1318   // Return true if calling code is deoptimized
1319 
1320   return caller_is_deopted();
1321 }
1322 
1323 int Runtime1::move_appendix_patching(JavaThread* thread) {
1324 //
1325 // NOTE: we are still in Java
1326 //
1327   Thread* THREAD = thread;
1328   debug_only(NoHandleMark nhm;)
1329   {
1330     // Enter VM mode
1331 
1332     ResetNoHandleMark rnhm;
1333     patch_code(thread, load_appendix_patching_id);
1334   }
1335   // Back in JAVA, use no oops DON'T safepoint
1336 
1337   // Return true if calling code is deoptimized
1338 
1339   return caller_is_deopted();
1340 }
1341 //
1342 // Entry point for compiled code. We want to patch a nmethod.
1343 // We don't do a normal VM transition here because we want to
1344 // know after the patching is complete and any safepoint(s) are taken
1345 // if the calling nmethod was deoptimized. We do this by calling a
1346 // helper method which does the normal VM transition and when it
1347 // completes we can check for deoptimization. This simplifies the
1348 // assembly code in the cpu directories.
1349 //
1350 
1351 int Runtime1::access_field_patching(JavaThread* thread) {
1352 //
1353 // NOTE: we are still in Java
1354 //
1355   Thread* THREAD = thread;
1356   debug_only(NoHandleMark nhm;)
1357   {
1358     // Enter VM mode
1359 
1360     ResetNoHandleMark rnhm;
1361     patch_code(thread, access_field_patching_id);
1362   }
1363   // Back in JAVA, use no oops DON'T safepoint
1364 
1365   // Return true if calling code is deoptimized
1366 
1367   return caller_is_deopted();
1368 JRT_END
1369 
1370 
1371 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1372   // for now we just print out the block id
1373   tty->print("%d ", block_id);
1374 JRT_END
1375 
1376 
1377 // Array copy return codes.
1378 enum {
1379   ac_failed = -1, // arraycopy failed
1380   ac_ok = 0       // arraycopy succeeded
1381 };
1382 
1383 
1384 // Below length is the # elements copied.
1385 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1386                                           oopDesc* dst, T* dst_addr,
1387                                           int length) {
1388 
1389   // For performance reasons, we assume we are using a card marking write
1390   // barrier. The assert will fail if this is not the case.
1391   // Note that we use the non-virtual inlineable variant of write_ref_array.
1392   BarrierSet* bs = Universe::heap()->barrier_set();
1393   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1394   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1395   if (src == dst) {
1396     // same object, no check
1397     bs->write_ref_array_pre(dst_addr, length);
1398     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1399     bs->write_ref_array((HeapWord*)dst_addr, length);
1400     return ac_ok;
1401   } else {
1402     Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
1403     Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
1404     if (stype == bound || stype->is_subtype_of(bound)) {
1405       // Elements are guaranteed to be subtypes, so no check necessary
1406       bs->write_ref_array_pre(dst_addr, length);
1407       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1408       bs->write_ref_array((HeapWord*)dst_addr, length);
1409       return ac_ok;
1410     }
1411   }
1412   return ac_failed;
1413 }
1414 
1415 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
1416 // and we did not copy anything
1417 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1418 #ifndef PRODUCT
1419   _generic_arraycopy_cnt++;        // Slow-path oop array copy
1420 #endif
1421 
1422   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1423   if (!dst->is_array() || !src->is_array()) return ac_failed;
1424   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1425   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1426 
1427   if (length == 0) return ac_ok;
1428   if (src->is_typeArray()) {
1429     Klass* klass_oop = src->klass();
1430     if (klass_oop != dst->klass()) return ac_failed;
1431     TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
1432     const int l2es = klass->log2_element_size();
1433     const int ihs = klass->array_header_in_bytes() / wordSize;
1434     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1435     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1436     // Potential problem: memmove is not guaranteed to be word atomic
1437     // Revisit in Merlin
1438     memmove(dst_addr, src_addr, length << l2es);
1439     return ac_ok;
1440   } else if (src->is_objArray() && dst->is_objArray()) {
1441     if (UseCompressedOops) {
1442       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1443       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1444       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1445     } else {
1446       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1447       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1448       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1449     }
1450   }
1451   return ac_failed;
1452 JRT_END
1453 
1454 
1455 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1456 #ifndef PRODUCT
1457   _primitive_arraycopy_cnt++;
1458 #endif
1459 
1460   if (length == 0) return;
1461   // Not guaranteed to be word atomic, but that doesn't matter
1462   // for anything but an oop array, which is covered by oop_arraycopy.
1463   Copy::conjoint_jbytes(src, dst, length);
1464 JRT_END
1465 
1466 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1467 #ifndef PRODUCT
1468   _oop_arraycopy_cnt++;
1469 #endif
1470 
1471   if (num == 0) return;
1472   BarrierSet* bs = Universe::heap()->barrier_set();
1473   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1474   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1475   if (UseCompressedOops) {
1476     bs->write_ref_array_pre((narrowOop*)dst, num);
1477     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
1478   } else {
1479     bs->write_ref_array_pre((oop*)dst, num);
1480     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1481   }
1482   bs->write_ref_array(dst, num);
1483 JRT_END
1484 
1485 
1486 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1487   // had to return int instead of bool, otherwise there may be a mismatch
1488   // between the C calling convention and the Java one.
1489   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1490   // JVM takes the whole %eax as the return value, which may misinterpret
1491   // the return value as a boolean true.
1492 
1493   assert(mirror != NULL, "should null-check on mirror before calling");
1494   Klass* k = java_lang_Class::as_Klass(mirror);
1495   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1496 JRT_END
1497 
1498 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1499   ResourceMark rm;
1500 
1501   assert(!TieredCompilation, "incompatible with tiered compilation");
1502 
1503   RegisterMap reg_map(thread, false);
1504   frame runtime_frame = thread->last_frame();
1505   frame caller_frame = runtime_frame.sender(&reg_map);
1506 
1507   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1508   assert (nm != NULL, "no more nmethod?");
1509   nm->make_not_entrant();
1510 
1511   methodHandle m(nm->method());
1512   MethodData* mdo = m->method_data();
1513 
1514   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1515     // Build an MDO.  Ignore errors like OutOfMemory;
1516     // that simply means we won't have an MDO to update.
1517     Method::build_interpreter_method_data(m, THREAD);
1518     if (HAS_PENDING_EXCEPTION) {
1519       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1520       CLEAR_PENDING_EXCEPTION;
1521     }
1522     mdo = m->method_data();
1523   }
1524 
1525   if (mdo != NULL) {
1526     mdo->inc_trap_count(Deoptimization::Reason_none);
1527   }
1528 
1529   if (TracePredicateFailedTraps) {
1530     stringStream ss1, ss2;
1531     vframeStream vfst(thread);
1532     methodHandle inlinee = methodHandle(vfst.method());
1533     inlinee->print_short_name(&ss1);
1534     m->print_short_name(&ss2);
1535     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1536   }
1537 
1538 
1539   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1540 
1541 JRT_END
1542 
1543 #ifndef PRODUCT
1544 void Runtime1::print_statistics() {
1545   tty->print_cr("C1 Runtime statistics:");
1546   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1547   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1548   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1549   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1550   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1551   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1552   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1553   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1554   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1555   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1556   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1557   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1558   tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
1559   tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_stub_cnt);
1560   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1561   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1562   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1563 
1564   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1565   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1566   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1567   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1568   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1569   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1570   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1571 
1572   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1573   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1574   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1575   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1576   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1577   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1578   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1579   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1580 
1581   SharedRuntime::print_ic_miss_histogram();
1582   tty->cr();
1583 }
1584 #endif // PRODUCT