1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/codeCacheExtensions.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "gc/shared/collectedHeap.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "interpreter/interpreterRuntime.hpp"
  36 #include "interpreter/linkResolver.hpp"
  37 #include "interpreter/templateTable.hpp"
  38 #include "logging/log.hpp"
  39 #include "memory/oopFactory.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "memory/universe.inline.hpp"
  42 #include "oops/constantPool.hpp"
  43 #include "oops/instanceKlass.hpp"
  44 #include "oops/methodData.hpp"
  45 #include "oops/objArrayKlass.hpp"
  46 #include "oops/objArrayOop.inline.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "oops/symbol.hpp"
  49 #include "prims/jvmtiExport.hpp"
  50 #include "prims/nativeLookup.hpp"
  51 #include "runtime/atomic.inline.hpp"
  52 #include "runtime/biasedLocking.hpp"
  53 #include "runtime/compilationPolicy.hpp"
  54 #include "runtime/deoptimization.hpp"
  55 #include "runtime/fieldDescriptor.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/icache.hpp"
  58 #include "runtime/interfaceSupport.hpp"
  59 #include "runtime/java.hpp"
  60 #include "runtime/jfieldIDWorkaround.hpp"
  61 #include "runtime/osThread.hpp"
  62 #include "runtime/sharedRuntime.hpp"
  63 #include "runtime/stubRoutines.hpp"
  64 #include "runtime/synchronizer.hpp"
  65 #include "runtime/threadCritical.hpp"
  66 #include "utilities/events.hpp"
  67 #ifdef COMPILER2
  68 #include "opto/runtime.hpp"
  69 #endif
  70 
  71 class UnlockFlagSaver {
  72   private:
  73     JavaThread* _thread;
  74     bool _do_not_unlock;
  75   public:
  76     UnlockFlagSaver(JavaThread* t) {
  77       _thread = t;
  78       _do_not_unlock = t->do_not_unlock_if_synchronized();
  79       t->set_do_not_unlock_if_synchronized(false);
  80     }
  81     ~UnlockFlagSaver() {
  82       _thread->set_do_not_unlock_if_synchronized(_do_not_unlock);
  83     }
  84 };
  85 
  86 //------------------------------------------------------------------------------------------------------------------------
  87 // State accessors
  88 
  89 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) {
  90   last_frame(thread).interpreter_frame_set_bcp(bcp);
  91   if (ProfileInterpreter) {
  92     // ProfileTraps uses MDOs independently of ProfileInterpreter.
  93     // That is why we must check both ProfileInterpreter and mdo != NULL.
  94     MethodData* mdo = last_frame(thread).interpreter_frame_method()->method_data();
  95     if (mdo != NULL) {
  96       NEEDS_CLEANUP;
  97       last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci()));
  98     }
  99   }
 100 }
 101 
 102 //------------------------------------------------------------------------------------------------------------------------
 103 // Constants
 104 
 105 
 106 IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide))
 107   // access constant pool
 108   ConstantPool* pool = method(thread)->constants();
 109   int index = wide ? get_index_u2(thread, Bytecodes::_ldc_w) : get_index_u1(thread, Bytecodes::_ldc);
 110   constantTag tag = pool->tag_at(index);
 111 
 112   assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call");
 113   Klass* klass = pool->klass_at(index, CHECK);
 114     oop java_class = klass->java_mirror();
 115     thread->set_vm_result(java_class);
 116 IRT_END
 117 
 118 IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) {
 119   assert(bytecode == Bytecodes::_fast_aldc ||
 120          bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
 121   ResourceMark rm(thread);
 122   methodHandle m (thread, method(thread));
 123   Bytecode_loadconstant ldc(m, bci(thread));
 124   oop result = ldc.resolve_constant(CHECK);
 125 #ifdef ASSERT
 126   {
 127     // The bytecode wrappers aren't GC-safe so construct a new one
 128     Bytecode_loadconstant ldc2(m, bci(thread));
 129     oop coop = m->constants()->resolved_references()->obj_at(ldc2.cache_index());
 130     assert(result == coop, "expected result for assembly code");
 131   }
 132 #endif
 133   thread->set_vm_result(result);
 134 }
 135 IRT_END
 136 
 137 
 138 //------------------------------------------------------------------------------------------------------------------------
 139 // Allocation
 140 
 141 IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, ConstantPool* pool, int index))
 142   Klass* k_oop = pool->klass_at(index, CHECK);
 143   instanceKlassHandle klass (THREAD, k_oop);
 144 
 145   // Make sure we are not instantiating an abstract klass
 146   klass->check_valid_for_instantiation(true, CHECK);
 147 
 148   // Make sure klass is initialized
 149   klass->initialize(CHECK);
 150 
 151   // At this point the class may not be fully initialized
 152   // because of recursive initialization. If it is fully
 153   // initialized & has_finalized is not set, we rewrite
 154   // it into its fast version (Note: no locking is needed
 155   // here since this is an atomic byte write and can be
 156   // done more than once).
 157   //
 158   // Note: In case of classes with has_finalized we don't
 159   //       rewrite since that saves us an extra check in
 160   //       the fast version which then would call the
 161   //       slow version anyway (and do a call back into
 162   //       Java).
 163   //       If we have a breakpoint, then we don't rewrite
 164   //       because the _breakpoint bytecode would be lost.
 165   oop obj = klass->allocate_instance(CHECK);
 166   thread->set_vm_result(obj);
 167 IRT_END
 168 
 169 
 170 IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size))
 171   oop obj = oopFactory::new_typeArray(type, size, CHECK);
 172   thread->set_vm_result(obj);
 173 IRT_END
 174 
 175 
 176 IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, ConstantPool* pool, int index, jint size))
 177   Klass*    klass = pool->klass_at(index, CHECK);
 178   objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
 179   thread->set_vm_result(obj);
 180 IRT_END
 181 
 182 
 183 IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address))
 184   // We may want to pass in more arguments - could make this slightly faster
 185   ConstantPool* constants = method(thread)->constants();
 186   int          i = get_index_u2(thread, Bytecodes::_multianewarray);
 187   Klass* klass = constants->klass_at(i, CHECK);
 188   int   nof_dims = number_of_dimensions(thread);
 189   assert(klass->is_klass(), "not a class");
 190   assert(nof_dims >= 1, "multianewarray rank must be nonzero");
 191 
 192   // We must create an array of jints to pass to multi_allocate.
 193   ResourceMark rm(thread);
 194   const int small_dims = 10;
 195   jint dim_array[small_dims];
 196   jint *dims = &dim_array[0];
 197   if (nof_dims > small_dims) {
 198     dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
 199   }
 200   for (int index = 0; index < nof_dims; index++) {
 201     // offset from first_size_address is addressed as local[index]
 202     int n = Interpreter::local_offset_in_bytes(index)/jintSize;
 203     dims[index] = first_size_address[n];
 204   }
 205   oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
 206   thread->set_vm_result(obj);
 207 IRT_END
 208 
 209 
 210 IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 211   assert(obj->is_oop(), "must be a valid oop");
 212   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 213   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 214 IRT_END
 215 
 216 
 217 // Quicken instance-of and check-cast bytecodes
 218 IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread))
 219   // Force resolving; quicken the bytecode
 220   int which = get_index_u2(thread, Bytecodes::_checkcast);
 221   ConstantPool* cpool = method(thread)->constants();
 222   // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
 223   // program we might have seen an unquick'd bytecode in the interpreter but have another
 224   // thread quicken the bytecode before we get here.
 225   // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
 226   Klass* klass = cpool->klass_at(which, CHECK);
 227   thread->set_vm_result_2(klass);
 228 IRT_END
 229 
 230 
 231 //------------------------------------------------------------------------------------------------------------------------
 232 // Exceptions
 233 
 234 void InterpreterRuntime::note_trap_inner(JavaThread* thread, int reason,
 235                                          methodHandle trap_method, int trap_bci, TRAPS) {
 236   if (trap_method.not_null()) {
 237     MethodData* trap_mdo = trap_method->method_data();
 238     if (trap_mdo == NULL) {
 239       Method::build_interpreter_method_data(trap_method, THREAD);
 240       if (HAS_PENDING_EXCEPTION) {
 241         assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())),
 242                "we expect only an OOM error here");
 243         CLEAR_PENDING_EXCEPTION;
 244       }
 245       trap_mdo = trap_method->method_data();
 246       // and fall through...
 247     }
 248     if (trap_mdo != NULL) {
 249       // Update per-method count of trap events.  The interpreter
 250       // is updating the MDO to simulate the effect of compiler traps.
 251       Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
 252     }
 253   }
 254 }
 255 
 256 // Assume the compiler is (or will be) interested in this event.
 257 // If necessary, create an MDO to hold the information, and record it.
 258 void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) {
 259   assert(ProfileTraps, "call me only if profiling");
 260   methodHandle trap_method(thread, method(thread));
 261   int trap_bci = trap_method->bci_from(bcp(thread));
 262   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 263 }
 264 
 265 #ifdef CC_INTERP
 266 // As legacy note_trap, but we have more arguments.
 267 IRT_ENTRY(void, InterpreterRuntime::note_trap(JavaThread* thread, int reason, Method *method, int trap_bci))
 268   methodHandle trap_method(method);
 269   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 270 IRT_END
 271 
 272 // Class Deoptimization is not visible in BytecodeInterpreter, so we need a wrapper
 273 // for each exception.
 274 void InterpreterRuntime::note_nullCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 275   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_null_check, method, trap_bci); }
 276 void InterpreterRuntime::note_div0Check_trap(JavaThread* thread, Method *method, int trap_bci)
 277   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_div0_check, method, trap_bci); }
 278 void InterpreterRuntime::note_rangeCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 279   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_range_check, method, trap_bci); }
 280 void InterpreterRuntime::note_classCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 281   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_class_check, method, trap_bci); }
 282 void InterpreterRuntime::note_arrayCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 283   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_array_check, method, trap_bci); }
 284 #endif // CC_INTERP
 285 
 286 
 287 static Handle get_preinitialized_exception(Klass* k, TRAPS) {
 288   // get klass
 289   InstanceKlass* klass = InstanceKlass::cast(k);
 290   assert(klass->is_initialized(),
 291          "this klass should have been initialized during VM initialization");
 292   // create instance - do not call constructor since we may have no
 293   // (java) stack space left (should assert constructor is empty)
 294   Handle exception;
 295   oop exception_oop = klass->allocate_instance(CHECK_(exception));
 296   exception = Handle(THREAD, exception_oop);
 297   if (StackTraceInThrowable) {
 298     java_lang_Throwable::fill_in_stack_trace(exception);
 299   }
 300   return exception;
 301 }
 302 
 303 // Special handling for stack overflow: since we don't have any (java) stack
 304 // space left we use the pre-allocated & pre-initialized StackOverflowError
 305 // klass to create an stack overflow error instance.  We do not call its
 306 // constructor for the same reason (it is empty, anyway).
 307 IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread))
 308   Handle exception = get_preinitialized_exception(
 309                                  SystemDictionary::StackOverflowError_klass(),
 310                                  CHECK);
 311   // Increment counter for hs_err file reporting
 312   Atomic::inc(&Exceptions::_stack_overflow_errors);
 313   THROW_HANDLE(exception);
 314 IRT_END
 315 
 316 IRT_ENTRY(void, InterpreterRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 317   Handle exception = get_preinitialized_exception(
 318                                  SystemDictionary::StackOverflowError_klass(),
 319                                  CHECK);
 320   java_lang_Throwable::set_message(exception(),
 321           Universe::delayed_stack_overflow_error_message());
 322   // Increment counter for hs_err file reporting
 323   Atomic::inc(&Exceptions::_stack_overflow_errors);
 324   THROW_HANDLE(exception);
 325 IRT_END
 326 
 327 IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message))
 328   // lookup exception klass
 329   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 330   if (ProfileTraps) {
 331     if (s == vmSymbols::java_lang_ArithmeticException()) {
 332       note_trap(thread, Deoptimization::Reason_div0_check, CHECK);
 333     } else if (s == vmSymbols::java_lang_NullPointerException()) {
 334       note_trap(thread, Deoptimization::Reason_null_check, CHECK);
 335     }
 336   }
 337   // create exception
 338   Handle exception = Exceptions::new_exception(thread, s, message);
 339   thread->set_vm_result(exception());
 340 IRT_END
 341 
 342 
 343 IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj))
 344   ResourceMark rm(thread);
 345   const char* klass_name = obj->klass()->external_name();
 346   // lookup exception klass
 347   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 348   if (ProfileTraps) {
 349     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 350   }
 351   // create exception, with klass name as detail message
 352   Handle exception = Exceptions::new_exception(thread, s, klass_name);
 353   thread->set_vm_result(exception());
 354 IRT_END
 355 
 356 
 357 IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index))
 358   char message[jintAsStringSize];
 359   // lookup exception klass
 360   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 361   if (ProfileTraps) {
 362     note_trap(thread, Deoptimization::Reason_range_check, CHECK);
 363   }
 364   // create exception
 365   sprintf(message, "%d", index);
 366   THROW_MSG(s, message);
 367 IRT_END
 368 
 369 IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
 370   JavaThread* thread, oopDesc* obj))
 371 
 372   ResourceMark rm(thread);
 373   char* message = SharedRuntime::generate_class_cast_message(
 374     thread, obj->klass());
 375 
 376   if (ProfileTraps) {
 377     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 378   }
 379 
 380   // create exception
 381   THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
 382 IRT_END
 383 
 384 // exception_handler_for_exception(...) returns the continuation address,
 385 // the exception oop (via TLS) and sets the bci/bcp for the continuation.
 386 // The exception oop is returned to make sure it is preserved over GC (it
 387 // is only on the stack if the exception was thrown explicitly via athrow).
 388 // During this operation, the expression stack contains the values for the
 389 // bci where the exception happened. If the exception was propagated back
 390 // from a call, the expression stack contains the values for the bci at the
 391 // invoke w/o arguments (i.e., as if one were inside the call).
 392 IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception))
 393 
 394   Handle             h_exception(thread, exception);
 395   methodHandle       h_method   (thread, method(thread));
 396   constantPoolHandle h_constants(thread, h_method->constants());
 397   bool               should_repeat;
 398   int                handler_bci;
 399   int                current_bci = bci(thread);
 400 
 401   if (thread->frames_to_pop_failed_realloc() > 0) {
 402     // Allocation of scalar replaced object used in this frame
 403     // failed. Unconditionally pop the frame.
 404     thread->dec_frames_to_pop_failed_realloc();
 405     thread->set_vm_result(h_exception());
 406     // If the method is synchronized we already unlocked the monitor
 407     // during deoptimization so the interpreter needs to skip it when
 408     // the frame is popped.
 409     thread->set_do_not_unlock_if_synchronized(true);
 410 #ifdef CC_INTERP
 411     return (address) -1;
 412 #else
 413     return Interpreter::remove_activation_entry();
 414 #endif
 415   }
 416 
 417   // Need to do this check first since when _do_not_unlock_if_synchronized
 418   // is set, we don't want to trigger any classloading which may make calls
 419   // into java, or surprisingly find a matching exception handler for bci 0
 420   // since at this moment the method hasn't been "officially" entered yet.
 421   if (thread->do_not_unlock_if_synchronized()) {
 422     ResourceMark rm;
 423     assert(current_bci == 0,  "bci isn't zero for do_not_unlock_if_synchronized");
 424     thread->set_vm_result(exception);
 425 #ifdef CC_INTERP
 426     return (address) -1;
 427 #else
 428     return Interpreter::remove_activation_entry();
 429 #endif
 430   }
 431 
 432   do {
 433     should_repeat = false;
 434 
 435     // assertions
 436 #ifdef ASSERT
 437     assert(h_exception.not_null(), "NULL exceptions should be handled by athrow");
 438     assert(h_exception->is_oop(), "just checking");
 439     // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 440     if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) {
 441       if (ExitVMOnVerifyError) vm_exit(-1);
 442       ShouldNotReachHere();
 443     }
 444 #endif
 445 
 446     // tracing
 447     if (log_is_enabled(Info, exceptions)) {
 448       ResourceMark rm(thread);
 449       stringStream tempst;
 450       tempst.print("interpreter method <%s>\n"
 451                    " at bci %d for thread " INTPTR_FORMAT,
 452                    h_method->print_value_string(), current_bci, p2i(thread));
 453       Exceptions::log_exception(h_exception, tempst);
 454     }
 455 // Don't go paging in something which won't be used.
 456 //     else if (extable->length() == 0) {
 457 //       // disabled for now - interpreter is not using shortcut yet
 458 //       // (shortcut is not to call runtime if we have no exception handlers)
 459 //       // warning("performance bug: should not call runtime if method has no exception handlers");
 460 //     }
 461     // for AbortVMOnException flag
 462     Exceptions::debug_check_abort(h_exception);
 463 
 464     // exception handler lookup
 465     KlassHandle h_klass(THREAD, h_exception->klass());
 466     handler_bci = Method::fast_exception_handler_bci_for(h_method, h_klass, current_bci, THREAD);
 467     if (HAS_PENDING_EXCEPTION) {
 468       // We threw an exception while trying to find the exception handler.
 469       // Transfer the new exception to the exception handle which will
 470       // be set into thread local storage, and do another lookup for an
 471       // exception handler for this exception, this time starting at the
 472       // BCI of the exception handler which caused the exception to be
 473       // thrown (bug 4307310).
 474       h_exception = Handle(THREAD, PENDING_EXCEPTION);
 475       CLEAR_PENDING_EXCEPTION;
 476       if (handler_bci >= 0) {
 477         current_bci = handler_bci;
 478         should_repeat = true;
 479       }
 480     }
 481   } while (should_repeat == true);
 482 
 483 #if INCLUDE_JVMCI
 484   if (EnableJVMCI && h_method->method_data() != NULL) {
 485     ResourceMark rm(thread);
 486     ProfileData* pdata = h_method->method_data()->allocate_bci_to_data(current_bci, NULL);
 487     if (pdata != NULL && pdata->is_BitData()) {
 488       BitData* bit_data = (BitData*) pdata;
 489       bit_data->set_exception_seen();
 490     }
 491   }
 492 #endif
 493 
 494   // notify JVMTI of an exception throw; JVMTI will detect if this is a first
 495   // time throw or a stack unwinding throw and accordingly notify the debugger
 496   if (JvmtiExport::can_post_on_exceptions()) {
 497     JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception());
 498   }
 499 
 500 #ifdef CC_INTERP
 501   address continuation = (address)(intptr_t) handler_bci;
 502 #else
 503   address continuation = NULL;
 504 #endif
 505   address handler_pc = NULL;
 506   if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) {
 507     // Forward exception to callee (leaving bci/bcp untouched) because (a) no
 508     // handler in this method, or (b) after a stack overflow there is not yet
 509     // enough stack space available to reprotect the stack.
 510 #ifndef CC_INTERP
 511     continuation = Interpreter::remove_activation_entry();
 512 #endif
 513 #if COMPILER2_OR_JVMCI
 514     // Count this for compilation purposes
 515     h_method->interpreter_throwout_increment(THREAD);
 516 #endif
 517   } else {
 518     // handler in this method => change bci/bcp to handler bci/bcp and continue there
 519     handler_pc = h_method->code_base() + handler_bci;
 520 #ifndef CC_INTERP
 521     set_bcp_and_mdp(handler_pc, thread);
 522     continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
 523 #endif
 524   }
 525   // notify debugger of an exception catch
 526   // (this is good for exceptions caught in native methods as well)
 527   if (JvmtiExport::can_post_on_exceptions()) {
 528     JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL));
 529   }
 530 
 531   thread->set_vm_result(h_exception());
 532   return continuation;
 533 IRT_END
 534 
 535 
 536 IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread))
 537   assert(thread->has_pending_exception(), "must only ne called if there's an exception pending");
 538   // nothing to do - eventually we should remove this code entirely (see comments @ call sites)
 539 IRT_END
 540 
 541 
 542 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread))
 543   THROW(vmSymbols::java_lang_AbstractMethodError());
 544 IRT_END
 545 
 546 
 547 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 548   THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
 549 IRT_END
 550 
 551 
 552 //------------------------------------------------------------------------------------------------------------------------
 553 // Fields
 554 //
 555 
 556 void InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode) {
 557   Thread* THREAD = thread;
 558   // resolve field
 559   fieldDescriptor info;
 560   constantPoolHandle pool(thread, method(thread)->constants());
 561   methodHandle m(thread, method(thread));
 562   bool is_put    = (bytecode == Bytecodes::_putfield  || bytecode == Bytecodes::_nofast_putfield ||
 563                     bytecode == Bytecodes::_putstatic);
 564   bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
 565 
 566   {
 567     JvmtiHideSingleStepping jhss(thread);
 568     LinkResolver::resolve_field_access(info, pool, get_index_u2_cpcache(thread, bytecode),
 569                                        m, bytecode, CHECK);
 570   } // end JvmtiHideSingleStepping
 571 
 572   // check if link resolution caused cpCache to be updated
 573   ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
 574   if (cp_cache_entry->is_resolved(bytecode)) return;
 575 
 576   // compute auxiliary field attributes
 577   TosState state  = as_TosState(info.field_type());
 578 
 579   // We need to delay resolving put instructions on final fields
 580   // until we actually invoke one. This is required so we throw
 581   // exceptions at the correct place. If we do not resolve completely
 582   // in the current pass, leaving the put_code set to zero will
 583   // cause the next put instruction to reresolve.
 584   Bytecodes::Code put_code = (Bytecodes::Code)0;
 585 
 586   // We also need to delay resolving getstatic instructions until the
 587   // class is intitialized.  This is required so that access to the static
 588   // field will call the initialization function every time until the class
 589   // is completely initialized ala. in 2.17.5 in JVM Specification.
 590   InstanceKlass* klass = InstanceKlass::cast(info.field_holder());
 591   bool uninitialized_static = ((bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic) &&
 592                                !klass->is_initialized());
 593   Bytecodes::Code get_code = (Bytecodes::Code)0;
 594 
 595   if (!uninitialized_static) {
 596     get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
 597     if (is_put || !info.access_flags().is_final()) {
 598       put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
 599     }
 600   }
 601 
 602   cp_cache_entry->set_field(
 603     get_code,
 604     put_code,
 605     info.field_holder(),
 606     info.index(),
 607     info.offset(),
 608     state,
 609     info.access_flags().is_final(),
 610     info.access_flags().is_volatile(),
 611     pool->pool_holder()
 612   );
 613 }
 614 
 615 
 616 //------------------------------------------------------------------------------------------------------------------------
 617 // Synchronization
 618 //
 619 // The interpreter's synchronization code is factored out so that it can
 620 // be shared by method invocation and synchronized blocks.
 621 //%note synchronization_3
 622 
 623 //%note monitor_1
 624 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
 625 #ifdef ASSERT
 626   thread->last_frame().interpreter_frame_verify_monitor(elem);
 627 #endif
 628   if (PrintBiasedLockingStatistics) {
 629     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 630   }
 631   Handle h_obj(thread, elem->obj());
 632   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 633          "must be NULL or an object");
 634   if (UseBiasedLocking) {
 635     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 636     ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
 637   } else {
 638     ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
 639   }
 640   assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
 641          "must be NULL or an object");
 642 #ifdef ASSERT
 643   thread->last_frame().interpreter_frame_verify_monitor(elem);
 644 #endif
 645 IRT_END
 646 
 647 
 648 //%note monitor_1
 649 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem))
 650 #ifdef ASSERT
 651   thread->last_frame().interpreter_frame_verify_monitor(elem);
 652 #endif
 653   Handle h_obj(thread, elem->obj());
 654   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 655          "must be NULL or an object");
 656   if (elem == NULL || h_obj()->is_unlocked()) {
 657     THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 658   }
 659   ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread);
 660   // Free entry. This must be done here, since a pending exception might be installed on
 661   // exit. If it is not cleared, the exception handling code will try to unlock the monitor again.
 662   elem->set_obj(NULL);
 663 #ifdef ASSERT
 664   thread->last_frame().interpreter_frame_verify_monitor(elem);
 665 #endif
 666 IRT_END
 667 
 668 
 669 IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread))
 670   THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 671 IRT_END
 672 
 673 
 674 IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread))
 675   // Returns an illegal exception to install into the current thread. The
 676   // pending_exception flag is cleared so normal exception handling does not
 677   // trigger. Any current installed exception will be overwritten. This
 678   // method will be called during an exception unwind.
 679 
 680   assert(!HAS_PENDING_EXCEPTION, "no pending exception");
 681   Handle exception(thread, thread->vm_result());
 682   assert(exception() != NULL, "vm result should be set");
 683   thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures)
 684   if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) {
 685     exception = get_preinitialized_exception(
 686                        SystemDictionary::IllegalMonitorStateException_klass(),
 687                        CATCH);
 688   }
 689   thread->set_vm_result(exception());
 690 IRT_END
 691 
 692 
 693 //------------------------------------------------------------------------------------------------------------------------
 694 // Invokes
 695 
 696 IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, Method* method, address bcp))
 697   return method->orig_bytecode_at(method->bci_from(bcp));
 698 IRT_END
 699 
 700 IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, Method* method, address bcp, Bytecodes::Code new_code))
 701   method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
 702 IRT_END
 703 
 704 IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, Method* method, address bcp))
 705   JvmtiExport::post_raw_breakpoint(thread, method, bcp);
 706 IRT_END
 707 
 708 void InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode) {
 709   Thread* THREAD = thread;
 710   // extract receiver from the outgoing argument list if necessary
 711   Handle receiver(thread, NULL);
 712   if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface) {
 713     ResourceMark rm(thread);
 714     methodHandle m (thread, method(thread));
 715     Bytecode_invoke call(m, bci(thread));
 716     Symbol* signature = call.signature();
 717     receiver = Handle(thread,
 718                   thread->last_frame().interpreter_callee_receiver(signature));
 719     assert(Universe::heap()->is_in_reserved_or_null(receiver()),
 720            "sanity check");
 721     assert(receiver.is_null() ||
 722            !Universe::heap()->is_in_reserved(receiver->klass()),
 723            "sanity check");
 724   }
 725 
 726   // resolve method
 727   CallInfo info;
 728   constantPoolHandle pool(thread, method(thread)->constants());
 729 
 730   {
 731     JvmtiHideSingleStepping jhss(thread);
 732     LinkResolver::resolve_invoke(info, receiver, pool,
 733                                  get_index_u2_cpcache(thread, bytecode), bytecode,
 734                                  CHECK);
 735     if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
 736       int retry_count = 0;
 737       while (info.resolved_method()->is_old()) {
 738         // It is very unlikely that method is redefined more than 100 times
 739         // in the middle of resolve. If it is looping here more than 100 times
 740         // means then there could be a bug here.
 741         guarantee((retry_count++ < 100),
 742                   "Could not resolve to latest version of redefined method");
 743         // method is redefined in the middle of resolve so re-try.
 744         LinkResolver::resolve_invoke(info, receiver, pool,
 745                                      get_index_u2_cpcache(thread, bytecode), bytecode,
 746                                      CHECK);
 747       }
 748     }
 749   } // end JvmtiHideSingleStepping
 750 
 751   // check if link resolution caused cpCache to be updated
 752   ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
 753   if (cp_cache_entry->is_resolved(bytecode)) return;
 754 
 755 #ifdef ASSERT
 756   if (bytecode == Bytecodes::_invokeinterface) {
 757     if (info.resolved_method()->method_holder() ==
 758                                             SystemDictionary::Object_klass()) {
 759       // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
 760       // (see also CallInfo::set_interface for details)
 761       assert(info.call_kind() == CallInfo::vtable_call ||
 762              info.call_kind() == CallInfo::direct_call, "");
 763       methodHandle rm = info.resolved_method();
 764       assert(rm->is_final() || info.has_vtable_index(),
 765              "should have been set already");
 766     } else if (!info.resolved_method()->has_itable_index()) {
 767       // Resolved something like CharSequence.toString.  Use vtable not itable.
 768       assert(info.call_kind() != CallInfo::itable_call, "");
 769     } else {
 770       // Setup itable entry
 771       assert(info.call_kind() == CallInfo::itable_call, "");
 772       int index = info.resolved_method()->itable_index();
 773       assert(info.itable_index() == index, "");
 774     }
 775   } else {
 776     assert(info.call_kind() == CallInfo::direct_call ||
 777            info.call_kind() == CallInfo::vtable_call, "");
 778   }
 779 #endif
 780   switch (info.call_kind()) {
 781   case CallInfo::direct_call:
 782     cp_cache_entry->set_direct_call(
 783       bytecode,
 784       info.resolved_method());
 785     break;
 786   case CallInfo::vtable_call:
 787     cp_cache_entry->set_vtable_call(
 788       bytecode,
 789       info.resolved_method(),
 790       info.vtable_index());
 791     break;
 792   case CallInfo::itable_call:
 793     cp_cache_entry->set_itable_call(
 794       bytecode,
 795       info.resolved_method(),
 796       info.itable_index());
 797     break;
 798   default:  ShouldNotReachHere();
 799   }
 800 }
 801 
 802 
 803 // First time execution:  Resolve symbols, create a permanent MethodType object.
 804 void InterpreterRuntime::resolve_invokehandle(JavaThread* thread) {
 805   Thread* THREAD = thread;
 806   const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
 807 
 808   // resolve method
 809   CallInfo info;
 810   constantPoolHandle pool(thread, method(thread)->constants());
 811   {
 812     JvmtiHideSingleStepping jhss(thread);
 813     LinkResolver::resolve_invoke(info, Handle(), pool,
 814                                  get_index_u2_cpcache(thread, bytecode), bytecode,
 815                                  CHECK);
 816   } // end JvmtiHideSingleStepping
 817 
 818   ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
 819   cp_cache_entry->set_method_handle(pool, info);
 820 }
 821 
 822 // First time execution:  Resolve symbols, create a permanent CallSite object.
 823 void InterpreterRuntime::resolve_invokedynamic(JavaThread* thread) {
 824   Thread* THREAD = thread;
 825   const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
 826 
 827   //TO DO: consider passing BCI to Java.
 828   //  int caller_bci = method(thread)->bci_from(bcp(thread));
 829 
 830   // resolve method
 831   CallInfo info;
 832   constantPoolHandle pool(thread, method(thread)->constants());
 833   int index = get_index_u4(thread, bytecode);
 834   {
 835     JvmtiHideSingleStepping jhss(thread);
 836     LinkResolver::resolve_invoke(info, Handle(), pool,
 837                                  index, bytecode, CHECK);
 838   } // end JvmtiHideSingleStepping
 839 
 840   ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index);
 841   cp_cache_entry->set_dynamic_call(pool, info);
 842 }
 843 
 844 // This function is the interface to the assembly code. It returns the resolved
 845 // cpCache entry.  This doesn't safepoint, but the helper routines safepoint.
 846 // This function will check for redefinition!
 847 IRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* thread, Bytecodes::Code bytecode)) {
 848   switch (bytecode) {
 849   case Bytecodes::_getstatic:
 850   case Bytecodes::_putstatic:
 851   case Bytecodes::_getfield:
 852   case Bytecodes::_putfield:
 853     resolve_get_put(thread, bytecode);
 854     break;
 855   case Bytecodes::_invokevirtual:
 856   case Bytecodes::_invokespecial:
 857   case Bytecodes::_invokestatic:
 858   case Bytecodes::_invokeinterface:
 859     resolve_invoke(thread, bytecode);
 860     break;
 861   case Bytecodes::_invokehandle:
 862     resolve_invokehandle(thread);
 863     break;
 864   case Bytecodes::_invokedynamic:
 865     resolve_invokedynamic(thread);
 866     break;
 867   default:
 868     fatal("unexpected bytecode: %s", Bytecodes::name(bytecode));
 869     break;
 870   }
 871 }
 872 IRT_END
 873 
 874 //------------------------------------------------------------------------------------------------------------------------
 875 // Miscellaneous
 876 
 877 
 878 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) {
 879   nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp);
 880   assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests");
 881   if (branch_bcp != NULL && nm != NULL) {
 882     // This was a successful request for an OSR nmethod.  Because
 883     // frequency_counter_overflow_inner ends with a safepoint check,
 884     // nm could have been unloaded so look it up again.  It's unsafe
 885     // to examine nm directly since it might have been freed and used
 886     // for something else.
 887     frame fr = thread->last_frame();
 888     Method* method =  fr.interpreter_frame_method();
 889     int bci = method->bci_from(fr.interpreter_frame_bcp());
 890     nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false);
 891   }
 892 #ifndef PRODUCT
 893   if (TraceOnStackReplacement) {
 894     if (nm != NULL) {
 895       tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", p2i(nm->osr_entry()));
 896       nm->print();
 897     }
 898   }
 899 #endif
 900   return nm;
 901 }
 902 
 903 IRT_ENTRY(nmethod*,
 904           InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp))
 905   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
 906   // flag, in case this method triggers classloading which will call into Java.
 907   UnlockFlagSaver fs(thread);
 908 
 909   frame fr = thread->last_frame();
 910   assert(fr.is_interpreted_frame(), "must come from interpreter");
 911   methodHandle method(thread, fr.interpreter_frame_method());
 912   const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci;
 913   const int bci = branch_bcp != NULL ? method->bci_from(fr.interpreter_frame_bcp()) : InvocationEntryBci;
 914 
 915   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 916   nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread);
 917   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 918 
 919   if (osr_nm != NULL) {
 920     // We may need to do on-stack replacement which requires that no
 921     // monitors in the activation are biased because their
 922     // BasicObjectLocks will need to migrate during OSR. Force
 923     // unbiasing of all monitors in the activation now (even though
 924     // the OSR nmethod might be invalidated) because we don't have a
 925     // safepoint opportunity later once the migration begins.
 926     if (UseBiasedLocking) {
 927       ResourceMark rm;
 928       GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
 929       for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
 930            kptr < fr.interpreter_frame_monitor_begin();
 931            kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
 932         if( kptr->obj() != NULL ) {
 933           objects_to_revoke->append(Handle(THREAD, kptr->obj()));
 934         }
 935       }
 936       BiasedLocking::revoke(objects_to_revoke);
 937     }
 938   }
 939   return osr_nm;
 940 IRT_END
 941 
 942 IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp))
 943   assert(ProfileInterpreter, "must be profiling interpreter");
 944   int bci = method->bci_from(cur_bcp);
 945   MethodData* mdo = method->method_data();
 946   if (mdo == NULL)  return 0;
 947   return mdo->bci_to_di(bci);
 948 IRT_END
 949 
 950 IRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread))
 951   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
 952   // flag, in case this method triggers classloading which will call into Java.
 953   UnlockFlagSaver fs(thread);
 954 
 955   assert(ProfileInterpreter, "must be profiling interpreter");
 956   frame fr = thread->last_frame();
 957   assert(fr.is_interpreted_frame(), "must come from interpreter");
 958   methodHandle method(thread, fr.interpreter_frame_method());
 959   Method::build_interpreter_method_data(method, THREAD);
 960   if (HAS_PENDING_EXCEPTION) {
 961     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
 962     CLEAR_PENDING_EXCEPTION;
 963     // and fall through...
 964   }
 965 IRT_END
 966 
 967 
 968 #ifdef ASSERT
 969 IRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp))
 970   assert(ProfileInterpreter, "must be profiling interpreter");
 971 
 972   MethodData* mdo = method->method_data();
 973   assert(mdo != NULL, "must not be null");
 974 
 975   int bci = method->bci_from(bcp);
 976 
 977   address mdp2 = mdo->bci_to_dp(bci);
 978   if (mdp != mdp2) {
 979     ResourceMark rm;
 980     ResetNoHandleMark rnm; // In a LEAF entry.
 981     HandleMark hm;
 982     tty->print_cr("FAILED verify : actual mdp %p   expected mdp %p @ bci %d", mdp, mdp2, bci);
 983     int current_di = mdo->dp_to_di(mdp);
 984     int expected_di  = mdo->dp_to_di(mdp2);
 985     tty->print_cr("  actual di %d   expected di %d", current_di, expected_di);
 986     int expected_approx_bci = mdo->data_at(expected_di)->bci();
 987     int approx_bci = -1;
 988     if (current_di >= 0) {
 989       approx_bci = mdo->data_at(current_di)->bci();
 990     }
 991     tty->print_cr("  actual bci is %d  expected bci %d", approx_bci, expected_approx_bci);
 992     mdo->print_on(tty);
 993     method->print_codes();
 994   }
 995   assert(mdp == mdp2, "wrong mdp");
 996 IRT_END
 997 #endif // ASSERT
 998 
 999 IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci))
1000   assert(ProfileInterpreter, "must be profiling interpreter");
1001   ResourceMark rm(thread);
1002   HandleMark hm(thread);
1003   frame fr = thread->last_frame();
1004   assert(fr.is_interpreted_frame(), "must come from interpreter");
1005   MethodData* h_mdo = fr.interpreter_frame_method()->method_data();
1006 
1007   // Grab a lock to ensure atomic access to setting the return bci and
1008   // the displacement.  This can block and GC, invalidating all naked oops.
1009   MutexLocker ml(RetData_lock);
1010 
1011   // ProfileData is essentially a wrapper around a derived oop, so we
1012   // need to take the lock before making any ProfileData structures.
1013   ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp()));
1014   RetData* rdata = data->as_RetData();
1015   address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
1016   fr.interpreter_frame_set_mdp(new_mdp);
1017 IRT_END
1018 
1019 IRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* thread, Method* m))
1020   MethodCounters* mcs = Method::build_method_counters(m, thread);
1021   if (HAS_PENDING_EXCEPTION) {
1022     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1023     CLEAR_PENDING_EXCEPTION;
1024   }
1025   return mcs;
1026 IRT_END
1027 
1028 
1029 IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread))
1030   // We used to need an explict preserve_arguments here for invoke bytecodes. However,
1031   // stack traversal automatically takes care of preserving arguments for invoke, so
1032   // this is no longer needed.
1033 
1034   // IRT_END does an implicit safepoint check, hence we are guaranteed to block
1035   // if this is called during a safepoint
1036 
1037   if (JvmtiExport::should_post_single_step()) {
1038     // We are called during regular safepoints and when the VM is
1039     // single stepping. If any thread is marked for single stepping,
1040     // then we may have JVMTI work to do.
1041     JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread));
1042   }
1043 IRT_END
1044 
1045 IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj,
1046 ConstantPoolCacheEntry *cp_entry))
1047 
1048   // check the access_flags for the field in the klass
1049 
1050   InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass());
1051   int index = cp_entry->field_index();
1052   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return;
1053 
1054   bool is_static = (obj == NULL);
1055   HandleMark hm(thread);
1056 
1057   Handle h_obj;
1058   if (!is_static) {
1059     // non-static field accessors have an object, but we need a handle
1060     h_obj = Handle(thread, obj);
1061   }
1062   instanceKlassHandle h_cp_entry_f1(thread, (Klass*)cp_entry->f1_as_klass());
1063   jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_cp_entry_f1, cp_entry->f2_as_index(), is_static);
1064   JvmtiExport::post_field_access(thread, method(thread), bcp(thread), h_cp_entry_f1, h_obj, fid);
1065 IRT_END
1066 
1067 IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread,
1068   oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value))
1069 
1070   Klass* k = (Klass*)cp_entry->f1_as_klass();
1071 
1072   // check the access_flags for the field in the klass
1073   InstanceKlass* ik = InstanceKlass::cast(k);
1074   int index = cp_entry->field_index();
1075   // bail out if field modifications are not watched
1076   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return;
1077 
1078   char sig_type = '\0';
1079 
1080   switch(cp_entry->flag_state()) {
1081     case btos: sig_type = 'B'; break;
1082     case ztos: sig_type = 'Z'; break;
1083     case ctos: sig_type = 'C'; break;
1084     case stos: sig_type = 'S'; break;
1085     case itos: sig_type = 'I'; break;
1086     case ftos: sig_type = 'F'; break;
1087     case atos: sig_type = 'L'; break;
1088     case ltos: sig_type = 'J'; break;
1089     case dtos: sig_type = 'D'; break;
1090     default:  ShouldNotReachHere(); return;
1091   }
1092   bool is_static = (obj == NULL);
1093 
1094   HandleMark hm(thread);
1095   instanceKlassHandle h_klass(thread, k);
1096   jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_klass, cp_entry->f2_as_index(), is_static);
1097   jvalue fvalue;
1098 #ifdef _LP64
1099   fvalue = *value;
1100 #else
1101   // Long/double values are stored unaligned and also noncontiguously with
1102   // tagged stacks.  We can't just do a simple assignment even in the non-
1103   // J/D cases because a C++ compiler is allowed to assume that a jvalue is
1104   // 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
1105   // We assume that the two halves of longs/doubles are stored in interpreter
1106   // stack slots in platform-endian order.
1107   jlong_accessor u;
1108   jint* newval = (jint*)value;
1109   u.words[0] = newval[0];
1110   u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag
1111   fvalue.j = u.long_value;
1112 #endif // _LP64
1113 
1114   Handle h_obj;
1115   if (!is_static) {
1116     // non-static field accessors have an object, but we need a handle
1117     h_obj = Handle(thread, obj);
1118   }
1119 
1120   JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), h_klass, h_obj,
1121                                            fid, sig_type, &fvalue);
1122 IRT_END
1123 
1124 IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread))
1125   JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1126 IRT_END
1127 
1128 
1129 IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread))
1130   JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1131 IRT_END
1132 
1133 IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
1134 {
1135   return (Interpreter::contains(pc) ? 1 : 0);
1136 }
1137 IRT_END
1138 
1139 
1140 // Implementation of SignatureHandlerLibrary
1141 
1142 #ifndef SHARING_FAST_NATIVE_FINGERPRINTS
1143 // Dummy definition (else normalization method is defined in CPU
1144 // dependant code)
1145 uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) {
1146   return fingerprint;
1147 }
1148 #endif
1149 
1150 address SignatureHandlerLibrary::set_handler_blob() {
1151   BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
1152   if (handler_blob == NULL) {
1153     return NULL;
1154   }
1155   address handler = handler_blob->code_begin();
1156   _handler_blob = handler_blob;
1157   _handler = handler;
1158   return handler;
1159 }
1160 
1161 void SignatureHandlerLibrary::initialize() {
1162   if (_fingerprints != NULL) {
1163     return;
1164   }
1165   if (set_handler_blob() == NULL) {
1166     vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers");
1167   }
1168 
1169   BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
1170                                       SignatureHandlerLibrary::buffer_size);
1171   _buffer = bb->code_begin();
1172 
1173   _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true);
1174   _handlers     = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true);
1175 }
1176 
1177 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
1178   address handler   = _handler;
1179   int     insts_size = buffer->pure_insts_size();
1180   if (handler + insts_size > _handler_blob->code_end()) {
1181     // get a new handler blob
1182     handler = set_handler_blob();
1183   }
1184   if (handler != NULL) {
1185     memcpy(handler, buffer->insts_begin(), insts_size);
1186     pd_set_handler(handler);
1187     ICache::invalidate_range(handler, insts_size);
1188     _handler = handler + insts_size;
1189   }
1190   CodeCacheExtensions::handle_generated_handler(handler, buffer->name(), _handler);
1191   return handler;
1192 }
1193 
1194 void SignatureHandlerLibrary::add(const methodHandle& method) {
1195   if (method->signature_handler() == NULL) {
1196     // use slow signature handler if we can't do better
1197     int handler_index = -1;
1198     // check if we can use customized (fast) signature handler
1199     if (UseFastSignatureHandlers && CodeCacheExtensions::support_fast_signature_handlers() && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) {
1200       // use customized signature handler
1201       MutexLocker mu(SignatureHandlerLibrary_lock);
1202       // make sure data structure is initialized
1203       initialize();
1204       // lookup method signature's fingerprint
1205       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1206       // allow CPU dependant code to optimize the fingerprints for the fast handler
1207       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1208       handler_index = _fingerprints->find(fingerprint);
1209       // create handler if necessary
1210       if (handler_index < 0) {
1211         ResourceMark rm;
1212         ptrdiff_t align_offset = (address)
1213           round_to((intptr_t)_buffer, CodeEntryAlignment) - (address)_buffer;
1214         CodeBuffer buffer((address)(_buffer + align_offset),
1215                           SignatureHandlerLibrary::buffer_size - align_offset);
1216         if (!CodeCacheExtensions::support_dynamic_code()) {
1217           // we need a name for the signature (for lookups or saving)
1218           const int SYMBOL_SIZE = 50;
1219           char *symbolName = NEW_RESOURCE_ARRAY(char, SYMBOL_SIZE);
1220           // support for named signatures
1221           jio_snprintf(symbolName, SYMBOL_SIZE,
1222                        "native_" UINT64_FORMAT, fingerprint);
1223           buffer.set_name(symbolName);
1224         }
1225         InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
1226         // copy into code heap
1227         address handler = set_handler(&buffer);
1228         if (handler == NULL) {
1229           // use slow signature handler (without memorizing it in the fingerprints)
1230         } else {
1231           // debugging suppport
1232           if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1233             ttyLocker ttyl;
1234             tty->cr();
1235             tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
1236                           _handlers->length(),
1237                           (method->is_static() ? "static" : "receiver"),
1238                           method->name_and_sig_as_C_string(),
1239                           fingerprint,
1240                           buffer.insts_size());
1241             if (buffer.insts_size() > 0) {
1242               // buffer may be empty for pregenerated handlers
1243               Disassembler::decode(handler, handler + buffer.insts_size());
1244             }
1245 #ifndef PRODUCT
1246             address rh_begin = Interpreter::result_handler(method()->result_type());
1247             if (CodeCache::contains(rh_begin)) {
1248               // else it might be special platform dependent values
1249               tty->print_cr(" --- associated result handler ---");
1250               address rh_end = rh_begin;
1251               while (*(int*)rh_end != 0) {
1252                 rh_end += sizeof(int);
1253               }
1254               Disassembler::decode(rh_begin, rh_end);
1255             } else {
1256               tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin));
1257             }
1258 #endif
1259           }
1260           // add handler to library
1261           _fingerprints->append(fingerprint);
1262           _handlers->append(handler);
1263           // set handler index
1264           assert(_fingerprints->length() == _handlers->length(), "sanity check");
1265           handler_index = _fingerprints->length() - 1;
1266         }
1267       }
1268       // Set handler under SignatureHandlerLibrary_lock
1269       if (handler_index < 0) {
1270         // use generic signature handler
1271         method->set_signature_handler(Interpreter::slow_signature_handler());
1272       } else {
1273         // set handler
1274         method->set_signature_handler(_handlers->at(handler_index));
1275       }
1276     } else {
1277       CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
1278       // use generic signature handler
1279       method->set_signature_handler(Interpreter::slow_signature_handler());
1280     }
1281   }
1282 #ifdef ASSERT
1283   int handler_index = -1;
1284   int fingerprint_index = -2;
1285   {
1286     // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized
1287     // in any way if accessed from multiple threads. To avoid races with another
1288     // thread which may change the arrays in the above, mutex protected block, we
1289     // have to protect this read access here with the same mutex as well!
1290     MutexLocker mu(SignatureHandlerLibrary_lock);
1291     if (_handlers != NULL) {
1292       handler_index = _handlers->find(method->signature_handler());
1293       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1294       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1295       fingerprint_index = _fingerprints->find(fingerprint);
1296     }
1297   }
1298   assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
1299          handler_index == fingerprint_index, "sanity check");
1300 #endif // ASSERT
1301 }
1302 
1303 void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) {
1304   int handler_index = -1;
1305   // use customized signature handler
1306   MutexLocker mu(SignatureHandlerLibrary_lock);
1307   // make sure data structure is initialized
1308   initialize();
1309   fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1310   handler_index = _fingerprints->find(fingerprint);
1311   // create handler if necessary
1312   if (handler_index < 0) {
1313     if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1314       tty->cr();
1315       tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT,
1316                     _handlers->length(),
1317                     p2i(handler),
1318                     fingerprint);
1319     }
1320     _fingerprints->append(fingerprint);
1321     _handlers->append(handler);
1322   } else {
1323     if (PrintSignatureHandlers) {
1324       tty->cr();
1325       tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")",
1326                     _handlers->length(),
1327                     fingerprint,
1328                     p2i(_handlers->at(handler_index)),
1329                     p2i(handler));
1330     }
1331   }
1332 }
1333 
1334 
1335 BufferBlob*              SignatureHandlerLibrary::_handler_blob = NULL;
1336 address                  SignatureHandlerLibrary::_handler      = NULL;
1337 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL;
1338 GrowableArray<address>*  SignatureHandlerLibrary::_handlers     = NULL;
1339 address                  SignatureHandlerLibrary::_buffer       = NULL;
1340 
1341 
1342 IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, Method* method))
1343   methodHandle m(thread, method);
1344   assert(m->is_native(), "sanity check");
1345   // lookup native function entry point if it doesn't exist
1346   bool in_base_library;
1347   if (!m->has_native_function()) {
1348     NativeLookup::lookup(m, in_base_library, CHECK);
1349   }
1350   // make sure signature handler is installed
1351   SignatureHandlerLibrary::add(m);
1352   // The interpreter entry point checks the signature handler first,
1353   // before trying to fetch the native entry point and klass mirror.
1354   // We must set the signature handler last, so that multiple processors
1355   // preparing the same method will be sure to see non-null entry & mirror.
1356 IRT_END
1357 
1358 #if defined(IA32) || defined(AMD64) || defined(ARM)
1359 IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address))
1360   if (src_address == dest_address) {
1361     return;
1362   }
1363   ResetNoHandleMark rnm; // In a LEAF entry.
1364   HandleMark hm;
1365   ResourceMark rm;
1366   frame fr = thread->last_frame();
1367   assert(fr.is_interpreted_frame(), "");
1368   jint bci = fr.interpreter_frame_bci();
1369   methodHandle mh(thread, fr.interpreter_frame_method());
1370   Bytecode_invoke invoke(mh, bci);
1371   ArgumentSizeComputer asc(invoke.signature());
1372   int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver
1373   Copy::conjoint_jbytes(src_address, dest_address,
1374                        size_of_arguments * Interpreter::stackElementSize);
1375 IRT_END
1376 #endif
1377 
1378 #if INCLUDE_JVMTI
1379 // This is a support of the JVMTI PopFrame interface.
1380 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument
1381 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters.
1382 // The member_name argument is a saved reference (in local#0) to the member_name.
1383 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle.
1384 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated.
1385 IRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* thread, address member_name,
1386                                                             Method* method, address bcp))
1387   Bytecodes::Code code = Bytecodes::code_at(method, bcp);
1388   if (code != Bytecodes::_invokestatic) {
1389     return;
1390   }
1391   ConstantPool* cpool = method->constants();
1392   int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG;
1393   Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index));
1394   Symbol* mname = cpool->name_ref_at(cp_index);
1395 
1396   if (MethodHandles::has_member_arg(cname, mname)) {
1397     oop member_name_oop = (oop) member_name;
1398     if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) {
1399       // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated.
1400       member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop);
1401     }
1402     thread->set_vm_result(member_name_oop);
1403   } else {
1404     thread->set_vm_result(NULL);
1405   }
1406 IRT_END
1407 #endif // INCLUDE_JVMTI
1408 
1409 #ifndef PRODUCT
1410 // This must be a IRT_LEAF function because the interpreter must save registers on x86 to
1411 // call this, which changes rsp and makes the interpreter's expression stack not walkable.
1412 // The generated code still uses call_VM because that will set up the frame pointer for
1413 // bcp and method.
1414 IRT_LEAF(intptr_t, InterpreterRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
1415   const frame f = thread->last_frame();
1416   assert(f.is_interpreted_frame(), "must be an interpreted frame");
1417   methodHandle mh(thread, f.interpreter_frame_method());
1418   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
1419   return preserve_this_value;
1420 IRT_END
1421 #endif // !PRODUCT