/* * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_OOPS_METHODOOP_HPP #define SHARE_VM_OOPS_METHODOOP_HPP #include "classfile/vmSymbols.hpp" #include "code/compressedStream.hpp" #include "compiler/oopMap.hpp" #include "interpreter/invocationCounter.hpp" #include "oops/annotations.hpp" #include "oops/constantPool.hpp" #include "oops/methodCounters.hpp" #include "oops/instanceKlass.hpp" #include "oops/oop.hpp" #include "oops/typeArrayOop.hpp" #include "utilities/accessFlags.hpp" #include "utilities/growableArray.hpp" // A Method represents a Java method. // // Note that most applications load thousands of methods, so keeping the size of this // class small has a big impact on footprint. // // Note that native_function and signature_handler have to be at fixed offsets // (required by the interpreter) // // Method embedded field layout (after declared fields): // [EMBEDDED native_function (present only if native) ] // [EMBEDDED signature_handler (present only if native) ] class CheckedExceptionElement; class LocalVariableTableElement; class AdapterHandlerEntry; class MethodData; class MethodCounters; class ConstMethod; class InlineTableSizes; class KlassSizeStats; class CompiledMethod; class Method : public Metadata { friend class VMStructs; friend class JVMCIVMStructs; private: ConstMethod* _constMethod; // Method read-only data. MethodData* _method_data; MethodCounters* _method_counters; AccessFlags _access_flags; // Access flags int _vtable_index; // vtable index of this method (see VtableIndexFlag) // note: can have vtables with >2**16 elements (because of inheritance) u2 _intrinsic_id; // vmSymbols::intrinsic_id (0 == _none) // Flags enum Flags { _jfr_towrite = 1 << 0, _caller_sensitive = 1 << 1, _force_inline = 1 << 2, _dont_inline = 1 << 3, _hidden = 1 << 4, _has_injected_profile = 1 << 5, _running_emcp = 1 << 6, _intrinsic_candidate = 1 << 7, _reserved_stack_access = 1 << 8 }; mutable u2 _flags; #ifndef PRODUCT int _compiled_invocation_count; // Number of nmethod invocations so far (for perf. debugging) #endif // Entry point for calling both from and to the interpreter. address _i2i_entry; // All-args-on-stack calling convention // Entry point for calling from compiled code, to compiled code if it exists // or else the interpreter. volatile address _from_compiled_entry; // Cache of: _code ? _code->entry_point() : _adapter->c2i_entry() // The entry point for calling both from and to compiled code is // "_code->entry_point()". Because of tiered compilation and de-opt, this // field can come and go. It can transition from NULL to not-null at any // time (whenever a compile completes). It can transition from not-null to // NULL only at safepoints (because of a de-opt). CompiledMethod* volatile _code; // Points to the corresponding piece of native code volatile address _from_interpreted_entry; // Cache of _code ? _adapter->i2c_entry() : _i2i_entry // Constructor Method(ConstMethod* xconst, AccessFlags access_flags); public: static Method* allocate(ClassLoaderData* loader_data, int byte_code_size, AccessFlags access_flags, InlineTableSizes* sizes, ConstMethod::MethodType method_type, TRAPS); // CDS and vtbl checking can create an empty Method to get vtbl pointer. Method(){} // The Method vtable is restored by this call when the Method is in the // shared archive. See patch_klass_vtables() in metaspaceShared.cpp for // all the gory details. SA, dtrace and pstack helpers distinguish metadata // by their vtable. void restore_vtable() { guarantee(is_method(), "vtable restored by this call"); } bool is_method() const volatile { return true; } void restore_unshareable_info(TRAPS); // accessors for instance variables ConstMethod* constMethod() const { return _constMethod; } void set_constMethod(ConstMethod* xconst) { _constMethod = xconst; } static address make_adapters(methodHandle mh, TRAPS); volatile address from_compiled_entry() const { return (address)OrderAccess::load_ptr_acquire(&_from_compiled_entry); } volatile address from_compiled_entry_no_trampoline() const; volatile address from_interpreted_entry() const{ return (address)OrderAccess::load_ptr_acquire(&_from_interpreted_entry); } // access flag AccessFlags access_flags() const { return _access_flags; } void set_access_flags(AccessFlags flags) { _access_flags = flags; } // name Symbol* name() const { return constants()->symbol_at(name_index()); } int name_index() const { return constMethod()->name_index(); } void set_name_index(int index) { constMethod()->set_name_index(index); } // signature Symbol* signature() const { return constants()->symbol_at(signature_index()); } int signature_index() const { return constMethod()->signature_index(); } void set_signature_index(int index) { constMethod()->set_signature_index(index); } // generics support Symbol* generic_signature() const { int idx = generic_signature_index(); return ((idx != 0) ? constants()->symbol_at(idx) : (Symbol*)NULL); } int generic_signature_index() const { return constMethod()->generic_signature_index(); } void set_generic_signature_index(int index) { constMethod()->set_generic_signature_index(index); } // annotations support AnnotationArray* annotations() const { return constMethod()->method_annotations(); } AnnotationArray* parameter_annotations() const { return constMethod()->parameter_annotations(); } AnnotationArray* annotation_default() const { return constMethod()->default_annotations(); } AnnotationArray* type_annotations() const { return constMethod()->type_annotations(); } // Helper routine: get klass name + "." + method name + signature as // C string, for the purpose of providing more useful NoSuchMethodErrors // and fatal error handling. The string is allocated in resource // area if a buffer is not provided by the caller. char* name_and_sig_as_C_string() const; char* name_and_sig_as_C_string(char* buf, int size) const; // Static routine in the situations we don't have a Method* static char* name_and_sig_as_C_string(Klass* klass, Symbol* method_name, Symbol* signature); static char* name_and_sig_as_C_string(Klass* klass, Symbol* method_name, Symbol* signature, char* buf, int size); Bytecodes::Code java_code_at(int bci) const { return Bytecodes::java_code_at(this, bcp_from(bci)); } Bytecodes::Code code_at(int bci) const { return Bytecodes::code_at(this, bcp_from(bci)); } // JVMTI breakpoints #if !INCLUDE_JVMTI Bytecodes::Code orig_bytecode_at(int bci) const { ShouldNotReachHere(); return Bytecodes::_shouldnotreachhere; } void set_orig_bytecode_at(int bci, Bytecodes::Code code) { ShouldNotReachHere(); }; u2 number_of_breakpoints() const {return 0;} #else // !INCLUDE_JVMTI Bytecodes::Code orig_bytecode_at(int bci) const; void set_orig_bytecode_at(int bci, Bytecodes::Code code); void set_breakpoint(int bci); void clear_breakpoint(int bci); void clear_all_breakpoints(); // Tracking number of breakpoints, for fullspeed debugging. // Only mutated by VM thread. u2 number_of_breakpoints() const { MethodCounters* mcs = method_counters(); if (mcs == NULL) { return 0; } else { return mcs->number_of_breakpoints(); } } void incr_number_of_breakpoints(TRAPS) { MethodCounters* mcs = get_method_counters(CHECK); if (mcs != NULL) { mcs->incr_number_of_breakpoints(); } } void decr_number_of_breakpoints(TRAPS) { MethodCounters* mcs = get_method_counters(CHECK); if (mcs != NULL) { mcs->decr_number_of_breakpoints(); } } // Initialization only void clear_number_of_breakpoints() { MethodCounters* mcs = method_counters(); if (mcs != NULL) { mcs->clear_number_of_breakpoints(); } } #endif // !INCLUDE_JVMTI // index into InstanceKlass methods() array // note: also used by jfr u2 method_idnum() const { return constMethod()->method_idnum(); } void set_method_idnum(u2 idnum) { constMethod()->set_method_idnum(idnum); } u2 orig_method_idnum() const { return constMethod()->orig_method_idnum(); } void set_orig_method_idnum(u2 idnum) { constMethod()->set_orig_method_idnum(idnum); } // code size int code_size() const { return constMethod()->code_size(); } // method size in words int method_size() const { return sizeof(Method)/wordSize + is_native() ? 2 : 0; } // constant pool for Klass* holding this method ConstantPool* constants() const { return constMethod()->constants(); } void set_constants(ConstantPool* c) { constMethod()->set_constants(c); } // max stack // return original max stack size for method verification int verifier_max_stack() const { return constMethod()->max_stack(); } int max_stack() const { return constMethod()->max_stack() + extra_stack_entries(); } void set_max_stack(int size) { constMethod()->set_max_stack(size); } // max locals int max_locals() const { return constMethod()->max_locals(); } void set_max_locals(int size) { constMethod()->set_max_locals(size); } int highest_comp_level() const; void set_highest_comp_level(int level); int highest_osr_comp_level() const; void set_highest_osr_comp_level(int level); #if defined(COMPILER2) || INCLUDE_JVMCI // Count of times method was exited via exception while interpreting void interpreter_throwout_increment(TRAPS) { MethodCounters* mcs = get_method_counters(CHECK); if (mcs != NULL) { mcs->interpreter_throwout_increment(); } } #endif int interpreter_throwout_count() const { MethodCounters* mcs = method_counters(); if (mcs == NULL) { return 0; } else { return mcs->interpreter_throwout_count(); } } // size of parameters int size_of_parameters() const { return constMethod()->size_of_parameters(); } void set_size_of_parameters(int size) { constMethod()->set_size_of_parameters(size); } bool has_stackmap_table() const { return constMethod()->has_stackmap_table(); } Array* stackmap_data() const { return constMethod()->stackmap_data(); } void set_stackmap_data(Array* sd) { constMethod()->set_stackmap_data(sd); } // exception handler table bool has_exception_handler() const { return constMethod()->has_exception_handler(); } int exception_table_length() const { return constMethod()->exception_table_length(); } ExceptionTableElement* exception_table_start() const { return constMethod()->exception_table_start(); } // Finds the first entry point bci of an exception handler for an // exception of klass ex_klass thrown at throw_bci. A value of NULL // for ex_klass indicates that the exception klass is not known; in // this case it matches any constraint class. Returns -1 if the // exception cannot be handled in this method. The handler // constraint classes are loaded if necessary. Note that this may // throw an exception if loading of the constraint classes causes // an IllegalAccessError (bugid 4307310) or an OutOfMemoryError. // If an exception is thrown, returns the bci of the // exception handler which caused the exception to be thrown, which // is needed for proper retries. See, for example, // InterpreterRuntime::exception_handler_for_exception. static int fast_exception_handler_bci_for(methodHandle mh, KlassHandle ex_klass, int throw_bci, TRAPS); // method data access MethodData* method_data() const { return _method_data; } void set_method_data(MethodData* data) { // The store into method must be released. On platforms without // total store order (TSO) the reference may become visible before // the initialization of data otherwise. OrderAccess::release_store_ptr((volatile void *)&_method_data, data); } MethodCounters* method_counters() const { return _method_counters; } void clear_method_counters() { _method_counters = NULL; } bool init_method_counters(MethodCounters* counters) { // Try to install a pointer to MethodCounters, return true on success. return Atomic::cmpxchg_ptr(counters, (volatile void*)&_method_counters, NULL) == NULL; } #ifdef TIERED // We are reusing interpreter_invocation_count as a holder for the previous event count! // We can do that since interpreter_invocation_count is not used in tiered. int prev_event_count() const { if (method_counters() == NULL) { return 0; } else { return method_counters()->interpreter_invocation_count(); } } void set_prev_event_count(int count) { MethodCounters* mcs = method_counters(); if (mcs != NULL) { mcs->set_interpreter_invocation_count(count); } } jlong prev_time() const { MethodCounters* mcs = method_counters(); return mcs == NULL ? 0 : mcs->prev_time(); } void set_prev_time(jlong time) { MethodCounters* mcs = method_counters(); if (mcs != NULL) { mcs->set_prev_time(time); } } float rate() const { MethodCounters* mcs = method_counters(); return mcs == NULL ? 0 : mcs->rate(); } void set_rate(float rate) { MethodCounters* mcs = method_counters(); if (mcs != NULL) { mcs->set_rate(rate); } } #endif int nmethod_age() const { if (method_counters() == NULL) { return INT_MAX; } else { return method_counters()->nmethod_age(); } } int invocation_count(); int backedge_count(); bool was_executed_more_than(int n); bool was_never_executed() { return !was_executed_more_than(0); } static void build_interpreter_method_data(const methodHandle& method, TRAPS); static MethodCounters* build_method_counters(Method* m, TRAPS); int interpreter_invocation_count() { if (TieredCompilation) { return invocation_count(); } else { MethodCounters* mcs = method_counters(); return (mcs == NULL) ? 0 : mcs->interpreter_invocation_count(); } } #if defined(COMPILER2) || INCLUDE_JVMCI int increment_interpreter_invocation_count(TRAPS) { if (TieredCompilation) ShouldNotReachHere(); MethodCounters* mcs = get_method_counters(CHECK_0); return (mcs == NULL) ? 0 : mcs->increment_interpreter_invocation_count(); } #endif #ifndef PRODUCT int compiled_invocation_count() const { return _compiled_invocation_count; } void set_compiled_invocation_count(int count) { _compiled_invocation_count = count; } #else // for PrintMethodData in a product build int compiled_invocation_count() const { return 0; } #endif // not PRODUCT // Clear (non-shared space) pointers which could not be relevant // if this (shared) method were mapped into another JVM. void remove_unshareable_info(); // nmethod/verified compiler entry address verified_code_entry(); bool check_code() const; // Not inline to avoid circular ref CompiledMethod* volatile code() const { assert( check_code(), "" ); return (CompiledMethod *)OrderAccess::load_ptr_acquire(&_code); } void clear_code(); // Clear out any compiled code static void set_code(methodHandle mh, CompiledMethod* code); void set_adapter_entry(AdapterHandlerEntry* adapter) { constMethod()->set_adapter_entry(adapter); } void update_adapter_trampoline(AdapterHandlerEntry* adapter) { constMethod()->update_adapter_trampoline(adapter); } address get_i2c_entry(); address get_c2i_entry(); address get_c2i_unverified_entry(); AdapterHandlerEntry* adapter() const { return constMethod()->adapter(); } // setup entry points void link_method(const methodHandle& method, TRAPS); // clear entry points. Used by sharing code during dump time void unlink_method() NOT_CDS_RETURN; // vtable index enum VtableIndexFlag { // Valid vtable indexes are non-negative (>= 0). // These few negative values are used as sentinels. itable_index_max = -10, // first itable index, growing downward pending_itable_index = -9, // itable index will be assigned invalid_vtable_index = -4, // distinct from any valid vtable index garbage_vtable_index = -3, // not yet linked; no vtable layout yet nonvirtual_vtable_index = -2 // there is no need for vtable dispatch // 6330203 Note: Do not use -1, which was overloaded with many meanings. }; DEBUG_ONLY(bool valid_vtable_index() const { return _vtable_index >= nonvirtual_vtable_index; }) bool has_vtable_index() const { return _vtable_index >= 0; } int vtable_index() const { return _vtable_index; } void set_vtable_index(int index) { _vtable_index = index; } DEBUG_ONLY(bool valid_itable_index() const { return _vtable_index <= pending_itable_index; }) bool has_itable_index() const { return _vtable_index <= itable_index_max; } int itable_index() const { assert(valid_itable_index(), ""); return itable_index_max - _vtable_index; } void set_itable_index(int index) { _vtable_index = itable_index_max - index; assert(valid_itable_index(), ""); } // interpreter entry address interpreter_entry() const { return _i2i_entry; } // Only used when first initialize so we can set _i2i_entry and _from_interpreted_entry void set_interpreter_entry(address entry) { assert(!is_shared(), "shared method's interpreter entry should not be changed at run time"); if (_i2i_entry != entry) { _i2i_entry = entry; } if (_from_interpreted_entry != entry) { _from_interpreted_entry = entry; } } // native function (used for native methods only) enum { native_bind_event_is_interesting = true }; address native_function() const { return *(native_function_addr()); } address critical_native_function(); // Must specify a real function (not NULL). // Use clear_native_function() to unregister. void set_native_function(address function, bool post_event_flag); bool has_native_function() const; void clear_native_function(); // signature handler (used for native methods only) address signature_handler() const { return *(signature_handler_addr()); } void set_signature_handler(address handler); // Interpreter oopmap support void mask_for(int bci, InterpreterOopMap* mask); // operations on invocation counter void print_invocation_count(); // byte codes void set_code(address code) { return constMethod()->set_code(code); } address code_base() const { return constMethod()->code_base(); } bool contains(address bcp) const { return constMethod()->contains(bcp); } // prints byte codes void print_codes() const { print_codes_on(tty); } void print_codes_on(outputStream* st) const; void print_codes_on(int from, int to, outputStream* st) const; // method parameters bool has_method_parameters() const { return constMethod()->has_method_parameters(); } int method_parameters_length() const { return constMethod()->method_parameters_length(); } MethodParametersElement* method_parameters_start() const { return constMethod()->method_parameters_start(); } // checked exceptions int checked_exceptions_length() const { return constMethod()->checked_exceptions_length(); } CheckedExceptionElement* checked_exceptions_start() const { return constMethod()->checked_exceptions_start(); } // localvariable table bool has_localvariable_table() const { return constMethod()->has_localvariable_table(); } int localvariable_table_length() const { return constMethod()->localvariable_table_length(); } LocalVariableTableElement* localvariable_table_start() const { return constMethod()->localvariable_table_start(); } bool has_linenumber_table() const { return constMethod()->has_linenumber_table(); } u_char* compressed_linenumber_table() const { return constMethod()->compressed_linenumber_table(); } // method holder (the Klass* holding this method) InstanceKlass* method_holder() const { return constants()->pool_holder(); } void compute_size_of_parameters(Thread *thread); // word size of parameters (receiver if any + arguments) Symbol* klass_name() const; // returns the name of the method holder BasicType result_type() const; // type of the method result bool is_returning_oop() const { BasicType r = result_type(); return (r == T_OBJECT || r == T_ARRAY); } bool is_returning_fp() const { BasicType r = result_type(); return (r == T_FLOAT || r == T_DOUBLE); } // Checked exceptions thrown by this method (resolved to mirrors) objArrayHandle resolved_checked_exceptions(TRAPS) { return resolved_checked_exceptions_impl(this, THREAD); } // Access flags bool is_public() const { return access_flags().is_public(); } bool is_private() const { return access_flags().is_private(); } bool is_protected() const { return access_flags().is_protected(); } bool is_package_private() const { return !is_public() && !is_private() && !is_protected(); } bool is_static() const { return access_flags().is_static(); } bool is_final() const { return access_flags().is_final(); } bool is_synchronized() const { return access_flags().is_synchronized();} bool is_native() const { return access_flags().is_native(); } bool is_abstract() const { return access_flags().is_abstract(); } bool is_strict() const { return access_flags().is_strict(); } bool is_synthetic() const { return access_flags().is_synthetic(); } // returns true if contains only return operation bool is_empty_method() const; // returns true if this is a vanilla constructor bool is_vanilla_constructor() const; // checks method and its method holder bool is_final_method() const; bool is_final_method(AccessFlags class_access_flags) const; bool is_default_method() const; // true if method needs no dynamic dispatch (final and/or no vtable entry) bool can_be_statically_bound() const; bool can_be_statically_bound(AccessFlags class_access_flags) const; // returns true if the method has any backward branches. bool has_loops() { return access_flags().loops_flag_init() ? access_flags().has_loops() : compute_has_loops_flag(); }; bool compute_has_loops_flag(); bool has_jsrs() { return access_flags().has_jsrs(); }; void set_has_jsrs() { _access_flags.set_has_jsrs(); } // returns true if the method has any monitors. bool has_monitors() const { return is_synchronized() || access_flags().has_monitor_bytecodes(); } bool has_monitor_bytecodes() const { return access_flags().has_monitor_bytecodes(); } void set_has_monitor_bytecodes() { _access_flags.set_has_monitor_bytecodes(); } // monitor matching. This returns a conservative estimate of whether the monitorenter/monitorexit bytecodes // propererly nest in the method. It might return false, even though they actually nest properly, since the info. // has not been computed yet. bool guaranteed_monitor_matching() const { return access_flags().is_monitor_matching(); } void set_guaranteed_monitor_matching() { _access_flags.set_monitor_matching(); } // returns true if the method is an accessor function (setter/getter). bool is_accessor() const; // returns true if the method is a getter bool is_getter() const; // returns true if the method is a setter bool is_setter() const; // returns true if the method does nothing but return a constant of primitive type bool is_constant_getter() const; // returns true if the method is an initializer ( or ). bool is_initializer() const; // returns true if the method is static OR if the classfile version < 51 bool has_valid_initializer_flags() const; // returns true if the method name is and the method has // valid static initializer flags. bool is_static_initializer() const; // returns true if the method name is bool is_object_initializer() const; // compiled code support // NOTE: code() is inherently racy as deopt can be clearing code // simultaneously. Use with caution. bool has_compiled_code() const { return code() != NULL; } // sizing static int header_size() { return sizeof(Method)/wordSize; } static int size(bool is_native); int size() const { return method_size(); } #if INCLUDE_SERVICES void collect_statistics(KlassSizeStats *sz) const; #endif void log_touched(TRAPS); static void print_touched_methods(outputStream* out); // interpreter support static ByteSize const_offset() { return byte_offset_of(Method, _constMethod ); } static ByteSize access_flags_offset() { return byte_offset_of(Method, _access_flags ); } static ByteSize from_compiled_offset() { return byte_offset_of(Method, _from_compiled_entry); } static ByteSize code_offset() { return byte_offset_of(Method, _code); } static ByteSize method_data_offset() { return byte_offset_of(Method, _method_data); } static ByteSize method_counters_offset() { return byte_offset_of(Method, _method_counters); } #ifndef PRODUCT static ByteSize compiled_invocation_counter_offset() { return byte_offset_of(Method, _compiled_invocation_count); } #endif // not PRODUCT static ByteSize native_function_offset() { return in_ByteSize(sizeof(Method)); } static ByteSize from_interpreted_offset() { return byte_offset_of(Method, _from_interpreted_entry ); } static ByteSize interpreter_entry_offset() { return byte_offset_of(Method, _i2i_entry ); } static ByteSize signature_handler_offset() { return in_ByteSize(sizeof(Method) + wordSize); } // for code generation static int method_data_offset_in_bytes() { return offset_of(Method, _method_data); } static int intrinsic_id_offset_in_bytes() { return offset_of(Method, _intrinsic_id); } static int intrinsic_id_size_in_bytes() { return sizeof(u2); } // Static methods that are used to implement member methods where an exposed this pointer // is needed due to possible GCs static objArrayHandle resolved_checked_exceptions_impl(Method* method, TRAPS); // Returns the byte code index from the byte code pointer int bci_from(address bcp) const; address bcp_from(int bci) const; address bcp_from(address bcp) const; int validate_bci_from_bcp(address bcp) const; int validate_bci(int bci) const; // Returns the line number for a bci if debugging information for the method is prowided, // -1 is returned otherwise. int line_number_from_bci(int bci) const; // Reflection support bool is_overridden_in(Klass* k) const; // Stack walking support bool is_ignored_by_security_stack_walk() const; // JSR 292 support bool is_method_handle_intrinsic() const; // MethodHandles::is_signature_polymorphic_intrinsic(intrinsic_id) bool is_compiled_lambda_form() const; // intrinsic_id() == vmIntrinsics::_compiledLambdaForm bool has_member_arg() const; // intrinsic_id() == vmIntrinsics::_linkToSpecial, etc. static methodHandle make_method_handle_intrinsic(vmIntrinsics::ID iid, // _invokeBasic, _linkToVirtual Symbol* signature, //anything at all TRAPS); static Klass* check_non_bcp_klass(Klass* klass); enum { // How many extra stack entries for invokedynamic extra_stack_entries_for_jsr292 = 1 }; // this operates only on invoke methods: // presize interpreter frames for extra interpreter stack entries, if needed // Account for the extra appendix argument for invokehandle/invokedynamic static int extra_stack_entries() { return extra_stack_entries_for_jsr292; } static int extra_stack_words(); // = extra_stack_entries() * Interpreter::stackElementSize // RedefineClasses() support: bool is_old() const { return access_flags().is_old(); } void set_is_old() { _access_flags.set_is_old(); } bool is_obsolete() const { return access_flags().is_obsolete(); } void set_is_obsolete() { _access_flags.set_is_obsolete(); } bool is_deleted() const { return access_flags().is_deleted(); } void set_is_deleted() { _access_flags.set_is_deleted(); } bool is_running_emcp() const { // EMCP methods are old but not obsolete or deleted. Equivalent // Modulo Constant Pool means the method is equivalent except // the constant pool and instructions that access the constant // pool might be different. // If a breakpoint is set in a redefined method, its EMCP methods that are // still running must have a breakpoint also. return (_flags & _running_emcp) != 0; } void set_running_emcp(bool x) { _flags = x ? (_flags | _running_emcp) : (_flags & ~_running_emcp); } bool on_stack() const { return access_flags().on_stack(); } void set_on_stack(const bool value); // see the definition in Method*.cpp for the gory details bool should_not_be_cached() const; // JVMTI Native method prefixing support: bool is_prefixed_native() const { return access_flags().is_prefixed_native(); } void set_is_prefixed_native() { _access_flags.set_is_prefixed_native(); } // Rewriting support static methodHandle clone_with_new_data(methodHandle m, u_char* new_code, int new_code_length, u_char* new_compressed_linenumber_table, int new_compressed_linenumber_size, TRAPS); // jmethodID handling // Because the useful life-span of a jmethodID cannot be determined, // once created they are never reclaimed. The methods to which they refer, // however, can be GC'ed away if the class is unloaded or if the method is // made obsolete or deleted -- in these cases, the jmethodID // refers to NULL (as is the case for any weak reference). static jmethodID make_jmethod_id(ClassLoaderData* loader_data, Method* mh); static void destroy_jmethod_id(ClassLoaderData* loader_data, jmethodID mid); // Ensure there is enough capacity in the internal tracking data // structures to hold the number of jmethodIDs you plan to generate. // This saves substantial time doing allocations. static void ensure_jmethod_ids(ClassLoaderData* loader_data, int capacity); // Use resolve_jmethod_id() in situations where the caller is expected // to provide a valid jmethodID; the only sanity checks are in asserts; // result guaranteed not to be NULL. inline static Method* resolve_jmethod_id(jmethodID mid) { assert(mid != NULL, "JNI method id should not be null"); return *((Method**)mid); } // Use checked_resolve_jmethod_id() in situations where the caller // should provide a valid jmethodID, but might not. NULL is returned // when the jmethodID does not refer to a valid method. static Method* checked_resolve_jmethod_id(jmethodID mid); static void change_method_associated_with_jmethod_id(jmethodID old_jmid_ptr, Method* new_method); static bool is_method_id(jmethodID mid); // Clear methods static void clear_jmethod_ids(ClassLoaderData* loader_data); static void print_jmethod_ids(ClassLoaderData* loader_data, outputStream* out) PRODUCT_RETURN; // Get this method's jmethodID -- allocate if it doesn't exist jmethodID jmethod_id() { methodHandle this_h(this); return InstanceKlass::get_jmethod_id(method_holder(), this_h); } // Lookup the jmethodID for this method. Return NULL if not found. // NOTE that this function can be called from a signal handler // (see AsyncGetCallTrace support for Forte Analyzer) and this // needs to be async-safe. No allocation should be done and // so handles are not used to avoid deadlock. jmethodID find_jmethod_id_or_null() { return method_holder()->jmethod_id_or_null(this); } // Support for inlining of intrinsic methods vmIntrinsics::ID intrinsic_id() const { return (vmIntrinsics::ID) _intrinsic_id; } void set_intrinsic_id(vmIntrinsics::ID id) { _intrinsic_id = (u2) id; } // Helper routines for intrinsic_id() and vmIntrinsics::method(). void init_intrinsic_id(); // updates from _none if a match static vmSymbols::SID klass_id_for_intrinsics(const Klass* holder); bool jfr_towrite() const { return (_flags & _jfr_towrite) != 0; } void set_jfr_towrite(bool x) const { _flags = x ? (_flags | _jfr_towrite) : (_flags & ~_jfr_towrite); } bool caller_sensitive() { return (_flags & _caller_sensitive) != 0; } void set_caller_sensitive(bool x) { _flags = x ? (_flags | _caller_sensitive) : (_flags & ~_caller_sensitive); } bool force_inline() { return (_flags & _force_inline) != 0; } void set_force_inline(bool x) { _flags = x ? (_flags | _force_inline) : (_flags & ~_force_inline); } bool dont_inline() { return (_flags & _dont_inline) != 0; } void set_dont_inline(bool x) { _flags = x ? (_flags | _dont_inline) : (_flags & ~_dont_inline); } bool is_hidden() { return (_flags & _hidden) != 0; } void set_hidden(bool x) { _flags = x ? (_flags | _hidden) : (_flags & ~_hidden); } bool intrinsic_candidate() { return (_flags & _intrinsic_candidate) != 0; } void set_intrinsic_candidate(bool x) { _flags = x ? (_flags | _intrinsic_candidate) : (_flags & ~_intrinsic_candidate); } bool has_injected_profile() { return (_flags & _has_injected_profile) != 0; } void set_has_injected_profile(bool x) { _flags = x ? (_flags | _has_injected_profile) : (_flags & ~_has_injected_profile); } bool has_reserved_stack_access() { return (_flags & _reserved_stack_access) != 0; } void set_has_reserved_stack_access(bool x) { _flags = x ? (_flags | _reserved_stack_access) : (_flags & ~_reserved_stack_access); } ConstMethod::MethodType method_type() const { return _constMethod->method_type(); } bool is_overpass() const { return method_type() == ConstMethod::OVERPASS; } // On-stack replacement support bool has_osr_nmethod(int level, bool match_level) { return method_holder()->lookup_osr_nmethod(this, InvocationEntryBci, level, match_level) != NULL; } int mark_osr_nmethods() { return method_holder()->mark_osr_nmethods(this); } nmethod* lookup_osr_nmethod_for(int bci, int level, bool match_level) { return method_holder()->lookup_osr_nmethod(this, bci, level, match_level); } // Inline cache support void cleanup_inline_caches(); // Find if klass for method is loaded bool is_klass_loaded_by_klass_index(int klass_index) const; bool is_klass_loaded(int refinfo_index, bool must_be_resolved = false) const; // Indicates whether compilation failed earlier for this method, or // whether it is not compilable for another reason like having a // breakpoint set in it. bool is_not_compilable(int comp_level = CompLevel_any) const; void set_not_compilable(int comp_level = CompLevel_all, bool report = true, const char* reason = NULL); void set_not_compilable_quietly(int comp_level = CompLevel_all) { set_not_compilable(comp_level, false); } bool is_not_osr_compilable(int comp_level = CompLevel_any) const; void set_not_osr_compilable(int comp_level = CompLevel_all, bool report = true, const char* reason = NULL); void set_not_osr_compilable_quietly(int comp_level = CompLevel_all) { set_not_osr_compilable(comp_level, false); } bool is_always_compilable() const; private: void print_made_not_compilable(int comp_level, bool is_osr, bool report, const char* reason); public: MethodCounters* get_method_counters(TRAPS) { if (_method_counters == NULL) { build_method_counters(this, CHECK_AND_CLEAR_NULL); } return _method_counters; } bool is_not_c1_compilable() const { return access_flags().is_not_c1_compilable(); } void set_not_c1_compilable() { _access_flags.set_not_c1_compilable(); } void clear_not_c1_compilable() { _access_flags.clear_not_c1_compilable(); } bool is_not_c2_compilable() const { return access_flags().is_not_c2_compilable(); } void set_not_c2_compilable() { _access_flags.set_not_c2_compilable(); } void clear_not_c2_compilable() { _access_flags.clear_not_c2_compilable(); } bool is_not_c1_osr_compilable() const { return is_not_c1_compilable(); } // don't waste an accessFlags bit void set_not_c1_osr_compilable() { set_not_c1_compilable(); } // don't waste an accessFlags bit void clear_not_c1_osr_compilable() { clear_not_c1_compilable(); } // don't waste an accessFlags bit bool is_not_c2_osr_compilable() const { return access_flags().is_not_c2_osr_compilable(); } void set_not_c2_osr_compilable() { _access_flags.set_not_c2_osr_compilable(); } void clear_not_c2_osr_compilable() { _access_flags.clear_not_c2_osr_compilable(); } // Background compilation support bool queued_for_compilation() const { return access_flags().queued_for_compilation(); } void set_queued_for_compilation() { _access_flags.set_queued_for_compilation(); } void clear_queued_for_compilation() { _access_flags.clear_queued_for_compilation(); } // Resolve all classes in signature, return 'true' if successful static bool load_signature_classes(methodHandle m, TRAPS); // Return if true if not all classes references in signature, including return type, has been loaded static bool has_unloaded_classes_in_signature(methodHandle m, TRAPS); // Printing void print_short_name(outputStream* st = tty); // prints as klassname::methodname; Exposed so field engineers can debug VM #if INCLUDE_JVMTI void print_name(outputStream* st = tty); // prints as "virtual void foo(int)"; exposed for TraceRedefineClasses #else void print_name(outputStream* st = tty) PRODUCT_RETURN; // prints as "virtual void foo(int)" #endif // Helper routine used for method sorting static void sort_methods(Array* methods, bool idempotent = false, bool set_idnums = true); // Deallocation function for redefine classes or if an error occurs void deallocate_contents(ClassLoaderData* loader_data); // Printing #ifndef PRODUCT void print_on(outputStream* st) const; #endif void print_value_on(outputStream* st) const; void print_linkage_flags(outputStream* st) PRODUCT_RETURN; const char* internal_name() const { return "{method}"; } // Check for valid method pointer static bool has_method_vptr(const void* ptr); bool is_valid_method() const; // Verify void verify() { verify_on(tty); } void verify_on(outputStream* st); private: // Inlined elements address* native_function_addr() const { assert(is_native(), "must be native"); return (address*) (this+1); } address* signature_handler_addr() const { return native_function_addr() + 1; } }; // Utility class for compressing line number tables class CompressedLineNumberWriteStream: public CompressedWriteStream { private: int _bci; int _line; public: // Constructor CompressedLineNumberWriteStream(int initial_size) : CompressedWriteStream(initial_size), _bci(0), _line(0) {} CompressedLineNumberWriteStream(u_char* buffer, int initial_size) : CompressedWriteStream(buffer, initial_size), _bci(0), _line(0) {} // Write (bci, line number) pair to stream void write_pair_regular(int bci_delta, int line_delta); inline void write_pair_inline(int bci, int line) { int bci_delta = bci - _bci; int line_delta = line - _line; _bci = bci; _line = line; // Skip (0,0) deltas - they do not add information and conflict with terminator. if (bci_delta == 0 && line_delta == 0) return; // Check if bci is 5-bit and line number 3-bit unsigned. if (((bci_delta & ~0x1F) == 0) && ((line_delta & ~0x7) == 0)) { // Compress into single byte. jubyte value = ((jubyte) bci_delta << 3) | (jubyte) line_delta; // Check that value doesn't match escape character. if (value != 0xFF) { write_byte(value); return; } } write_pair_regular(bci_delta, line_delta); } // Windows AMD64 + Apr 2005 PSDK with /O2 generates bad code for write_pair. // Disabling optimization doesn't work for methods in header files // so we force it to call through the non-optimized version in the .cpp. // It's gross, but it's the only way we can ensure that all callers are // fixed. _MSC_VER is defined by the windows compiler #if defined(_M_AMD64) && _MSC_VER >= 1400 void write_pair(int bci, int line); #else void write_pair(int bci, int line) { write_pair_inline(bci, line); } #endif // Write end-of-stream marker void write_terminator() { write_byte(0); } }; // Utility class for decompressing line number tables class CompressedLineNumberReadStream: public CompressedReadStream { private: int _bci; int _line; public: // Constructor CompressedLineNumberReadStream(u_char* buffer); // Read (bci, line number) pair from stream. Returns false at end-of-stream. bool read_pair(); // Accessing bci and line number (after calling read_pair) int bci() const { return _bci; } int line() const { return _line; } }; #if INCLUDE_JVMTI /// Fast Breakpoints. // If this structure gets more complicated (because bpts get numerous), // move it into its own header. // There is presently no provision for concurrent access // to breakpoint lists, which is only OK for JVMTI because // breakpoints are written only at safepoints, and are read // concurrently only outside of safepoints. class BreakpointInfo : public CHeapObj { friend class VMStructs; private: Bytecodes::Code _orig_bytecode; int _bci; u2 _name_index; // of method u2 _signature_index; // of method BreakpointInfo* _next; // simple storage allocation public: BreakpointInfo(Method* m, int bci); // accessors Bytecodes::Code orig_bytecode() { return _orig_bytecode; } void set_orig_bytecode(Bytecodes::Code code) { _orig_bytecode = code; } int bci() { return _bci; } BreakpointInfo* next() const { return _next; } void set_next(BreakpointInfo* n) { _next = n; } // helps for searchers bool match(const Method* m, int bci) { return bci == _bci && match(m); } bool match(const Method* m) { return _name_index == m->name_index() && _signature_index == m->signature_index(); } void set(Method* method); void clear(Method* method); }; #endif // INCLUDE_JVMTI // Utility class for access exception handlers class ExceptionTable : public StackObj { private: ExceptionTableElement* _table; u2 _length; public: ExceptionTable(const Method* m) { if (m->has_exception_handler()) { _table = m->exception_table_start(); _length = m->exception_table_length(); } else { _table = NULL; _length = 0; } } int length() const { return _length; } u2 start_pc(int idx) const { assert(idx < _length, "out of bounds"); return _table[idx].start_pc; } void set_start_pc(int idx, u2 value) { assert(idx < _length, "out of bounds"); _table[idx].start_pc = value; } u2 end_pc(int idx) const { assert(idx < _length, "out of bounds"); return _table[idx].end_pc; } void set_end_pc(int idx, u2 value) { assert(idx < _length, "out of bounds"); _table[idx].end_pc = value; } u2 handler_pc(int idx) const { assert(idx < _length, "out of bounds"); return _table[idx].handler_pc; } void set_handler_pc(int idx, u2 value) { assert(idx < _length, "out of bounds"); _table[idx].handler_pc = value; } u2 catch_type_index(int idx) const { assert(idx < _length, "out of bounds"); return _table[idx].catch_type_index; } void set_catch_type_index(int idx, u2 value) { assert(idx < _length, "out of bounds"); _table[idx].catch_type_index = value; } }; #endif // SHARE_VM_OOPS_METHODOOP_HPP