1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "oops/method.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/idealGraphPrinter.hpp"
  33 #include "opto/locknode.hpp"
  34 #include "opto/memnode.hpp"
  35 #include "opto/opaquenode.hpp"
  36 #include "opto/parse.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/valuetypenode.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "utilities/copy.hpp"
  44 
  45 // Static array so we can figure out which bytecodes stop us from compiling
  46 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  47 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  48 
  49 #ifndef PRODUCT
  50 int nodes_created              = 0;
  51 int methods_parsed             = 0;
  52 int methods_seen               = 0;
  53 int blocks_parsed              = 0;
  54 int blocks_seen                = 0;
  55 
  56 int explicit_null_checks_inserted = 0;
  57 int explicit_null_checks_elided   = 0;
  58 int all_null_checks_found         = 0;
  59 int implicit_null_checks          = 0;
  60 
  61 bool Parse::BytecodeParseHistogram::_initialized = false;
  62 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
  63 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
  64 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
  65 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
  66 
  67 //------------------------------print_statistics-------------------------------
  68 void Parse::print_statistics() {
  69   tty->print_cr("--- Compiler Statistics ---");
  70   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
  71   tty->print("  Nodes created: %d", nodes_created);
  72   tty->cr();
  73   if (methods_seen != methods_parsed) {
  74     tty->print_cr("Reasons for parse failures (NOT cumulative):");
  75   }
  76   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
  77 
  78   if (explicit_null_checks_inserted) {
  79     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,",
  80                   explicit_null_checks_inserted, explicit_null_checks_elided,
  81                   (100*explicit_null_checks_elided)/explicit_null_checks_inserted,
  82                   all_null_checks_found);
  83   }
  84   if (all_null_checks_found) {
  85     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
  86                   (100*implicit_null_checks)/all_null_checks_found);
  87   }
  88   if (SharedRuntime::_implicit_null_throws) {
  89     tty->print_cr("%d implicit null exceptions at runtime",
  90                   SharedRuntime::_implicit_null_throws);
  91   }
  92 
  93   if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
  94     BytecodeParseHistogram::print();
  95   }
  96 }
  97 #endif
  98 
  99 //------------------------------ON STACK REPLACEMENT---------------------------
 100 
 101 // Construct a node which can be used to get incoming state for
 102 // on stack replacement.
 103 Node* Parse::fetch_interpreter_state(int index,
 104                                      const Type* type,
 105                                      Node* local_addrs,
 106                                      Node* local_addrs_base) {
 107   BasicType bt = type->basic_type();
 108   if (type == TypePtr::NULL_PTR) {
 109     // Ptr types are mixed together with T_ADDRESS but NULL is
 110     // really for T_OBJECT types so correct it.
 111     bt = T_OBJECT;
 112   }
 113   Node *mem = memory(Compile::AliasIdxRaw);
 114   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 115   Node *ctl = control();
 116 
 117   // Very similar to LoadNode::make, except we handle un-aligned longs and
 118   // doubles on Sparc.  Intel can handle them just fine directly.
 119   Node *l = NULL;
 120   switch (bt) {                // Signature is flattened
 121   case T_INT:     l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
 122   case T_FLOAT:   l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
 123   case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
 124   case T_OBJECT:  l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
 125   case T_VALUETYPE: {
 126     // Load oop and create a new ValueTypeNode
 127     const TypeValueTypePtr* vtptr_type = TypeValueTypePtr::make(type->is_valuetype(), TypePtr::NotNull);
 128     l = _gvn.transform(new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, vtptr_type, MemNode::unordered));
 129     l = ValueTypeNode::make(gvn(), mem, l);
 130     break;
 131   }
 132   case T_LONG:
 133   case T_DOUBLE: {
 134     // Since arguments are in reverse order, the argument address 'adr'
 135     // refers to the back half of the long/double.  Recompute adr.
 136     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
 137     if (Matcher::misaligned_doubles_ok) {
 138       l = (bt == T_DOUBLE)
 139         ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
 140         : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
 141     } else {
 142       l = (bt == T_DOUBLE)
 143         ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
 144         : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
 145     }
 146     break;
 147   }
 148   default: ShouldNotReachHere();
 149   }
 150   return _gvn.transform(l);
 151 }
 152 
 153 // Helper routine to prevent the interpreter from handing
 154 // unexpected typestate to an OSR method.
 155 // The Node l is a value newly dug out of the interpreter frame.
 156 // The type is the type predicted by ciTypeFlow.  Note that it is
 157 // not a general type, but can only come from Type::get_typeflow_type.
 158 // The safepoint is a map which will feed an uncommon trap.
 159 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 160                                     SafePointNode* &bad_type_exit) {
 161 
 162   const TypeOopPtr* tp = type->isa_oopptr();
 163 
 164   // TypeFlow may assert null-ness if a type appears unloaded.
 165   if (type == TypePtr::NULL_PTR ||
 166       (tp != NULL && !tp->klass()->is_loaded())) {
 167     // Value must be null, not a real oop.
 168     Node* chk = _gvn.transform( new CmpPNode(l, null()) );
 169     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 170     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 171     set_control(_gvn.transform( new IfTrueNode(iff) ));
 172     Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
 173     bad_type_exit->control()->add_req(bad_type);
 174     l = null();
 175   }
 176 
 177   // Typeflow can also cut off paths from the CFG, based on
 178   // types which appear unloaded, or call sites which appear unlinked.
 179   // When paths are cut off, values at later merge points can rise
 180   // toward more specific classes.  Make sure these specific classes
 181   // are still in effect.
 182   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
 183     // TypeFlow asserted a specific object type.  Value must have that type.
 184     Node* bad_type_ctrl = NULL;
 185     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
 186     bad_type_exit->control()->add_req(bad_type_ctrl);
 187   }
 188 
 189   BasicType bt_l = _gvn.type(l)->basic_type();
 190   BasicType bt_t = type->basic_type();
 191   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 192   return l;
 193 }
 194 
 195 // Helper routine which sets up elements of the initial parser map when
 196 // performing a parse for on stack replacement.  Add values into map.
 197 // The only parameter contains the address of a interpreter arguments.
 198 void Parse::load_interpreter_state(Node* osr_buf) {
 199   int index;
 200   int max_locals = jvms()->loc_size();
 201   int max_stack  = jvms()->stk_size();
 202 
 203 
 204   // Mismatch between method and jvms can occur since map briefly held
 205   // an OSR entry state (which takes up one RawPtr word).
 206   assert(max_locals == method()->max_locals(), "sanity");
 207   assert(max_stack  >= method()->max_stack(),  "sanity");
 208   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 209   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 210 
 211   // Find the start block.
 212   Block* osr_block = start_block();
 213   assert(osr_block->start() == osr_bci(), "sanity");
 214 
 215   // Set initial BCI.
 216   set_parse_bci(osr_block->start());
 217 
 218   // Set initial stack depth.
 219   set_sp(osr_block->start_sp());
 220 
 221   // Check bailouts.  We currently do not perform on stack replacement
 222   // of loops in catch blocks or loops which branch with a non-empty stack.
 223   if (sp() != 0) {
 224     C->record_method_not_compilable("OSR starts with non-empty stack");
 225     return;
 226   }
 227   // Do not OSR inside finally clauses:
 228   if (osr_block->has_trap_at(osr_block->start())) {
 229     C->record_method_not_compilable("OSR starts with an immediate trap");
 230     return;
 231   }
 232 
 233   // Commute monitors from interpreter frame to compiler frame.
 234   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 235   int mcnt = osr_block->flow()->monitor_count();
 236   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 237   for (index = 0; index < mcnt; index++) {
 238     // Make a BoxLockNode for the monitor.
 239     Node *box = _gvn.transform(new BoxLockNode(next_monitor()));
 240 
 241 
 242     // Displaced headers and locked objects are interleaved in the
 243     // temp OSR buffer.  We only copy the locked objects out here.
 244     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 245     Node* lock_object = fetch_interpreter_state(index*2, Type::get_const_basic_type(T_OBJECT), monitors_addr, osr_buf);
 246     // Try and copy the displaced header to the BoxNode
 247     Node* displaced_hdr = fetch_interpreter_state((index*2) + 1, Type::get_const_basic_type(T_ADDRESS), monitors_addr, osr_buf);
 248 
 249 
 250     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 251 
 252     // Build a bogus FastLockNode (no code will be generated) and push the
 253     // monitor into our debug info.
 254     const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock();
 255     map()->push_monitor(flock);
 256 
 257     // If the lock is our method synchronization lock, tuck it away in
 258     // _sync_lock for return and rethrow exit paths.
 259     if (index == 0 && method()->is_synchronized()) {
 260       _synch_lock = flock;
 261     }
 262   }
 263 
 264   // Use the raw liveness computation to make sure that unexpected
 265   // values don't propagate into the OSR frame.
 266   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 267   if (!live_locals.is_valid()) {
 268     // Degenerate or breakpointed method.
 269     C->record_method_not_compilable("OSR in empty or breakpointed method");
 270     return;
 271   }
 272 
 273   // Extract the needed locals from the interpreter frame.
 274   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
 275 
 276   // find all the locals that the interpreter thinks contain live oops
 277   const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
 278   for (index = 0; index < max_locals; index++) {
 279 
 280     if (!live_locals.at(index)) {
 281       continue;
 282     }
 283 
 284     const Type *type = osr_block->local_type_at(index);
 285 
 286     if (type->isa_oopptr() != NULL) {
 287 
 288       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
 289       // else we might load a stale oop if the MethodLiveness disagrees with the
 290       // result of the interpreter. If the interpreter says it is dead we agree
 291       // by making the value go to top.
 292       //
 293 
 294       if (!live_oops.at(index)) {
 295         if (C->log() != NULL) {
 296           C->log()->elem("OSR_mismatch local_index='%d'",index);
 297         }
 298         set_local(index, null());
 299         // and ignore it for the loads
 300         continue;
 301       }
 302     }
 303 
 304     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 305     if (type == Type::TOP || type == Type::HALF) {
 306       continue;
 307     }
 308     // If the type falls to bottom, then this must be a local that
 309     // is mixing ints and oops or some such.  Forcing it to top
 310     // makes it go dead.
 311     if (type == Type::BOTTOM) {
 312       continue;
 313     }
 314     // Construct code to access the appropriate local.
 315     Node* value = fetch_interpreter_state(index, type, locals_addr, osr_buf);
 316     set_local(index, value);
 317   }
 318 
 319   // Extract the needed stack entries from the interpreter frame.
 320   for (index = 0; index < sp(); index++) {
 321     const Type *type = osr_block->stack_type_at(index);
 322     if (type != Type::TOP) {
 323       // Currently the compiler bails out when attempting to on stack replace
 324       // at a bci with a non-empty stack.  We should not reach here.
 325       ShouldNotReachHere();
 326     }
 327   }
 328 
 329   // End the OSR migration
 330   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 331                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 332                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 333                     osr_buf);
 334 
 335   // Now that the interpreter state is loaded, make sure it will match
 336   // at execution time what the compiler is expecting now:
 337   SafePointNode* bad_type_exit = clone_map();
 338   bad_type_exit->set_control(new RegionNode(1));
 339 
 340   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
 341   for (index = 0; index < max_locals; index++) {
 342     if (stopped())  break;
 343     Node* l = local(index);
 344     if (l->is_top())  continue;  // nothing here
 345     const Type *type = osr_block->local_type_at(index);
 346     if (type->isa_oopptr() != NULL) {
 347       if (!live_oops.at(index)) {
 348         // skip type check for dead oops
 349         continue;
 350       }
 351     }
 352     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
 353       // In our current system it's illegal for jsr addresses to be
 354       // live into an OSR entry point because the compiler performs
 355       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
 356       // case and aborts the compile if addresses are live into an OSR
 357       // entry point.  Because of that we can assume that any address
 358       // locals at the OSR entry point are dead.  Method liveness
 359       // isn't precise enought to figure out that they are dead in all
 360       // cases so simply skip checking address locals all
 361       // together. Any type check is guaranteed to fail since the
 362       // interpreter type is the result of a load which might have any
 363       // value and the expected type is a constant.
 364       continue;
 365     }
 366     set_local(index, check_interpreter_type(l, type, bad_type_exit));
 367   }
 368 
 369   for (index = 0; index < sp(); index++) {
 370     if (stopped())  break;
 371     Node* l = stack(index);
 372     if (l->is_top())  continue;  // nothing here
 373     const Type *type = osr_block->stack_type_at(index);
 374     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
 375   }
 376 
 377   if (bad_type_exit->control()->req() > 1) {
 378     // Build an uncommon trap here, if any inputs can be unexpected.
 379     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
 380     record_for_igvn(bad_type_exit->control());
 381     SafePointNode* types_are_good = map();
 382     set_map(bad_type_exit);
 383     // The unexpected type happens because a new edge is active
 384     // in the CFG, which typeflow had previously ignored.
 385     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
 386     // This x will be typed as Integer if notReached is not yet linked.
 387     // It could also happen due to a problem in ciTypeFlow analysis.
 388     uncommon_trap(Deoptimization::Reason_constraint,
 389                   Deoptimization::Action_reinterpret);
 390     set_map(types_are_good);
 391   }
 392 }
 393 
 394 //------------------------------Parse------------------------------------------
 395 // Main parser constructor.
 396 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
 397   : _exits(caller)
 398 {
 399   // Init some variables
 400   _caller = caller;
 401   _method = parse_method;
 402   _expected_uses = expected_uses;
 403   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
 404   _wrote_final = false;
 405   _wrote_volatile = false;
 406   _wrote_stable = false;
 407   _wrote_fields = false;
 408   _alloc_with_final = NULL;
 409   _entry_bci = InvocationEntryBci;
 410   _tf = NULL;
 411   _block = NULL;
 412   _first_return = true;
 413   _replaced_nodes_for_exceptions = false;
 414   _new_idx = C->unique();
 415   debug_only(_block_count = -1);
 416   debug_only(_blocks = (Block*)-1);
 417 #ifndef PRODUCT
 418   if (PrintCompilation || PrintOpto) {
 419     // Make sure I have an inline tree, so I can print messages about it.
 420     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
 421     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
 422   }
 423   _max_switch_depth = 0;
 424   _est_switch_depth = 0;
 425 #endif
 426 
 427   if (parse_method->has_reserved_stack_access()) {
 428     C->set_has_reserved_stack_access(true);
 429   }
 430 
 431   _tf = TypeFunc::make(method());
 432   _iter.reset_to_method(method());
 433   _flow = method()->get_flow_analysis();
 434   if (_flow->failing()) {
 435     C->record_method_not_compilable_all_tiers(_flow->failure_reason());
 436   }
 437 
 438 #ifndef PRODUCT
 439   if (_flow->has_irreducible_entry()) {
 440     C->set_parsed_irreducible_loop(true);
 441   }
 442 #endif
 443 
 444   if (_expected_uses <= 0) {
 445     _prof_factor = 1;
 446   } else {
 447     float prof_total = parse_method->interpreter_invocation_count();
 448     if (prof_total <= _expected_uses) {
 449       _prof_factor = 1;
 450     } else {
 451       _prof_factor = _expected_uses / prof_total;
 452     }
 453   }
 454 
 455   CompileLog* log = C->log();
 456   if (log != NULL) {
 457     log->begin_head("parse method='%d' uses='%f'",
 458                     log->identify(parse_method), expected_uses);
 459     if (depth() == 1 && C->is_osr_compilation()) {
 460       log->print(" osr_bci='%d'", C->entry_bci());
 461     }
 462     log->stamp();
 463     log->end_head();
 464   }
 465 
 466   // Accumulate deoptimization counts.
 467   // (The range_check and store_check counts are checked elsewhere.)
 468   ciMethodData* md = method()->method_data();
 469   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
 470     uint md_count = md->trap_count(reason);
 471     if (md_count != 0) {
 472       if (md_count == md->trap_count_limit())
 473         md_count += md->overflow_trap_count();
 474       uint total_count = C->trap_count(reason);
 475       uint old_count   = total_count;
 476       total_count += md_count;
 477       // Saturate the add if it overflows.
 478       if (total_count < old_count || total_count < md_count)
 479         total_count = (uint)-1;
 480       C->set_trap_count(reason, total_count);
 481       if (log != NULL)
 482         log->elem("observe trap='%s' count='%d' total='%d'",
 483                   Deoptimization::trap_reason_name(reason),
 484                   md_count, total_count);
 485     }
 486   }
 487   // Accumulate total sum of decompilations, also.
 488   C->set_decompile_count(C->decompile_count() + md->decompile_count());
 489 
 490   _count_invocations = C->do_count_invocations();
 491   _method_data_update = C->do_method_data_update();
 492 
 493   if (log != NULL && method()->has_exception_handlers()) {
 494     log->elem("observe that='has_exception_handlers'");
 495   }
 496 
 497   assert(method()->can_be_compiled(),       "Can not parse this method, cutout earlier");
 498   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 499 
 500   // Always register dependence if JVMTI is enabled, because
 501   // either breakpoint setting or hotswapping of methods may
 502   // cause deoptimization.
 503   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 504     C->dependencies()->assert_evol_method(method());
 505   }
 506 
 507   NOT_PRODUCT(methods_seen++);
 508 
 509   // Do some special top-level things.
 510   if (depth() == 1 && C->is_osr_compilation()) {
 511     _entry_bci = C->entry_bci();
 512     _flow = method()->get_osr_flow_analysis(osr_bci());
 513     if (_flow->failing()) {
 514       C->record_method_not_compilable(_flow->failure_reason());
 515 #ifndef PRODUCT
 516       if (PrintOpto && (Verbose || WizardMode)) {
 517         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 518         if (Verbose) {
 519           method()->print();
 520           method()->print_codes();
 521           _flow->print();
 522         }
 523       }
 524 #endif
 525     }
 526     _tf = C->tf();     // the OSR entry type is different
 527   }
 528 
 529 #ifdef ASSERT
 530   if (depth() == 1) {
 531     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 532     if (C->tf() != tf()) {
 533       MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
 534       assert(C->env()->system_dictionary_modification_counter_changed(),
 535              "Must invalidate if TypeFuncs differ");
 536     }
 537   } else {
 538     assert(!this->is_osr_parse(), "no recursive OSR");
 539   }
 540 #endif
 541 
 542 #ifndef PRODUCT
 543   methods_parsed++;
 544   // add method size here to guarantee that inlined methods are added too
 545   if (CITime)
 546     _total_bytes_compiled += method()->code_size();
 547 
 548   show_parse_info();
 549 #endif
 550 
 551   if (failing()) {
 552     if (log)  log->done("parse");
 553     return;
 554   }
 555 
 556   gvn().set_type(root(), root()->bottom_type());
 557   gvn().transform(top());
 558 
 559   // Import the results of the ciTypeFlow.
 560   init_blocks();
 561 
 562   // Merge point for all normal exits
 563   build_exits();
 564 
 565   // Setup the initial JVM state map.
 566   SafePointNode* entry_map = create_entry_map();
 567 
 568   // Check for bailouts during map initialization
 569   if (failing() || entry_map == NULL) {
 570     if (log)  log->done("parse");
 571     return;
 572   }
 573 
 574   Node_Notes* caller_nn = C->default_node_notes();
 575   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
 576   if (DebugInlinedCalls || depth() == 1) {
 577     C->set_default_node_notes(make_node_notes(caller_nn));
 578   }
 579 
 580   if (is_osr_parse()) {
 581     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
 582     entry_map->set_req(TypeFunc::Parms+0, top());
 583     set_map(entry_map);
 584     load_interpreter_state(osr_buf);
 585   } else {
 586     set_map(entry_map);
 587     do_method_entry();
 588     if (depth() == 1 && C->age_code()) {
 589       decrement_age();
 590     }
 591   }
 592 
 593   if (depth() == 1 && !failing()) {
 594     // Add check to deoptimize the nmethod if RTM state was changed
 595     rtm_deopt();
 596   }
 597 
 598   // Check for bailouts during method entry or RTM state check setup.
 599   if (failing()) {
 600     if (log)  log->done("parse");
 601     C->set_default_node_notes(caller_nn);
 602     return;
 603   }
 604 
 605   entry_map = map();  // capture any changes performed by method setup code
 606   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 607 
 608   // We begin parsing as if we have just encountered a jump to the
 609   // method entry.
 610   Block* entry_block = start_block();
 611   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 612   set_map_clone(entry_map);
 613   merge_common(entry_block, entry_block->next_path_num());
 614 
 615 #ifndef PRODUCT
 616   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 617   set_parse_histogram( parse_histogram_obj );
 618 #endif
 619 
 620   // Parse all the basic blocks.
 621   do_all_blocks();
 622 
 623   C->set_default_node_notes(caller_nn);
 624 
 625   // Check for bailouts during conversion to graph
 626   if (failing()) {
 627     if (log)  log->done("parse");
 628     return;
 629   }
 630 
 631   // Fix up all exiting control flow.
 632   set_map(entry_map);
 633   do_exits();
 634 
 635   if (log)  log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'",
 636                       C->unique(), C->live_nodes(), C->node_arena()->used());
 637 }
 638 
 639 //---------------------------do_all_blocks-------------------------------------
 640 void Parse::do_all_blocks() {
 641   bool has_irreducible = flow()->has_irreducible_entry();
 642 
 643   // Walk over all blocks in Reverse Post-Order.
 644   while (true) {
 645     bool progress = false;
 646     for (int rpo = 0; rpo < block_count(); rpo++) {
 647       Block* block = rpo_at(rpo);
 648 
 649       if (block->is_parsed()) continue;
 650 
 651       if (!block->is_merged()) {
 652         // Dead block, no state reaches this block
 653         continue;
 654       }
 655 
 656       // Prepare to parse this block.
 657       load_state_from(block);
 658 
 659       if (stopped()) {
 660         // Block is dead.
 661         continue;
 662       }
 663 
 664       NOT_PRODUCT(blocks_parsed++);
 665 
 666       progress = true;
 667       if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) {
 668         // Not all preds have been parsed.  We must build phis everywhere.
 669         // (Note that dead locals do not get phis built, ever.)
 670         ensure_phis_everywhere();
 671 
 672         if (block->is_SEL_head() &&
 673             (UseLoopPredicate || LoopLimitCheck)) {
 674           // Add predicate to single entry (not irreducible) loop head.
 675           assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
 676           // Need correct bci for predicate.
 677           // It is fine to set it here since do_one_block() will set it anyway.
 678           set_parse_bci(block->start());
 679           add_predicate();
 680 
 681           // Add new region for back branches.
 682           int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
 683           RegionNode *r = new RegionNode(edges+1);
 684           _gvn.set_type(r, Type::CONTROL);
 685           record_for_igvn(r);
 686           r->init_req(edges, control());
 687           set_control(r);
 688           // Add new phis.
 689           ensure_phis_everywhere();
 690         }
 691 
 692         // Leave behind an undisturbed copy of the map, for future merges.
 693         set_map(clone_map());
 694       }
 695 
 696       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
 697         // In the absence of irreducible loops, the Region and Phis
 698         // associated with a merge that doesn't involve a backedge can
 699         // be simplified now since the RPO parsing order guarantees
 700         // that any path which was supposed to reach here has already
 701         // been parsed or must be dead.
 702         Node* c = control();
 703         Node* result = _gvn.transform_no_reclaim(control());
 704         if (c != result && TraceOptoParse) {
 705           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
 706         }
 707         if (result != top()) {
 708           record_for_igvn(result);
 709         }
 710       }
 711 
 712       // Parse the block.
 713       do_one_block();
 714 
 715       // Check for bailouts.
 716       if (failing())  return;
 717     }
 718 
 719     // with irreducible loops multiple passes might be necessary to parse everything
 720     if (!has_irreducible || !progress) {
 721       break;
 722     }
 723   }
 724 
 725 #ifndef PRODUCT
 726   blocks_seen += block_count();
 727 
 728   // Make sure there are no half-processed blocks remaining.
 729   // Every remaining unprocessed block is dead and may be ignored now.
 730   for (int rpo = 0; rpo < block_count(); rpo++) {
 731     Block* block = rpo_at(rpo);
 732     if (!block->is_parsed()) {
 733       if (TraceOptoParse) {
 734         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
 735       }
 736       assert(!block->is_merged(), "no half-processed blocks");
 737     }
 738   }
 739 #endif
 740 }
 741 
 742 //-------------------------------build_exits----------------------------------
 743 // Build normal and exceptional exit merge points.
 744 void Parse::build_exits() {
 745   // make a clone of caller to prevent sharing of side-effects
 746   _exits.set_map(_exits.clone_map());
 747   _exits.clean_stack(_exits.sp());
 748   _exits.sync_jvms();
 749 
 750   RegionNode* region = new RegionNode(1);
 751   record_for_igvn(region);
 752   gvn().set_type_bottom(region);
 753   _exits.set_control(region);
 754 
 755   // Note:  iophi and memphi are not transformed until do_exits.
 756   Node* iophi  = new PhiNode(region, Type::ABIO);
 757   Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 758   gvn().set_type_bottom(iophi);
 759   gvn().set_type_bottom(memphi);
 760   _exits.set_i_o(iophi);
 761   _exits.set_all_memory(memphi);
 762 
 763   // Add a return value to the exit state.  (Do not push it yet.)
 764   if (tf()->range()->cnt() > TypeFunc::Parms) {
 765     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 766     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 767     // becomes loaded during the subsequent parsing, the loaded and unloaded
 768     // types will not join when we transform and push in do_exits().
 769     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 770     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
 771       ret_type = TypeOopPtr::BOTTOM;
 772     }
 773     if (_caller->has_method() && ret_type->isa_valuetypeptr()) {
 774       // When inlining, return value type as ValueTypeNode not as oop
 775       ret_type = ret_type->is_valuetypeptr()->value_type();
 776     }
 777     int         ret_size = type2size[ret_type->basic_type()];
 778     Node*       ret_phi  = new PhiNode(region, ret_type);
 779     gvn().set_type_bottom(ret_phi);
 780     _exits.ensure_stack(ret_size);
 781     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 782     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 783     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 784     // Note:  ret_phi is not yet pushed, until do_exits.
 785   }
 786 }
 787 
 788 // Helper function to create a ValueTypeNode from its fields passed as
 789 // arguments. Fields are passed in order of increasing offsets.
 790 Node* Compile::create_vt_node(Node* n, ciValueKlass* vk, ciValueKlass* base_vk, int base_offset, int base_input) {
 791   assert(base_offset >= 0, "offset in value type always positive");
 792   PhaseGVN& gvn = *initial_gvn();
 793   ValueTypeNode* vt = ValueTypeNode::make(gvn, vk);
 794   for (uint i = 0; i < vt->field_count(); i++) {
 795     ciType* field_type = vt->get_field_type(i);
 796     int offset = base_offset + vt->get_field_offset(i) - (base_offset > 0 ? vk->first_field_offset() : 0);
 797     if (field_type->is_valuetype()) {
 798       ciValueKlass* embedded_vk = field_type->as_value_klass();
 799       Node* embedded_vt = create_vt_node(n, embedded_vk, base_vk, offset, base_input);
 800       vt->set_field_value(i, embedded_vt);
 801     } else {
 802       int j = 0; int extra = 0;
 803       for (; j < base_vk->nof_nonstatic_fields(); j++) {
 804         ciField* f = base_vk->nonstatic_field_at(j);
 805         if (offset == f->offset()) {
 806           assert(f->type() == field_type, "inconsistent field type");
 807           break;
 808         }
 809         BasicType bt = f->type()->basic_type();
 810         if (bt == T_LONG || bt == T_DOUBLE) {
 811           extra++;
 812         }
 813       }
 814       assert(j != base_vk->nof_nonstatic_fields(), "must find");
 815       Node* parm = NULL;
 816       if (n->is_Start()) {
 817         parm = gvn.transform(new ParmNode(n->as_Start(), base_input + j + extra));
 818       } else {
 819         assert(n->is_Call(), "nothing else here");
 820         parm = n->in(base_input + j + extra);
 821       }
 822       vt->set_field_value(i, parm);
 823       // Record all these guys for later GVN.
 824       record_for_igvn(parm);
 825     }
 826   }
 827   return gvn.transform(vt);
 828 }
 829 
 830 //----------------------------build_start_state-------------------------------
 831 // Construct a state which contains only the incoming arguments from an
 832 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
 833 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 834   int        arg_size_sig = tf->domain_sig()->cnt();
 835   int        max_size = MAX2(arg_size_sig, (int)tf->range()->cnt());
 836   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 837   SafePointNode* map  = new SafePointNode(max_size, NULL);
 838   record_for_igvn(map);
 839   assert(arg_size_sig == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 840   Node_Notes* old_nn = default_node_notes();
 841   if (old_nn != NULL && has_method()) {
 842     Node_Notes* entry_nn = old_nn->clone(this);
 843     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 844     entry_jvms->set_offsets(0);
 845     entry_jvms->set_bci(entry_bci());
 846     entry_nn->set_jvms(entry_jvms);
 847     set_default_node_notes(entry_nn);
 848   }
 849   PhaseGVN& gvn = *initial_gvn();
 850   uint j = 0;
 851   for (uint i = 0; i < (uint)arg_size_sig; i++) {
 852     assert(j >= i, "less actual arguments than in the signature?");
 853     if (ValueTypePassFieldsAsArgs) {
 854       if (i < TypeFunc::Parms) {
 855         assert(i == j, "no change before the actual arguments");
 856         Node* parm = gvn.transform(new ParmNode(start, i));
 857         map->init_req(i, parm);
 858         // Record all these guys for later GVN.
 859         record_for_igvn(parm);
 860         j++;
 861       } else {
 862         // Value type arguments are not passed by reference: we get an
 863         // argument per field of the value type. Build ValueTypeNodes
 864         // from the value type arguments.
 865         const Type* t = tf->domain_sig()->field_at(i);
 866         if (t->isa_valuetypeptr()) {
 867           ciValueKlass* vk = t->is_valuetypeptr()->value_type()->value_klass();
 868           Node* vt = create_vt_node(start, vk, vk, 0, j);
 869           map->init_req(i, gvn.transform(vt));
 870           j += vk->value_arg_slots();
 871         } else {
 872           Node* parm = gvn.transform(new ParmNode(start, j));
 873           map->init_req(i, parm);
 874           // Record all these guys for later GVN.
 875           record_for_igvn(parm);
 876           j++;
 877         }
 878       }
 879     } else {
 880      Node* parm = gvn.transform(new ParmNode(start, i));
 881      // Check if parameter is a value type pointer
 882      if (gvn.type(parm)->isa_valuetypeptr()) {
 883        // Create ValueTypeNode from the oop and replace the parameter
 884        parm = ValueTypeNode::make(gvn, map->memory(), parm);
 885      }
 886      map->init_req(i, parm);
 887      // Record all these guys for later GVN.
 888      record_for_igvn(parm);
 889      j++;
 890     }
 891   }
 892   for (; j < map->req(); j++) {
 893     map->init_req(j, top());
 894   }
 895   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 896   set_default_node_notes(old_nn);
 897   map->set_jvms(jvms);
 898   jvms->set_map(map);
 899   return jvms;
 900 }
 901 
 902 //-----------------------------make_node_notes---------------------------------
 903 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 904   if (caller_nn == NULL)  return NULL;
 905   Node_Notes* nn = caller_nn->clone(C);
 906   JVMState* caller_jvms = nn->jvms();
 907   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 908   jvms->set_offsets(0);
 909   jvms->set_bci(_entry_bci);
 910   nn->set_jvms(jvms);
 911   return nn;
 912 }
 913 
 914 
 915 //--------------------------return_values--------------------------------------
 916 void Compile::return_values(JVMState* jvms) {
 917   GraphKit kit(jvms);
 918   Node* ret = new ReturnNode(TypeFunc::Parms,
 919                              kit.control(),
 920                              kit.i_o(),
 921                              kit.reset_memory(),
 922                              kit.frameptr(),
 923                              kit.returnadr());
 924   // Add zero or 1 return values
 925   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 926   if (ret_size > 0) {
 927     kit.inc_sp(-ret_size);  // pop the return value(s)
 928     kit.sync_jvms();
 929     ret->add_req(kit.argument(0));
 930     // Note:  The second dummy edge is not needed by a ReturnNode.
 931   }
 932   // bind it to root
 933   root()->add_req(ret);
 934   record_for_igvn(ret);
 935   initial_gvn()->transform_no_reclaim(ret);
 936 }
 937 
 938 //------------------------rethrow_exceptions-----------------------------------
 939 // Bind all exception states in the list into a single RethrowNode.
 940 void Compile::rethrow_exceptions(JVMState* jvms) {
 941   GraphKit kit(jvms);
 942   if (!kit.has_exceptions())  return;  // nothing to generate
 943   // Load my combined exception state into the kit, with all phis transformed:
 944   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 945   Node* ex_oop = kit.use_exception_state(ex_map);
 946   RethrowNode* exit = new RethrowNode(kit.control(),
 947                                       kit.i_o(), kit.reset_memory(),
 948                                       kit.frameptr(), kit.returnadr(),
 949                                       // like a return but with exception input
 950                                       ex_oop);
 951   // bind to root
 952   root()->add_req(exit);
 953   record_for_igvn(exit);
 954   initial_gvn()->transform_no_reclaim(exit);
 955 }
 956 
 957 //---------------------------do_exceptions-------------------------------------
 958 // Process exceptions arising from the current bytecode.
 959 // Send caught exceptions to the proper handler within this method.
 960 // Unhandled exceptions feed into _exit.
 961 void Parse::do_exceptions() {
 962   if (!has_exceptions())  return;
 963 
 964   if (failing()) {
 965     // Pop them all off and throw them away.
 966     while (pop_exception_state() != NULL) ;
 967     return;
 968   }
 969 
 970   PreserveJVMState pjvms(this, false);
 971 
 972   SafePointNode* ex_map;
 973   while ((ex_map = pop_exception_state()) != NULL) {
 974     if (!method()->has_exception_handlers()) {
 975       // Common case:  Transfer control outward.
 976       // Doing it this early allows the exceptions to common up
 977       // even between adjacent method calls.
 978       throw_to_exit(ex_map);
 979     } else {
 980       // Have to look at the exception first.
 981       assert(stopped(), "catch_inline_exceptions trashes the map");
 982       catch_inline_exceptions(ex_map);
 983       stop_and_kill_map();      // we used up this exception state; kill it
 984     }
 985   }
 986 
 987   // We now return to our regularly scheduled program:
 988 }
 989 
 990 //---------------------------throw_to_exit-------------------------------------
 991 // Merge the given map into an exception exit from this method.
 992 // The exception exit will handle any unlocking of receiver.
 993 // The ex_oop must be saved within the ex_map, unlike merge_exception.
 994 void Parse::throw_to_exit(SafePointNode* ex_map) {
 995   // Pop the JVMS to (a copy of) the caller.
 996   GraphKit caller;
 997   caller.set_map_clone(_caller->map());
 998   caller.set_bci(_caller->bci());
 999   caller.set_sp(_caller->sp());
1000   // Copy out the standard machine state:
1001   for (uint i = 0; i < TypeFunc::Parms; i++) {
1002     caller.map()->set_req(i, ex_map->in(i));
1003   }
1004   if (ex_map->has_replaced_nodes()) {
1005     _replaced_nodes_for_exceptions = true;
1006   }
1007   caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx);
1008   // ...and the exception:
1009   Node*          ex_oop        = saved_ex_oop(ex_map);
1010   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
1011   // Finally, collect the new exception state in my exits:
1012   _exits.add_exception_state(caller_ex_map);
1013 }
1014 
1015 //------------------------------do_exits---------------------------------------
1016 void Parse::do_exits() {
1017   set_parse_bci(InvocationEntryBci);
1018 
1019   // Now peephole on the return bits
1020   Node* region = _exits.control();
1021   _exits.set_control(gvn().transform(region));
1022 
1023   Node* iophi = _exits.i_o();
1024   _exits.set_i_o(gvn().transform(iophi));
1025 
1026   // Figure out if we need to emit the trailing barrier. The barrier is only
1027   // needed in the constructors, and only in three cases:
1028   //
1029   // 1. The constructor wrote a final. The effects of all initializations
1030   //    must be committed to memory before any code after the constructor
1031   //    publishes the reference to the newly constructed object. Rather
1032   //    than wait for the publication, we simply block the writes here.
1033   //    Rather than put a barrier on only those writes which are required
1034   //    to complete, we force all writes to complete.
1035   //
1036   // 2. On PPC64, also add MemBarRelease for constructors which write
1037   //    volatile fields. As support_IRIW_for_not_multiple_copy_atomic_cpu
1038   //    is set on PPC64, no sync instruction is issued after volatile
1039   //    stores. We want to guarantee the same behavior as on platforms
1040   //    with total store order, although this is not required by the Java
1041   //    memory model. So as with finals, we add a barrier here.
1042   //
1043   // 3. Experimental VM option is used to force the barrier if any field
1044   //    was written out in the constructor.
1045   //
1046   // "All bets are off" unless the first publication occurs after a
1047   // normal return from the constructor.  We do not attempt to detect
1048   // such unusual early publications.  But no barrier is needed on
1049   // exceptional returns, since they cannot publish normally.
1050   //
1051   if (method()->is_initializer() &&
1052         (wrote_final() ||
1053            PPC64_ONLY(wrote_volatile() ||)
1054            (AlwaysSafeConstructors && wrote_fields()))) {
1055     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
1056 
1057     // If Memory barrier is created for final fields write
1058     // and allocation node does not escape the initialize method,
1059     // then barrier introduced by allocation node can be removed.
1060     if (DoEscapeAnalysis && alloc_with_final()) {
1061       AllocateNode *alloc = AllocateNode::Ideal_allocation(alloc_with_final(), &_gvn);
1062       alloc->compute_MemBar_redundancy(method());
1063     }
1064     if (PrintOpto && (Verbose || WizardMode)) {
1065       method()->print_name();
1066       tty->print_cr(" writes finals and needs a memory barrier");
1067     }
1068   }
1069 
1070   // Any method can write a @Stable field; insert memory barriers
1071   // after those also. Can't bind predecessor allocation node (if any)
1072   // with barrier because allocation doesn't always dominate
1073   // MemBarRelease.
1074   if (wrote_stable()) {
1075     _exits.insert_mem_bar(Op_MemBarRelease);
1076     if (PrintOpto && (Verbose || WizardMode)) {
1077       method()->print_name();
1078       tty->print_cr(" writes @Stable and needs a memory barrier");
1079     }
1080   }
1081 
1082   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1083     // transform each slice of the original memphi:
1084     mms.set_memory(_gvn.transform(mms.memory()));
1085   }
1086 
1087   if (tf()->range()->cnt() > TypeFunc::Parms) {
1088     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
1089     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
1090     if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1091       // In case of concurrent class loading, the type we set for the
1092       // ret_phi in build_exits() may have been too optimistic and the
1093       // ret_phi may be top now.
1094       // Otherwise, we've encountered an error and have to mark the method as
1095       // not compilable. Just using an assertion instead would be dangerous
1096       // as this could lead to an infinite compile loop in non-debug builds.
1097       {
1098         MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
1099         if (C->env()->system_dictionary_modification_counter_changed()) {
1100           C->record_failure(C2Compiler::retry_class_loading_during_parsing());
1101         } else {
1102           C->record_method_not_compilable("Can't determine return type.");
1103         }
1104       }
1105       return;
1106     }
1107     if (_caller->has_method() && ret_type->isa_valuetypeptr()) {
1108       // Inlined methods return a ValueTypeNode
1109       _exits.push_node(T_VALUETYPE, ret_phi);
1110     } else {
1111       _exits.push_node(ret_type->basic_type(), ret_phi);
1112     }
1113   }
1114 
1115   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
1116 
1117   // Unlock along the exceptional paths.
1118   // This is done late so that we can common up equivalent exceptions
1119   // (e.g., null checks) arising from multiple points within this method.
1120   // See GraphKit::add_exception_state, which performs the commoning.
1121   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
1122 
1123   // record exit from a method if compiled while Dtrace is turned on.
1124   if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) {
1125     // First move the exception list out of _exits:
1126     GraphKit kit(_exits.transfer_exceptions_into_jvms());
1127     SafePointNode* normal_map = kit.map();  // keep this guy safe
1128     // Now re-collect the exceptions into _exits:
1129     SafePointNode* ex_map;
1130     while ((ex_map = kit.pop_exception_state()) != NULL) {
1131       Node* ex_oop = kit.use_exception_state(ex_map);
1132       // Force the exiting JVM state to have this method at InvocationEntryBci.
1133       // The exiting JVM state is otherwise a copy of the calling JVMS.
1134       JVMState* caller = kit.jvms();
1135       JVMState* ex_jvms = caller->clone_shallow(C);
1136       ex_jvms->set_map(kit.clone_map());
1137       ex_jvms->map()->set_jvms(ex_jvms);
1138       ex_jvms->set_bci(   InvocationEntryBci);
1139       kit.set_jvms(ex_jvms);
1140       if (do_synch) {
1141         // Add on the synchronized-method box/object combo
1142         kit.map()->push_monitor(_synch_lock);
1143         // Unlock!
1144         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1145       }
1146       if (C->env()->dtrace_method_probes()) {
1147         kit.make_dtrace_method_exit(method());
1148       }
1149       if (_replaced_nodes_for_exceptions) {
1150         kit.map()->apply_replaced_nodes();
1151       }
1152       // Done with exception-path processing.
1153       ex_map = kit.make_exception_state(ex_oop);
1154       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1155       // Pop the last vestige of this method:
1156       ex_map->set_jvms(caller->clone_shallow(C));
1157       ex_map->jvms()->set_map(ex_map);
1158       _exits.push_exception_state(ex_map);
1159     }
1160     assert(_exits.map() == normal_map, "keep the same return state");
1161   }
1162 
1163   {
1164     // Capture very early exceptions (receiver null checks) from caller JVMS
1165     GraphKit caller(_caller);
1166     SafePointNode* ex_map;
1167     while ((ex_map = caller.pop_exception_state()) != NULL) {
1168       _exits.add_exception_state(ex_map);
1169     }
1170   }
1171   _exits.map()->apply_replaced_nodes();
1172 }
1173 
1174 //-----------------------------create_entry_map-------------------------------
1175 // Initialize our parser map to contain the types at method entry.
1176 // For OSR, the map contains a single RawPtr parameter.
1177 // Initial monitor locking for sync. methods is performed by do_method_entry.
1178 SafePointNode* Parse::create_entry_map() {
1179   // Check for really stupid bail-out cases.
1180   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1181   if (len >= 32760) {
1182     C->record_method_not_compilable_all_tiers("too many local variables");
1183     return NULL;
1184   }
1185 
1186   // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1187   _caller->map()->delete_replaced_nodes();
1188 
1189   // If this is an inlined method, we may have to do a receiver null check.
1190   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1191     GraphKit kit(_caller);
1192     if (!kit.argument(0)->is_ValueType()) {
1193       kit.null_check_receiver_before_call(method());
1194     }
1195     _caller = kit.transfer_exceptions_into_jvms();
1196     if (kit.stopped()) {
1197       _exits.add_exception_states_from(_caller);
1198       _exits.set_jvms(_caller);
1199       return NULL;
1200     }
1201   }
1202 
1203   assert(method() != NULL, "parser must have a method");
1204 
1205   // Create an initial safepoint to hold JVM state during parsing
1206   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1207   set_map(new SafePointNode(len, jvms));
1208   jvms->set_map(map());
1209   record_for_igvn(map());
1210   assert(jvms->endoff() == len, "correct jvms sizing");
1211 
1212   SafePointNode* inmap = _caller->map();
1213   assert(inmap != NULL, "must have inmap");
1214   // In case of null check on receiver above
1215   map()->transfer_replaced_nodes_from(inmap, _new_idx);
1216 
1217   uint i;
1218 
1219   // Pass thru the predefined input parameters.
1220   for (i = 0; i < TypeFunc::Parms; i++) {
1221     map()->init_req(i, inmap->in(i));
1222   }
1223 
1224   if (depth() == 1) {
1225     assert(map()->memory()->Opcode() == Op_Parm, "");
1226     // Insert the memory aliasing node
1227     set_all_memory(reset_memory());
1228   }
1229   assert(merged_memory(), "");
1230 
1231   // Now add the locals which are initially bound to arguments:
1232   uint arg_size = tf()->domain_sig()->cnt();
1233   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1234   for (i = TypeFunc::Parms; i < arg_size; i++) {
1235     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1236   }
1237 
1238   // Clear out the rest of the map (locals and stack)
1239   for (i = arg_size; i < len; i++) {
1240     map()->init_req(i, top());
1241   }
1242 
1243   SafePointNode* entry_map = stop();
1244   return entry_map;
1245 }
1246 
1247 //-----------------------------do_method_entry--------------------------------
1248 // Emit any code needed in the pseudo-block before BCI zero.
1249 // The main thing to do is lock the receiver of a synchronized method.
1250 void Parse::do_method_entry() {
1251   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1252   set_sp(0);                      // Java Stack Pointer
1253 
1254   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1255 
1256   if (C->env()->dtrace_method_probes()) {
1257     make_dtrace_method_entry(method());
1258   }
1259 
1260   // If the method is synchronized, we need to construct a lock node, attach
1261   // it to the Start node, and pin it there.
1262   if (method()->is_synchronized()) {
1263     // Insert a FastLockNode right after the Start which takes as arguments
1264     // the current thread pointer, the "this" pointer & the address of the
1265     // stack slot pair used for the lock.  The "this" pointer is a projection
1266     // off the start node, but the locking spot has to be constructed by
1267     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1268     // becomes the second argument to the FastLockNode call.  The
1269     // FastLockNode becomes the new control parent to pin it to the start.
1270 
1271     // Setup Object Pointer
1272     Node *lock_obj = NULL;
1273     if(method()->is_static()) {
1274       ciInstance* mirror = _method->holder()->java_mirror();
1275       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1276       lock_obj = makecon(t_lock);
1277     } else {                  // Else pass the "this" pointer,
1278       lock_obj = local(0);    // which is Parm0 from StartNode
1279     }
1280     // Clear out dead values from the debug info.
1281     kill_dead_locals();
1282     // Build the FastLockNode
1283     _synch_lock = shared_lock(lock_obj);
1284   }
1285 
1286   // Feed profiling data for parameters to the type system so it can
1287   // propagate it as speculative types
1288   record_profiled_parameters_for_speculation();
1289 
1290   if (depth() == 1) {
1291     increment_and_test_invocation_counter(Tier2CompileThreshold);
1292   }
1293 }
1294 
1295 //------------------------------init_blocks------------------------------------
1296 // Initialize our parser map to contain the types/monitors at method entry.
1297 void Parse::init_blocks() {
1298   // Create the blocks.
1299   _block_count = flow()->block_count();
1300   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1301   Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
1302 
1303   int rpo;
1304 
1305   // Initialize the structs.
1306   for (rpo = 0; rpo < block_count(); rpo++) {
1307     Block* block = rpo_at(rpo);
1308     block->init_node(this, rpo);
1309   }
1310 
1311   // Collect predecessor and successor information.
1312   for (rpo = 0; rpo < block_count(); rpo++) {
1313     Block* block = rpo_at(rpo);
1314     block->init_graph(this);
1315   }
1316 }
1317 
1318 //-------------------------------init_node-------------------------------------
1319 void Parse::Block::init_node(Parse* outer, int rpo) {
1320   _flow = outer->flow()->rpo_at(rpo);
1321   _pred_count = 0;
1322   _preds_parsed = 0;
1323   _count = 0;
1324   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1325   assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1326   assert(_live_locals.size() == 0, "sanity");
1327 
1328   // entry point has additional predecessor
1329   if (flow()->is_start())  _pred_count++;
1330   assert(flow()->is_start() == (this == outer->start_block()), "");
1331 }
1332 
1333 //-------------------------------init_graph------------------------------------
1334 void Parse::Block::init_graph(Parse* outer) {
1335   // Create the successor list for this parser block.
1336   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1337   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1338   int ns = tfs->length();
1339   int ne = tfe->length();
1340   _num_successors = ns;
1341   _all_successors = ns+ne;
1342   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1343   int p = 0;
1344   for (int i = 0; i < ns+ne; i++) {
1345     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1346     Block* block2 = outer->rpo_at(tf2->rpo());
1347     _successors[i] = block2;
1348 
1349     // Accumulate pred info for the other block, too.
1350     if (i < ns) {
1351       block2->_pred_count++;
1352     } else {
1353       block2->_is_handler = true;
1354     }
1355 
1356     #ifdef ASSERT
1357     // A block's successors must be distinguishable by BCI.
1358     // That is, no bytecode is allowed to branch to two different
1359     // clones of the same code location.
1360     for (int j = 0; j < i; j++) {
1361       Block* block1 = _successors[j];
1362       if (block1 == block2)  continue;  // duplicates are OK
1363       assert(block1->start() != block2->start(), "successors have unique bcis");
1364     }
1365     #endif
1366   }
1367 
1368   // Note: We never call next_path_num along exception paths, so they
1369   // never get processed as "ready".  Also, the input phis of exception
1370   // handlers get specially processed, so that
1371 }
1372 
1373 //---------------------------successor_for_bci---------------------------------
1374 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1375   for (int i = 0; i < all_successors(); i++) {
1376     Block* block2 = successor_at(i);
1377     if (block2->start() == bci)  return block2;
1378   }
1379   // We can actually reach here if ciTypeFlow traps out a block
1380   // due to an unloaded class, and concurrently with compilation the
1381   // class is then loaded, so that a later phase of the parser is
1382   // able to see more of the bytecode CFG.  Or, the flow pass and
1383   // the parser can have a minor difference of opinion about executability
1384   // of bytecodes.  For example, "obj.field = null" is executable even
1385   // if the field's type is an unloaded class; the flow pass used to
1386   // make a trap for such code.
1387   return NULL;
1388 }
1389 
1390 
1391 //-----------------------------stack_type_at-----------------------------------
1392 const Type* Parse::Block::stack_type_at(int i) const {
1393   return get_type(flow()->stack_type_at(i));
1394 }
1395 
1396 
1397 //-----------------------------local_type_at-----------------------------------
1398 const Type* Parse::Block::local_type_at(int i) const {
1399   // Make dead locals fall to bottom.
1400   if (_live_locals.size() == 0) {
1401     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1402     // This bitmap can be zero length if we saw a breakpoint.
1403     // In such cases, pretend they are all live.
1404     ((Block*)this)->_live_locals = live_locals;
1405   }
1406   if (_live_locals.size() > 0 && !_live_locals.at(i))
1407     return Type::BOTTOM;
1408 
1409   return get_type(flow()->local_type_at(i));
1410 }
1411 
1412 
1413 #ifndef PRODUCT
1414 
1415 //----------------------------name_for_bc--------------------------------------
1416 // helper method for BytecodeParseHistogram
1417 static const char* name_for_bc(int i) {
1418   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1419 }
1420 
1421 //----------------------------BytecodeParseHistogram------------------------------------
1422 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1423   _parser   = p;
1424   _compiler = c;
1425   if( ! _initialized ) { _initialized = true; reset(); }
1426 }
1427 
1428 //----------------------------current_count------------------------------------
1429 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1430   switch( bph_type ) {
1431   case BPH_transforms: { return _parser->gvn().made_progress(); }
1432   case BPH_values:     { return _parser->gvn().made_new_values(); }
1433   default: { ShouldNotReachHere(); return 0; }
1434   }
1435 }
1436 
1437 //----------------------------initialized--------------------------------------
1438 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1439 
1440 //----------------------------reset--------------------------------------------
1441 void Parse::BytecodeParseHistogram::reset() {
1442   int i = Bytecodes::number_of_codes;
1443   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1444 }
1445 
1446 //----------------------------set_initial_state--------------------------------
1447 // Record info when starting to parse one bytecode
1448 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1449   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1450     _initial_bytecode    = bc;
1451     _initial_node_count  = _compiler->unique();
1452     _initial_transforms  = current_count(BPH_transforms);
1453     _initial_values      = current_count(BPH_values);
1454   }
1455 }
1456 
1457 //----------------------------record_change--------------------------------
1458 // Record results of parsing one bytecode
1459 void Parse::BytecodeParseHistogram::record_change() {
1460   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1461     ++_bytecodes_parsed[_initial_bytecode];
1462     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1463     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1464     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1465   }
1466 }
1467 
1468 
1469 //----------------------------print--------------------------------------------
1470 void Parse::BytecodeParseHistogram::print(float cutoff) {
1471   ResourceMark rm;
1472   // print profile
1473   int total  = 0;
1474   int i      = 0;
1475   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1476   int abs_sum = 0;
1477   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1478   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1479   if( total == 0 ) { return; }
1480   tty->cr();
1481   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1482   tty->print_cr("relative:  percentage contribution to compiled nodes");
1483   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1484   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1485   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1486   tty->print_cr("values  :  Average number of node values improved per bytecode");
1487   tty->print_cr("name    :  Bytecode name");
1488   tty->cr();
1489   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1490   tty->print_cr("----------------------------------------------------------------------");
1491   while (--i > 0) {
1492     int       abs = _bytecodes_parsed[i];
1493     float     rel = abs * 100.0F / total;
1494     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1495     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1496     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1497     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1498     if (cutoff <= rel) {
1499       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1500       abs_sum += abs;
1501     }
1502   }
1503   tty->print_cr("----------------------------------------------------------------------");
1504   float rel_sum = abs_sum * 100.0F / total;
1505   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1506   tty->print_cr("----------------------------------------------------------------------");
1507   tty->cr();
1508 }
1509 #endif
1510 
1511 //----------------------------load_state_from----------------------------------
1512 // Load block/map/sp.  But not do not touch iter/bci.
1513 void Parse::load_state_from(Block* block) {
1514   set_block(block);
1515   // load the block's JVM state:
1516   set_map(block->start_map());
1517   set_sp( block->start_sp());
1518 }
1519 
1520 
1521 //-----------------------------record_state------------------------------------
1522 void Parse::Block::record_state(Parse* p) {
1523   assert(!is_merged(), "can only record state once, on 1st inflow");
1524   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1525   set_start_map(p->stop());
1526 }
1527 
1528 
1529 //------------------------------do_one_block-----------------------------------
1530 void Parse::do_one_block() {
1531   if (TraceOptoParse) {
1532     Block *b = block();
1533     int ns = b->num_successors();
1534     int nt = b->all_successors();
1535 
1536     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1537                   block()->rpo(), block()->start(), block()->limit());
1538     for (int i = 0; i < nt; i++) {
1539       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1540     }
1541     if (b->is_loop_head()) tty->print("  lphd");
1542     tty->cr();
1543   }
1544 
1545   assert(block()->is_merged(), "must be merged before being parsed");
1546   block()->mark_parsed();
1547 
1548   // Set iterator to start of block.
1549   iter().reset_to_bci(block()->start());
1550 
1551   CompileLog* log = C->log();
1552 
1553   // Parse bytecodes
1554   while (!stopped() && !failing()) {
1555     iter().next();
1556 
1557     // Learn the current bci from the iterator:
1558     set_parse_bci(iter().cur_bci());
1559 
1560     if (bci() == block()->limit()) {
1561       // Do not walk into the next block until directed by do_all_blocks.
1562       merge(bci());
1563       break;
1564     }
1565     assert(bci() < block()->limit(), "bci still in block");
1566 
1567     if (log != NULL) {
1568       // Output an optional context marker, to help place actions
1569       // that occur during parsing of this BC.  If there is no log
1570       // output until the next context string, this context string
1571       // will be silently ignored.
1572       log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1573     }
1574 
1575     if (block()->has_trap_at(bci())) {
1576       // We must respect the flow pass's traps, because it will refuse
1577       // to produce successors for trapping blocks.
1578       int trap_index = block()->flow()->trap_index();
1579       assert(trap_index != 0, "trap index must be valid");
1580       uncommon_trap(trap_index);
1581       break;
1582     }
1583 
1584     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1585 
1586 #ifdef ASSERT
1587     int pre_bc_sp = sp();
1588     int inputs, depth;
1589     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1590     assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs);
1591 #endif //ASSERT
1592 
1593     do_one_bytecode();
1594 
1595     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1596            "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth);
1597 
1598     do_exceptions();
1599 
1600     NOT_PRODUCT( parse_histogram()->record_change(); );
1601 
1602     if (log != NULL)
1603       log->clear_context();  // skip marker if nothing was printed
1604 
1605     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1606     // successor which is typically made ready by visiting this bytecode.
1607     // If the successor has several predecessors, then it is a merge
1608     // point, starts a new basic block, and is handled like other basic blocks.
1609   }
1610 }
1611 
1612 
1613 //------------------------------merge------------------------------------------
1614 void Parse::set_parse_bci(int bci) {
1615   set_bci(bci);
1616   Node_Notes* nn = C->default_node_notes();
1617   if (nn == NULL)  return;
1618 
1619   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1620   if (!DebugInlinedCalls && depth() > 1) {
1621     return;
1622   }
1623 
1624   // Update the JVMS annotation, if present.
1625   JVMState* jvms = nn->jvms();
1626   if (jvms != NULL && jvms->bci() != bci) {
1627     // Update the JVMS.
1628     jvms = jvms->clone_shallow(C);
1629     jvms->set_bci(bci);
1630     nn->set_jvms(jvms);
1631   }
1632 }
1633 
1634 //------------------------------merge------------------------------------------
1635 // Merge the current mapping into the basic block starting at bci
1636 void Parse::merge(int target_bci) {
1637   Block* target = successor_for_bci(target_bci);
1638   if (target == NULL) { handle_missing_successor(target_bci); return; }
1639   assert(!target->is_ready(), "our arrival must be expected");
1640   int pnum = target->next_path_num();
1641   merge_common(target, pnum);
1642 }
1643 
1644 //-------------------------merge_new_path--------------------------------------
1645 // Merge the current mapping into the basic block, using a new path
1646 void Parse::merge_new_path(int target_bci) {
1647   Block* target = successor_for_bci(target_bci);
1648   if (target == NULL) { handle_missing_successor(target_bci); return; }
1649   assert(!target->is_ready(), "new path into frozen graph");
1650   int pnum = target->add_new_path();
1651   merge_common(target, pnum);
1652 }
1653 
1654 //-------------------------merge_exception-------------------------------------
1655 // Merge the current mapping into the basic block starting at bci
1656 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1657 void Parse::merge_exception(int target_bci) {
1658   assert(sp() == 1, "must have only the throw exception on the stack");
1659   Block* target = successor_for_bci(target_bci);
1660   if (target == NULL) { handle_missing_successor(target_bci); return; }
1661   assert(target->is_handler(), "exceptions are handled by special blocks");
1662   int pnum = target->add_new_path();
1663   merge_common(target, pnum);
1664 }
1665 
1666 //--------------------handle_missing_successor---------------------------------
1667 void Parse::handle_missing_successor(int target_bci) {
1668 #ifndef PRODUCT
1669   Block* b = block();
1670   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1671   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1672 #endif
1673   ShouldNotReachHere();
1674 }
1675 
1676 //--------------------------merge_common---------------------------------------
1677 void Parse::merge_common(Parse::Block* target, int pnum) {
1678   if (TraceOptoParse) {
1679     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1680   }
1681 
1682   // Zap extra stack slots to top
1683   assert(sp() == target->start_sp(), "");
1684   clean_stack(sp());
1685 
1686   if (!target->is_merged()) {   // No prior mapping at this bci
1687     if (TraceOptoParse) { tty->print(" with empty state");  }
1688 
1689     // If this path is dead, do not bother capturing it as a merge.
1690     // It is "as if" we had 1 fewer predecessors from the beginning.
1691     if (stopped()) {
1692       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1693       return;
1694     }
1695 
1696     // Make a region if we know there are multiple or unpredictable inputs.
1697     // (Also, if this is a plain fall-through, we might see another region,
1698     // which must not be allowed into this block's map.)
1699     if (pnum > PhiNode::Input         // Known multiple inputs.
1700         || target->is_handler()       // These have unpredictable inputs.
1701         || target->is_loop_head()     // Known multiple inputs
1702         || control()->is_Region()) {  // We must hide this guy.
1703 
1704       int current_bci = bci();
1705       set_parse_bci(target->start()); // Set target bci
1706       if (target->is_SEL_head()) {
1707         DEBUG_ONLY( target->mark_merged_backedge(block()); )
1708         if (target->start() == 0) {
1709           // Add loop predicate for the special case when
1710           // there are backbranches to the method entry.
1711           add_predicate();
1712         }
1713       }
1714       // Add a Region to start the new basic block.  Phis will be added
1715       // later lazily.
1716       int edges = target->pred_count();
1717       if (edges < pnum)  edges = pnum;  // might be a new path!
1718       RegionNode *r = new RegionNode(edges+1);
1719       gvn().set_type(r, Type::CONTROL);
1720       record_for_igvn(r);
1721       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1722       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1723       r->init_req(pnum, control());
1724       set_control(r);
1725       set_parse_bci(current_bci); // Restore bci
1726     }
1727 
1728     // Convert the existing Parser mapping into a mapping at this bci.
1729     store_state_to(target);
1730     assert(target->is_merged(), "do not come here twice");
1731 
1732   } else {                      // Prior mapping at this bci
1733     if (TraceOptoParse) {  tty->print(" with previous state"); }
1734 #ifdef ASSERT
1735     if (target->is_SEL_head()) {
1736       target->mark_merged_backedge(block());
1737     }
1738 #endif
1739     // We must not manufacture more phis if the target is already parsed.
1740     bool nophi = target->is_parsed();
1741 
1742     SafePointNode* newin = map();// Hang on to incoming mapping
1743     Block* save_block = block(); // Hang on to incoming block;
1744     load_state_from(target);    // Get prior mapping
1745 
1746     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1747     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1748     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1749     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1750 
1751     // Iterate over my current mapping and the old mapping.
1752     // Where different, insert Phi functions.
1753     // Use any existing Phi functions.
1754     assert(control()->is_Region(), "must be merging to a region");
1755     RegionNode* r = control()->as_Region();
1756 
1757     // Compute where to merge into
1758     // Merge incoming control path
1759     r->init_req(pnum, newin->control());
1760 
1761     if (pnum == 1) {            // Last merge for this Region?
1762       if (!block()->flow()->is_irreducible_entry()) {
1763         Node* result = _gvn.transform_no_reclaim(r);
1764         if (r != result && TraceOptoParse) {
1765           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1766         }
1767       }
1768       record_for_igvn(r);
1769     }
1770 
1771     // Update all the non-control inputs to map:
1772     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1773     bool check_elide_phi = target->is_SEL_backedge(save_block);
1774     for (uint j = 1; j < newin->req(); j++) {
1775       Node* m = map()->in(j);   // Current state of target.
1776       Node* n = newin->in(j);   // Incoming change to target state.
1777       PhiNode* phi;
1778       if (m->is_Phi() && m->as_Phi()->region() == r) {
1779         phi = m->as_Phi();
1780       } else if (m->is_ValueType() && m->as_ValueType()->has_phi_inputs(r)){
1781         phi = m->as_ValueType()->get_oop()->as_Phi();
1782       } else {
1783         phi = NULL;
1784       }
1785       if (m != n) {             // Different; must merge
1786         switch (j) {
1787         // Frame pointer and Return Address never changes
1788         case TypeFunc::FramePtr:// Drop m, use the original value
1789         case TypeFunc::ReturnAdr:
1790           break;
1791         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1792           assert(phi == NULL, "the merge contains phis, not vice versa");
1793           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1794           continue;
1795         default:                // All normal stuff
1796           if (phi == NULL) {
1797             const JVMState* jvms = map()->jvms();
1798             if (EliminateNestedLocks &&
1799                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1800               // BoxLock nodes are not commoning.
1801               // Use old BoxLock node as merged box.
1802               assert(newin->jvms()->is_monitor_box(j), "sanity");
1803               // This assert also tests that nodes are BoxLock.
1804               assert(BoxLockNode::same_slot(n, m), "sanity");
1805               C->gvn_replace_by(n, m);
1806             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1807               phi = ensure_phi(j, nophi);
1808             }
1809           }
1810           break;
1811         }
1812       }
1813       // At this point, n might be top if:
1814       //  - there is no phi (because TypeFlow detected a conflict), or
1815       //  - the corresponding control edges is top (a dead incoming path)
1816       // It is a bug if we create a phi which sees a garbage value on a live path.
1817 
1818       // Merging two value types?
1819       if (phi != NULL && n->isa_ValueType()) {
1820         // Reload current state because it may have been updated by ensure_phi
1821         m = map()->in(j);
1822         ValueTypeNode* vtm = m->as_ValueType(); // Current value type
1823         ValueTypeNode* vtn = n->as_ValueType(); // Incoming value type
1824         assert(vtm->get_oop() == phi, "Value type should have Phi input");
1825         if (TraceOptoParse) {
1826 #ifdef ASSERT
1827           tty->print_cr("\nMerging value types");
1828           tty->print_cr("Current:");
1829           vtm->dump(2);
1830           tty->print_cr("Incoming:");
1831           vtn->dump(2);
1832           tty->cr();
1833 #endif
1834         }
1835         // Do the merge
1836         map()->set_req(j, vtm->merge_with(this, vtn, pnum));
1837       } else if (phi != NULL) {
1838         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1839         assert(phi->region() == r, "");
1840         phi->set_req(pnum, n);  // Then add 'n' to the merge
1841         if (pnum == PhiNode::Input) {
1842           // Last merge for this Phi.
1843           // So far, Phis have had a reasonable type from ciTypeFlow.
1844           // Now _gvn will join that with the meet of current inputs.
1845           // BOTTOM is never permissible here, 'cause pessimistically
1846           // Phis of pointers cannot lose the basic pointer type.
1847           debug_only(const Type* bt1 = phi->bottom_type());
1848           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1849           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1850           debug_only(const Type* bt2 = phi->bottom_type());
1851           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1852           record_for_igvn(phi);
1853         }
1854       }
1855     } // End of for all values to be merged
1856 
1857     if (pnum == PhiNode::Input &&
1858         !r->in(0)) {         // The occasional useless Region
1859       assert(control() == r, "");
1860       set_control(r->nonnull_req());
1861     }
1862 
1863     map()->merge_replaced_nodes_with(newin);
1864 
1865     // newin has been subsumed into the lazy merge, and is now dead.
1866     set_block(save_block);
1867 
1868     stop();                     // done with this guy, for now
1869   }
1870 
1871   if (TraceOptoParse) {
1872     tty->print_cr(" on path %d", pnum);
1873   }
1874 
1875   // Done with this parser state.
1876   assert(stopped(), "");
1877 }
1878 
1879 
1880 //--------------------------merge_memory_edges---------------------------------
1881 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1882   // (nophi means we must not create phis, because we already parsed here)
1883   assert(n != NULL, "");
1884   // Merge the inputs to the MergeMems
1885   MergeMemNode* m = merged_memory();
1886 
1887   assert(control()->is_Region(), "must be merging to a region");
1888   RegionNode* r = control()->as_Region();
1889 
1890   PhiNode* base = NULL;
1891   MergeMemNode* remerge = NULL;
1892   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1893     Node *p = mms.force_memory();
1894     Node *q = mms.memory2();
1895     if (mms.is_empty() && nophi) {
1896       // Trouble:  No new splits allowed after a loop body is parsed.
1897       // Instead, wire the new split into a MergeMem on the backedge.
1898       // The optimizer will sort it out, slicing the phi.
1899       if (remerge == NULL) {
1900         assert(base != NULL, "");
1901         assert(base->in(0) != NULL, "should not be xformed away");
1902         remerge = MergeMemNode::make(base->in(pnum));
1903         gvn().set_type(remerge, Type::MEMORY);
1904         base->set_req(pnum, remerge);
1905       }
1906       remerge->set_memory_at(mms.alias_idx(), q);
1907       continue;
1908     }
1909     assert(!q->is_MergeMem(), "");
1910     PhiNode* phi;
1911     if (p != q) {
1912       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1913     } else {
1914       if (p->is_Phi() && p->as_Phi()->region() == r)
1915         phi = p->as_Phi();
1916       else
1917         phi = NULL;
1918     }
1919     // Insert q into local phi
1920     if (phi != NULL) {
1921       assert(phi->region() == r, "");
1922       p = phi;
1923       phi->set_req(pnum, q);
1924       if (mms.at_base_memory()) {
1925         base = phi;  // delay transforming it
1926       } else if (pnum == 1) {
1927         record_for_igvn(phi);
1928         p = _gvn.transform_no_reclaim(phi);
1929       }
1930       mms.set_memory(p);// store back through the iterator
1931     }
1932   }
1933   // Transform base last, in case we must fiddle with remerging.
1934   if (base != NULL && pnum == 1) {
1935     record_for_igvn(base);
1936     m->set_base_memory( _gvn.transform_no_reclaim(base) );
1937   }
1938 }
1939 
1940 
1941 //------------------------ensure_phis_everywhere-------------------------------
1942 void Parse::ensure_phis_everywhere() {
1943   ensure_phi(TypeFunc::I_O);
1944 
1945   // Ensure a phi on all currently known memories.
1946   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1947     ensure_memory_phi(mms.alias_idx());
1948     debug_only(mms.set_memory());  // keep the iterator happy
1949   }
1950 
1951   // Note:  This is our only chance to create phis for memory slices.
1952   // If we miss a slice that crops up later, it will have to be
1953   // merged into the base-memory phi that we are building here.
1954   // Later, the optimizer will comb out the knot, and build separate
1955   // phi-loops for each memory slice that matters.
1956 
1957   // Monitors must nest nicely and not get confused amongst themselves.
1958   // Phi-ify everything up to the monitors, though.
1959   uint monoff = map()->jvms()->monoff();
1960   uint nof_monitors = map()->jvms()->nof_monitors();
1961 
1962   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1963   bool check_elide_phi = block()->is_SEL_head();
1964   for (uint i = TypeFunc::Parms; i < monoff; i++) {
1965     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1966       ensure_phi(i);
1967     }
1968   }
1969 
1970   // Even monitors need Phis, though they are well-structured.
1971   // This is true for OSR methods, and also for the rare cases where
1972   // a monitor object is the subject of a replace_in_map operation.
1973   // See bugs 4426707 and 5043395.
1974   for (uint m = 0; m < nof_monitors; m++) {
1975     ensure_phi(map()->jvms()->monitor_obj_offset(m));
1976   }
1977 }
1978 
1979 
1980 //-----------------------------add_new_path------------------------------------
1981 // Add a previously unaccounted predecessor to this block.
1982 int Parse::Block::add_new_path() {
1983   // If there is no map, return the lowest unused path number.
1984   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1985 
1986   SafePointNode* map = start_map();
1987   if (!map->control()->is_Region())
1988     return pred_count()+1;  // there may be a region some day
1989   RegionNode* r = map->control()->as_Region();
1990 
1991   // Add new path to the region.
1992   uint pnum = r->req();
1993   r->add_req(NULL);
1994 
1995   for (uint i = 1; i < map->req(); i++) {
1996     Node* n = map->in(i);
1997     if (i == TypeFunc::Memory) {
1998       // Ensure a phi on all currently known memories.
1999       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
2000         Node* phi = mms.memory();
2001         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
2002           assert(phi->req() == pnum, "must be same size as region");
2003           phi->add_req(NULL);
2004         }
2005       }
2006     } else {
2007       if (n->is_Phi() && n->as_Phi()->region() == r) {
2008         assert(n->req() == pnum, "must be same size as region");
2009         n->add_req(NULL);
2010       }
2011     }
2012   }
2013 
2014   return pnum;
2015 }
2016 
2017 //------------------------------ensure_phi-------------------------------------
2018 // Turn the idx'th entry of the current map into a Phi
2019 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
2020   SafePointNode* map = this->map();
2021   Node* region = map->control();
2022   assert(region->is_Region(), "");
2023 
2024   Node* o = map->in(idx);
2025   assert(o != NULL, "");
2026 
2027   if (o == top())  return NULL; // TOP always merges into TOP
2028 
2029   if (o->is_Phi() && o->as_Phi()->region() == region) {
2030     return o->as_Phi();
2031   }
2032 
2033   ValueTypeNode* vt = o->isa_ValueType();
2034   if (vt != NULL) {
2035     // Value types are merged by merging their field values
2036     if (!vt->has_phi_inputs(region)) {
2037       // Create a cloned ValueTypeNode with phi inputs that
2038       // represents the merged value type and update the map.
2039       vt = vt->clone_with_phis(gvn(), region);
2040       map->set_req(idx, vt);
2041     }
2042     return vt->get_oop()->as_Phi();
2043   }
2044 
2045   // Now use a Phi here for merging
2046   assert(!nocreate, "Cannot build a phi for a block already parsed.");
2047   const JVMState* jvms = map->jvms();
2048   const Type* t = NULL;
2049   if (jvms->is_loc(idx)) {
2050     t = block()->local_type_at(idx - jvms->locoff());
2051   } else if (jvms->is_stk(idx)) {
2052     t = block()->stack_type_at(idx - jvms->stkoff());
2053   } else if (jvms->is_mon(idx)) {
2054     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
2055     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
2056   } else if ((uint)idx < TypeFunc::Parms) {
2057     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
2058   } else {
2059     assert(false, "no type information for this phi");
2060   }
2061 
2062   // If the type falls to bottom, then this must be a local that
2063   // is mixing ints and oops or some such.  Forcing it to top
2064   // makes it go dead.
2065   if (t == Type::BOTTOM) {
2066     map->set_req(idx, top());
2067     return NULL;
2068   }
2069 
2070   // Do not create phis for top either.
2071   // A top on a non-null control flow must be an unused even after the.phi.
2072   if (t == Type::TOP || t == Type::HALF) {
2073     map->set_req(idx, top());
2074     return NULL;
2075   }
2076 
2077   PhiNode* phi = PhiNode::make(region, o, t);
2078   gvn().set_type(phi, t);
2079   if (C->do_escape_analysis()) record_for_igvn(phi);
2080   map->set_req(idx, phi);
2081   return phi;
2082 }
2083 
2084 //--------------------------ensure_memory_phi----------------------------------
2085 // Turn the idx'th slice of the current memory into a Phi
2086 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
2087   MergeMemNode* mem = merged_memory();
2088   Node* region = control();
2089   assert(region->is_Region(), "");
2090 
2091   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2092   assert(o != NULL && o != top(), "");
2093 
2094   PhiNode* phi;
2095   if (o->is_Phi() && o->as_Phi()->region() == region) {
2096     phi = o->as_Phi();
2097     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2098       // clone the shared base memory phi to make a new memory split
2099       assert(!nocreate, "Cannot build a phi for a block already parsed.");
2100       const Type* t = phi->bottom_type();
2101       const TypePtr* adr_type = C->get_adr_type(idx);
2102       phi = phi->slice_memory(adr_type);
2103       gvn().set_type(phi, t);
2104     }
2105     return phi;
2106   }
2107 
2108   // Now use a Phi here for merging
2109   assert(!nocreate, "Cannot build a phi for a block already parsed.");
2110   const Type* t = o->bottom_type();
2111   const TypePtr* adr_type = C->get_adr_type(idx);
2112   phi = PhiNode::make(region, o, t, adr_type);
2113   gvn().set_type(phi, t);
2114   if (idx == Compile::AliasIdxBot)
2115     mem->set_base_memory(phi);
2116   else
2117     mem->set_memory_at(idx, phi);
2118   return phi;
2119 }
2120 
2121 //------------------------------call_register_finalizer-----------------------
2122 // Check the klass of the receiver and call register_finalizer if the
2123 // class need finalization.
2124 void Parse::call_register_finalizer() {
2125   Node* receiver = local(0);
2126   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
2127          "must have non-null instance type");
2128 
2129   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
2130   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
2131     // The type isn't known exactly so see if CHA tells us anything.
2132     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2133     if (!Dependencies::has_finalizable_subclass(ik)) {
2134       // No finalizable subclasses so skip the dynamic check.
2135       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
2136       return;
2137     }
2138   }
2139 
2140   // Insert a dynamic test for whether the instance needs
2141   // finalization.  In general this will fold up since the concrete
2142   // class is often visible so the access flags are constant.
2143   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
2144   Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), klass_addr, TypeInstPtr::KLASS));
2145 
2146   Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
2147   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
2148 
2149   Node* mask  = _gvn.transform(new AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
2150   Node* check = _gvn.transform(new CmpINode(mask, intcon(0)));
2151   Node* test  = _gvn.transform(new BoolNode(check, BoolTest::ne));
2152 
2153   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
2154 
2155   RegionNode* result_rgn = new RegionNode(3);
2156   record_for_igvn(result_rgn);
2157 
2158   Node *skip_register = _gvn.transform(new IfFalseNode(iff));
2159   result_rgn->init_req(1, skip_register);
2160 
2161   Node *needs_register = _gvn.transform(new IfTrueNode(iff));
2162   set_control(needs_register);
2163   if (stopped()) {
2164     // There is no slow path.
2165     result_rgn->init_req(2, top());
2166   } else {
2167     Node *call = make_runtime_call(RC_NO_LEAF,
2168                                    OptoRuntime::register_finalizer_Type(),
2169                                    OptoRuntime::register_finalizer_Java(),
2170                                    NULL, TypePtr::BOTTOM,
2171                                    receiver);
2172     make_slow_call_ex(call, env()->Throwable_klass(), true);
2173 
2174     Node* fast_io  = call->in(TypeFunc::I_O);
2175     Node* fast_mem = call->in(TypeFunc::Memory);
2176     // These two phis are pre-filled with copies of of the fast IO and Memory
2177     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2178     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2179 
2180     result_rgn->init_req(2, control());
2181     io_phi    ->init_req(2, i_o());
2182     mem_phi   ->init_req(2, reset_memory());
2183 
2184     set_all_memory( _gvn.transform(mem_phi) );
2185     set_i_o(        _gvn.transform(io_phi) );
2186   }
2187 
2188   set_control( _gvn.transform(result_rgn) );
2189 }
2190 
2191 // Add check to deoptimize if RTM state is not ProfileRTM
2192 void Parse::rtm_deopt() {
2193 #if INCLUDE_RTM_OPT
2194   if (C->profile_rtm()) {
2195     assert(C->method() != NULL, "only for normal compilations");
2196     assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state");
2197     assert(depth() == 1, "generate check only for main compiled method");
2198 
2199     // Set starting bci for uncommon trap.
2200     set_parse_bci(is_osr_parse() ? osr_bci() : 0);
2201 
2202     // Load the rtm_state from the MethodData.
2203     const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data());
2204     Node* mdo = makecon(adr_type);
2205     int offset = MethodData::rtm_state_offset_in_bytes();
2206     Node* adr_node = basic_plus_adr(mdo, mdo, offset);
2207     Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2208 
2209     // Separate Load from Cmp by Opaque.
2210     // In expand_macro_nodes() it will be replaced either
2211     // with this load when there are locks in the code
2212     // or with ProfileRTM (cmp->in(2)) otherwise so that
2213     // the check will fold.
2214     Node* profile_state = makecon(TypeInt::make(ProfileRTM));
2215     Node* opq   = _gvn.transform( new Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) );
2216     Node* chk   = _gvn.transform( new CmpINode(opq, profile_state) );
2217     Node* tst   = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
2218     // Branch to failure if state was changed
2219     { BuildCutout unless(this, tst, PROB_ALWAYS);
2220       uncommon_trap(Deoptimization::Reason_rtm_state_change,
2221                     Deoptimization::Action_make_not_entrant);
2222     }
2223   }
2224 #endif
2225 }
2226 
2227 void Parse::decrement_age() {
2228   MethodCounters* mc = method()->ensure_method_counters();
2229   if (mc == NULL) {
2230     C->record_failure("Must have MCs");
2231     return;
2232   }
2233   assert(!is_osr_parse(), "Not doing this for OSRs");
2234 
2235   // Set starting bci for uncommon trap.
2236   set_parse_bci(0);
2237 
2238   const TypePtr* adr_type = TypeRawPtr::make((address)mc);
2239   Node* mc_adr = makecon(adr_type);
2240   Node* cnt_adr = basic_plus_adr(mc_adr, mc_adr, in_bytes(MethodCounters::nmethod_age_offset()));
2241   Node* cnt = make_load(control(), cnt_adr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2242   Node* decr = _gvn.transform(new SubINode(cnt, makecon(TypeInt::ONE)));
2243   store_to_memory(control(), cnt_adr, decr, T_INT, adr_type, MemNode::unordered);
2244   Node *chk   = _gvn.transform(new CmpINode(decr, makecon(TypeInt::ZERO)));
2245   Node* tst   = _gvn.transform(new BoolNode(chk, BoolTest::gt));
2246   { BuildCutout unless(this, tst, PROB_ALWAYS);
2247     uncommon_trap(Deoptimization::Reason_tenured,
2248                   Deoptimization::Action_make_not_entrant);
2249   }
2250 }
2251 
2252 //------------------------------return_current---------------------------------
2253 // Append current _map to _exit_return
2254 void Parse::return_current(Node* value) {
2255   if (value != NULL && value->is_ValueType() && !_caller->has_method()) {
2256     // Returning from root JVMState, make sure value type is allocated
2257     value = value->as_ValueType()->store_to_memory(this);
2258   }
2259 
2260   if (RegisterFinalizersAtInit &&
2261       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2262     call_register_finalizer();
2263   }
2264 
2265   // Do not set_parse_bci, so that return goo is credited to the return insn.
2266   set_bci(InvocationEntryBci);
2267   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2268     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2269   }
2270   if (C->env()->dtrace_method_probes()) {
2271     make_dtrace_method_exit(method());
2272   }
2273   SafePointNode* exit_return = _exits.map();
2274   exit_return->in( TypeFunc::Control  )->add_req( control() );
2275   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2276   Node *mem = exit_return->in( TypeFunc::Memory   );
2277   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2278     if (mms.is_empty()) {
2279       // get a copy of the base memory, and patch just this one input
2280       const TypePtr* adr_type = mms.adr_type(C);
2281       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2282       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2283       gvn().set_type_bottom(phi);
2284       phi->del_req(phi->req()-1);  // prepare to re-patch
2285       mms.set_memory(phi);
2286     }
2287     mms.memory()->add_req(mms.memory2());
2288   }
2289 
2290   // frame pointer is always same, already captured
2291   if (value != NULL) {
2292     // If returning oops to an interface-return, there is a silent free
2293     // cast from oop to interface allowed by the Verifier.  Make it explicit
2294     // here.
2295     Node* phi = _exits.argument(0);
2296     const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
2297     if (tr && tr->klass()->is_loaded() &&
2298         tr->klass()->is_interface()) {
2299       const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
2300       if (tp && tp->klass()->is_loaded() &&
2301           !tp->klass()->is_interface()) {
2302         // sharpen the type eagerly; this eases certain assert checking
2303         if (tp->higher_equal(TypeInstPtr::NOTNULL))
2304           tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr();
2305         value = _gvn.transform(new CheckCastPPNode(0, value, tr));
2306       }
2307     } else {
2308       // Also handle returns of oop-arrays to an arrays-of-interface return
2309       const TypeInstPtr* phi_tip;
2310       const TypeInstPtr* val_tip;
2311       Type::get_arrays_base_elements(phi->bottom_type(), value->bottom_type(), &phi_tip, &val_tip);
2312       if (phi_tip != NULL && phi_tip->is_loaded() && phi_tip->klass()->is_interface() &&
2313           val_tip != NULL && val_tip->is_loaded() && !val_tip->klass()->is_interface()) {
2314         value = _gvn.transform(new CheckCastPPNode(0, value, phi->bottom_type()));
2315       }
2316     }
2317     phi->add_req(value);
2318   }
2319 
2320   if (_first_return) {
2321     _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2322     _first_return = false;
2323   } else {
2324     _exits.map()->merge_replaced_nodes_with(map());
2325   }
2326 
2327   stop_and_kill_map();          // This CFG path dies here
2328 }
2329 
2330 
2331 //------------------------------add_safepoint----------------------------------
2332 void Parse::add_safepoint() {
2333   // See if we can avoid this safepoint.  No need for a SafePoint immediately
2334   // after a Call (except Leaf Call) or another SafePoint.
2335   Node *proj = control();
2336   bool add_poll_param = SafePointNode::needs_polling_address_input();
2337   uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
2338   if( proj->is_Proj() ) {
2339     Node *n0 = proj->in(0);
2340     if( n0->is_Catch() ) {
2341       n0 = n0->in(0)->in(0);
2342       assert( n0->is_Call(), "expect a call here" );
2343     }
2344     if( n0->is_Call() ) {
2345       if( n0->as_Call()->guaranteed_safepoint() )
2346         return;
2347     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2348       return;
2349     }
2350   }
2351 
2352   // Clear out dead values from the debug info.
2353   kill_dead_locals();
2354 
2355   // Clone the JVM State
2356   SafePointNode *sfpnt = new SafePointNode(parms, NULL);
2357 
2358   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2359   // SafePoint we need our GC state to be safe; i.e. we need all our current
2360   // write barriers (card marks) to not float down after the SafePoint so we
2361   // must read raw memory.  Likewise we need all oop stores to match the card
2362   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2363   // state on a deopt).
2364 
2365   // We do not need to WRITE the memory state after a SafePoint.  The control
2366   // edge will keep card-marks and oop-stores from floating up from below a
2367   // SafePoint and our true dependency added here will keep them from floating
2368   // down below a SafePoint.
2369 
2370   // Clone the current memory state
2371   Node* mem = MergeMemNode::make(map()->memory());
2372 
2373   mem = _gvn.transform(mem);
2374 
2375   // Pass control through the safepoint
2376   sfpnt->init_req(TypeFunc::Control  , control());
2377   // Fix edges normally used by a call
2378   sfpnt->init_req(TypeFunc::I_O      , top() );
2379   sfpnt->init_req(TypeFunc::Memory   , mem   );
2380   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2381   sfpnt->init_req(TypeFunc::FramePtr , top() );
2382 
2383   // Create a node for the polling address
2384   if( add_poll_param ) {
2385     Node *polladr = ConPNode::make((address)os::get_polling_page());
2386     sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2387   }
2388 
2389   // Fix up the JVM State edges
2390   add_safepoint_edges(sfpnt);
2391   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2392   set_control(transformed_sfpnt);
2393 
2394   // Provide an edge from root to safepoint.  This makes the safepoint
2395   // appear useful until the parse has completed.
2396   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2397     assert(C->root() != NULL, "Expect parse is still valid");
2398     C->root()->add_prec(transformed_sfpnt);
2399   }
2400 }
2401 
2402 #ifndef PRODUCT
2403 //------------------------show_parse_info--------------------------------------
2404 void Parse::show_parse_info() {
2405   InlineTree* ilt = NULL;
2406   if (C->ilt() != NULL) {
2407     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2408     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2409   }
2410   if (PrintCompilation && Verbose) {
2411     if (depth() == 1) {
2412       if( ilt->count_inlines() ) {
2413         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2414                      ilt->count_inline_bcs());
2415         tty->cr();
2416       }
2417     } else {
2418       if (method()->is_synchronized())         tty->print("s");
2419       if (method()->has_exception_handlers())  tty->print("!");
2420       // Check this is not the final compiled version
2421       if (C->trap_can_recompile()) {
2422         tty->print("-");
2423       } else {
2424         tty->print(" ");
2425       }
2426       method()->print_short_name();
2427       if (is_osr_parse()) {
2428         tty->print(" @ %d", osr_bci());
2429       }
2430       tty->print(" (%d bytes)",method()->code_size());
2431       if (ilt->count_inlines()) {
2432         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2433                    ilt->count_inline_bcs());
2434       }
2435       tty->cr();
2436     }
2437   }
2438   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2439     // Print that we succeeded; suppress this message on the first osr parse.
2440 
2441     if (method()->is_synchronized())         tty->print("s");
2442     if (method()->has_exception_handlers())  tty->print("!");
2443     // Check this is not the final compiled version
2444     if (C->trap_can_recompile() && depth() == 1) {
2445       tty->print("-");
2446     } else {
2447       tty->print(" ");
2448     }
2449     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2450     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2451     method()->print_short_name();
2452     if (is_osr_parse()) {
2453       tty->print(" @ %d", osr_bci());
2454     }
2455     if (ilt->caller_bci() != -1) {
2456       tty->print(" @ %d", ilt->caller_bci());
2457     }
2458     tty->print(" (%d bytes)",method()->code_size());
2459     if (ilt->count_inlines()) {
2460       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2461                  ilt->count_inline_bcs());
2462     }
2463     tty->cr();
2464   }
2465 }
2466 
2467 
2468 //------------------------------dump-------------------------------------------
2469 // Dump information associated with the bytecodes of current _method
2470 void Parse::dump() {
2471   if( method() != NULL ) {
2472     // Iterate over bytecodes
2473     ciBytecodeStream iter(method());
2474     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2475       dump_bci( iter.cur_bci() );
2476       tty->cr();
2477     }
2478   }
2479 }
2480 
2481 // Dump information associated with a byte code index, 'bci'
2482 void Parse::dump_bci(int bci) {
2483   // Output info on merge-points, cloning, and within _jsr..._ret
2484   // NYI
2485   tty->print(" bci:%d", bci);
2486 }
2487 
2488 #endif