1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "interpreter/linkResolver.hpp"
  31 #include "memory/universe.inline.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/divnode.hpp"
  37 #include "opto/idealGraphPrinter.hpp"
  38 #include "opto/matcher.hpp"
  39 #include "opto/memnode.hpp"
  40 #include "opto/mulnode.hpp"
  41 #include "opto/opaquenode.hpp"
  42 #include "opto/parse.hpp"
  43 #include "opto/runtime.hpp"
  44 #include "opto/valuetypenode.hpp"
  45 #include "runtime/deoptimization.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 
  48 #ifndef PRODUCT
  49 extern int explicit_null_checks_inserted,
  50            explicit_null_checks_elided;
  51 #endif
  52 
  53 //---------------------------------array_load----------------------------------
  54 void Parse::array_load(BasicType elem_type) {
  55   const Type* elem = Type::TOP;
  56   Node* adr = array_addressing(elem_type, 0, &elem);
  57   if (stopped())  return;     // guaranteed null or range check
  58   dec_sp(2);                  // Pop array and index
  59   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
  60   Node* ld = make_load(control(), adr, elem, elem_type, adr_type, MemNode::unordered);
  61   push(ld);
  62 }
  63 
  64 
  65 //--------------------------------array_store----------------------------------
  66 void Parse::array_store(BasicType elem_type) {
  67   Node* adr = array_addressing(elem_type, 1);
  68   if (stopped())  return;     // guaranteed null or range check
  69   Node* val = pop();
  70   dec_sp(2);                  // Pop array and index
  71   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
  72   store_to_memory(control(), adr, val, elem_type, adr_type, StoreNode::release_if_reference(elem_type));
  73 }
  74 
  75 
  76 //------------------------------array_addressing-------------------------------
  77 // Pull array and index from the stack.  Compute pointer-to-element.
  78 Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
  79   Node *idx   = peek(0+vals);   // Get from stack without popping
  80   Node *ary   = peek(1+vals);   // in case of exception
  81 
  82   // Null check the array base, with correct stack contents
  83   ary = null_check(ary, T_ARRAY);
  84   // Compile-time detect of null-exception?
  85   if (stopped())  return top();
  86 
  87   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
  88   const TypeInt*    sizetype = arytype->size();
  89   const Type*       elemtype = arytype->elem();
  90 
  91   if (UseUniqueSubclasses && result2 != NULL) {
  92     const Type* el = elemtype->make_ptr();
  93     if (el && el->isa_instptr()) {
  94       const TypeInstPtr* toop = el->is_instptr();
  95       if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
  96         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
  97         const Type* subklass = Type::get_const_type(toop->klass());
  98         elemtype = subklass->join_speculative(el);
  99       }
 100     }
 101   }
 102 
 103   // Check for big class initializers with all constant offsets
 104   // feeding into a known-size array.
 105   const TypeInt* idxtype = _gvn.type(idx)->is_int();
 106   // See if the highest idx value is less than the lowest array bound,
 107   // and if the idx value cannot be negative:
 108   bool need_range_check = true;
 109   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
 110     need_range_check = false;
 111     if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
 112   }
 113 
 114   ciKlass * arytype_klass = arytype->klass();
 115   if ((arytype_klass != NULL) && (!arytype_klass->is_loaded())) {
 116     // Only fails for some -Xcomp runs
 117     // The class is unloaded.  We have to run this bytecode in the interpreter.
 118     uncommon_trap(Deoptimization::Reason_unloaded,
 119                   Deoptimization::Action_reinterpret,
 120                   arytype->klass(), "!loaded array");
 121     return top();
 122   }
 123 
 124   // Do the range check
 125   if (GenerateRangeChecks && need_range_check) {
 126     Node* tst;
 127     if (sizetype->_hi <= 0) {
 128       // The greatest array bound is negative, so we can conclude that we're
 129       // compiling unreachable code, but the unsigned compare trick used below
 130       // only works with non-negative lengths.  Instead, hack "tst" to be zero so
 131       // the uncommon_trap path will always be taken.
 132       tst = _gvn.intcon(0);
 133     } else {
 134       // Range is constant in array-oop, so we can use the original state of mem
 135       Node* len = load_array_length(ary);
 136 
 137       // Test length vs index (standard trick using unsigned compare)
 138       Node* chk = _gvn.transform( new CmpUNode(idx, len) );
 139       BoolTest::mask btest = BoolTest::lt;
 140       tst = _gvn.transform( new BoolNode(chk, btest) );
 141     }
 142     RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 143     _gvn.set_type(rc, rc->Value(&_gvn));
 144     if (!tst->is_Con()) {
 145       record_for_igvn(rc);
 146     }
 147     set_control(_gvn.transform(new IfTrueNode(rc)));
 148     // Branch to failure if out of bounds
 149     {
 150       PreserveJVMState pjvms(this);
 151       set_control(_gvn.transform(new IfFalseNode(rc)));
 152       if (C->allow_range_check_smearing()) {
 153         // Do not use builtin_throw, since range checks are sometimes
 154         // made more stringent by an optimistic transformation.
 155         // This creates "tentative" range checks at this point,
 156         // which are not guaranteed to throw exceptions.
 157         // See IfNode::Ideal, is_range_check, adjust_check.
 158         uncommon_trap(Deoptimization::Reason_range_check,
 159                       Deoptimization::Action_make_not_entrant,
 160                       NULL, "range_check");
 161       } else {
 162         // If we have already recompiled with the range-check-widening
 163         // heroic optimization turned off, then we must really be throwing
 164         // range check exceptions.
 165         builtin_throw(Deoptimization::Reason_range_check, idx);
 166       }
 167     }
 168   }
 169   // Check for always knowing you are throwing a range-check exception
 170   if (stopped())  return top();
 171 
 172   // Make array address computation control dependent to prevent it
 173   // from floating above the range check during loop optimizations.
 174   Node* ptr = array_element_address(ary, idx, type, sizetype, control());
 175 
 176   if (result2 != NULL)  *result2 = elemtype;
 177 
 178   assert(ptr != top(), "top should go hand-in-hand with stopped");
 179 
 180   return ptr;
 181 }
 182 
 183 
 184 // returns IfNode
 185 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
 186   Node   *cmp = _gvn.transform( new CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
 187   Node   *tst = _gvn.transform( new BoolNode( cmp, mask));
 188   IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
 189   return iff;
 190 }
 191 
 192 // return Region node
 193 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
 194   Node *region  = new RegionNode(3); // 2 results
 195   record_for_igvn(region);
 196   region->init_req(1, iffalse);
 197   region->init_req(2, iftrue );
 198   _gvn.set_type(region, Type::CONTROL);
 199   region = _gvn.transform(region);
 200   set_control (region);
 201   return region;
 202 }
 203 
 204 
 205 //------------------------------helper for tableswitch-------------------------
 206 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
 207   // True branch, use existing map info
 208   { PreserveJVMState pjvms(this);
 209     Node *iftrue  = _gvn.transform( new IfTrueNode (iff) );
 210     set_control( iftrue );
 211     profile_switch_case(prof_table_index);
 212     merge_new_path(dest_bci_if_true);
 213   }
 214 
 215   // False branch
 216   Node *iffalse = _gvn.transform( new IfFalseNode(iff) );
 217   set_control( iffalse );
 218 }
 219 
 220 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
 221   // True branch, use existing map info
 222   { PreserveJVMState pjvms(this);
 223     Node *iffalse  = _gvn.transform( new IfFalseNode (iff) );
 224     set_control( iffalse );
 225     profile_switch_case(prof_table_index);
 226     merge_new_path(dest_bci_if_true);
 227   }
 228 
 229   // False branch
 230   Node *iftrue = _gvn.transform( new IfTrueNode(iff) );
 231   set_control( iftrue );
 232 }
 233 
 234 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
 235   // False branch, use existing map and control()
 236   profile_switch_case(prof_table_index);
 237   merge_new_path(dest_bci);
 238 }
 239 
 240 
 241 extern "C" {
 242   static int jint_cmp(const void *i, const void *j) {
 243     int a = *(jint *)i;
 244     int b = *(jint *)j;
 245     return a > b ? 1 : a < b ? -1 : 0;
 246   }
 247 }
 248 
 249 
 250 // Default value for methodData switch indexing. Must be a negative value to avoid
 251 // conflict with any legal switch index.
 252 #define NullTableIndex -1
 253 
 254 class SwitchRange : public StackObj {
 255   // a range of integers coupled with a bci destination
 256   jint _lo;                     // inclusive lower limit
 257   jint _hi;                     // inclusive upper limit
 258   int _dest;
 259   int _table_index;             // index into method data table
 260 
 261 public:
 262   jint lo() const              { return _lo;   }
 263   jint hi() const              { return _hi;   }
 264   int  dest() const            { return _dest; }
 265   int  table_index() const     { return _table_index; }
 266   bool is_singleton() const    { return _lo == _hi; }
 267 
 268   void setRange(jint lo, jint hi, int dest, int table_index) {
 269     assert(lo <= hi, "must be a non-empty range");
 270     _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
 271   }
 272   bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
 273     assert(lo <= hi, "must be a non-empty range");
 274     if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
 275       _hi = hi;
 276       return true;
 277     }
 278     return false;
 279   }
 280 
 281   void set (jint value, int dest, int table_index) {
 282     setRange(value, value, dest, table_index);
 283   }
 284   bool adjoin(jint value, int dest, int table_index) {
 285     return adjoinRange(value, value, dest, table_index);
 286   }
 287 
 288   void print() {
 289     if (is_singleton())
 290       tty->print(" {%d}=>%d", lo(), dest());
 291     else if (lo() == min_jint)
 292       tty->print(" {..%d}=>%d", hi(), dest());
 293     else if (hi() == max_jint)
 294       tty->print(" {%d..}=>%d", lo(), dest());
 295     else
 296       tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
 297   }
 298 };
 299 
 300 
 301 //-------------------------------do_tableswitch--------------------------------
 302 void Parse::do_tableswitch() {
 303   Node* lookup = pop();
 304 
 305   // Get information about tableswitch
 306   int default_dest = iter().get_dest_table(0);
 307   int lo_index     = iter().get_int_table(1);
 308   int hi_index     = iter().get_int_table(2);
 309   int len          = hi_index - lo_index + 1;
 310 
 311   if (len < 1) {
 312     // If this is a backward branch, add safepoint
 313     maybe_add_safepoint(default_dest);
 314     merge(default_dest);
 315     return;
 316   }
 317 
 318   // generate decision tree, using trichotomy when possible
 319   int rnum = len+2;
 320   bool makes_backward_branch = false;
 321   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 322   int rp = -1;
 323   if (lo_index != min_jint) {
 324     ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
 325   }
 326   for (int j = 0; j < len; j++) {
 327     jint match_int = lo_index+j;
 328     int  dest      = iter().get_dest_table(j+3);
 329     makes_backward_branch |= (dest <= bci());
 330     int  table_index = method_data_update() ? j : NullTableIndex;
 331     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
 332       ranges[++rp].set(match_int, dest, table_index);
 333     }
 334   }
 335   jint highest = lo_index+(len-1);
 336   assert(ranges[rp].hi() == highest, "");
 337   if (highest != max_jint
 338       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
 339     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
 340   }
 341   assert(rp < len+2, "not too many ranges");
 342 
 343   // Safepoint in case if backward branch observed
 344   if( makes_backward_branch && UseLoopSafepoints )
 345     add_safepoint();
 346 
 347   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 348 }
 349 
 350 
 351 //------------------------------do_lookupswitch--------------------------------
 352 void Parse::do_lookupswitch() {
 353   Node *lookup = pop();         // lookup value
 354   // Get information about lookupswitch
 355   int default_dest = iter().get_dest_table(0);
 356   int len          = iter().get_int_table(1);
 357 
 358   if (len < 1) {    // If this is a backward branch, add safepoint
 359     maybe_add_safepoint(default_dest);
 360     merge(default_dest);
 361     return;
 362   }
 363 
 364   // generate decision tree, using trichotomy when possible
 365   jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
 366   {
 367     for( int j = 0; j < len; j++ ) {
 368       table[j+j+0] = iter().get_int_table(2+j+j);
 369       table[j+j+1] = iter().get_dest_table(2+j+j+1);
 370     }
 371     qsort( table, len, 2*sizeof(table[0]), jint_cmp );
 372   }
 373 
 374   int rnum = len*2+1;
 375   bool makes_backward_branch = false;
 376   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 377   int rp = -1;
 378   for( int j = 0; j < len; j++ ) {
 379     jint match_int   = table[j+j+0];
 380     int  dest        = table[j+j+1];
 381     int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
 382     int  table_index = method_data_update() ? j : NullTableIndex;
 383     makes_backward_branch |= (dest <= bci());
 384     if( match_int != next_lo ) {
 385       ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
 386     }
 387     if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
 388       ranges[++rp].set(match_int, dest, table_index);
 389     }
 390   }
 391   jint highest = table[2*(len-1)];
 392   assert(ranges[rp].hi() == highest, "");
 393   if( highest != max_jint
 394       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
 395     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
 396   }
 397   assert(rp < rnum, "not too many ranges");
 398 
 399   // Safepoint in case backward branch observed
 400   if( makes_backward_branch && UseLoopSafepoints )
 401     add_safepoint();
 402 
 403   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 404 }
 405 
 406 //----------------------------create_jump_tables-------------------------------
 407 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
 408   // Are jumptables enabled
 409   if (!UseJumpTables)  return false;
 410 
 411   // Are jumptables supported
 412   if (!Matcher::has_match_rule(Op_Jump))  return false;
 413 
 414   // Don't make jump table if profiling
 415   if (method_data_update())  return false;
 416 
 417   // Decide if a guard is needed to lop off big ranges at either (or
 418   // both) end(s) of the input set. We'll call this the default target
 419   // even though we can't be sure that it is the true "default".
 420 
 421   bool needs_guard = false;
 422   int default_dest;
 423   int64_t total_outlier_size = 0;
 424   int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1;
 425   int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1;
 426 
 427   if (lo->dest() == hi->dest()) {
 428     total_outlier_size = hi_size + lo_size;
 429     default_dest = lo->dest();
 430   } else if (lo_size > hi_size) {
 431     total_outlier_size = lo_size;
 432     default_dest = lo->dest();
 433   } else {
 434     total_outlier_size = hi_size;
 435     default_dest = hi->dest();
 436   }
 437 
 438   // If a guard test will eliminate very sparse end ranges, then
 439   // it is worth the cost of an extra jump.
 440   if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
 441     needs_guard = true;
 442     if (default_dest == lo->dest()) lo++;
 443     if (default_dest == hi->dest()) hi--;
 444   }
 445 
 446   // Find the total number of cases and ranges
 447   int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1;
 448   int num_range = hi - lo + 1;
 449 
 450   // Don't create table if: too large, too small, or too sparse.
 451   if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
 452     return false;
 453   if (num_cases > (MaxJumpTableSparseness * num_range))
 454     return false;
 455 
 456   // Normalize table lookups to zero
 457   int lowval = lo->lo();
 458   key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) );
 459 
 460   // Generate a guard to protect against input keyvals that aren't
 461   // in the switch domain.
 462   if (needs_guard) {
 463     Node*   size = _gvn.intcon(num_cases);
 464     Node*   cmp = _gvn.transform( new CmpUNode(key_val, size) );
 465     Node*   tst = _gvn.transform( new BoolNode(cmp, BoolTest::ge) );
 466     IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
 467     jump_if_true_fork(iff, default_dest, NullTableIndex);
 468   }
 469 
 470   // Create an ideal node JumpTable that has projections
 471   // of all possible ranges for a switch statement
 472   // The key_val input must be converted to a pointer offset and scaled.
 473   // Compare Parse::array_addressing above.
 474 
 475   // Clean the 32-bit int into a real 64-bit offset.
 476   // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
 477   const TypeInt* ikeytype = TypeInt::make(0, num_cases, Type::WidenMin);
 478   // Make I2L conversion control dependent to prevent it from
 479   // floating above the range check during loop optimizations.
 480   key_val = C->conv_I2X_index(&_gvn, key_val, ikeytype, control());
 481 
 482   // Shift the value by wordsize so we have an index into the table, rather
 483   // than a switch value
 484   Node *shiftWord = _gvn.MakeConX(wordSize);
 485   key_val = _gvn.transform( new MulXNode( key_val, shiftWord));
 486 
 487   // Create the JumpNode
 488   Node* jtn = _gvn.transform( new JumpNode(control(), key_val, num_cases) );
 489 
 490   // These are the switch destinations hanging off the jumpnode
 491   int i = 0;
 492   for (SwitchRange* r = lo; r <= hi; r++) {
 493     for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
 494       Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval)));
 495       {
 496         PreserveJVMState pjvms(this);
 497         set_control(input);
 498         jump_if_always_fork(r->dest(), r->table_index());
 499       }
 500     }
 501   }
 502   assert(i == num_cases, "miscount of cases");
 503   stop_and_kill_map();  // no more uses for this JVMS
 504   return true;
 505 }
 506 
 507 //----------------------------jump_switch_ranges-------------------------------
 508 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
 509   Block* switch_block = block();
 510 
 511   if (switch_depth == 0) {
 512     // Do special processing for the top-level call.
 513     assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
 514     assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
 515 
 516     // Decrement pred-numbers for the unique set of nodes.
 517 #ifdef ASSERT
 518     // Ensure that the block's successors are a (duplicate-free) set.
 519     int successors_counted = 0;  // block occurrences in [hi..lo]
 520     int unique_successors = switch_block->num_successors();
 521     for (int i = 0; i < unique_successors; i++) {
 522       Block* target = switch_block->successor_at(i);
 523 
 524       // Check that the set of successors is the same in both places.
 525       int successors_found = 0;
 526       for (SwitchRange* p = lo; p <= hi; p++) {
 527         if (p->dest() == target->start())  successors_found++;
 528       }
 529       assert(successors_found > 0, "successor must be known");
 530       successors_counted += successors_found;
 531     }
 532     assert(successors_counted == (hi-lo)+1, "no unexpected successors");
 533 #endif
 534 
 535     // Maybe prune the inputs, based on the type of key_val.
 536     jint min_val = min_jint;
 537     jint max_val = max_jint;
 538     const TypeInt* ti = key_val->bottom_type()->isa_int();
 539     if (ti != NULL) {
 540       min_val = ti->_lo;
 541       max_val = ti->_hi;
 542       assert(min_val <= max_val, "invalid int type");
 543     }
 544     while (lo->hi() < min_val)  lo++;
 545     if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
 546     while (hi->lo() > max_val)  hi--;
 547     if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
 548   }
 549 
 550 #ifndef PRODUCT
 551   if (switch_depth == 0) {
 552     _max_switch_depth = 0;
 553     _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
 554   }
 555 #endif
 556 
 557   assert(lo <= hi, "must be a non-empty set of ranges");
 558   if (lo == hi) {
 559     jump_if_always_fork(lo->dest(), lo->table_index());
 560   } else {
 561     assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
 562     assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
 563 
 564     if (create_jump_tables(key_val, lo, hi)) return;
 565 
 566     int nr = hi - lo + 1;
 567 
 568     SwitchRange* mid = lo + nr/2;
 569     // if there is an easy choice, pivot at a singleton:
 570     if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
 571 
 572     assert(lo < mid && mid <= hi, "good pivot choice");
 573     assert(nr != 2 || mid == hi,   "should pick higher of 2");
 574     assert(nr != 3 || mid == hi-1, "should pick middle of 3");
 575 
 576     Node *test_val = _gvn.intcon(mid->lo());
 577 
 578     if (mid->is_singleton()) {
 579       IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
 580       jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
 581 
 582       // Special Case:  If there are exactly three ranges, and the high
 583       // and low range each go to the same place, omit the "gt" test,
 584       // since it will not discriminate anything.
 585       bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
 586       if (eq_test_only) {
 587         assert(mid == hi-1, "");
 588       }
 589 
 590       // if there is a higher range, test for it and process it:
 591       if (mid < hi && !eq_test_only) {
 592         // two comparisons of same values--should enable 1 test for 2 branches
 593         // Use BoolTest::le instead of BoolTest::gt
 594         IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
 595         Node   *iftrue  = _gvn.transform( new IfTrueNode(iff_le) );
 596         Node   *iffalse = _gvn.transform( new IfFalseNode(iff_le) );
 597         { PreserveJVMState pjvms(this);
 598           set_control(iffalse);
 599           jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
 600         }
 601         set_control(iftrue);
 602       }
 603 
 604     } else {
 605       // mid is a range, not a singleton, so treat mid..hi as a unit
 606       IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
 607 
 608       // if there is a higher range, test for it and process it:
 609       if (mid == hi) {
 610         jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
 611       } else {
 612         Node *iftrue  = _gvn.transform( new IfTrueNode(iff_ge) );
 613         Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) );
 614         { PreserveJVMState pjvms(this);
 615           set_control(iftrue);
 616           jump_switch_ranges(key_val, mid, hi, switch_depth+1);
 617         }
 618         set_control(iffalse);
 619       }
 620     }
 621 
 622     // in any case, process the lower range
 623     jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
 624   }
 625 
 626   // Decrease pred_count for each successor after all is done.
 627   if (switch_depth == 0) {
 628     int unique_successors = switch_block->num_successors();
 629     for (int i = 0; i < unique_successors; i++) {
 630       Block* target = switch_block->successor_at(i);
 631       // Throw away the pre-allocated path for each unique successor.
 632       target->next_path_num();
 633     }
 634   }
 635 
 636 #ifndef PRODUCT
 637   _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
 638   if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
 639     SwitchRange* r;
 640     int nsing = 0;
 641     for( r = lo; r <= hi; r++ ) {
 642       if( r->is_singleton() )  nsing++;
 643     }
 644     tty->print(">>> ");
 645     _method->print_short_name();
 646     tty->print_cr(" switch decision tree");
 647     tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
 648                   (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth);
 649     if (_max_switch_depth > _est_switch_depth) {
 650       tty->print_cr("******** BAD SWITCH DEPTH ********");
 651     }
 652     tty->print("   ");
 653     for( r = lo; r <= hi; r++ ) {
 654       r->print();
 655     }
 656     tty->cr();
 657   }
 658 #endif
 659 }
 660 
 661 void Parse::modf() {
 662   Node *f2 = pop();
 663   Node *f1 = pop();
 664   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
 665                               CAST_FROM_FN_PTR(address, SharedRuntime::frem),
 666                               "frem", NULL, //no memory effects
 667                               f1, f2);
 668   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
 669 
 670   push(res);
 671 }
 672 
 673 void Parse::modd() {
 674   Node *d2 = pop_pair();
 675   Node *d1 = pop_pair();
 676   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
 677                               CAST_FROM_FN_PTR(address, SharedRuntime::drem),
 678                               "drem", NULL, //no memory effects
 679                               d1, top(), d2, top());
 680   Node* res_d   = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
 681 
 682 #ifdef ASSERT
 683   Node* res_top = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 1));
 684   assert(res_top == top(), "second value must be top");
 685 #endif
 686 
 687   push_pair(res_d);
 688 }
 689 
 690 void Parse::l2f() {
 691   Node* f2 = pop();
 692   Node* f1 = pop();
 693   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
 694                               CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
 695                               "l2f", NULL, //no memory effects
 696                               f1, f2);
 697   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
 698 
 699   push(res);
 700 }
 701 
 702 void Parse::do_irem() {
 703   // Must keep both values on the expression-stack during null-check
 704   zero_check_int(peek());
 705   // Compile-time detect of null-exception?
 706   if (stopped())  return;
 707 
 708   Node* b = pop();
 709   Node* a = pop();
 710 
 711   const Type *t = _gvn.type(b);
 712   if (t != Type::TOP) {
 713     const TypeInt *ti = t->is_int();
 714     if (ti->is_con()) {
 715       int divisor = ti->get_con();
 716       // check for positive power of 2
 717       if (divisor > 0 &&
 718           (divisor & ~(divisor-1)) == divisor) {
 719         // yes !
 720         Node *mask = _gvn.intcon((divisor - 1));
 721         // Sigh, must handle negative dividends
 722         Node *zero = _gvn.intcon(0);
 723         IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
 724         Node *iff = _gvn.transform( new IfFalseNode(ifff) );
 725         Node *ift = _gvn.transform( new IfTrueNode (ifff) );
 726         Node *reg = jump_if_join(ift, iff);
 727         Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
 728         // Negative path; negate/and/negate
 729         Node *neg = _gvn.transform( new SubINode(zero, a) );
 730         Node *andn= _gvn.transform( new AndINode(neg, mask) );
 731         Node *negn= _gvn.transform( new SubINode(zero, andn) );
 732         phi->init_req(1, negn);
 733         // Fast positive case
 734         Node *andx = _gvn.transform( new AndINode(a, mask) );
 735         phi->init_req(2, andx);
 736         // Push the merge
 737         push( _gvn.transform(phi) );
 738         return;
 739       }
 740     }
 741   }
 742   // Default case
 743   push( _gvn.transform( new ModINode(control(),a,b) ) );
 744 }
 745 
 746 // Handle jsr and jsr_w bytecode
 747 void Parse::do_jsr() {
 748   assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
 749 
 750   // Store information about current state, tagged with new _jsr_bci
 751   int return_bci = iter().next_bci();
 752   int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
 753 
 754   // Update method data
 755   profile_taken_branch(jsr_bci);
 756 
 757   // The way we do things now, there is only one successor block
 758   // for the jsr, because the target code is cloned by ciTypeFlow.
 759   Block* target = successor_for_bci(jsr_bci);
 760 
 761   // What got pushed?
 762   const Type* ret_addr = target->peek();
 763   assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
 764 
 765   // Effect on jsr on stack
 766   push(_gvn.makecon(ret_addr));
 767 
 768   // Flow to the jsr.
 769   merge(jsr_bci);
 770 }
 771 
 772 // Handle ret bytecode
 773 void Parse::do_ret() {
 774   // Find to whom we return.
 775   assert(block()->num_successors() == 1, "a ret can only go one place now");
 776   Block* target = block()->successor_at(0);
 777   assert(!target->is_ready(), "our arrival must be expected");
 778   profile_ret(target->flow()->start());
 779   int pnum = target->next_path_num();
 780   merge_common(target, pnum);
 781 }
 782 
 783 static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) {
 784   if (btest != BoolTest::eq && btest != BoolTest::ne) {
 785     // Only ::eq and ::ne are supported for profile injection.
 786     return false;
 787   }
 788   if (test->is_Cmp() &&
 789       test->in(1)->Opcode() == Op_ProfileBoolean) {
 790     ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1);
 791     int false_cnt = profile->false_count();
 792     int  true_cnt = profile->true_count();
 793 
 794     // Counts matching depends on the actual test operation (::eq or ::ne).
 795     // No need to scale the counts because profile injection was designed
 796     // to feed exact counts into VM.
 797     taken     = (btest == BoolTest::eq) ? false_cnt :  true_cnt;
 798     not_taken = (btest == BoolTest::eq) ?  true_cnt : false_cnt;
 799 
 800     profile->consume();
 801     return true;
 802   }
 803   return false;
 804 }
 805 //--------------------------dynamic_branch_prediction--------------------------
 806 // Try to gather dynamic branch prediction behavior.  Return a probability
 807 // of the branch being taken and set the "cnt" field.  Returns a -1.0
 808 // if we need to use static prediction for some reason.
 809 float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) {
 810   ResourceMark rm;
 811 
 812   cnt  = COUNT_UNKNOWN;
 813 
 814   int     taken = 0;
 815   int not_taken = 0;
 816 
 817   bool use_mdo = !has_injected_profile(btest, test, taken, not_taken);
 818 
 819   if (use_mdo) {
 820     // Use MethodData information if it is available
 821     // FIXME: free the ProfileData structure
 822     ciMethodData* methodData = method()->method_data();
 823     if (!methodData->is_mature())  return PROB_UNKNOWN;
 824     ciProfileData* data = methodData->bci_to_data(bci());
 825     if (!data->is_JumpData())  return PROB_UNKNOWN;
 826 
 827     // get taken and not taken values
 828     taken = data->as_JumpData()->taken();
 829     not_taken = 0;
 830     if (data->is_BranchData()) {
 831       not_taken = data->as_BranchData()->not_taken();
 832     }
 833 
 834     // scale the counts to be commensurate with invocation counts:
 835     taken = method()->scale_count(taken);
 836     not_taken = method()->scale_count(not_taken);
 837   }
 838 
 839   // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful.
 840   // We also check that individual counters are positive first, otherwise the sum can become positive.
 841   if (taken < 0 || not_taken < 0 || taken + not_taken < 40) {
 842     if (C->log() != NULL) {
 843       C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
 844     }
 845     return PROB_UNKNOWN;
 846   }
 847 
 848   // Compute frequency that we arrive here
 849   float sum = taken + not_taken;
 850   // Adjust, if this block is a cloned private block but the
 851   // Jump counts are shared.  Taken the private counts for
 852   // just this path instead of the shared counts.
 853   if( block()->count() > 0 )
 854     sum = block()->count();
 855   cnt = sum / FreqCountInvocations;
 856 
 857   // Pin probability to sane limits
 858   float prob;
 859   if( !taken )
 860     prob = (0+PROB_MIN) / 2;
 861   else if( !not_taken )
 862     prob = (1+PROB_MAX) / 2;
 863   else {                         // Compute probability of true path
 864     prob = (float)taken / (float)(taken + not_taken);
 865     if (prob > PROB_MAX)  prob = PROB_MAX;
 866     if (prob < PROB_MIN)   prob = PROB_MIN;
 867   }
 868 
 869   assert((cnt > 0.0f) && (prob > 0.0f),
 870          "Bad frequency assignment in if");
 871 
 872   if (C->log() != NULL) {
 873     const char* prob_str = NULL;
 874     if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
 875     if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
 876     char prob_str_buf[30];
 877     if (prob_str == NULL) {
 878       sprintf(prob_str_buf, "%g", prob);
 879       prob_str = prob_str_buf;
 880     }
 881     C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%f' prob='%s'",
 882                    iter().get_dest(), taken, not_taken, cnt, prob_str);
 883   }
 884   return prob;
 885 }
 886 
 887 //-----------------------------branch_prediction-------------------------------
 888 float Parse::branch_prediction(float& cnt,
 889                                BoolTest::mask btest,
 890                                int target_bci,
 891                                Node* test) {
 892   float prob = dynamic_branch_prediction(cnt, btest, test);
 893   // If prob is unknown, switch to static prediction
 894   if (prob != PROB_UNKNOWN)  return prob;
 895 
 896   prob = PROB_FAIR;                   // Set default value
 897   if (btest == BoolTest::eq)          // Exactly equal test?
 898     prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
 899   else if (btest == BoolTest::ne)
 900     prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
 901 
 902   // If this is a conditional test guarding a backwards branch,
 903   // assume its a loop-back edge.  Make it a likely taken branch.
 904   if (target_bci < bci()) {
 905     if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
 906       // Since it's an OSR, we probably have profile data, but since
 907       // branch_prediction returned PROB_UNKNOWN, the counts are too small.
 908       // Let's make a special check here for completely zero counts.
 909       ciMethodData* methodData = method()->method_data();
 910       if (!methodData->is_empty()) {
 911         ciProfileData* data = methodData->bci_to_data(bci());
 912         // Only stop for truly zero counts, which mean an unknown part
 913         // of the OSR-ed method, and we want to deopt to gather more stats.
 914         // If you have ANY counts, then this loop is simply 'cold' relative
 915         // to the OSR loop.
 916         if (data->as_BranchData()->taken() +
 917             data->as_BranchData()->not_taken() == 0 ) {
 918           // This is the only way to return PROB_UNKNOWN:
 919           return PROB_UNKNOWN;
 920         }
 921       }
 922     }
 923     prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
 924   }
 925 
 926   assert(prob != PROB_UNKNOWN, "must have some guess at this point");
 927   return prob;
 928 }
 929 
 930 // The magic constants are chosen so as to match the output of
 931 // branch_prediction() when the profile reports a zero taken count.
 932 // It is important to distinguish zero counts unambiguously, because
 933 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
 934 // very small but nonzero probabilities, which if confused with zero
 935 // counts would keep the program recompiling indefinitely.
 936 bool Parse::seems_never_taken(float prob) const {
 937   return prob < PROB_MIN;
 938 }
 939 
 940 // True if the comparison seems to be the kind that will not change its
 941 // statistics from true to false.  See comments in adjust_map_after_if.
 942 // This question is only asked along paths which are already
 943 // classifed as untaken (by seems_never_taken), so really,
 944 // if a path is never taken, its controlling comparison is
 945 // already acting in a stable fashion.  If the comparison
 946 // seems stable, we will put an expensive uncommon trap
 947 // on the untaken path.
 948 bool Parse::seems_stable_comparison() const {
 949   if (C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if)) {
 950     return false;
 951   }
 952   return true;
 953 }
 954 
 955 //-------------------------------repush_if_args--------------------------------
 956 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
 957 inline int Parse::repush_if_args() {
 958   if (PrintOpto && WizardMode) {
 959     tty->print("defending against excessive implicit null exceptions on %s @%d in ",
 960                Bytecodes::name(iter().cur_bc()), iter().cur_bci());
 961     method()->print_name(); tty->cr();
 962   }
 963   int bc_depth = - Bytecodes::depth(iter().cur_bc());
 964   assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
 965   DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
 966   assert(argument(0) != NULL, "must exist");
 967   assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
 968   inc_sp(bc_depth);
 969   return bc_depth;
 970 }
 971 
 972 //----------------------------------do_ifnull----------------------------------
 973 void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
 974   int target_bci = iter().get_dest();
 975 
 976   Block* branch_block = successor_for_bci(target_bci);
 977   Block* next_block   = successor_for_bci(iter().next_bci());
 978 
 979   float cnt;
 980   float prob = branch_prediction(cnt, btest, target_bci, c);
 981   if (prob == PROB_UNKNOWN) {
 982     // (An earlier version of do_ifnull omitted this trap for OSR methods.)
 983     if (PrintOpto && Verbose) {
 984       tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
 985     }
 986     repush_if_args(); // to gather stats on loop
 987     // We need to mark this branch as taken so that if we recompile we will
 988     // see that it is possible. In the tiered system the interpreter doesn't
 989     // do profiling and by the time we get to the lower tier from the interpreter
 990     // the path may be cold again. Make sure it doesn't look untaken
 991     profile_taken_branch(target_bci, !ProfileInterpreter);
 992     uncommon_trap(Deoptimization::Reason_unreached,
 993                   Deoptimization::Action_reinterpret,
 994                   NULL, "cold");
 995     if (C->eliminate_boxing()) {
 996       // Mark the successor blocks as parsed
 997       branch_block->next_path_num();
 998       next_block->next_path_num();
 999     }
1000     return;
1001   }
1002 
1003   NOT_PRODUCT(explicit_null_checks_inserted++);
1004 
1005   // Generate real control flow
1006   Node   *tst = _gvn.transform( new BoolNode( c, btest ) );
1007 
1008   // Sanity check the probability value
1009   assert(prob > 0.0f,"Bad probability in Parser");
1010  // Need xform to put node in hash table
1011   IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
1012   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1013   // True branch
1014   { PreserveJVMState pjvms(this);
1015     Node* iftrue  = _gvn.transform( new IfTrueNode (iff) );
1016     set_control(iftrue);
1017 
1018     if (stopped()) {            // Path is dead?
1019       NOT_PRODUCT(explicit_null_checks_elided++);
1020       if (C->eliminate_boxing()) {
1021         // Mark the successor block as parsed
1022         branch_block->next_path_num();
1023       }
1024     } else {                    // Path is live.
1025       // Update method data
1026       profile_taken_branch(target_bci);
1027       adjust_map_after_if(btest, c, prob, branch_block, next_block);
1028       if (!stopped()) {
1029         merge(target_bci);
1030       }
1031     }
1032   }
1033 
1034   // False branch
1035   Node* iffalse = _gvn.transform( new IfFalseNode(iff) );
1036   set_control(iffalse);
1037 
1038   if (stopped()) {              // Path is dead?
1039     NOT_PRODUCT(explicit_null_checks_elided++);
1040     if (C->eliminate_boxing()) {
1041       // Mark the successor block as parsed
1042       next_block->next_path_num();
1043     }
1044   } else  {                     // Path is live.
1045     // Update method data
1046     profile_not_taken_branch();
1047     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
1048                         next_block, branch_block);
1049   }
1050 }
1051 
1052 //------------------------------------do_if------------------------------------
1053 void Parse::do_if(BoolTest::mask btest, Node* c) {
1054   int target_bci = iter().get_dest();
1055 
1056   Block* branch_block = successor_for_bci(target_bci);
1057   Block* next_block   = successor_for_bci(iter().next_bci());
1058 
1059   float cnt;
1060   float prob = branch_prediction(cnt, btest, target_bci, c);
1061   float untaken_prob = 1.0 - prob;
1062 
1063   if (prob == PROB_UNKNOWN) {
1064     if (PrintOpto && Verbose) {
1065       tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1066     }
1067     repush_if_args(); // to gather stats on loop
1068     // We need to mark this branch as taken so that if we recompile we will
1069     // see that it is possible. In the tiered system the interpreter doesn't
1070     // do profiling and by the time we get to the lower tier from the interpreter
1071     // the path may be cold again. Make sure it doesn't look untaken
1072     profile_taken_branch(target_bci, !ProfileInterpreter);
1073     uncommon_trap(Deoptimization::Reason_unreached,
1074                   Deoptimization::Action_reinterpret,
1075                   NULL, "cold");
1076     if (C->eliminate_boxing()) {
1077       // Mark the successor blocks as parsed
1078       branch_block->next_path_num();
1079       next_block->next_path_num();
1080     }
1081     return;
1082   }
1083 
1084   // Sanity check the probability value
1085   assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
1086 
1087   bool taken_if_true = true;
1088   // Convert BoolTest to canonical form:
1089   if (!BoolTest(btest).is_canonical()) {
1090     btest         = BoolTest(btest).negate();
1091     taken_if_true = false;
1092     // prob is NOT updated here; it remains the probability of the taken
1093     // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
1094   }
1095   assert(btest != BoolTest::eq, "!= is the only canonical exact test");
1096 
1097   Node* tst0 = new BoolNode(c, btest);
1098   Node* tst = _gvn.transform(tst0);
1099   BoolTest::mask taken_btest   = BoolTest::illegal;
1100   BoolTest::mask untaken_btest = BoolTest::illegal;
1101 
1102   if (tst->is_Bool()) {
1103     // Refresh c from the transformed bool node, since it may be
1104     // simpler than the original c.  Also re-canonicalize btest.
1105     // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
1106     // That can arise from statements like: if (x instanceof C) ...
1107     if (tst != tst0) {
1108       // Canonicalize one more time since transform can change it.
1109       btest = tst->as_Bool()->_test._test;
1110       if (!BoolTest(btest).is_canonical()) {
1111         // Reverse edges one more time...
1112         tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
1113         btest = tst->as_Bool()->_test._test;
1114         assert(BoolTest(btest).is_canonical(), "sanity");
1115         taken_if_true = !taken_if_true;
1116       }
1117       c = tst->in(1);
1118     }
1119     BoolTest::mask neg_btest = BoolTest(btest).negate();
1120     taken_btest   = taken_if_true ?     btest : neg_btest;
1121     untaken_btest = taken_if_true ? neg_btest :     btest;
1122   }
1123 
1124   // Generate real control flow
1125   float true_prob = (taken_if_true ? prob : untaken_prob);
1126   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1127   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1128   Node* taken_branch   = new IfTrueNode(iff);
1129   Node* untaken_branch = new IfFalseNode(iff);
1130   if (!taken_if_true) {  // Finish conversion to canonical form
1131     Node* tmp      = taken_branch;
1132     taken_branch   = untaken_branch;
1133     untaken_branch = tmp;
1134   }
1135 
1136   // Branch is taken:
1137   { PreserveJVMState pjvms(this);
1138     taken_branch = _gvn.transform(taken_branch);
1139     set_control(taken_branch);
1140 
1141     if (stopped()) {
1142       if (C->eliminate_boxing()) {
1143         // Mark the successor block as parsed
1144         branch_block->next_path_num();
1145       }
1146     } else {
1147       // Update method data
1148       profile_taken_branch(target_bci);
1149       adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
1150       if (!stopped()) {
1151         merge(target_bci);
1152       }
1153     }
1154   }
1155 
1156   untaken_branch = _gvn.transform(untaken_branch);
1157   set_control(untaken_branch);
1158 
1159   // Branch not taken.
1160   if (stopped()) {
1161     if (C->eliminate_boxing()) {
1162       // Mark the successor block as parsed
1163       next_block->next_path_num();
1164     }
1165   } else {
1166     // Update method data
1167     profile_not_taken_branch();
1168     adjust_map_after_if(untaken_btest, c, untaken_prob,
1169                         next_block, branch_block);
1170   }
1171 }
1172 
1173 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const {
1174   // Don't want to speculate on uncommon traps when running with -Xcomp
1175   if (!UseInterpreter) {
1176     return false;
1177   }
1178   return (seems_never_taken(prob) && seems_stable_comparison());
1179 }
1180 
1181 //----------------------------adjust_map_after_if------------------------------
1182 // Adjust the JVM state to reflect the result of taking this path.
1183 // Basically, it means inspecting the CmpNode controlling this
1184 // branch, seeing how it constrains a tested value, and then
1185 // deciding if it's worth our while to encode this constraint
1186 // as graph nodes in the current abstract interpretation map.
1187 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
1188                                 Block* path, Block* other_path) {
1189   if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
1190     return;                             // nothing to do
1191 
1192   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1193 
1194   if (path_is_suitable_for_uncommon_trap(prob)) {
1195     repush_if_args();
1196     uncommon_trap(Deoptimization::Reason_unstable_if,
1197                   Deoptimization::Action_reinterpret,
1198                   NULL,
1199                   (is_fallthrough ? "taken always" : "taken never"));
1200     return;
1201   }
1202 
1203   Node* val = c->in(1);
1204   Node* con = c->in(2);
1205   const Type* tcon = _gvn.type(con);
1206   const Type* tval = _gvn.type(val);
1207   bool have_con = tcon->singleton();
1208   if (tval->singleton()) {
1209     if (!have_con) {
1210       // Swap, so constant is in con.
1211       con  = val;
1212       tcon = tval;
1213       val  = c->in(2);
1214       tval = _gvn.type(val);
1215       btest = BoolTest(btest).commute();
1216       have_con = true;
1217     } else {
1218       // Do we have two constants?  Then leave well enough alone.
1219       have_con = false;
1220     }
1221   }
1222   if (!have_con)                        // remaining adjustments need a con
1223     return;
1224 
1225   sharpen_type_after_if(btest, con, tcon, val, tval);
1226 }
1227 
1228 
1229 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) {
1230   Node* ldk;
1231   if (n->is_DecodeNKlass()) {
1232     if (n->in(1)->Opcode() != Op_LoadNKlass) {
1233       return NULL;
1234     } else {
1235       ldk = n->in(1);
1236     }
1237   } else if (n->Opcode() != Op_LoadKlass) {
1238     return NULL;
1239   } else {
1240     ldk = n;
1241   }
1242   assert(ldk != NULL && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node");
1243 
1244   Node* adr = ldk->in(MemNode::Address);
1245   intptr_t off = 0;
1246   Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off);
1247   if (obj == NULL || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass?
1248     return NULL;
1249   const TypePtr* tp = gvn->type(obj)->is_ptr();
1250   if (tp == NULL || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr?
1251     return NULL;
1252 
1253   return obj;
1254 }
1255 
1256 void Parse::sharpen_type_after_if(BoolTest::mask btest,
1257                                   Node* con, const Type* tcon,
1258                                   Node* val, const Type* tval) {
1259   // Look for opportunities to sharpen the type of a node
1260   // whose klass is compared with a constant klass.
1261   if (btest == BoolTest::eq && tcon->isa_klassptr()) {
1262     Node* obj = extract_obj_from_klass_load(&_gvn, val);
1263     const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type();
1264     if (obj != NULL && (con_type->isa_instptr() || con_type->isa_aryptr())) {
1265        // Found:
1266        //   Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
1267        // or the narrowOop equivalent.
1268        const Type* obj_type = _gvn.type(obj);
1269        const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
1270        if (tboth != NULL && tboth->klass_is_exact() && tboth != obj_type &&
1271            tboth->higher_equal(obj_type)) {
1272           // obj has to be of the exact type Foo if the CmpP succeeds.
1273           int obj_in_map = map()->find_edge(obj);
1274           JVMState* jvms = this->jvms();
1275           if (obj_in_map >= 0 &&
1276               (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
1277             TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth);
1278             const Type* tcc = ccast->as_Type()->type();
1279             assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
1280             // Delay transform() call to allow recovery of pre-cast value
1281             // at the control merge.
1282             _gvn.set_type_bottom(ccast);
1283             record_for_igvn(ccast);
1284             // Here's the payoff.
1285             replace_in_map(obj, ccast);
1286           }
1287        }
1288     }
1289   }
1290 
1291   int val_in_map = map()->find_edge(val);
1292   if (val_in_map < 0)  return;          // replace_in_map would be useless
1293   {
1294     JVMState* jvms = this->jvms();
1295     if (!(jvms->is_loc(val_in_map) ||
1296           jvms->is_stk(val_in_map)))
1297       return;                           // again, it would be useless
1298   }
1299 
1300   // Check for a comparison to a constant, and "know" that the compared
1301   // value is constrained on this path.
1302   assert(tcon->singleton(), "");
1303   ConstraintCastNode* ccast = NULL;
1304   Node* cast = NULL;
1305 
1306   switch (btest) {
1307   case BoolTest::eq:                    // Constant test?
1308     {
1309       const Type* tboth = tcon->join_speculative(tval);
1310       if (tboth == tval)  break;        // Nothing to gain.
1311       if (tcon->isa_int()) {
1312         ccast = new CastIINode(val, tboth);
1313       } else if (tcon == TypePtr::NULL_PTR) {
1314         // Cast to null, but keep the pointer identity temporarily live.
1315         ccast = new CastPPNode(val, tboth);
1316       } else {
1317         const TypeF* tf = tcon->isa_float_constant();
1318         const TypeD* td = tcon->isa_double_constant();
1319         // Exclude tests vs float/double 0 as these could be
1320         // either +0 or -0.  Just because you are equal to +0
1321         // doesn't mean you ARE +0!
1322         // Note, following code also replaces Long and Oop values.
1323         if ((!tf || tf->_f != 0.0) &&
1324             (!td || td->_d != 0.0))
1325           cast = con;                   // Replace non-constant val by con.
1326       }
1327     }
1328     break;
1329 
1330   case BoolTest::ne:
1331     if (tcon == TypePtr::NULL_PTR) {
1332       cast = cast_not_null(val, false);
1333     }
1334     break;
1335 
1336   default:
1337     // (At this point we could record int range types with CastII.)
1338     break;
1339   }
1340 
1341   if (ccast != NULL) {
1342     const Type* tcc = ccast->as_Type()->type();
1343     assert(tcc != tval && tcc->higher_equal(tval), "must improve");
1344     // Delay transform() call to allow recovery of pre-cast value
1345     // at the control merge.
1346     ccast->set_req(0, control());
1347     _gvn.set_type_bottom(ccast);
1348     record_for_igvn(ccast);
1349     cast = ccast;
1350   }
1351 
1352   if (cast != NULL) {                   // Here's the payoff.
1353     replace_in_map(val, cast);
1354   }
1355 }
1356 
1357 /**
1358  * Use speculative type to optimize CmpP node: if comparison is
1359  * against the low level class, cast the object to the speculative
1360  * type if any. CmpP should then go away.
1361  *
1362  * @param c  expected CmpP node
1363  * @return   result of CmpP on object casted to speculative type
1364  *
1365  */
1366 Node* Parse::optimize_cmp_with_klass(Node* c) {
1367   // If this is transformed by the _gvn to a comparison with the low
1368   // level klass then we may be able to use speculation
1369   if (c->Opcode() == Op_CmpP &&
1370       (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
1371       c->in(2)->is_Con()) {
1372     Node* load_klass = NULL;
1373     Node* decode = NULL;
1374     if (c->in(1)->Opcode() == Op_DecodeNKlass) {
1375       decode = c->in(1);
1376       load_klass = c->in(1)->in(1);
1377     } else {
1378       load_klass = c->in(1);
1379     }
1380     if (load_klass->in(2)->is_AddP()) {
1381       Node* addp = load_klass->in(2);
1382       Node* obj = addp->in(AddPNode::Address);
1383       const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
1384       if (obj_type->speculative_type_not_null() != NULL) {
1385         ciKlass* k = obj_type->speculative_type();
1386         inc_sp(2);
1387         obj = maybe_cast_profiled_obj(obj, k);
1388         dec_sp(2);
1389         // Make the CmpP use the casted obj
1390         addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
1391         load_klass = load_klass->clone();
1392         load_klass->set_req(2, addp);
1393         load_klass = _gvn.transform(load_klass);
1394         if (decode != NULL) {
1395           decode = decode->clone();
1396           decode->set_req(1, load_klass);
1397           load_klass = _gvn.transform(decode);
1398         }
1399         c = c->clone();
1400         c->set_req(1, load_klass);
1401         c = _gvn.transform(c);
1402       }
1403     }
1404   }
1405   return c;
1406 }
1407 
1408 //------------------------------do_one_bytecode--------------------------------
1409 // Parse this bytecode, and alter the Parsers JVM->Node mapping
1410 void Parse::do_one_bytecode() {
1411   Node *a, *b, *c, *d;          // Handy temps
1412   BoolTest::mask btest;
1413   int i;
1414 
1415   assert(!has_exceptions(), "bytecode entry state must be clear of throws");
1416 
1417   if (C->check_node_count(NodeLimitFudgeFactor * 5,
1418                           "out of nodes parsing method")) {
1419     return;
1420   }
1421 
1422 #ifdef ASSERT
1423   // for setting breakpoints
1424   if (TraceOptoParse) {
1425     tty->print(" @");
1426     dump_bci(bci());
1427     tty->cr();
1428   }
1429 #endif
1430 
1431   switch (bc()) {
1432   case Bytecodes::_nop:
1433     // do nothing
1434     break;
1435   case Bytecodes::_lconst_0:
1436     push_pair(longcon(0));
1437     break;
1438 
1439   case Bytecodes::_lconst_1:
1440     push_pair(longcon(1));
1441     break;
1442 
1443   case Bytecodes::_fconst_0:
1444     push(zerocon(T_FLOAT));
1445     break;
1446 
1447   case Bytecodes::_fconst_1:
1448     push(makecon(TypeF::ONE));
1449     break;
1450 
1451   case Bytecodes::_fconst_2:
1452     push(makecon(TypeF::make(2.0f)));
1453     break;
1454 
1455   case Bytecodes::_dconst_0:
1456     push_pair(zerocon(T_DOUBLE));
1457     break;
1458 
1459   case Bytecodes::_dconst_1:
1460     push_pair(makecon(TypeD::ONE));
1461     break;
1462 
1463   case Bytecodes::_iconst_m1:push(intcon(-1)); break;
1464   case Bytecodes::_iconst_0: push(intcon( 0)); break;
1465   case Bytecodes::_iconst_1: push(intcon( 1)); break;
1466   case Bytecodes::_iconst_2: push(intcon( 2)); break;
1467   case Bytecodes::_iconst_3: push(intcon( 3)); break;
1468   case Bytecodes::_iconst_4: push(intcon( 4)); break;
1469   case Bytecodes::_iconst_5: push(intcon( 5)); break;
1470   case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
1471   case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
1472   case Bytecodes::_aconst_null: push(null());  break;
1473   case Bytecodes::_ldc:
1474   case Bytecodes::_ldc_w:
1475   case Bytecodes::_ldc2_w:
1476     // If the constant is unresolved, run this BC once in the interpreter.
1477     {
1478       ciConstant constant = iter().get_constant();
1479       if (constant.basic_type() == T_OBJECT &&
1480           !constant.as_object()->is_loaded()) {
1481         int index = iter().get_constant_pool_index();
1482         constantTag tag = iter().get_constant_pool_tag(index);
1483         uncommon_trap(Deoptimization::make_trap_request
1484                       (Deoptimization::Reason_unloaded,
1485                        Deoptimization::Action_reinterpret,
1486                        index),
1487                       NULL, tag.internal_name());
1488         break;
1489       }
1490       assert(constant.basic_type() != T_OBJECT || constant.as_object()->is_instance(),
1491              "must be java_mirror of klass");
1492       const Type* con_type = Type::make_from_constant(constant);
1493       if (con_type != NULL) {
1494         push_node(con_type->basic_type(), makecon(con_type));
1495       }
1496     }
1497 
1498     break;
1499 
1500   case Bytecodes::_aload_0:
1501     push( local(0) );
1502     break;
1503   case Bytecodes::_aload_1:
1504     push( local(1) );
1505     break;
1506   case Bytecodes::_aload_2:
1507     push( local(2) );
1508     break;
1509   case Bytecodes::_aload_3:
1510     push( local(3) );
1511     break;
1512   case Bytecodes::_aload:
1513   case Bytecodes::_vload:
1514     push( local(iter().get_index()) );
1515     break;
1516 
1517   case Bytecodes::_fload_0:
1518   case Bytecodes::_iload_0:
1519     push( local(0) );
1520     break;
1521   case Bytecodes::_fload_1:
1522   case Bytecodes::_iload_1:
1523     push( local(1) );
1524     break;
1525   case Bytecodes::_fload_2:
1526   case Bytecodes::_iload_2:
1527     push( local(2) );
1528     break;
1529   case Bytecodes::_fload_3:
1530   case Bytecodes::_iload_3:
1531     push( local(3) );
1532     break;
1533   case Bytecodes::_fload:
1534   case Bytecodes::_iload:
1535     push( local(iter().get_index()) );
1536     break;
1537   case Bytecodes::_lload_0:
1538     push_pair_local( 0 );
1539     break;
1540   case Bytecodes::_lload_1:
1541     push_pair_local( 1 );
1542     break;
1543   case Bytecodes::_lload_2:
1544     push_pair_local( 2 );
1545     break;
1546   case Bytecodes::_lload_3:
1547     push_pair_local( 3 );
1548     break;
1549   case Bytecodes::_lload:
1550     push_pair_local( iter().get_index() );
1551     break;
1552 
1553   case Bytecodes::_dload_0:
1554     push_pair_local(0);
1555     break;
1556   case Bytecodes::_dload_1:
1557     push_pair_local(1);
1558     break;
1559   case Bytecodes::_dload_2:
1560     push_pair_local(2);
1561     break;
1562   case Bytecodes::_dload_3:
1563     push_pair_local(3);
1564     break;
1565   case Bytecodes::_dload:
1566     push_pair_local(iter().get_index());
1567     break;
1568   case Bytecodes::_fstore_0:
1569   case Bytecodes::_istore_0:
1570   case Bytecodes::_astore_0:
1571     set_local( 0, pop() );
1572     break;
1573   case Bytecodes::_fstore_1:
1574   case Bytecodes::_istore_1:
1575   case Bytecodes::_astore_1:
1576     set_local( 1, pop() );
1577     break;
1578   case Bytecodes::_fstore_2:
1579   case Bytecodes::_istore_2:
1580   case Bytecodes::_astore_2:
1581     set_local( 2, pop() );
1582     break;
1583   case Bytecodes::_fstore_3:
1584   case Bytecodes::_istore_3:
1585   case Bytecodes::_astore_3:
1586     set_local( 3, pop() );
1587     break;
1588   case Bytecodes::_fstore:
1589   case Bytecodes::_istore:
1590   case Bytecodes::_astore:
1591   case Bytecodes::_vstore:
1592     set_local( iter().get_index(), pop() );
1593     break;
1594   // long stores
1595   case Bytecodes::_lstore_0:
1596     set_pair_local( 0, pop_pair() );
1597     break;
1598   case Bytecodes::_lstore_1:
1599     set_pair_local( 1, pop_pair() );
1600     break;
1601   case Bytecodes::_lstore_2:
1602     set_pair_local( 2, pop_pair() );
1603     break;
1604   case Bytecodes::_lstore_3:
1605     set_pair_local( 3, pop_pair() );
1606     break;
1607   case Bytecodes::_lstore:
1608     set_pair_local( iter().get_index(), pop_pair() );
1609     break;
1610 
1611   // double stores
1612   case Bytecodes::_dstore_0:
1613     set_pair_local( 0, dstore_rounding(pop_pair()) );
1614     break;
1615   case Bytecodes::_dstore_1:
1616     set_pair_local( 1, dstore_rounding(pop_pair()) );
1617     break;
1618   case Bytecodes::_dstore_2:
1619     set_pair_local( 2, dstore_rounding(pop_pair()) );
1620     break;
1621   case Bytecodes::_dstore_3:
1622     set_pair_local( 3, dstore_rounding(pop_pair()) );
1623     break;
1624   case Bytecodes::_dstore:
1625     set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
1626     break;
1627 
1628   case Bytecodes::_pop:  dec_sp(1);   break;
1629   case Bytecodes::_pop2: dec_sp(2);   break;
1630   case Bytecodes::_swap:
1631     a = pop();
1632     b = pop();
1633     push(a);
1634     push(b);
1635     break;
1636   case Bytecodes::_dup:
1637     a = pop();
1638     push(a);
1639     push(a);
1640     break;
1641   case Bytecodes::_dup_x1:
1642     a = pop();
1643     b = pop();
1644     push( a );
1645     push( b );
1646     push( a );
1647     break;
1648   case Bytecodes::_dup_x2:
1649     a = pop();
1650     b = pop();
1651     c = pop();
1652     push( a );
1653     push( c );
1654     push( b );
1655     push( a );
1656     break;
1657   case Bytecodes::_dup2:
1658     a = pop();
1659     b = pop();
1660     push( b );
1661     push( a );
1662     push( b );
1663     push( a );
1664     break;
1665 
1666   case Bytecodes::_dup2_x1:
1667     // before: .. c, b, a
1668     // after:  .. b, a, c, b, a
1669     // not tested
1670     a = pop();
1671     b = pop();
1672     c = pop();
1673     push( b );
1674     push( a );
1675     push( c );
1676     push( b );
1677     push( a );
1678     break;
1679   case Bytecodes::_dup2_x2:
1680     // before: .. d, c, b, a
1681     // after:  .. b, a, d, c, b, a
1682     // not tested
1683     a = pop();
1684     b = pop();
1685     c = pop();
1686     d = pop();
1687     push( b );
1688     push( a );
1689     push( d );
1690     push( c );
1691     push( b );
1692     push( a );
1693     break;
1694 
1695   case Bytecodes::_arraylength: {
1696     // Must do null-check with value on expression stack
1697     Node *ary = null_check(peek(), T_ARRAY);
1698     // Compile-time detect of null-exception?
1699     if (stopped())  return;
1700     a = pop();
1701     push(load_array_length(a));
1702     break;
1703   }
1704 
1705   case Bytecodes::_baload: array_load(T_BYTE);   break;
1706   case Bytecodes::_caload: array_load(T_CHAR);   break;
1707   case Bytecodes::_iaload: array_load(T_INT);    break;
1708   case Bytecodes::_saload: array_load(T_SHORT);  break;
1709   case Bytecodes::_faload: array_load(T_FLOAT);  break;
1710   case Bytecodes::_aaload: array_load(T_OBJECT); break;
1711   case Bytecodes::_laload: {
1712     a = array_addressing(T_LONG, 0);
1713     if (stopped())  return;     // guaranteed null or range check
1714     dec_sp(2);                  // Pop array and index
1715     push_pair(make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS, MemNode::unordered));
1716     break;
1717   }
1718   case Bytecodes::_daload: {
1719     a = array_addressing(T_DOUBLE, 0);
1720     if (stopped())  return;     // guaranteed null or range check
1721     dec_sp(2);                  // Pop array and index
1722     push_pair(make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES, MemNode::unordered));
1723     break;
1724   }
1725   case Bytecodes::_bastore: array_store(T_BYTE);  break;
1726   case Bytecodes::_castore: array_store(T_CHAR);  break;
1727   case Bytecodes::_iastore: array_store(T_INT);   break;
1728   case Bytecodes::_sastore: array_store(T_SHORT); break;
1729   case Bytecodes::_fastore: array_store(T_FLOAT); break;
1730   case Bytecodes::_aastore: {
1731     d = array_addressing(T_OBJECT, 1);
1732     if (stopped())  return;     // guaranteed null or range check
1733     array_store_check();
1734     c = pop();                  // Oop to store
1735     b = pop();                  // index (already used)
1736     a = pop();                  // the array itself
1737     const TypeOopPtr* elemtype  = _gvn.type(a)->is_aryptr()->elem()->make_oopptr();
1738     const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
1739     Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT,
1740                                      StoreNode::release_if_reference(T_OBJECT));
1741     break;
1742   }
1743   case Bytecodes::_lastore: {
1744     a = array_addressing(T_LONG, 2);
1745     if (stopped())  return;     // guaranteed null or range check
1746     c = pop_pair();
1747     dec_sp(2);                  // Pop array and index
1748     store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS, MemNode::unordered);
1749     break;
1750   }
1751   case Bytecodes::_dastore: {
1752     a = array_addressing(T_DOUBLE, 2);
1753     if (stopped())  return;     // guaranteed null or range check
1754     c = pop_pair();
1755     dec_sp(2);                  // Pop array and index
1756     c = dstore_rounding(c);
1757     store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES, MemNode::unordered);
1758     break;
1759   }
1760 
1761   case Bytecodes::_getfield:
1762     do_getfield();
1763     break;
1764 
1765   case Bytecodes::_vgetfield:
1766     do_vgetfield();
1767     break;
1768 
1769   case Bytecodes::_getstatic:
1770     do_getstatic();
1771     break;
1772 
1773   case Bytecodes::_putfield:
1774     do_putfield();
1775     break;
1776 
1777   case Bytecodes::_putstatic:
1778     do_putstatic();
1779     break;
1780 
1781   case Bytecodes::_irem:
1782     do_irem();
1783     break;
1784   case Bytecodes::_idiv:
1785     // Must keep both values on the expression-stack during null-check
1786     zero_check_int(peek());
1787     // Compile-time detect of null-exception?
1788     if (stopped())  return;
1789     b = pop();
1790     a = pop();
1791     push( _gvn.transform( new DivINode(control(),a,b) ) );
1792     break;
1793   case Bytecodes::_imul:
1794     b = pop(); a = pop();
1795     push( _gvn.transform( new MulINode(a,b) ) );
1796     break;
1797   case Bytecodes::_iadd:
1798     b = pop(); a = pop();
1799     push( _gvn.transform( new AddINode(a,b) ) );
1800     break;
1801   case Bytecodes::_ineg:
1802     a = pop();
1803     push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) );
1804     break;
1805   case Bytecodes::_isub:
1806     b = pop(); a = pop();
1807     push( _gvn.transform( new SubINode(a,b) ) );
1808     break;
1809   case Bytecodes::_iand:
1810     b = pop(); a = pop();
1811     push( _gvn.transform( new AndINode(a,b) ) );
1812     break;
1813   case Bytecodes::_ior:
1814     b = pop(); a = pop();
1815     push( _gvn.transform( new OrINode(a,b) ) );
1816     break;
1817   case Bytecodes::_ixor:
1818     b = pop(); a = pop();
1819     push( _gvn.transform( new XorINode(a,b) ) );
1820     break;
1821   case Bytecodes::_ishl:
1822     b = pop(); a = pop();
1823     push( _gvn.transform( new LShiftINode(a,b) ) );
1824     break;
1825   case Bytecodes::_ishr:
1826     b = pop(); a = pop();
1827     push( _gvn.transform( new RShiftINode(a,b) ) );
1828     break;
1829   case Bytecodes::_iushr:
1830     b = pop(); a = pop();
1831     push( _gvn.transform( new URShiftINode(a,b) ) );
1832     break;
1833 
1834   case Bytecodes::_fneg:
1835     a = pop();
1836     b = _gvn.transform(new NegFNode (a));
1837     push(b);
1838     break;
1839 
1840   case Bytecodes::_fsub:
1841     b = pop();
1842     a = pop();
1843     c = _gvn.transform( new SubFNode(a,b) );
1844     d = precision_rounding(c);
1845     push( d );
1846     break;
1847 
1848   case Bytecodes::_fadd:
1849     b = pop();
1850     a = pop();
1851     c = _gvn.transform( new AddFNode(a,b) );
1852     d = precision_rounding(c);
1853     push( d );
1854     break;
1855 
1856   case Bytecodes::_fmul:
1857     b = pop();
1858     a = pop();
1859     c = _gvn.transform( new MulFNode(a,b) );
1860     d = precision_rounding(c);
1861     push( d );
1862     break;
1863 
1864   case Bytecodes::_fdiv:
1865     b = pop();
1866     a = pop();
1867     c = _gvn.transform( new DivFNode(0,a,b) );
1868     d = precision_rounding(c);
1869     push( d );
1870     break;
1871 
1872   case Bytecodes::_frem:
1873     if (Matcher::has_match_rule(Op_ModF)) {
1874       // Generate a ModF node.
1875       b = pop();
1876       a = pop();
1877       c = _gvn.transform( new ModFNode(0,a,b) );
1878       d = precision_rounding(c);
1879       push( d );
1880     }
1881     else {
1882       // Generate a call.
1883       modf();
1884     }
1885     break;
1886 
1887   case Bytecodes::_fcmpl:
1888     b = pop();
1889     a = pop();
1890     c = _gvn.transform( new CmpF3Node( a, b));
1891     push(c);
1892     break;
1893   case Bytecodes::_fcmpg:
1894     b = pop();
1895     a = pop();
1896 
1897     // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
1898     // which negates the result sign except for unordered.  Flip the unordered
1899     // as well by using CmpF3 which implements unordered-lesser instead of
1900     // unordered-greater semantics.  Finally, commute the result bits.  Result
1901     // is same as using a CmpF3Greater except we did it with CmpF3 alone.
1902     c = _gvn.transform( new CmpF3Node( b, a));
1903     c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
1904     push(c);
1905     break;
1906 
1907   case Bytecodes::_f2i:
1908     a = pop();
1909     push(_gvn.transform(new ConvF2INode(a)));
1910     break;
1911 
1912   case Bytecodes::_d2i:
1913     a = pop_pair();
1914     b = _gvn.transform(new ConvD2INode(a));
1915     push( b );
1916     break;
1917 
1918   case Bytecodes::_f2d:
1919     a = pop();
1920     b = _gvn.transform( new ConvF2DNode(a));
1921     push_pair( b );
1922     break;
1923 
1924   case Bytecodes::_d2f:
1925     a = pop_pair();
1926     b = _gvn.transform( new ConvD2FNode(a));
1927     // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
1928     //b = _gvn.transform(new RoundFloatNode(0, b) );
1929     push( b );
1930     break;
1931 
1932   case Bytecodes::_l2f:
1933     if (Matcher::convL2FSupported()) {
1934       a = pop_pair();
1935       b = _gvn.transform( new ConvL2FNode(a));
1936       // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
1937       // Rather than storing the result into an FP register then pushing
1938       // out to memory to round, the machine instruction that implements
1939       // ConvL2D is responsible for rounding.
1940       // c = precision_rounding(b);
1941       c = _gvn.transform(b);
1942       push(c);
1943     } else {
1944       l2f();
1945     }
1946     break;
1947 
1948   case Bytecodes::_l2d:
1949     a = pop_pair();
1950     b = _gvn.transform( new ConvL2DNode(a));
1951     // For i486.ad, rounding is always necessary (see _l2f above).
1952     // c = dprecision_rounding(b);
1953     c = _gvn.transform(b);
1954     push_pair(c);
1955     break;
1956 
1957   case Bytecodes::_f2l:
1958     a = pop();
1959     b = _gvn.transform( new ConvF2LNode(a));
1960     push_pair(b);
1961     break;
1962 
1963   case Bytecodes::_d2l:
1964     a = pop_pair();
1965     b = _gvn.transform( new ConvD2LNode(a));
1966     push_pair(b);
1967     break;
1968 
1969   case Bytecodes::_dsub:
1970     b = pop_pair();
1971     a = pop_pair();
1972     c = _gvn.transform( new SubDNode(a,b) );
1973     d = dprecision_rounding(c);
1974     push_pair( d );
1975     break;
1976 
1977   case Bytecodes::_dadd:
1978     b = pop_pair();
1979     a = pop_pair();
1980     c = _gvn.transform( new AddDNode(a,b) );
1981     d = dprecision_rounding(c);
1982     push_pair( d );
1983     break;
1984 
1985   case Bytecodes::_dmul:
1986     b = pop_pair();
1987     a = pop_pair();
1988     c = _gvn.transform( new MulDNode(a,b) );
1989     d = dprecision_rounding(c);
1990     push_pair( d );
1991     break;
1992 
1993   case Bytecodes::_ddiv:
1994     b = pop_pair();
1995     a = pop_pair();
1996     c = _gvn.transform( new DivDNode(0,a,b) );
1997     d = dprecision_rounding(c);
1998     push_pair( d );
1999     break;
2000 
2001   case Bytecodes::_dneg:
2002     a = pop_pair();
2003     b = _gvn.transform(new NegDNode (a));
2004     push_pair(b);
2005     break;
2006 
2007   case Bytecodes::_drem:
2008     if (Matcher::has_match_rule(Op_ModD)) {
2009       // Generate a ModD node.
2010       b = pop_pair();
2011       a = pop_pair();
2012       // a % b
2013 
2014       c = _gvn.transform( new ModDNode(0,a,b) );
2015       d = dprecision_rounding(c);
2016       push_pair( d );
2017     }
2018     else {
2019       // Generate a call.
2020       modd();
2021     }
2022     break;
2023 
2024   case Bytecodes::_dcmpl:
2025     b = pop_pair();
2026     a = pop_pair();
2027     c = _gvn.transform( new CmpD3Node( a, b));
2028     push(c);
2029     break;
2030 
2031   case Bytecodes::_dcmpg:
2032     b = pop_pair();
2033     a = pop_pair();
2034     // Same as dcmpl but need to flip the unordered case.
2035     // Commute the inputs, which negates the result sign except for unordered.
2036     // Flip the unordered as well by using CmpD3 which implements
2037     // unordered-lesser instead of unordered-greater semantics.
2038     // Finally, negate the result bits.  Result is same as using a
2039     // CmpD3Greater except we did it with CmpD3 alone.
2040     c = _gvn.transform( new CmpD3Node( b, a));
2041     c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
2042     push(c);
2043     break;
2044 
2045 
2046     // Note for longs -> lo word is on TOS, hi word is on TOS - 1
2047   case Bytecodes::_land:
2048     b = pop_pair();
2049     a = pop_pair();
2050     c = _gvn.transform( new AndLNode(a,b) );
2051     push_pair(c);
2052     break;
2053   case Bytecodes::_lor:
2054     b = pop_pair();
2055     a = pop_pair();
2056     c = _gvn.transform( new OrLNode(a,b) );
2057     push_pair(c);
2058     break;
2059   case Bytecodes::_lxor:
2060     b = pop_pair();
2061     a = pop_pair();
2062     c = _gvn.transform( new XorLNode(a,b) );
2063     push_pair(c);
2064     break;
2065 
2066   case Bytecodes::_lshl:
2067     b = pop();                  // the shift count
2068     a = pop_pair();             // value to be shifted
2069     c = _gvn.transform( new LShiftLNode(a,b) );
2070     push_pair(c);
2071     break;
2072   case Bytecodes::_lshr:
2073     b = pop();                  // the shift count
2074     a = pop_pair();             // value to be shifted
2075     c = _gvn.transform( new RShiftLNode(a,b) );
2076     push_pair(c);
2077     break;
2078   case Bytecodes::_lushr:
2079     b = pop();                  // the shift count
2080     a = pop_pair();             // value to be shifted
2081     c = _gvn.transform( new URShiftLNode(a,b) );
2082     push_pair(c);
2083     break;
2084   case Bytecodes::_lmul:
2085     b = pop_pair();
2086     a = pop_pair();
2087     c = _gvn.transform( new MulLNode(a,b) );
2088     push_pair(c);
2089     break;
2090 
2091   case Bytecodes::_lrem:
2092     // Must keep both values on the expression-stack during null-check
2093     assert(peek(0) == top(), "long word order");
2094     zero_check_long(peek(1));
2095     // Compile-time detect of null-exception?
2096     if (stopped())  return;
2097     b = pop_pair();
2098     a = pop_pair();
2099     c = _gvn.transform( new ModLNode(control(),a,b) );
2100     push_pair(c);
2101     break;
2102 
2103   case Bytecodes::_ldiv:
2104     // Must keep both values on the expression-stack during null-check
2105     assert(peek(0) == top(), "long word order");
2106     zero_check_long(peek(1));
2107     // Compile-time detect of null-exception?
2108     if (stopped())  return;
2109     b = pop_pair();
2110     a = pop_pair();
2111     c = _gvn.transform( new DivLNode(control(),a,b) );
2112     push_pair(c);
2113     break;
2114 
2115   case Bytecodes::_ladd:
2116     b = pop_pair();
2117     a = pop_pair();
2118     c = _gvn.transform( new AddLNode(a,b) );
2119     push_pair(c);
2120     break;
2121   case Bytecodes::_lsub:
2122     b = pop_pair();
2123     a = pop_pair();
2124     c = _gvn.transform( new SubLNode(a,b) );
2125     push_pair(c);
2126     break;
2127   case Bytecodes::_lcmp:
2128     // Safepoints are now inserted _before_ branches.  The long-compare
2129     // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
2130     // slew of control flow.  These are usually followed by a CmpI vs zero and
2131     // a branch; this pattern then optimizes to the obvious long-compare and
2132     // branch.  However, if the branch is backwards there's a Safepoint
2133     // inserted.  The inserted Safepoint captures the JVM state at the
2134     // pre-branch point, i.e. it captures the 3-way value.  Thus if a
2135     // long-compare is used to control a loop the debug info will force
2136     // computation of the 3-way value, even though the generated code uses a
2137     // long-compare and branch.  We try to rectify the situation by inserting
2138     // a SafePoint here and have it dominate and kill the safepoint added at a
2139     // following backwards branch.  At this point the JVM state merely holds 2
2140     // longs but not the 3-way value.
2141     if( UseLoopSafepoints ) {
2142       switch( iter().next_bc() ) {
2143       case Bytecodes::_ifgt:
2144       case Bytecodes::_iflt:
2145       case Bytecodes::_ifge:
2146       case Bytecodes::_ifle:
2147       case Bytecodes::_ifne:
2148       case Bytecodes::_ifeq:
2149         // If this is a backwards branch in the bytecodes, add Safepoint
2150         maybe_add_safepoint(iter().next_get_dest());
2151       }
2152     }
2153     b = pop_pair();
2154     a = pop_pair();
2155     c = _gvn.transform( new CmpL3Node( a, b ));
2156     push(c);
2157     break;
2158 
2159   case Bytecodes::_lneg:
2160     a = pop_pair();
2161     b = _gvn.transform( new SubLNode(longcon(0),a));
2162     push_pair(b);
2163     break;
2164   case Bytecodes::_l2i:
2165     a = pop_pair();
2166     push( _gvn.transform( new ConvL2INode(a)));
2167     break;
2168   case Bytecodes::_i2l:
2169     a = pop();
2170     b = _gvn.transform( new ConvI2LNode(a));
2171     push_pair(b);
2172     break;
2173   case Bytecodes::_i2b:
2174     // Sign extend
2175     a = pop();
2176     a = _gvn.transform( new LShiftINode(a,_gvn.intcon(24)) );
2177     a = _gvn.transform( new RShiftINode(a,_gvn.intcon(24)) );
2178     push( a );
2179     break;
2180   case Bytecodes::_i2s:
2181     a = pop();
2182     a = _gvn.transform( new LShiftINode(a,_gvn.intcon(16)) );
2183     a = _gvn.transform( new RShiftINode(a,_gvn.intcon(16)) );
2184     push( a );
2185     break;
2186   case Bytecodes::_i2c:
2187     a = pop();
2188     push( _gvn.transform( new AndINode(a,_gvn.intcon(0xFFFF)) ) );
2189     break;
2190 
2191   case Bytecodes::_i2f:
2192     a = pop();
2193     b = _gvn.transform( new ConvI2FNode(a) ) ;
2194     c = precision_rounding(b);
2195     push (b);
2196     break;
2197 
2198   case Bytecodes::_i2d:
2199     a = pop();
2200     b = _gvn.transform( new ConvI2DNode(a));
2201     push_pair(b);
2202     break;
2203 
2204   case Bytecodes::_iinc:        // Increment local
2205     i = iter().get_index();     // Get local index
2206     set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
2207     break;
2208 
2209   // Exit points of synchronized methods must have an unlock node
2210   case Bytecodes::_return:
2211     return_current(NULL);
2212     break;
2213 
2214   case Bytecodes::_ireturn:
2215   case Bytecodes::_areturn:
2216   case Bytecodes::_vreturn:
2217   case Bytecodes::_freturn:
2218     return_current(pop());
2219     break;
2220   case Bytecodes::_lreturn:
2221     return_current(pop_pair());
2222     break;
2223   case Bytecodes::_dreturn:
2224     return_current(pop_pair());
2225     break;
2226 
2227   case Bytecodes::_athrow:
2228     // null exception oop throws NULL pointer exception
2229     null_check(peek());
2230     if (stopped())  return;
2231     // Hook the thrown exception directly to subsequent handlers.
2232     if (BailoutToInterpreterForThrows) {
2233       // Keep method interpreted from now on.
2234       uncommon_trap(Deoptimization::Reason_unhandled,
2235                     Deoptimization::Action_make_not_compilable);
2236       return;
2237     }
2238     if (env()->jvmti_can_post_on_exceptions()) {
2239       // check if we must post exception events, take uncommon trap if so (with must_throw = false)
2240       uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
2241     }
2242     // Here if either can_post_on_exceptions or should_post_on_exceptions is false
2243     add_exception_state(make_exception_state(peek()));
2244     break;
2245 
2246   case Bytecodes::_goto:   // fall through
2247   case Bytecodes::_goto_w: {
2248     int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
2249 
2250     // If this is a backwards branch in the bytecodes, add Safepoint
2251     maybe_add_safepoint(target_bci);
2252 
2253     // Update method data
2254     profile_taken_branch(target_bci);
2255 
2256     // Merge the current control into the target basic block
2257     merge(target_bci);
2258 
2259     // See if we can get some profile data and hand it off to the next block
2260     Block *target_block = block()->successor_for_bci(target_bci);
2261     if (target_block->pred_count() != 1)  break;
2262     ciMethodData* methodData = method()->method_data();
2263     if (!methodData->is_mature())  break;
2264     ciProfileData* data = methodData->bci_to_data(bci());
2265     assert( data->is_JumpData(), "" );
2266     int taken = ((ciJumpData*)data)->taken();
2267     taken = method()->scale_count(taken);
2268     target_block->set_count(taken);
2269     break;
2270   }
2271 
2272   case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
2273   case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
2274   handle_if_null:
2275     // If this is a backwards branch in the bytecodes, add Safepoint
2276     maybe_add_safepoint(iter().get_dest());
2277     a = null();
2278     b = pop();
2279     if (!_gvn.type(b)->speculative_maybe_null() &&
2280         !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2281       inc_sp(1);
2282       Node* null_ctl = top();
2283       b = null_check_oop(b, &null_ctl, true, true, true);
2284       assert(null_ctl->is_top(), "no null control here");
2285       dec_sp(1);
2286     }
2287     c = _gvn.transform( new CmpPNode(b, a) );
2288     do_ifnull(btest, c);
2289     break;
2290 
2291   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2292   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2293   handle_if_acmp:
2294     // If this is a backwards branch in the bytecodes, add Safepoint
2295     maybe_add_safepoint(iter().get_dest());
2296     a = pop();
2297     b = pop();
2298     c = _gvn.transform( new CmpPNode(b, a) );
2299     c = optimize_cmp_with_klass(c);
2300     do_if(btest, c);
2301     break;
2302 
2303   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2304   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2305   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2306   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2307   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2308   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2309   handle_ifxx:
2310     // If this is a backwards branch in the bytecodes, add Safepoint
2311     maybe_add_safepoint(iter().get_dest());
2312     a = _gvn.intcon(0);
2313     b = pop();
2314     c = _gvn.transform( new CmpINode(b, a) );
2315     do_if(btest, c);
2316     break;
2317 
2318   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2319   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2320   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
2321   case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
2322   case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
2323   case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
2324   handle_if_icmp:
2325     // If this is a backwards branch in the bytecodes, add Safepoint
2326     maybe_add_safepoint(iter().get_dest());
2327     a = pop();
2328     b = pop();
2329     c = _gvn.transform( new CmpINode( b, a ) );
2330     do_if(btest, c);
2331     break;
2332 
2333   case Bytecodes::_tableswitch:
2334     do_tableswitch();
2335     break;
2336 
2337   case Bytecodes::_lookupswitch:
2338     do_lookupswitch();
2339     break;
2340 
2341   case Bytecodes::_invokestatic:
2342   case Bytecodes::_invokedynamic:
2343   case Bytecodes::_invokespecial:
2344   case Bytecodes::_invokevirtual:
2345   case Bytecodes::_invokedirect:
2346   case Bytecodes::_invokeinterface:
2347     do_call();
2348     break;
2349   case Bytecodes::_checkcast:
2350     do_checkcast();
2351     break;
2352   case Bytecodes::_instanceof:
2353     do_instanceof();
2354     break;
2355   case Bytecodes::_anewarray:
2356     do_anewarray();
2357     break;
2358   case Bytecodes::_newarray:
2359     do_newarray((BasicType)iter().get_index());
2360     break;
2361   case Bytecodes::_multianewarray:
2362     do_multianewarray();
2363     break;
2364   case Bytecodes::_new:
2365     do_new();
2366     break;
2367   case Bytecodes::_vnew:
2368     do_vnew();
2369     break;
2370 
2371   case Bytecodes::_jsr:
2372   case Bytecodes::_jsr_w:
2373     do_jsr();
2374     break;
2375 
2376   case Bytecodes::_ret:
2377     do_ret();
2378     break;
2379 
2380 
2381   case Bytecodes::_monitorenter:
2382     do_monitor_enter();
2383     break;
2384 
2385   case Bytecodes::_monitorexit:
2386     do_monitor_exit();
2387     break;
2388 
2389   case Bytecodes::_breakpoint:
2390     // Breakpoint set concurrently to compile
2391     // %%% use an uncommon trap?
2392     C->record_failure("breakpoint in method");
2393     return;
2394 
2395   default:
2396 #ifndef PRODUCT
2397     map()->dump(99);
2398 #endif
2399     tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
2400     ShouldNotReachHere();
2401   }
2402 
2403 #ifndef PRODUCT
2404   IdealGraphPrinter *printer = C->printer();
2405   if (printer && printer->should_print(1)) {
2406     char buffer[256];
2407     sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
2408     bool old = printer->traverse_outs();
2409     printer->set_traverse_outs(true);
2410     printer->print_method(buffer, 4);
2411     printer->set_traverse_outs(old);
2412   }
2413 #endif
2414 }