1 /*
   2  * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciValueKlass.hpp"
  26 #include "opto/addnode.hpp"
  27 #include "opto/graphKit.hpp"
  28 #include "opto/rootnode.hpp"
  29 #include "opto/valuetypenode.hpp"
  30 #include "opto/phaseX.hpp"
  31 
  32 ValueTypeNode* ValueTypeNode::make(PhaseGVN& gvn, ciValueKlass* klass) {
  33   // Create a new ValueTypeNode with uninitialized values and NULL oop
  34   const TypeValueType* type = TypeValueType::make(klass);
  35   return new ValueTypeNode(type, gvn.zerocon(T_VALUETYPE));
  36 }
  37 
  38 Node* ValueTypeNode::make(PhaseGVN& gvn, Node* mem, Node* oop) {
  39   // Create and initialize a ValueTypeNode by loading all field
  40   // values from a heap-allocated version and also save the oop.
  41   const TypeValueTypePtr* vtptr = gvn.type(oop)->is_valuetypeptr();
  42   ValueTypeNode* vt = new ValueTypeNode(vtptr->value_type(), oop);
  43   vt->load_values(gvn, mem, vt->value_klass(), oop);
  44   return gvn.transform(vt);
  45 }
  46 
  47 Node* ValueTypeNode::make(PhaseGVN& gvn, ciValueKlass* klass, Node* mem, ciInstanceKlass* holder, Node* obj, int field_offset) {
  48   // Create and initialize a ValueTypeNode by loading all field
  49   // values from a flattened value type field at 'field_offset' in 'obj'.
  50   ValueTypeNode* vt = make(gvn, klass)->as_ValueType();
  51   // The value type is flattened into the object without an oop header. Subtract the
  52   // offset of the first field to account for the missing header when loading the values.
  53   int base_offset = field_offset - klass->first_field_offset();
  54   vt->load_values(gvn, mem, holder, obj, base_offset);
  55   return gvn.transform(vt);
  56 }
  57 
  58 void ValueTypeNode::load_values(PhaseGVN& gvn, Node* mem, ciInstanceKlass* holder, Node* base, int base_offset) {
  59   // Initialize the value type by loading its field values from
  60   // memory and adding the values as input edges to the node.
  61   for (uint i = 0; i < field_count(); ++i) {
  62     int offset = base_offset + get_field_offset(i);
  63     Node* adr = gvn.transform(new AddPNode(base, base, gvn.longcon(offset)));
  64     ciField* field = holder->get_field_by_offset(offset, false);
  65     const TypePtr* adr_type = gvn.C->alias_type(field)->adr_type();
  66     Node* value = NULL;
  67     ciType* field_type = get_field_type(i);
  68     if (field_type->is_valuetype()) {
  69       // Recursively load the flattened value type field
  70       value = ValueTypeNode::make(gvn, field_type->as_value_klass(), mem, holder, base, offset);
  71     } else {
  72       const Type* con_type = NULL;
  73       if (base->is_Con()) {
  74         // If the oop to the value type is constant (static final field), we can
  75         // also treat the fields as constants because the value type is immutable.
  76         const TypeOopPtr* oop_ptr = base->bottom_type()->isa_oopptr();
  77         ciObject* constant_oop = oop_ptr->const_oop();
  78         ciConstant constant = constant_oop->as_instance()->field_value(field);
  79         con_type = Type::make_from_constant(constant, /*require_const=*/ true);
  80       }
  81       if (con_type != NULL) {
  82         // Found a constant field value
  83         value = gvn.makecon(con_type);
  84       } else {
  85         // Load field value from memory
  86         value = LoadNode::make(gvn, NULL, mem, adr, adr_type, Type::get_const_type(field_type), field_type->basic_type(), MemNode::unordered);
  87       }
  88     }
  89     set_field_value(i, gvn.transform(value));
  90   }
  91 }
  92 
  93 void ValueTypeNode::store_to_field(GraphKit* kit, ciInstanceKlass* holder, Node* obj, int field_offset) const {
  94   // The value type is embedded into the object without an oop header. Subtract the
  95   // offset of the first field to account for the missing header when storing the values.
  96   int base_offset = field_offset - value_klass()->first_field_offset();
  97   store_values(kit, holder, obj, base_offset);
  98 }
  99 
 100 void ValueTypeNode::store_values(GraphKit* kit, ciInstanceKlass* holder, Node* base, int base_offset) const {
 101   // Write field values to memory
 102   for (uint i = 0; i < field_count(); ++i) {
 103     int offset = base_offset + get_field_offset(i);
 104     Node* adr = kit->basic_plus_adr(base, base, offset);
 105     ciField* field = holder->get_field_by_offset(offset, false);
 106     const TypePtr* adr_type = kit->C->alias_type(field)->adr_type();
 107     Node* value = get_field_value(i);
 108     if (value->is_ValueType()) {
 109       // Recursively store the flattened value type field
 110       value->isa_ValueType()->store_to_field(kit, holder, base, offset);
 111     } else {
 112       kit->store_to_memory(kit->control(), adr, value, get_field_type(i)->basic_type(), adr_type, MemNode::unordered);
 113     }
 114   }
 115 }
 116 
 117 Node* ValueTypeNode::store_to_memory(GraphKit* kit) {
 118   Node* in_oop = get_oop();
 119   Node* null_ctl = kit->top();
 120   // Check if value type is already allocated
 121   Node* not_null_oop = kit->null_check_oop(in_oop, &null_ctl);
 122   if (null_ctl->is_top()) {
 123     // Value type is allocated
 124     return not_null_oop;
 125   }
 126   // Not able to prove that value type is allocated.
 127   // Emit runtime check that may be folded later.
 128   const Type* oop_type = kit->gvn().type(in_oop);
 129   assert(TypePtr::NULL_PTR->higher_equal(oop_type), "should not be allocated");
 130 
 131   const TypeValueTypePtr* vtptr_type = TypeValueTypePtr::make(bottom_type()->isa_valuetype(), TypePtr::NotNull);
 132   RegionNode* region = new RegionNode(3);
 133   PhiNode* oop = new PhiNode(region, vtptr_type);
 134   PhiNode* io  = new PhiNode(region, Type::ABIO);
 135   PhiNode* mem = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 136 
 137   // Oop is non-NULL, use it
 138   region->init_req(1, kit->control());
 139   // Fixme if we cast oop to not null we fail if the control path is not folded
 140   // castnode.cpp:69: #  assert(ft == Type::TOP) failed: special case #3
 141   //oop   ->init_req(1, not_null_oop);
 142   oop   ->init_req(1, in_oop);
 143   io    ->init_req(1, kit->i_o());
 144   mem   ->init_req(1, kit->merged_memory());
 145 
 146   // Oop is NULL, allocate value type
 147   kit->set_control(null_ctl);
 148   kit->kill_dead_locals();
 149   Node* klass_node = kit->makecon(TypeKlassPtr::make(value_klass()));
 150   Node* alloc_oop  = kit->new_instance(klass_node);
 151   // Write field values to memory
 152   store_values(kit, value_klass(), alloc_oop);
 153   region->init_req(2, kit->control());
 154   oop   ->init_req(2, alloc_oop);
 155   io    ->init_req(2, kit->i_o());
 156   mem   ->init_req(2, kit->merged_memory());
 157 
 158   // Update GraphKit
 159   kit->set_control(kit->gvn().transform(region));
 160   kit->set_i_o(kit->gvn().transform(io));
 161   kit->set_all_memory(kit->gvn().transform(mem));
 162   kit->record_for_igvn(region);
 163   kit->record_for_igvn(oop);
 164   kit->record_for_igvn(io);
 165   kit->record_for_igvn(mem);
 166 
 167   // Use cloned ValueTypeNode to propagate oop from now on
 168   Node* res_oop = kit->gvn().transform(oop);
 169   ValueTypeNode* vt = clone()->as_ValueType();
 170   vt->set_oop(res_oop);
 171   kit->replace_in_map(this, kit->gvn().transform(vt));
 172   return res_oop;
 173 }
 174 
 175 // Clones the values type to handle control flow merges involving multiple value types.
 176 // The inputs are replaced by PhiNodes to represent the merged values for the given region.
 177 ValueTypeNode* ValueTypeNode::clone_with_phis(PhaseGVN& gvn, Node* region) {
 178   ValueTypeNode* vt = clone()->as_ValueType();
 179 
 180   // Create a PhiNode for merging the oop values
 181   const TypeValueTypePtr* vtptr = TypeValueTypePtr::make(vt->bottom_type()->isa_valuetype());
 182   PhiNode* oop = PhiNode::make(region, vt->get_oop(), vtptr);
 183   gvn.set_type(oop, vtptr);
 184   vt->set_oop(oop);
 185 
 186   // Create a PhiNode each for merging the field values
 187   for (uint i = 0; i < vt->field_count(); ++i) {
 188     ciType* type = vt->get_field_type(i);
 189     Node*  value = vt->get_field_value(i);
 190     if (type->is_valuetype()) {
 191       // Handle flattened value type fields recursively
 192       value = value->as_ValueType()->clone_with_phis(gvn, region);
 193     } else {
 194       const Type* phi_type = Type::get_const_type(type);
 195       value = PhiNode::make(region, value, phi_type);
 196       gvn.set_type(value, phi_type);
 197     }
 198     vt->set_field_value(i, value);
 199   }
 200   gvn.set_type(vt, vt->bottom_type());
 201   return vt;
 202 }
 203 
 204 // Checks if the inputs of the ValueTypeNode were replaced by PhiNodes
 205 // for the given region (see ValueTypeNode::clone_with_phis).
 206 bool ValueTypeNode::has_phi_inputs(Node* region) {
 207   // Check oop input
 208   bool result = get_oop()->is_Phi() && get_oop()->as_Phi()->region() == region;
 209 #ifdef ASSERT
 210   if (result) {
 211     // Check all field value inputs for consistency
 212     for (uint i = 0; i < field_count(); ++i) {
 213       Node* value = get_field_value(i);
 214       if (value->is_ValueType()) {
 215         assert(value->as_ValueType()->has_phi_inputs(region), "inconsistent phi inputs");
 216       } else {
 217         assert(value->is_Phi() && value->as_Phi()->region() == region, "inconsistent phi inputs");
 218       }
 219     }
 220   }
 221 #endif
 222   return result;
 223 }
 224 
 225 // Merges 'this' with 'other' by updating the input PhiNodes added by 'clone_with_phis'
 226 Node* ValueTypeNode::merge_with(GraphKit* kit, const ValueTypeNode* other, int pnum) {
 227   // Merge oop inputs
 228   PhiNode* phi = get_oop()->as_Phi();
 229   phi->set_req(pnum, other->get_oop());
 230   if (pnum == PhiNode::Input) {
 231     // Last merge
 232     set_oop(kit->gvn().transform_no_reclaim(phi));
 233     kit->record_for_igvn(phi);
 234   }
 235   // Merge field values
 236   for (uint i = 0; i < field_count(); ++i) {
 237     Node* val1 =        get_field_value(i);
 238     Node* val2 = other->get_field_value(i);
 239     if (val1->isa_ValueType()) {
 240       val1->as_ValueType()->merge_with(kit, val2->as_ValueType(), pnum);
 241     } else {
 242       assert(!val2->is_ValueType(), "inconsistent merge values");
 243       val1->set_req(pnum, val2);
 244     }
 245     if (pnum == PhiNode::Input) {
 246       // Last merge
 247       set_field_value(i, kit->gvn().transform_no_reclaim(val1));
 248       kit->record_for_igvn(val1);
 249     }
 250   }
 251   if (pnum == PhiNode::Input) {
 252     // Last merge for this value type.
 253    kit->record_for_igvn(this);
 254    return kit->gvn().transform_no_reclaim(this);
 255   }
 256   return this;
 257 }
 258 
 259 Node* ValueTypeNode::get_field_value(uint index) const {
 260   assert(index < field_count(), "index out of bounds");
 261   return in(Values + index);
 262 }
 263 
 264 // Get the value of the field at the given offset.
 265 // If 'recursive' is true, flattened value type fields will be resolved recursively.
 266 Node* ValueTypeNode::get_field_value_by_offset(int offset, bool recursive) const {
 267   // If the field at 'offset' belongs to a flattened value type field, 'index' refers to the
 268   // corresponding ValueTypeNode input and 'sub_offset' is the offset in flattened value type.
 269   int index = value_klass()->field_index_by_offset(offset);
 270   int sub_offset = offset - get_field_offset(index);
 271   Node* value = get_field_value(index);
 272   if (recursive && value->is_ValueType()) {
 273     // Flattened value type field
 274     ValueTypeNode* vt = value->as_ValueType();
 275     sub_offset += vt->value_klass()->first_field_offset(); // Add header size
 276     return vt->get_field_value_by_offset(sub_offset);
 277   }
 278   assert(!(recursive && value->is_ValueType()), "should not be a value type");
 279   assert(sub_offset == 0, "offset mismatch");
 280   return value;
 281 }
 282 
 283 void ValueTypeNode::set_field_value(uint index, Node* value) {
 284   assert(index < field_count(), "index out of bounds");
 285   set_req(Values + index, value);
 286 }
 287 
 288 int ValueTypeNode::get_field_offset(uint index) const {
 289   assert(index < field_count(), "index out of bounds");
 290   return value_klass()->field_offset_by_index(index);
 291 }
 292 
 293 ciType* ValueTypeNode::get_field_type(uint index) const {
 294   assert(index < field_count(), "index out of bounds");
 295   return value_klass()->field_type_by_index(index);
 296 }
 297 
 298 void ValueTypeNode::make_scalar_in_safepoints(Compile* C) {
 299   const TypeValueTypePtr* res_type = TypeValueTypePtr::make(bottom_type()->isa_valuetype(), TypePtr::NotNull);
 300   ciValueKlass* vk = value_klass();
 301   uint nfields = vk->flattened_field_count();
 302   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 303     Node* u = fast_out(i);
 304     if (u->is_SafePoint() && (!u->is_Call() || u->as_Call()->has_debug_use(this))) {
 305       Node* in_oop = get_oop();
 306       const Type* oop_type = in_oop->bottom_type();
 307       SafePointNode* sfpt = u->as_SafePoint();
 308       JVMState* jvms = sfpt->jvms();
 309       int start = jvms->debug_start();
 310       int end   = jvms->debug_end();
 311       if (oop_type->meet(TypePtr::NULL_PTR) != oop_type) {
 312         // Replace safepoint edge by oop
 313         int nb = sfpt->replace_edges_in_range(this, in_oop, start, end);
 314         --i; imax -= nb;
 315       } else {
 316         // Replace safepoint edge by SafePointScalarObjectNode and add field values
 317         assert(jvms != NULL, "missing JVMS");
 318         uint first_ind = (sfpt->req() - jvms->scloff());
 319         SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type,
 320 #ifdef ASSERT
 321                                                                         NULL,
 322 #endif
 323                                                                         first_ind, nfields);
 324         sobj->init_req(0, C->root());
 325         // Iterate over the value type fields in order of increasing
 326         // offset and add the field values to the safepoint.
 327         for (uint j = 0; j < nfields; ++j) {
 328           int offset = vk->nonstatic_field_at(j)->offset();
 329           Node* value = get_field_value_by_offset(offset, true /* include flattened value type fields */);
 330           sfpt->add_req(value);
 331         }
 332         jvms->set_endoff(sfpt->req());
 333         int nb = sfpt->replace_edges_in_range(this, sobj, start, end);
 334         --i; imax -= nb;
 335       }
 336     }
 337   }
 338 }
 339 
 340 uint ValueTypeNode::set_arguments_for_java_call(CallJavaNode* call, int base_input, const GraphKit& kit, ciValueKlass* base_vk, int base_offset) {
 341   ciValueKlass* vk = value_klass();
 342   if (base_vk == NULL) {
 343     base_vk = vk;
 344   }
 345   uint edges = 0;
 346   for (uint i = 0; i < field_count(); i++) {
 347     ciType* field_type = get_field_type(i);
 348     int offset = base_offset + get_field_offset(i) - (base_offset > 0 ? vk->first_field_offset() : 0);
 349     Node* arg = get_field_value(i);
 350     if (field_type->is_valuetype()) {
 351       ciValueKlass* embedded_vk = field_type->as_value_klass();
 352       edges += arg->as_ValueType()->set_arguments_for_java_call(call, base_input, kit, base_vk, offset);
 353     } else {
 354       int j = 0; int extra = 0;
 355       for (; j < base_vk->nof_nonstatic_fields(); j++) {
 356         ciField* f = base_vk->nonstatic_field_at(j);
 357         if (offset == f->offset()) {
 358           assert(f->type() == field_type, "inconsistent field type");
 359           break;
 360         }
 361         BasicType bt = f->type()->basic_type();
 362         if (bt == T_LONG || bt == T_DOUBLE) {
 363           extra++;
 364         }
 365       }
 366       call->init_req(base_input + j + extra, arg);
 367       edges++;
 368       BasicType bt = field_type->basic_type();
 369       if (bt == T_LONG || bt == T_DOUBLE) {
 370         call->init_req(base_input + j + extra + 1, kit.top());
 371         edges++;
 372       }
 373     }
 374   }
 375   return edges;
 376 }
 377 
 378 Node* ValueTypeNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 379   // No optimizations for now
 380   return NULL;
 381 }
 382 
 383 #ifndef PRODUCT
 384 
 385 void ValueTypeNode::dump_spec(outputStream* st) const {
 386   TypeNode::dump_spec(st);
 387 }
 388 
 389 #endif