/* * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "ci/ciValueKlass.hpp" #include "classfile/systemDictionary.hpp" #include "compiler/compileLog.hpp" #include "oops/objArrayKlass.hpp" #include "oops/valueArrayKlass.hpp" #include "opto/addnode.hpp" #include "opto/memnode.hpp" #include "opto/mulnode.hpp" #include "opto/parse.hpp" #include "opto/rootnode.hpp" #include "opto/runtime.hpp" #include "opto/valuetypenode.hpp" #include "runtime/sharedRuntime.hpp" //------------------------------make_dtrace_method_entry_exit ---------------- // Dtrace -- record entry or exit of a method if compiled with dtrace support void GraphKit::make_dtrace_method_entry_exit(ciMethod* method, bool is_entry) { const TypeFunc *call_type = OptoRuntime::dtrace_method_entry_exit_Type(); address call_address = is_entry ? CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry) : CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit); const char *call_name = is_entry ? "dtrace_method_entry" : "dtrace_method_exit"; // Get base of thread-local storage area Node* thread = _gvn.transform( new ThreadLocalNode() ); // Get method const TypePtr* method_type = TypeMetadataPtr::make(method); Node *method_node = _gvn.transform(ConNode::make(method_type)); kill_dead_locals(); // For some reason, this call reads only raw memory. const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM; make_runtime_call(RC_LEAF | RC_NARROW_MEM, call_type, call_address, call_name, raw_adr_type, thread, method_node); } //============================================================================= //------------------------------do_checkcast----------------------------------- void Parse::do_checkcast() { bool will_link; ciKlass* klass = iter().get_klass(will_link); Node *obj = peek(); // Throw uncommon trap if class is not loaded or the value we are casting // _from_ is not loaded, and value is not null. If the value _is_ NULL, // then the checkcast does nothing. const TypeOopPtr *tp = _gvn.type(obj)->isa_oopptr(); if (!will_link || (tp && tp->klass() && !tp->klass()->is_loaded())) { if (C->log() != NULL) { if (!will_link) { C->log()->elem("assert_null reason='checkcast' klass='%d'", C->log()->identify(klass)); } if (tp && tp->klass() && !tp->klass()->is_loaded()) { // %%% Cannot happen? C->log()->elem("assert_null reason='checkcast source' klass='%d'", C->log()->identify(tp->klass())); } } null_assert(obj); assert( stopped() || _gvn.type(peek())->higher_equal(TypePtr::NULL_PTR), "what's left behind is null" ); if (!stopped()) { profile_null_checkcast(); } return; } Node *res = gen_checkcast(obj, makecon(TypeKlassPtr::make(klass)) ); // Pop from stack AFTER gen_checkcast because it can uncommon trap and // the debug info has to be correct. pop(); push(res); } //------------------------------do_instanceof---------------------------------- void Parse::do_instanceof() { if (stopped()) return; // We would like to return false if class is not loaded, emitting a // dependency, but Java requires instanceof to load its operand. // Throw uncommon trap if class is not loaded bool will_link; ciKlass* klass = iter().get_klass(will_link); if (!will_link) { if (C->log() != NULL) { C->log()->elem("assert_null reason='instanceof' klass='%d'", C->log()->identify(klass)); } null_assert(peek()); assert( stopped() || _gvn.type(peek())->higher_equal(TypePtr::NULL_PTR), "what's left behind is null" ); if (!stopped()) { // The object is now known to be null. // Shortcut the effect of gen_instanceof and return "false" directly. pop(); // pop the null push(_gvn.intcon(0)); // push false answer } return; } // Push the bool result back on stack Node* res = gen_instanceof(peek(), makecon(TypeKlassPtr::make(klass)), true); // Pop from stack AFTER gen_instanceof because it can uncommon trap. pop(); push(res); } //------------------------------array_store_check------------------------------ // pull array from stack and check that the store is valid void Parse::array_store_check(bool target_is_valuetypearray) { // Shorthand access to array store elements without popping them. Node *obj = peek(0); Node *idx = peek(1); Node *ary = peek(2); if (_gvn.type(obj) == TypePtr::NULL_PTR) { // There's never a type check on null values. // This cutout lets us avoid the uncommon_trap(Reason_array_check) // below, which turns into a performance liability if the // gen_checkcast folds up completely. return; } // Extract the array klass type int klass_offset = oopDesc::klass_offset_in_bytes(); Node* p = basic_plus_adr( ary, ary, klass_offset ); // p's type is array-of-OOPS plus klass_offset Node* array_klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeInstPtr::KLASS)); // Get the array klass const TypeKlassPtr *tak = _gvn.type(array_klass)->is_klassptr(); // The type of array_klass is usually INexact array-of-oop. Heroically // cast array_klass to EXACT array and uncommon-trap if the cast fails. // Make constant out of the inexact array klass, but use it only if the cast // succeeds. bool always_see_exact_class = false; if (MonomorphicArrayCheck && !too_many_traps(Deoptimization::Reason_array_check) && !tak->klass_is_exact() && tak != TypeKlassPtr::OBJECT) { // Regarding the fourth condition in the if-statement from above: // // If the compiler has determined that the type of array 'ary' (represented // by 'array_klass') is java/lang/Object, the compiler must not assume that // the array 'ary' is monomorphic. // // If 'ary' were of type java/lang/Object, this arraystore would have to fail, // because it is not possible to perform a arraystore into an object that is not // a "proper" array. // // Therefore, let's obtain at runtime the type of 'ary' and check if we can still // successfully perform the store. // // The implementation reasons for the condition are the following: // // java/lang/Object is the superclass of all arrays, but it is represented by the VM // as an InstanceKlass. The checks generated by gen_checkcast() (see below) expect // 'array_klass' to be ObjArrayKlass, which can result in invalid memory accesses. // // See issue JDK-8057622 for details. always_see_exact_class = true; // (If no MDO at all, hope for the best, until a trap actually occurs.) // Make a constant out of the inexact array klass const TypeKlassPtr *extak = tak->cast_to_exactness(true)->is_klassptr(); Node* con = makecon(extak); Node* cmp = _gvn.transform(new CmpPNode( array_klass, con )); Node* bol = _gvn.transform(new BoolNode( cmp, BoolTest::eq )); Node* ctrl= control(); { BuildCutout unless(this, bol, PROB_MAX); uncommon_trap(Deoptimization::Reason_array_check, Deoptimization::Action_maybe_recompile, tak->klass()); } if (stopped()) { // MUST uncommon-trap? set_control(ctrl); // Then Don't Do It, just fall into the normal checking } else { // Cast array klass to exactness: // Use the exact constant value we know it is. replace_in_map(array_klass,con); CompileLog* log = C->log(); if (log != NULL) { log->elem("cast_up reason='monomorphic_array' from='%d' to='(exact)'", log->identify(tak->klass())); } array_klass = con; // Use cast value moving forward } } // Come here for polymorphic array klasses // Extract the array element class int element_klass_offset = in_bytes(ArrayKlass::element_klass_offset()); Node *p2 = basic_plus_adr(array_klass, array_klass, element_klass_offset); // We are allowed to use the constant type only if cast succeeded. If always_see_exact_class is true, // we must set a control edge from the IfTrue node created by the uncommon_trap above to the // LoadKlassNode. Node* a_e_klass = _gvn.transform(LoadKlassNode::make(_gvn, always_see_exact_class ? control() : NULL, immutable_memory(), p2, tak)); if (target_is_valuetypearray) { ciKlass* target_elem_klass = gvn().type(a_e_klass)->is_klassptr()->klass(); ciKlass* source_klass = gvn().type(obj)->is_valuetype()->value_klass(); if (!target_elem_klass->equals(source_klass)) { Node* slow_ctl = type_check(a_e_klass, TypeKlassPtr::make(source_klass), 1.0); { PreserveJVMState pjvms(this); set_control(slow_ctl); builtin_throw(Deoptimization::Reason_class_check); } } } else { // Check (the hard way) and throw if not a subklass. // Result is ignored, we just need the CFG effects. gen_checkcast(obj, a_e_klass); } } void Parse::emit_guard_for_new(ciInstanceKlass* klass) { // Emit guarded new // if (klass->_init_thread != current_thread || // klass->_init_state != being_initialized) // uncommon_trap Node* cur_thread = _gvn.transform( new ThreadLocalNode() ); Node* merge = new RegionNode(3); _gvn.set_type(merge, Type::CONTROL); Node* kls = makecon(TypeKlassPtr::make(klass)); Node* init_thread_offset = _gvn.MakeConX(in_bytes(InstanceKlass::init_thread_offset())); Node* adr_node = basic_plus_adr(kls, kls, init_thread_offset); Node* init_thread = make_load(NULL, adr_node, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); Node *tst = Bool( CmpP( init_thread, cur_thread), BoolTest::eq); IfNode* iff = create_and_map_if(control(), tst, PROB_ALWAYS, COUNT_UNKNOWN); set_control(IfTrue(iff)); merge->set_req(1, IfFalse(iff)); Node* init_state_offset = _gvn.MakeConX(in_bytes(InstanceKlass::init_state_offset())); adr_node = basic_plus_adr(kls, kls, init_state_offset); // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler // can generate code to load it as unsigned byte. Node* init_state = make_load(NULL, adr_node, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); Node* being_init = _gvn.intcon(InstanceKlass::being_initialized); tst = Bool( CmpI( init_state, being_init), BoolTest::eq); iff = create_and_map_if(control(), tst, PROB_ALWAYS, COUNT_UNKNOWN); set_control(IfTrue(iff)); merge->set_req(2, IfFalse(iff)); PreserveJVMState pjvms(this); record_for_igvn(merge); set_control(merge); uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_reinterpret, klass); } //------------------------------do_new----------------------------------------- void Parse::do_new() { kill_dead_locals(); bool will_link; ciInstanceKlass* klass = iter().get_klass(will_link)->as_instance_klass(); assert(will_link, "_new: typeflow responsibility"); // Should initialize, or throw an InstantiationError? if (!klass->is_initialized() && !klass->is_being_initialized() || klass->is_abstract() || klass->is_interface() || klass->name() == ciSymbol::java_lang_Class() || iter().is_unresolved_klass()) { uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_reinterpret, klass); return; } if (klass->is_being_initialized()) { emit_guard_for_new(klass); } Node* kls = makecon(TypeKlassPtr::make(klass)); Node* obj = new_instance(kls); // Push resultant oop onto stack push(obj); // Keep track of whether opportunities exist for StringBuilder // optimizations. if (OptimizeStringConcat && (klass == C->env()->StringBuilder_klass() || klass == C->env()->StringBuffer_klass())) { C->set_has_stringbuilder(true); } // Keep track of boxed values for EliminateAutoBox optimizations. if (C->eliminate_boxing() && klass->is_box_klass()) { C->set_has_boxed_value(true); } } //------------------------------do_vdefault------------------------------------- void Parse::do_vdefault() { // Fixme additional checks needed? bool will_link; ciValueKlass* vk = iter().get_klass(will_link)->as_value_klass(); assert(will_link, "vdefault: typeflow responsibility"); // Create a new ValueTypeNode Node* vt = ValueTypeNode::make_default(_gvn, vk); push(_gvn.transform(vt)); } //------------------------------do_vwithfield----------------------------------- void Parse::do_vwithfield() { // Fixme additional checks needed? bool will_link; ciField* field = iter().get_field(will_link); assert(will_link, "vdefault: typeflow responsibility"); BasicType bt = field->layout_type(); Node* val = type2size[bt] == 1 ? pop() : pop_pair(); Node* vt = pop(); assert(vt->is_ValueType(), "value type expected here"); ValueTypeNode* new_vt = vt->clone()->as_ValueType(); new_vt->set_oop(_gvn.zerocon(T_VALUETYPE)); int offset = field->offset(); uint i = 0; for (; i < new_vt->field_count() && new_vt->field_offset(i) != offset; i++); assert(i < new_vt->field_count(), "where's the field"); new_vt->set_field_value(i, val); push(_gvn.transform(new_vt)); } #ifndef PRODUCT //------------------------------dump_map_adr_mem------------------------------- // Debug dump of the mapping from address types to MergeMemNode indices. void Parse::dump_map_adr_mem() const { tty->print_cr("--- Mapping from address types to memory Nodes ---"); MergeMemNode *mem = map() == NULL ? NULL : (map()->memory()->is_MergeMem() ? map()->memory()->as_MergeMem() : NULL); for (uint i = 0; i < (uint)C->num_alias_types(); i++) { C->alias_type(i)->print_on(tty); tty->print("\t"); // Node mapping, if any if (mem && i < mem->req() && mem->in(i) && mem->in(i) != mem->empty_memory()) { mem->in(i)->dump(); } else { tty->cr(); } } } #endif //============================================================================= // // parser methods for profiling //----------------------test_counter_against_threshold ------------------------ void Parse::test_counter_against_threshold(Node* cnt, int limit) { // Test the counter against the limit and uncommon trap if greater. // This code is largely copied from the range check code in // array_addressing() // Test invocation count vs threshold Node *threshold = makecon(TypeInt::make(limit)); Node *chk = _gvn.transform( new CmpUNode( cnt, threshold) ); BoolTest::mask btest = BoolTest::lt; Node *tst = _gvn.transform( new BoolNode( chk, btest) ); // Branch to failure if threshold exceeded { BuildCutout unless(this, tst, PROB_ALWAYS); uncommon_trap(Deoptimization::Reason_age, Deoptimization::Action_maybe_recompile); } } //----------------------increment_and_test_invocation_counter------------------- void Parse::increment_and_test_invocation_counter(int limit) { if (!count_invocations()) return; // Get the Method* node. ciMethod* m = method(); MethodCounters* counters_adr = m->ensure_method_counters(); if (counters_adr == NULL) { C->record_failure("method counters allocation failed"); return; } Node* ctrl = control(); const TypePtr* adr_type = TypeRawPtr::make((address) counters_adr); Node *counters_node = makecon(adr_type); Node* adr_iic_node = basic_plus_adr(counters_node, counters_node, MethodCounters::interpreter_invocation_counter_offset_in_bytes()); Node* cnt = make_load(ctrl, adr_iic_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered); test_counter_against_threshold(cnt, limit); // Add one to the counter and store Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1))); store_to_memory(ctrl, adr_iic_node, incr, T_INT, adr_type, MemNode::unordered); } //----------------------------method_data_addressing--------------------------- Node* Parse::method_data_addressing(ciMethodData* md, ciProfileData* data, ByteSize counter_offset, Node* idx, uint stride) { // Get offset within MethodData* of the data array ByteSize data_offset = MethodData::data_offset(); // Get cell offset of the ProfileData within data array int cell_offset = md->dp_to_di(data->dp()); // Add in counter_offset, the # of bytes into the ProfileData of counter or flag int offset = in_bytes(data_offset) + cell_offset + in_bytes(counter_offset); const TypePtr* adr_type = TypeMetadataPtr::make(md); Node* mdo = makecon(adr_type); Node* ptr = basic_plus_adr(mdo, mdo, offset); if (stride != 0) { Node* str = _gvn.MakeConX(stride); Node* scale = _gvn.transform( new MulXNode( idx, str ) ); ptr = _gvn.transform( new AddPNode( mdo, ptr, scale ) ); } return ptr; } //--------------------------increment_md_counter_at---------------------------- void Parse::increment_md_counter_at(ciMethodData* md, ciProfileData* data, ByteSize counter_offset, Node* idx, uint stride) { Node* adr_node = method_data_addressing(md, data, counter_offset, idx, stride); const TypePtr* adr_type = _gvn.type(adr_node)->is_ptr(); Node* cnt = make_load(NULL, adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered); Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(DataLayout::counter_increment))); store_to_memory(NULL, adr_node, incr, T_INT, adr_type, MemNode::unordered); } //--------------------------test_for_osr_md_counter_at------------------------- void Parse::test_for_osr_md_counter_at(ciMethodData* md, ciProfileData* data, ByteSize counter_offset, int limit) { Node* adr_node = method_data_addressing(md, data, counter_offset); const TypePtr* adr_type = _gvn.type(adr_node)->is_ptr(); Node* cnt = make_load(NULL, adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered); test_counter_against_threshold(cnt, limit); } //-------------------------------set_md_flag_at-------------------------------- void Parse::set_md_flag_at(ciMethodData* md, ciProfileData* data, int flag_constant) { Node* adr_node = method_data_addressing(md, data, DataLayout::flags_offset()); const TypePtr* adr_type = _gvn.type(adr_node)->is_ptr(); Node* flags = make_load(NULL, adr_node, TypeInt::BYTE, T_BYTE, adr_type, MemNode::unordered); Node* incr = _gvn.transform(new OrINode(flags, _gvn.intcon(flag_constant))); store_to_memory(NULL, adr_node, incr, T_BYTE, adr_type, MemNode::unordered); } //----------------------------profile_taken_branch----------------------------- void Parse::profile_taken_branch(int target_bci, bool force_update) { // This is a potential osr_site if we have a backedge. int cur_bci = bci(); bool osr_site = (target_bci <= cur_bci) && count_invocations() && UseOnStackReplacement; // If we are going to OSR, restart at the target bytecode. set_bci(target_bci); // To do: factor out the the limit calculations below. These duplicate // the similar limit calculations in the interpreter. if (method_data_update() || force_update) { ciMethodData* md = method()->method_data(); assert(md != NULL, "expected valid ciMethodData"); ciProfileData* data = md->bci_to_data(cur_bci); assert(data->is_JumpData(), "need JumpData for taken branch"); increment_md_counter_at(md, data, JumpData::taken_offset()); } // In the new tiered system this is all we need to do. In the old // (c2 based) tiered sytem we must do the code below. #ifndef TIERED if (method_data_update()) { ciMethodData* md = method()->method_data(); if (osr_site) { ciProfileData* data = md->bci_to_data(cur_bci); int limit = (CompileThreshold * (OnStackReplacePercentage - InterpreterProfilePercentage)) / 100; test_for_osr_md_counter_at(md, data, JumpData::taken_offset(), limit); } } else { // With method data update off, use the invocation counter to trigger an // OSR compilation, as done in the interpreter. if (osr_site) { int limit = (CompileThreshold * OnStackReplacePercentage) / 100; increment_and_test_invocation_counter(limit); } } #endif // TIERED // Restore the original bytecode. set_bci(cur_bci); } //--------------------------profile_not_taken_branch--------------------------- void Parse::profile_not_taken_branch(bool force_update) { if (method_data_update() || force_update) { ciMethodData* md = method()->method_data(); assert(md != NULL, "expected valid ciMethodData"); ciProfileData* data = md->bci_to_data(bci()); assert(data->is_BranchData(), "need BranchData for not taken branch"); increment_md_counter_at(md, data, BranchData::not_taken_offset()); } } //---------------------------------profile_call-------------------------------- void Parse::profile_call(Node* receiver) { if (!method_data_update()) return; switch (bc()) { case Bytecodes::_invokevirtual: case Bytecodes::_invokeinterface: profile_receiver_type(receiver); break; case Bytecodes::_invokestatic: case Bytecodes::_invokedynamic: case Bytecodes::_invokespecial: profile_generic_call(); break; default: fatal("unexpected call bytecode"); } } //------------------------------profile_generic_call--------------------------- void Parse::profile_generic_call() { assert(method_data_update(), "must be generating profile code"); ciMethodData* md = method()->method_data(); assert(md != NULL, "expected valid ciMethodData"); ciProfileData* data = md->bci_to_data(bci()); assert(data->is_CounterData(), "need CounterData for not taken branch"); increment_md_counter_at(md, data, CounterData::count_offset()); } //-----------------------------profile_receiver_type--------------------------- void Parse::profile_receiver_type(Node* receiver) { assert(method_data_update(), "must be generating profile code"); ciMethodData* md = method()->method_data(); assert(md != NULL, "expected valid ciMethodData"); ciProfileData* data = md->bci_to_data(bci()); assert(data->is_ReceiverTypeData(), "need ReceiverTypeData here"); // Skip if we aren't tracking receivers if (TypeProfileWidth < 1) { increment_md_counter_at(md, data, CounterData::count_offset()); return; } ciReceiverTypeData* rdata = (ciReceiverTypeData*)data->as_ReceiverTypeData(); Node* method_data = method_data_addressing(md, rdata, in_ByteSize(0)); // Using an adr_type of TypePtr::BOTTOM to work around anti-dep problems. // A better solution might be to use TypeRawPtr::BOTTOM with RC_NARROW_MEM. make_runtime_call(RC_LEAF, OptoRuntime::profile_receiver_type_Type(), CAST_FROM_FN_PTR(address, OptoRuntime::profile_receiver_type_C), "profile_receiver_type_C", TypePtr::BOTTOM, method_data, receiver); } //---------------------------------profile_ret--------------------------------- void Parse::profile_ret(int target_bci) { if (!method_data_update()) return; // Skip if we aren't tracking ret targets if (TypeProfileWidth < 1) return; ciMethodData* md = method()->method_data(); assert(md != NULL, "expected valid ciMethodData"); ciProfileData* data = md->bci_to_data(bci()); assert(data->is_RetData(), "need RetData for ret"); ciRetData* ret_data = (ciRetData*)data->as_RetData(); // Look for the target_bci is already in the table uint row; bool table_full = true; for (row = 0; row < ret_data->row_limit(); row++) { int key = ret_data->bci(row); table_full &= (key != RetData::no_bci); if (key == target_bci) break; } if (row >= ret_data->row_limit()) { // The target_bci was not found in the table. if (!table_full) { // XXX: Make slow call to update RetData } return; } // the target_bci is already in the table increment_md_counter_at(md, data, RetData::bci_count_offset(row)); } //--------------------------profile_null_checkcast---------------------------- void Parse::profile_null_checkcast() { // Set the null-seen flag, done in conjunction with the usual null check. We // never unset the flag, so this is a one-way switch. if (!method_data_update()) return; ciMethodData* md = method()->method_data(); assert(md != NULL, "expected valid ciMethodData"); ciProfileData* data = md->bci_to_data(bci()); assert(data->is_BitData(), "need BitData for checkcast"); set_md_flag_at(md, data, BitData::null_seen_byte_constant()); } //-----------------------------profile_switch_case----------------------------- void Parse::profile_switch_case(int table_index) { if (!method_data_update()) return; ciMethodData* md = method()->method_data(); assert(md != NULL, "expected valid ciMethodData"); ciProfileData* data = md->bci_to_data(bci()); assert(data->is_MultiBranchData(), "need MultiBranchData for switch case"); if (table_index >= 0) { increment_md_counter_at(md, data, MultiBranchData::case_count_offset(table_index)); } else { increment_md_counter_at(md, data, MultiBranchData::default_count_offset()); } }