1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "services/attachListener.hpp"
  67 #include "services/memTracker.hpp"
  68 #include "services/runtimeService.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 #ifdef _DEBUG
  76 #include <crtdbg.h>
  77 #endif
  78 
  79 
  80 #include <windows.h>
  81 #include <sys/types.h>
  82 #include <sys/stat.h>
  83 #include <sys/timeb.h>
  84 #include <objidl.h>
  85 #include <shlobj.h>
  86 
  87 #include <malloc.h>
  88 #include <signal.h>
  89 #include <direct.h>
  90 #include <errno.h>
  91 #include <fcntl.h>
  92 #include <io.h>
  93 #include <process.h>              // For _beginthreadex(), _endthreadex()
  94 #include <imagehlp.h>             // For os::dll_address_to_function_name
  95 // for enumerating dll libraries
  96 #include <vdmdbg.h>
  97 
  98 // for timer info max values which include all bits
  99 #define ALL_64_BITS CONST64(-1)
 100 
 101 // For DLL loading/load error detection
 102 // Values of PE COFF
 103 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 104 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 105 
 106 static HANDLE main_process;
 107 static HANDLE main_thread;
 108 static int    main_thread_id;
 109 
 110 static FILETIME process_creation_time;
 111 static FILETIME process_exit_time;
 112 static FILETIME process_user_time;
 113 static FILETIME process_kernel_time;
 114 
 115 #ifdef _M_IA64
 116   #define __CPU__ ia64
 117 #elif _M_AMD64
 118   #define __CPU__ amd64
 119 #else
 120   #define __CPU__ i486
 121 #endif
 122 
 123 // save DLL module handle, used by GetModuleFileName
 124 
 125 HINSTANCE vm_lib_handle;
 126 
 127 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 128   switch (reason) {
 129   case DLL_PROCESS_ATTACH:
 130     vm_lib_handle = hinst;
 131     if (ForceTimeHighResolution) {
 132       timeBeginPeriod(1L);
 133     }
 134     break;
 135   case DLL_PROCESS_DETACH:
 136     if (ForceTimeHighResolution) {
 137       timeEndPeriod(1L);
 138     }
 139     break;
 140   default:
 141     break;
 142   }
 143   return true;
 144 }
 145 
 146 static inline double fileTimeAsDouble(FILETIME* time) {
 147   const double high  = (double) ((unsigned int) ~0);
 148   const double split = 10000000.0;
 149   double result = (time->dwLowDateTime / split) +
 150                    time->dwHighDateTime * (high/split);
 151   return result;
 152 }
 153 
 154 // Implementation of os
 155 
 156 bool os::getenv(const char* name, char* buffer, int len) {
 157   int result = GetEnvironmentVariable(name, buffer, len);
 158   return result > 0 && result < len;
 159 }
 160 
 161 bool os::unsetenv(const char* name) {
 162   assert(name != NULL, "Null pointer");
 163   return (SetEnvironmentVariable(name, NULL) == TRUE);
 164 }
 165 
 166 // No setuid programs under Windows.
 167 bool os::have_special_privileges() {
 168   return false;
 169 }
 170 
 171 
 172 // This method is  a periodic task to check for misbehaving JNI applications
 173 // under CheckJNI, we can add any periodic checks here.
 174 // For Windows at the moment does nothing
 175 void os::run_periodic_checks() {
 176   return;
 177 }
 178 
 179 // previous UnhandledExceptionFilter, if there is one
 180 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 181 
 182 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 183 
 184 void os::init_system_properties_values() {
 185   // sysclasspath, java_home, dll_dir
 186   {
 187     char *home_path;
 188     char *dll_path;
 189     char *pslash;
 190     char *bin = "\\bin";
 191     char home_dir[MAX_PATH];
 192 
 193     if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 194       os::jvm_path(home_dir, sizeof(home_dir));
 195       // Found the full path to jvm.dll.
 196       // Now cut the path to <java_home>/jre if we can.
 197       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 198       pslash = strrchr(home_dir, '\\');
 199       if (pslash != NULL) {
 200         *pslash = '\0';                   // get rid of \{client|server}
 201         pslash = strrchr(home_dir, '\\');
 202         if (pslash != NULL) {
 203           *pslash = '\0';                 // get rid of \bin
 204         }
 205       }
 206     }
 207 
 208     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 209     if (home_path == NULL) {
 210       return;
 211     }
 212     strcpy(home_path, home_dir);
 213     Arguments::set_java_home(home_path);
 214     FREE_C_HEAP_ARRAY(char, home_path);
 215 
 216     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 217                                 mtInternal);
 218     if (dll_path == NULL) {
 219       return;
 220     }
 221     strcpy(dll_path, home_dir);
 222     strcat(dll_path, bin);
 223     Arguments::set_dll_dir(dll_path);
 224     FREE_C_HEAP_ARRAY(char, dll_path);
 225 
 226     if (!set_boot_path('\\', ';')) {
 227       return;
 228     }
 229   }
 230 
 231 // library_path
 232 #define EXT_DIR "\\lib\\ext"
 233 #define BIN_DIR "\\bin"
 234 #define PACKAGE_DIR "\\Sun\\Java"
 235   {
 236     // Win32 library search order (See the documentation for LoadLibrary):
 237     //
 238     // 1. The directory from which application is loaded.
 239     // 2. The system wide Java Extensions directory (Java only)
 240     // 3. System directory (GetSystemDirectory)
 241     // 4. Windows directory (GetWindowsDirectory)
 242     // 5. The PATH environment variable
 243     // 6. The current directory
 244 
 245     char *library_path;
 246     char tmp[MAX_PATH];
 247     char *path_str = ::getenv("PATH");
 248 
 249     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 250                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 251 
 252     library_path[0] = '\0';
 253 
 254     GetModuleFileName(NULL, tmp, sizeof(tmp));
 255     *(strrchr(tmp, '\\')) = '\0';
 256     strcat(library_path, tmp);
 257 
 258     GetWindowsDirectory(tmp, sizeof(tmp));
 259     strcat(library_path, ";");
 260     strcat(library_path, tmp);
 261     strcat(library_path, PACKAGE_DIR BIN_DIR);
 262 
 263     GetSystemDirectory(tmp, sizeof(tmp));
 264     strcat(library_path, ";");
 265     strcat(library_path, tmp);
 266 
 267     GetWindowsDirectory(tmp, sizeof(tmp));
 268     strcat(library_path, ";");
 269     strcat(library_path, tmp);
 270 
 271     if (path_str) {
 272       strcat(library_path, ";");
 273       strcat(library_path, path_str);
 274     }
 275 
 276     strcat(library_path, ";.");
 277 
 278     Arguments::set_library_path(library_path);
 279     FREE_C_HEAP_ARRAY(char, library_path);
 280   }
 281 
 282   // Default extensions directory
 283   {
 284     char path[MAX_PATH];
 285     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 286     GetWindowsDirectory(path, MAX_PATH);
 287     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 288             path, PACKAGE_DIR, EXT_DIR);
 289     Arguments::set_ext_dirs(buf);
 290   }
 291   #undef EXT_DIR
 292   #undef BIN_DIR
 293   #undef PACKAGE_DIR
 294 
 295 #ifndef _WIN64
 296   // set our UnhandledExceptionFilter and save any previous one
 297   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 298 #endif
 299 
 300   // Done
 301   return;
 302 }
 303 
 304 void os::breakpoint() {
 305   DebugBreak();
 306 }
 307 
 308 // Invoked from the BREAKPOINT Macro
 309 extern "C" void breakpoint() {
 310   os::breakpoint();
 311 }
 312 
 313 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 314 // So far, this method is only used by Native Memory Tracking, which is
 315 // only supported on Windows XP or later.
 316 //
 317 int os::get_native_stack(address* stack, int frames, int toSkip) {
 318 #ifdef _NMT_NOINLINE_
 319   toSkip++;
 320 #endif
 321   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 322                                                        (PVOID*)stack, NULL);
 323   for (int index = captured; index < frames; index ++) {
 324     stack[index] = NULL;
 325   }
 326   return captured;
 327 }
 328 
 329 
 330 // os::current_stack_base()
 331 //
 332 //   Returns the base of the stack, which is the stack's
 333 //   starting address.  This function must be called
 334 //   while running on the stack of the thread being queried.
 335 
 336 address os::current_stack_base() {
 337   MEMORY_BASIC_INFORMATION minfo;
 338   address stack_bottom;
 339   size_t stack_size;
 340 
 341   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 342   stack_bottom =  (address)minfo.AllocationBase;
 343   stack_size = minfo.RegionSize;
 344 
 345   // Add up the sizes of all the regions with the same
 346   // AllocationBase.
 347   while (1) {
 348     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 349     if (stack_bottom == (address)minfo.AllocationBase) {
 350       stack_size += minfo.RegionSize;
 351     } else {
 352       break;
 353     }
 354   }
 355 
 356 #ifdef _M_IA64
 357   // IA64 has memory and register stacks
 358   //
 359   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 360   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 361   // growing downwards, 2MB summed up)
 362   //
 363   // ...
 364   // ------- top of stack (high address) -----
 365   // |
 366   // |      1MB
 367   // |      Backing Store (Register Stack)
 368   // |
 369   // |         / \
 370   // |          |
 371   // |          |
 372   // |          |
 373   // ------------------------ stack base -----
 374   // |      1MB
 375   // |      Memory Stack
 376   // |
 377   // |          |
 378   // |          |
 379   // |          |
 380   // |         \ /
 381   // |
 382   // ----- bottom of stack (low address) -----
 383   // ...
 384 
 385   stack_size = stack_size / 2;
 386 #endif
 387   return stack_bottom + stack_size;
 388 }
 389 
 390 size_t os::current_stack_size() {
 391   size_t sz;
 392   MEMORY_BASIC_INFORMATION minfo;
 393   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 394   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 395   return sz;
 396 }
 397 
 398 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 399   const struct tm* time_struct_ptr = localtime(clock);
 400   if (time_struct_ptr != NULL) {
 401     *res = *time_struct_ptr;
 402     return res;
 403   }
 404   return NULL;
 405 }
 406 
 407 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 408 
 409 // Thread start routine for all new Java threads
 410 static unsigned __stdcall java_start(Thread* thread) {
 411   // Try to randomize the cache line index of hot stack frames.
 412   // This helps when threads of the same stack traces evict each other's
 413   // cache lines. The threads can be either from the same JVM instance, or
 414   // from different JVM instances. The benefit is especially true for
 415   // processors with hyperthreading technology.
 416   static int counter = 0;
 417   int pid = os::current_process_id();
 418   _alloca(((pid ^ counter++) & 7) * 128);
 419 
 420   OSThread* osthr = thread->osthread();
 421   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 422 
 423   if (UseNUMA) {
 424     int lgrp_id = os::numa_get_group_id();
 425     if (lgrp_id != -1) {
 426       thread->set_lgrp_id(lgrp_id);
 427     }
 428   }
 429 
 430   // Diagnostic code to investigate JDK-6573254
 431   int res = 30115;  // non-java thread
 432   if (thread->is_Java_thread()) {
 433     res = 20115;    // java thread
 434   }
 435 
 436   // Install a win32 structured exception handler around every thread created
 437   // by VM, so VM can generate error dump when an exception occurred in non-
 438   // Java thread (e.g. VM thread).
 439   __try {
 440     thread->run();
 441   } __except(topLevelExceptionFilter(
 442                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 443     // Nothing to do.
 444   }
 445 
 446   // One less thread is executing
 447   // When the VMThread gets here, the main thread may have already exited
 448   // which frees the CodeHeap containing the Atomic::add code
 449   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 450     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 451   }
 452 
 453   // Thread must not return from exit_process_or_thread(), but if it does,
 454   // let it proceed to exit normally
 455   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 456 }
 457 
 458 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 459                                   int thread_id) {
 460   // Allocate the OSThread object
 461   OSThread* osthread = new OSThread(NULL, NULL);
 462   if (osthread == NULL) return NULL;
 463 
 464   // Initialize support for Java interrupts
 465   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 466   if (interrupt_event == NULL) {
 467     delete osthread;
 468     return NULL;
 469   }
 470   osthread->set_interrupt_event(interrupt_event);
 471 
 472   // Store info on the Win32 thread into the OSThread
 473   osthread->set_thread_handle(thread_handle);
 474   osthread->set_thread_id(thread_id);
 475 
 476   if (UseNUMA) {
 477     int lgrp_id = os::numa_get_group_id();
 478     if (lgrp_id != -1) {
 479       thread->set_lgrp_id(lgrp_id);
 480     }
 481   }
 482 
 483   // Initial thread state is INITIALIZED, not SUSPENDED
 484   osthread->set_state(INITIALIZED);
 485 
 486   return osthread;
 487 }
 488 
 489 
 490 bool os::create_attached_thread(JavaThread* thread) {
 491 #ifdef ASSERT
 492   thread->verify_not_published();
 493 #endif
 494   HANDLE thread_h;
 495   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 496                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 497     fatal("DuplicateHandle failed\n");
 498   }
 499   OSThread* osthread = create_os_thread(thread, thread_h,
 500                                         (int)current_thread_id());
 501   if (osthread == NULL) {
 502     return false;
 503   }
 504 
 505   // Initial thread state is RUNNABLE
 506   osthread->set_state(RUNNABLE);
 507 
 508   thread->set_osthread(osthread);
 509   return true;
 510 }
 511 
 512 bool os::create_main_thread(JavaThread* thread) {
 513 #ifdef ASSERT
 514   thread->verify_not_published();
 515 #endif
 516   if (_starting_thread == NULL) {
 517     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 518     if (_starting_thread == NULL) {
 519       return false;
 520     }
 521   }
 522 
 523   // The primordial thread is runnable from the start)
 524   _starting_thread->set_state(RUNNABLE);
 525 
 526   thread->set_osthread(_starting_thread);
 527   return true;
 528 }
 529 
 530 // Allocate and initialize a new OSThread
 531 bool os::create_thread(Thread* thread, ThreadType thr_type,
 532                        size_t stack_size) {
 533   unsigned thread_id;
 534 
 535   // Allocate the OSThread object
 536   OSThread* osthread = new OSThread(NULL, NULL);
 537   if (osthread == NULL) {
 538     return false;
 539   }
 540 
 541   // Initialize support for Java interrupts
 542   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 543   if (interrupt_event == NULL) {
 544     delete osthread;
 545     return NULL;
 546   }
 547   osthread->set_interrupt_event(interrupt_event);
 548   osthread->set_interrupted(false);
 549 
 550   thread->set_osthread(osthread);
 551 
 552   if (stack_size == 0) {
 553     switch (thr_type) {
 554     case os::java_thread:
 555       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 556       if (JavaThread::stack_size_at_create() > 0) {
 557         stack_size = JavaThread::stack_size_at_create();
 558       }
 559       break;
 560     case os::compiler_thread:
 561       if (CompilerThreadStackSize > 0) {
 562         stack_size = (size_t)(CompilerThreadStackSize * K);
 563         break;
 564       } // else fall through:
 565         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 566     case os::vm_thread:
 567     case os::pgc_thread:
 568     case os::cgc_thread:
 569     case os::watcher_thread:
 570       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 571       break;
 572     }
 573   }
 574 
 575   // Create the Win32 thread
 576   //
 577   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 578   // does not specify stack size. Instead, it specifies the size of
 579   // initially committed space. The stack size is determined by
 580   // PE header in the executable. If the committed "stack_size" is larger
 581   // than default value in the PE header, the stack is rounded up to the
 582   // nearest multiple of 1MB. For example if the launcher has default
 583   // stack size of 320k, specifying any size less than 320k does not
 584   // affect the actual stack size at all, it only affects the initial
 585   // commitment. On the other hand, specifying 'stack_size' larger than
 586   // default value may cause significant increase in memory usage, because
 587   // not only the stack space will be rounded up to MB, but also the
 588   // entire space is committed upfront.
 589   //
 590   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 591   // for CreateThread() that can treat 'stack_size' as stack size. However we
 592   // are not supposed to call CreateThread() directly according to MSDN
 593   // document because JVM uses C runtime library. The good news is that the
 594   // flag appears to work with _beginthredex() as well.
 595 
 596 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 597   #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 598 #endif
 599 
 600   HANDLE thread_handle =
 601     (HANDLE)_beginthreadex(NULL,
 602                            (unsigned)stack_size,
 603                            (unsigned (__stdcall *)(void*)) java_start,
 604                            thread,
 605                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 606                            &thread_id);
 607   if (thread_handle == NULL) {
 608     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 609     // without the flag.
 610     thread_handle =
 611       (HANDLE)_beginthreadex(NULL,
 612                              (unsigned)stack_size,
 613                              (unsigned (__stdcall *)(void*)) java_start,
 614                              thread,
 615                              CREATE_SUSPENDED,
 616                              &thread_id);
 617   }
 618   if (thread_handle == NULL) {
 619     // Need to clean up stuff we've allocated so far
 620     CloseHandle(osthread->interrupt_event());
 621     thread->set_osthread(NULL);
 622     delete osthread;
 623     return NULL;
 624   }
 625 
 626   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 627 
 628   // Store info on the Win32 thread into the OSThread
 629   osthread->set_thread_handle(thread_handle);
 630   osthread->set_thread_id(thread_id);
 631 
 632   // Initial thread state is INITIALIZED, not SUSPENDED
 633   osthread->set_state(INITIALIZED);
 634 
 635   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 636   return true;
 637 }
 638 
 639 
 640 // Free Win32 resources related to the OSThread
 641 void os::free_thread(OSThread* osthread) {
 642   assert(osthread != NULL, "osthread not set");
 643   CloseHandle(osthread->thread_handle());
 644   CloseHandle(osthread->interrupt_event());
 645   delete osthread;
 646 }
 647 
 648 static jlong first_filetime;
 649 static jlong initial_performance_count;
 650 static jlong performance_frequency;
 651 
 652 
 653 jlong as_long(LARGE_INTEGER x) {
 654   jlong result = 0; // initialization to avoid warning
 655   set_high(&result, x.HighPart);
 656   set_low(&result, x.LowPart);
 657   return result;
 658 }
 659 
 660 
 661 jlong os::elapsed_counter() {
 662   LARGE_INTEGER count;
 663   if (win32::_has_performance_count) {
 664     QueryPerformanceCounter(&count);
 665     return as_long(count) - initial_performance_count;
 666   } else {
 667     FILETIME wt;
 668     GetSystemTimeAsFileTime(&wt);
 669     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 670   }
 671 }
 672 
 673 
 674 jlong os::elapsed_frequency() {
 675   if (win32::_has_performance_count) {
 676     return performance_frequency;
 677   } else {
 678     // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 679     return 10000000;
 680   }
 681 }
 682 
 683 
 684 julong os::available_memory() {
 685   return win32::available_memory();
 686 }
 687 
 688 julong os::win32::available_memory() {
 689   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 690   // value if total memory is larger than 4GB
 691   MEMORYSTATUSEX ms;
 692   ms.dwLength = sizeof(ms);
 693   GlobalMemoryStatusEx(&ms);
 694 
 695   return (julong)ms.ullAvailPhys;
 696 }
 697 
 698 julong os::physical_memory() {
 699   return win32::physical_memory();
 700 }
 701 
 702 bool os::has_allocatable_memory_limit(julong* limit) {
 703   MEMORYSTATUSEX ms;
 704   ms.dwLength = sizeof(ms);
 705   GlobalMemoryStatusEx(&ms);
 706 #ifdef _LP64
 707   *limit = (julong)ms.ullAvailVirtual;
 708   return true;
 709 #else
 710   // Limit to 1400m because of the 2gb address space wall
 711   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 712   return true;
 713 #endif
 714 }
 715 
 716 // VC6 lacks DWORD_PTR
 717 #if _MSC_VER < 1300
 718 typedef UINT_PTR DWORD_PTR;
 719 #endif
 720 
 721 int os::active_processor_count() {
 722   DWORD_PTR lpProcessAffinityMask = 0;
 723   DWORD_PTR lpSystemAffinityMask = 0;
 724   int proc_count = processor_count();
 725   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 726       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 727     // Nof active processors is number of bits in process affinity mask
 728     int bitcount = 0;
 729     while (lpProcessAffinityMask != 0) {
 730       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 731       bitcount++;
 732     }
 733     return bitcount;
 734   } else {
 735     return proc_count;
 736   }
 737 }
 738 
 739 void os::set_native_thread_name(const char *name) {
 740 
 741   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 742   //
 743   // Note that unfortunately this only works if the process
 744   // is already attached to a debugger; debugger must observe
 745   // the exception below to show the correct name.
 746 
 747   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 748   struct {
 749     DWORD dwType;     // must be 0x1000
 750     LPCSTR szName;    // pointer to name (in user addr space)
 751     DWORD dwThreadID; // thread ID (-1=caller thread)
 752     DWORD dwFlags;    // reserved for future use, must be zero
 753   } info;
 754 
 755   info.dwType = 0x1000;
 756   info.szName = name;
 757   info.dwThreadID = -1;
 758   info.dwFlags = 0;
 759 
 760   __try {
 761     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 762   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 763 }
 764 
 765 bool os::distribute_processes(uint length, uint* distribution) {
 766   // Not yet implemented.
 767   return false;
 768 }
 769 
 770 bool os::bind_to_processor(uint processor_id) {
 771   // Not yet implemented.
 772   return false;
 773 }
 774 
 775 void os::win32::initialize_performance_counter() {
 776   LARGE_INTEGER count;
 777   if (QueryPerformanceFrequency(&count)) {
 778     win32::_has_performance_count = 1;
 779     performance_frequency = as_long(count);
 780     QueryPerformanceCounter(&count);
 781     initial_performance_count = as_long(count);
 782   } else {
 783     win32::_has_performance_count = 0;
 784     FILETIME wt;
 785     GetSystemTimeAsFileTime(&wt);
 786     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 787   }
 788 }
 789 
 790 
 791 double os::elapsedTime() {
 792   return (double) elapsed_counter() / (double) elapsed_frequency();
 793 }
 794 
 795 
 796 // Windows format:
 797 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 798 // Java format:
 799 //   Java standards require the number of milliseconds since 1/1/1970
 800 
 801 // Constant offset - calculated using offset()
 802 static jlong  _offset   = 116444736000000000;
 803 // Fake time counter for reproducible results when debugging
 804 static jlong  fake_time = 0;
 805 
 806 #ifdef ASSERT
 807 // Just to be safe, recalculate the offset in debug mode
 808 static jlong _calculated_offset = 0;
 809 static int   _has_calculated_offset = 0;
 810 
 811 jlong offset() {
 812   if (_has_calculated_offset) return _calculated_offset;
 813   SYSTEMTIME java_origin;
 814   java_origin.wYear          = 1970;
 815   java_origin.wMonth         = 1;
 816   java_origin.wDayOfWeek     = 0; // ignored
 817   java_origin.wDay           = 1;
 818   java_origin.wHour          = 0;
 819   java_origin.wMinute        = 0;
 820   java_origin.wSecond        = 0;
 821   java_origin.wMilliseconds  = 0;
 822   FILETIME jot;
 823   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 824     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 825   }
 826   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 827   _has_calculated_offset = 1;
 828   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 829   return _calculated_offset;
 830 }
 831 #else
 832 jlong offset() {
 833   return _offset;
 834 }
 835 #endif
 836 
 837 jlong windows_to_java_time(FILETIME wt) {
 838   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 839   return (a - offset()) / 10000;
 840 }
 841 
 842 // Returns time ticks in (10th of micro seconds)
 843 jlong windows_to_time_ticks(FILETIME wt) {
 844   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 845   return (a - offset());
 846 }
 847 
 848 FILETIME java_to_windows_time(jlong l) {
 849   jlong a = (l * 10000) + offset();
 850   FILETIME result;
 851   result.dwHighDateTime = high(a);
 852   result.dwLowDateTime  = low(a);
 853   return result;
 854 }
 855 
 856 bool os::supports_vtime() { return true; }
 857 bool os::enable_vtime() { return false; }
 858 bool os::vtime_enabled() { return false; }
 859 
 860 double os::elapsedVTime() {
 861   FILETIME created;
 862   FILETIME exited;
 863   FILETIME kernel;
 864   FILETIME user;
 865   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 866     // the resolution of windows_to_java_time() should be sufficient (ms)
 867     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 868   } else {
 869     return elapsedTime();
 870   }
 871 }
 872 
 873 jlong os::javaTimeMillis() {
 874   if (UseFakeTimers) {
 875     return fake_time++;
 876   } else {
 877     FILETIME wt;
 878     GetSystemTimeAsFileTime(&wt);
 879     return windows_to_java_time(wt);
 880   }
 881 }
 882 
 883 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 884   FILETIME wt;
 885   GetSystemTimeAsFileTime(&wt);
 886   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 887   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 888   seconds = secs;
 889   nanos = jlong(ticks - (secs*10000000)) * 100;
 890 }
 891 
 892 jlong os::javaTimeNanos() {
 893   if (!win32::_has_performance_count) {
 894     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 895   } else {
 896     LARGE_INTEGER current_count;
 897     QueryPerformanceCounter(&current_count);
 898     double current = as_long(current_count);
 899     double freq = performance_frequency;
 900     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 901     return time;
 902   }
 903 }
 904 
 905 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 906   if (!win32::_has_performance_count) {
 907     // javaTimeMillis() doesn't have much percision,
 908     // but it is not going to wrap -- so all 64 bits
 909     info_ptr->max_value = ALL_64_BITS;
 910 
 911     // this is a wall clock timer, so may skip
 912     info_ptr->may_skip_backward = true;
 913     info_ptr->may_skip_forward = true;
 914   } else {
 915     jlong freq = performance_frequency;
 916     if (freq < NANOSECS_PER_SEC) {
 917       // the performance counter is 64 bits and we will
 918       // be multiplying it -- so no wrap in 64 bits
 919       info_ptr->max_value = ALL_64_BITS;
 920     } else if (freq > NANOSECS_PER_SEC) {
 921       // use the max value the counter can reach to
 922       // determine the max value which could be returned
 923       julong max_counter = (julong)ALL_64_BITS;
 924       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 925     } else {
 926       // the performance counter is 64 bits and we will
 927       // be using it directly -- so no wrap in 64 bits
 928       info_ptr->max_value = ALL_64_BITS;
 929     }
 930 
 931     // using a counter, so no skipping
 932     info_ptr->may_skip_backward = false;
 933     info_ptr->may_skip_forward = false;
 934   }
 935   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 936 }
 937 
 938 char* os::local_time_string(char *buf, size_t buflen) {
 939   SYSTEMTIME st;
 940   GetLocalTime(&st);
 941   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 942                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 943   return buf;
 944 }
 945 
 946 bool os::getTimesSecs(double* process_real_time,
 947                       double* process_user_time,
 948                       double* process_system_time) {
 949   HANDLE h_process = GetCurrentProcess();
 950   FILETIME create_time, exit_time, kernel_time, user_time;
 951   BOOL result = GetProcessTimes(h_process,
 952                                 &create_time,
 953                                 &exit_time,
 954                                 &kernel_time,
 955                                 &user_time);
 956   if (result != 0) {
 957     FILETIME wt;
 958     GetSystemTimeAsFileTime(&wt);
 959     jlong rtc_millis = windows_to_java_time(wt);
 960     jlong user_millis = windows_to_java_time(user_time);
 961     jlong system_millis = windows_to_java_time(kernel_time);
 962     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 963     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 964     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 965     return true;
 966   } else {
 967     return false;
 968   }
 969 }
 970 
 971 void os::shutdown() {
 972   // allow PerfMemory to attempt cleanup of any persistent resources
 973   perfMemory_exit();
 974 
 975   // flush buffered output, finish log files
 976   ostream_abort();
 977 
 978   // Check for abort hook
 979   abort_hook_t abort_hook = Arguments::abort_hook();
 980   if (abort_hook != NULL) {
 981     abort_hook();
 982   }
 983 }
 984 
 985 
 986 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 987                                          PMINIDUMP_EXCEPTION_INFORMATION,
 988                                          PMINIDUMP_USER_STREAM_INFORMATION,
 989                                          PMINIDUMP_CALLBACK_INFORMATION);
 990 
 991 void os::check_create_dump_limit(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
 992   // First presume we can dump core file, detail checking done in abort()
 993   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp", get_current_directory(NULL, 0), current_process_id());
 994   VMError::report_coredump_status(buffer, true);
 995 }
 996 
 997 void os::abort(bool dump_core, void* exceptionRecord, void* contextRecord) {
 998   HINSTANCE dbghelp;
 999   EXCEPTION_POINTERS ep;
1000   MINIDUMP_EXCEPTION_INFORMATION mei;
1001   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1002 
1003   HANDLE hProcess = GetCurrentProcess();
1004   DWORD processId = GetCurrentProcessId();
1005   HANDLE dumpFile;
1006   MINIDUMP_TYPE dumpType;
1007   static const char* cwd;
1008   static char buffer[O_BUFLEN];
1009 
1010   os::shutdown();
1011   if (!dump_core) return;
1012 
1013 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
1014 #ifndef ASSERT
1015   // If running on a client version of Windows and user has not explicitly enabled dumping
1016   if (!os::win32::is_windows_server() && !CreateCoredumpOnCrash) {
1017     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
1018     return;
1019     // If running on a server version of Windows and user has explictly disabled dumping
1020   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
1021     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
1022     return;
1023   }
1024 #else
1025   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
1026     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
1027     return;
1028   }
1029 #endif
1030 
1031   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1032 
1033   if (dbghelp == NULL) {
1034     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
1035     return;
1036   }
1037 
1038   _MiniDumpWriteDump =
1039       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1040                                     PMINIDUMP_EXCEPTION_INFORMATION,
1041                                     PMINIDUMP_USER_STREAM_INFORMATION,
1042                                     PMINIDUMP_CALLBACK_INFORMATION),
1043                                     GetProcAddress(dbghelp,
1044                                     "MiniDumpWriteDump"));
1045 
1046   if (_MiniDumpWriteDump == NULL) {
1047     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
1048     return;
1049   }
1050 
1051   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1052 
1053 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
1054 // API_VERSION_NUMBER 11 or higher contains the ones we want though
1055 #if API_VERSION_NUMBER >= 11
1056   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1057                              MiniDumpWithUnloadedModules);
1058 #endif
1059 
1060   cwd = get_current_directory(NULL, 0);
1061   jio_snprintf(buffer, sizeof(buffer), "%s\\hs_err_pid%u.mdmp", cwd, current_process_id());
1062   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
1063 
1064   if (dumpFile == INVALID_HANDLE_VALUE) {
1065     VMError::report_coredump_status("Failed to create file for dumping", false);
1066     return;
1067   }
1068 
1069   if (exceptionRecord != NULL && contextRecord != NULL) {
1070     ep.ContextRecord = (PCONTEXT) contextRecord;
1071     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
1072 
1073     mei.ThreadId = GetCurrentThreadId();
1074     mei.ExceptionPointers = &ep;
1075     pmei = &mei;
1076   } else {
1077     pmei = NULL;
1078   }
1079 
1080 
1081   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1082   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1083   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1084       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1085     DWORD error = GetLastError();
1086     LPTSTR msgbuf = NULL;
1087 
1088     if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
1089                       FORMAT_MESSAGE_FROM_SYSTEM |
1090                       FORMAT_MESSAGE_IGNORE_INSERTS,
1091                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
1092 
1093       jio_snprintf(buffer, sizeof(buffer), "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
1094       LocalFree(msgbuf);
1095     } else {
1096       // Call to FormatMessage failed, just include the result from GetLastError
1097       jio_snprintf(buffer, sizeof(buffer), "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
1098     }
1099     VMError::report_coredump_status(buffer, false);
1100   } else {
1101     VMError::report_coredump_status(buffer, true);
1102   }
1103 
1104   CloseHandle(dumpFile);
1105   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1106 }
1107 
1108 // Die immediately, no exit hook, no abort hook, no cleanup.
1109 void os::die() {
1110   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1111 }
1112 
1113 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1114 //  * dirent_md.c       1.15 00/02/02
1115 //
1116 // The declarations for DIR and struct dirent are in jvm_win32.h.
1117 
1118 // Caller must have already run dirname through JVM_NativePath, which removes
1119 // duplicate slashes and converts all instances of '/' into '\\'.
1120 
1121 DIR * os::opendir(const char *dirname) {
1122   assert(dirname != NULL, "just checking");   // hotspot change
1123   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1124   DWORD fattr;                                // hotspot change
1125   char alt_dirname[4] = { 0, 0, 0, 0 };
1126 
1127   if (dirp == 0) {
1128     errno = ENOMEM;
1129     return 0;
1130   }
1131 
1132   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1133   // as a directory in FindFirstFile().  We detect this case here and
1134   // prepend the current drive name.
1135   //
1136   if (dirname[1] == '\0' && dirname[0] == '\\') {
1137     alt_dirname[0] = _getdrive() + 'A' - 1;
1138     alt_dirname[1] = ':';
1139     alt_dirname[2] = '\\';
1140     alt_dirname[3] = '\0';
1141     dirname = alt_dirname;
1142   }
1143 
1144   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1145   if (dirp->path == 0) {
1146     free(dirp);
1147     errno = ENOMEM;
1148     return 0;
1149   }
1150   strcpy(dirp->path, dirname);
1151 
1152   fattr = GetFileAttributes(dirp->path);
1153   if (fattr == 0xffffffff) {
1154     free(dirp->path);
1155     free(dirp);
1156     errno = ENOENT;
1157     return 0;
1158   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1159     free(dirp->path);
1160     free(dirp);
1161     errno = ENOTDIR;
1162     return 0;
1163   }
1164 
1165   // Append "*.*", or possibly "\\*.*", to path
1166   if (dirp->path[1] == ':' &&
1167       (dirp->path[2] == '\0' ||
1168       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1169     // No '\\' needed for cases like "Z:" or "Z:\"
1170     strcat(dirp->path, "*.*");
1171   } else {
1172     strcat(dirp->path, "\\*.*");
1173   }
1174 
1175   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1176   if (dirp->handle == INVALID_HANDLE_VALUE) {
1177     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1178       free(dirp->path);
1179       free(dirp);
1180       errno = EACCES;
1181       return 0;
1182     }
1183   }
1184   return dirp;
1185 }
1186 
1187 // parameter dbuf unused on Windows
1188 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1189   assert(dirp != NULL, "just checking");      // hotspot change
1190   if (dirp->handle == INVALID_HANDLE_VALUE) {
1191     return 0;
1192   }
1193 
1194   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1195 
1196   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1197     if (GetLastError() == ERROR_INVALID_HANDLE) {
1198       errno = EBADF;
1199       return 0;
1200     }
1201     FindClose(dirp->handle);
1202     dirp->handle = INVALID_HANDLE_VALUE;
1203   }
1204 
1205   return &dirp->dirent;
1206 }
1207 
1208 int os::closedir(DIR *dirp) {
1209   assert(dirp != NULL, "just checking");      // hotspot change
1210   if (dirp->handle != INVALID_HANDLE_VALUE) {
1211     if (!FindClose(dirp->handle)) {
1212       errno = EBADF;
1213       return -1;
1214     }
1215     dirp->handle = INVALID_HANDLE_VALUE;
1216   }
1217   free(dirp->path);
1218   free(dirp);
1219   return 0;
1220 }
1221 
1222 // This must be hard coded because it's the system's temporary
1223 // directory not the java application's temp directory, ala java.io.tmpdir.
1224 const char* os::get_temp_directory() {
1225   static char path_buf[MAX_PATH];
1226   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1227     return path_buf;
1228   } else {
1229     path_buf[0] = '\0';
1230     return path_buf;
1231   }
1232 }
1233 
1234 static bool file_exists(const char* filename) {
1235   if (filename == NULL || strlen(filename) == 0) {
1236     return false;
1237   }
1238   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1239 }
1240 
1241 bool os::dll_build_name(char *buffer, size_t buflen,
1242                         const char* pname, const char* fname) {
1243   bool retval = false;
1244   const size_t pnamelen = pname ? strlen(pname) : 0;
1245   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1246 
1247   // Return error on buffer overflow.
1248   if (pnamelen + strlen(fname) + 10 > buflen) {
1249     return retval;
1250   }
1251 
1252   if (pnamelen == 0) {
1253     jio_snprintf(buffer, buflen, "%s.dll", fname);
1254     retval = true;
1255   } else if (c == ':' || c == '\\') {
1256     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1257     retval = true;
1258   } else if (strchr(pname, *os::path_separator()) != NULL) {
1259     int n;
1260     char** pelements = split_path(pname, &n);
1261     if (pelements == NULL) {
1262       return false;
1263     }
1264     for (int i = 0; i < n; i++) {
1265       char* path = pelements[i];
1266       // Really shouldn't be NULL, but check can't hurt
1267       size_t plen = (path == NULL) ? 0 : strlen(path);
1268       if (plen == 0) {
1269         continue; // skip the empty path values
1270       }
1271       const char lastchar = path[plen - 1];
1272       if (lastchar == ':' || lastchar == '\\') {
1273         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1274       } else {
1275         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1276       }
1277       if (file_exists(buffer)) {
1278         retval = true;
1279         break;
1280       }
1281     }
1282     // release the storage
1283     for (int i = 0; i < n; i++) {
1284       if (pelements[i] != NULL) {
1285         FREE_C_HEAP_ARRAY(char, pelements[i]);
1286       }
1287     }
1288     if (pelements != NULL) {
1289       FREE_C_HEAP_ARRAY(char*, pelements);
1290     }
1291   } else {
1292     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1293     retval = true;
1294   }
1295   return retval;
1296 }
1297 
1298 // Needs to be in os specific directory because windows requires another
1299 // header file <direct.h>
1300 const char* os::get_current_directory(char *buf, size_t buflen) {
1301   int n = static_cast<int>(buflen);
1302   if (buflen > INT_MAX)  n = INT_MAX;
1303   return _getcwd(buf, n);
1304 }
1305 
1306 //-----------------------------------------------------------
1307 // Helper functions for fatal error handler
1308 #ifdef _WIN64
1309 // Helper routine which returns true if address in
1310 // within the NTDLL address space.
1311 //
1312 static bool _addr_in_ntdll(address addr) {
1313   HMODULE hmod;
1314   MODULEINFO minfo;
1315 
1316   hmod = GetModuleHandle("NTDLL.DLL");
1317   if (hmod == NULL) return false;
1318   if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1319                                           &minfo, sizeof(MODULEINFO))) {
1320     return false;
1321   }
1322 
1323   if ((addr >= minfo.lpBaseOfDll) &&
1324       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1325     return true;
1326   } else {
1327     return false;
1328   }
1329 }
1330 #endif
1331 
1332 struct _modinfo {
1333   address addr;
1334   char*   full_path;   // point to a char buffer
1335   int     buflen;      // size of the buffer
1336   address base_addr;
1337 };
1338 
1339 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1340                                   address top_address, void * param) {
1341   struct _modinfo *pmod = (struct _modinfo *)param;
1342   if (!pmod) return -1;
1343 
1344   if (base_addr   <= pmod->addr &&
1345       top_address > pmod->addr) {
1346     // if a buffer is provided, copy path name to the buffer
1347     if (pmod->full_path) {
1348       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1349     }
1350     pmod->base_addr = base_addr;
1351     return 1;
1352   }
1353   return 0;
1354 }
1355 
1356 bool os::dll_address_to_library_name(address addr, char* buf,
1357                                      int buflen, int* offset) {
1358   // buf is not optional, but offset is optional
1359   assert(buf != NULL, "sanity check");
1360 
1361 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1362 //       return the full path to the DLL file, sometimes it returns path
1363 //       to the corresponding PDB file (debug info); sometimes it only
1364 //       returns partial path, which makes life painful.
1365 
1366   struct _modinfo mi;
1367   mi.addr      = addr;
1368   mi.full_path = buf;
1369   mi.buflen    = buflen;
1370   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1371     // buf already contains path name
1372     if (offset) *offset = addr - mi.base_addr;
1373     return true;
1374   }
1375 
1376   buf[0] = '\0';
1377   if (offset) *offset = -1;
1378   return false;
1379 }
1380 
1381 bool os::dll_address_to_function_name(address addr, char *buf,
1382                                       int buflen, int *offset) {
1383   // buf is not optional, but offset is optional
1384   assert(buf != NULL, "sanity check");
1385 
1386   if (Decoder::decode(addr, buf, buflen, offset)) {
1387     return true;
1388   }
1389   if (offset != NULL)  *offset  = -1;
1390   buf[0] = '\0';
1391   return false;
1392 }
1393 
1394 // save the start and end address of jvm.dll into param[0] and param[1]
1395 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1396                            address top_address, void * param) {
1397   if (!param) return -1;
1398 
1399   if (base_addr   <= (address)_locate_jvm_dll &&
1400       top_address > (address)_locate_jvm_dll) {
1401     ((address*)param)[0] = base_addr;
1402     ((address*)param)[1] = top_address;
1403     return 1;
1404   }
1405   return 0;
1406 }
1407 
1408 address vm_lib_location[2];    // start and end address of jvm.dll
1409 
1410 // check if addr is inside jvm.dll
1411 bool os::address_is_in_vm(address addr) {
1412   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1413     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1414       assert(false, "Can't find jvm module.");
1415       return false;
1416     }
1417   }
1418 
1419   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1420 }
1421 
1422 // print module info; param is outputStream*
1423 static int _print_module(const char* fname, address base_address,
1424                          address top_address, void* param) {
1425   if (!param) return -1;
1426 
1427   outputStream* st = (outputStream*)param;
1428 
1429   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1430   return 0;
1431 }
1432 
1433 // Loads .dll/.so and
1434 // in case of error it checks if .dll/.so was built for the
1435 // same architecture as Hotspot is running on
1436 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1437   void * result = LoadLibrary(name);
1438   if (result != NULL) {
1439     return result;
1440   }
1441 
1442   DWORD errcode = GetLastError();
1443   if (errcode == ERROR_MOD_NOT_FOUND) {
1444     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1445     ebuf[ebuflen - 1] = '\0';
1446     return NULL;
1447   }
1448 
1449   // Parsing dll below
1450   // If we can read dll-info and find that dll was built
1451   // for an architecture other than Hotspot is running in
1452   // - then print to buffer "DLL was built for a different architecture"
1453   // else call os::lasterror to obtain system error message
1454 
1455   // Read system error message into ebuf
1456   // It may or may not be overwritten below (in the for loop and just above)
1457   lasterror(ebuf, (size_t) ebuflen);
1458   ebuf[ebuflen - 1] = '\0';
1459   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1460   if (fd < 0) {
1461     return NULL;
1462   }
1463 
1464   uint32_t signature_offset;
1465   uint16_t lib_arch = 0;
1466   bool failed_to_get_lib_arch =
1467     ( // Go to position 3c in the dll
1468      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1469      ||
1470      // Read location of signature
1471      (sizeof(signature_offset) !=
1472      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1473      ||
1474      // Go to COFF File Header in dll
1475      // that is located after "signature" (4 bytes long)
1476      (os::seek_to_file_offset(fd,
1477      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1478      ||
1479      // Read field that contains code of architecture
1480      // that dll was built for
1481      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1482     );
1483 
1484   ::close(fd);
1485   if (failed_to_get_lib_arch) {
1486     // file i/o error - report os::lasterror(...) msg
1487     return NULL;
1488   }
1489 
1490   typedef struct {
1491     uint16_t arch_code;
1492     char* arch_name;
1493   } arch_t;
1494 
1495   static const arch_t arch_array[] = {
1496     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1497     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1498     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1499   };
1500 #if   (defined _M_IA64)
1501   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1502 #elif (defined _M_AMD64)
1503   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1504 #elif (defined _M_IX86)
1505   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1506 #else
1507   #error Method os::dll_load requires that one of following \
1508          is defined :_M_IA64,_M_AMD64 or _M_IX86
1509 #endif
1510 
1511 
1512   // Obtain a string for printf operation
1513   // lib_arch_str shall contain string what platform this .dll was built for
1514   // running_arch_str shall string contain what platform Hotspot was built for
1515   char *running_arch_str = NULL, *lib_arch_str = NULL;
1516   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1517     if (lib_arch == arch_array[i].arch_code) {
1518       lib_arch_str = arch_array[i].arch_name;
1519     }
1520     if (running_arch == arch_array[i].arch_code) {
1521       running_arch_str = arch_array[i].arch_name;
1522     }
1523   }
1524 
1525   assert(running_arch_str,
1526          "Didn't find running architecture code in arch_array");
1527 
1528   // If the architecture is right
1529   // but some other error took place - report os::lasterror(...) msg
1530   if (lib_arch == running_arch) {
1531     return NULL;
1532   }
1533 
1534   if (lib_arch_str != NULL) {
1535     ::_snprintf(ebuf, ebuflen - 1,
1536                 "Can't load %s-bit .dll on a %s-bit platform",
1537                 lib_arch_str, running_arch_str);
1538   } else {
1539     // don't know what architecture this dll was build for
1540     ::_snprintf(ebuf, ebuflen - 1,
1541                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1542                 lib_arch, running_arch_str);
1543   }
1544 
1545   return NULL;
1546 }
1547 
1548 void os::print_dll_info(outputStream *st) {
1549   st->print_cr("Dynamic libraries:");
1550   get_loaded_modules_info(_print_module, (void *)st);
1551 }
1552 
1553 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1554   HANDLE   hProcess;
1555 
1556 # define MAX_NUM_MODULES 128
1557   HMODULE     modules[MAX_NUM_MODULES];
1558   static char filename[MAX_PATH];
1559   int         result = 0;
1560 
1561   if (!os::PSApiDll::PSApiAvailable()) {
1562     return 0;
1563   }
1564 
1565   int pid = os::current_process_id();
1566   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1567                          FALSE, pid);
1568   if (hProcess == NULL) return 0;
1569 
1570   DWORD size_needed;
1571   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1572                                         sizeof(modules), &size_needed)) {
1573     CloseHandle(hProcess);
1574     return 0;
1575   }
1576 
1577   // number of modules that are currently loaded
1578   int num_modules = size_needed / sizeof(HMODULE);
1579 
1580   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1581     // Get Full pathname:
1582     if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1583                                            filename, sizeof(filename))) {
1584       filename[0] = '\0';
1585     }
1586 
1587     MODULEINFO modinfo;
1588     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1589                                             &modinfo, sizeof(modinfo))) {
1590       modinfo.lpBaseOfDll = NULL;
1591       modinfo.SizeOfImage = 0;
1592     }
1593 
1594     // Invoke callback function
1595     result = callback(filename, (address)modinfo.lpBaseOfDll,
1596                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1597     if (result) break;
1598   }
1599 
1600   CloseHandle(hProcess);
1601   return result;
1602 }
1603 
1604 void os::print_os_info_brief(outputStream* st) {
1605   os::print_os_info(st);
1606 }
1607 
1608 void os::print_os_info(outputStream* st) {
1609 #ifdef ASSERT
1610   char buffer[1024];
1611   DWORD size = sizeof(buffer);
1612   st->print(" HostName: ");
1613   if (GetComputerNameEx(ComputerNameDnsHostname, buffer, &size)) {
1614     st->print("%s", buffer);
1615   } else {
1616     st->print("N/A");
1617   }
1618 #endif
1619   st->print(" OS:");
1620   os::win32::print_windows_version(st);
1621 }
1622 
1623 void os::win32::print_windows_version(outputStream* st) {
1624   OSVERSIONINFOEX osvi;
1625   VS_FIXEDFILEINFO *file_info;
1626   TCHAR kernel32_path[MAX_PATH];
1627   UINT len, ret;
1628 
1629   // Use the GetVersionEx information to see if we're on a server or
1630   // workstation edition of Windows. Starting with Windows 8.1 we can't
1631   // trust the OS version information returned by this API.
1632   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1633   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1634   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1635     st->print_cr("Call to GetVersionEx failed");
1636     return;
1637   }
1638   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1639 
1640   // Get the full path to \Windows\System32\kernel32.dll and use that for
1641   // determining what version of Windows we're running on.
1642   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1643   ret = GetSystemDirectory(kernel32_path, len);
1644   if (ret == 0 || ret > len) {
1645     st->print_cr("Call to GetSystemDirectory failed");
1646     return;
1647   }
1648   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1649 
1650   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1651   if (version_size == 0) {
1652     st->print_cr("Call to GetFileVersionInfoSize failed");
1653     return;
1654   }
1655 
1656   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1657   if (version_info == NULL) {
1658     st->print_cr("Failed to allocate version_info");
1659     return;
1660   }
1661 
1662   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1663     os::free(version_info);
1664     st->print_cr("Call to GetFileVersionInfo failed");
1665     return;
1666   }
1667 
1668   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1669     os::free(version_info);
1670     st->print_cr("Call to VerQueryValue failed");
1671     return;
1672   }
1673 
1674   int major_version = HIWORD(file_info->dwProductVersionMS);
1675   int minor_version = LOWORD(file_info->dwProductVersionMS);
1676   int build_number = HIWORD(file_info->dwProductVersionLS);
1677   int build_minor = LOWORD(file_info->dwProductVersionLS);
1678   int os_vers = major_version * 1000 + minor_version;
1679   os::free(version_info);
1680 
1681   st->print(" Windows ");
1682   switch (os_vers) {
1683 
1684   case 6000:
1685     if (is_workstation) {
1686       st->print("Vista");
1687     } else {
1688       st->print("Server 2008");
1689     }
1690     break;
1691 
1692   case 6001:
1693     if (is_workstation) {
1694       st->print("7");
1695     } else {
1696       st->print("Server 2008 R2");
1697     }
1698     break;
1699 
1700   case 6002:
1701     if (is_workstation) {
1702       st->print("8");
1703     } else {
1704       st->print("Server 2012");
1705     }
1706     break;
1707 
1708   case 6003:
1709     if (is_workstation) {
1710       st->print("8.1");
1711     } else {
1712       st->print("Server 2012 R2");
1713     }
1714     break;
1715 
1716   case 10000:
1717     if (is_workstation) {
1718       st->print("10");
1719     } else {
1720       // The server version name of Windows 10 is not known at this time
1721       st->print("%d.%d", major_version, minor_version);
1722     }
1723     break;
1724 
1725   default:
1726     // Unrecognized windows, print out its major and minor versions
1727     st->print("%d.%d", major_version, minor_version);
1728     break;
1729   }
1730 
1731   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1732   // find out whether we are running on 64 bit processor or not
1733   SYSTEM_INFO si;
1734   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1735   os::Kernel32Dll::GetNativeSystemInfo(&si);
1736   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1737     st->print(" , 64 bit");
1738   }
1739 
1740   st->print(" Build %d", build_number);
1741   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1742   st->cr();
1743 }
1744 
1745 void os::pd_print_cpu_info(outputStream* st) {
1746   // Nothing to do for now.
1747 }
1748 
1749 void os::print_memory_info(outputStream* st) {
1750   st->print("Memory:");
1751   st->print(" %dk page", os::vm_page_size()>>10);
1752 
1753   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1754   // value if total memory is larger than 4GB
1755   MEMORYSTATUSEX ms;
1756   ms.dwLength = sizeof(ms);
1757   GlobalMemoryStatusEx(&ms);
1758 
1759   st->print(", physical %uk", os::physical_memory() >> 10);
1760   st->print("(%uk free)", os::available_memory() >> 10);
1761 
1762   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1763   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1764   st->cr();
1765 }
1766 
1767 void os::print_siginfo(outputStream *st, void *siginfo) {
1768   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1769   st->print("siginfo:");
1770   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1771 
1772   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1773       er->NumberParameters >= 2) {
1774     switch (er->ExceptionInformation[0]) {
1775     case 0: st->print(", reading address"); break;
1776     case 1: st->print(", writing address"); break;
1777     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1778                        er->ExceptionInformation[0]);
1779     }
1780     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1781   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1782              er->NumberParameters >= 2 && UseSharedSpaces) {
1783     FileMapInfo* mapinfo = FileMapInfo::current_info();
1784     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1785       st->print("\n\nError accessing class data sharing archive."       \
1786                 " Mapped file inaccessible during execution, "          \
1787                 " possible disk/network problem.");
1788     }
1789   } else {
1790     int num = er->NumberParameters;
1791     if (num > 0) {
1792       st->print(", ExceptionInformation=");
1793       for (int i = 0; i < num; i++) {
1794         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1795       }
1796     }
1797   }
1798   st->cr();
1799 }
1800 
1801 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1802   // do nothing
1803 }
1804 
1805 static char saved_jvm_path[MAX_PATH] = {0};
1806 
1807 // Find the full path to the current module, jvm.dll
1808 void os::jvm_path(char *buf, jint buflen) {
1809   // Error checking.
1810   if (buflen < MAX_PATH) {
1811     assert(false, "must use a large-enough buffer");
1812     buf[0] = '\0';
1813     return;
1814   }
1815   // Lazy resolve the path to current module.
1816   if (saved_jvm_path[0] != 0) {
1817     strcpy(buf, saved_jvm_path);
1818     return;
1819   }
1820 
1821   buf[0] = '\0';
1822   if (Arguments::sun_java_launcher_is_altjvm()) {
1823     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1824     // for a JAVA_HOME environment variable and fix up the path so it
1825     // looks like jvm.dll is installed there (append a fake suffix
1826     // hotspot/jvm.dll).
1827     char* java_home_var = ::getenv("JAVA_HOME");
1828     if (java_home_var != NULL && java_home_var[0] != 0 &&
1829         strlen(java_home_var) < (size_t)buflen) {
1830       strncpy(buf, java_home_var, buflen);
1831 
1832       // determine if this is a legacy image or modules image
1833       // modules image doesn't have "jre" subdirectory
1834       size_t len = strlen(buf);
1835       char* jrebin_p = buf + len;
1836       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1837       if (0 != _access(buf, 0)) {
1838         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1839       }
1840       len = strlen(buf);
1841       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1842     }
1843   }
1844 
1845   if (buf[0] == '\0') {
1846     GetModuleFileName(vm_lib_handle, buf, buflen);
1847   }
1848   strncpy(saved_jvm_path, buf, MAX_PATH);
1849   saved_jvm_path[MAX_PATH - 1] = '\0';
1850 }
1851 
1852 
1853 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1854 #ifndef _WIN64
1855   st->print("_");
1856 #endif
1857 }
1858 
1859 
1860 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1861 #ifndef _WIN64
1862   st->print("@%d", args_size  * sizeof(int));
1863 #endif
1864 }
1865 
1866 // This method is a copy of JDK's sysGetLastErrorString
1867 // from src/windows/hpi/src/system_md.c
1868 
1869 size_t os::lasterror(char* buf, size_t len) {
1870   DWORD errval;
1871 
1872   if ((errval = GetLastError()) != 0) {
1873     // DOS error
1874     size_t n = (size_t)FormatMessage(
1875                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1876                                      NULL,
1877                                      errval,
1878                                      0,
1879                                      buf,
1880                                      (DWORD)len,
1881                                      NULL);
1882     if (n > 3) {
1883       // Drop final '.', CR, LF
1884       if (buf[n - 1] == '\n') n--;
1885       if (buf[n - 1] == '\r') n--;
1886       if (buf[n - 1] == '.') n--;
1887       buf[n] = '\0';
1888     }
1889     return n;
1890   }
1891 
1892   if (errno != 0) {
1893     // C runtime error that has no corresponding DOS error code
1894     const char* s = strerror(errno);
1895     size_t n = strlen(s);
1896     if (n >= len) n = len - 1;
1897     strncpy(buf, s, n);
1898     buf[n] = '\0';
1899     return n;
1900   }
1901 
1902   return 0;
1903 }
1904 
1905 int os::get_last_error() {
1906   DWORD error = GetLastError();
1907   if (error == 0) {
1908     error = errno;
1909   }
1910   return (int)error;
1911 }
1912 
1913 // sun.misc.Signal
1914 // NOTE that this is a workaround for an apparent kernel bug where if
1915 // a signal handler for SIGBREAK is installed then that signal handler
1916 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1917 // See bug 4416763.
1918 static void (*sigbreakHandler)(int) = NULL;
1919 
1920 static void UserHandler(int sig, void *siginfo, void *context) {
1921   os::signal_notify(sig);
1922   // We need to reinstate the signal handler each time...
1923   os::signal(sig, (void*)UserHandler);
1924 }
1925 
1926 void* os::user_handler() {
1927   return (void*) UserHandler;
1928 }
1929 
1930 void* os::signal(int signal_number, void* handler) {
1931   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1932     void (*oldHandler)(int) = sigbreakHandler;
1933     sigbreakHandler = (void (*)(int)) handler;
1934     return (void*) oldHandler;
1935   } else {
1936     return (void*)::signal(signal_number, (void (*)(int))handler);
1937   }
1938 }
1939 
1940 void os::signal_raise(int signal_number) {
1941   raise(signal_number);
1942 }
1943 
1944 // The Win32 C runtime library maps all console control events other than ^C
1945 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1946 // logoff, and shutdown events.  We therefore install our own console handler
1947 // that raises SIGTERM for the latter cases.
1948 //
1949 static BOOL WINAPI consoleHandler(DWORD event) {
1950   switch (event) {
1951   case CTRL_C_EVENT:
1952     if (is_error_reported()) {
1953       // Ctrl-C is pressed during error reporting, likely because the error
1954       // handler fails to abort. Let VM die immediately.
1955       os::die();
1956     }
1957 
1958     os::signal_raise(SIGINT);
1959     return TRUE;
1960     break;
1961   case CTRL_BREAK_EVENT:
1962     if (sigbreakHandler != NULL) {
1963       (*sigbreakHandler)(SIGBREAK);
1964     }
1965     return TRUE;
1966     break;
1967   case CTRL_LOGOFF_EVENT: {
1968     // Don't terminate JVM if it is running in a non-interactive session,
1969     // such as a service process.
1970     USEROBJECTFLAGS flags;
1971     HANDLE handle = GetProcessWindowStation();
1972     if (handle != NULL &&
1973         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1974         sizeof(USEROBJECTFLAGS), NULL)) {
1975       // If it is a non-interactive session, let next handler to deal
1976       // with it.
1977       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1978         return FALSE;
1979       }
1980     }
1981   }
1982   case CTRL_CLOSE_EVENT:
1983   case CTRL_SHUTDOWN_EVENT:
1984     os::signal_raise(SIGTERM);
1985     return TRUE;
1986     break;
1987   default:
1988     break;
1989   }
1990   return FALSE;
1991 }
1992 
1993 // The following code is moved from os.cpp for making this
1994 // code platform specific, which it is by its very nature.
1995 
1996 // Return maximum OS signal used + 1 for internal use only
1997 // Used as exit signal for signal_thread
1998 int os::sigexitnum_pd() {
1999   return NSIG;
2000 }
2001 
2002 // a counter for each possible signal value, including signal_thread exit signal
2003 static volatile jint pending_signals[NSIG+1] = { 0 };
2004 static HANDLE sig_sem = NULL;
2005 
2006 void os::signal_init_pd() {
2007   // Initialize signal structures
2008   memset((void*)pending_signals, 0, sizeof(pending_signals));
2009 
2010   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2011 
2012   // Programs embedding the VM do not want it to attempt to receive
2013   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2014   // shutdown hooks mechanism introduced in 1.3.  For example, when
2015   // the VM is run as part of a Windows NT service (i.e., a servlet
2016   // engine in a web server), the correct behavior is for any console
2017   // control handler to return FALSE, not TRUE, because the OS's
2018   // "final" handler for such events allows the process to continue if
2019   // it is a service (while terminating it if it is not a service).
2020   // To make this behavior uniform and the mechanism simpler, we
2021   // completely disable the VM's usage of these console events if -Xrs
2022   // (=ReduceSignalUsage) is specified.  This means, for example, that
2023   // the CTRL-BREAK thread dump mechanism is also disabled in this
2024   // case.  See bugs 4323062, 4345157, and related bugs.
2025 
2026   if (!ReduceSignalUsage) {
2027     // Add a CTRL-C handler
2028     SetConsoleCtrlHandler(consoleHandler, TRUE);
2029   }
2030 }
2031 
2032 void os::signal_notify(int signal_number) {
2033   BOOL ret;
2034   if (sig_sem != NULL) {
2035     Atomic::inc(&pending_signals[signal_number]);
2036     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2037     assert(ret != 0, "ReleaseSemaphore() failed");
2038   }
2039 }
2040 
2041 static int check_pending_signals(bool wait_for_signal) {
2042   DWORD ret;
2043   while (true) {
2044     for (int i = 0; i < NSIG + 1; i++) {
2045       jint n = pending_signals[i];
2046       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2047         return i;
2048       }
2049     }
2050     if (!wait_for_signal) {
2051       return -1;
2052     }
2053 
2054     JavaThread *thread = JavaThread::current();
2055 
2056     ThreadBlockInVM tbivm(thread);
2057 
2058     bool threadIsSuspended;
2059     do {
2060       thread->set_suspend_equivalent();
2061       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2062       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2063       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2064 
2065       // were we externally suspended while we were waiting?
2066       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2067       if (threadIsSuspended) {
2068         // The semaphore has been incremented, but while we were waiting
2069         // another thread suspended us. We don't want to continue running
2070         // while suspended because that would surprise the thread that
2071         // suspended us.
2072         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2073         assert(ret != 0, "ReleaseSemaphore() failed");
2074 
2075         thread->java_suspend_self();
2076       }
2077     } while (threadIsSuspended);
2078   }
2079 }
2080 
2081 int os::signal_lookup() {
2082   return check_pending_signals(false);
2083 }
2084 
2085 int os::signal_wait() {
2086   return check_pending_signals(true);
2087 }
2088 
2089 // Implicit OS exception handling
2090 
2091 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2092                       address handler) {
2093   JavaThread* thread = JavaThread::current();
2094   // Save pc in thread
2095 #ifdef _M_IA64
2096   // Do not blow up if no thread info available.
2097   if (thread) {
2098     // Saving PRECISE pc (with slot information) in thread.
2099     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2100     // Convert precise PC into "Unix" format
2101     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2102     thread->set_saved_exception_pc((address)precise_pc);
2103   }
2104   // Set pc to handler
2105   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2106   // Clear out psr.ri (= Restart Instruction) in order to continue
2107   // at the beginning of the target bundle.
2108   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2109   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2110 #elif _M_AMD64
2111   // Do not blow up if no thread info available.
2112   if (thread) {
2113     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2114   }
2115   // Set pc to handler
2116   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2117 #else
2118   // Do not blow up if no thread info available.
2119   if (thread) {
2120     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2121   }
2122   // Set pc to handler
2123   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2124 #endif
2125 
2126   // Continue the execution
2127   return EXCEPTION_CONTINUE_EXECUTION;
2128 }
2129 
2130 
2131 // Used for PostMortemDump
2132 extern "C" void safepoints();
2133 extern "C" void find(int x);
2134 extern "C" void events();
2135 
2136 // According to Windows API documentation, an illegal instruction sequence should generate
2137 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2138 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2139 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2140 
2141 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2142 
2143 // From "Execution Protection in the Windows Operating System" draft 0.35
2144 // Once a system header becomes available, the "real" define should be
2145 // included or copied here.
2146 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2147 
2148 // Handle NAT Bit consumption on IA64.
2149 #ifdef _M_IA64
2150   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2151 #endif
2152 
2153 // Windows Vista/2008 heap corruption check
2154 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2155 
2156 #define def_excpt(val) #val, val
2157 
2158 struct siglabel {
2159   char *name;
2160   int   number;
2161 };
2162 
2163 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2164 // C++ compiler contain this error code. Because this is a compiler-generated
2165 // error, the code is not listed in the Win32 API header files.
2166 // The code is actually a cryptic mnemonic device, with the initial "E"
2167 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2168 // ASCII values of "msc".
2169 
2170 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2171 
2172 
2173 struct siglabel exceptlabels[] = {
2174     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2175     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2176     def_excpt(EXCEPTION_BREAKPOINT),
2177     def_excpt(EXCEPTION_SINGLE_STEP),
2178     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2179     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2180     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2181     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2182     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2183     def_excpt(EXCEPTION_FLT_OVERFLOW),
2184     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2185     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2186     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2187     def_excpt(EXCEPTION_INT_OVERFLOW),
2188     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2189     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2190     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2191     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2192     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2193     def_excpt(EXCEPTION_STACK_OVERFLOW),
2194     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2195     def_excpt(EXCEPTION_GUARD_PAGE),
2196     def_excpt(EXCEPTION_INVALID_HANDLE),
2197     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2198     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2199 #ifdef _M_IA64
2200     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2201 #endif
2202     NULL, 0
2203 };
2204 
2205 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2206   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2207     if (exceptlabels[i].number == exception_code) {
2208       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2209       return buf;
2210     }
2211   }
2212 
2213   return NULL;
2214 }
2215 
2216 //-----------------------------------------------------------------------------
2217 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2218   // handle exception caused by idiv; should only happen for -MinInt/-1
2219   // (division by zero is handled explicitly)
2220 #ifdef _M_IA64
2221   assert(0, "Fix Handle_IDiv_Exception");
2222 #elif _M_AMD64
2223   PCONTEXT ctx = exceptionInfo->ContextRecord;
2224   address pc = (address)ctx->Rip;
2225   assert(pc[0] == 0xF7, "not an idiv opcode");
2226   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2227   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2228   // set correct result values and continue after idiv instruction
2229   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2230   ctx->Rax = (DWORD)min_jint;      // result
2231   ctx->Rdx = (DWORD)0;             // remainder
2232   // Continue the execution
2233 #else
2234   PCONTEXT ctx = exceptionInfo->ContextRecord;
2235   address pc = (address)ctx->Eip;
2236   assert(pc[0] == 0xF7, "not an idiv opcode");
2237   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2238   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2239   // set correct result values and continue after idiv instruction
2240   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2241   ctx->Eax = (DWORD)min_jint;      // result
2242   ctx->Edx = (DWORD)0;             // remainder
2243   // Continue the execution
2244 #endif
2245   return EXCEPTION_CONTINUE_EXECUTION;
2246 }
2247 
2248 //-----------------------------------------------------------------------------
2249 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2250   PCONTEXT ctx = exceptionInfo->ContextRecord;
2251 #ifndef  _WIN64
2252   // handle exception caused by native method modifying control word
2253   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2254 
2255   switch (exception_code) {
2256   case EXCEPTION_FLT_DENORMAL_OPERAND:
2257   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2258   case EXCEPTION_FLT_INEXACT_RESULT:
2259   case EXCEPTION_FLT_INVALID_OPERATION:
2260   case EXCEPTION_FLT_OVERFLOW:
2261   case EXCEPTION_FLT_STACK_CHECK:
2262   case EXCEPTION_FLT_UNDERFLOW:
2263     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2264     if (fp_control_word != ctx->FloatSave.ControlWord) {
2265       // Restore FPCW and mask out FLT exceptions
2266       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2267       // Mask out pending FLT exceptions
2268       ctx->FloatSave.StatusWord &=  0xffffff00;
2269       return EXCEPTION_CONTINUE_EXECUTION;
2270     }
2271   }
2272 
2273   if (prev_uef_handler != NULL) {
2274     // We didn't handle this exception so pass it to the previous
2275     // UnhandledExceptionFilter.
2276     return (prev_uef_handler)(exceptionInfo);
2277   }
2278 #else // !_WIN64
2279   // On Windows, the mxcsr control bits are non-volatile across calls
2280   // See also CR 6192333
2281   //
2282   jint MxCsr = INITIAL_MXCSR;
2283   // we can't use StubRoutines::addr_mxcsr_std()
2284   // because in Win64 mxcsr is not saved there
2285   if (MxCsr != ctx->MxCsr) {
2286     ctx->MxCsr = MxCsr;
2287     return EXCEPTION_CONTINUE_EXECUTION;
2288   }
2289 #endif // !_WIN64
2290 
2291   return EXCEPTION_CONTINUE_SEARCH;
2292 }
2293 
2294 static inline void report_error(Thread* t, DWORD exception_code,
2295                                 address addr, void* siginfo, void* context) {
2296   VMError err(t, exception_code, addr, siginfo, context);
2297   err.report_and_die();
2298 
2299   // If UseOsErrorReporting, this will return here and save the error file
2300   // somewhere where we can find it in the minidump.
2301 }
2302 
2303 //-----------------------------------------------------------------------------
2304 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2305   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2306   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2307 #ifdef _M_IA64
2308   // On Itanium, we need the "precise pc", which has the slot number coded
2309   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2310   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2311   // Convert the pc to "Unix format", which has the slot number coded
2312   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2313   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2314   // information is saved in the Unix format.
2315   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2316 #elif _M_AMD64
2317   address pc = (address) exceptionInfo->ContextRecord->Rip;
2318 #else
2319   address pc = (address) exceptionInfo->ContextRecord->Eip;
2320 #endif
2321   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2322 
2323   // Handle SafeFetch32 and SafeFetchN exceptions.
2324   if (StubRoutines::is_safefetch_fault(pc)) {
2325     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2326   }
2327 
2328 #ifndef _WIN64
2329   // Execution protection violation - win32 running on AMD64 only
2330   // Handled first to avoid misdiagnosis as a "normal" access violation;
2331   // This is safe to do because we have a new/unique ExceptionInformation
2332   // code for this condition.
2333   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2334     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2335     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2336     address addr = (address) exceptionRecord->ExceptionInformation[1];
2337 
2338     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2339       int page_size = os::vm_page_size();
2340 
2341       // Make sure the pc and the faulting address are sane.
2342       //
2343       // If an instruction spans a page boundary, and the page containing
2344       // the beginning of the instruction is executable but the following
2345       // page is not, the pc and the faulting address might be slightly
2346       // different - we still want to unguard the 2nd page in this case.
2347       //
2348       // 15 bytes seems to be a (very) safe value for max instruction size.
2349       bool pc_is_near_addr =
2350         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2351       bool instr_spans_page_boundary =
2352         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2353                          (intptr_t) page_size) > 0);
2354 
2355       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2356         static volatile address last_addr =
2357           (address) os::non_memory_address_word();
2358 
2359         // In conservative mode, don't unguard unless the address is in the VM
2360         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2361             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2362 
2363           // Set memory to RWX and retry
2364           address page_start =
2365             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2366           bool res = os::protect_memory((char*) page_start, page_size,
2367                                         os::MEM_PROT_RWX);
2368 
2369           if (PrintMiscellaneous && Verbose) {
2370             char buf[256];
2371             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2372                          "at " INTPTR_FORMAT
2373                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2374                          page_start, (res ? "success" : strerror(errno)));
2375             tty->print_raw_cr(buf);
2376           }
2377 
2378           // Set last_addr so if we fault again at the same address, we don't
2379           // end up in an endless loop.
2380           //
2381           // There are two potential complications here.  Two threads trapping
2382           // at the same address at the same time could cause one of the
2383           // threads to think it already unguarded, and abort the VM.  Likely
2384           // very rare.
2385           //
2386           // The other race involves two threads alternately trapping at
2387           // different addresses and failing to unguard the page, resulting in
2388           // an endless loop.  This condition is probably even more unlikely
2389           // than the first.
2390           //
2391           // Although both cases could be avoided by using locks or thread
2392           // local last_addr, these solutions are unnecessary complication:
2393           // this handler is a best-effort safety net, not a complete solution.
2394           // It is disabled by default and should only be used as a workaround
2395           // in case we missed any no-execute-unsafe VM code.
2396 
2397           last_addr = addr;
2398 
2399           return EXCEPTION_CONTINUE_EXECUTION;
2400         }
2401       }
2402 
2403       // Last unguard failed or not unguarding
2404       tty->print_raw_cr("Execution protection violation");
2405       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2406                    exceptionInfo->ContextRecord);
2407       return EXCEPTION_CONTINUE_SEARCH;
2408     }
2409   }
2410 #endif // _WIN64
2411 
2412   // Check to see if we caught the safepoint code in the
2413   // process of write protecting the memory serialization page.
2414   // It write enables the page immediately after protecting it
2415   // so just return.
2416   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2417     JavaThread* thread = (JavaThread*) t;
2418     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2419     address addr = (address) exceptionRecord->ExceptionInformation[1];
2420     if (os::is_memory_serialize_page(thread, addr)) {
2421       // Block current thread until the memory serialize page permission restored.
2422       os::block_on_serialize_page_trap();
2423       return EXCEPTION_CONTINUE_EXECUTION;
2424     }
2425   }
2426 
2427   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2428       VM_Version::is_cpuinfo_segv_addr(pc)) {
2429     // Verify that OS save/restore AVX registers.
2430     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2431   }
2432 
2433   if (t != NULL && t->is_Java_thread()) {
2434     JavaThread* thread = (JavaThread*) t;
2435     bool in_java = thread->thread_state() == _thread_in_Java;
2436 
2437     // Handle potential stack overflows up front.
2438     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2439       if (os::uses_stack_guard_pages()) {
2440 #ifdef _M_IA64
2441         // Use guard page for register stack.
2442         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2443         address addr = (address) exceptionRecord->ExceptionInformation[1];
2444         // Check for a register stack overflow on Itanium
2445         if (thread->addr_inside_register_stack_red_zone(addr)) {
2446           // Fatal red zone violation happens if the Java program
2447           // catches a StackOverflow error and does so much processing
2448           // that it runs beyond the unprotected yellow guard zone. As
2449           // a result, we are out of here.
2450           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2451         } else if(thread->addr_inside_register_stack(addr)) {
2452           // Disable the yellow zone which sets the state that
2453           // we've got a stack overflow problem.
2454           if (thread->stack_yellow_zone_enabled()) {
2455             thread->disable_stack_yellow_zone();
2456           }
2457           // Give us some room to process the exception.
2458           thread->disable_register_stack_guard();
2459           // Tracing with +Verbose.
2460           if (Verbose) {
2461             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2462             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2463             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2464             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2465                           thread->register_stack_base(),
2466                           thread->register_stack_base() + thread->stack_size());
2467           }
2468 
2469           // Reguard the permanent register stack red zone just to be sure.
2470           // We saw Windows silently disabling this without telling us.
2471           thread->enable_register_stack_red_zone();
2472 
2473           return Handle_Exception(exceptionInfo,
2474                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2475         }
2476 #endif
2477         if (thread->stack_yellow_zone_enabled()) {
2478           // Yellow zone violation.  The o/s has unprotected the first yellow
2479           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2480           // update the enabled status, even if the zone contains only one page.
2481           thread->disable_stack_yellow_zone();
2482           // If not in java code, return and hope for the best.
2483           return in_java
2484               ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2485               :  EXCEPTION_CONTINUE_EXECUTION;
2486         } else {
2487           // Fatal red zone violation.
2488           thread->disable_stack_red_zone();
2489           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2490           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2491                        exceptionInfo->ContextRecord);
2492           return EXCEPTION_CONTINUE_SEARCH;
2493         }
2494       } else if (in_java) {
2495         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2496         // a one-time-only guard page, which it has released to us.  The next
2497         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2498         return Handle_Exception(exceptionInfo,
2499                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2500       } else {
2501         // Can only return and hope for the best.  Further stack growth will
2502         // result in an ACCESS_VIOLATION.
2503         return EXCEPTION_CONTINUE_EXECUTION;
2504       }
2505     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2506       // Either stack overflow or null pointer exception.
2507       if (in_java) {
2508         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2509         address addr = (address) exceptionRecord->ExceptionInformation[1];
2510         address stack_end = thread->stack_base() - thread->stack_size();
2511         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2512           // Stack overflow.
2513           assert(!os::uses_stack_guard_pages(),
2514                  "should be caught by red zone code above.");
2515           return Handle_Exception(exceptionInfo,
2516                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2517         }
2518         // Check for safepoint polling and implicit null
2519         // We only expect null pointers in the stubs (vtable)
2520         // the rest are checked explicitly now.
2521         CodeBlob* cb = CodeCache::find_blob(pc);
2522         if (cb != NULL) {
2523           if (os::is_poll_address(addr)) {
2524             address stub = SharedRuntime::get_poll_stub(pc);
2525             return Handle_Exception(exceptionInfo, stub);
2526           }
2527         }
2528         {
2529 #ifdef _WIN64
2530           // If it's a legal stack address map the entire region in
2531           //
2532           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2533           address addr = (address) exceptionRecord->ExceptionInformation[1];
2534           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2535             addr = (address)((uintptr_t)addr &
2536                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2537             os::commit_memory((char *)addr, thread->stack_base() - addr,
2538                               !ExecMem);
2539             return EXCEPTION_CONTINUE_EXECUTION;
2540           } else
2541 #endif
2542           {
2543             // Null pointer exception.
2544 #ifdef _M_IA64
2545             // Process implicit null checks in compiled code. Note: Implicit null checks
2546             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2547             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2548               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2549               // Handle implicit null check in UEP method entry
2550               if (cb && (cb->is_frame_complete_at(pc) ||
2551                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2552                 if (Verbose) {
2553                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2554                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2555                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2556                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2557                                 *(bundle_start + 1), *bundle_start);
2558                 }
2559                 return Handle_Exception(exceptionInfo,
2560                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2561               }
2562             }
2563 
2564             // Implicit null checks were processed above.  Hence, we should not reach
2565             // here in the usual case => die!
2566             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2567             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2568                          exceptionInfo->ContextRecord);
2569             return EXCEPTION_CONTINUE_SEARCH;
2570 
2571 #else // !IA64
2572 
2573             // Windows 98 reports faulting addresses incorrectly
2574             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2575                 !os::win32::is_nt()) {
2576               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2577               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2578             }
2579             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2580                          exceptionInfo->ContextRecord);
2581             return EXCEPTION_CONTINUE_SEARCH;
2582 #endif
2583           }
2584         }
2585       }
2586 
2587 #ifdef _WIN64
2588       // Special care for fast JNI field accessors.
2589       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2590       // in and the heap gets shrunk before the field access.
2591       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2592         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2593         if (addr != (address)-1) {
2594           return Handle_Exception(exceptionInfo, addr);
2595         }
2596       }
2597 #endif
2598 
2599       // Stack overflow or null pointer exception in native code.
2600       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2601                    exceptionInfo->ContextRecord);
2602       return EXCEPTION_CONTINUE_SEARCH;
2603     } // /EXCEPTION_ACCESS_VIOLATION
2604     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2605 #if defined _M_IA64
2606     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2607               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2608       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2609 
2610       // Compiled method patched to be non entrant? Following conditions must apply:
2611       // 1. must be first instruction in bundle
2612       // 2. must be a break instruction with appropriate code
2613       if ((((uint64_t) pc & 0x0F) == 0) &&
2614           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2615         return Handle_Exception(exceptionInfo,
2616                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2617       }
2618     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2619 #endif
2620 
2621 
2622     if (in_java) {
2623       switch (exception_code) {
2624       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2625         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2626 
2627       case EXCEPTION_INT_OVERFLOW:
2628         return Handle_IDiv_Exception(exceptionInfo);
2629 
2630       } // switch
2631     }
2632     if (((thread->thread_state() == _thread_in_Java) ||
2633          (thread->thread_state() == _thread_in_native)) &&
2634          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2635       LONG result=Handle_FLT_Exception(exceptionInfo);
2636       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2637     }
2638   }
2639 
2640   if (exception_code != EXCEPTION_BREAKPOINT) {
2641     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2642                  exceptionInfo->ContextRecord);
2643   }
2644   return EXCEPTION_CONTINUE_SEARCH;
2645 }
2646 
2647 #ifndef _WIN64
2648 // Special care for fast JNI accessors.
2649 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2650 // the heap gets shrunk before the field access.
2651 // Need to install our own structured exception handler since native code may
2652 // install its own.
2653 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2654   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2655   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2656     address pc = (address) exceptionInfo->ContextRecord->Eip;
2657     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2658     if (addr != (address)-1) {
2659       return Handle_Exception(exceptionInfo, addr);
2660     }
2661   }
2662   return EXCEPTION_CONTINUE_SEARCH;
2663 }
2664 
2665 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2666   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2667                                                      jobject obj,           \
2668                                                      jfieldID fieldID) {    \
2669     __try {                                                                 \
2670       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2671                                                                  obj,       \
2672                                                                  fieldID);  \
2673     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2674                                               _exception_info())) {         \
2675     }                                                                       \
2676     return 0;                                                               \
2677   }
2678 
2679 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2680 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2681 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2682 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2683 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2684 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2685 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2686 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2687 
2688 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2689   switch (type) {
2690   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2691   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2692   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2693   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2694   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2695   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2696   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2697   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2698   default:        ShouldNotReachHere();
2699   }
2700   return (address)-1;
2701 }
2702 #endif
2703 
2704 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
2705   // Install a win32 structured exception handler around the test
2706   // function call so the VM can generate an error dump if needed.
2707   __try {
2708     (*funcPtr)();
2709   } __except(topLevelExceptionFilter(
2710                                      (_EXCEPTION_POINTERS*)_exception_info())) {
2711     // Nothing to do.
2712   }
2713 }
2714 
2715 // Virtual Memory
2716 
2717 int os::vm_page_size() { return os::win32::vm_page_size(); }
2718 int os::vm_allocation_granularity() {
2719   return os::win32::vm_allocation_granularity();
2720 }
2721 
2722 // Windows large page support is available on Windows 2003. In order to use
2723 // large page memory, the administrator must first assign additional privilege
2724 // to the user:
2725 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2726 //   + select Local Policies -> User Rights Assignment
2727 //   + double click "Lock pages in memory", add users and/or groups
2728 //   + reboot
2729 // Note the above steps are needed for administrator as well, as administrators
2730 // by default do not have the privilege to lock pages in memory.
2731 //
2732 // Note about Windows 2003: although the API supports committing large page
2733 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2734 // scenario, I found through experiment it only uses large page if the entire
2735 // memory region is reserved and committed in a single VirtualAlloc() call.
2736 // This makes Windows large page support more or less like Solaris ISM, in
2737 // that the entire heap must be committed upfront. This probably will change
2738 // in the future, if so the code below needs to be revisited.
2739 
2740 #ifndef MEM_LARGE_PAGES
2741   #define MEM_LARGE_PAGES 0x20000000
2742 #endif
2743 
2744 static HANDLE    _hProcess;
2745 static HANDLE    _hToken;
2746 
2747 // Container for NUMA node list info
2748 class NUMANodeListHolder {
2749  private:
2750   int *_numa_used_node_list;  // allocated below
2751   int _numa_used_node_count;
2752 
2753   void free_node_list() {
2754     if (_numa_used_node_list != NULL) {
2755       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2756     }
2757   }
2758 
2759  public:
2760   NUMANodeListHolder() {
2761     _numa_used_node_count = 0;
2762     _numa_used_node_list = NULL;
2763     // do rest of initialization in build routine (after function pointers are set up)
2764   }
2765 
2766   ~NUMANodeListHolder() {
2767     free_node_list();
2768   }
2769 
2770   bool build() {
2771     DWORD_PTR proc_aff_mask;
2772     DWORD_PTR sys_aff_mask;
2773     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2774     ULONG highest_node_number;
2775     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2776     free_node_list();
2777     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2778     for (unsigned int i = 0; i <= highest_node_number; i++) {
2779       ULONGLONG proc_mask_numa_node;
2780       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2781       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2782         _numa_used_node_list[_numa_used_node_count++] = i;
2783       }
2784     }
2785     return (_numa_used_node_count > 1);
2786   }
2787 
2788   int get_count() { return _numa_used_node_count; }
2789   int get_node_list_entry(int n) {
2790     // for indexes out of range, returns -1
2791     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2792   }
2793 
2794 } numa_node_list_holder;
2795 
2796 
2797 
2798 static size_t _large_page_size = 0;
2799 
2800 static bool resolve_functions_for_large_page_init() {
2801   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2802     os::Advapi32Dll::AdvapiAvailable();
2803 }
2804 
2805 static bool request_lock_memory_privilege() {
2806   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2807                           os::current_process_id());
2808 
2809   LUID luid;
2810   if (_hProcess != NULL &&
2811       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2812       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2813 
2814     TOKEN_PRIVILEGES tp;
2815     tp.PrivilegeCount = 1;
2816     tp.Privileges[0].Luid = luid;
2817     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2818 
2819     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2820     // privilege. Check GetLastError() too. See MSDN document.
2821     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2822         (GetLastError() == ERROR_SUCCESS)) {
2823       return true;
2824     }
2825   }
2826 
2827   return false;
2828 }
2829 
2830 static void cleanup_after_large_page_init() {
2831   if (_hProcess) CloseHandle(_hProcess);
2832   _hProcess = NULL;
2833   if (_hToken) CloseHandle(_hToken);
2834   _hToken = NULL;
2835 }
2836 
2837 static bool numa_interleaving_init() {
2838   bool success = false;
2839   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2840 
2841   // print a warning if UseNUMAInterleaving flag is specified on command line
2842   bool warn_on_failure = use_numa_interleaving_specified;
2843 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2844 
2845   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2846   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2847   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2848 
2849   if (os::Kernel32Dll::NumaCallsAvailable()) {
2850     if (numa_node_list_holder.build()) {
2851       if (PrintMiscellaneous && Verbose) {
2852         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2853         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2854           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2855         }
2856         tty->print("\n");
2857       }
2858       success = true;
2859     } else {
2860       WARN("Process does not cover multiple NUMA nodes.");
2861     }
2862   } else {
2863     WARN("NUMA Interleaving is not supported by the operating system.");
2864   }
2865   if (!success) {
2866     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2867   }
2868   return success;
2869 #undef WARN
2870 }
2871 
2872 // this routine is used whenever we need to reserve a contiguous VA range
2873 // but we need to make separate VirtualAlloc calls for each piece of the range
2874 // Reasons for doing this:
2875 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2876 //  * UseNUMAInterleaving requires a separate node for each piece
2877 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2878                                          DWORD prot,
2879                                          bool should_inject_error = false) {
2880   char * p_buf;
2881   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2882   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2883   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2884 
2885   // first reserve enough address space in advance since we want to be
2886   // able to break a single contiguous virtual address range into multiple
2887   // large page commits but WS2003 does not allow reserving large page space
2888   // so we just use 4K pages for reserve, this gives us a legal contiguous
2889   // address space. then we will deallocate that reservation, and re alloc
2890   // using large pages
2891   const size_t size_of_reserve = bytes + chunk_size;
2892   if (bytes > size_of_reserve) {
2893     // Overflowed.
2894     return NULL;
2895   }
2896   p_buf = (char *) VirtualAlloc(addr,
2897                                 size_of_reserve,  // size of Reserve
2898                                 MEM_RESERVE,
2899                                 PAGE_READWRITE);
2900   // If reservation failed, return NULL
2901   if (p_buf == NULL) return NULL;
2902   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2903   os::release_memory(p_buf, bytes + chunk_size);
2904 
2905   // we still need to round up to a page boundary (in case we are using large pages)
2906   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2907   // instead we handle this in the bytes_to_rq computation below
2908   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2909 
2910   // now go through and allocate one chunk at a time until all bytes are
2911   // allocated
2912   size_t  bytes_remaining = bytes;
2913   // An overflow of align_size_up() would have been caught above
2914   // in the calculation of size_of_reserve.
2915   char * next_alloc_addr = p_buf;
2916   HANDLE hProc = GetCurrentProcess();
2917 
2918 #ifdef ASSERT
2919   // Variable for the failure injection
2920   long ran_num = os::random();
2921   size_t fail_after = ran_num % bytes;
2922 #endif
2923 
2924   int count=0;
2925   while (bytes_remaining) {
2926     // select bytes_to_rq to get to the next chunk_size boundary
2927 
2928     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2929     // Note allocate and commit
2930     char * p_new;
2931 
2932 #ifdef ASSERT
2933     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2934 #else
2935     const bool inject_error_now = false;
2936 #endif
2937 
2938     if (inject_error_now) {
2939       p_new = NULL;
2940     } else {
2941       if (!UseNUMAInterleaving) {
2942         p_new = (char *) VirtualAlloc(next_alloc_addr,
2943                                       bytes_to_rq,
2944                                       flags,
2945                                       prot);
2946       } else {
2947         // get the next node to use from the used_node_list
2948         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2949         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2950         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2951                                                             next_alloc_addr,
2952                                                             bytes_to_rq,
2953                                                             flags,
2954                                                             prot,
2955                                                             node);
2956       }
2957     }
2958 
2959     if (p_new == NULL) {
2960       // Free any allocated pages
2961       if (next_alloc_addr > p_buf) {
2962         // Some memory was committed so release it.
2963         size_t bytes_to_release = bytes - bytes_remaining;
2964         // NMT has yet to record any individual blocks, so it
2965         // need to create a dummy 'reserve' record to match
2966         // the release.
2967         MemTracker::record_virtual_memory_reserve((address)p_buf,
2968                                                   bytes_to_release, CALLER_PC);
2969         os::release_memory(p_buf, bytes_to_release);
2970       }
2971 #ifdef ASSERT
2972       if (should_inject_error) {
2973         if (TracePageSizes && Verbose) {
2974           tty->print_cr("Reserving pages individually failed.");
2975         }
2976       }
2977 #endif
2978       return NULL;
2979     }
2980 
2981     bytes_remaining -= bytes_to_rq;
2982     next_alloc_addr += bytes_to_rq;
2983     count++;
2984   }
2985   // Although the memory is allocated individually, it is returned as one.
2986   // NMT records it as one block.
2987   if ((flags & MEM_COMMIT) != 0) {
2988     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2989   } else {
2990     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2991   }
2992 
2993   // made it this far, success
2994   return p_buf;
2995 }
2996 
2997 
2998 
2999 void os::large_page_init() {
3000   if (!UseLargePages) return;
3001 
3002   // print a warning if any large page related flag is specified on command line
3003   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3004                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3005   bool success = false;
3006 
3007 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3008   if (resolve_functions_for_large_page_init()) {
3009     if (request_lock_memory_privilege()) {
3010       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3011       if (s) {
3012 #if defined(IA32) || defined(AMD64)
3013         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3014           WARN("JVM cannot use large pages bigger than 4mb.");
3015         } else {
3016 #endif
3017           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3018             _large_page_size = LargePageSizeInBytes;
3019           } else {
3020             _large_page_size = s;
3021           }
3022           success = true;
3023 #if defined(IA32) || defined(AMD64)
3024         }
3025 #endif
3026       } else {
3027         WARN("Large page is not supported by the processor.");
3028       }
3029     } else {
3030       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3031     }
3032   } else {
3033     WARN("Large page is not supported by the operating system.");
3034   }
3035 #undef WARN
3036 
3037   const size_t default_page_size = (size_t) vm_page_size();
3038   if (success && _large_page_size > default_page_size) {
3039     _page_sizes[0] = _large_page_size;
3040     _page_sizes[1] = default_page_size;
3041     _page_sizes[2] = 0;
3042   }
3043 
3044   cleanup_after_large_page_init();
3045   UseLargePages = success;
3046 }
3047 
3048 // On win32, one cannot release just a part of reserved memory, it's an
3049 // all or nothing deal.  When we split a reservation, we must break the
3050 // reservation into two reservations.
3051 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3052                                   bool realloc) {
3053   if (size > 0) {
3054     release_memory(base, size);
3055     if (realloc) {
3056       reserve_memory(split, base);
3057     }
3058     if (size != split) {
3059       reserve_memory(size - split, base + split);
3060     }
3061   }
3062 }
3063 
3064 // Multiple threads can race in this code but it's not possible to unmap small sections of
3065 // virtual space to get requested alignment, like posix-like os's.
3066 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3067 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3068   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3069          "Alignment must be a multiple of allocation granularity (page size)");
3070   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3071 
3072   size_t extra_size = size + alignment;
3073   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3074 
3075   char* aligned_base = NULL;
3076 
3077   do {
3078     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3079     if (extra_base == NULL) {
3080       return NULL;
3081     }
3082     // Do manual alignment
3083     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3084 
3085     os::release_memory(extra_base, extra_size);
3086 
3087     aligned_base = os::reserve_memory(size, aligned_base);
3088 
3089   } while (aligned_base == NULL);
3090 
3091   return aligned_base;
3092 }
3093 
3094 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3095   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3096          "reserve alignment");
3097   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3098   char* res;
3099   // note that if UseLargePages is on, all the areas that require interleaving
3100   // will go thru reserve_memory_special rather than thru here.
3101   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3102   if (!use_individual) {
3103     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3104   } else {
3105     elapsedTimer reserveTimer;
3106     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3107     // in numa interleaving, we have to allocate pages individually
3108     // (well really chunks of NUMAInterleaveGranularity size)
3109     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3110     if (res == NULL) {
3111       warning("NUMA page allocation failed");
3112     }
3113     if (Verbose && PrintMiscellaneous) {
3114       reserveTimer.stop();
3115       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3116                     reserveTimer.milliseconds(), reserveTimer.ticks());
3117     }
3118   }
3119   assert(res == NULL || addr == NULL || addr == res,
3120          "Unexpected address from reserve.");
3121 
3122   return res;
3123 }
3124 
3125 // Reserve memory at an arbitrary address, only if that area is
3126 // available (and not reserved for something else).
3127 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3128   // Windows os::reserve_memory() fails of the requested address range is
3129   // not avilable.
3130   return reserve_memory(bytes, requested_addr);
3131 }
3132 
3133 size_t os::large_page_size() {
3134   return _large_page_size;
3135 }
3136 
3137 bool os::can_commit_large_page_memory() {
3138   // Windows only uses large page memory when the entire region is reserved
3139   // and committed in a single VirtualAlloc() call. This may change in the
3140   // future, but with Windows 2003 it's not possible to commit on demand.
3141   return false;
3142 }
3143 
3144 bool os::can_execute_large_page_memory() {
3145   return true;
3146 }
3147 
3148 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3149                                  bool exec) {
3150   assert(UseLargePages, "only for large pages");
3151 
3152   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3153     return NULL; // Fallback to small pages.
3154   }
3155 
3156   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3157   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3158 
3159   // with large pages, there are two cases where we need to use Individual Allocation
3160   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3161   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3162   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3163     if (TracePageSizes && Verbose) {
3164       tty->print_cr("Reserving large pages individually.");
3165     }
3166     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3167     if (p_buf == NULL) {
3168       // give an appropriate warning message
3169       if (UseNUMAInterleaving) {
3170         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3171       }
3172       if (UseLargePagesIndividualAllocation) {
3173         warning("Individually allocated large pages failed, "
3174                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3175       }
3176       return NULL;
3177     }
3178 
3179     return p_buf;
3180 
3181   } else {
3182     if (TracePageSizes && Verbose) {
3183       tty->print_cr("Reserving large pages in a single large chunk.");
3184     }
3185     // normal policy just allocate it all at once
3186     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3187     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3188     if (res != NULL) {
3189       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3190     }
3191 
3192     return res;
3193   }
3194 }
3195 
3196 bool os::release_memory_special(char* base, size_t bytes) {
3197   assert(base != NULL, "Sanity check");
3198   return release_memory(base, bytes);
3199 }
3200 
3201 void os::print_statistics() {
3202 }
3203 
3204 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3205   int err = os::get_last_error();
3206   char buf[256];
3207   size_t buf_len = os::lasterror(buf, sizeof(buf));
3208   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3209           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3210           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3211 }
3212 
3213 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3214   if (bytes == 0) {
3215     // Don't bother the OS with noops.
3216     return true;
3217   }
3218   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3219   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3220   // Don't attempt to print anything if the OS call fails. We're
3221   // probably low on resources, so the print itself may cause crashes.
3222 
3223   // unless we have NUMAInterleaving enabled, the range of a commit
3224   // is always within a reserve covered by a single VirtualAlloc
3225   // in that case we can just do a single commit for the requested size
3226   if (!UseNUMAInterleaving) {
3227     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3228       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3229       return false;
3230     }
3231     if (exec) {
3232       DWORD oldprot;
3233       // Windows doc says to use VirtualProtect to get execute permissions
3234       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3235         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3236         return false;
3237       }
3238     }
3239     return true;
3240   } else {
3241 
3242     // when NUMAInterleaving is enabled, the commit might cover a range that
3243     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3244     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3245     // returns represents the number of bytes that can be committed in one step.
3246     size_t bytes_remaining = bytes;
3247     char * next_alloc_addr = addr;
3248     while (bytes_remaining > 0) {
3249       MEMORY_BASIC_INFORMATION alloc_info;
3250       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3251       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3252       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3253                        PAGE_READWRITE) == NULL) {
3254         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3255                                             exec);)
3256         return false;
3257       }
3258       if (exec) {
3259         DWORD oldprot;
3260         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3261                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3262           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3263                                               exec);)
3264           return false;
3265         }
3266       }
3267       bytes_remaining -= bytes_to_rq;
3268       next_alloc_addr += bytes_to_rq;
3269     }
3270   }
3271   // if we made it this far, return true
3272   return true;
3273 }
3274 
3275 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3276                           bool exec) {
3277   // alignment_hint is ignored on this OS
3278   return pd_commit_memory(addr, size, exec);
3279 }
3280 
3281 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3282                                   const char* mesg) {
3283   assert(mesg != NULL, "mesg must be specified");
3284   if (!pd_commit_memory(addr, size, exec)) {
3285     warn_fail_commit_memory(addr, size, exec);
3286     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3287   }
3288 }
3289 
3290 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3291                                   size_t alignment_hint, bool exec,
3292                                   const char* mesg) {
3293   // alignment_hint is ignored on this OS
3294   pd_commit_memory_or_exit(addr, size, exec, mesg);
3295 }
3296 
3297 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3298   if (bytes == 0) {
3299     // Don't bother the OS with noops.
3300     return true;
3301   }
3302   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3303   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3304   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3305 }
3306 
3307 bool os::pd_release_memory(char* addr, size_t bytes) {
3308   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3309 }
3310 
3311 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3312   return os::commit_memory(addr, size, !ExecMem);
3313 }
3314 
3315 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3316   return os::uncommit_memory(addr, size);
3317 }
3318 
3319 // Set protections specified
3320 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3321                         bool is_committed) {
3322   unsigned int p = 0;
3323   switch (prot) {
3324   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3325   case MEM_PROT_READ: p = PAGE_READONLY; break;
3326   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3327   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3328   default:
3329     ShouldNotReachHere();
3330   }
3331 
3332   DWORD old_status;
3333 
3334   // Strange enough, but on Win32 one can change protection only for committed
3335   // memory, not a big deal anyway, as bytes less or equal than 64K
3336   if (!is_committed) {
3337     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3338                           "cannot commit protection page");
3339   }
3340   // One cannot use os::guard_memory() here, as on Win32 guard page
3341   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3342   //
3343   // Pages in the region become guard pages. Any attempt to access a guard page
3344   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3345   // the guard page status. Guard pages thus act as a one-time access alarm.
3346   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3347 }
3348 
3349 bool os::guard_memory(char* addr, size_t bytes) {
3350   DWORD old_status;
3351   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3352 }
3353 
3354 bool os::unguard_memory(char* addr, size_t bytes) {
3355   DWORD old_status;
3356   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3357 }
3358 
3359 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3360 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3361 void os::numa_make_global(char *addr, size_t bytes)    { }
3362 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3363 bool os::numa_topology_changed()                       { return false; }
3364 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3365 int os::numa_get_group_id()                            { return 0; }
3366 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3367   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3368     // Provide an answer for UMA systems
3369     ids[0] = 0;
3370     return 1;
3371   } else {
3372     // check for size bigger than actual groups_num
3373     size = MIN2(size, numa_get_groups_num());
3374     for (int i = 0; i < (int)size; i++) {
3375       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3376     }
3377     return size;
3378   }
3379 }
3380 
3381 bool os::get_page_info(char *start, page_info* info) {
3382   return false;
3383 }
3384 
3385 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3386                      page_info* page_found) {
3387   return end;
3388 }
3389 
3390 char* os::non_memory_address_word() {
3391   // Must never look like an address returned by reserve_memory,
3392   // even in its subfields (as defined by the CPU immediate fields,
3393   // if the CPU splits constants across multiple instructions).
3394   return (char*)-1;
3395 }
3396 
3397 #define MAX_ERROR_COUNT 100
3398 #define SYS_THREAD_ERROR 0xffffffffUL
3399 
3400 void os::pd_start_thread(Thread* thread) {
3401   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3402   // Returns previous suspend state:
3403   // 0:  Thread was not suspended
3404   // 1:  Thread is running now
3405   // >1: Thread is still suspended.
3406   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3407 }
3408 
3409 class HighResolutionInterval : public CHeapObj<mtThread> {
3410   // The default timer resolution seems to be 10 milliseconds.
3411   // (Where is this written down?)
3412   // If someone wants to sleep for only a fraction of the default,
3413   // then we set the timer resolution down to 1 millisecond for
3414   // the duration of their interval.
3415   // We carefully set the resolution back, since otherwise we
3416   // seem to incur an overhead (3%?) that we don't need.
3417   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3418   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3419   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3420   // timeBeginPeriod() if the relative error exceeded some threshold.
3421   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3422   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3423   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3424   // resolution timers running.
3425  private:
3426   jlong resolution;
3427  public:
3428   HighResolutionInterval(jlong ms) {
3429     resolution = ms % 10L;
3430     if (resolution != 0) {
3431       MMRESULT result = timeBeginPeriod(1L);
3432     }
3433   }
3434   ~HighResolutionInterval() {
3435     if (resolution != 0) {
3436       MMRESULT result = timeEndPeriod(1L);
3437     }
3438     resolution = 0L;
3439   }
3440 };
3441 
3442 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3443   jlong limit = (jlong) MAXDWORD;
3444 
3445   while (ms > limit) {
3446     int res;
3447     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3448       return res;
3449     }
3450     ms -= limit;
3451   }
3452 
3453   assert(thread == Thread::current(), "thread consistency check");
3454   OSThread* osthread = thread->osthread();
3455   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3456   int result;
3457   if (interruptable) {
3458     assert(thread->is_Java_thread(), "must be java thread");
3459     JavaThread *jt = (JavaThread *) thread;
3460     ThreadBlockInVM tbivm(jt);
3461 
3462     jt->set_suspend_equivalent();
3463     // cleared by handle_special_suspend_equivalent_condition() or
3464     // java_suspend_self() via check_and_wait_while_suspended()
3465 
3466     HANDLE events[1];
3467     events[0] = osthread->interrupt_event();
3468     HighResolutionInterval *phri=NULL;
3469     if (!ForceTimeHighResolution) {
3470       phri = new HighResolutionInterval(ms);
3471     }
3472     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3473       result = OS_TIMEOUT;
3474     } else {
3475       ResetEvent(osthread->interrupt_event());
3476       osthread->set_interrupted(false);
3477       result = OS_INTRPT;
3478     }
3479     delete phri; //if it is NULL, harmless
3480 
3481     // were we externally suspended while we were waiting?
3482     jt->check_and_wait_while_suspended();
3483   } else {
3484     assert(!thread->is_Java_thread(), "must not be java thread");
3485     Sleep((long) ms);
3486     result = OS_TIMEOUT;
3487   }
3488   return result;
3489 }
3490 
3491 // Short sleep, direct OS call.
3492 //
3493 // ms = 0, means allow others (if any) to run.
3494 //
3495 void os::naked_short_sleep(jlong ms) {
3496   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3497   Sleep(ms);
3498 }
3499 
3500 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3501 void os::infinite_sleep() {
3502   while (true) {    // sleep forever ...
3503     Sleep(100000);  // ... 100 seconds at a time
3504   }
3505 }
3506 
3507 typedef BOOL (WINAPI * STTSignature)(void);
3508 
3509 void os::naked_yield() {
3510   // Use either SwitchToThread() or Sleep(0)
3511   // Consider passing back the return value from SwitchToThread().
3512   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3513     SwitchToThread();
3514   } else {
3515     Sleep(0);
3516   }
3517 }
3518 
3519 // Win32 only gives you access to seven real priorities at a time,
3520 // so we compress Java's ten down to seven.  It would be better
3521 // if we dynamically adjusted relative priorities.
3522 
3523 int os::java_to_os_priority[CriticalPriority + 1] = {
3524   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3525   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3526   THREAD_PRIORITY_LOWEST,                       // 2
3527   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3528   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3529   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3530   THREAD_PRIORITY_NORMAL,                       // 6
3531   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3532   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3533   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3534   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3535   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3536 };
3537 
3538 int prio_policy1[CriticalPriority + 1] = {
3539   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3540   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3541   THREAD_PRIORITY_LOWEST,                       // 2
3542   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3543   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3544   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3545   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3546   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3547   THREAD_PRIORITY_HIGHEST,                      // 8
3548   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3549   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3550   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3551 };
3552 
3553 static int prio_init() {
3554   // If ThreadPriorityPolicy is 1, switch tables
3555   if (ThreadPriorityPolicy == 1) {
3556     int i;
3557     for (i = 0; i < CriticalPriority + 1; i++) {
3558       os::java_to_os_priority[i] = prio_policy1[i];
3559     }
3560   }
3561   if (UseCriticalJavaThreadPriority) {
3562     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3563   }
3564   return 0;
3565 }
3566 
3567 OSReturn os::set_native_priority(Thread* thread, int priority) {
3568   if (!UseThreadPriorities) return OS_OK;
3569   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3570   return ret ? OS_OK : OS_ERR;
3571 }
3572 
3573 OSReturn os::get_native_priority(const Thread* const thread,
3574                                  int* priority_ptr) {
3575   if (!UseThreadPriorities) {
3576     *priority_ptr = java_to_os_priority[NormPriority];
3577     return OS_OK;
3578   }
3579   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3580   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3581     assert(false, "GetThreadPriority failed");
3582     return OS_ERR;
3583   }
3584   *priority_ptr = os_prio;
3585   return OS_OK;
3586 }
3587 
3588 
3589 // Hint to the underlying OS that a task switch would not be good.
3590 // Void return because it's a hint and can fail.
3591 void os::hint_no_preempt() {}
3592 
3593 void os::interrupt(Thread* thread) {
3594   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3595          Threads_lock->owned_by_self(),
3596          "possibility of dangling Thread pointer");
3597 
3598   OSThread* osthread = thread->osthread();
3599   osthread->set_interrupted(true);
3600   // More than one thread can get here with the same value of osthread,
3601   // resulting in multiple notifications.  We do, however, want the store
3602   // to interrupted() to be visible to other threads before we post
3603   // the interrupt event.
3604   OrderAccess::release();
3605   SetEvent(osthread->interrupt_event());
3606   // For JSR166:  unpark after setting status
3607   if (thread->is_Java_thread()) {
3608     ((JavaThread*)thread)->parker()->unpark();
3609   }
3610 
3611   ParkEvent * ev = thread->_ParkEvent;
3612   if (ev != NULL) ev->unpark();
3613 }
3614 
3615 
3616 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3617   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3618          "possibility of dangling Thread pointer");
3619 
3620   OSThread* osthread = thread->osthread();
3621   // There is no synchronization between the setting of the interrupt
3622   // and it being cleared here. It is critical - see 6535709 - that
3623   // we only clear the interrupt state, and reset the interrupt event,
3624   // if we are going to report that we were indeed interrupted - else
3625   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3626   // depending on the timing. By checking thread interrupt event to see
3627   // if the thread gets real interrupt thus prevent spurious wakeup.
3628   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3629   if (interrupted && clear_interrupted) {
3630     osthread->set_interrupted(false);
3631     ResetEvent(osthread->interrupt_event());
3632   } // Otherwise leave the interrupted state alone
3633 
3634   return interrupted;
3635 }
3636 
3637 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3638 ExtendedPC os::get_thread_pc(Thread* thread) {
3639   CONTEXT context;
3640   context.ContextFlags = CONTEXT_CONTROL;
3641   HANDLE handle = thread->osthread()->thread_handle();
3642 #ifdef _M_IA64
3643   assert(0, "Fix get_thread_pc");
3644   return ExtendedPC(NULL);
3645 #else
3646   if (GetThreadContext(handle, &context)) {
3647 #ifdef _M_AMD64
3648     return ExtendedPC((address) context.Rip);
3649 #else
3650     return ExtendedPC((address) context.Eip);
3651 #endif
3652   } else {
3653     return ExtendedPC(NULL);
3654   }
3655 #endif
3656 }
3657 
3658 // GetCurrentThreadId() returns DWORD
3659 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3660 
3661 static int _initial_pid = 0;
3662 
3663 int os::current_process_id() {
3664   return (_initial_pid ? _initial_pid : _getpid());
3665 }
3666 
3667 int    os::win32::_vm_page_size              = 0;
3668 int    os::win32::_vm_allocation_granularity = 0;
3669 int    os::win32::_processor_type            = 0;
3670 // Processor level is not available on non-NT systems, use vm_version instead
3671 int    os::win32::_processor_level           = 0;
3672 julong os::win32::_physical_memory           = 0;
3673 size_t os::win32::_default_stack_size        = 0;
3674 
3675 intx          os::win32::_os_thread_limit    = 0;
3676 volatile intx os::win32::_os_thread_count    = 0;
3677 
3678 bool   os::win32::_is_nt                     = false;
3679 bool   os::win32::_is_windows_2003           = false;
3680 bool   os::win32::_is_windows_server         = false;
3681 
3682 // 6573254
3683 // Currently, the bug is observed across all the supported Windows releases,
3684 // including the latest one (as of this writing - Windows Server 2012 R2)
3685 bool   os::win32::_has_exit_bug              = true;
3686 bool   os::win32::_has_performance_count     = 0;
3687 
3688 void os::win32::initialize_system_info() {
3689   SYSTEM_INFO si;
3690   GetSystemInfo(&si);
3691   _vm_page_size    = si.dwPageSize;
3692   _vm_allocation_granularity = si.dwAllocationGranularity;
3693   _processor_type  = si.dwProcessorType;
3694   _processor_level = si.wProcessorLevel;
3695   set_processor_count(si.dwNumberOfProcessors);
3696 
3697   MEMORYSTATUSEX ms;
3698   ms.dwLength = sizeof(ms);
3699 
3700   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3701   // dwMemoryLoad (% of memory in use)
3702   GlobalMemoryStatusEx(&ms);
3703   _physical_memory = ms.ullTotalPhys;
3704 
3705   OSVERSIONINFOEX oi;
3706   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3707   GetVersionEx((OSVERSIONINFO*)&oi);
3708   switch (oi.dwPlatformId) {
3709   case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3710   case VER_PLATFORM_WIN32_NT:
3711     _is_nt = true;
3712     {
3713       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3714       if (os_vers == 5002) {
3715         _is_windows_2003 = true;
3716       }
3717       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3718           oi.wProductType == VER_NT_SERVER) {
3719         _is_windows_server = true;
3720       }
3721     }
3722     break;
3723   default: fatal("Unknown platform");
3724   }
3725 
3726   _default_stack_size = os::current_stack_size();
3727   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3728   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3729          "stack size not a multiple of page size");
3730 
3731   initialize_performance_counter();
3732 
3733   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3734   // known to deadlock the system, if the VM issues to thread operations with
3735   // a too high frequency, e.g., such as changing the priorities.
3736   // The 6000 seems to work well - no deadlocks has been notices on the test
3737   // programs that we have seen experience this problem.
3738   if (!os::win32::is_nt()) {
3739     StarvationMonitorInterval = 6000;
3740   }
3741 }
3742 
3743 
3744 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3745                                       int ebuflen) {
3746   char path[MAX_PATH];
3747   DWORD size;
3748   DWORD pathLen = (DWORD)sizeof(path);
3749   HINSTANCE result = NULL;
3750 
3751   // only allow library name without path component
3752   assert(strchr(name, '\\') == NULL, "path not allowed");
3753   assert(strchr(name, ':') == NULL, "path not allowed");
3754   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3755     jio_snprintf(ebuf, ebuflen,
3756                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3757     return NULL;
3758   }
3759 
3760   // search system directory
3761   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3762     if (size >= pathLen) {
3763       return NULL; // truncated
3764     }
3765     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3766       return NULL; // truncated
3767     }
3768     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3769       return result;
3770     }
3771   }
3772 
3773   // try Windows directory
3774   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3775     if (size >= pathLen) {
3776       return NULL; // truncated
3777     }
3778     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3779       return NULL; // truncated
3780     }
3781     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3782       return result;
3783     }
3784   }
3785 
3786   jio_snprintf(ebuf, ebuflen,
3787                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3788   return NULL;
3789 }
3790 
3791 #define EXIT_TIMEOUT     PRODUCT_ONLY(1000) NOT_PRODUCT(4000) /* 1 sec in product, 4 sec in debug */
3792 
3793 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3794   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3795   return TRUE;
3796 }
3797 
3798 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3799   // Basic approach:
3800   //  - Each exiting thread registers its intent to exit and then does so.
3801   //  - A thread trying to terminate the process must wait for all
3802   //    threads currently exiting to complete their exit.
3803 
3804   if (os::win32::has_exit_bug()) {
3805     // The array holds handles of the threads that have started exiting by calling
3806     // _endthreadex().
3807     // Should be large enough to avoid blocking the exiting thread due to lack of
3808     // a free slot.
3809     static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3810     static int handle_count = 0;
3811 
3812     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3813     static CRITICAL_SECTION crit_sect;
3814     static volatile jint process_exiting = 0;
3815     int i, j;
3816     DWORD res;
3817     HANDLE hproc, hthr;
3818 
3819     // The first thread that reached this point, initializes the critical section.
3820     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3821       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3822     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3823       EnterCriticalSection(&crit_sect);
3824 
3825       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3826         // Remove from the array those handles of the threads that have completed exiting.
3827         for (i = 0, j = 0; i < handle_count; ++i) {
3828           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3829           if (res == WAIT_TIMEOUT) {
3830             handles[j++] = handles[i];
3831           } else {
3832             if (res == WAIT_FAILED) {
3833               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3834                       GetLastError(), __FILE__, __LINE__);
3835             }
3836             // Don't keep the handle, if we failed waiting for it.
3837             CloseHandle(handles[i]);
3838           }
3839         }
3840 
3841         // If there's no free slot in the array of the kept handles, we'll have to
3842         // wait until at least one thread completes exiting.
3843         if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3844           // Raise the priority of the oldest exiting thread to increase its chances
3845           // to complete sooner.
3846           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3847           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3848           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3849             i = (res - WAIT_OBJECT_0);
3850             handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3851             for (; i < handle_count; ++i) {
3852               handles[i] = handles[i + 1];
3853             }
3854           } else {
3855             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3856                     (res == WAIT_FAILED ? "failed" : "timed out"),
3857                     GetLastError(), __FILE__, __LINE__);
3858             // Don't keep handles, if we failed waiting for them.
3859             for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3860               CloseHandle(handles[i]);
3861             }
3862             handle_count = 0;
3863           }
3864         }
3865 
3866         // Store a duplicate of the current thread handle in the array of handles.
3867         hproc = GetCurrentProcess();
3868         hthr = GetCurrentThread();
3869         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3870                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3871           warning("DuplicateHandle failed (%u) in %s: %d\n",
3872                   GetLastError(), __FILE__, __LINE__);
3873         } else {
3874           ++handle_count;
3875         }
3876 
3877         // The current exiting thread has stored its handle in the array, and now
3878         // should leave the critical section before calling _endthreadex().
3879 
3880       } else if (what != EPT_THREAD) {
3881         if (handle_count > 0) {
3882           // Before ending the process, make sure all the threads that had called
3883           // _endthreadex() completed.
3884 
3885           // Set the priority level of the current thread to the same value as
3886           // the priority level of exiting threads.
3887           // This is to ensure it will be given a fair chance to execute if
3888           // the timeout expires.
3889           hthr = GetCurrentThread();
3890           SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3891           for (i = 0; i < handle_count; ++i) {
3892             SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3893           }
3894           res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3895           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3896             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3897                     (res == WAIT_FAILED ? "failed" : "timed out"),
3898                     GetLastError(), __FILE__, __LINE__);
3899           }
3900           for (i = 0; i < handle_count; ++i) {
3901             CloseHandle(handles[i]);
3902           }
3903           handle_count = 0;
3904         }
3905 
3906         OrderAccess::release_store(&process_exiting, 1);
3907       }
3908 
3909       LeaveCriticalSection(&crit_sect);
3910     }
3911 
3912     if (what == EPT_THREAD) {
3913       while (OrderAccess::load_acquire(&process_exiting) != 0) {
3914         // Some other thread is about to call exit(), so we
3915         // don't let the current thread proceed to _endthreadex()
3916         SuspendThread(GetCurrentThread());
3917         // Avoid busy-wait loop, if SuspendThread() failed.
3918         Sleep(EXIT_TIMEOUT);
3919       }
3920     }
3921   }
3922 
3923   // We are here if either
3924   // - there's no 'race at exit' bug on this OS release;
3925   // - initialization of the critical section failed (unlikely);
3926   // - the current thread has stored its handle and left the critical section;
3927   // - the process-exiting thread has raised the flag and left the critical section.
3928   if (what == EPT_THREAD) {
3929     _endthreadex((unsigned)exit_code);
3930   } else if (what == EPT_PROCESS) {
3931     ::exit(exit_code);
3932   } else {
3933     _exit(exit_code);
3934   }
3935 
3936   // Should not reach here
3937   return exit_code;
3938 }
3939 
3940 #undef EXIT_TIMEOUT
3941 
3942 void os::win32::setmode_streams() {
3943   _setmode(_fileno(stdin), _O_BINARY);
3944   _setmode(_fileno(stdout), _O_BINARY);
3945   _setmode(_fileno(stderr), _O_BINARY);
3946 }
3947 
3948 
3949 bool os::is_debugger_attached() {
3950   return IsDebuggerPresent() ? true : false;
3951 }
3952 
3953 
3954 void os::wait_for_keypress_at_exit(void) {
3955   if (PauseAtExit) {
3956     fprintf(stderr, "Press any key to continue...\n");
3957     fgetc(stdin);
3958   }
3959 }
3960 
3961 
3962 int os::message_box(const char* title, const char* message) {
3963   int result = MessageBox(NULL, message, title,
3964                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3965   return result == IDYES;
3966 }
3967 
3968 int os::allocate_thread_local_storage() {
3969   return TlsAlloc();
3970 }
3971 
3972 
3973 void os::free_thread_local_storage(int index) {
3974   TlsFree(index);
3975 }
3976 
3977 
3978 void os::thread_local_storage_at_put(int index, void* value) {
3979   TlsSetValue(index, value);
3980   assert(thread_local_storage_at(index) == value, "Just checking");
3981 }
3982 
3983 
3984 void* os::thread_local_storage_at(int index) {
3985   return TlsGetValue(index);
3986 }
3987 
3988 
3989 #ifndef PRODUCT
3990 #ifndef _WIN64
3991 // Helpers to check whether NX protection is enabled
3992 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3993   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3994       pex->ExceptionRecord->NumberParameters > 0 &&
3995       pex->ExceptionRecord->ExceptionInformation[0] ==
3996       EXCEPTION_INFO_EXEC_VIOLATION) {
3997     return EXCEPTION_EXECUTE_HANDLER;
3998   }
3999   return EXCEPTION_CONTINUE_SEARCH;
4000 }
4001 
4002 void nx_check_protection() {
4003   // If NX is enabled we'll get an exception calling into code on the stack
4004   char code[] = { (char)0xC3 }; // ret
4005   void *code_ptr = (void *)code;
4006   __try {
4007     __asm call code_ptr
4008   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4009     tty->print_raw_cr("NX protection detected.");
4010   }
4011 }
4012 #endif // _WIN64
4013 #endif // PRODUCT
4014 
4015 // this is called _before_ the global arguments have been parsed
4016 void os::init(void) {
4017   _initial_pid = _getpid();
4018 
4019   init_random(1234567);
4020 
4021   win32::initialize_system_info();
4022   win32::setmode_streams();
4023   init_page_sizes((size_t) win32::vm_page_size());
4024 
4025   // This may be overridden later when argument processing is done.
4026   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4027                 os::win32::is_windows_2003());
4028 
4029   // Initialize main_process and main_thread
4030   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4031   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4032                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4033     fatal("DuplicateHandle failed\n");
4034   }
4035   main_thread_id = (int) GetCurrentThreadId();
4036 }
4037 
4038 // To install functions for atexit processing
4039 extern "C" {
4040   static void perfMemory_exit_helper() {
4041     perfMemory_exit();
4042   }
4043 }
4044 
4045 static jint initSock();
4046 
4047 // this is called _after_ the global arguments have been parsed
4048 jint os::init_2(void) {
4049   // Allocate a single page and mark it as readable for safepoint polling
4050   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4051   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4052 
4053   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4054   guarantee(return_page != NULL, "Commit Failed for polling page");
4055 
4056   os::set_polling_page(polling_page);
4057 
4058 #ifndef PRODUCT
4059   if (Verbose && PrintMiscellaneous) {
4060     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4061                (intptr_t)polling_page);
4062   }
4063 #endif
4064 
4065   if (!UseMembar) {
4066     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4067     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4068 
4069     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4070     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4071 
4072     os::set_memory_serialize_page(mem_serialize_page);
4073 
4074 #ifndef PRODUCT
4075     if (Verbose && PrintMiscellaneous) {
4076       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4077                  (intptr_t)mem_serialize_page);
4078     }
4079 #endif
4080   }
4081 
4082   // Setup Windows Exceptions
4083 
4084   // for debugging float code generation bugs
4085   if (ForceFloatExceptions) {
4086 #ifndef  _WIN64
4087     static long fp_control_word = 0;
4088     __asm { fstcw fp_control_word }
4089     // see Intel PPro Manual, Vol. 2, p 7-16
4090     const long precision = 0x20;
4091     const long underflow = 0x10;
4092     const long overflow  = 0x08;
4093     const long zero_div  = 0x04;
4094     const long denorm    = 0x02;
4095     const long invalid   = 0x01;
4096     fp_control_word |= invalid;
4097     __asm { fldcw fp_control_word }
4098 #endif
4099   }
4100 
4101   // If stack_commit_size is 0, windows will reserve the default size,
4102   // but only commit a small portion of it.
4103   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4104   size_t default_reserve_size = os::win32::default_stack_size();
4105   size_t actual_reserve_size = stack_commit_size;
4106   if (stack_commit_size < default_reserve_size) {
4107     // If stack_commit_size == 0, we want this too
4108     actual_reserve_size = default_reserve_size;
4109   }
4110 
4111   // Check minimum allowable stack size for thread creation and to initialize
4112   // the java system classes, including StackOverflowError - depends on page
4113   // size.  Add a page for compiler2 recursion in main thread.
4114   // Add in 2*BytesPerWord times page size to account for VM stack during
4115   // class initialization depending on 32 or 64 bit VM.
4116   size_t min_stack_allowed =
4117             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4118                      2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4119   if (actual_reserve_size < min_stack_allowed) {
4120     tty->print_cr("\nThe stack size specified is too small, "
4121                   "Specify at least %dk",
4122                   min_stack_allowed / K);
4123     return JNI_ERR;
4124   }
4125 
4126   JavaThread::set_stack_size_at_create(stack_commit_size);
4127 
4128   // Calculate theoretical max. size of Threads to guard gainst artifical
4129   // out-of-memory situations, where all available address-space has been
4130   // reserved by thread stacks.
4131   assert(actual_reserve_size != 0, "Must have a stack");
4132 
4133   // Calculate the thread limit when we should start doing Virtual Memory
4134   // banging. Currently when the threads will have used all but 200Mb of space.
4135   //
4136   // TODO: consider performing a similar calculation for commit size instead
4137   // as reserve size, since on a 64-bit platform we'll run into that more
4138   // often than running out of virtual memory space.  We can use the
4139   // lower value of the two calculations as the os_thread_limit.
4140   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4141   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4142 
4143   // at exit methods are called in the reverse order of their registration.
4144   // there is no limit to the number of functions registered. atexit does
4145   // not set errno.
4146 
4147   if (PerfAllowAtExitRegistration) {
4148     // only register atexit functions if PerfAllowAtExitRegistration is set.
4149     // atexit functions can be delayed until process exit time, which
4150     // can be problematic for embedded VM situations. Embedded VMs should
4151     // call DestroyJavaVM() to assure that VM resources are released.
4152 
4153     // note: perfMemory_exit_helper atexit function may be removed in
4154     // the future if the appropriate cleanup code can be added to the
4155     // VM_Exit VMOperation's doit method.
4156     if (atexit(perfMemory_exit_helper) != 0) {
4157       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4158     }
4159   }
4160 
4161 #ifndef _WIN64
4162   // Print something if NX is enabled (win32 on AMD64)
4163   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4164 #endif
4165 
4166   // initialize thread priority policy
4167   prio_init();
4168 
4169   if (UseNUMA && !ForceNUMA) {
4170     UseNUMA = false; // We don't fully support this yet
4171   }
4172 
4173   if (UseNUMAInterleaving) {
4174     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4175     bool success = numa_interleaving_init();
4176     if (!success) UseNUMAInterleaving = false;
4177   }
4178 
4179   if (initSock() != JNI_OK) {
4180     return JNI_ERR;
4181   }
4182 
4183   return JNI_OK;
4184 }
4185 
4186 // Mark the polling page as unreadable
4187 void os::make_polling_page_unreadable(void) {
4188   DWORD old_status;
4189   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4190                       PAGE_NOACCESS, &old_status)) {
4191     fatal("Could not disable polling page");
4192   }
4193 }
4194 
4195 // Mark the polling page as readable
4196 void os::make_polling_page_readable(void) {
4197   DWORD old_status;
4198   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4199                       PAGE_READONLY, &old_status)) {
4200     fatal("Could not enable polling page");
4201   }
4202 }
4203 
4204 
4205 int os::stat(const char *path, struct stat *sbuf) {
4206   char pathbuf[MAX_PATH];
4207   if (strlen(path) > MAX_PATH - 1) {
4208     errno = ENAMETOOLONG;
4209     return -1;
4210   }
4211   os::native_path(strcpy(pathbuf, path));
4212   int ret = ::stat(pathbuf, sbuf);
4213   if (sbuf != NULL && UseUTCFileTimestamp) {
4214     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4215     // the system timezone and so can return different values for the
4216     // same file if/when daylight savings time changes.  This adjustment
4217     // makes sure the same timestamp is returned regardless of the TZ.
4218     //
4219     // See:
4220     // http://msdn.microsoft.com/library/
4221     //   default.asp?url=/library/en-us/sysinfo/base/
4222     //   time_zone_information_str.asp
4223     // and
4224     // http://msdn.microsoft.com/library/default.asp?url=
4225     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4226     //
4227     // NOTE: there is a insidious bug here:  If the timezone is changed
4228     // after the call to stat() but before 'GetTimeZoneInformation()', then
4229     // the adjustment we do here will be wrong and we'll return the wrong
4230     // value (which will likely end up creating an invalid class data
4231     // archive).  Absent a better API for this, or some time zone locking
4232     // mechanism, we'll have to live with this risk.
4233     TIME_ZONE_INFORMATION tz;
4234     DWORD tzid = GetTimeZoneInformation(&tz);
4235     int daylightBias =
4236       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4237     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4238   }
4239   return ret;
4240 }
4241 
4242 
4243 #define FT2INT64(ft) \
4244   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4245 
4246 
4247 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4248 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4249 // of a thread.
4250 //
4251 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4252 // the fast estimate available on the platform.
4253 
4254 // current_thread_cpu_time() is not optimized for Windows yet
4255 jlong os::current_thread_cpu_time() {
4256   // return user + sys since the cost is the same
4257   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4258 }
4259 
4260 jlong os::thread_cpu_time(Thread* thread) {
4261   // consistent with what current_thread_cpu_time() returns.
4262   return os::thread_cpu_time(thread, true /* user+sys */);
4263 }
4264 
4265 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4266   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4267 }
4268 
4269 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4270   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4271   // If this function changes, os::is_thread_cpu_time_supported() should too
4272   if (os::win32::is_nt()) {
4273     FILETIME CreationTime;
4274     FILETIME ExitTime;
4275     FILETIME KernelTime;
4276     FILETIME UserTime;
4277 
4278     if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4279                        &ExitTime, &KernelTime, &UserTime) == 0) {
4280       return -1;
4281     } else if (user_sys_cpu_time) {
4282       return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4283     } else {
4284       return FT2INT64(UserTime) * 100;
4285     }
4286   } else {
4287     return (jlong) timeGetTime() * 1000000;
4288   }
4289 }
4290 
4291 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4292   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4293   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4294   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4295   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4296 }
4297 
4298 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4299   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4300   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4301   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4302   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4303 }
4304 
4305 bool os::is_thread_cpu_time_supported() {
4306   // see os::thread_cpu_time
4307   if (os::win32::is_nt()) {
4308     FILETIME CreationTime;
4309     FILETIME ExitTime;
4310     FILETIME KernelTime;
4311     FILETIME UserTime;
4312 
4313     if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4314                        &KernelTime, &UserTime) == 0) {
4315       return false;
4316     } else {
4317       return true;
4318     }
4319   } else {
4320     return false;
4321   }
4322 }
4323 
4324 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4325 // It does have primitives (PDH API) to get CPU usage and run queue length.
4326 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4327 // If we wanted to implement loadavg on Windows, we have a few options:
4328 //
4329 // a) Query CPU usage and run queue length and "fake" an answer by
4330 //    returning the CPU usage if it's under 100%, and the run queue
4331 //    length otherwise.  It turns out that querying is pretty slow
4332 //    on Windows, on the order of 200 microseconds on a fast machine.
4333 //    Note that on the Windows the CPU usage value is the % usage
4334 //    since the last time the API was called (and the first call
4335 //    returns 100%), so we'd have to deal with that as well.
4336 //
4337 // b) Sample the "fake" answer using a sampling thread and store
4338 //    the answer in a global variable.  The call to loadavg would
4339 //    just return the value of the global, avoiding the slow query.
4340 //
4341 // c) Sample a better answer using exponential decay to smooth the
4342 //    value.  This is basically the algorithm used by UNIX kernels.
4343 //
4344 // Note that sampling thread starvation could affect both (b) and (c).
4345 int os::loadavg(double loadavg[], int nelem) {
4346   return -1;
4347 }
4348 
4349 
4350 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4351 bool os::dont_yield() {
4352   return DontYieldALot;
4353 }
4354 
4355 // This method is a slightly reworked copy of JDK's sysOpen
4356 // from src/windows/hpi/src/sys_api_md.c
4357 
4358 int os::open(const char *path, int oflag, int mode) {
4359   char pathbuf[MAX_PATH];
4360 
4361   if (strlen(path) > MAX_PATH - 1) {
4362     errno = ENAMETOOLONG;
4363     return -1;
4364   }
4365   os::native_path(strcpy(pathbuf, path));
4366   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4367 }
4368 
4369 FILE* os::open(int fd, const char* mode) {
4370   return ::_fdopen(fd, mode);
4371 }
4372 
4373 // Is a (classpath) directory empty?
4374 bool os::dir_is_empty(const char* path) {
4375   WIN32_FIND_DATA fd;
4376   HANDLE f = FindFirstFile(path, &fd);
4377   if (f == INVALID_HANDLE_VALUE) {
4378     return true;
4379   }
4380   FindClose(f);
4381   return false;
4382 }
4383 
4384 // create binary file, rewriting existing file if required
4385 int os::create_binary_file(const char* path, bool rewrite_existing) {
4386   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4387   if (!rewrite_existing) {
4388     oflags |= _O_EXCL;
4389   }
4390   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4391 }
4392 
4393 // return current position of file pointer
4394 jlong os::current_file_offset(int fd) {
4395   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4396 }
4397 
4398 // move file pointer to the specified offset
4399 jlong os::seek_to_file_offset(int fd, jlong offset) {
4400   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4401 }
4402 
4403 
4404 jlong os::lseek(int fd, jlong offset, int whence) {
4405   return (jlong) ::_lseeki64(fd, offset, whence);
4406 }
4407 
4408 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4409   OVERLAPPED ov;
4410   DWORD nread;
4411   BOOL result;
4412 
4413   ZeroMemory(&ov, sizeof(ov));
4414   ov.Offset = (DWORD)offset;
4415   ov.OffsetHigh = (DWORD)(offset >> 32);
4416 
4417   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4418 
4419   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4420 
4421   return result ? nread : 0;
4422 }
4423 
4424 
4425 // This method is a slightly reworked copy of JDK's sysNativePath
4426 // from src/windows/hpi/src/path_md.c
4427 
4428 // Convert a pathname to native format.  On win32, this involves forcing all
4429 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4430 // sometimes rejects '/') and removing redundant separators.  The input path is
4431 // assumed to have been converted into the character encoding used by the local
4432 // system.  Because this might be a double-byte encoding, care is taken to
4433 // treat double-byte lead characters correctly.
4434 //
4435 // This procedure modifies the given path in place, as the result is never
4436 // longer than the original.  There is no error return; this operation always
4437 // succeeds.
4438 char * os::native_path(char *path) {
4439   char *src = path, *dst = path, *end = path;
4440   char *colon = NULL;  // If a drive specifier is found, this will
4441                        // point to the colon following the drive letter
4442 
4443   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4444   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4445           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4446 
4447   // Check for leading separators
4448 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4449   while (isfilesep(*src)) {
4450     src++;
4451   }
4452 
4453   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4454     // Remove leading separators if followed by drive specifier.  This
4455     // hack is necessary to support file URLs containing drive
4456     // specifiers (e.g., "file://c:/path").  As a side effect,
4457     // "/c:/path" can be used as an alternative to "c:/path".
4458     *dst++ = *src++;
4459     colon = dst;
4460     *dst++ = ':';
4461     src++;
4462   } else {
4463     src = path;
4464     if (isfilesep(src[0]) && isfilesep(src[1])) {
4465       // UNC pathname: Retain first separator; leave src pointed at
4466       // second separator so that further separators will be collapsed
4467       // into the second separator.  The result will be a pathname
4468       // beginning with "\\\\" followed (most likely) by a host name.
4469       src = dst = path + 1;
4470       path[0] = '\\';     // Force first separator to '\\'
4471     }
4472   }
4473 
4474   end = dst;
4475 
4476   // Remove redundant separators from remainder of path, forcing all
4477   // separators to be '\\' rather than '/'. Also, single byte space
4478   // characters are removed from the end of the path because those
4479   // are not legal ending characters on this operating system.
4480   //
4481   while (*src != '\0') {
4482     if (isfilesep(*src)) {
4483       *dst++ = '\\'; src++;
4484       while (isfilesep(*src)) src++;
4485       if (*src == '\0') {
4486         // Check for trailing separator
4487         end = dst;
4488         if (colon == dst - 2) break;  // "z:\\"
4489         if (dst == path + 1) break;   // "\\"
4490         if (dst == path + 2 && isfilesep(path[0])) {
4491           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4492           // beginning of a UNC pathname.  Even though it is not, by
4493           // itself, a valid UNC pathname, we leave it as is in order
4494           // to be consistent with the path canonicalizer as well
4495           // as the win32 APIs, which treat this case as an invalid
4496           // UNC pathname rather than as an alias for the root
4497           // directory of the current drive.
4498           break;
4499         }
4500         end = --dst;  // Path does not denote a root directory, so
4501                       // remove trailing separator
4502         break;
4503       }
4504       end = dst;
4505     } else {
4506       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4507         *dst++ = *src++;
4508         if (*src) *dst++ = *src++;
4509         end = dst;
4510       } else {  // Copy a single-byte character
4511         char c = *src++;
4512         *dst++ = c;
4513         // Space is not a legal ending character
4514         if (c != ' ') end = dst;
4515       }
4516     }
4517   }
4518 
4519   *end = '\0';
4520 
4521   // For "z:", add "." to work around a bug in the C runtime library
4522   if (colon == dst - 1) {
4523     path[2] = '.';
4524     path[3] = '\0';
4525   }
4526 
4527   return path;
4528 }
4529 
4530 // This code is a copy of JDK's sysSetLength
4531 // from src/windows/hpi/src/sys_api_md.c
4532 
4533 int os::ftruncate(int fd, jlong length) {
4534   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4535   long high = (long)(length >> 32);
4536   DWORD ret;
4537 
4538   if (h == (HANDLE)(-1)) {
4539     return -1;
4540   }
4541 
4542   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4543   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4544     return -1;
4545   }
4546 
4547   if (::SetEndOfFile(h) == FALSE) {
4548     return -1;
4549   }
4550 
4551   return 0;
4552 }
4553 
4554 
4555 // This code is a copy of JDK's sysSync
4556 // from src/windows/hpi/src/sys_api_md.c
4557 // except for the legacy workaround for a bug in Win 98
4558 
4559 int os::fsync(int fd) {
4560   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4561 
4562   if ((!::FlushFileBuffers(handle)) &&
4563       (GetLastError() != ERROR_ACCESS_DENIED)) {
4564     // from winerror.h
4565     return -1;
4566   }
4567   return 0;
4568 }
4569 
4570 static int nonSeekAvailable(int, long *);
4571 static int stdinAvailable(int, long *);
4572 
4573 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4574 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4575 
4576 // This code is a copy of JDK's sysAvailable
4577 // from src/windows/hpi/src/sys_api_md.c
4578 
4579 int os::available(int fd, jlong *bytes) {
4580   jlong cur, end;
4581   struct _stati64 stbuf64;
4582 
4583   if (::_fstati64(fd, &stbuf64) >= 0) {
4584     int mode = stbuf64.st_mode;
4585     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4586       int ret;
4587       long lpbytes;
4588       if (fd == 0) {
4589         ret = stdinAvailable(fd, &lpbytes);
4590       } else {
4591         ret = nonSeekAvailable(fd, &lpbytes);
4592       }
4593       (*bytes) = (jlong)(lpbytes);
4594       return ret;
4595     }
4596     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4597       return FALSE;
4598     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4599       return FALSE;
4600     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4601       return FALSE;
4602     }
4603     *bytes = end - cur;
4604     return TRUE;
4605   } else {
4606     return FALSE;
4607   }
4608 }
4609 
4610 // This code is a copy of JDK's nonSeekAvailable
4611 // from src/windows/hpi/src/sys_api_md.c
4612 
4613 static int nonSeekAvailable(int fd, long *pbytes) {
4614   // This is used for available on non-seekable devices
4615   // (like both named and anonymous pipes, such as pipes
4616   //  connected to an exec'd process).
4617   // Standard Input is a special case.
4618   HANDLE han;
4619 
4620   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4621     return FALSE;
4622   }
4623 
4624   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4625     // PeekNamedPipe fails when at EOF.  In that case we
4626     // simply make *pbytes = 0 which is consistent with the
4627     // behavior we get on Solaris when an fd is at EOF.
4628     // The only alternative is to raise an Exception,
4629     // which isn't really warranted.
4630     //
4631     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4632       return FALSE;
4633     }
4634     *pbytes = 0;
4635   }
4636   return TRUE;
4637 }
4638 
4639 #define MAX_INPUT_EVENTS 2000
4640 
4641 // This code is a copy of JDK's stdinAvailable
4642 // from src/windows/hpi/src/sys_api_md.c
4643 
4644 static int stdinAvailable(int fd, long *pbytes) {
4645   HANDLE han;
4646   DWORD numEventsRead = 0;  // Number of events read from buffer
4647   DWORD numEvents = 0;      // Number of events in buffer
4648   DWORD i = 0;              // Loop index
4649   DWORD curLength = 0;      // Position marker
4650   DWORD actualLength = 0;   // Number of bytes readable
4651   BOOL error = FALSE;       // Error holder
4652   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4653 
4654   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4655     return FALSE;
4656   }
4657 
4658   // Construct an array of input records in the console buffer
4659   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4660   if (error == 0) {
4661     return nonSeekAvailable(fd, pbytes);
4662   }
4663 
4664   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4665   if (numEvents > MAX_INPUT_EVENTS) {
4666     numEvents = MAX_INPUT_EVENTS;
4667   }
4668 
4669   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4670   if (lpBuffer == NULL) {
4671     return FALSE;
4672   }
4673 
4674   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4675   if (error == 0) {
4676     os::free(lpBuffer);
4677     return FALSE;
4678   }
4679 
4680   // Examine input records for the number of bytes available
4681   for (i=0; i<numEvents; i++) {
4682     if (lpBuffer[i].EventType == KEY_EVENT) {
4683 
4684       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4685                                       &(lpBuffer[i].Event);
4686       if (keyRecord->bKeyDown == TRUE) {
4687         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4688         curLength++;
4689         if (*keyPressed == '\r') {
4690           actualLength = curLength;
4691         }
4692       }
4693     }
4694   }
4695 
4696   if (lpBuffer != NULL) {
4697     os::free(lpBuffer);
4698   }
4699 
4700   *pbytes = (long) actualLength;
4701   return TRUE;
4702 }
4703 
4704 // Map a block of memory.
4705 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4706                         char *addr, size_t bytes, bool read_only,
4707                         bool allow_exec) {
4708   HANDLE hFile;
4709   char* base;
4710 
4711   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4712                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4713   if (hFile == NULL) {
4714     if (PrintMiscellaneous && Verbose) {
4715       DWORD err = GetLastError();
4716       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4717     }
4718     return NULL;
4719   }
4720 
4721   if (allow_exec) {
4722     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4723     // unless it comes from a PE image (which the shared archive is not.)
4724     // Even VirtualProtect refuses to give execute access to mapped memory
4725     // that was not previously executable.
4726     //
4727     // Instead, stick the executable region in anonymous memory.  Yuck.
4728     // Penalty is that ~4 pages will not be shareable - in the future
4729     // we might consider DLLizing the shared archive with a proper PE
4730     // header so that mapping executable + sharing is possible.
4731 
4732     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4733                                 PAGE_READWRITE);
4734     if (base == NULL) {
4735       if (PrintMiscellaneous && Verbose) {
4736         DWORD err = GetLastError();
4737         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4738       }
4739       CloseHandle(hFile);
4740       return NULL;
4741     }
4742 
4743     DWORD bytes_read;
4744     OVERLAPPED overlapped;
4745     overlapped.Offset = (DWORD)file_offset;
4746     overlapped.OffsetHigh = 0;
4747     overlapped.hEvent = NULL;
4748     // ReadFile guarantees that if the return value is true, the requested
4749     // number of bytes were read before returning.
4750     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4751     if (!res) {
4752       if (PrintMiscellaneous && Verbose) {
4753         DWORD err = GetLastError();
4754         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4755       }
4756       release_memory(base, bytes);
4757       CloseHandle(hFile);
4758       return NULL;
4759     }
4760   } else {
4761     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4762                                     NULL /* file_name */);
4763     if (hMap == NULL) {
4764       if (PrintMiscellaneous && Verbose) {
4765         DWORD err = GetLastError();
4766         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4767       }
4768       CloseHandle(hFile);
4769       return NULL;
4770     }
4771 
4772     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4773     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4774                                   (DWORD)bytes, addr);
4775     if (base == NULL) {
4776       if (PrintMiscellaneous && Verbose) {
4777         DWORD err = GetLastError();
4778         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4779       }
4780       CloseHandle(hMap);
4781       CloseHandle(hFile);
4782       return NULL;
4783     }
4784 
4785     if (CloseHandle(hMap) == 0) {
4786       if (PrintMiscellaneous && Verbose) {
4787         DWORD err = GetLastError();
4788         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4789       }
4790       CloseHandle(hFile);
4791       return base;
4792     }
4793   }
4794 
4795   if (allow_exec) {
4796     DWORD old_protect;
4797     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4798     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4799 
4800     if (!res) {
4801       if (PrintMiscellaneous && Verbose) {
4802         DWORD err = GetLastError();
4803         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4804       }
4805       // Don't consider this a hard error, on IA32 even if the
4806       // VirtualProtect fails, we should still be able to execute
4807       CloseHandle(hFile);
4808       return base;
4809     }
4810   }
4811 
4812   if (CloseHandle(hFile) == 0) {
4813     if (PrintMiscellaneous && Verbose) {
4814       DWORD err = GetLastError();
4815       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4816     }
4817     return base;
4818   }
4819 
4820   return base;
4821 }
4822 
4823 
4824 // Remap a block of memory.
4825 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4826                           char *addr, size_t bytes, bool read_only,
4827                           bool allow_exec) {
4828   // This OS does not allow existing memory maps to be remapped so we
4829   // have to unmap the memory before we remap it.
4830   if (!os::unmap_memory(addr, bytes)) {
4831     return NULL;
4832   }
4833 
4834   // There is a very small theoretical window between the unmap_memory()
4835   // call above and the map_memory() call below where a thread in native
4836   // code may be able to access an address that is no longer mapped.
4837 
4838   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4839                         read_only, allow_exec);
4840 }
4841 
4842 
4843 // Unmap a block of memory.
4844 // Returns true=success, otherwise false.
4845 
4846 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4847   BOOL result = UnmapViewOfFile(addr);
4848   if (result == 0) {
4849     if (PrintMiscellaneous && Verbose) {
4850       DWORD err = GetLastError();
4851       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4852     }
4853     return false;
4854   }
4855   return true;
4856 }
4857 
4858 void os::pause() {
4859   char filename[MAX_PATH];
4860   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4861     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4862   } else {
4863     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4864   }
4865 
4866   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4867   if (fd != -1) {
4868     struct stat buf;
4869     ::close(fd);
4870     while (::stat(filename, &buf) == 0) {
4871       Sleep(100);
4872     }
4873   } else {
4874     jio_fprintf(stderr,
4875                 "Could not open pause file '%s', continuing immediately.\n", filename);
4876   }
4877 }
4878 
4879 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4880   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4881 }
4882 
4883 // See the caveats for this class in os_windows.hpp
4884 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4885 // into this method and returns false. If no OS EXCEPTION was raised, returns
4886 // true.
4887 // The callback is supposed to provide the method that should be protected.
4888 //
4889 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4890   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4891   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4892          "crash_protection already set?");
4893 
4894   bool success = true;
4895   __try {
4896     WatcherThread::watcher_thread()->set_crash_protection(this);
4897     cb.call();
4898   } __except(EXCEPTION_EXECUTE_HANDLER) {
4899     // only for protection, nothing to do
4900     success = false;
4901   }
4902   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4903   return success;
4904 }
4905 
4906 // An Event wraps a win32 "CreateEvent" kernel handle.
4907 //
4908 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4909 //
4910 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4911 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4912 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4913 //     In addition, an unpark() operation might fetch the handle field, but the
4914 //     event could recycle between the fetch and the SetEvent() operation.
4915 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4916 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4917 //     on an stale but recycled handle would be harmless, but in practice this might
4918 //     confuse other non-Sun code, so it's not a viable approach.
4919 //
4920 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4921 //     with the Event.  The event handle is never closed.  This could be construed
4922 //     as handle leakage, but only up to the maximum # of threads that have been extant
4923 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4924 //     permit a process to have hundreds of thousands of open handles.
4925 //
4926 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4927 //     and release unused handles.
4928 //
4929 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4930 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4931 //
4932 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4933 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4934 //
4935 // We use (2).
4936 //
4937 // TODO-FIXME:
4938 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4939 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4940 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4941 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4942 //     into a single win32 CreateEvent() handle.
4943 //
4944 // Assumption:
4945 //    Only one parker can exist on an event, which is why we allocate
4946 //    them per-thread. Multiple unparkers can coexist.
4947 //
4948 // _Event transitions in park()
4949 //   -1 => -1 : illegal
4950 //    1 =>  0 : pass - return immediately
4951 //    0 => -1 : block; then set _Event to 0 before returning
4952 //
4953 // _Event transitions in unpark()
4954 //    0 => 1 : just return
4955 //    1 => 1 : just return
4956 //   -1 => either 0 or 1; must signal target thread
4957 //         That is, we can safely transition _Event from -1 to either
4958 //         0 or 1.
4959 //
4960 // _Event serves as a restricted-range semaphore.
4961 //   -1 : thread is blocked, i.e. there is a waiter
4962 //    0 : neutral: thread is running or ready,
4963 //        could have been signaled after a wait started
4964 //    1 : signaled - thread is running or ready
4965 //
4966 // Another possible encoding of _Event would be with
4967 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4968 //
4969 
4970 int os::PlatformEvent::park(jlong Millis) {
4971   // Transitions for _Event:
4972   //   -1 => -1 : illegal
4973   //    1 =>  0 : pass - return immediately
4974   //    0 => -1 : block; then set _Event to 0 before returning
4975 
4976   guarantee(_ParkHandle != NULL , "Invariant");
4977   guarantee(Millis > 0          , "Invariant");
4978 
4979   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4980   // the initial park() operation.
4981   // Consider: use atomic decrement instead of CAS-loop
4982 
4983   int v;
4984   for (;;) {
4985     v = _Event;
4986     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4987   }
4988   guarantee((v == 0) || (v == 1), "invariant");
4989   if (v != 0) return OS_OK;
4990 
4991   // Do this the hard way by blocking ...
4992   // TODO: consider a brief spin here, gated on the success of recent
4993   // spin attempts by this thread.
4994   //
4995   // We decompose long timeouts into series of shorter timed waits.
4996   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4997   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4998   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4999   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5000   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5001   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5002   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5003   // for the already waited time.  This policy does not admit any new outcomes.
5004   // In the future, however, we might want to track the accumulated wait time and
5005   // adjust Millis accordingly if we encounter a spurious wakeup.
5006 
5007   const int MAXTIMEOUT = 0x10000000;
5008   DWORD rv = WAIT_TIMEOUT;
5009   while (_Event < 0 && Millis > 0) {
5010     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5011     if (Millis > MAXTIMEOUT) {
5012       prd = MAXTIMEOUT;
5013     }
5014     rv = ::WaitForSingleObject(_ParkHandle, prd);
5015     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5016     if (rv == WAIT_TIMEOUT) {
5017       Millis -= prd;
5018     }
5019   }
5020   v = _Event;
5021   _Event = 0;
5022   // see comment at end of os::PlatformEvent::park() below:
5023   OrderAccess::fence();
5024   // If we encounter a nearly simultanous timeout expiry and unpark()
5025   // we return OS_OK indicating we awoke via unpark().
5026   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5027   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5028 }
5029 
5030 void os::PlatformEvent::park() {
5031   // Transitions for _Event:
5032   //   -1 => -1 : illegal
5033   //    1 =>  0 : pass - return immediately
5034   //    0 => -1 : block; then set _Event to 0 before returning
5035 
5036   guarantee(_ParkHandle != NULL, "Invariant");
5037   // Invariant: Only the thread associated with the Event/PlatformEvent
5038   // may call park().
5039   // Consider: use atomic decrement instead of CAS-loop
5040   int v;
5041   for (;;) {
5042     v = _Event;
5043     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5044   }
5045   guarantee((v == 0) || (v == 1), "invariant");
5046   if (v != 0) return;
5047 
5048   // Do this the hard way by blocking ...
5049   // TODO: consider a brief spin here, gated on the success of recent
5050   // spin attempts by this thread.
5051   while (_Event < 0) {
5052     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5053     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5054   }
5055 
5056   // Usually we'll find _Event == 0 at this point, but as
5057   // an optional optimization we clear it, just in case can
5058   // multiple unpark() operations drove _Event up to 1.
5059   _Event = 0;
5060   OrderAccess::fence();
5061   guarantee(_Event >= 0, "invariant");
5062 }
5063 
5064 void os::PlatformEvent::unpark() {
5065   guarantee(_ParkHandle != NULL, "Invariant");
5066 
5067   // Transitions for _Event:
5068   //    0 => 1 : just return
5069   //    1 => 1 : just return
5070   //   -1 => either 0 or 1; must signal target thread
5071   //         That is, we can safely transition _Event from -1 to either
5072   //         0 or 1.
5073   // See also: "Semaphores in Plan 9" by Mullender & Cox
5074   //
5075   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5076   // that it will take two back-to-back park() calls for the owning
5077   // thread to block. This has the benefit of forcing a spurious return
5078   // from the first park() call after an unpark() call which will help
5079   // shake out uses of park() and unpark() without condition variables.
5080 
5081   if (Atomic::xchg(1, &_Event) >= 0) return;
5082 
5083   ::SetEvent(_ParkHandle);
5084 }
5085 
5086 
5087 // JSR166
5088 // -------------------------------------------------------
5089 
5090 // The Windows implementation of Park is very straightforward: Basic
5091 // operations on Win32 Events turn out to have the right semantics to
5092 // use them directly. We opportunistically resuse the event inherited
5093 // from Monitor.
5094 
5095 void Parker::park(bool isAbsolute, jlong time) {
5096   guarantee(_ParkEvent != NULL, "invariant");
5097   // First, demultiplex/decode time arguments
5098   if (time < 0) { // don't wait
5099     return;
5100   } else if (time == 0 && !isAbsolute) {
5101     time = INFINITE;
5102   } else if (isAbsolute) {
5103     time -= os::javaTimeMillis(); // convert to relative time
5104     if (time <= 0) {  // already elapsed
5105       return;
5106     }
5107   } else { // relative
5108     time /= 1000000;  // Must coarsen from nanos to millis
5109     if (time == 0) {  // Wait for the minimal time unit if zero
5110       time = 1;
5111     }
5112   }
5113 
5114   JavaThread* thread = (JavaThread*)(Thread::current());
5115   assert(thread->is_Java_thread(), "Must be JavaThread");
5116   JavaThread *jt = (JavaThread *)thread;
5117 
5118   // Don't wait if interrupted or already triggered
5119   if (Thread::is_interrupted(thread, false) ||
5120       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5121     ResetEvent(_ParkEvent);
5122     return;
5123   } else {
5124     ThreadBlockInVM tbivm(jt);
5125     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5126     jt->set_suspend_equivalent();
5127 
5128     WaitForSingleObject(_ParkEvent, time);
5129     ResetEvent(_ParkEvent);
5130 
5131     // If externally suspended while waiting, re-suspend
5132     if (jt->handle_special_suspend_equivalent_condition()) {
5133       jt->java_suspend_self();
5134     }
5135   }
5136 }
5137 
5138 void Parker::unpark() {
5139   guarantee(_ParkEvent != NULL, "invariant");
5140   SetEvent(_ParkEvent);
5141 }
5142 
5143 // Run the specified command in a separate process. Return its exit value,
5144 // or -1 on failure (e.g. can't create a new process).
5145 int os::fork_and_exec(char* cmd) {
5146   STARTUPINFO si;
5147   PROCESS_INFORMATION pi;
5148 
5149   memset(&si, 0, sizeof(si));
5150   si.cb = sizeof(si);
5151   memset(&pi, 0, sizeof(pi));
5152   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5153                             cmd,    // command line
5154                             NULL,   // process security attribute
5155                             NULL,   // thread security attribute
5156                             TRUE,   // inherits system handles
5157                             0,      // no creation flags
5158                             NULL,   // use parent's environment block
5159                             NULL,   // use parent's starting directory
5160                             &si,    // (in) startup information
5161                             &pi);   // (out) process information
5162 
5163   if (rslt) {
5164     // Wait until child process exits.
5165     WaitForSingleObject(pi.hProcess, INFINITE);
5166 
5167     DWORD exit_code;
5168     GetExitCodeProcess(pi.hProcess, &exit_code);
5169 
5170     // Close process and thread handles.
5171     CloseHandle(pi.hProcess);
5172     CloseHandle(pi.hThread);
5173 
5174     return (int)exit_code;
5175   } else {
5176     return -1;
5177   }
5178 }
5179 
5180 //--------------------------------------------------------------------------------------------------
5181 // Non-product code
5182 
5183 static int mallocDebugIntervalCounter = 0;
5184 static int mallocDebugCounter = 0;
5185 bool os::check_heap(bool force) {
5186   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5187   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5188     // Note: HeapValidate executes two hardware breakpoints when it finds something
5189     // wrong; at these points, eax contains the address of the offending block (I think).
5190     // To get to the exlicit error message(s) below, just continue twice.
5191     HANDLE heap = GetProcessHeap();
5192 
5193     // If we fail to lock the heap, then gflags.exe has been used
5194     // or some other special heap flag has been set that prevents
5195     // locking. We don't try to walk a heap we can't lock.
5196     if (HeapLock(heap) != 0) {
5197       PROCESS_HEAP_ENTRY phe;
5198       phe.lpData = NULL;
5199       while (HeapWalk(heap, &phe) != 0) {
5200         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5201             !HeapValidate(heap, 0, phe.lpData)) {
5202           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5203           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5204           fatal("corrupted C heap");
5205         }
5206       }
5207       DWORD err = GetLastError();
5208       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5209         fatal(err_msg("heap walk aborted with error %d", err));
5210       }
5211       HeapUnlock(heap);
5212     }
5213     mallocDebugIntervalCounter = 0;
5214   }
5215   return true;
5216 }
5217 
5218 
5219 bool os::find(address addr, outputStream* st) {
5220   // Nothing yet
5221   return false;
5222 }
5223 
5224 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5225   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5226 
5227   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5228     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5229     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5230     address addr = (address) exceptionRecord->ExceptionInformation[1];
5231 
5232     if (os::is_memory_serialize_page(thread, addr)) {
5233       return EXCEPTION_CONTINUE_EXECUTION;
5234     }
5235   }
5236 
5237   return EXCEPTION_CONTINUE_SEARCH;
5238 }
5239 
5240 // We don't build a headless jre for Windows
5241 bool os::is_headless_jre() { return false; }
5242 
5243 static jint initSock() {
5244   WSADATA wsadata;
5245 
5246   if (!os::WinSock2Dll::WinSock2Available()) {
5247     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5248                 ::GetLastError());
5249     return JNI_ERR;
5250   }
5251 
5252   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5253     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5254                 ::GetLastError());
5255     return JNI_ERR;
5256   }
5257   return JNI_OK;
5258 }
5259 
5260 struct hostent* os::get_host_by_name(char* name) {
5261   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5262 }
5263 
5264 int os::socket_close(int fd) {
5265   return ::closesocket(fd);
5266 }
5267 
5268 int os::socket(int domain, int type, int protocol) {
5269   return ::socket(domain, type, protocol);
5270 }
5271 
5272 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5273   return ::connect(fd, him, len);
5274 }
5275 
5276 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5277   return ::recv(fd, buf, (int)nBytes, flags);
5278 }
5279 
5280 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5281   return ::send(fd, buf, (int)nBytes, flags);
5282 }
5283 
5284 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5285   return ::send(fd, buf, (int)nBytes, flags);
5286 }
5287 
5288 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5289 #if defined(IA32)
5290   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5291 #elif defined (AMD64)
5292   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5293 #endif
5294 
5295 // returns true if thread could be suspended,
5296 // false otherwise
5297 static bool do_suspend(HANDLE* h) {
5298   if (h != NULL) {
5299     if (SuspendThread(*h) != ~0) {
5300       return true;
5301     }
5302   }
5303   return false;
5304 }
5305 
5306 // resume the thread
5307 // calling resume on an active thread is a no-op
5308 static void do_resume(HANDLE* h) {
5309   if (h != NULL) {
5310     ResumeThread(*h);
5311   }
5312 }
5313 
5314 // retrieve a suspend/resume context capable handle
5315 // from the tid. Caller validates handle return value.
5316 void get_thread_handle_for_extended_context(HANDLE* h,
5317                                             OSThread::thread_id_t tid) {
5318   if (h != NULL) {
5319     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5320   }
5321 }
5322 
5323 // Thread sampling implementation
5324 //
5325 void os::SuspendedThreadTask::internal_do_task() {
5326   CONTEXT    ctxt;
5327   HANDLE     h = NULL;
5328 
5329   // get context capable handle for thread
5330   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5331 
5332   // sanity
5333   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5334     return;
5335   }
5336 
5337   // suspend the thread
5338   if (do_suspend(&h)) {
5339     ctxt.ContextFlags = sampling_context_flags;
5340     // get thread context
5341     GetThreadContext(h, &ctxt);
5342     SuspendedThreadTaskContext context(_thread, &ctxt);
5343     // pass context to Thread Sampling impl
5344     do_task(context);
5345     // resume thread
5346     do_resume(&h);
5347   }
5348 
5349   // close handle
5350   CloseHandle(h);
5351 }
5352 
5353 
5354 // Kernel32 API
5355 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5356 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5357 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5358 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5359 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5360 
5361 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5362 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5363 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5364 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5365 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5366 
5367 
5368 BOOL                        os::Kernel32Dll::initialized = FALSE;
5369 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5370   assert(initialized && _GetLargePageMinimum != NULL,
5371          "GetLargePageMinimumAvailable() not yet called");
5372   return _GetLargePageMinimum();
5373 }
5374 
5375 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5376   if (!initialized) {
5377     initialize();
5378   }
5379   return _GetLargePageMinimum != NULL;
5380 }
5381 
5382 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5383   if (!initialized) {
5384     initialize();
5385   }
5386   return _VirtualAllocExNuma != NULL;
5387 }
5388 
5389 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5390                                            SIZE_T bytes, DWORD flags,
5391                                            DWORD prot, DWORD node) {
5392   assert(initialized && _VirtualAllocExNuma != NULL,
5393          "NUMACallsAvailable() not yet called");
5394 
5395   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5396 }
5397 
5398 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5399   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5400          "NUMACallsAvailable() not yet called");
5401 
5402   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5403 }
5404 
5405 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5406                                                PULONGLONG proc_mask) {
5407   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5408          "NUMACallsAvailable() not yet called");
5409 
5410   return _GetNumaNodeProcessorMask(node, proc_mask);
5411 }
5412 
5413 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5414                                                  ULONG FrameToCapture,
5415                                                  PVOID* BackTrace,
5416                                                  PULONG BackTraceHash) {
5417   if (!initialized) {
5418     initialize();
5419   }
5420 
5421   if (_RtlCaptureStackBackTrace != NULL) {
5422     return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5423                                      BackTrace, BackTraceHash);
5424   } else {
5425     return 0;
5426   }
5427 }
5428 
5429 void os::Kernel32Dll::initializeCommon() {
5430   if (!initialized) {
5431     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5432     assert(handle != NULL, "Just check");
5433     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5434     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5435     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5436     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5437     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5438     initialized = TRUE;
5439   }
5440 }
5441 
5442 
5443 
5444 #ifndef JDK6_OR_EARLIER
5445 
5446 void os::Kernel32Dll::initialize() {
5447   initializeCommon();
5448 }
5449 
5450 
5451 // Kernel32 API
5452 inline BOOL os::Kernel32Dll::SwitchToThread() {
5453   return ::SwitchToThread();
5454 }
5455 
5456 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5457   return true;
5458 }
5459 
5460 // Help tools
5461 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5462   return true;
5463 }
5464 
5465 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5466                                                         DWORD th32ProcessId) {
5467   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5468 }
5469 
5470 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5471                                            LPMODULEENTRY32 lpme) {
5472   return ::Module32First(hSnapshot, lpme);
5473 }
5474 
5475 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5476                                           LPMODULEENTRY32 lpme) {
5477   return ::Module32Next(hSnapshot, lpme);
5478 }
5479 
5480 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5481   ::GetNativeSystemInfo(lpSystemInfo);
5482 }
5483 
5484 // PSAPI API
5485 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5486                                              HMODULE *lpModule, DWORD cb,
5487                                              LPDWORD lpcbNeeded) {
5488   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5489 }
5490 
5491 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5492                                                HMODULE hModule,
5493                                                LPTSTR lpFilename,
5494                                                DWORD nSize) {
5495   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5496 }
5497 
5498 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5499                                                HMODULE hModule,
5500                                                LPMODULEINFO lpmodinfo,
5501                                                DWORD cb) {
5502   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5503 }
5504 
5505 inline BOOL os::PSApiDll::PSApiAvailable() {
5506   return true;
5507 }
5508 
5509 
5510 // WinSock2 API
5511 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5512                                         LPWSADATA lpWSAData) {
5513   return ::WSAStartup(wVersionRequested, lpWSAData);
5514 }
5515 
5516 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5517   return ::gethostbyname(name);
5518 }
5519 
5520 inline BOOL os::WinSock2Dll::WinSock2Available() {
5521   return true;
5522 }
5523 
5524 // Advapi API
5525 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5526                                                    BOOL DisableAllPrivileges,
5527                                                    PTOKEN_PRIVILEGES NewState,
5528                                                    DWORD BufferLength,
5529                                                    PTOKEN_PRIVILEGES PreviousState,
5530                                                    PDWORD ReturnLength) {
5531   return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5532                                  BufferLength, PreviousState, ReturnLength);
5533 }
5534 
5535 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5536                                               DWORD DesiredAccess,
5537                                               PHANDLE TokenHandle) {
5538   return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5539 }
5540 
5541 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5542                                                   LPCTSTR lpName,
5543                                                   PLUID lpLuid) {
5544   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5545 }
5546 
5547 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5548   return true;
5549 }
5550 
5551 void* os::get_default_process_handle() {
5552   return (void*)GetModuleHandle(NULL);
5553 }
5554 
5555 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5556 // which is used to find statically linked in agents.
5557 // Additionally for windows, takes into account __stdcall names.
5558 // Parameters:
5559 //            sym_name: Symbol in library we are looking for
5560 //            lib_name: Name of library to look in, NULL for shared libs.
5561 //            is_absolute_path == true if lib_name is absolute path to agent
5562 //                                     such as "C:/a/b/L.dll"
5563 //            == false if only the base name of the library is passed in
5564 //               such as "L"
5565 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5566                                     bool is_absolute_path) {
5567   char *agent_entry_name;
5568   size_t len;
5569   size_t name_len;
5570   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5571   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5572   const char *start;
5573 
5574   if (lib_name != NULL) {
5575     len = name_len = strlen(lib_name);
5576     if (is_absolute_path) {
5577       // Need to strip path, prefix and suffix
5578       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5579         lib_name = ++start;
5580       } else {
5581         // Need to check for drive prefix
5582         if ((start = strchr(lib_name, ':')) != NULL) {
5583           lib_name = ++start;
5584         }
5585       }
5586       if (len <= (prefix_len + suffix_len)) {
5587         return NULL;
5588       }
5589       lib_name += prefix_len;
5590       name_len = strlen(lib_name) - suffix_len;
5591     }
5592   }
5593   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5594   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5595   if (agent_entry_name == NULL) {
5596     return NULL;
5597   }
5598   if (lib_name != NULL) {
5599     const char *p = strrchr(sym_name, '@');
5600     if (p != NULL && p != sym_name) {
5601       // sym_name == _Agent_OnLoad@XX
5602       strncpy(agent_entry_name, sym_name, (p - sym_name));
5603       agent_entry_name[(p-sym_name)] = '\0';
5604       // agent_entry_name == _Agent_OnLoad
5605       strcat(agent_entry_name, "_");
5606       strncat(agent_entry_name, lib_name, name_len);
5607       strcat(agent_entry_name, p);
5608       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5609     } else {
5610       strcpy(agent_entry_name, sym_name);
5611       strcat(agent_entry_name, "_");
5612       strncat(agent_entry_name, lib_name, name_len);
5613     }
5614   } else {
5615     strcpy(agent_entry_name, sym_name);
5616   }
5617   return agent_entry_name;
5618 }
5619 
5620 #else
5621 // Kernel32 API
5622 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5623 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5624 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5625 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5626 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5627 
5628 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5629 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5630 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5631 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5632 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5633 
5634 void os::Kernel32Dll::initialize() {
5635   if (!initialized) {
5636     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5637     assert(handle != NULL, "Just check");
5638 
5639     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5640     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5641       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5642     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5643     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5644     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5645     initializeCommon();  // resolve the functions that always need resolving
5646 
5647     initialized = TRUE;
5648   }
5649 }
5650 
5651 BOOL os::Kernel32Dll::SwitchToThread() {
5652   assert(initialized && _SwitchToThread != NULL,
5653          "SwitchToThreadAvailable() not yet called");
5654   return _SwitchToThread();
5655 }
5656 
5657 
5658 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5659   if (!initialized) {
5660     initialize();
5661   }
5662   return _SwitchToThread != NULL;
5663 }
5664 
5665 // Help tools
5666 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5667   if (!initialized) {
5668     initialize();
5669   }
5670   return _CreateToolhelp32Snapshot != NULL &&
5671          _Module32First != NULL &&
5672          _Module32Next != NULL;
5673 }
5674 
5675 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5676                                                  DWORD th32ProcessId) {
5677   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5678          "HelpToolsAvailable() not yet called");
5679 
5680   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5681 }
5682 
5683 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5684   assert(initialized && _Module32First != NULL,
5685          "HelpToolsAvailable() not yet called");
5686 
5687   return _Module32First(hSnapshot, lpme);
5688 }
5689 
5690 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5691                                           LPMODULEENTRY32 lpme) {
5692   assert(initialized && _Module32Next != NULL,
5693          "HelpToolsAvailable() not yet called");
5694 
5695   return _Module32Next(hSnapshot, lpme);
5696 }
5697 
5698 
5699 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5700   if (!initialized) {
5701     initialize();
5702   }
5703   return _GetNativeSystemInfo != NULL;
5704 }
5705 
5706 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5707   assert(initialized && _GetNativeSystemInfo != NULL,
5708          "GetNativeSystemInfoAvailable() not yet called");
5709 
5710   _GetNativeSystemInfo(lpSystemInfo);
5711 }
5712 
5713 // PSAPI API
5714 
5715 
5716 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5717 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5718 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5719 
5720 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5721 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5722 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5723 BOOL                    os::PSApiDll::initialized = FALSE;
5724 
5725 void os::PSApiDll::initialize() {
5726   if (!initialized) {
5727     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5728     if (handle != NULL) {
5729       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5730                                                                     "EnumProcessModules");
5731       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5732                                                                       "GetModuleFileNameExA");
5733       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5734                                                                         "GetModuleInformation");
5735     }
5736     initialized = TRUE;
5737   }
5738 }
5739 
5740 
5741 
5742 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5743                                       DWORD cb, LPDWORD lpcbNeeded) {
5744   assert(initialized && _EnumProcessModules != NULL,
5745          "PSApiAvailable() not yet called");
5746   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5747 }
5748 
5749 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5750                                         LPTSTR lpFilename, DWORD nSize) {
5751   assert(initialized && _GetModuleFileNameEx != NULL,
5752          "PSApiAvailable() not yet called");
5753   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5754 }
5755 
5756 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5757                                         LPMODULEINFO lpmodinfo, DWORD cb) {
5758   assert(initialized && _GetModuleInformation != NULL,
5759          "PSApiAvailable() not yet called");
5760   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5761 }
5762 
5763 BOOL os::PSApiDll::PSApiAvailable() {
5764   if (!initialized) {
5765     initialize();
5766   }
5767   return _EnumProcessModules != NULL &&
5768     _GetModuleFileNameEx != NULL &&
5769     _GetModuleInformation != NULL;
5770 }
5771 
5772 
5773 // WinSock2 API
5774 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5775 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5776 
5777 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5778 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5779 BOOL             os::WinSock2Dll::initialized = FALSE;
5780 
5781 void os::WinSock2Dll::initialize() {
5782   if (!initialized) {
5783     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5784     if (handle != NULL) {
5785       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5786       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5787     }
5788     initialized = TRUE;
5789   }
5790 }
5791 
5792 
5793 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5794   assert(initialized && _WSAStartup != NULL,
5795          "WinSock2Available() not yet called");
5796   return _WSAStartup(wVersionRequested, lpWSAData);
5797 }
5798 
5799 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5800   assert(initialized && _gethostbyname != NULL,
5801          "WinSock2Available() not yet called");
5802   return _gethostbyname(name);
5803 }
5804 
5805 BOOL os::WinSock2Dll::WinSock2Available() {
5806   if (!initialized) {
5807     initialize();
5808   }
5809   return _WSAStartup != NULL &&
5810     _gethostbyname != NULL;
5811 }
5812 
5813 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5814 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5815 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5816 
5817 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5818 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5819 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5820 BOOL                     os::Advapi32Dll::initialized = FALSE;
5821 
5822 void os::Advapi32Dll::initialize() {
5823   if (!initialized) {
5824     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5825     if (handle != NULL) {
5826       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5827                                                                           "AdjustTokenPrivileges");
5828       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5829                                                                 "OpenProcessToken");
5830       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5831                                                                         "LookupPrivilegeValueA");
5832     }
5833     initialized = TRUE;
5834   }
5835 }
5836 
5837 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5838                                             BOOL DisableAllPrivileges,
5839                                             PTOKEN_PRIVILEGES NewState,
5840                                             DWORD BufferLength,
5841                                             PTOKEN_PRIVILEGES PreviousState,
5842                                             PDWORD ReturnLength) {
5843   assert(initialized && _AdjustTokenPrivileges != NULL,
5844          "AdvapiAvailable() not yet called");
5845   return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5846                                 BufferLength, PreviousState, ReturnLength);
5847 }
5848 
5849 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5850                                        DWORD DesiredAccess,
5851                                        PHANDLE TokenHandle) {
5852   assert(initialized && _OpenProcessToken != NULL,
5853          "AdvapiAvailable() not yet called");
5854   return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5855 }
5856 
5857 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5858                                            LPCTSTR lpName, PLUID lpLuid) {
5859   assert(initialized && _LookupPrivilegeValue != NULL,
5860          "AdvapiAvailable() not yet called");
5861   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5862 }
5863 
5864 BOOL os::Advapi32Dll::AdvapiAvailable() {
5865   if (!initialized) {
5866     initialize();
5867   }
5868   return _AdjustTokenPrivileges != NULL &&
5869     _OpenProcessToken != NULL &&
5870     _LookupPrivilegeValue != NULL;
5871 }
5872 
5873 #endif
5874 
5875 #ifndef PRODUCT
5876 
5877 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5878 // contiguous memory block at a particular address.
5879 // The test first tries to find a good approximate address to allocate at by using the same
5880 // method to allocate some memory at any address. The test then tries to allocate memory in
5881 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5882 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5883 // the previously allocated memory is available for allocation. The only actual failure
5884 // that is reported is when the test tries to allocate at a particular location but gets a
5885 // different valid one. A NULL return value at this point is not considered an error but may
5886 // be legitimate.
5887 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5888 void TestReserveMemorySpecial_test() {
5889   if (!UseLargePages) {
5890     if (VerboseInternalVMTests) {
5891       gclog_or_tty->print("Skipping test because large pages are disabled");
5892     }
5893     return;
5894   }
5895   // save current value of globals
5896   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5897   bool old_use_numa_interleaving = UseNUMAInterleaving;
5898 
5899   // set globals to make sure we hit the correct code path
5900   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5901 
5902   // do an allocation at an address selected by the OS to get a good one.
5903   const size_t large_allocation_size = os::large_page_size() * 4;
5904   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5905   if (result == NULL) {
5906     if (VerboseInternalVMTests) {
5907       gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5908                           large_allocation_size);
5909     }
5910   } else {
5911     os::release_memory_special(result, large_allocation_size);
5912 
5913     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5914     // we managed to get it once.
5915     const size_t expected_allocation_size = os::large_page_size();
5916     char* expected_location = result + os::large_page_size();
5917     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5918     if (actual_location == NULL) {
5919       if (VerboseInternalVMTests) {
5920         gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5921                             expected_location, large_allocation_size);
5922       }
5923     } else {
5924       // release memory
5925       os::release_memory_special(actual_location, expected_allocation_size);
5926       // only now check, after releasing any memory to avoid any leaks.
5927       assert(actual_location == expected_location,
5928              err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5929              expected_location, expected_allocation_size, actual_location));
5930     }
5931   }
5932 
5933   // restore globals
5934   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5935   UseNUMAInterleaving = old_use_numa_interleaving;
5936 }
5937 #endif // PRODUCT
5938